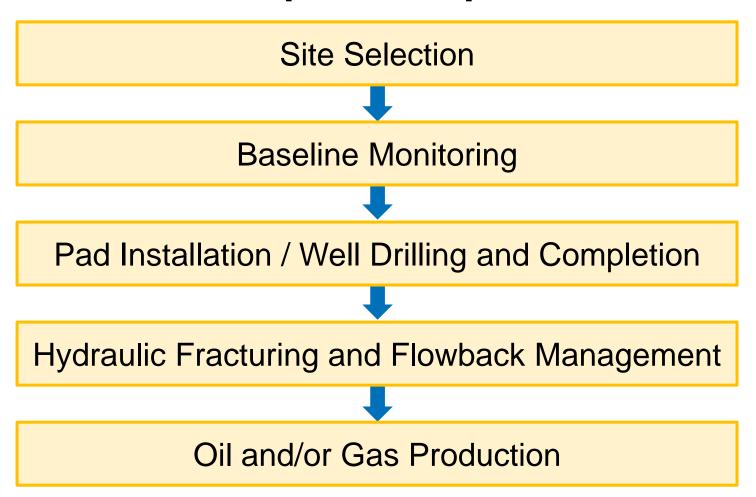


Update on EPA's Prospective Case Studies

Technical Workshop: Case Studies to Assess Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

Jeanne Briskin, EPA/ORD

July 30, 2013


Prospective Case Study Goals

- Understand how site-specific hydraulic fracturing practices prevent impacts to drinking water resources
- Evaluate any changes in water quality over time

Study Approach

Follows development of production well

Site Selection

Example **environmental management practices** conducted by well operator

Consider nearby water resources, slope, etc.

Research Approach

EXA		_	-		
$lue{}$ $lue{}$ $lue{}$ $lue{}$	NЛ	_	<i></i>	ηл.	
_ ^ 4	IVI			,,	

- New development area
- Relatively shallow ground water of good quality
- Nearby surface water resources with access for monitoring
- Site topography provides good access for monitoring wells
- Cooperative landowners (access)

EXAMPLE IMPLEMENTATION TASKS

- Review historical oil and gas activities and distances
- Evaluate potential water quality impacts from local pre-existing land uses
- Determine distance and flow path to surface water resources
- Identify existing nearby ground water wells
- · Gather pre-existing water quality information
- Site visit to confirm
- Sign access agreements

Baseline Monitoring

Example **environmental management practices** conducted by well operator

Conduct water quality monitoring

Research Approach

EXAMPLE GOALS	EXAMPLE IMPLEMENTATION TASKS
Install monitoring networkConduct baseline monitoring	Determine depth, direction and rate of ground water flow
Document baseline water quality	 Drill, log and install monitoring wells at multiple depths
	 Establish surface water monitoring locations
	 Conduct four quarterly water quality and flow monitoring events

Pad Installation / Well Drilling and Completion

Example **environmental management practices** conducted by well operator

- Install liners, construct berms
- Install casing and cement, conduct mechanical integrity tests
- Construct secondary containment for tanks/impoundments

Research Approach

EXAMPLE GOALS	EXAMPLE IMPLEMENTATION TASKS
Document well construction details	Observe pad construction
Document well integrityAssess any impacts to water quality	Observe drilling and completion of production well
	 Monitor ground and surface water for any impacts
	 Receive company-provided details on geology, casing materials and depths, cement details and evaluation tools, mechanical integrity test results, etc.

Hydraulic Fracturing and Flowback Management

Example **environmental management practices** conducted by well operator

- Choice of hydraulic fracturing fluid components
- Fracture propagation assessment / microseismic monitoring
- Pressure monitoring
- Post-fracture mechanical integrity testing

Research Approach

EXAMPLE GOALS	
---------------	--

- Document hydraulic fracturing and flowback process
- Document fracture propagation
- Document pressure monitoring
- Document post-fracture mechanical integrity testing
- · Assess any impacts to water quality

EXAMPLE IMPLEMENTATION TASKS

- Observe hydraulic fracturing operations
- Monitor ground and surface water for any impacts
- Sample flowback
- Receive company-provided microseismic data; hydraulic fracturing reports on fluid volumes, pressure curves and chemical additives; mechanical integrity test results; etc.

Oil and/or Gas Production

Example **environmental management practices** conducted by well operator

Monitor oil, gas and water production

Research Approach

EXAMPLE GOALS	EXAMPLE IMPLEMENTATION TASKS
 Document water management practices Evaluate any changes to water quality Evaluate for any delayed impacts to ground or surface water 	 Confirm with operator produced water management volumes and disposal methods Monitor produced water for four quarters Conduct four quarterly water quality and flow monitoring events

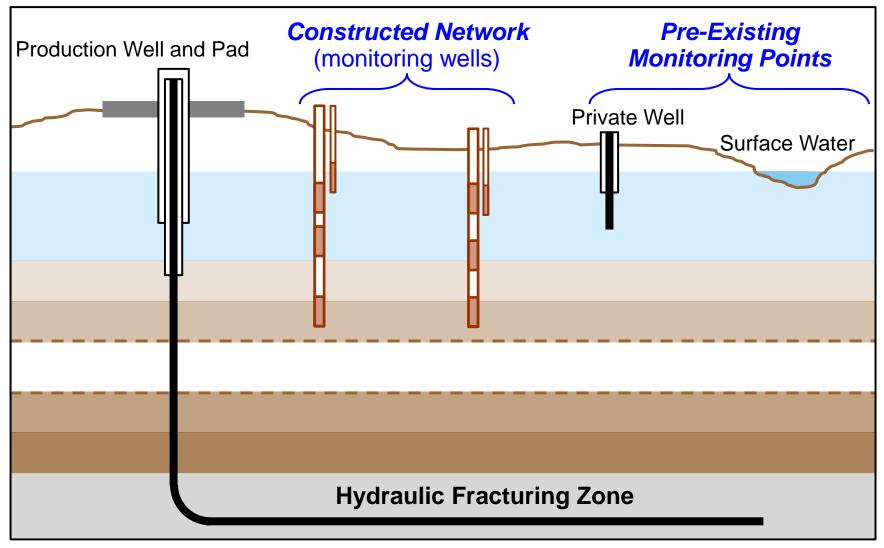
Collaboration is Key

Partners: US EPA, US Department of Energy, US Geological Survey, host well owner/operator, state agencies, landowners and others

- Design
- Observation
- Interpretation

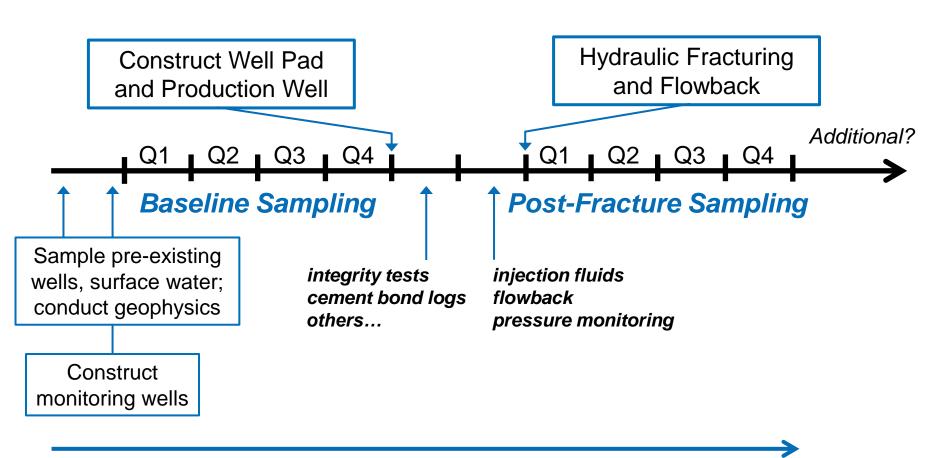
Water Quality Monitoring

Use pre-existing monitoring points


- Private, public, industrial, agricultural wells
- Springs and surface water bodies within local drainage system

Install additional targeted monitoring wells

- Location, depth and number depend on local ground water depth, flow rate and direction
- Target anticipated flow paths within aquifers



Conceptual Framework for Monitoring

Anticipated Timeline

Monitor water quality and flow indicators

Technical Challenges

- Legacy or active fossil fuel extraction and other land use
 - Existing historical/active fossil fuel extraction
 (oil, gas or coal), other commercial/private sources (USTs)
 - Prior industrial or commercial activity
 Affects analyte choice and interpretation
- Site-specific aquifer properties
 - Direction of ground water flow within study area
 - Rate of ground water flow

Affects monitoring well location and frequency/duration of sampling

Implementation Challenges

Access

Involves well owner/operator and landowner

Timing

- Well development
- Corridor planning and development

Best approaches to manage research and commercial timelines?