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8 Abstract 

9 We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechan­

10 ics code, namely T+M simulator. Modeling of the vertical fracture development involves 

11 continuous updating of the boundary conditions and of the data connectivity, based on the 

12 finite element method for geomechanics. The T+M simulator can model the initial fracture 

13 development during the hydraulic fracturing operations, after which the domain description 

14 changes from single continuum to double or multiple continua in order to rigorously model 

15 both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides 

16 two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporome­

17 chanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically 

18 tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off 

19 in all directions during hydraulic fracturing. 

20 We first validate the T+M simulator, matching numerical solutions with the analytical 

21 solutions for poromechanical effects, static fractures, and fracture propagations. Then, from 

22 numerical simulation of various cases of the planar fracture propagation, shear failure can 

23 limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. 

24 Slow injection causes more leak-off, compared with fast injection, when the same amount of 
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25 fluid is injected. Changes in initial total stress and contributions of shear effective stress 

26 to tensile failure can also affect formation of the fractured areas, and the geomechanical 

27 responses are still well-posed. 

28 Keywords: Hydraulic fracturing, Poromechanics, Tensile failure, Fracture propagation, Dou­

29 ble porosity, Shale gas. 

30 1. Introduction 

31 Hydraulic fracturing is widely used in reservoir engineering applications to increase pro­

32 duction by enhancing permeability [57, 17]. Injection of fluid generates high pressure around 

33 wells, which can create a fracture normal to the direction of the smallest magnitude of 

34 the principal total stresses. The creation of the fracture significantly improves permeabil­

35 ity, changing heat and fluid flow regimes. For example, hydraulic fracturing is applied to 

36 geothermal engineering because the fractured geothermal reservoirs can increase heat ex­

37 traction from geothermal reservoirs [33, 44]. In reservoir engineering, gas production in 

38 shale/tight gas reservoirs typically hinges on hydraulic fracturing because of the extremely 

39 low permeability of such reservoirs [19, 53, 16]. The horizontal wells along with hydraulic 

40 fracturing are typically applied to maximize production of gas in the shale gas reservoirs 

41 [19, 53]. Longuemare et al. [35] studied fracture propagation based on the PKN fracture 

42 model, associated with a 3D two phase thermal reservoir simulator. Adachi et al. [2] re­

43 viewed a brief history of the models of hydraulic fracturing in reservoir engineering, which 

44 were developed before the stage of full 3D hydraulic fracturing simulation. According to 

45 Adachi et al. [2], two models from plane strain geomechanics, namely PKN model [41] and 

46 KGD model [40], were developed at early times, assuming simple fracture geometries. Then, 

47 the pseudo-3D (P3D) model and the planar 3D model (PL3D) model were proposed for more 

48 realistic fracture shapes than those of the PKN and KGD models. The four models provide 
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49 low computational cost, but they cannot properly simulate the cases of hydraulic fracturing 

50 tightly coupled to flow, such as shale gas reservoirs. Hydraulic fracturing in the shale gas 

51 reservoirs requires rigorous modeling in fracture propagation and fluid flow, such as tightly 

52 coupled flow and geomechanics. 

53 Several studies to develop algorithms for hydraulic fracturing simulation have been made 

54 in reservoir or geothermal engineering. Ji et al. [23] developed a numerical model for hy­

55 draulic fracturing, considering coupled flow and geomechanics, where the algorithm is based 

56 on the dynamic update of the boundary conditions along the fracture plane, fundamentally 

57 motivated by the node splitting. Later, Nassir et al. [39] partially incorporated shear fail­

58 ure to hydraulic fracturing, although poromechanical effects are not fully considered. Dean 

59 and Schmidt [13] employed the same fracturing algorithm in Ji et al. [23] for tensile frac­

60 turing, while using different criteria based on rock toughness. Fu et al. [20] used the node­

61 splitting method when material faces tensile failure, based on the elastic fracture mechanics 

62 [22, 10, 43]. The algorithm by Ji et al. [23] can only consider the vertical fracturing, but 

63 can easily be implemented to the finite element geomechanics codes, changing the boundary 

64 conditions and the corresponding data connectivity. Furthermore, it can easily couple flow 

65 and geomechanics, accounting for the leak-off of the injected fluid to the reservoirs. On the 

66 other hand, the method by Fu et al. [20] is not restricted to the vertical fracturing. However, 

67 fracturing in 3D problems causes high complexity in code development, and massive modifi­

68 cation of the data connectivity is much challenging, compared with the algorithm by Ji et al. 

69 [23]. Moreover, the method by Fu et al. [20] only allows fluid flow along gridblocks, so the 

70 leak-off of the injected fluid to the gridblokcs cannot properly be considered. 

71 The enhanced assumed strain (EAS) and extended finite element methods (XFEM) have 

72 been studied in the computational mechanics community in order to model strong disconti­
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73 nuity in displacement (e.g., Borja [9] and Moes et al. [36]). These methods introduce discon­

74 tinuous interpolation functions, and theoretically do not require the remeshing when applied 

75 to the modeling in fracture propagation. However, even though the mesh is not updated, the 

76 applications in the full 3D problems are still much challenging, requiring huge complexi­

77 ties and coding effort, because the fracture shape in 3D is at least two-dimensional, while 

78 2D problems have mainly been studied, where the fracture shapes in 2D are simply a line. 

79 Furthermore, the coupling of flow and geomechanics by the EAS method or XFEM has little 

80 been investigated. For example, Legarth et al. [33] applied XFEM to hydraulic fracturing, but 

81 the application potentially has the same difficulties as the method by Fu et al. [20]. Ji et al. 

82 [23] showed significant differences between the results with and without poroelastic effects 

83 in hydraulic fracturing. The poromechanical effects can be significant for low permeable and 

84 high compressible reservoirs with low compressible fluid, such as water injection [31, 27]. 

85 From the aforementioned characteristics of the algorithms of hydraulic fracturing, we 

86 develop a coupled flow and geomechanic simulator of hydraulic fractuiring in this study, 

87 using a similar method of Ji et al. [23] for tensile fracturing. In addition, we employ a tensile 

88 failure criterion that can also account for shear stress effect as well as normal stress [43]. We 

89 also include shear failure with Drucker-Prager and Mohr-Coulomb models (e.g., Wang et al. 

90 [54]), and can simultaneously account for tensile and shear failures. 

91 Creation of the fractures by tensile or shear failure implies that two different porous me­

92 dia, such as fracture and rock matrix, coexist at a continuum level, and thus the double or 

93 multiple continuum methods are desirable for more accurate modeling in not only flow-only 

94 but also coupled flow and geomechanics simulation [6, 42, 8, 28]. The developed simulator 

95 can consider thermo-poro-mechanical effects in pore volume more rigorously in the multi­

96 ple porosity model, as described in Kim et al. [28]. We consider the permeability change 
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97 in the fracture(s), motivated by the cubic law [55, 45]. Then we take validation tests for 

98 poromechanical effects, the widths of static fractures, and fracture propagations. We will 

99 also perform 3D several numerical simulations in shale gas reservoirs, and investigate evolu­

100 tion of flow and geomechanical properties and variables such as the dimension and opening 

101 of the fractures, fluid pressure, and effective stress. 

102 2. Mathematical formulation 

103 2.1. Governing Equation 

104 Hydraulic fracturing requires the modeling of coupled flow-heat flow and geomechanics 

105 rigorously. The governing equation for fluid flow is written as follows. 

∫ ∫ ∫ 
d 

m kdΩ + fk · n dΓ = q kdΩ, (1)
dt Ω Γ Ω 

106 where the superscript k indicates the fluid component. d(·)/dt means the time derivative of 

107 a physical quantity (·) relative to the motion of the solid skeleton. mk is mass of component 

108 k. fk and qk are its flux and source terms on the domain Ω with a boundary surface Γ, 

109 respectively, where n is the normal vector of the boundary. 

110 The fluid mass of component k is written as 

∑ 
m k = ϕSJ ρJ XJ 

k + δS(1 − ϕ)ρRΥG , (2) 
J 

111 where the subscript J indicates fluid phases. ϕ is the true porosity, defined as the ratio of the 

112 pore volume to the bulk volume in the deformed configuration. SJ , ρJ , and XJ 
k are saturation 

113 and density of phase J , and the mass fraction of component k in phase J , respectively. δS is 

114 the indicator for gas sorption. δS = 0.0 for non-sorbing rock such as tight gas systems, while 

115 δS = 1.0 for gas-sorbing media, such as shales [37]. ρR is the rock density, and ΥG is the 
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116 mass of sorbed component per unit mass of rock. 

117 

118 The mass flux term is obtained from 

∑( )
fk = wJ 

k + Jk , (3)J 
J 

119 where wJ 
k and Jk 

J are the convective and diffusive mass flows of component k in phase J . 

120 For the liquid phase, J = L, wJ 
k can be given by Darcy’s law as 

k ρJ krJ 
wJ = XJ 

k wJ , wJ = − kp (GradpJ − ρJ g), (4) 
µJ 

121  where kp is the absolute (intrinsic) permeability tensor. The terms µJ , krJ , pJ are the viscos­

122  ity, relative permeability, and pressure of fluid phase J , respectively. g is the gravity vector,
 

123  and Grad is the gradient operator. Depending on the circumstances, we use more appropriate
 

124  flow equations such as the Forchheimer equation [18], which incorporates laminar, inertial
 

125 and turbulent effects. In this case, Darcy’s law is written with scalar permeability as 

126 

2(GradpJ − ρJ g) 
wJ = −ρJ √( )2 

, (5) 
µJ µJ+ + 4χJ ρJ |GradpJ − ρJ g|kpkrJ kpkrJ 

127 where χJ is the turbulence correction factor [24]. 

k 
128 For the gaseous phase, J = G, wG is given by 

( )
kK ρG krG 

Xk = XG 
k wG, wG = − 1 + k (GradpG − ρG g), (6)G PG µG 

where kK is the Klinkenberg factor [32]. The diffusive flow Jk 
J is described as 129 
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Jk = −ϕ SJ τG D
k 
J ρJ GradXk (7)J J , 

130 where Dk 
J and τG are the hydrodynamic dispersion tensor and gas tortuosity, respectively. 

131 The governing equation for heat flow comes from heat balance, written as 

∫ ∫ ∫ 
d 

m H dΩ + fH · n dΓ = q H dΩ, (8)
dt Ω Γ Ω 

132  where the superscript H indicates the heat component. mH , fH , and qH are heat, its flux, and
 

133 source terms, respectively. The term mH is the heat accumulation term, and is expressed as 

∫ T ∑ 
m H = (1 − ϕ) ρR CR dT + ϕ SJ ρJ eJ + δS (1 − ϕ)ρReS,G Υ

G , (9) 
T0 J 

134  where T , CR and T0 are temperature, heat capacity of the porous medium, and reference tem­

135 perature. eJ and eS,G denote specific internal energy of phase J and sorbed gas, respectively. 

136 The heat flux is written as 

∑ 
fH = −KH Grad T + hJ wJ , (10) 

J 

137  where KH is the composite thermal conductivity of the porous media. The specific internal
 

138 energy, eJ , and enthalpy, hJ , of components k in phase J become, respectively, 

∑ ∑ 
Xk k Xk hk eJ = J eJ , hJ = J J . (11) 

k k 

139 More detailed descriptions of the governing equations for fluid and heat flow are shown in 

140 Moridis et al. [37]. For the boundary conditions for the flow problems, we consider the 
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141 boundary conditions pJ = p̄J (prescribed pressure) on the boundary Γp, and wJ · n = w̄J 

142 (prescribed mass flux) on the boundary Γf , where Γp ∩ Γf = ∅, and Γp ∪ Γf = ∂Ω. The 

¯143 boundary conditions for heat flow are T = T (prescribed temperature) on the boundary ΓT , 

144 and fH · n = f̄H (prescribed heat flux) on the boundary ΓH , where ΓT ∩ ΓH = ∅, and 

145 ΓT ∪ ΓH = ∂Ω. 

146 The governing equation for geomechanics is based on the quasi-static assumption [11], 

147 written as 

Div a + ρb g = 0, (12) 

148 where Div is the divergence operator. a is the total stress tensor, and ρb is the bulk density. 

149 Note that tensile stress is positive in this study. The infinitesimal transformation is used to 

150 allow the strain tensor, κ , to be the symmetric gradient of the displacement vector, u, 

1 ( )
κ = GradT u + Grad u . (13)

2 

151 The boundary conditions for geomechanics are as follows; u = ū, given displacement, on a 

152 boundary Γu, and a · n = t̄, traction on a boundary Γt, where Γu ∪ Γt = ∂Ω, the boundary 

153 over the domain, and Γu ∩Γt = ∅ . The initial total stress satisfies the mechanical equilibrium 

154 for given boundary conditions. 

155 Note that the boundary conditions of geomechanics in hydraulic fracturing are not pre­

156 scribed but dependent on the solutions of geomechanics (i.e., nonlinearity). Conventional 

157 plastic mechanics such as Mohr-Coulomb failure yields material nonlinearity while the bound­

158 ary conditions are still prescribed [47]. On the other hand, geomechanics of hydraulic fractur­

159 ing in this study does not yield material nonlinearity while nonlinearity lies in the boundary 

160 conditions. 
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161 2.2. Constitutive relations 

162 Gas flow within homogeneous rock can be modeled using single porosity poromechanics, 

163 extended from Biot’s theory [11]. However, when failure occurs and fractures are created, we 

164 face local heterogeneity because fractures and rock matrix coexist. In this case, it is desirable 

165 to use double or multiple porosity models, which allow local heterogeneity, particularly for 

166 low permeable rock matrix, as shown in Figure 1. We employ the generalized formulation that 

167 can be used for the non-isothermal multiphase flow and multiple porosity models, described 

168 as [28] 

δ� ′    
δa = : δ (κ − κp)−b ∗ b̃lδT 1, b ∗ (14)Cup l,J δpl,J 1 − Kdr l,J = −Kdr(bSJ )l,    

�e ( ) ( )1 ηk η αη 
= , Cup Ck, bl = − , ˜ (15)= Kdr bl = 3(αT η)l,

Kdr Kk K k K l 

δζl,J − δϕ(l,J )p = b ∗ + L−1 δpm,I − D̄l,J,m δTm, (16)l,J δεv,e l,J,m,I     
δζ(l,J)e( )

¯ ¯S − s̄J δmJ l = −b̃lKdrδεv − Dl,m,I δpm,I + D̃l,m δTm, (17) 

δ l = −Hl · δel, (18) 

169 where the subscripts e and p denote elasticity and plasticity, respectively, and double indices 

170 indicate summation. 1 is the rank-2 identity tensor. κe and κp are the elastic and plastic 

171 strains, respectively. Kdr and Cup are the upscaled elastoplastic drained bulk and tangent 

moduli at the level of a gridblock. αl is the Biot coefficient of the subelement l, (i.e., αl172 = 

173 1 − Kl/Ks, where Ks is the intrinsic solid grain bulk modulus.). αT is the thermal dilation 

174 coefficient, ηl is the volume fraction of the subelement l, and Kl is the drained bulk modulus 

175 of the subelement l. ζ(l,J )e and ϕ(l,J )p are the elastic and plastic fluid contents for the material 

176 l and phase J , respectively. δζ(l,J )e = (δm/ρ)l,J , where m(l,J ) is the fluid mass of phase J 
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181 

182 

183 

177 within the subelement l. L = {Ll,J,m,I } is a positive-definite tensor, extended from the Biot 

¯178 modulus of single phase flow. S is the total entropy, and s̄J is the internal entropy per unit 

179 mass of the phase J (i.e., specific entropy). l and el are the internal stress-like and strain­

180 like plastic variables for material l, respectively. Hl is a positive definite hardening modulus 

transfer, regardless of geomechanics, and 

}{
D̄ D̄l,m,Imatrix for material l.
 is determined by coupling beween fluid flow and heat
 = { } 

D̃ D̃l,m is the heat capacity term. The off­= 

diagonal terms of
 D̄ and D̃ are typically taken to be zero. Then, the diagonal terms of D̄ and 

184 D̃ are determined by 3αs and (Cd/T )l, respectively. 3αs is the thermal dilation coefficient l,I l,I 

185 related to solid grain and phase I of the subelement l, and Cd is the total volumetric heat 

186 capacity. 

187 For ϕ(l,J )p , we take [3] 

δϕ(l,J )p = bl,J 
∗ δεv,p . (19) 

188 L for single phase flow with a fracture-rock matrix (double porosity) system can be written 

189 in a matrix form, when the off-diagonal terms are taken to be zero, as 

 

L−1 =  
  

ηF NF 0  ,  (20)
 
0 ηM NM 

190 where NF and NM are the inverse of the Biot moduli, MF and MM , for the fracture and 

191 rock matrix media, respectively, (i.e., NF = 1/MF and NM = 1/MM , where Mf = ϕcf + 

192 (αf − ϕ)/Ks and cf is the intrinsic fluid compressibility). The subscripts F and M indicate 

193 the fracture and rock matrix, respectively. More details of the formulation are described in 

194 Kim et al. [28]. 

195 Here, we can relate the above formulation to the porosity used in reservoir simulation, Φ, 
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196 called Lagrange’s porosity or reservoir porosity [46, 50]. Φ is defined as the ratio of the pore 

197 volume in the deformed configuration to the bulk volume in the reference (typically initial) 

198 configuration. Specifically, for single phase flow, 

1 dρf 1 dρf
δml = ρl Φηl (cf δpf − cT δT ) + ρJ ηlδΦ, where cf = , cT = − , (21)

ρf dpf ρf dT 

199 where the subscript f means fluid. cT is the thermal expansivity of fluid. Comparing Equa­

200 tion 21 with Equation 16, we obtain 

( )
α2 αl − Φl bl

δΦl = l + δpf + 3αT ,l αlδT − δσv, (22)
Kl Ks ηl 

201 where σv is the total (volumetric) mean stress. 

202  In this study, we neglect the heat contribution directly from geomechanics to heat flow,
 

203  ignoring the term related to −b̃lKdrδεv of Equation 17 (i.e., one-way coupling from heat flow
 

204  to geomechanics). This assumption is justified when heat capacity of material or fluid is high,
 

205 or direct heat generation from deformations is negligible [34, 27]. 

206  Note that the double porosity model is used initially for naturally fractured reservoirs,
 

207  while, in this study, we change the single porosity model into the double porosity during
 

208  simulation dynamically when a material faces plasticity. Thus, for the naturally fractured
 

209  reservoirs, Cup and Kdr at a gridblock are obtained from the upscaling from given properties
 

210  of subelements such as fracture and rock matrix materials. Accordingly, the return mapping
 

211 for elastoplasticity is performed at all the subelements [28]. 

212 On the other hand, in this study, Cup and Kdr are directly obtained from the elastoplastic 

213 tangent moduli at a gridblock (global) level, not the subelements, while we need to determine 

214 the drained bulk moduli of the fracture and rock matrix materials for the double porosity 
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215 model, followed by the coupling coefficients. To this end, we assume that the rock matrix has 

216 the same drained bulk modulus as that of the single porosity material before plasticity (i.e., 

217 elasticity), because the rock matrix is undamaged (Kim and Moridis, 2012a). Then, from 

218 Equation 16, the drained bulk modulus of the fracture can be determined as 

KdrKM
Kf = ηf . (23)

KM − Kdr(1 − ηf ) 

219 Considering Kdr and Kf to be positive for wellposedness, the volume fraction of the fracture, 

220 ηf , has the constraint as 

KM
ηf > 1 − . (24)

Kdr 

221 2.3. Failure and Fracturing 
222 2.3.1. Tensile failure 

223 We employ a tensile failure condition for large-scale fracture propagation, used in Ruiz 

224 et al. [43], as follows. 

( )√ 
σc 
′ = β−2 (tt 

′2 + ts 
2) + tn 

2 ≥ Tc, (25) 

225 where tn, tt, and ts are the normal and shear effective stresses, acting on a fracture plane, 

226 as shown in Figure 2. Tc is tensile strength of material, typically determined from a tension 

227 test such as the Brazilian test. From Equation 25, we can account for contribution from 

228 both normal and shear effective stresses to tensile failure. When β = ∞, the tensile failure 

229 is purely caused by the normal effective stress. For β = 1.0, σc 
′ of Equation 25 becomes 

230 identical to that of Asahina et al. [4]. 
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231 Note that we employ the fracturing condition based on tensile strength in this study, rather 

232 using toughness-based fracturing conditions, because we focus on large scale fracture propa­

233 gation. The toughness-based fracturing conditions with the stress intensity factor is typically 

234 employed in small scale fracture propagation [2]. 

235 For a given geomechanical loading, the boundary condition of geomechanics is modified 

236 when the effective stresses reach a tensile failure condition. The internal natural (Neumann) 

237 boundary conditions are introduced at the areas where the effective stresses satisfy the tensile 

238 failure condition, Equation 25. 

239 When hydraulic fracturing induces a dry zone of a created fracture, followed by a fluid lag 

240 [2], the fluid pressure within the dry zone is determined from the surrounding reservoir pres­

241 sure in this study. This implies that the pressure of the dry zone is locally equilibrated with 

242 the surroundings, because the time scale of the local pressure equilibrium is much smaller 

243 than the time scale of fluid flow within the fracture. 

244 2.3.2. Shear failure 

245 For shear failure, we use the Drucker-Prager and Mohr-Coulomb models, which are 

246 widely used to model failure of cohesive frictional materials. The Drucker-Prager model 

247 is expressed as 

√ √ 
f = βf I1 + J2 − κf ≤ 0, g = βgI1 + J2 − κg ≤ 0, (26) 

248 where I1 is the first stress invariant of the effective stress and J2 is the second stress invariant 

249 of the effect deviatoric stress. f and g are the yield and plastic potential functions, respec­

250 tively. βf , κf , βg, and κg are the coefficients to characterize the yield and plastic potential 

251 functions. 
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252 The Mohr-Coulomb model is given as 

f = τ ′ − σ ′ sin Ψf − ch cos Ψf ≤ 0, g = τ ′ − σ ′ sin Ψd − ch cos Ψd ≤ 0, (27)m m m m 

σ1 
′ + σ ′ σ ′ − σ ′ 3 ′ 1 3σ ′ = and τ = , (28)m 2 m 2 

253 where σ1 
′ , σ2 

′ , and σ3 
′ are the maximum, intermediate, and minimum principal effective 

254 stresses, respectively. ch, Ψf , and Ψd are the cohesion, the friction angle, and the dilation 

255 angle, respectively. Figure 3 shows the yield functions of the Drucker-Prager and Mohr­

256 Coulomb models. The Drucker-Prager model can also be modified for the Mohr-Coulomb 

257 model, taking βf , kf , βg, and kg as, respectively, 

sin Ψf
βf = ( √ ) , (29)

0.5 3(1 − sin Ψf ) sin θ + 3(3 + sin Ψf ) cos θ

3ch
kf = ( √ ) , (30)

0.5 3(1 − sin Ψf ) sin θ + 3(3 + sin Ψf ) cos θ

sin Ψd
βg = ( √ ) , (31)

0.5 3(1 − sin Ψd) sin θ + 3(3 + sin Ψd) cos θ

3ch
kg = ( √ ) , (32)

0.5 3(1 − sin Ψd) sin θ + 3(3 + sin Ψd) cos θ

258 where θ is the Lode angle [7, 54], written as 

( )√ 
1 3 3 J3

θ = cos −1 
3/2 , (33)

3 2 J2 

259 where J3 is the third stress invariant of the effect deviatoric stress. 
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260 3. Numerical modeling 

261 We developed the T+M hydraulic fracturing simulator by coupling the Lawrence Berke­

262 ley National Laboratory (LBNL) in-house simulator TOUGH+RealGasH2O (for the descrip­

263 tion of the non-isothermal flow of water and a real gas mixture through porous/fractured 

264 media) with the ROCMECH in-house geomechanics simulator. We describe the numerical 

265 algorithms and characteristics of the coupled simulator as follows. 

266 3.1. Discretization 

267 Space discretization is based on the finite volume method, also called the integral finite 

268 difference method, in the simulation of fluid and heat flow (TOUGH+RealGasH2O code), 

269 and the finite element method in the geomechanical component of the coupled simulations 

270 (ROCHMECH code). T+M denotes a coupled simulator from the flow and geomechanics 

271 simulators. Time discretization in both constituent components of T+M is based on the back­

272 ward Euler method that is typically employed in reservoir simulation. 

273 3.2. Failure Modeling 
274 3.2.1. Tensile failure and node splitting 

275 We introduce the new internal Neumann boundaries by splitting nodes when fracturing 

276 occurs, and assign the traction from the fluid pressure inside the fractures. The node splitting 

277 is performed based on the tensile failure condition, as described in the previous section. In 

278 this study, the focus is on vertical tensile fracturing. Because of symmetry, we easily extend 

279 the numerical simulation capabilities to 3D domains. The fracture plane is located at the 

280 outside boundary [23], as shown in Figure 4. 

281 3.2.2. Shear failure and elastoplasticity 

282 We use classical elastoplastic return mapping algorithms for the Mohr-Coulomb and 

283 Drucker-Prager models [47]. Unlike tensile failure, we account for shear failure with no 
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284 assumption of a certain fracturing direction. The Drucker-Prager model provides a simple 

285 closed analytical formulation for return mapping because it is only associated with I1 and 

286 J2. However, the Mohr-Coulomb model also takes J3, and thus the return mapping is not 

287 straightforward unlike the Drucker-Prager model. 

288 We employ the two-stage return mapping algorithm proposed by Wang et al. [54] for the 

289 the Mohr-Coulomb model, after slight modification. At the edges of the failure envelope, we 

290 also employ the Drucker-Prager model with the explicit treatment of J3 to avoid numerical 

291 instability. The Drucker-Prager model with the explicit treatment of J3 can simulate the 

292 Mohr-Coulomb failure accurately not only at the edges but also over the failure envelope 

293 [26]. 

294 3.3. Sequential implicit approach 

295 There are two typical solution approaches to solve the coupled problems; fully coupled 

296 and sequential implicit methods. The fully coupled method usually provides unconditional 

297 and convergent numerical solutions for mathematically wellposed problems. However, it 

298 requires a unified flow-geomechanics simulator, which results in enormous software devel­

299 opment effort and a large computational cost. 

300 On the other hand, the sequential implicit method uses existing simulators for the solution 

301 of the constituent subproblems. For example, the subproblems of non-isothermal flow, or of 

302 geomechanics, are solved implicitly, fixing certain geomechanical (or flow) variables, and 

303 then geomechanics (or flow) is solved implicitly from the flow (or geomechanics) variables 

304 obtained from the previous step. According to Kim et al. [30] and Kim et al. [31], the fixed 

305 stress sequential scheme provides unconditional stability and numerical convergence with 

306 high accuracy in poromechanical problems. The unconditional stability is also valid for the 

307 given multiple porosity formulation [28]. By the fixed-stress split method, we solve the 
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308 flow problem, fixing the total stress field. This scheme can easily be implemented in flow 

309 simulators by updating the Lagrange porosity function and its correction term as follows 

310 [28]. 
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·   ) = (·)n+1 − (·)n, and the superscript n indicates the time level. cp is the pore 

compressibility in reservoir simulation. The porosity correction term, ∆Φl 
313 c, is calculated 

314 from geomechanics, which corrects the porosity estimated from the pore compressibility. 

315 For permeability of the fracture, we employ nonlinear permeability motivated by the cubic 

316 law [55, 45], written as, for an example of single water phase, 

ωnp 

Qw = ac H (Grad p  ρwg) , (36)
12µw 

−

317 where ω is the fracture opening (also called aperture or width). Qw and H are flow rate 

318 of water and the fracture plate width, respectively. np characterizes the nonlinear fracture 

319 permeability. When np = 3.0, Equation 36 is identical to the cubic law. ac is the correction 

320 factor reflecting the fracture roughness, as used in Nassir et al. [39]. We calculate the fracture

321 permeability of a gridblock based on harmonic average of the permeabilities at the grid corner 

322 points near the gridblock. 

323 For geomechanical properties of the fracture, we assign a much low Young’s modulus, 

324 compared with rock matrix, when tensile fracturing occurs. For shear failure, the return 
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325 mapping algorithm automatically determines nonlinear geomechanical properties. Figure 5 

326 briefly shows how flow and geomechanics simulators are communicated sequentially. 

327 4. Validation examples 

328 We show three verification tests that can provide analytical solutions. The first test is 

329 Terzaghi’s and Mandel’s problems, which can examine the poromechanical effets [49, 1], 

330 as shown in Figure 6. Consideration of the poromechanical effects (i.e., two-way coupling 

331 between flow and geomechanics) is necessary for accurate modeling of fracture propagation 

332 not only within the shale gas reservoirs but also outside the reservoirs, for example, which 

333 are highly water-saturated, much more incompressible than gas [27]. For the second and 

334 third tests, shown in Figure 7, We also analyze the width variation of static fractures [48] and 

335 fracture propagations in plane strain geomechanics [51, 21], respectively. 

336 4.1. Terzaghi’s and Mandel’s problems 

337 For Terzaghi’s problem, the left of Figure 6, we have 31 gridblocks, the sizes of which are 

338 uniform, 1.0 m. Liquid water is fully saturated, and the initial pressure is 8.3 MPa. We impose 

339 a drainage boundary on the top and no-flow conditions at the bottom. The initial total stress 

340 is also -8.3 MPa over the domain, and we set 16.6 MPa as the overburden, two times greater 

341 than the initial total stress. The Young’s modulus and Poisson ratio are 450 MPa and 0.0, 

342 respectively. Only vertical displacement is allowed and no gravity is applied. We consider 

343 isothermal fluid flow, where liquid water at 25oC is fully saturated. The permeability and 

344 porosity are 6.51 × 10−15 m2, 6.6 mD, (1 Darcy= 9.87 × 10−13 m2) and 0.425, respectively. 

345 Biot’s coefficient is 1.0. The monitoring well is located at the last gridblock. 

346 From the left of Figure 8, the numerical solution from T+M matches the analytical solu­

347 tion. We identify the accurate instantaneous pressure buildup at the initial time, followed by 

348 the decrease of pressure due to the fluid flow to the drainage boundary at the top. 
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349 For Mandel’s problem, by symmetry, we take the upper half domain in the right of Fig­

350 ure 6 for numerical simulation, 20 m × 0.265 m. We have 40 × 5 gridblocks, the sizes of 

351 which are uniform in the x direction, 0.5 m, while the sizes in the z direction are non-uniform, 

352 0.005 m, 0.01 m, 0.05 m, 0.1 m, 0.1 m. The initial pressure is 10.0 MPa. We have the drainage 

353 boundary at the left and right sides and no-flow conditions at the other sides. The initial total 

354 stress is also 10.0 MPa over the domain, and we have 20.0 MPa of the overburden, two times 

355 greater than the initial total stress. We approximate the constraint of Mandel’s problem that 

356 the vertical displacement at the top is uniform. The Young’s modulus and Poisson ratio are 

357 450.0 MPa and 0.0. We have the 2D plane strain geomechanics. The monitoring well is 

358 located at (5.25 m, 0.215 m), as shown in the right of Figure 8. No gravity is considered. 

359 Only horizontal flow is allowed, while vertical flow is hydro-static. We take the same flow 

360 variables and properties as the previous Terzaghi problem. 

361 The right of Figure 8 shows that the result from T+M matches the analytical solution. 

362 The numerical result captures the Mandel-Cryer effect of Mandel’s problem, correctly, which 

363 cannot be captured by the flow-only simulation. 

364 4.2. Static fracture in plane strain geomechanics 

365 We take, by symmetry, a quarter of the domain in Figure 7 for numerical simulation, 

366 i.e., the upper and right domain. We have 150 × 1 × 10 gridblocks for the plane strain 

367 geomechanics problem that has a static fracture. No gravity is considered. The sizes of the 

368 gridblocks in the x, y, and z directions are uniform, 0.05 m, 0.1 m, and 0.1 m, respectively. 

369 The initial total stress is zero, and the fluid pressure within the fracture is uniform, 10 MPa, 

370 resulting in 10 MPa of the net pressure. Then, the fracture width, ωf , is tested with various 

371 geomechanics properties, i.e., 600 MPa and 6.0 GPa of Young’s modulus, and 0.0 and 0.3 of 

372 Poisson’s ratio. 
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373 We use an analytical solution of the width of a static fracture in plane strain geomechanics 

374 for a given net pressure, proposed by Sneddon and Lowengrub [48]. From Figure 9, the 

375 numerical solutions match the analytical solutions for the different geomechanics properties, 

376 validating the T+M simulator. 

377 4.3. Fracture propagation in plane strain geomechanics 

378 We inject water to a fully water-saturated reservoir for hydraulic fracturing. The simula­

379 tion domain is a quarter of the domain in Figure 7. We have 150 gridblocks for flow within 

380 the fracture in the x direction, the sizes of which are uniform, 0.05 m, 0.5, m, 0.5 m. The 

381 initial reservoir pressure is 10 MPa, and no gravity is considered. The reservoir permeability 

382 and porosity are 8.65 × 10−23 m2 and 0.1, respectively. The density and viscosity of water 

383 are 1000 kg/m3 and 1.0 × 10−3 P a · s, respectively. For geomechanics, we use 6.0 GPa of 

384 Young’s modulus and 0.3 of Poisson’s ratio, which represent a shale gas reservoir [15]. Biot’s 

385 coefficient is 0.0, because the analytical solutions used in this section do not account for the 

386 poromechanical effects. 

387 Then we test two cases: viscosity-dominated and toughness-dominated regimes in hy­

388 draulic fracturing. For the viscosity-dominated regime, the solution can be approximated by a 

389 limit solution from the assumption that rock has zero toughness [14]. We use 5.0×10−7 kg/s 

390 of the injection rate and an extremely low value of tensile strength, 1.0 × 10−4 P a. Even 

391 though there is no definitive mathematical relation between tensile strength and rock tough­

392 ness, according to Zhang [56], tensile strength and the mode I toughness, K1C are related 

393 positively based on experimental observations from the data of the previous studies. Pre­

394 cisely, Zhang [56] proposed an empirical relation as Tc (M P a) = 6.88 × K1C (M P a m0.5). 

395 For the toughness-dominated regime, we use 1.0 × 10−6 kg/s of the injection rate and 

396 0.1 M P a of tensile strength, where fracturing is controlled by rock toughness. We use the an­



21 

397 alytical solutions shown in Valko and Economies [51] and Gidley et al. [21] for the viscosity 

398 and toughness dominated regimes, respectively [13, 20]. 

399 Figure 10 shows that numerical solutions of T+M are close to the analytical solutions, 

400 validating T+M. Small differences are mainly due to the sequential implicit method, where 

401 only one iteration is performed , the empirical relation between tensile strength and rock 

402 toughness, the assumptions of the analytical solutions. 

403 5. Numerical examples for 3D vertical fracture propagation 

404 We then investigate several 3D numerical examples of hydraulic fracturing induced in 

405 a shale gas reservoir, as shown in the right of Figure 4. Even though the flow and geome­

406 chanical properties used in this section mostly represent shale gas reservoirs, we investigate 

407 sensitivity analysis for a parameter space not restricted to the shale gas reservoirs. The in­

408 depth investigation and discussion of the shale gas reservoirs such as Marcellus shale will be 

409 shown elsewhere [25]. 

410 The domain of geomechanics has 50, 5, 50 gridblocks in x, y and z directions, respec­

411 tively, where the x-z plane is normal to the direction of the lowest magnitude of the principal 

412 total stresses, Sh (i.e., the minimum compressive principal total stress). The sizes of the 

413 gridblocks in the x and z directions are uniform, i.e., ∆x = ∆z = 3 m. The sizes of the 

414 gridblocks in the y direction are non-uniform, i.e. 0.1 m, 0.5 m, 3.0 m, 10.0 m, 20.0 m. 

415 The Young’s modulus and Poisson’s ratio are 6.0 GPa and 0.3, respectively. The tensile 

416 strength of material for the reference case is 4.0 MPa. Initial fluid pressure is 17.10 MPa at 

417 1350m in depth with the 12.44 kPa/m gradient. Initial temperature is 58.75 oC at 1350 m 

418 in depth with the 0.025 oC/m geothermal gradient. The initial total principal stresses are 

419 -26.21 MPa, and -23.30 MPa, and -29.12 MPa at 1350 m in depth in x, y, and z directions, 

420 respectively, where the corresponding stress gradients are -19.42 kPa/m, -17.59 kPa/m, and ­
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421 21.57 kPa/m, respectively. We consider gravity with 2200 kg/m3 of the bulk density, have no 

422 horizontal displacement boundary conditions at sides, except the fractured nodes, and have 

423 no displacement boundary at the bottom. 

424 For flow, we have 50, 6, 50 gridblocks in x, y and z directions, where one more layer for 

425 the fracture plane is introduced for flow within the fracture, 0.1m. The initial permeability 

426 and porosity of the shale reservoir are 8.65 × 10−19 m2, and 0.19, respectively. Once tensile 

427 fracturing occurs, the fracture permeability is determined from Equation 36, where np = 

428 3.0 and ac = 0.017. For shear failure, we simply assign a constant permeability, 5.9 × 

429 10−14 m2, 60 mD. Once failure occurs, we change the single porosity to the double porosity 

430 model where fracture and rock matrix volume fractions are 0.1 and 0.9. The reference fracture 

431 porosity is 0.9, when the fracture is created, and the porosity varies during simulation due to 

432 poromechanical effects. Biot’s coefficient is 1.0. We inject gas at (x=75m, z=-1440m), and 

433 vary the injection rate, plastic properties, and the initial total stress field. We assume that 

434 the injected gas has the same physical properties as shale gas for simplicity. We choose gas 

435 injection as a reference case because gas has higher mobility in shale gas reservoirs than 

436 water does, which can enhance fracturing. 

437 There are several options for modeling relative permeability and capillarity, implemented 

438 in the flow simulator, TOUGH+RealGasH2O. In this study, we use a modified version of 

439 Stone’s relative permeability model [5] and the van Genutchen capillary pressure model [52], 

440 respectively, written as 

{ {( ) }}nkSJ − Sir,J 
kr,J = max 0, min , 1 , (37)

1.0 − Sir,w 

Sw − Sir,w 
Pc = Πc((S

e)−1/λp − 1)1−λp , Se = , (38)
1 − Sir,g − Sir,w 
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441 where kr,J , Sir,J , and nk are relative permeability of phase J , irreducible saturation of phase 

442 J , and the exponent that characterizes the relative permeability curve, respectively. Pc, λp and 

443 Πc are capillary pressure, the exponent that characterizes the capillary pressure curve, and 

444 the capillary modulus, respectively. Then, we take Sir,w = 0.08, Sir,g = 0.01, and nk = 4.0 

445 for relative permeability, and λp = 0.45, Sir,w = 0.05, Sir,g = 0.0, and Πc = 2.0 kP a for 

446 capillarity, where smaller Sir,w and Sir,g are chosen in the capillary pressure model in order to 

447 prevent unphysical behavior [38]. Note that we employ the equivalent pore-pressure concept 

448 in multiphase flow coupled with geomechanics [12], not using the average pore-pressure 

449 concept. According to Kim et al. [29], the equivalent pore-pressure provides high accuracy 

450 for strong capillarity, while the average pore-pressure, widely used in reservoir simulation, 

451 may cause large errors and/or numerical instability when strong capillarity exists. 

452 5.1. Gas injection 

453 We first test a reference case, where the injection rate is 8.0 kg/s, as follows. We do not 

454 consider shear failure for this reference case. Figure 11 shows the fracture propagation in 

455 vertical direction due to tensile failure. At initial time, we obtain a much small fracture. As 

456 the injection proceeds, the fracture grows, propagating horizontally and vertically. In this test, 

457 the fracture propagates upward more than downward, because, from the initial conditions, Sh 

458 decreases more than the initial pressure as the depth decreases, causing higher net pressure. 

459 The increase of the net pressure yields lager opening of the fracture around the top area of the 

460 fracture than that of the bottom area, shown in the right of Figure 11. During the period of 

461 the simulation, we obtain a finite (stable) growth of the fracture. This implies that the fracture 

462 propagation from hydraulic fracturing can be controlled by injection time. 

463 In Figure 12, we observe the distinct pressure distribution between inside and outside 

464 the fractured zone. Note that the fracture of tensile failure creates much high permeability. 
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465 Because of high permeability, the pressure within the fracture is almost same as the injection 

466 pressure at late time, and its gradient is very low. As a result, the pressure difference at the 

467 fracture tip is considerably high. 

468 Figure 13 shows the evolution of pressure at the injection point and the total number of 

469 fractured nodes of the reservoir domain. From the left figure, at early time, pressure increases 

470 because of injection. Once the injection induces a pressure value enough for tensile failure 

471 at the fracture tip, fracturing occurs and the fracture volume increases instantaneously. As 

472 a result, the pressure within the fracture decreases instantaneously, based on the fluid com­

473 pressibility. Specifically, the pressure at the injection point increases up to 38 MPa, and drops 

474 significantly. Then, the pressure increases again due to the fluid injection. We observe this 

475 behavoir during the fracturing process, yielding saw-tooth pressure history. At early time, 

476 the oscillation is high because of small pore volume of the fracture. As the fracture pore 

477 volume becomes large, the oscillation becomes mild. The right figure shows the evolution of 

478 the total number of the fractured nodes. Note that a sequential implicit method between flow 

479 and geomechanics might limit numerical stability in hydraulic fracturing. Thus, to ensure the 

480 numerical stability, we control time step sizes that can cause no fracturing at least once at 

481 the next time of any events of fracturing. The right figure shows the aforementioned charac­

482 teristics of the sequential implicit method in hydraulic fracturing, as well as finite fracturing 

483 during simulation. 

√ 
484 Figure 14 shows evolution and distribution of effective shear stress, i.e., J2. From 

485 the figure, the shear stress increases during simulation, and the high shear stresses are located 

486 around the fracture tip. The effective stresses at the x-z plane at early and late times are plotted 

487 in Figure 15, (Mohr-Coulomb plot). From the figure, effective stresses at many locations 

488 may cross over the failure line at late times, when cohesion is low, indicating potential shear 
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489 failure, which will be tested in the next section. 

490 5.2. Mohr-Coulomb plasticity 

491 We investigate effects of shear failure in hydraulic fracturing, simultaneously considering 

492 tensile failure as well. We take ch = 2.0 M P a and Φf = Φd = 28.60(0.5 rad), which 

493 yield the same failure line shown in Figure 15. From Figure 16, shear failure occurs in all 

494 directions, including the y direction. The shear failure zone is not thin nor two-dimensional, 

495 but three-dimensional, having some volume. All the effective stresses of the domain, not 

496 only the x-z plane but also the inside domain, are plotted in Figure 17. We identify that all 

497 the effective stresses are on and inside the yield surface. 

498 As shear failure grows during simulation, and it limits the vertical fracture propagation 

499 from tensile failure, shown in the left of Figure 18. The fractured area from tensile failure 

500 is much smaller than that of the reference case, even though the injection time is two times. 

501 Note that shear failure increases permeability of the reservoir formations. The failure along to 

502 the y direction induces flow of fluid in the y direction followed by additional shear fracturing 

503 horizontally, because changes in pore-pressure induce changes in effective stress. We also 

504 observe different behavior in pressure between with and without shear failure, shown in the 

505 right of Figure 18, when it is compared with the evolution of pressure in Figure 13, 

506 5.3. Effect of the injection rate 

507 We change the injection rate of the reference case, from 8.0 kg/s to 0.8 kg/s. From 

508 Figure 19, we find that the fracture propagation is nearly proportional to injection rate. When 

509 the injection rate is reduced by one order, the fracture propagates more slowly by the same 

510 order. The evolution of pressure also shows almost the same behavior as that of the reference 

511 case. But, the total number of the fractured nodes at 6000 s, approximately 300 nodes, is 

512 smaller than that of the reference case at 600 s, approximately 410 nodes, where the same 
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513 amount of fluid is injected for both cases, because longer time allows more leak-off of the 

514 fluid to the reservoir formation. 

515 5.4. Contribution of effective shear stress in tensile failure 

516 We test the effect of β of Equation 25 in order to investigate minor contribution of effec­

517 tive shear stress in tensile failure, taking β = 10.0. In Figure 20, we obtain almost the same 

518 results as those of the reference case. The width of the fracture is also nearly same as that of 

519 the reference case (the right figure). This implies that small perturbations in shear effective 

520 stress for tensile failure only cause small changes in hydraulic fracturing. The tensile failure 

521 condition is well-posed, when we consider the mixed failure mode with normal and shear 

522 effective stresses. 

523 5.5. Effect of the maximum compressive total horizontal stress 

524 We increase the maximum compressive total horizontal stress, SH , which is higher than 

525 overburden stress, SV (i.e., SH = 1.2×SV ). Failure is fundamentally determined by effective 

526 stress, which results from close interactions between flow and geomechanics. Thus, SH 

527 indirectly affects hydraulic fracturing. In Figure 21, we obtain more vertical fracturing (the 

528 left figure), compared with the reference case, while the width of the fracture is similar to that 

529 of the reference case (the right figure). High SH is more favorable to fracture propagation in 

530 the vertical direction, limiting horizontal fracturing in the x direction. 

531 6. Conclusions 

532 We developed the T+M hydraulic fracturing simulator by coupling the TOUGH+RealGasH2O 

533 flow simulator with the ROCMECH geomechanics code. T+M has the following character­

534 istics: (1) vertical fracturing is mainly modeled by updating the boundary conditions and the 

535 corresponding data structures; (2) shear failure can also be modeled during hydraulic fractur­

536 ing; (3) a double- or multiple-porosity approach is employed after the initiation of fracturing 
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537 in order to rigorously model flow and geomechanics; (4) nonlinear models for permeabil­

538 ity and geomechanical properties can easily be implemented; (5) leak-off in all directions 

539 during hydraulic fracturing is fully considered; and (6) the code provides two-way coupling 

540 between fluid-heat flow and geomechanics, rigorously describing thermo-poro-mechanical 

541 effects, and accurately modeling changes in effective stress, deformation, fractures, pore vol­

542 umes, and permeabilities. 

543 Numerical solutions of the T+M simulator matched the analytical solutions of porome­

544 chanical effects, the widths of the static fractures, and the fracture propagations of the vis­

545 cosity and toughness dominated regimes, which validated the T+M simulator. From various 

546 tests of the planar fracture propagation, shear failure can limit the vertical fracture propaga­

547 tion of tensile failure, while it induces the enhanced permeability areas inside the domain, 

548 followed by inducing the leak-off into the reservoirs. When the same amount of fluid is 

549 injected, slow injection results in more leak-off and less fracturing, compared with fast injec­

550 tion. The maximum horizontal total stress, SH , affects tensile fracturing, and contributions 

551 of shear effective stress to tensile failure can also change the fractured areas. For both cases, 

552 the geomechanical responses are still stable and well-posed. 
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695 Figure 1. Left: a schematic diagram that represents a fracture-matrix system after failure. 

696 Right: a conceptual diagram of the multiple interacting continuum (MINC) model, as an ex­

697 ample of the multiple porosity model [42]. In the MINC model, fluid flows though a high 

698 permeable material, such as the fracture, over the domain, while the other materials store 

699 fluid and convey it to the high permeable material. 

700 

Figure 2. A schematic diagram for a planar fracture. Fluid pressure acts as traction 701 on 

702 the fractured area. Effective normal stress, tn, mainly induces tensile failure and the fracture 

703 opening in hydraulic fracturing. Effective shear stresses, tt and ts, may also contribute to 

704 tensile failure in hydraulic fracturing. 

705 

706 Figure 3. The yield surfaces of the Mohr-Coulomb and Drucker-Prager models on (a) the 

707 principle effective stress space and (b) on the deviatoric plane. All the effective stresses are 

708 located inside or on the yield surface. 

709 

710 Figure 4. Schematics of hydraulic fracturing in 3D. Left: general type of planar fractur­

711 ing. Right: vertical propagation of a fracture, reduced from a general planar fracture due to 

712 no horizontal displacement condition at the plane that contains the vertical fracture, by sym­

713 metry. 

714 

715 Figure 5. The sequential implicit algorithm based on the fixed-stress split method. Flow 

716 and geomechanics simulators are communicated sequentially. 

717 

718 Figure 6. Left: Terzaghi’s problem. Right: Mandel’s problem. Verification for porome­
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719 chanical effects is tested. 

720 

721 Figure 7. Hydraulic fracturing in plane strain geomechanics. Injection of fluid induces tensile 

722 failure and opens the created fracture. σ0, pf , qf ωf , lf indicate the initial total stress acting 

723 on the fracture, fluid pressure within the fracture, the injection rate, the fracture width, and 

724 the fracture length. 

725 

726 Figure 8. Comparison between numerical solutions of T+M and analytical solutions of Terza­

727 ghi’s problem (left) and Mandel’s problem (right). T+M matches the analytical solutions. cv 

728 is the consolidation coefficient, defined as cv = kp,f . Pi is the initial reservoir pres­
µf (1/Kdr +ϕcf ) 

729 sure. 

730 

731 Figure 9. Comparison between the numerical solutions of T+M and the analytical solutions 

732 for the fracture widths. T+M is validated for various geomechanical properties, matching the 

733 analytical solutions. 

734 

735 Figure 10. Comparison between the numerical solutions of T+M and the analytical solu­

736 tions of the fracture propagation. Left: the viscosity dominated regime. Right: the toughness 

737 dominated regime. Mi is the initial mass of water in place. The numerical solutions match 

738 analytical solutions, validating T+M. 

739 

740 Figure 11. Fracture propagation in vertical direction due to tensile failure. Left: fractured 

741 areas at different times. Right: the fracture opening (i.e., half of the width) at the end of 

742 simulation. The fracture propagates upward more than downward because of low Sh at the 
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743 shallower depth. As a result, we obtain larger opening of the fracture around the top area than 

744  the fracture opening at the bottom area. 

745  

746  Figure 12. Pressure distribution on the x-z plane at different times. The pressure within 

747  the fracture is almost same as the injection pressure at late time because of its high perme­

748  ability. 

749  

750  Figure 13. Evolution of pressure at the injection point (the left figure) and the total num­

751  ber of fractured nodes (the right figure) over the domain. During the fracturing process, we 

752  observe saw-tooth pressure history. At early time, the oscillation is high because of small 

753  pore volume of the fracture, while the oscillation becomes mild, as the fracture pore volume 

754  becomes large. Stairwise fracturing of the right figure ensures numerical stability of the se­

755  quential implicit method. 

756  

√ 
757  Figure 14. Evolution and distribution of effective shear stress, J2, at different times. The 

758  high shear stresses are concentrated near the fracture tip. 

759  

760  Figure 15. Effective stresses at the x-z plane at different times. Effective stresses at many 

761  locations may cross over the failure line at late times, when cohesion is 2.0 MPa and Φf = 

762  Φd = 28.60(0.5 rad). 

763  

764  Figure 16. Evolution of the areas of shear failure during simulation. The value indicates 

765  the number of Gauss points at a gridblock which face shear failure. Shear failure occurs in all 

766  directions, including the y direction. The shear failure zone is not thin nor two-dimensional. 
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767 

768 Figure 17. Effective stresses of the domain on the Mohr-Coulomb plot at different times. 

769 All the effective stresses are on and inside the yield surface. 

770 

771 Figure 18. Left: the fractured zone at t=1602 s. Right: evolution of pressure at the injec­

772 tion point. Shear failure limits the vertical fracture propagation of tensile failure, compared 

773 with the reference case. 

774 

775 Figure 19. Effect of the injection rate. When the injection rate is reduced by one order, 

776 the fracture propagation becomes slower by the same order. 

777 

778 Figure 20. Effect of effective shear stress in tensile failure. When introducing small per­

779 turbations in shear effective stress for tensile failure, β = 10.0, we still obtain small changes 

780 in hydraulic fracturing. 

781 

782 Figure 21. Effect of the maximum compressive total horizontal stress. More vertical frac­

783 turing occurs (the left figure), compared with the reference case, although the width of the 

784 fracture is similar to that of the reference case (the right figure). 



39 

Figure 1: Left: a schematic diagram that represents a fracture-matrix system after failure. 
Right: a conceptual diagram of the multiple interacting continuum (MINC) model, as an exam­
ple of the multiple porosity model [42]. In the MINC model, fluid flows though a high permeable 
material, such as the fracture, over the domain, while the other materials store fluid and con­
vey it to the high permeable material. 

Figure 2: A schematic diagram for a planar fracture . Fluid pressure acts as traction on the 
fractured area. Effective normal stress, tn, mainly induces tensile failure and the fracture 
opening in hydraulic fracturing. Effective shear stresses, tt and ts, may also contribute to 
tensile failure in hydraulic fracturing. 
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Figure 3: The yield surfaces of the Mohr-Coulomb and Drucker-Prager models on (a) the princi-
ple effective stress space and (b) on the deviatoric plane. All the effective stresses are located 
inside or on the yield surface . 

Figure 4: Schematics of hydraulic fracturing in 3D. Left: general type of planar fracturing. 
Right: vertical propagation of a fracture, reduced from a general planar fracture due to no 
horizontal displacement condition at the plane that contains the vertical fracture, by symmetry. 

Figure 5: The sequential implicit algorithm based on the fixed-stress split method. Flow and 
geomechanics simulators are communicated sequentially. 
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Figure 6: Left: Terzaghi’s problem. Right: Mandel’s problem. Verification for poromechanical 
effects is tested. 

Figure 7: Hydraulic fracturing in plane strain geomechanics. Injection of fluid induces tensile 
ffailure and opens the created fracture . O0, pf , q wf , lf indicate the initial total stress acting on 

the fracture, fluid pressure within the fracture, the injection rate, the fracture width, and the 
fracture length. 

Figure 8: Comparison between numerical solutions of T+M and analytical solutions of Terza­
ghi’s problem (left) and Mandel’s problem (right). T+M matches the analytical solutions. cv is 
the consolidation coefficient, defined as cv = kp,f . Pi is the initial reservoir pressure . µf (1/Kdr +ϕcf ) 
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Figure 9: Comparison between the numerical solutions of T+M and the analytical solutions 
for the fracture widths. T+M is validated for various geomechanical properties, matching the 
analytical solutions. 

Figure 10: Comparison between the numerical solutions of T+M and the analytical solutions 
of the fracture propagation. Left: the viscosity dominated regime. Right: the toughness 
dominated regime. Mi is the initial mass of water in place. The numerical solutions match 
analytical solutions, validating T+M. 
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Figure 11: Fracture propagation in vertical direction due to tensile failure. Left: fractured 
areas at different times. Right: the fracture opening (i.e., half of the width) at the end of 
simulation. The fracture propagates upward more than downward because of low Sh at the 
shallower depth. As a result, we obtain larger opening of the fracture around the top area than 
the fracture opening at the bottom area. 
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Figure 12: Pressure distribution on the x-z plane at different times. The pressure within the 
fracture is almost same as the injection pressure at late time because of its high permeability. 
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Figure 13: Evolution of pressure at the injection point (the left figure) and the total number of 
fractured nodes (the right figure) over the domain. During the fracturing process, we observe 
saw-tooth pressure history. At early time, the oscillation is high because of small pore volume 
of the fracture, while the oscillation becomes mild, as the fracture pore volume becomes large. 
Stairwise fracturing of the right figure ensures numerical stability of the sequential implicit 
method. 
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Figure 14: Evolution and distribution of effective shear stress, J2, at different times. The 
high shear stresses are concentrated near the fracture tip. 
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Figure 15: Effective stresses at the x-z plane at different times. Effective stresses at many 
locations may cross over the failure line at late times, when cohesion is 2.0 MPa and <f = 
<d = 28.60(0.5 rad). 

Figure 16: Evolution of the areas of shear failure during simulation. The value indicates the 
number of Gauss points at a gridblock which face shear failure . Shear failure occurs in all 
directions, including the y direction. The shear failure zone is not thin nor two-dimensional. 
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Figure 17: Effective stresses of the domain on the Mohr-Coulomb plot at different times. All 
the effective stresses are on and inside the yield surface . 

0 50 100 150
−1500

−1450

−1400

−1350

x (m)

z 
(m

)

t=1602.0 s

0 500 1000 1500
20

25

30

35

40

time (sec)

(M
P

a)

Pressure

Figure 18: Left: the fractured zone at t=1602 s. Right: evolution of pressure at the injection 
point. Shear failure limits the vertical fracture propagation of tensile failure, compared with 
the reference case. 
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Figure 19: Effect of the injection rate. When the injection rate is reduced by one order, the 
fracture propagation becomes slower by the same order. 

Figure 20: Effect of effective shear stress in tensile failure . When introducing small pertur­
bations in shear effective stress for tensile failure, f = 10.0, we still obtain small changes in 
hydraulic fracturing. 
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Figure 21: Effect of the maximum compressive total horizontal stress. More vertical fracturing 
occurs (the left figure), compared with the reference case, although the width of the fracture 
is similar to that of the reference case (the right figure). 




