JAN 2 4 2003

FILE COPY

INTERIM GROUNDWATER MONITORING REPORT

Hattiesburg, Mississippi

PREPARED FOR:
Hercules, Incorporated

JANUARY 2003

Prepared by:

Eco-Systems, Inc.

Consultants, Engineers, and Scientists 439 Katherine Drive, Suite 2A Jackson, Mississippi 39232 (601) 936-4440

Jackson, MS · Houston, TX · Mobile, AL

TABLE OF CONTENTS

1.0 INTRODU	CTION 1
2.0 FIELD AC	TIVITIES3
2.1 PROTOCO 2.2 GROUND 2.3 GROUND	DL SAMPLING
3.0 LABORA	TORY ANALYTICAL RESULTS5
3.2 GROUNE	DL SAMPLING
4.0 FINDING	S AND CONCLUSIONS
5.0 RECOMN	IENDATIONS
<u>TABLES</u>	
TABLE 1 TABLE 2 TABLE 3	SUMMARY OF GROUNDWATER ELEVATON DATA SUMMARY OF PROTOCOL SAMPLING ANALYTICAL RESULTS SUMMARY OF GROUNDWATER ANALYTICAL RESULS
FIGURES	
FIGURE 1 FIGURE 2	SITE LOCATION MAP POTENTIOMETRIC SURFACE MAP
APPENDIC	<u>ES</u>
APPENDIX APPENDIX APPENDIX APPENDIX	BORING LOGS AND WELL CONSTRUCTION DIAGRAMS SAMPLE COLLECTION LOGS

1.0 INTRODUCTION

Eco-Systems, Inc (Eco-Systems) has been retained by Hercules, Incorporated (Hercules) to conduct site investigations at the Hercules plant in Hattiesburg, Mississippi. The site location is shown on Figure 1. This report is an interim report on progress to date in conducting site investigations in accordance with *Hercules' Site Investigation Work Plan* (Eco-Systems, February 1999) and additional comments of the Mississippi Department of Environmental Quality (MDEQ) approval letter dated April 5, 1999. In addition, the locations of MW-8 and MW-9 were changed in accordance with the MDEQ approval on February 1, 2000 based on information contained in Eco-Systems'submittal on December 27, 1999.

The work described in the approved work plan centered on efforts to determine whether the pesticide Dioxathion was present in site soil and groundwater. The work plan included installation of 5 additional groundwater monitoring wells, MW-7, MW-8, MW-9, MW-10, and MW-11, to provide groundwater quality information near the former Dioxathion production area and near former wastewater sludge pits. The work also included installation of 14 temporary piezometers and 4 staff gauges. The piezometers and staff gauges were installed to provide hydrogeologic information in the uppermost saturated interval and to establish the relationship, if any, of the uppermost saturated interval to Green's Creek. Monitoring well and piezometer locations are shown on Figure 2. The staff gauges have been washed out, or otherwise destroyed, between the time of their installation and the present.

Installation of the temporary piezometers was conducted in April/May 1999. Installation of monitoring wells was conducted in February 2000. However, prior to sampling the additional monitoring wells, questions arose regarding analytical methods for Dioxathion and the quality of Dioxathion for use as a laboratory standard. In the ensuing months, Hercules, in conjunction with MDEQ's consultant, Mississippi State University (MSU) developed analytical protocols for soil and groundwater (Appendix A). Since the quality of available analytical standards was questionable, Hercules contracted with Sigma Aldritch to synthesize Dioxathion standards. In August 2002 Dioxathion had been manufactured of a suitable quality to be used as laboratory standard, and Hercules and the MDEQ had agreed to a laboratory protocol. In October 2002, groundwater samples were collected from four wells (MW-1, MW-4, MW-5, and MW-6), and those samples were analyzed by Bonner Analytical and Testing Company (BATCO) and the Mississippi State Chemical Laboratory (MSCL) to test the newly established laboratory protocol. Comparison of the results from the two laboratories was deemed acceptable by MDEQ and the site investigation was resumed.

On December 4 and 5, 2002, groundwater samples were collected from the eleven site monitoring wells, and those samples analyzed for Dioxathion. At the request of the MDEQ, samples from the wells installed in 2000 (MW-7 through MW-11) were also analyzed for volatile organic compounds (VOC) and semi-volatile organic compounds

(SVOC). Due to the extended time required to implement all phases of the work plan and the number of alterations to the original work plan that have occurred, periodic documentation of investigative efforts at the site was deemed appropriate. Boring logs and well construction diagrams for the additional monitoring wells and the temporary piezometers were provided to the MDEQ in a letter report dated August 28, 2002 and are also included in Appendix B. This *Interim Groundwater Monitoring* report has been prepared to document the results of the analytical protocol sample analysis and advise the MDEQ of the results of the groundwater monitoring conducted in December 2002.

2.0 FIELD ACTIVITIES

Groundwater sample collection was conducted in accordance with the work plan and the EPA Region IV's Standard Operating Procedures and Quality Assurance Manual (November 2001). Groundwater samples were collected using a peristaltic pump and Teflon® tubing. Low flow/low stress sampling techniques were utilized for wells where there was sufficient recharge. If there was insufficient recharge for low flow/low stress sampling techniques to be utilized, traditional volume-based sampling techniques were used. Copies of the sample collection logs for both the protocol sampling and the groundwater monitoring are included in Appendix C.

Groundwater samples were collected directly from the discharge tubing into containers provided by BATCO. A BATCO representative was on site during sample collection and samples to be analyzed by BATCO were delivered directly to the BATCO site representative. Samples to be analyzed by the MSCL were placed in an iced cooler and shipped via overnight courier. Chain-of-custody documentation was maintained for all samples collected.

2.1 PROTOCOL SAMPLING

Groundwater samples were collected to evaluate the Dioxathion analytical protocol on October 14, 2002 from monitoring wells MW-1, MW-4, and MW-5. Quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples included a rinsate blank, a matrix spike and a matrix spike duplicate sample. All samples were analyzed for Dioxathion by both BATCO and MSCL. At the request of the MDEQ, samples were also collected from monitoring wells MW-5 and MW-6 for VOC and SVOC analyses. Samples submitted for VOC and SVOC analysis were analyzed by BATCO. Representatives of the MDEQ were on site during protocol sample collection but did not elect to split samples.

2.2 GROUNDWATER MONITORING

On December 4 and 5, 2002, Eco-Systems collected groundwater samples from the eleven groundwater monitoring wells at the site. As with the protocol sampling, QA/QC samples were also collected and include rinsate blank, trip blank, blind duplicate, matrix spike and matrix spike duplicate samples. At the request of the MDEQ, the sample collected from MW-4 was analyzed for VOCs and samples collected from monitoring wells MW-7, MW-8, MW-9, MW-10 and MW-11 were analyzed for VOCs and SVOCs. Samples were delivered to the BATCO site representative for analysis. Representatives of the MDEQ were on site December 4, 2002 and collected a split sample from monitoring well MW-11.

2.3 GROUNDWATER ELEVATIONS

Water level information was collected from the existing monitoring wells and piezometers on December 4, 2002. As mentioned in Section 1.0, staff gauges installed in Green's Creek in 1999 have been destroyed. Depth to water measurements were subtracted from well casing elevations to determine groundwater elevations. Groundwater elevations are summarized in Table 1. A potentiometric surface map based on the December 4, 2002 groundwater elevations has been prepared and is included as Figure 2.

Groundwater in the uppermost, saturated interval beneath the site tends to mimic surface topography. In the active portions of the plant operations, which are located in the southeastern portion of the site, the potentiometric surface indicates the presence of a southwest to northeastward trending divide. The potentiometric surface map indicates that groundwater northwest of the divide would tend to move northwestward towards Green's Creek. Likewise, groundwater southeast of the divide would tend to move southeastward. On the north side of Green's Creek, the potentiometric surface indicates that groundwater in the uppermost, saturated interval moves generally southward towards Green's Creek.

3.0 LABORATORY ANALYTICAL RESULTS

Samples were analyzed for Dioxathion according to the analytical protocol established by Hercules and approved by the MDEQ. Samples submitted for VOC and SVOC analysis were analyzed according to U.S. EPA SW-846 methods 8260 and 8270, respectively, for the target compound list (TCL) compounds. Analytical data for detected parameters are summarized in Table 2 and Table 3. Copies of the analytical reports are included in Appendix D.

The following sections are intended to provide a brief overview of the laboratory analytical results, and not an exhaustive discussion of the analytical data.

3.1 Protocol Sampling

Samples collected for evaluation of the Dioxathion protocol were analyzed for cis-Dioxathion, trans-Dioxathion, and Dioxenethion. Analysis of the protocol samples by MSCL was conducted by both high performance liquid chromatography/mass spectrometry (HPLC/MS) methods and ultraviolet (HPLC/UV) methods. Analysis of the protocol samples by BATCO was conducted by Gas Chromatography/Mass Spectrometry (GC/MS). The results of the Dioxathion analyses are shown in Table 2.

VOCs and SVOCs were not detected in the groundwater samples collected from MW-5 and MW-6.

3.2 GROUNDWATER MONITORING

Samples collected during the groundwater monitoring event were analyzed using GC/MS methods by BATCO. Concentrations of cis-Dioxathion were detected in the groundwater samples collected from monitoring wells MW-4 and MW-9. Concentrations of trans-Dioxathion were detected in the groundwater sample collected from monitoring well MW-8. Concentrations of total Dioxathion (i.e. the sum of the concentrations of cis-Dioxathion and trans-Dioxathion) above the target remediation goal (TRG) of 54.8 were not detected in the groundwater samples collected from the site. The TRGs are found in the Tier 1 Target Remedial Goal Table of the Final Regulations Governing Brownfields Voluntary Cleanup And Redevelopment In Mississippi, published by the Mississippi Commission on Environmental Quality and adopted May 1999 and revised March 2002.

Concentrations of Dioxenethion were detected in the groundwater samples collected from monitoring wells MW-4, MW-6, MW-7, MW-8, MW-9, and MW-11. There is not a TRG for Dioxenethion.

Neither Dioxathion isomers nor Dioxenethion were detected in the groundwater samples collected from MW-1, MW-2, MW-3, MW-5, and MW-10.

Eight VOCs were detected in the groundwater sample collected from MW-4. Four of the eight VOCs, benzene, carbon tetrachloride, chloroethane, and chloromethane were detected at concentrations exceeding their respective TRGs.

Twenty-eight VOCs were detected in the groundwater sample collected from MW-8. Fourteen of the 28 VOCs were detected at concentrations above their respective TRGs.

Three VOCs were detected in the groundwater sample collected from MW-9. One of the three VOCs detected in the sample collected from MW-9 was above its TRG.

Two VOCs were detected in the groundwater sample collected from MW-11. One of the two VOCs detected in the groundwater sample collected from MW-11 was above the applicable TRG.

VOCs were not detected in the groundwater samples collected from monitoring wells MW-7 and MW-10.

One SVOC was detected in the groundwater sample collected from MW-8 at a concentration less than its TRG. SVOC were not detected in the groundwater samples collected from MW-7, MW-9, MW-10, and MW-11.

4.0 FINDINGS AND CONCLUSIONS

The findings and conclusions of this report are based on, or reasonably ascertainable from, published information, field observations, and the results of specific laboratory analyses.

- Groundwater beneath the site tends to mimic surface topography. In the active portions of the plant operations, the potentiometric surface indicates the presence of a southwest to northeast trending divide. Groundwater northwest of the divide would tend to move northwestward towards Green's Creek. Groundwater southeast of the divide would tend to move southeastward. North of Green's Creek, the potentiometric surface indicates that groundwater in the uppermost saturated interval moves generally southward towards Green's Creek.
- Dioxathion isomers, Dioxenethion, VOCs and SVOCs were not detected in the groundwater samples collected from monitoring well MW-5. Monitoring well MW-5 is located immediately downgradient of the landfill. The analytical results for the samples collected from monitoring well MW-5 do not indicate that Dioxathion isomers, Dioxenethion, VOCs and/or SVOCs are migrating from the landfill via groundwater in the uppermost saturated interval.
- Concentrations of Dioxathion isomers were detected in samples collected from MW-4, MW-8 and MW-9 at concentrations less than the TRG. Monitoring well MW-8 is located northwestward of the former Dioxathion production area. Monitoring well MW-11 is located southward, and downgradient, of the wastewater sludge pits. Concentrations of Dioxenethion were detected in the groundwater samples collected from MW-4, MW-6, MW-7, MW-8, MW-9, and MW-11. There is no TRG for Dioxenethion.
- Concentrations of VOCs above their respective TRGs were detected in groundwater samples collected from MW-4, MW-8, and MW-9. Monitoring well MW-4 is located southward, and downgradient, of the wastewater sludge pits. As stated above, monitoring well MW-8 is located northwestward of the former Dioxathion production area. Monitoring well MW-9 is located eastward of the former Dioxathion production area.

5.0 RECOMMENDATIONS

Based on the information obtained during the completed portions of the site investigation Eco-Systems recommends the following:

• Groundwater samples should be collected from monitoring wells MW-4, MW-8, MW-9, and MW-11 to confirm the presence and concentrations of VOCs. These confirmation samples are scheduled to be collected on February 11, 2003.

Pending review and approval of MDEQ, Eco-Systems recommends the following:

- Staff gauges should be re-installed in Green's Creek to provide necessary information to evaluate the relationship, if any, between the uppermost saturated interval and Green's Creek.
- Schedule technical discussion between Hercules/BATCO and MDEQ/MSCL to consider raising the method detection limit for Dioxathion from 1 ppb to 10 ppb.
- Proceed with the completion of Hercules' Site Investigation Work Plan (Eco-Systems, February 1999) with the following modifications:
 - Field observations and topography will be used to establish the boundaries of the landfill instead of excavating test pits.
 - Schedule technical discussion between Hercules and MDEQ to define the objectives of the geophysical investigation that has been requested by MDEQ.
- Surface water samples should be collected from the staff gauge locations along Green's Creek to evaluate the potential for discharge to the creek of groundwater containing Dioxathion and VOCs.
- Investigate the potential for non-aqueous phase liquids (NAPLs) in areas of elevated VOC concentrations.

TABLES

TABLE 1 SUMMARY OF GROUNDWATER ELEVATION DATA

December 4, 2002

Hercules, Incorporated Hattiesburg, Mississippi

WELL NO.	TOC ELEVATION (ft.) ¹	WATER DEPTH (ft) ²	GROUNDWATER ELEVATION (ft.)
	PERMANENT	MONITOR WELLS	
MW-1	174.12	5.15	168.97
MW-2	160.07	5.50	154.57
MW-3	160.03	6.04	153.99
MW-4	159.75	9.92	149.83
MW-5	160.99	8.05	152.94
MW-6	174.05	7.73	166.32
	PIEZ	OMETERS	
TP-1	172.18	4.54	167.64
TP-2	171.72	10.81	160.91
TP-3	169.74	8.90	160.84
TP-4	163.64	3.92	159.72
TP-5	160.54	7.42	153.12
TP-6	158.63	6.69	151.94
TP-7	167.17	8.77	158.40
TP-8	183.79	13.65	170.14
TP-9	163.44	6.35	157.09
TP-10	179.69	13.81	165,88
TP-11	162.26	8.26	154.00
TP-12	159.95	9.87	150.08
TP-13	156.99	6.83	150.16
TP-14	164.35	6.90	157.45

¹ TOC = "top of casing" measured relative to mean sea level (ft. MSL).

² Water depth is a relative depth measured from the TOC.

³ Date water level survey was completed is presented in parentheses for each site.

TABLE 2 SUMMARY OF PROTOCOL SAMPLING ANALYTICAL RESULTS

October 14, 2002

Hercules, Incorporated Hattiesburg, Mississippi

		Concentrat	Concentrations in parts per billion (ppb)			
		MS	MSCL ¹			
Well	Isomer	HPLC/MS	HPLC/UV	GC/MS		
	- 14 X	True -				
MW-1	Dioxenethion	nd ³	nd	nd		
	cis-Dioxathion	nd	nd	nd		
R	trans-Dioxathion	nd	1.5	nd		
MW-4	Dioxenethion	32	25	19.22		
	cis-Dioxathion	nd -	nd	4.80		
	trans-Dioxathion	nd	nd	1.61		
2011	Dismonthiam		mel	5.09		
MW-5	Dioxenethion	nd	nd			
	cis-Dioxathion	nd	nd	1.70		
	trans-Dioxathion	0.92	10	1.44		
			17.			
Rinsate	Dioxenethion	nd	nd	nd		
	cis-Dioxathion	nd	nd	nd		
	trans-Dioxathion	nd	nd	nd		

- 1 MSCL = Mississippi State Chemical Laboratory
- 2 BATCO = Bonner Analytical & Testing Company
- 3 nd = Analyte not detected at or above the practical quantitation limit.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

December 4 and 5, 2002

Hercules, Incorporated Hattiesburg, Mississippi

		Concentrations in parts per billion (ppb)										
Analytes	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	TRG ¹
Dioxathion												
cis-Dioxathion	nd	nd	nd	3.34	nd	nd	nd	nd	12.8	nd	5	
trans-Dioxathion	nd	nd	nd	nd	$\mathbf{n}\mathbf{d}$	$\mathbf{n}\mathbf{d}$	nd	53.9	nd	nd	nd	
total	nd	nd	nd	3.34	nd	nd	nd	53.9	12.8	nd	5	54.8
Dioxenethion	nd^2	nd	nd	12.9	nd	1.12	9.57	94.3	5.9	nd	50.3	na
Volatiles						10.00						
1,1-dichloroethene	na ³	na	na	nd	na	na	nd	17	5.92	nd	nd	7
benzene	na	na	na	14	na	na	nd	6900	9.15	nd	114	5
trichloroethene	na	na	na	nd	na	na	nd	5.8	nd	nd	nd	5
toluene	na	na	na.	nd	. jia	na	nd	28	nd	nd	nd	1000
chlorobenzene	na	na na	na.	1.81	na .	na	nd	290	nd	nd	nd	100
bromodichloromethane	na	na .	- па	nd	na	na	nd	6.84	nd	nd	nd	0.168
bromomethane	na	na	na	nd	na	na	nd	4.07	nd	nd	nd	8.52
carbon tetrachloride	na	na	na	10	na	na	nd	16000	nd	nd	nd	5
chloroethane	na	na	na	63	na	na	nd	66	nd	nd	nd	3.64
chloroform	na	па	na .	nd .	na	na	nd	1800	pd	nd	nd	0.155
chloromethane	na .	na	na .	1.72	na	na	nd ·	39,2	nd	nd	nd .	1.43
dibromochloromethane	na	na 💮	na	nd	na.	па	nd -	4.45	nd	nd	nd .	0.126
1,2-dichlorobenzene	na	na	na	nd	na	na	nd	2.71	nd	nd	nd	600
1,3-dichlorobenzene	na	na	na	nd	na	na	nd	3.75	nd	nd	nd	5.48
1,4-dichlorobenzene	na	na	na	nd	na	na	nd	3.8	nd	nd	nd	75
1,2-dichloroethane	na	na.	na	nd .	na	na.	nd .	20	nd :	nd	3.11	- 5
cis-1,2-dichloroethene	i iia	na	па	nd	na -	na .	nd	19	nd	nd	nd	- 70
ethyl benzene 💮 💮	na	na na		- pid	na	па	nd	55.6	nd	nd	nd	700
isopropylbenzene	na	na	na	1.26	na	na	nd	4.6	2.48	nd	nd	679
p-isopropyltoluene	na	na	na	nd	na	na	nd	23.9	nd	nd	nd	na
methylene chloride	na	na	na	nd	na	na	nd	26.1	nd	nd	nd	5
naphthalene	na .	na	a na 🚈	5.38	. na	na,	nd	9.14	nd	nd;	nd 🕖	6.2
tetrachloroethene	па	na .	па	nd	ра	na	nd	8.51	nd	nd	nd -	5

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

December 4 and 5, 2002

Hercules, Incorporated Hattiesburg, Mississippi

			100	Co	oncentrat	ions in p	arts per b	illion (pp	b)			
Analytes	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	TRG ¹
Volatiles - continued		•										
1,2,3-trichlorobenzene	na	na	na	1.81	na	na	nd	2.55	nd	nd	nd	na
1,2,4-trichlorobenzene	na	na	na	nd	na	na	nd	2.86	nd	nd	nd	70
1,2,4-trimethylbenzene	na	na	na	nd	na	na	nd	1.81	nd	nd	nd	12.3
xvlenes (total)	na	na	- ta	nd	na	na.	nd	79	nd	nd	- nd	10000
vinyl chloride	na	na na	na_	nd	, na	na	nd	1.62	nd .	ŋd	nd	2
Semi-Volatiles	annia ni sana anni anni anni anni	AND ASSESSMENT OF THE PARTY OF		100	300	70°		751527552		See to *	2474	100
4-methylphenol	na	na	na	nd	na	na	nd	13.16	nd	nd	nd	183

1 - Target Remediation Goals are taken from the Tier 1 Target Remedial Goal Table of the Final Regulations Governing

Brownfields Voluntary Cleanup and Redevelopment in Mississippi, MDEQ, March 2001.

Bold Text indicates concentrations above applicable TRGs

- 2 nd = Analyte not detected at or above the practical quantitation limit.
- 3 na = Not analyzed

FIGURES

SITE LOCATION MAP HERCULES, INC. HATTIESBURG, MS

APPENDICES

APPENDIX A ANALYTICAL PROTOCOLS

SAMPLING AND ANALYSIS PROTOCOL FOR THE DETERMINATION OF DIOXATHION IN WATER

Recent results of analyses of well water samples from the Hercules Incorporated plant in Hattiesburg, Mississippi, have exhibited a wide range in the levels of dioxathion reported. Discussions among representatives from the analytical laboratories demonstrated that the samples analyzed to date were not true split samples and that the analytical methods were applied differently. In order to minimize the effects from different water samples and from inconsistent application of the analytical methods, the following protocol has been assembled by agreement between Hercules Incorporated and the Mississippi State Chemical Laboratory. This protocol will be used in a study to determine the proper sampling and analysis methods to be used for all future water monitoring programs at the Hattiesburg plant.

1.) SAMPLE COLLECTION

Water samples will be withdrawn from the well using a peristaltic pump with Teflon tubing. The contents of the bailer will be placed into a large glass or Teflon container (one gallon, or more, in size). The container should have a Teflon-lined screw cap. Successive bailers of water will be removed from the well and placed into the container until there is enough water to supply split samples to each laboratory participating in the study. The contents of the large container will then be mixed thoroughly. After the composited water sample in the large container has been mixed, equal amounts of water will be poured into each sample jar. The sample jars should have Teflon-lined screw caps. This procedure will be repeated for each well.

Each analytical batch of a given matrix (up to 20 samples) will require the analysis of a method blank, Laboratory Control Standard (LCS), Matrix Spiked sample (MS) and Matrix Spike Duplicate (MSD). Alternately, a duplicated sample may be substituted for the (MSD). The MS and the MSD are counted as part of the analytical batch (aka Sample Delivery Group) which may be held open for up to seven (7) days.

Water samples collected from Wells #1, #4 and #5 will be submitted in duplicate to each laboratory. That is, two separate sample jars from Well #1, Well #4 and Well #5 will be filled and sent to each laboratory for analysis.

NOTE: The sample collected for the MS/MSD will require six (6) one-liter samples.

2.) EXTRACTION OF SAMPLES

All samples will be extracted with methylene chloride following the details described in the latest revision of U.S. EPA SW-846 Method 3510 C. The solvent should be exchanged into hexane, and all extracts will be adjusted to a final volume of ten milliliters (10 mL) before analysis.

3.) CLEANUP OF EXTRACTS

In order to minimize interferences in the determination of dioxathion, sample extracts that appear to contain interferences will be cleaned up using the latest revision of U.S. EPA SW-846 Method 3620, Florisil Cleanup. The volume of eluting solvent necessary for quantitative recovery of dioxathion from the Florisil column will be determined in each laboratory using the dioxathion and dioxenethiol reference standards supplied for calibration of the GC methods.

4.) SULFUR CLEANUP

If there is significant interference from sulfur compounds, the extracts may be cleaned up according to U.S. EPA SW-846 Method 3660, copper option.

5.) ANALYSIS OF EXTRACTS

Previous work performed by Bonner Analytical and Testing (BATCO) has revealed that trans dioxathion undergoes thermal degradation in the Gas Chromatograph column therefore the protocol is changed to a lower temperature analytical method. For All sample extracts will be analyzed by High Performance Liquid Chromatography (HPLC)) using a Photo Diode Array (PDA), operated in . U.S. EPA SW-846 Method 8321 A will be used as general guidance for HPLC methodology. . A five-point calibration curve will be used to calculate the results of analyses. The lowest point on the calibration curve should be equal to, or slightly higher than, the limit of detection of the GC-PDA system. The highest point on the calibration curve should be the end of the linear portion of the PDA response profile. All laboratories will follow the QA/QC criteria described in the analytical method. Those results will be stored at each laboratory for review at a later date, if necessary.

Instrumentation

HPLC – Hewlett Packard Model 10980 Series II Liquid Chromatograph with Diode Array Detector Fluoresence Detector Hewlett Packard Series 1100 HPLC Column: Supelco Discovery C18, 250 mm X 4.6 mm ID, 5 µm Particle Size.

Method Parameters

Mobile Phase: Isocratic, 30% Deionized water and 70 % Acetone

Flow: 1.2 mls/min Injection Volume: 25 μLs Run Time: 20 Minutes Oven Temperature 35 °C

Detector Wavelengths

Diode Array: Excitation at 200, 210 and 270 nms

Fluorescence: Excitation at 250 nms, Emission at 410 nms

Surrogate/Internal Standards: A surrogate will be chosen that does not coelute with any dioxathion isomer. Internal standards may or may not be used.

6.) CONFIRMATION OF ANALYSES

The preferred method for qualitative and quantitative confirmation of dioxathion and dioxenethiol is Liquid Chromatography/Mass Spectra analysis (LC/MS), however the present time Bonner Analytical and Testing does not own an LC/MS instrument. Therefore, for qualitative and quantitative confirmation of the dioxathion results, all sample extracts will be analyzed by Bonner Analytical and Testing using gas chromatography-mass spectrometry (GC-MS) using the latest revision of U.S. EPA SW-846 Method 8270, or an equivalent mass spectrometry system that is deemed appropriate to give equivalent results. A five-point calibration curve will be used to calculate the results of analyses. The lowest point on the calibration curve should be equal to, or slightly higher than, the limit of detection of the GC-MS system. The highest point on the calibration curve should be the end of the linear portion of the MS detector response profile. All laboratories will follow the QA/QC criteria described in the analytical method. Those results will be stored at each laboratory for review at a later date, if necessary. If significant differences are observed between Bonner Analytical & Testing's results and Mississippi States University Chemical Laboratory'results, BATCO will send the extracts of these samples to a third party laboratory to investigate the reasons for these differences.

GC column: 30-meter X 0.25-mm (or 0.32-mm) DB-5 fused silica capillary column, as specified in Paragraph 4.1.2 in U.S. EPA SW-846 Method 8270.

GC oven and injector conditions: As specified in Paragraph 7.3 in SW-846 Method 8270.

The specifications given in Method 8270, Section 4.0, "APPARATUS AND MATERIALS," and Section 5.0, "REAGENTS," will be followed. The guidance in Section 7.0, "PROCEDURE" will be used to perform the GC separations and GC/MS identification and quantitation. Specific criteria for peak identification are given in Section 7.6 of the method. The characteristic ions, both primary and secondary ions, listed in Table 1 of the method will be used. For cis and trans dioxathion and dioxenthiol, the primary ion is m/z 97 with secondary ions at m/z 125, 270, and 153. Instrument tuning criteria are given in Table 3 of the method. For the Internal Standard, chrysene-d₁₂ is recommended because it meets the retention time criteria set forth in Section 7.3.2.

7.) GENERAL COMMENTS

- a.) All samples will be extracted and analyzed within the normal holding times for organophosphorus compounds.
- b.) The dioxathion standard to be used by all laboratories will be supplied by the Hercules Incorporated.

- water samples spiked with cis or trans dioxathion or dioxenethiol will be prepared by the Mississippi State Department of Environmental Quality (MSDEQ) personnel and distributed to each laboratory for inclusion in this study.
- d.) Within three weeks of receipt of samples, all results of analyses and all confirmatory results will be reported to MSDEQ, who will collate them and distribute the results to the participating laboratories.
- e.) A meeting will be held to review the results of analyses and to decide the next step in the implementation of the analytical methods to be used in monitoring well water samples from the Hercules Incorporated Hattiesburg plant.
- f.) After its approval of this sampling and analysis protocol, MSDEQ will determine the time frame for the completion of all sampling and analysis activities and will set the date and time of the review meeting.
- g.) Only results greater than or equal to the Limit of Quantitation will be reported.

 The numerical sum of the cis and trans isomers of dioxathion will be reported as dioxathion. Dioxenethiol will be reported as separate compound.

APPENDIX B

BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

5	MOI	NITORING WELL COMPLETION FORM
	PROJECT NAME HOVIAL LOCATION HUlties by DATE COMPLETED 2/2 DRILLER 6 + E Ser GEOLOGIST RYAN	WELL NO. MW - 7 2 0 0 DRILLING METHOD HSA VICES METHOD OF DEVELOPMENT
F	PADLOCK	HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE
	WEEPHOLE -	ELEVATION/HEIGHT OF TOP OF RISER PIPE
-	recessadada L	PAD ELEVATION
		TYPE OF SURFACE SEAL POYTIAND Coment with Sund INSIDE DIAMETER OF SURFACE CASING 4" x 4" x 5' Hinged Metal Shipud DEPTH OF SURFACE CASING BELOW GROUND J.4" DEPTH OF SURFACE SEAL BELOW GROUND SURFACE 1
		INSIDE DIAMETER OF RISER PIPE
20	STATIC LEVEL =	TYPE OF BACKFILL Rive bold Bentonite bel — DEPTH OF TOP OF SEAL (PRE/POST HYDRATION) — TYPE OF SEAL Bentonite Chips
		DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) 8 / DEPTH OF TOP OF SCREENED SECTION 10.4
	INITIAL 13.5 \sum \frac{13.5}{2}	TYPE OF SAND PACK 20/40 Filter Park TYPE OF SCREENED SECTION PVC Factory Slotted Pipe Opening Spacing 10 Slot Opening Size D. 01" INSIDE DIAMETER OF SCREENED SECTION 2"
) **	DEPTH OF BOTTOM OF SCREENED SECTION 20.4' LENGTH OF BLANK SECTION N/A CENTRALIZER DEPTH OF BOTTOM OF PLUGGED BLANK SECTION 20.4' TORS OF BACKELL BELOW OBSERVATION PIPE N/A
	er er	TYPE OF BACKFILL BELOW OBSERVATION PIPE N/A DEPTH OF BOREHOLE 20.8

Eco-Systems, Inc.
Environmental Engineers and Scientists

	BORING	LOG	SHEET_1_OF
PROJECT NAME Hercyle PROJECT LOCATION Hattu	s sburg, NS	BORING IDENTIFICATION	Mω-7 R 8"
PROJECT NUMBER GEOLOGIST	•		DATE
DRILLER GLE SCOVE DRILL NETHOD HSA WEATHER SUNNY &	, - 1	BORING COMPLETED TIME 1 5 7 FINAL BORING DEPTH	DATE 2-22-00
RECOVERY (INCHES) DEPTH IN FEET SYMBOL PYD/Blaus//	GROUNI		FREE PRODUCT THICKNESS
S S S S S S	DEPTH AFTER	NINUTES	VOLUME
10" 139 315 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	160	tad wistay mottlins	ROWN, ef figen, Esa which possible w/gravel w/gravel w/gravel sister w/gravel sister w/gravel w/gravel
		Eco:	Systems, Inc.

)	PROJECT NAME	Hicabora	MS	PAGE OF WELL NO MW-8
	DATE COMPLETED_	2/22	ORIGINAL DEPTH	ORIGINAL WATER LEVEL
			_ DRILL METHOD H SA	
	GEOLOGIST 7 P	400	DATE 2/2 2/60	DEPTH INTERVAL
_				
			ELEVATION OF TOP OF SURFACE C	ASING /DISER DIDE
			SELECTION OF TOP OF SURFACE C	ASINO, RISER FIFE 4.6
			HEIGHT OF TOP OF SURFACE CASIN	NG/RISER PIPE ABOVE UA
			GROUND SURFACE	
K				
K			TYPE OF SURFACE SEAL PAGE	GROUND SURFACE Z 1/2 "
			DEPTH OF SUPFACE SEAL BELOW	CROHAID SUBSACE 2 1/ II
l			INSIDE DIAMETER OF SURFACE CASI	ING 4"
ļ				1"x4" x5' Hized Metal Show 4
	\		DEPTH OF SURFACE CASING BELOW	GROUND Z U'
ļ			- INSIDE DIAMETER OF RISER PIPE_	
l	1	; ; ;		
l	R.		TYPE OF RISER PIPE PV	
	-		_ DIAMETER OF BOREHOLE 6	3/4 *
			TYPE OF BACKFILL PURE	Gold Bentonte Golf
l	ĺ		- ELEVATION / DEPTH TOP OF SEAL	
l			- TYPE OF SEAL Bentani	te Chip's
İ	·		- ELEVATION / DEPTH BOTTOM OF SE	EAL - RIB"
		1 1 1		
l			- DEPTH OF TOP OF SAND PACK-	- / -11 0 1
l			TYPE OF SAND PACK	2940 Filter Part
l			- ELEVATION / DEPTH TOP OF SCREE	ENED SECTION 6.0"
l	••••			
l				
	••••		TYPE OF SCREENED SECTION	Puc shilled Pian
			- DESCRIBE OPENINGS	10 5 +
			INSIDE DIAMETER OF SCREENED SEC	CTIONOO
	·			
ĺ	•••••		- ELEVATION / DEPTH BOTTOM OF SO	CREENED SECTION 16.0
			- LENGTH OF BLANK SECTION	
1	•••••		- ELEVATION/DEPTH BOTTOM OF PLUG	IGED BLANK SECTION 16,3"
	•		- ELEVATION/DEPTH BOTTOM OF SAND	COLUMN
1	[- TYPE OF BACKFILL BELOW OBSERVA	TION PIPE
)			- ELEVATION/DEPTH OF HOLE	16,3"
				T W

	BORING	G LOG	SHEET 1 OF.
PROJECT NAME Herevis	sburg MS	BORING IDENTIFICATION	N <u>MW-B</u>
PROJECT NUMBER		_	OATE
DRILLER CLE SPENIE DRILL METHOD HSA WEATHER WAVM, SMMMY	, Windy	BORING COMPLETED TIME 1635 FINAL BORING DEPTH	DATE 2-22-00
<u> </u>		NDWATER	FREE PRODUCT THICKNESS
RECOVERY (INCHES) DEPTH IN FEET SYMBOL SYMBOL	DEPTH AFTER		VOLUME
-5- -10- -15-	0	Sampling TP-10 Log) lad ~ 7' west MW-8 ~	·

ROJECT NAME	Hercules	PAGE OF
OCATIONHat	ties burg, MS	WELL NO. MW - 9
ATE COMPLETED	2/00/20/5	DRILLING METHOD HSA
RILLERG t	E Services	METHOD OF DEVELOPMENT
EOLOGIST		
PADLOCK		HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE
		ELEVATION/HEIGHT OF TOP OF RISER PIPE
WEEPHOLE	- 3	FILLER MATERIAL UL
WEEPHOLE		SIZE AND TYPE OF APRON NA
-		
		PAD ELEVATION NA GROUND SURFACE ELEVATION
		TYPE OF SURFACE SEAL PORTLAND COMENT W/ SUND
		TYPE OF SUPFACE CASING 4" X 4" X 5" Hinged Metal Shipu
		DEPTH OF SURFACE CASING BELOW GROUND 2.4
		DEPTH OF SURFACE SEAL BELOW GROUND SURFACE
	14	DEPTH OF SURFACE SEAL BELOW GROUND SURFACE 1 INSIDE DIAMETER OF RISER PIPE
		TYPE OF RISER PIPE
		DIAMETER OF BOREHOLE 6 3/4 "
	N.	25
34		TYPE OF BACKFILL Puve bold Bentonite bel
STATIC		* * * * * * * * * * * * * * * * * * * *
etatic _evel =		DEPTH OF TOP OF SEAL (PRE/POST HYDRATION)
		TYPE OF SEAL Bentonite Chips
		DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) 5.0
		DEPTH OF TOP OF SCREENED SECTION
		TYPE OF SAND PACK 20/40 Filter Pack
NITIAL		TYPE OF SCREENED SECTION PVC FOCTORY STORY Pipe
nitial Evel =	¥	OPENING SPACING 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55		2 "
		INSIDE DIAMETER OF SCREENED SECTION
20		17
		DEPTH OF BOTTOM OF SCREENED SECTION 17.2
		LENGTH OF BLANK SECTION
		DEPTH OF BOTTOM OF PLUGGED BLANK SECTION 17.5
		TYPE OF BACKFILL BELOW OBSERVATION PIPE N/A
		DEPTH OF BOREHOLE 17.5'

Eco-Systems, Inc.
Environmental Engineers and Scientists

			BORING LOG SHEET 1 OF
PROJECT PROJECT GEOLOGIE CLASSIFIE DRILLER	NUMBER ST CATION SCI CLE ETHOO	T. Ryan HENE HENE HSA	BORING START TIME 1445 DATE 2/22/00
RECOVERY (INCHES)	PEFIN IN FEET SYMBOL	LITHOLOGY	
2(full)	12 4	12 1/2	No Sampling (0-5') Sundy-Clay, Med-Stiff to stiff, mottled coloring brown, ved, by vey) I sund content increases w/ depth, no odor, de most formet, firm, sray-tan sali (10-6) wet, Loase, white-tan, Gar, Sand 116.6 SAT, Med-dense, white-tan, Gar, Sand (form) 116.6 SET MW-9 (16' Screen) Eco-Systems, Inc.

.3

		MONITORING WELL COM	PLETION FORM
	DATE COMPLETED	ORIGINAL DEPTH	
SEE BORING LOG FOR STREEN, AMPHY		HEIGHT OF TOP OF SURFACE CAS GROUND SURFACE TYPE OF SURFACE SEAL DEPTH OF SURFACE SEAL BELOW INSIDE DIAMETER OF SURFACE CASE	ASING 4" "X 4" X 5" Hime and Meta Shove DW GROUND 2,9" WC 3/4" Gold Bentonte Gel In the Chips SEAL 2.0" LI.0" LO/40 Filter Park EENED SECTION 6.7" PVC Slotted Pipe 10 slot
		ELEVATION / DEPTH BOTTOM OF S LENGTH OF BLANK SECTION	UGGED BLANK SECTION 14.7" ID COLUMN (ATION PIPE N/A

Eco-Systems (

FRMODS.DWG

, w	BORING LOG SHEET 1 OF
PROJECT NAME HERCE-LE PROJECT LOCATION HAH PROJECT NUMBER GEOLOGIST J RYAN CLASSIFICATION SCHEME DRILLER G+E Secusion DRILL METHOD HSA WEATHER	BORING START TIME 9:55 DATE 2/23/00
RECOVERY (INCHES) DEPTH IN FEET SYMBOL	GROUNDWATER FREE PRODUCT INITIAL DEPTH THICKNESS VOLUME DEPTH AFTER NINUTES
10 15	No Sampling (refer to TP-12) Ros-Systems, Inc. Entremental Explans and Scientis T

M	ONITORING WELL COMP	LETION FORM
DATE COMPLETED 2/	STE DRILL METHOD HSA DATE 2/23/00	WELL NO. MW- I/ ORIGINAL WATER LEVEL
SEE BORING LOG FOR STRANGRAPHY	DEPTH OF SURFACE SEAL BELOW INSIDE DIAMETER OF SURFACE CASING TYPE OF SURFACE CASING BELOW DEPTH OF SURFACE CASING BELOW INSIDE DIAMETER OF RISER PIPE TYPE OF RISER PIPE DIAMETER OF BOREHOLE	ACCEMENT W/ Sand GROUND SURFACE SING "" "" "" "" "" "" "" "" ""
	TYPE OF BACKFILL BELOW OBSERV	ATION PIPE

	ROBII	NG LOG	SHEET 1 OF
PROJECT NAME HETCH PROJECT LOCATION HE PROJECT NUMBER GEOLOGIST T RYAN CLASSIFICATION SCHEME DRILLER GTE Serv DRILL METHOD HEA WEATHER (LOUGLY and	oles Hiesburg, MS	BORING IDENTIFICATION BORE HOLE DUNIETE BORING START TIME 8:01 BORING COMPLETED TIME 8:15 FINAL BORING DEP	5 DATE 3/33/00 DATE 2/33/00
RECOVERY (INCHES) DEPTH IN FEET SYMBOL	GREEN LINITIAL DEPTH		THICKNESS
-5- -10- -15-			Eco-Systems, Inc. Environmental Explanate and Schoolsto

			COMPLETION FORM
DATE COMPLE DRILLER GEOLOGIST	ETED 4/28/99 BOILES DRI	DREHOLE DEPTHRILL METHODH_SA	PAGEOF
SEE BORING LOG FOR STRATIGRAPHY		HEIGHT OF TOP OF SURFACE GROUND SURFACE TYPE OF SURFACE SEAL DEPTH OF SURFACE SEAL INSIDE DIAMETER OF SURF TYPE OF PROTECTIVE CASH DEPTH OF PROTECTIVE CASH INSIDE DIAMETER OF RISER TYPE OF RISER PIPE DIAMETER OF BOREHOLE TYPE OF BACKFILL ELEVATION / DEPTH TOP OF TYPE OF SEAL DEPTH OF TOP OF SAND FE TYPE OF SAND PACK ELEVATION / DEPTH TOP OF FILTER SOCK TYPE OF SCREENED SECTION DESCRIBE OPENINGS INSIDE DIAMETER OF SCREENED ELEVATION / DEPTH BOTTON DESCRIBE OPENINGS INSIDE DIAMETER OF SCREENED ELEVATION / DEPTH BOTTON LENGTH OF BLANK SECTION	BELOW GROUND SURFACE
**************************************		,	Eco-Systems, Inc. Environmental Engineers and Scientists

	BORING LOG	SHEET 1 OF 1
PROJECT NAME TASK 2- PROJECT LOCATION Hather PROJECT NUMBER HER GEOLOGIST RYAN CLASSIFICATION SCHEME U DRILLER GHE Service DRILL METHOD HSA W WEATHER SUDDRY + A	BORE HOLE DIAMETE -95 BORING START TIME 1355	DATE 4-28-99 DATE 4-28-99
RECOVERY (INCHES) DEPTH IN FEET SYMBOL	GROUNDWATER INITIAL DEPTH MINUTES	FREE PRODUCT THICKNESS VOLUME
2 4 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DAMP, Med-Shiff stay w/ & SAT, LOOSE, town, Med Dense Med Dense No Samplins SAT, Locie-Med, DRY, V: Stiff, greenish an O Set TP-Z CAVE to 12' bls. 20/40 to 5.6' Spol to 3.0' (Hydrafe).	Sychome. Inc.
	Environm	ental Engineers and Scientists

		TEMF	PORARY	MON	ITORING	POINT	COMPLETION	FORM
	PROJECT	NAME	Hereale	<u> </u>			PAGE (OF
	LOCATION		tathicab.	14 N	5		WELL NO TP-	Ž
	DATE CO	MPLETED _ こみた		BOR	EHOLE DEPTH	17.0	BOREHOLE WATER LEY	(F) 8 !
	OFOLOGIS	- R	MJ	DRII	METHOD F	Azt	STATIC WATER LEVEL	EL
	INSPECTE	D BY		DATE	4-28	-99	SCREEN INTERVAL	7-17
}				- JAIL			SCREEN INTERVAL	
	E.		Ţ		- ELEVATION OF	F TOP OF SURF	ACE CASING/RISER PIPE	-3.0 171.72
					SKOOND SUR	(FACE	: Casing/Riser Pipe abo	OVE NA /3.0"
	/X						NA NA	
		ļ:		4	- INSIDE DIAME	TER OF SURFACE	LOW GROUND SURFACE E CASING NA	<u>N'A</u>
		(:			TYPE OF PRO	TECTIVE CASING	NA	
	<u>≽</u>	_		1	- DEPTH OF PR - INSIDE DIAMET	ROTECTIVE CASIN	G BELOW GROUND	NA
	STRATIGRAPHY							
	ATIG						1° PVC	
	SIR			7	- DIAMETER OF	BOREHOLE_	6"	00-
	FOR		Иľ		-TYPE OF BAC	KFILL	olids of Slunder	F- Hydrafed
	907			4	- ELEVATION /	DEPTH TOP OF	SEAL 3	
4				7 1			nonite chips	
	BORING		1		- ELEVATION /	DEPTH BOTTOM	OF SEAL 4.5'	
	EE B				- DEPTH OF TO	P OF SAND PAC	K- 4.5	1 2
	SE				TYPE OF SAND	PACK	20/40 Sand (to)	
					ELEVATION /	DEPTH TOP OF	SCREENED SECTION 16	6.8'
х я	197	ě			FILTER SOCK_	No		*
-					TYPE OF SCRE	EENED SECTION	10 Slet t	PVC
اي					- DESCRIBE OPE		o Slet	
TREO C							D SECTION 1"	
RMS	(4)					- O OOKECI4E	D SECTION	į.
2 50	,			3				•
DRW					- ELEVATION / [DEPTH BOTTOM	OF SCREENED SECTION _	162'
9 10:27 M:\DRWGZ\FORMS\FRMOOS					- TENGIH OF BE	ANK SECTION _	Z'	
ë					- ELEVATION/DEF - ELEVATION/DFP	TH BOTTOM OF	PLUGGED BLANK SECTION SAND COLUMN 17	
1	T.		. inter		TYPE OF BACK	FILL BELOW OBS	SERVATION PIPE NO	True Land
1)				ELEVATION/DEP	TH OF HOIF	17.0	
S.H.			le.				Zoo-Syste Entrometal Bry	ome, loc.

TEMPORARY MO	NITORING POINT COMPLETION FORM
DATE COMPLETED 42899 DRILLER 5 Ryan DR	PAGE
SEE BORING LOG FOR STRATICRAPHY	HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE
No.	Eco-Systems, Inc. Environmental Engineers and Scientists

	BORING LOG SHEET 1 OF		
PROJECT NAME TAOK Z PROJECT LOCATION HATES PROJECT NUMBER HER- GEOLOGIST RYAN CLASSIFICATION SCHEME L DRILLER GTE Service DRILL METHOD HSA W WEATHER SUNNY N	BORING START 1500 DATE 4-28-99 BORING COMPLETED 4-28-99		
RECOVERY (INCHES) DEPTH IN FEET SYMBOL LITHOLOGY	GROUNDWATER FREE PRODUCT INITIAL DEPTH THICKNESS DEPTH AFTER MINUTES VOLUME		
NS 2 45 FUII 6.0 2/4 4/12 S 12/15 18 14 3/4 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18	NO Sampling 0-4" DAMP, Med. H-gray+bru V.CLG 4-5.1' Lose, tan, 5:5a (5.1') NO Sampling (6-9') SAT, Med-deuse; tan junite, Sa uffi (F-med) found. NO Sampling Sila to grave! SAT, Med-Stare (14-14-14); Sila to grave! SAT, Med-St-Stiff, but-liqui, Sill tigrite. SET TP-3 to loss 1" TD-16.0' Reverantial Expirers and Scientists The street of Scienti		

TEMPORARY	MONITORING POINT	COMPLETION FORM
ROJECT NAME Herce les JEATION HAHLESburg DATE COMPLETED 42799	NS	PAGE OF OF WELL NO. TP-4 BOREHOLE WATER LEVEL 24'
GEOLOGIST RVAN	DRILL METHOD HSA	STATIC WATER LEVEL
OF 10:27 M.\DRWCZ\FOWIS\FRIMOOS SEE BORING LOG FOR STRATIGRAPHY SEE BORING LOG FOR STRATIGRAPHY	HEIGHT OF TOP OF SURFACE GROUND SURFACE TYPE OF SURFACE SEAL INSIDE DIAMETER OF SURFACE SEAL INSIDE DIAMETER OF SURFACE SEAL INSIDE DIAMETER OF RISE TYPE OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS INSIDE DIAMETER OF RISE TYPE OF RISER PIPE DIAMETER OF BOREHOLE TYPE OF BACKFILL ELEVATION / DEPTH TOP TYPE OF SEAL ELEVATION / DEPTH BOTT DEPTH OF TOP OF SAND TYPE OF SAND PACK ELEVATION / DEPTH TOP FILTER SOCK TYPE OF SCREENED SECT DESCRIBE OPENINGS INSIDE DIAMETER OF SCREENED ELEVATION / DEPTH BOTT LENGTH OF BLANK SECTION ELEVATION / DEPTH BOTT LENGTH OF BLANK SECTION	I'' PVC 6" High Solid Ben for its Growt OF SEAL 1.6 Bentarite Chips FOM OF SEAL 4 PACK 20/40 Sand (Ac Native) OF SCREENED SECTION 5 NO. FION 10-Slot 1'' PVC 10-Slot EENED SECTION 1'' TOM OF SCREENED SECTION 10' ON 2 Flush M OF PLUGGED BLANK SECTION 10' M OF SAND COLUMN 14 M OBSERVATION PIPE 54N1 20/40
¥		Environmental Engineers and Scientists

	BORING					LOG	SHEET_1_OF
	PROJECT NAME TASK 2-RI Herwies PROJECT LOCATION Hatherburg MS					BORING IDENTIFICATION BORE HOLE DIAMETE	111
	PROJE GEOLO	CT NUME	ERH Rya-	ER-99		BORING START	DATE 4-28-99
-42	DRILLE	R	C+E HS	اس 🗚	<u> </u>	BORING COMPLETED	DATE 4-28-99
	WEATH	ER	Sonny	, 4 ho	+ (880)	FINAL BORING DEPTH	1
	VERY HES)	≧	30	лтногосу	GROUNE		FREE PRODUCT THICKNESS
	RECOVER (INCHES)	OEPTH FEET	SYMBOL	ПТНС	DEPTH AFTER	MINUTES	VOLUNE
	\$	-2		NS:	Dam P, firm	No Sampling (c	Stepp V-CLIC(VER) Sile ~4'
	H	4	6/7		v. bamp, coose moist, firm	, gray-taw,	v.Si.L. v.saccysii.
		8	20	د س	N	io Samplin	g 7-le
	22"	-/6 -	驱	CL	DRY, Stiff	(crumbly), s	sreevi-gray, Calcareous Clay bo will bow mottling
. :		14	7/10		+1/i+2.v	(TD=[4.0
,-		16				65	ă .
	e * .				- SAND ZON	e has n dus direct screen S-	-75-17,00
					· Jef s'	200667 Z-	le' 6/5.
					c	ę.	
	_=	-15-		-			*
						Eco-	Systems, Inc.

TO SERVICE ALALAS	.\	
PROJECT NAME	Heroules atticsburgins	PAGE OF
LOCATION	Attics burg. MS	
DATE COMPLETED	4 29 99	DRILLING METHOD
DRILLERO	LE Services	METHOD OF DEVELOPMENT
GEOLOGISTR	SAFTOF	
PADLOCK—	HEIGHT OF TOP OF	SURFACE CASING ABOVE GROUND SURFACE 460.54
		OF TOP OF RISER PIPE WA/2.6'
WEEPHOLE -	FILLER MATERIAL_	NA
	SIZE AND TYPE	OF APRON

<u> </u>		GROUND SURFACE ELEVATION
		SEAL NA
	INSIDE DIAMETER O	F SURFACE CASING
		CASING NA
		CASING W4 E CASING BELOW GROUND W4
		E SEAL BELOW GROUND SURFACE
- 35	INSIDE DIAMETER O	F RISER PIPE
25	TYPE OF RISER PIP	PE I" PYC
•	DIAMETER OF BOREI	
- B		
· "m	TYPE OF BACKFILL	High Sohds Bentoute Groot
STATIC LEVEL =		
LEVEL = =	DEPTH OF TOP C	F SEAL (PRE/POST HYDRATION) 6
	TYPE OF SEAL	Bentonite Chips
-21		מיסאונטאונג באואס
(*)	DEPTH OF TOP OF	F SAND PACK (INITIAL/POST SURGE/FINAL) 7'
78		a /
	DEPTH OF TOP OF	SCREENED SECTION
		- 1. n 11.1 P 1.
,	TYPE OF SAND PAC	x 20/40 Sand (1 of restine
189 (3 19)	Recoller	
INITIAL 🗸	TYPE OF SCREENED	SECTION 10-5/0 / Screen
INITIAL LEVEL =	OPENING SPACING _ OPENING SIZE	10-5/01
	OFENING SIZE	.//
	INSIDE DIAMETER OF	SCREENED SECTION
		· .
	DEPTH OF BOTTOM	OF SCREENED SECTION
	LENGTH OF BLANK	SECTION
	DEPTH OF BOTTOM	OF PLUGGED BLANK SECTION 12/
	TIPE OF BACKFILL	BELOW OBSERVATION PIPE NATIVE
÷		E15

Eco-Systems, Inc.
Environmental Engineers and Scientists

	207 23		BOR	ING LOG		SHEET 1 OF
	PROJECT NAME_ PROJECT LOCATIO	N_ Hathesk	eng. MS		NETER 6"	
p p p p p p p p p p p p p p p p p p p	PROJECT NUMBER GEOLOGIST CLASSIFICATION S	3yen	· · · · · · · · · · · · · · · · · · ·	BORING START	DATE_	4/29/99
	DRILLER 64 DRILL METHOD WEATHER 5	E Serve	es s-spoors	BORING COMPLITINE / / /		4/29/99
	RECOVERY (INCHES) DEPTH IN FEET	SYMBOL	INITIAL DEPTH _	OUNDWATER	FREE THICKNESS VOLUME_	PRODUCT
	78 11 3	/3 /4/ NS	•	54mp 2-	-	SA Leonisy Sund globs
		77 NS	damp st	ff ro	gray forenge -	
\rightarrow	18" 12 11	111 112	por ma feet	loss no la no surpling !	97-10 WA FAM C 2-13	152-9'
3-15	70" 18	2/7 1:46	5 ahrafe	, ,	1 3	SA (9-14') 5 S.C.I (14-15'
4	-10-			2151.		
¥				T. 8-5 50 in to 13'	Preen @ 9-	- 14'
))	-15-				CO-Systoms	
	Л	į.	<u> </u>		NAMES OF TAXABLE	<u></u>

ō.

TEMPORARY MONITORING POINT	COMPLETION FORM
DATE COMPLETED 4/28/99 BOREHOLE DEPTH	WELL NO
INSPECTED BY DATE	
HEIGHT OF TOP OF SURFACE TYPE OF SURFACE SEAL DEPTH OF SURFACE SEAL TYPE OF PROTECTIVE CONTROL OF PROTECTIVE	BOTTOM OF SCREENED SECTION 10' BOTTOM OF SCREENED SECTION 10' SECTION 10-S/6/ SCREENED SECTION 10' BOTTOM OF SCREENED SECTION 10' BOTTOM OF SCREENED SECTION 10' BOTTOM OF PLUGGED BLANK SECTION 15' BOTTOM OF SAND COLUMN 15' BELOW OBSERVATION PIPE 10'
8	Environmental Engineers and Scientists

	BORING	LOG	SHEET_1_OF
PROJECT NAME TASE Z PROJECT LOCATION HATTES PROJECT NUMBER HER - S GEOLOGIST RYAN CLASSIFICATION SCHEME USC DRILLER GTE SETVICE DRILL METHOD HSA WEATHER SUNNY Thos	burg, MS	BORING COMPLETED	DATE 4-28-99 DATE 4-28-99
RECOVERY (INCHES) DEPTH IN FEET SYMBOL	GROUNDI INITIAL DEPTH DEPTH AFTER	MINUTES	FREE PRODUCT THICKNESS VOLUME
14 2 1/3 1/4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	V. Damp, Med,	olve-bru mother olve-bru mother of the bru mittes No Sampling Stiff, gray-9	Systems, Inc. Sight of CL Sig

ROJECT NAME	tercoles	PAGE OF
OCATION	Hirabura Mª	S WELL NO
ATE COMPLETED	4 28/95	DRILLING METHOD
DUIED GLE	Secures	METHOD OF DEVELOPMENT
EOLOGIST J F	Rykn	
5451 OOK		- 1/2
PADLOCK	4	HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE 167
		ELEVATION/HEIGHT OF TOP OF RISER PIPE
WEEPHOLE -	500	FILLER MATERIAL NA
	9	SIZE AND TYPE OF APRON UA
	19	PAD ELEVATION NA
		PAD ELEVATION NA GROUND SURFACE ELEVATION NA
		TYPE OF SURFACE SEAL NA
		INSIDE DIAMETER OF SURFACE CASING PA
* DC		TYPE OF SURFACE CASING UA
		DEPTH OF SURFACE CASING BELOW GROUND NA
		DEPTH OF SURFACE SEAL BELOW GROUND SURFACE/'
		- INSIDE DIAMETER OF RISER PIPE
		TYPE OF RISER PIPE
		DIAMETER OF BOREHOLE
		TYPE OF BACKFILL High-Solid Benforite Growt
		TYPE OF BACKFILL His 7- 301.01 Tenfon 1775 TOUT
	110	
STATIC LEVEL =		— DEPTH OF TOP OF SEAL (PRE/POST HYDRATION) . 3
EVEL -		DEPTH OF TOP OF SEAL (PRE/POST MIDRATION)
		- TYPE OF SEAL Benfaste Ch. 15
	****	— DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL)
		— DEPTH OF TOP OF SCREENED SECTION
	****	- 100 1 1/ 1' 1 of
		TYPE OF SAND PACK 20/40 Jand (be Hom ! WHITE
u, °e k ∺		TYPE OF SAND PACK ZO 40 SAND (bo Hom 1 NATI TYPE OF SCREENED SECTION 10-5 to + screen OPENING SPACING 10-5 to +
NITIAL 🔽	****	OPENING SPACING 10
LEVEL = \		OPENING SIZE
	****	- INSIDE DIAMETER OF SCREENED SECTION
		pl .
		/ AZ
		DEPTH OF BOTTOM OF SCREENED SECTION
		CENTRALIZER DEPTH OF BOTTOM OF PLUGGED BLANK SECTION 10 3" TYPE OF BACKFILL BELOW OBSERVATION PIPE NATION SANCE DEPTH OF BOREHOLE 12
		TYPE OF BACKFILL BELOW OBSERVATION PIPE - 1/14/18 5 Ands

Eco-Systems, Inc.
Environmental Engineers and Scientists

3			BORING	LOG	SHE	ET_1_0F
)	PROJECT LOC	CATION Hathe	es burg MS B	ORING IDENTIFICATION	4.12	
=	GEOLOGIST _	WBER HER- Ryan/ In scheme_u	Sartor	ORING START	DATE	- <u>29-99</u>
=	DRILL METHO	CHE Ser	w/5-5P00-5 T	ORING COMPLETED IME /620 INAL BORING DEPTH		29-99
		/	GROUNDWA		FREE PR	ODUCT
	RECOVERY (INCHES) DEPTH IN	SYMBOL	DEPTH AFTER MI	NUTES	THICKNESS	
0-2	12 12	3/3	-11	no and	hom C/	S. 4/Pont
-7	16" (2)	2/6	Dany 10052	en flas Z	gray (f.f.) s	5,
				San plan 7.		
	22" (18)	2/3	Drap soff	Inspend	brown	w/penf
			· TOE 12			
	-10-		· Convert to		1	н
			. Care in + 1			
			. Seal to			
*				*		
1	15			Eco - S	Systems, In <pre>ntal Engineers and 8</pre>	IG.

TEMPORARY MONITORING POINT COMPLETION FORM
PAGE
HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE NA GROUND SURFACE TYPE OF SURFACE SEAL SUM GROUND SURFACE LIVA INSIDE DIAMETER OF SURFACE CASING NA TYPE OF PROTECTIVE CASING BELOW GROUND LIVA INSIDE DIAMETER OF RISER PIPE TYPE OF RISER PIPE TYPE OF RISER PIPE TYPE OF BACKFILL SOLID'S BOATON TO GROUND LIVA INSIDE DIAMETER OF BOREHOLE TYPE OF SALL SOLID'S BOATON TO GROUND LIVA INSIDE DIAMETER OF SURFACE CASING BELOW GROUND LIVA INSIDE DIAMETER OF BOREHOLE TYPE OF BACKFILL SOLID'S BOATON TO GROUND LIVA INSIDE DIAMETER OF SALL SOLID'S BOATON TO GROUND LIVE GROUND LIVA INSIDE DIAMETER OF SALL SOLID'S BOATON TO GROUND LIVE GROUND LIV

	****		BORIN	G LOG	SHEET_1_OF	
)	PROJECT NAME	1 10 10	I Hercoles	BORING IDENTIFICATION BORE HOLE DIAMETE	, , , ,	
	PROJECT NUMBER GEOLOGIST CLASSIFICATION S	Ryan/Sa	rtor	BORING START TIME 1450	DATE 4/29/99	
	DRILLER 6+	E Servie	iz 5-5poons	BORING COMPLETED TIME 1521 FINAL BORING DEPT	DATE	
	RECOVERY (INCHES) DEPTH IN FEET	умвог Гітногосу	GROUN	NDWATER /3	FREE PRODUCT THICKNESS	-
2	18 " O "	6 3	DEPTH AFTER	MINUTES	ng E.11-6"	
57	18" 4 2 18" (8) 7	N5	No 5	shift dor gra	-5 lmoHling 9.C/	
0-12	10"	14/30	Moist has		bioun (t-m) 8, 54 /gr Av	'c /
(144)	18" (2)13	N 5	Safura tes to	JAN ple 11	-15 water 213 -15 water 213 -18.5 sand / -18.5 S.C./	Cauc
18,5-20,5	- 18/2 -10-9	N5	Parp de	54 pling 17.	-18.5 S.Cl	
s			11	Les 15.21		
	-15-		· Care in . 20/40 t	o 16'	·Systoms, Inc. mental Engineers and Scientists	D

	Hercoles POINT COMPLETION FORM PAGE
IONHA	HICS BUTG , INS
E COMPLETED	BOREHOLE DEPTH
LLER R9 AC	DRILL METHOD HSA STATIC WATER LEVEL 4-9'
SPECIED BY	DRILL METHOD HSA STATIC WATER LEVEL 4-9' DATE SCREEN INTERVAL 4-9'
	ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 163.44
	ELEVATION OF 101 S.
	THE ABOVE WA
	HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE NA
E	GROUND SURFACE
XXXX	NA NA
	TYPE OF SURFACE SEAL
	DEPTH OF SURFACE SEAL BELOW GROUND SURFACE
= =	TYPE OF PROTECTIVE CASING
<u> </u>	OF PROTECTIVE CASING BELOW GROUND
11	INSIDE DIAMETER OF RISER PIPE
法	TYPE OF RISER PIPE 1" PVC
SRA	TYPE OF RISER PIPE
STRATICRAPHY	DIAMETER OF BOREHOLE 6"
ST	TYPE OF BACKFILL High Solids Bentonite Great
AD .	DEPTH TOP OF SEAL
901	Den Chips
. 91	ELEVATION / DEPTH BOTTOM OF SEAL
BORING	V + 1 /
8	TYPE OF SAND PACK
SEE	TYPE OF SAND PACK
•/	ELEVATION / DEPTH TOP OF SCREENED SECTION
	FILTER SOCK
	TOPE OF SCREENED SECTION 10-5/0
1	TYPE OF SCREENED STATES
	DESCRIBE OPENINGS 10 - 5/6 +
	INSIDE DIAMETER OF SCREENED SECTION
	9
	ELEVATION / DEPTH BOTTOM OF SCREENED SECTION
Δ.	LENGTH OF BLANK SECTION OF PLUGGED BLANK SECTION 9
	TOTAL POTTOM OF SAND COLUMN
	TYPE OF BACKFILL BELOW OBSERVATION FITE
	FI DIATION (DEPTH OF HOLE
<i>y /</i>	ELEVATION/ DEPTH OF THOSE Best Systems, Inc. Environmental Engineers and Scientists

	BORING LOGSHEET_1_OF
PROJECT NAME TASK Z-RT HER PROJECT LOCATION Hathesburg, M PROJECT NUMBER RER-99 GEOLOGIST Ryan /SAFTER CLASSIFICATION SCHENE USCS DRILLER GTE Services DRILL METHOD 1+SA w S-SP WEATHER SUNN HOT	BORING START TIME: 19 DATE 4/29/55 BORING COMPLETED
MABOL FILL TO COVER T	GROUNDWATER FREE PRODUCT THICKNESS VOLUME VOLUME
10" 7 111 damp 20" 19 2/3 20 10/11 damp 20 12/14 damp 20 12/14 damp 15 -15 - C	low hooder Blackfram S.Sofram No Sampling Z-5 stiff no who gray Him S.C./ No Sampling 12-15 stiff no grayfire S.C./ no sampling 12-15 stiff no grayfiren S.C./ no sampling 12-20 donse no gier Clafs:/f ill new boring to 10 ft bgs creen & 4.9' Are in to 8' 10140 to 3' Eco-Systems, Inc. Sentromental Engineers and Scientists To sent to 2' Entromental Engineers and Scientists

ROJECT NAME	Hercules Hattiesburg MS	PAGE OF
CATION	Hatticsburg MS	WELL NO
TE COMPLETED	4129199	DRILLING METHOD
RILLER 6 +	E Services	METHOD OF DEVELOPMENT
OLOGIST	Sartor	8-14.5'
PADLOCK-	HEIGHT OF	TOP OF SURFACE CASING ABOVE GROUND SURFACE.
		N/HEIGHT OF TOP OF RISER PIPE 179.69/ 2
WEEPHOLE -	FILLER I	MATERIAL UA
	SIZE	ND TYPE OF APRON
		PAD ELEVATION NA GROUND SURFACE ELEVATION NA
4		GROUND SURFACE ELEVATION N.
	TYPE OF	SURFACE SEAL WAY
		IAMETER OF SURFACE CASING NA
		SURFACE CASING N A
	DEPTH O	F SURFACE CASING BELOW GROUND
	DEPTH O	F SURFACE SEAL BELOW GROUND SURFACE 41/2
	INSIDE D	RISER PIPE /" PVC
	TYPE OF	RISER PIPE
	DIAMETER	OF BOREHOLE 6"
	Mary Control of the C	BACKFILL
·ATIO		
ATIC VEL =	DEPTU	OF TOP OF SEAL (PRE/POST, HYDRATION)
	TYPE OF	SEAL Bontonite Chips
	DEPTH	OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) 5/21
22		
		F TOP OF SCREENED SECTION 8
		1.0101111
	TYPE OF	SAND PACK 26/40 JAND PACK (MONATIVE)
- i		in all air
ITIAL (77	TYPE OF	SAND PACK 20/40 Sand lack (Abustive) SCREENED SECTION 10-5/6+ AVC SPACING 10-5/6+ SIZE
VEL =	OPENING	SIZE
	INSIDE DI	AMETER OF SCREENED SECTION
	DEPTH O	F BOTTOM OF SCREENED SECTION 121.5
	LENGTH	OF BLANK SECTION Flus L
	CENTRALI DEPTH O	F BOTTOM OF PLUGGED BLANK SECTION 14.5
	TYPE OF	BACKFILL BELOW OBSERVATION PIPE
	***************************************	F BOREHOLE 17

· · · · · · · · · · · · · · · · · · ·	BORING LOG	SHEET 1 OF
PROJECT NAME Took Z-RI PROJECT LOCATION Holding bus PROJECT NUMBER MBR-99 GEOLOGIST Sonto (CLASSIFICATION SCHEME USC) DRILLER G+E Services DRILL METHOD HSA w/ S WEATHER Suncy/Hold	BORE HOLE DIAMETER BORING START TIME 1058 BORING COMPLETED TIME 115	DATE 429.99
	GROUNDWATER INITIAL DEPTH MINUTES	THICKNESS
14" 20 3/4 // // // // // // // // // // // // /		
	Eco.	Systems, Inc.

TYPE OF SCREENED SECTION 105/0 F	TEMPORARY MONITORING POINT	COMPLETION FORM
ELEVATION OF TOP OF SURFACE CASING/RISER PIPE	DATE COMPLETED 4/29/99 BOREHOLE DEPTH	BOREHOLE WATER LEVEL
HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE NA GROUND SURFACE SEAL TYPE OF SURFACE SEAL BELOW GROUND SURFACE PA INSIDE DIAMETER OF SURFACE CASING TYPE OF PROTECTIVE CASING BELOW GROUND NA INSIDE DIAMETER OF RISER PIPE TYPE OF RISER PIPE TYPE OF RISER PIPE TYPE OF BACKFILL TYPE OF BACKFILL TYPE OF SEAL ELEVATION / DEPTH TOP OF SEAL TYPE OF SAND PACK DEPTH OF TOP OF SAND PACK TYPE OF SCREENED SECTION DESCRIBE OPENINGS 10 56/7 30/66/1		
ELEVATION/DEPTH BOTTOM OF SAND COLUMN TYPE OF BACKFILL BELOW OBSERVATION PIPE **Notive** **ELEVATION/DEPTH OF HOLE** **Elevation	HEIGHT OF TOP OF SURFACE TYPE OF SURFACE SEAL DEPTH OF SURFACE SEAL INSIDE DIAMETER OF SUR TYPE OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS DIAMETER OF RISE TYPE OF RISER PIPE DIAMETER OF BOREHOLE TYPE OF SEAL ELEVATION / DEPTH BOT TYPE OF SAND PACK ELEVATION / DEPTH TOP FILTER SOCK TYPE OF SCREENED SEC DESCRIBE OPENINGS INSIDE DIAMETER OF SC ELEVATION / DEPTH BOT	DA BELOW GROUND SURFACE NA FACE CASING NA SING NA ASSING BELOW GROUND NA ER PIPE 1" PVC 6" DOF SEAL 5,5 Bent Chaps THOM OF SEAL 6,5 P OF SCREENED SECTION 8' CITION 105/07 CITION 105/07 CITION OF SCREENED SECTION 13 COM OF PLUGGED BLANK SECTION 13 COM OF SAND COLUMN 15 COW OBSERVATION PIPE NATIVE HOLE 15'

S,N.

11	BORING LOG SHEET 1 OF										
)					RI Hercules		BORING IDENTIFICATION				
	PROJE	CT NUME	BER	AER-							
	CLASS	IFICATION		<u> </u>		•	BORING START TIME 1735 DATE 1/21/9				
\begin{align*} \begin				Serv SA w	5-Spoors	BORING COMPLETED TIME	BORING COMPLETED 5 DATE 4/24/				
	WEATH	ER	<u> </u>	nay lh	<u>.</u> +	FINAL BORING DEPT	FINAL BORING DEPTH				
<u>-</u> -	VERY 1ES)	Z	O.	LITHOLOGY	GROUN	IDWATER	FREE	PRODUCT			
	RECOVERY (INCHES)	DEPTH FEET	SYMBOL	СІТНО	DEPTH AFTER		VOLUME				
	20'		3/1		dang loo.	so rooder.	Black	9. Sa gravel			
	-	- Z		NS	-	o sample	5-7				
V-7	12"	-5	2/2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	moist loos	. noodn	fun	9,94/scare			
)	1	7 8	7/3	NS			7-10	3,9a/grave/ Late 08,5			
10-12	27"	50	3/3		Separated 100	nooth nooth	gray	S.SA/gravel			
10-12	20	12	7/7		splusated	gampling nooder	9-44	8,0%			
•		<i>-74</i> -	15/15			etel @ 1					
	# =				540	sereen e					
9 -	8 2	_10_		·	· Cave in	40 91	t t-	n VII on Face .			
			1		. 20/40	10 6.5		,			
	-				Seal +			,			
				56		n ž	81	-			
		15					·Systems				
-	L	<u> </u>	200	<u> </u>		Environ	mental Engineers	and Scientists			

PROJECT NAME Hercules	PAGEOF/
LOCATION Hathesburg MS	WELL NO
DATE COMPLETED 4/29/99 BOREHOLE DEPTH	BOREHOLE WATER LEVEL 7'
DRILLER GHE Services GEOLOGIST RSAFTO DRILL METHOD HSA	STATIC WATER LEVEL
INSPECTED BY DATE	SCREEN INTERVAL
ELEVATION OF TOP O	OF SURFACE CASING/RISER PIPE 159.95
	SURFACE CASING/RISER PIPE ABOVE
GROUND SURFACE	
TYPE OF SURFACE S	EAL NA
	SEAL BELOW GROUND SURFACE
	SURFACE CASING NA
TYPE OF PROTECTIVE	CASINGNA
	/E CASING BELOW GROUND
INSIDE DIAMETER OF TYPE OF RISER PIPE DIAMETER OF BOREH	
TYPE OF RISER PIPE	
DIAMETER OF BOREH	OLE 6"
TYPE OF BACKFILL	High Solids Bentonite Grant
ELEVATION / DEPTH	TOP OF SEAL 3'
TYPE OF SEAL	Bantonite chips
ELEVATION / DEPTH	BOTTOM OF SEAL
DEPTH OF TOP OF	SAND PACK Native to 8 bas, 70/405 and for
TYPE OF SAND PACK	20/40 Sand
ELEVATION / DEPTH	TOP OF SCREENED SECTION 5'
FILTER SOCK	
TILLER SOCK — //	11
TYPE OF SCREENED	SECTION 10-5/64 /1/PVC
DESCRIBE OPENINGS	1 1
land Harris Harr	SCREENED SECTION
	a .
ELEVATION / DEPTH	BOTTOM OF SCREENED SECTION 1/3
LENGTH OF BLANK S	ECTION Flus 4
1	TTOM OF PLUGGED BLANK SECTION /3
	OTTOM OF SAND COLUMN ELOW OBSERVATION PIPE WELVE
	17 1
ELEVATION/DEPTH OF	HOLE

	BORING LOG SHEET 1 OF									
	1	BORE HOLE DIAMETER								
	PROJECT NUMBER HER- GEOLOGIST RYAM /S CLASSIFICATION SCHEME USC	BORING START TIME 925 DATE 4-2999								
	DRILLER 6+E Service DRILL METHOD HSA W WEATHER SUNNY 1/20	S-SPOORS TIME 0945 DATE 4-29-99								
	RECOVERY (INCHES) DEPTH IN FEET SYMBOL	GROUNDWATER FREE PRODUCT INITIAL DEPTH Z ' THICKNESS								
)	RECOV (INCHI DEPTH FEET SYMBO	DEPTH AFTER MINUTES VOLUME								
6-2	22" 27 3/3 1/2	Damp Loose broughob (f) 895 4/6/								
2-4	186" 0,5 2/3 185	No Samplins to Frank Si Sent								
16	18/2 6 3/4 1/2	ro sampling 6-10 satural trace for (f-Af)9:9 A /91 Auch								
	ns 8 NS	NO Sampling 6-10								
1 .	22" 4 5/9 666	satural inter for (F-AT)9, 9 A/91AU								
	12 AS	no sampling 12-15 Al 13 (Top day).								
	16" 16 8/10	Dang medstiffs, A orangel. 5,21								
	18	-rn=17°								
	-20-	· Convert to TP-12 fro 5'-13'								
		· Native to 8'								
		, 20/40 to 4' , Seal to 3'								
		, Seal to 3								
	15-									
))		Eco-Systoms, Inc. Environmental Engineers and Scientists								

DRILLER GIES	HESDURG MS Z9 99 BOREHOLE DETULCES DRILL METH	DEPTH BOREHOLE WATER LEVEL _~ 5 '
EE BORING LOG FOR STRATIGRAPHY SECTION STRATIGRAPHY SECTION STRATIGRAPHY	DATE ELEV HEIGGROU TYPE DEPT INSIE TYPE DIAM TYPE ELEV DEPT DIAM	SCREEN INTERVAL ATION OF TOP OF SURFACE CASING/RISER PIPE 156,99. HT OF TOP OF SURFACE CASING/RISER PIPE ABOVE 3/ JIND SURFACE OF SURFACE SEAL H OF SURFACE SEAL BELOW GROUND SURFACE OF PROTECTIVE CASING HOF PROTECTIVE CASING BELOW GROUND OE DIAMETER OF RISER PIPE OF RISER PIPE OF RISER PIPE OF BOREHOLE OF BACKFILL ATION / DEPTH TOP OF SEAL JATION / DEPTH BOTTOM OF SEAL
38	ELEA TYPE	ATION / DEPTH TOP OF SCREENED SECTION 4' ER SOCK /es FOR SCREENED SECTION 10-5/0+1"PVC CRIBE OPENINGS 10-5/0+ DE DIAMETER OF SCREENED SECTION 1" ATION / DEPTH BOTTOM OF SCREENED SECTION 1" ATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION 11' ATION/DEPTH BOTTOM OF SAND COLUMN 11' E OF BACKFILL BELOW OBSERVATION PIPE 50-62 9-10 ATION/DEPTH OF HOLE 14' ATION/DEPTH OF

		- <u>2</u>	BORING	LOG	SHEET 1 OF		
PROJECT PROJECT GEOLOG CLASSIFI DRILLER DRILL M	t location t number istSA ication schem 6+P	Hattresbur HER-95 E-USCS Services SA w/ 5-:	spoons	BORING IDENTIFICATION TP-13 BORE HOLE DIAMETER 6" BORING START TIME 9/0 DATE 4-29-99 BORING COMPLETED TIME 835 DATE 4-29-99 FINAL BORING DEPTH 14'			
18 (INCHE	2 16/14 2 16/17 2 16/17 2 16/18 2 16/18	<u>Е</u> рертн	GROUN DEPTH AFTER F LOOSE LOOSE MEd-de	~ 5' _ MINUTES ,	vf-f) S, Sa w/frace (5) - Med) Gravelly Sand of S		
12"	18	Spo CLI DAM	Loose o St.A yuert to dd filter	Soct + 20/4	1-11'. TD=14'		

1	TEMPORARY MONI	TORING POINT COMPLETION FORM
المختصد	PROJECT NAME Hercules	PAGE OF
	DATE COMPLETED S/10/95	HOLE DESTU BODEHOLE WATER LEVEL
	DRILLER GHE Services	METHOD HSA STATIC WATER LEVEL
	GEOLOGIST V TYAN	SCREEN INTERVAL
	INSTITUTED BY DATE	JONETA HATEVAL
T		- ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 164.84
		HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE
		TYPE OF SURFACE SEAL NA
		— DEPTH OF SURFACE SEAL BELOW GROUND SURFACE NA — INSIDE DIAMETER OF SURFACE CASING NA
		TYPE OF PROTECTIVE CASING NA
		DEPTH OF PROTECTIVE CASING BELOW GROUND NO. 14
	E Y T	- INSIDE DIAMETER OF RISER PIPE 14
3		TYPE OF RISER PIPE PVC
		_ DIAMETER OF BOREHOLE
محتثاد	ğ j	TYPE OF BACKFILL HIS Solids Beatonite Crout ELEVATION / DEPTH TOP OF SEAL 1
		- TYPE OF SEAL Bentante Pellets
1		- ELEVATION / DEPTH BOTTOM OF SEAL
l		— DEPTH OF TOP OF SAND PACK
1	H	TYPE OF SAND PACK ZO/40 SAND
	ı ı	TYPE OF SAND PACK
		.1 n n n n
•		FILTER SOCK Ves
		TYPE OF SCREENED SECTION 10-514 1"PUC
		- DESCRIBE OPENINGS 10-51ot
RIMOO		INSIDE DIAMETER OF SCREENED SECTION L''
02/1/ 10:27 M:\DRWG2\FORMS\FRINOS		
V:\DRWG2		- ELEVATION / DEPTH BOTTOM OF SCREENED SECTION 126" - LENGTH OF BLANK SECTION Flush
0:27		ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION 17.6"
3		- ELEVATION/DEPTH BOTTOM OF SAND COLUMN 14' - TYPE OF BACKFILL BELOW OBSERVATION PIPE Name
1	1	- ELEVATION/DEPTH OF HOLE
1. 02/		Ree-Systems, Inc. Environmental Engineers and Scientists

				BORING LOG					
PROJECT NAME THE Z-RT HERCULES BORING IDENTIFICATION TP-/4 PROJECT LOCATION HATTISTICS BORE HOLE DIAMETER 3' PROJECT NUMBER HER-95 GEOLOGIST RYAN BORING START TIME 1830 DATE 5-10-99 CLASSIFICATION SCHEME USCS DRILLER 6+ E SCRUICES BORING COMPLETED TIME 1650 DATE 5-16-99 DRILL METHOD HSA W S-SPOONS FINAL BORING DEPTH									
RECOVERY (INCHES)	DEPTH IN FEET	SYMBOL	гшногосу	GROUNDWATER FREE PRODUCT INITIAL DEPTH ~ 7' DEPTH AFTER MINUTES VOLUME					
	2 4 8 -18 -16 -10-			DAMP, FIRM, BROWN, CCSa MOINT (62) Hable - Stand - Fils all (2.5'- MOIST (5'), FIRM, BROWN, CFL (5'-7') WET-Sat, LOOSE, Ct. Sen, Sife f-med LAW (Frace report) LAW (Frace report) LAW (Frace report) Notive (9.3' Reliefs to 1.3' 45 Reliefs					
	PROJE PROJE GEOLO CLASS DRILLE DRILL WEATH	PROJECT LOCAL PROJECT NUME GEOLOGIST CLASSIFICATION DRILLER 6 DRILL METHOD WEATHER POPULATION LEEL 4	PROJECT LOCATION PROJECT NUMBER GEOLOGIST SCHEME CLASSIFICATION SCHEME DRILLER SHOW WEATHER SAW STATE OF THE	PROJECT LOCATION HATTANAMENT PROJECT NUMBER HER- GEOLOGIST NUMBER SCIAN SCHEME SCIAN PRILLER GEOLOGIST SCHEME SCIAN PRILL METHOD HAS A WEATHER WEATHER SAMBOL SAMB					

APPENDIX C

SAMPLE COLLECTION LOGS

Page 1 of 1.

Eco-Systems, Inc. onmental Engineers and Scientists

(

Groundwater Sample Collection Log

Project Name:	Hercules				Boring ID:					
Project Number:	HER99072				Site Location:	Hattiesburg, Mississippi				
			32							
*										
Start Date:	10/14/2002			: 10/14/2002			ter Level Measurem			
Sample Technician:	Charles Coney		y Sartor		5*3	Date	Time	Water Level (TOC)		
Purge/Sample Method:		p		3		10/14/2002	9:31	5.53		
Well Diameter:	2"			 						
Total Depth of Well:	17			 			· · · · · · · · · · · · · · · · · · ·	,		
Approximate Depth of	Water Column									
(h=TD of well - water	level [TOC]):	11.47			*2					
Calculated Well Volum										
(V = vol in gal; D = wo	ell diam. in ft):	1.9	·					<u> </u>		
				LOPMENT/PUR	GING DATA		, · · · · · · · · · · · · · · · · · · ·	<u>, </u>		
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments		
10/14/2002 10:20	2	6.19	125.6	20.5	13.7					
10:30)	6.14	74.9	20.7	13.7			,		
10:40	0 - 4	6.05	140.2	20.8	13.2					
11:02	2	6.06	129.5	22.5	13.3					
11:1:	5	5.91	127.0	22.5	14.3					
			,							
			¥ .							
					• • • •					
					 					
	1									
										
	+			1		757				
				1						
										
		<u> </u>					·			
Sample Identification:						GROUNDY	VATER SAMPLE C	ONTAINERS		
Sampio Iashimoudon.	 				Date	Time	Sample Container	,		
Weather Conditions D	nring Sampling				10/14/2002	11:30		110001100210		
··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··					10,71,2002	11.50				
Comments:						1				
Aure:		Date:				<u> </u>				

Page_1_of_1.

Eco-Systems, Inc.

onmental Engineers and Scientists

(A)

Date:

Groundwater Sample Collection Log

Project Name: Hercules							Boring ID:	MW-4			
Projec	et Number:	HER99072		=		Site Location:	Hattiesburg,	Mississippi			
Start 1	Detai	10/14/2002		Fig. 14 D.4	107.1000						
	Date: de Technician:	10/14/2002			e: <u>10/14/2002</u>		_		nter Level Measuren		
		Charles Coney			····		_	Date	Time	Water Level (TOC	
	e/Sample Method: Diameter:	2"	тр				-	10/14/2002	12:24	10.40	
							-		<u> </u>		
	oximate Depth of								 	ļ	
	D of well - water								 	 	
	lated Well Volum		4.00				-		 	 	
	vol in gal; D = wel		0.8						 	 	
							-			<u> </u>	
				WELL DEVE	LOPMENT/PUR	RGIN	JG DATA				
		Cumulative		Specific				Τ		T	
	Date/Time	Volume (gal)	pН	Conductivity (umohs)	Temperature (Celsius)	_	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments	
L ₁	10/14/2002 12:40	0.5	6.07	644.0	22.7		7.18				
	12:50	1.0	6.16	621.0	21.7		5.03				
	12:55	1.25	6.12	566.0	21.7		4.67				
<u> </u>					. =						
<u> </u>				, , , , , , , , , , , , , , , , , , ,							
<u> </u>		L									
<u> </u>											
		<u> </u>									
 											
—		ļ -		· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u> </u>			
			——-								
					 						
											
——											
<u> </u>											
~ 1	بر مدد. ه ـ د										
Sampi	le Identification:		-						ATER SAMPLE C	ONTAINERS	
31741.	C 124 . D	·					Date	Time	Sample Container	Preservative	
Weatn	ner Conditions Dur	ring Sampling:					10/14/2002	13:05			
-								<u> </u>			
Comm						,	4	1			

Page 1 of 1.

Eco-Systems, Inc. onmental Engineers and Scientists

0

Groundwater Sample Collection Log

Project Name:							MW-5 Hattiesburg, Mississippi			
Project Number:										
				,						
Start Date:	10/14/2002		Finish Date	: 10/14/2002		Wa	ter Level Measurem	ents		
Sample Technician:	Charles Coney	and Rodne				Date	Time	Water Level (TOC)		
Purge/Sample Method:		·			10/14/2002	13:47	8.7			
Well Diameter:	2"	<u> </u>								
	15									
Approximate Depth of		.,								
(h= TD of well - water		6.3								
` Calculated Well Volum					_					
(V = vol in gal; D = we		1.1								
	1			LOPMENT/PUR	GING DATA					
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments		
10/14/2002 14:05		6.68	484.0	26.2	3.28		- ·			
14:16		6.78	483.0	25.8	2.35	. = 1				
14:20		6.72	396.0	25.5	2.52	*				
14:22		6.71	896.0	25.2	1.69					
14:25	2.5	6.72	560.0	25.1	1.61			•		
14:30	3.5	6.64	734.0	25.3	1.43					
14:34		6.64	428.0	24.9	2.87					
14:37		6.6	555.0	24.6	1.60					
14:41	4	6.54	325.0	24.6	1.67					
14:44		6.51	294.0	24.7	2.28					
14:46	4.5	6.62	416.0	24.4	1.61					
14:49	4.75	6.47	442.0	24.6	1.76					
			•							
Sample Identification:		74	2.1			GROUNDW	VATER SAMPLE C	ONTAINERS		
					Date	Time	Sample Container	Preservative		
Weather Conditions Du	ring Sampling:				10/14/2002	14:50		-		
Comments:										
							_	,		
Jure:		Date:					T			

Eco-Systems, Inc. pnmental Engineers and Scientists

(A)

Project Name:	Hercules				Boring ID:	MW-6 ,	1	
Project Number:	HER99072				Site Location:	Hattiesburg,	Mississippi	
								
Start Date:	10/14/2002	-	Finish Date	e: 10/14/2002		Wa	ater Level Measurer	nents
Sample Technician:	Charles Coney	y and Rodn				Date	Time	Water Level (TOC)
Purge/Sample Method:	Peristaltic Pun	np				10/14/2002		8.05
Well Diameter:	2"							
Total Depth of Well:	18				_			
Approximate Depth of			1 ,0 6					
(h= TD of well - water)		9.95						
Calculated Well Volum	•							
(V = vol in gal; D = we)	ll diam, in ft):	1.7						
. —								
				LOPMENT/PUR	GING DATA			
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
10/14/2002 16:00		6.72	110.6	24.9	1.93	 		
10/14/2002 16:00 16:03		5.75	118.5	24.6	1.58		: h	
16:05		5.68	104.2	24.5	1.26			
16:08		5.56	147.7	24.4	1.26	1		
16:09		5.61	120.2	24.2	1.09			
16:11		5.57	181.7	24.0	1.26			
16:13		5.63	80.0	23.9	1.48			
16:15	Vi.	5.55	170,0	24.0	1.30			
16:17		5.57	186.8	24.2	1.18			1
16:19		5.49	184.8	24.1	1.05			
								1
			Dia					
						. 11		
			•					
								
Sample Identification:						GROUNDW	ATER SAMPLE C	ONTAINERS
				_	Date	Time	Sample Container	Preservative
Weather Conditions Dur	ring Sampling:				10/14/2002	16:22	-	
								
Comments:								
)	1							
Dare:	· ·	Date:		1.0				

Eco-Systems, Inc. onmental Engineers and Scientists

Project Name:	Hercules				Boring ID:	MW-1		
Project Number:	HER99072				Site Location:	Hattiesburg, M	lississippi	
						· · · · · · · · · · · · · · · · · · ·		
Start Date:	12/4/02		Finish Date	e: <u>12/4/02</u>		Water	Level Measur	ements
Sample Technician:	Charles Coney			_ = _ = =		Date	Time	Water Level (TOC)
Purge/Sample Method:	Peristaltic Pum	ıp				12/4/02	9:10	5.15
Well Diameter:	2"							
Total Depth of Well:	20.5		_				1	
Approximate Depth of	Water Column							
(h= TD of well - water		15.35						
Calculated Well Volum	-		· · ·	· · ·				
V = vol in gal; D = we	•	2.6					****	
			WELL DEVE	LOPMENT/PUR	GING DATA			
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/4/02 10:04	2.5	6.70	198.1	19.1	9.4	1.36		
10:21	5.0	6.70	181.5	19.6	8.9	0.91		
10:42	7.5	6.71	170.8	20.4	9.0	0.69	ž.	
			11.20				· · · · · · · · · · · · · · · · · · ·	
77							" •! . · · · · · · ·	
			·					

Sample Identification	MW-1
Weather Conditions I	During Sampling: cloudy and warm, low 60's
Comments: _Deliver	ed sample directly to Glenn Jones of Bonner Laboratory_
C'nature: Some	n Nichall Date: 12/17/02

	GROUND	WATER SAMPLE CO	NTAINERS
Date	Time	Sample Container	Preservative
12/4/02	10:45	1 L Amber	none
 			

Eco-Systems, Inc.

Groundwater Sample **Collection Log**

onmental Engineers and Scientists

Project	Name:	Hercules				Boring ID:	MW-2		
Project	Number:	HER99072				Site Location:	Hattiesburg	, Mississippi	
					Y				
Start D		12/4/02		Finish Date	e: <u>12/4/02</u>			ater Level Measurem	
	e Technician:	Charles Coney					Date	Time	Water Level (TOC)
-	Sample Method:		ıp.				12/4/02	15:18	5.55
	Diameter:	2"						15:21	5.70
	-	20.5			·			15:25	5.70
	kimate Depth of								
	of well - water		14.95						
	ated Well Volum								
(V = V	ol in gal; D = wei	ll diam. in it):	2.5						
<u> </u>				WELL DEVE	LOPMENT/PUR	ING DATA		···	***************************************
		Cumulative	,	Specific	T		T BG		<u> </u>
I	Date/Time	Volume (gal)	pН	Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/4/02 15:25	0.25	5.77	104.6	19.8	5.6	3.40		
	15:30	0.5	5.76	103.4	19.8	5.8	2.72		
	15:35	0.75	5.68	103.1	19.7	6.7	2.52		
	15:40	1.0	5.60	102.9	19.8	4.1	1.98		
				····				l.	
				· • · · · · · · · · · · · · · · · · · ·			111.		
ļ		,							
	~ .								
				·· ···································					
							<u> </u>		
				• • • • • • • • • • • • • • • • • • • •			ļ		å
				······································				1	
								8	
٠.							·	· · · · · · · · · · · · · · · · · · ·	
Sample	: Identification:	MW-2						VATER SAMPLE C	ONTAINERS
Wastha	- Canditiana Du	-i C 1:			****	Date	Time	Sample Container	Preservative
		nng Sampling:	very cloud	y, breezy, lower 60's	<u> </u>	12/4/02	15:45	1 L amber	none
Commo	ents: _Delivered	samples directl	y to Bonne	er Analytical					
C' gatu	ire: Sponcer	Tain be a Co	Date:	12/17/02		<u> </u>			

Eco-Systems, Inc. onmental Engineers and Scientists

mature: Spanson Trichold Date: 12/17/02

roject Name:	Hercules				Boring ID:	MW-3		
roject Number:	HER99072				Site Location:	Hattiesburg,	Mississippi	
tart Date:	12/4/02		Finish Date	: 12/4/02		Wa	ter Level Measurem	ents
ample Technician:	Charles Coney	,	A 1000000 00	12.1.02		Date	Time	Water Level (TO
urge/Sample Method:			, , , , , , , , , , , , , , , , , , , ,		-	12/4/02	14:35	6.25
Vell Diameter:	2"	<u>p</u>					14:42	6.25
Total Depth of Well:	18	.,						
Approximate Depth of			<u> </u>			,		
h= TD of well - water		11 75						
Calculated Well Volum		11.10				 	†	
V = vol in gal; D = we		20						
Y VOLING gran, 25	11 Commission and any	2.0			<u>.</u>	 	L	<u> </u>
	· · · · · · · · · · · · · · · · · · ·		WELL DEVE	LOPMENT/PUR	FING DATA			
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/4/02 14:42	0.5	6.70	122.3	19.8	16	2.90		
14:45	 	6.70	131.6	19.5	8.8	2.47		
14:50	1	6.70	119.6	19.5	7.4	2.22		
14:55	1.5	6.70	118.2	19.4	8.2	2.02		
					<u> </u>			
		•						
Sample Identification:	MW-3					GROUNDV	VATER SAMPLE C	CONTAINERS
					Date	Time	Sample Container	Preservative
Weather Conditions D	uring Sampling:	very cloud	ly, breezy, lower 60'	s	12/4/02	15:00	1 L amber	none

Page_1_of_1.

Eco-Systems, Inc.

onmental Engineers and Scientists

Comments: _Delivered sample directly to Bonner Laboratory_

Project Name:	Hercules			12	Boring ID:	MW-4		
Project Number:	HER99072				Site Location:	Hattiesburg,	Mississippi	
	,	·•·						
Start Date:	12/4/02		Finish Dat	e: <u>12/5/02</u>			ter Level Measuren	T
Sample Technician:	Charles Coney				#	Date	Time	Water Level (TOC
Purge/Sample Method		np				12/4/02	10:27	9.92
Well Diameter:	2"					12/5/02	12:45	9.67
Total Depth of Well:	18.5		,			12/5/02	12:55	9.71
Approximate Depth o								0
(h= TD of well - water		8.58						
Calculated Well Volu							- 4	
(V = vol in gal; D = vol in	ell diam. in ft):	1.5					- 5 5	
			*					
				LOPMENT/PUR	GING DATA			
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/5/02 12:5	5 0.2	6.22	382.0	19.6	7.3	0.87		
13:0	0 0.3	6.20	367.0	20.0	6.3	0.61		
13:0	5 0.4	6.18	363.0	20.1	3.4	0.57		
13:1	0 0.5	6.17	360.0	20.2	2.9	0.51		
					· · · · · · · · · · · · · · · · · · ·			
<u> </u>								
							21 120	
						1		
						1		
" =								
Sample Identification:	MW-4					GROUNDW	ATER SAMPLE C	ONTAINERS
					Date	Time	Sample Container	Preservative
Weather Conditions D	uring Sampling:	cloudy, bre	ezy, lower 40's		12/5/02	13:15	1L ambers	none
	-						40 mL septa vials	HCl

Eco-Systems, Inc.

(1) onmental Engineers and Scientists

Project Name:	Hercules		i.		Boring ID:	MW-5		
•	HER99072				Site Location:	Hattiesburg,	Mississippi	
								
Ch. 4 D. Av.	10/4/00		Finish Date	10/5/00		We	ater Level Measurem	anta
	12/4/02		Finish Date	12/3/02		Date	Time	Water Level (TOC)
	Charles Coney						 	8.05
Purge/Sample Method:		ıp	· · · · · · · · · · · · · · · · · · ·			12/4/02	11:10	
Well Diameter:	2"			****		12/5/02	13:50	7.40
=	18.5	QI .			-	12/5/02	14:02	8.14
Approximate Depth of						}		
(h= TD of well - water		10.45					<u> </u>	<u> </u>
Calculated Well Volum								
(V = vol in gal; D = we	ll diam. in ft):	1.8			 11 5		L	
· · · · · · · · · · · · · · · · · · ·	····		WELL DEVE	LOPMENT/PUR	SING DATA	 	:	
			Specific	1	···	T	T	
Date/Time	Cumulative Volume (gal)	pН	Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/5/02 14:02	0.25	6.82	621	15.2	10	0.49		
14:07	0.75	6.83	319	15.5	9.1	0.43		
14:12	1	6.83	619	15.3	7.3	0.38		
14:17	1.25	6.83	622	15.3	5.4	0.37		
<				T T	· ·			tr
		()(
					•	1		
						1		
······································					***			
			 					<u></u>
*****				1			<u> </u>	
						 		
				 				
**************************************	<u> </u>		······································				.l d	<u> </u>
Sample Identification:	MW-5					GROUNDY	VATER SAMPLE (CONTAINERS
					Date	Time	Sample Container	,
Weather Conditions Du	ring Sampling:	cloudy, bre	ezy, lower 40's		12/5/02	14:20	1L ambers	none
Comments: _Sample v	vas relinquished	d directly to	Bonner Laboratory	8				
								=
" rature: Source	Taraka	(0) Date:	12/17/02				= 1 =	

Eco-Systems, Inc. onmental Engineers and Scientists

	• • • • • • • • • • • • • • • • • • • •				Boring ID:	MW-6		
Project Number:	HER99072		-		Site Location:	Hattiesburg	g, Mississippi	
Start Date:	12/4/02		Finish Dat	10/5/00		· · · · · · · · · · · · · · · · · · ·		
Sample Technician:	Charles Coney		Finish Dat	5: <u>12/3/U</u> 2			ater Level Measuren	
Purge/Sample Method:			Land			Date	Time	Water Level (TOC
r dige/sample Metriod. Well Diameter:	2"	ip, volume	Daseu			12/4/02	11:07	7.73
Total Depth of Well:	23.25						 	
Approximate Depth of							 	 -
(h= TD of well - water		15 52				 	 	
Calculated Well Volum		13.34			-		+	
(V = vol in gal; D = was		26				 	 	
	/# tomili al 20/-	2.0				<u> </u>	4	
	· · · · · · · · · · · · · · · · · · ·		WELL DEVE	LOPMENT/PUR	TING DATA		····	
 	Cumulative	T	Specific			1	T	1
Date/Time	Volume (gal)	pН	Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/5/02 14:57	2.6	5.47	163	20.4	5.4	1.82		-
15:10	5.2	5.46	165	20.6	7.3	1.70	1	
15:25	7.8	5.50	167	20.5	4.6	1.75		
<i>y</i>								
						1	 	
							† 	
			-			1		
						<u> </u>	1	
							 	
						 		
		6						
							 	
								
								
						<u> </u>		
				- 	· · · · · · · · · · · · · · · · · · ·	<u></u>		L.,
Sample Identification;	MW-6					GROUNDY	VATER SAMPLE C	ONTAINEDS
					Date	Time	Sample Container	Preservative
Weather Conditions Du	ring Sampling:	cloudy, bre	ezy, lower 40's		12/5/02	15:30	1L ambers	
						1 20.00	ID almoors	none
	and the second of the second	di	D 1 1 1 1			 	 	
Comments: _Sample w	vas reiinquisnea	onecuy to	Bonner Analytical		1	1	1	

Eco-Systems, Inc. nmental Engineers and Scientists

Project Name:	Hercules		Boring ID:	MW-7		
Project Number:	HER99072		Site Location:	Hattiesburg, M	ississippi	
			······································			
Start Date:	12/4/02	Finish Date: 12/4/02		Water	Level Measur	ements
Sample Technician:	Spencer Trichell			Date	Time	Water Level (TOC
Purge/Sample Method	d: Peristaltic Pump			12/4/02	11:53	13.61
Well Diameter:	2"			12/4/02	15:50	13.68
Total Depth of Well:	22.5					
Approximate Depth o	f Water Column					
(h= TD of well - water	r level [TOC]): 8.89					
Calculated Well Volu	me (V=6hd²)					
(V = vol in gal: D = v	vell diam in ft): 15					

	WELL DEVELOPMENT/PURGING DATA							
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/4/02 15:50	1.5	4.33	160	21.3	2.0	3.50		
16:00	1.75	4.27	180	20.5	1.7	2.75		
16:05	2.0	3.78	160	20.2	1.9	2.50		1
16:08	2.25	3.80	150	21.4	1.7	3.10		
16:13	2.5	3.78	150	21.1	1.9	2.40		
								= 21
				T				
				1				
				1				

eather Conditions D	During Sampling: raining, warm, lower 60's
omments: Sample	was relinquished directly to Bonner analytics
	,
	a Trickel Date: 12/11/02

Date	Time	Sample Container	Preservative
12/4/02	16:20	1L ambers	none
	ļ	40mL septa vials	HCl
	ļ		······································
	<u> </u>		

Eco-Systems, Inc.

onmental Engineers and Scientists

Project Name:	Hercules				Boring ID:	MW-8		. L
Project Number:	HER99072				Site Location:	Hattiesburg	, Mississippi	
					, ,			
Start Date:	12/4/02		Finish Date	e: <u>12/5/02</u>	-		ater Level Measurem	· · · · · · · · · · · · · · · · · · ·
Sample Technician:	Charles Coney					Date	Time	Water Level (TOC)
Purge/Sample Method:		<u>1p</u>				12/4/02	9:35	14.09
Well Diameter:	2"							
Total Depth of Well:	20							<u> </u>
Approximate Depth of								
(h= TD of well - water		5.91					<u> </u>	
Calculated Well Volum	•	Ļ.						
(V = vol in gal; D = we	il diam. in ft):	1.0				<u></u>		
			WELL DEVE	ELOPMENT/PURC	GING DATA	9		
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/5/02 10:57	0.3	5.93	545	21.4	1.0	0.63		
11:02	0.40	5.93	543	21.6	1.10	0.6		
11:02 11:07	0.50	5.92	543	21.7	0.95	0.55		
11:12	0.60	5.92	545	21.8	1.00	0.52		
						1		
						1		
	1							
								B

Sample Identification:	MW-8, MS, ar	nd MSD				GROUNDV	WATER SAMPLE C	ONTAINERS
		···			Date	Time	Sample Container	Preservative
Weather Conditions Du	ring Sampling:	cloudy, bre	æzy, lower 40's		12/5/02	15:50	40 mL septa vials	HCl
			 -				1L ambers	none
Comments: _Relinquis	hed samples dir	rectly to Bo	nner Laboratory				1	
ature: Some	Tail	n Date:	12/17/02				ш	

Eco-Systems, Inc. onmental Engineers and Scientists

Project Name:	Hercules		_ = = =		Boring ID:	MW-9			
Project Number:	HER99072				Site Location:	Hattiesburg, M	Hattiesburg, Mississippi		
		 			- 	· 			
Start Date:	12/4/02		Finish Date	: 12/5/02		Water	Level Measur	ements	
Sample Technician:	Charles Cone	/				Date	Time	Water Level (TOC)	
Purge/Sample Method	l: Peristaltic Pun	np				12/4/02	11:05	11.35	
Well Diameter:	2"					12/5/02	9:20	11.32	
Total Depth of Well: 20					12/5/02	9:41	11.34		
Approximate Depth of	Water Column								
(h=TD of well - water	r level [TOC]):	8.65			<u>. </u>				
Calculated Well Volum	ne (V=6hd²)								
V = vol in gal; D = w	ell diam. in ft):	1.5							
						,			
			WELL DEVE	LOPMENT/PUR	GING DATA				
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments	
12/5/02 9:3	1 0.25	5.25	151	13.1	3.4	1.55			

Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/5/02 9:31	0.25	5.25	151	13.1	3.4	1.55		
9:36	0.35	5.16	147	14.2	3.2	0.81		
9:36 9:41	0.45	5.15	152	13.8	3.7	0.76		
9:46	0.55	5.80	510	16.1	0.9	0.75		_
9:51	0.65	5.81	526	15.2	1.1	0.67		
9:56	0.75	5.82	532	14.3	1.1	0.71		
10:01	0.85	5.8	545	15.5	1.0	0.47		1
10:06	1	5.82	557	16.7	1.0	0.65		
*		}					· · · · · · · · · · · · · · · · · · ·	
				 			· · · · · · · · · · · · · · · · · · ·	
								
			· · · · · · · · · · · · · · · · · · ·	 				
				 		 		
			 		· ·			<u> </u>

Sample Identification: MW-9		GR
	Date	
Weather Conditions During Sampling: cloudy, breezy, lower 40's	12/5/02	
Comments: _Samples relinquished directly to Bonner Analytical		
gture: Spencer Trickel Date: 12/17/02		╁

	GROUNDWATER SAMPLE CONTAINERS									
Date	Time	Sample Container	Preservative							
12/5/02	10:15	40 mL septa vials	HC1							
		1L ambers	none							
										
	<u> </u>		in in							
			•							

Preservative

Eco-Systems, Inc. pnmental Engineers and Scientists

Calculated Well Volume (V=6hd²) (V = vol in gal; D = well diam. in ft): 1.5

					2.0	
Project Name;	Hercules		Boring ID:	MW-10		
Project Number:	HER99072	Site Location:	Hattiesburg, Mississippi			
		· · · · · · · · · · · · · · · · · · ·				,
Start Date:	12/4/02	Finish Date: 12/4/02	<u> </u>	Water	Level Measur	rements
Sample Technician:	Charles Coney			Date	Time	Water Level (TOC)
Purge/Sample Method	i: Peristaltic Pump			12/4/02	10:18	9.73
Well Diameter:	2"				16:00	9.75
Total Depth of Well:	18.5				16:11	20:24
Approximate Depth o	f Water Column					
(h= TD of well - water	r level [TOC]): 8.77					

				WELL DEVE	LOPMENT/PUR	GING DATA			
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/5/02 16:14	0.25	5.34	50.1	19.8	37	0.84		slightly turbid at firs
	16:20	0.5	5.41	49.3	20.1	34	0.60		
	16:25	0.75	5.39	47.3	19.7	23	0.62		
	16:30	1.0	5.35	46.1	19.6	16	0.68		
	16:35	1.25	5.39	45.6	19.5	12	0.74		
								-	
0									
•									
		-							

Sample Identification: MW-10		GROUND	ROUNDWATER SAMPLE CONTAINERS			
	Date	Time	Sample Container	Preservati		
Weather Conditions During Sampling: raining, lower 60's	12/4/02	16:38	40 mL septa vials	HCl		
			1L amber	none		
Comments: Samples relinquished directly to Bonner Laboratory	_					
Date: 12/17/62			<u> </u>			

Eco-Systems, Inc.

nmental Engineers and Scientists

Project Name:	Hercules				Boring ID:	MW-11		
Project Number:	HER99072				Site Location:	Hattiesburg,	Mississippi	
					4			
Start Date:	12/4/02		Finish Date	: 12/4/02		Wa	iter Level Measurem	ents
Sample Technician:	Charles Coney	'				Date	Time	Water Level (TOC
Purge/Sample Metho			2)			12/4/02	10:38	7.05
Well Diameter:	2"							
Total Depth of Well:	17				IE:			
Approximate Depth o	of Water Column							
(h= TD of well - water	er level [TOC]):	9.95						
Calculated Well Volu	me (V=6hd²)							
(V = vol in gal; D = vol in	vell diam. in ft):	1.7					IIII	
							n i u	
			WELL DEVE	LOPMENT/PUR	GING DATA			
Date/Time	Cumulative Volume (gal)	pΉ	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
12/5/02 11:4	17 0.25	6.71	347	20.2	6.1	0.66	*	
11::	52 0.5	6.70	319	19.8	6.5	0.57		
12:0	00 1	6.70	300	19.7	7.3	0.41		
12:0	1.25	6.70	300	19.6	6.5	0.45		
8								
9								
					ь			. =
								-
								_ =
	7							
·								
		•						
Sample Identification	: <u>MW-11</u>					GROUNDV	VATER SAMPLE C	ONTAINERS
					Date	Time	Sample Container	Preservative
Weather Conditions I	Ouring Sampling:	cloudy and	i warm	···	12/4/02	12:10	1L amber	none
	3 5						40 mL septa vials	HCl
Comments: _Sample	s were relinquish	ed directly	to Bonner Laborator	ry				
								
chure:		Ø D-4	11/17/10					l

APPENDIX D

LABORATORY ANALYTICAL REPORTS

Mississippi State Chemical Laboratory

DR. KEVIN L. ARMBRUST State Chemist

Results are presented for the analysis of dioxathion in four well water samples. The only previous experience the laboratory has had with this compound was to perform experiments to qualitatively identify its structural isomers on two occasions. The compounds were characterized by their UV and IR spectra, and were chromatographed both by liquid and gas chromatography (LC and GC). Some infusion and LC experiments with standards were done. No quantitative methods were developed. An extraction method was chosen that is amenable to recovering residues of many pesticides. The samples were buffered and the pH adjusted to 8.0 followed by three extractions with methylene chloride. The extracts were combined and then exchanged into acetonitrile containing internal standard for analysis by HPLC/UV and HPLC/MS. Sample extracts were maintained at 4°C.

The UV and MS data were taken simultaneously from the same injections of samples. The instrument used was a micromass Quattro Micro. The analytical column was an Alltech Altima C-18 (5u), 4.6mm X 250mm and maintained at 35°C. The mobile phase was 75:25 acetonitrile:water, isocratic at 1.0 ml/min. Two UV wavelengths were monitored for the entire run, but residues were quantitated from the 254 nm data for the internal standard and for dioxenethion. Concentrations of cis- and trans-dioxathion were determined from the 200 nm data.

ples were introduced into the MS by atmospheric pressure chemical ionization at 300°C. The flow rate for the sullizing gas was 400 L/hr. The ion chosen for quantitation was m/z 270.

Results and quantitation levels are reported for samples based on a signal-to-noise ratio of 5:1 for both detection bechniques.

HPLC/UV RESULTS

MSCL No.	26,523	26,524	26,525	26,526A	26,526B	Laboratory Blank	Lower Level of
Sample ID	MW-1	MW-5 MW-5 Duplicate	Water	Quantitation			
Volume 1,000	1,000 ml	00 ml 1,000 ml	625 ml	1,000 ml	1,000 ml	1,000 ml	
#3			PA	RTS PER BILL	ON		
Cis- dioxathion	ND*	ND	ND	ND	ND	ND	1.0
Trans- dioxathion	1.5	ND	ND	10	4.3	ND	1.0
Dioxenethion	ND	25	ND	ND	ND	ND	0.30

*ND = None Detected

	Spiking Level	Laboratory Spiked Water	Percent Recovery	Spiked MW-5 Replicate	Average MW-5 Replicates	Net Level Found	Percent Net Recovery
	1		PA	RTS PER BILL	ON		
Cis- dioxathion	42	47	112	36	ND	36	85.7
Trans- dioxathion	42	43	102	40	7.2	33	78.6
Dioxenethion	53	69	130	87	ND	87	164

MSCL No.	26,523	26,524	26,525	26,526A	26,526B	Laboratory Blank	Lower Level of Quantitation	
Sample ID	MW-1	MW-1 MW-4		MW-5	MW-5 Duplicate	Water	Quantitation	
Volume	1,000 ml	1,000 ml	625 ml	1,000 ml	1,000 ml	1,000 ml		
			a PA	RTS PER BILL	ION			
Cis- dioxathion	ND	ND	ND	ND	ND	ND	0.21	
Trans- dioxathion	ND	ND	ND	0.92	1.0	ND	0.21	
Dioxenethion	ND	32	ND	ND	ND	ND	0.53	

	Spiking Level	Laboratory Spiked Water	Percent Recovery	Spiked MW-5 Replicate	Average MW-5 Replicates	Net Level Found	Percent Net Recovery
	9	V	PA	RTS PER BILL	ON		
Cis- dioxathion	42	64	152	45	ND	45	107
Trans- dioxathion	42	101	240	59	0.5	58	138
Dioxenethion	53	84	158	50	ND	50	94.3

YOUR COMPANY ADDRESS:	6/3 74		20 S	3 .			ONNER 270 e: (601)-26)3 Oak (Grove Ro	ad, Hatties	sburg, MS 3	39402	~ <u>~</u>	Tour Work
NAME OF PERSON TO CONTACT: CONTACT PERSON'S PHONE:	(1. 4 95 - 3	-					PARAMET			SIS				ORATORY USE
CONTACT PERSON'S EMAIL: CLIENT PROJECT NO.	CLIENT P.O.#		CLIENT PROJ	ECT NUMBER	3	- F					NUMBER OF CONTAINERS	PRESERVATION	P	roject Number
	ESCRIPTION		DATE	TIME	MATRIX			-				<u> </u>		File ID
1 Mw.1			MINICZ	113/1	L . 9 6 , 1	X					2	46	ВТ	
2 MW-4	=		14/6/67	1300	Ligar	X					2	1.	ВТ	
3 A A		-	segis I. z	1305	E good	~					0	남 사람	ВТ	
4 MW. 5 N	(10M cl				Ligaria	×			L L		6	40	ВТ	
5		- 2											ВТ	3
6							-						ВТ	
7		¥							15	Į ir			ВТ	
8				4.	E					1	9		ВТ	The state of the s
								- L,						
9									52				BT	
10				8		7),							BT	
SAMPLÉ COLLECTOR/RELINQUISH	IED BY: DATE	III		VED BY:		RELINQU	SHED BY:				DATE	TI	ME RECE	IVED BY:
METHOD OF SHIPMENT (If Any) FLOCY Aichill 2 8369 16	20 FI		QUISHED BY:	25	si.	DATE	T	IME .	RECEIV	ED FOR B	ATCO BY:	II	1	DATE/TIME
REMARKS:		1	14			IF SAMPL	OUEST BATO E IS DETER OF \$30.00 F	RMINED	TO BE H	AZARDOUS	(Signatu S, A MINJML	ire) IM ADDI		REVISION NO 1.2 03/22/01

2703 Oak Grove Road, Hattiesburg, MS 39402 Phone: (601) 264-2854 Fax: (601) 268-7084

CASE NARRATIVE: Hercules

<u>Semi-volatiles(BNA analysis)</u>

Samples were collected on December 4th and 5th from Hercules in Hattiesburg, MS. They were received at BATCO on December 5, 2002 and included monitoring wells 7, 8, 9, 10, and 11. A duplicate sample, a matrix spike/matrix spike duplicate, and a rinsate blank were also collected for BNA analysis.

Samples were extracted on December 10, 2002 according to EPA SW-846 method 3510C and analyzed according to EPA SW-846 method 8270C on December 11, 2002. No complications were observed during the extraction process or in the analysis of the samples.

No compounds listed in method 8270 were found in the samples except for 4-methylphenol, which was observed in BT80874 and the duplicate sample. The concentration of 4-methylphenol in BT80874 was 13.16 ppb and the concentration in the duplicate sample was 12.76 ppb.

A DFTPP standard was run on the GC/MS to ensure the machine was functioning properly. A six-point curve was also installed prior to the injection of the Hercules samples. The concentrations of the curve range from 10 ppm to 100 ppm. The percent RSD for all compounds in the curve was below 15%. Also, calibration verifications were run during the sequence for QA/QC purposes. Both the DFTPP standard and the calibration verifications passed. Also, all SPCC and CCC compounds passed according to method 8270C.

Authorized by:

2703 Oak Grove Road, Hattiesburg, MS 39402 Phone: (601) 264-2854 Fax: (601) 268-7084

CASE NARRATIVE: Hercules, Hattiesburg MS.

Volatile Organic Analyses:

Samples were collected on October 14, 2002 from Hercules in Hattiesburg MS. They were received at BATCO on October 15, 2002 and included monitoring wells 5 and 6. A trip blank was also collected for volatile organic analyses.

Samples were analyzed for volatile organic compounds, VOC's, utilizing a 5890 Series II Hewlett Packard Gas Chromatograph (GC), and a Perkin-Elmer Ion Trap Detector. These samples were run within the fourteen-day holding time window according to EPA SW846 Method 8260B, which began on October 27, 2002. All QA/QC criteria were with in the limits as set forth in EPA SW846 Method 8260B.

No compounds listed on the target analyte list for EPA SW846 Method 8260B were found in the samples collected from Hercules in monitoring wells 5 and 6. The trip blank collected also contained any of the said compounds or showed signs of co-eluting interferences.

A BFB standard was run on the HP-5890 GC to verify the detector, Ion Trap Detector, was tuned and properly functional. A five point calibration curve was obtained from dilutions of a working standard, 8260 calibration mix, which proved to pass linearity in accordance to EPA Method 8260B. Initial and continuing calibration verifications were acquired, analyzed, and passed during the sequence of the sample run. All Quality Assurance and Control measures were met in accordance to Method 8260B.

Authorized by:

Table 1. Continued

Table 1. Continu	eu				
Compound	MW-4	MW-8	MW-9	MW-11	Duplicat
					е
1,3-dichlorobenzene	ND	3.75 ppb	ND	ND	ND
1,4-dichlorobenzene	ND	3.80 ppb	ND	ND	ND
1,2-dichloroethane	ND	20.0 ppb	ND	3.11 ppb	ND
Cis-1,2-dichloroethene	ND	19.0 ppb	ND	ND	ND
Ethyl benzene	ND	55.6 ppb	ND	ND	ND
Isopropylbenzene	1.26 ppb	4.60 ppb	2.48 ppb	ND	1.01ppb
p-isopropyltoluene	ND	23.9 ppb	ND	ND	ND
Methylene chloride	ND	26.1 ppb	ND	ND	ND
Naphthalene	5.38 ppb	9.14 ppb	ND	ND	7.34ppb
Tetrachloroethene	ND	8.51 ppb	ND	ND	ND
1,2,3-trichlorobenzene	1.81 ppb	2.55 ppb	ND	ND	2.73ppb
1,2,4-trichlorobenzene	ND	2.86 ppb	ND	ND ND	2.17ppb
1,2,4-trimethylbenzene	ND	1.81 ppb	ND	ND	ND
Xylenes (total)	ND	79.0 ppb	ND	ND	ND
Vinyl chloride	ND	1.62 ppb	ND	ND	ND

A BFB standard was run on the HP-5890 GC to verify the detector, Ion Trap Detector, was tuned and properly functional. A five point calibration curve was obtained from dilutions of a working standard, 8260 calibration mix, which proved to pass linearity in accordance to EPA Method 8260B. Initial and continuing calibration verifications were acquired, analyzed, and passed during the sequence of the sample run. All Quality Assurance and Control measures were met in accordance to Method 8260B.

Authorized by:

2703 Oak Grove Road, Hattiesburg, MS 39402 Phone: (601) 264-2854 Fax: (601) 268-7084

CASE NARRATIVE: Hercules, Hattiesburg MS.

Volatile Organic Analyses:

Samples were collected on December 4th and 5th, 2002 from Hercules in Hattiesburg MS. They were received at BATCO on December 5, 2002 and included monitoring wells 4, 7, 8, 9, 10, and 11. A duplicate sample, a matrix spike, matrix spike duplicate, a rinsate blank, and two trip blanks were also collected for volatile organic analyses.

Samples were analyzed for volatile organic compounds, VOC's, utilizing a 5890 Series II Hewlett Packard Gas Chromatograph (GC), and a Perkin-Elmer Ion Trap Detector. These samples were run within the fourteen-day holding time window according to EPA SW846 Method 8260B, which began on December 13, 2002. All QA/QC criteria were with in the limits as set forth in EPA SW846 Method 8260B.

Monitoring wells 4, 8, 9, and 11 and the sample duplicate were found to contain volatile organic compounds listed on the target analyte list, with monitoring well 8 having the highest levels of VOC compounds. Table 1 of this narrative lists the compounds observed from the said samples.

Table 1. Concentration Levels of Volatile Compounds for Samples Tested.

			1		
Compound	MW-4	MW-8	MW-9	MW-11	Duplicat
					е
1,1-Dichloroethene	ND	17.0 ppb	5.92 ppb	ND	ND
Benzene	14.0 ppb	6900 ppb	9.15 ppb	114 ppb	11.2 ppb
Trichloroethene	ND	5.80 ppb	ND	ND	ND
Toluene	ND	28.0 ppb	ND	ND	ND
Chlorobenzene	1.81 ppb	290 ppb	ND	ND	1.14 ppb
Bromodichloromethan	ND	6.84 ppb	ND	ND	ND
е		1		<u> </u>	
Bromomethane	ND	4.07 ppb	ND	ND	ND
Carbon Tetrachloride	10.0 ppb	16,000 ppb	ND	ND	5.53 ppb
Chloroethan e	63.0 ppb	66.0 ppb	ND	ND	64.8 ppb
Chloroform	ND	1800 ppb	ND	ND	ND
Chloromethane	1.72 ppb	39.2 ppb	ND	ND	1.19 ppb
Dibromochloromethan e	ND	4.45 ppb	ND	ND	ND
1,2-dichlorobenzene	ND	2.71 ppb	ND	ND	ND

2703 Oak Grove Road, Hattiesburg, MS 39402 Phone: (601) 264-2854 Fax: (601) 268-7084

CASE NARRATIVE: Hercules, Hattiesburg MS.

Semi-volatiles (Dioxathion Analysis)

Samples were collected and received by BATCO on October 14, 2002. A total of 6 water samples were received and analyzed for the presence of Dioxathion. These samples included monitoring wells 1,4, and 5 plus a rinsate and two matrix spikes. The sequence run included a Lab Control Sample, Method Blank, and a sample duplicate, as well as the fore mentioned samples.

A Dioxathion Calibration working standard was prepared from the individual Dioxenethion, Dioxathion (cis) and Dioxathion (trans) isomers obtained from Sigma-Aldrich Chemicals. Dilutions were made from the working standard to obtain a sixpoint curve (0.4 to 10 ppm) utilizing a HP-1090 HPLC and HP-Chem software. A Diode-Array Detector, DAD, was used to obtain the data. Table 1 illustrates the retention times, linearity correlation coefficient and the MDL's.

Table 1-Calibration Data

Dioxathion Isomer	Retention Times @ 210 nm (min)	Calibration of Linearity Correlation Coefficient	Method Detection Limits (ppb)
Dioxenethion	4.510	0.9996	0.220
Dioxathion (cis)	8.580	0.9995	0.480
Dioxathion (trans)	9.216	0.9978	0.300

Samples were extracted on 10/21/02 using an EPA SW846 Method 3520C for Continuous Liquid-Liquid separatory funnel extractions. Methylene chloride was the extracting solvent and exchanged to acetonitrile at 1-mL final volume. The samples were then analyzed on10/22/02, using the HP-1090 HPLC under the same method as the calibration. Calibration verifications were analyzed before and after the sample batch. All quality assurance criteria based on guidelines given in SW-846 Method 8000B was met. Table 2 illustrates the raw data obtained in this analysis.

Table 2-Raw Data

Lab ID	Description	Dioxenethion	Dioxathion (cis)	Dioxathion(trans)
BT80054	Monitor Well #1	ND	ND	ND
BT80055	Monitor Well #4	19.2ppb	4.80ppb	1.61ppb
BT80055D	Monitor Well #4 Dup	20.7ppb	4.71ppb	1.75ppb
BT80056	Rinsate	ND -	ND	ND
BT80057	Monitor Well #5	5.09ppb	1.70ppb	1.44ppb

Authorized by:____

2703 Oak Grove Road, Hattiesburg, MS 39402 Phone: (601) 264-2854 Fax: (601) 268-7084

CASE NARRATIVE: Hercules

<u>Semi-volatiles(BNA analysis)</u>

Samples were collected on October 14, 2002 from Hercules in Hattiesburg, MS. They were received at BATCO on October 15, 2002 and included monitoring wells 5 and 6. A matrix spike and matrix spike duplicate were also collected for BNA analysis.

Samples were extracted on October 21, 2002 at 0900 according to EPA SW-846 method 3510C and analyzed according to EPA SW-846 method 8270C on November 6, 2002. No complications were observed during the extraction process or in the analysis of the samples.

No compounds listed in method 8270 were found in either of the monitoring wells. Lab control and MS/MSD recoveries for surrogate and target compounds were acceptable according to in-house criteria set by EPA SW-846 Method 8000B, section 8.7.

A DFTPP standard was run on the GC/MS to ensure the machine was functioning properly. A six-point curve was also installed prior to the injection of the Hercules samples. The concentrations of the curve range from 10 ppm to 100 ppm. The percent RSD for all compounds in the curve was below 15%. Also, calibration verifications were run during the sequence for QA/QC purposes. Both the DFTPP standard and the calibration verifications passed. Also, all SPCC and CCC compounds passed according to method 8270C.

Authorized by:

BONNER ANALYTICAL TESTING COMPANY

2703 OAK GROVE ROAD, HATTIESBURG, MS 39402 PHONE: (601) 264-2854 FAX: (601) 268-7084

CASE NARRATIVE: Hercules, Hattiesburg MS.

Semi-volatiles (Dioxathion Analysis)

Samples were collected and received by BATCO on December 4 and December 5, 2002. A total of 6 water samples were collected on December 4 and a total of 9 samples were collected on December 5, 20002. These samples included monitoring wells 1-11, a duplicate sample, plus a rinsate blank and two matrix spikes for a total of 15 samples. The sequence run included a Laboratory Control Sample, and a Method Blank as quality assurance measures, as well as the fore mentioned samples.

A Dioxathion Calibration working standard was prepared from the individual Dioxenethion, Dioxathion (cis) and Dioxathion (trans) isomers obtained from Sigma-Aldrich Chemicals. Dilutions were made from the working standard to obtain a six-point curve (0.4 to 10 ppm) utilizing a HP-1090 HPLC and HP-Chem software. A Diode-Array Detector, DAD, was used to obtain the data. Table 1 illustrates the retention times, linearity correlation coefficient and the MDL's.

Table 1-Calibration Data

Dioxathion Isomer	Retention Times @ 210 nm (min)	Calibration of Linearity Correlation Coefficient	Method Detection Limits (ppb)
Dioxenethion	4.434	0.9994	0.220
Dioxathion (cis)	8.375	0.9999	0.480
Dioxathion (trans)	9.033	0.9996	0.300

Samples were extracted on 12/11/02 using an EPA SW846 Method 3510C for Separatory Funnel Liquid-Liquid Extraction. Methylene chloride was the extracting solvent and exchanged to acetonitrile at 1-mL final volume. The samples were then analyzed on12/12/02, using the HP-1090 HPLC under the same method as the calibration. Calibration verifications were analyzed before and after the sample batch. All quality assurance criteria based on guidelines given in SW-846 Method 8000B was met. Table 2 illustrates the raw data obtained in this analysis.

Table 2-Raw Data

Lab ID	Description	Dioxenethion	Dioxathion	Dioxathion	Surrogate
			(cis)	(trans)	Recovery
BT80863	Monitor Well #1	ND	ND	ND	83.2%
BT80864	Monitor Well #11	50.3ppb	5.00ppb	ND	99.4%
BT80865	Monitor Well #3	ND	ND	ND	90.0%
BT80866	Monitor Well #2	ND	ND	ND	87.6%
BT80867	Monitor Well #10	ND	ND	ND	88.0%
BT80868	Monitor Well #7	9.57ppb	ND	ND	79.6%
BT80870	Monitor Well #9	5.90ppb	12.8ppb	ND	146%
BT80871	Monitor Well #4	12.9ppb	3.34ppb	ND	85.8%
BT80872	Monitor Well #5	ND	ND	ND	82.2%
BT80873	Monitor Well #6	1.12ppb	ND	ND	76.0%
BT80874	Monitor Well #8	94.3ppb	ND	53.9ppb	409%
BT80875	Monitor Well #8 MS*	98.9ppb	5.35ppb	58.4ppb	414%
BT80876	Monitor Well #8 MSD*	98.5ppb	5.05ppb	57.9ppb	386%
BT80877	Rinsate Blank	ND	ND	ND	89.4%
BT80879	Sample Duplicate	12.1ppb	3.23ppb	ND	79.2%

All samples were spiked with naphthalene (surrogate) prior to extraction. The surrogate was added to follow the extraction efficiency of the method. Two samples MW-8 and MW-9 had very high surrogate recoveries, 146% and 409%, respectively. These two samples were analyzed by GC/MS to confirm that the recoveries were due to naphthalene and not another interfering compound. Future

analyses of these wells should include an alternate surrogate compound that does not co-elute with other peaks in the sample.

Authorized by:

	YOUR COMPANY ADDRESS:	Hercules 613744 5+ Hattiesburgs	ms 3.	9 401				270		ve Road, 1 x: (601)-2	fattiesbur 68-7084	rg, MS 3 Email:	9402	PANY Shatco.com
£:	NAME OF PERSON TO CONTACT:	Charles Jo	ıdan				PA	RAMETI	RS FOR	W.BAT	Co.cc	JEMI 		LABORATORY USE
	CONTACT PERSON'S PHONE: CONTACT PERSON'S EMAIL:	F601) 936-4440	FAX:				**	-				ITAINERS		Turn Around Time
∯ <u>···</u>		GLIENT P.O.#	CLIENT PRO	JECT NUMBE		Dioxall	Sem! - Va	VoA				NUMBER OF CON	PRESERVATION	Project Number CO5456
	SAMPLE DE	SCAIPTION	DATE	TIME	MATRIX	 . 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				-	ļ .	B.	File ID
~	1 MW-1		[2/4/02		Lieurd	X	1	•				2		BT 80863
!X			12/4/62		Liqued	1	+	x			1	1		BT80864
:	3MW-3	· · · · · · · · · · · · · · · · · · ·	12/4/02	1500	Liquid	X						2		BT80865
!	4MW-2		12/4/02		Liquid	×						2		BT80866
14	5MW-10	•	12/4/02	1640	Liquid	7	' ~	`~				7		BT80867
	6MW-7		12/4/62	11/21	Liquid	X	X	'X				7		BT&0868
: 10b.	Trip Blank		12/3/02	1.	liquid.			'Y	-	el		3		BT POSIA
]	8				+									BT
ز - ``ا	9									-				ВТ
<u>.</u>	10				 		L			 				BT
F 1	SAMPLE COLLECTOR/RELINQUISHE	O BY: DATE	TIME RECEI	VED BY:		RELING	DUISHE	DBY:		:	DA	ne	<u></u>	AE RECEIVED BY:
5	Ja [] 20	12402 1	7:20 2	Zem	Don.	1	20	em	0	mæ	1215	102	040	
1000	METHOD OF SHIPMENT (II ANY)	REL	inquished by:			DA	re	Tim	REC	EIVED FO	H BATCO	BY)-	DATE/TIME 12-5-02
	REMARKS:				· · · · · · · · · · · · · · · · · · ·	☐ R	EQUEST	BATCO	TO DISPO	SE OF ALL				
						IF SAMI	PLE IS D E OF \$3	ETERMI 0.00 PEI	NED TO BE	HAZARO WILL BE A	DUS. A M	ignature) INIMUM)	ADDITIO	ONAL REVISION NO 1.2

YOUR COMPANY ADDRESS:	Hercules 6/3 7+h Hattresbur	54	39	401				27	03 Oal 64-285	ALYTI k Grove F 4 Fax: (Road, Ha 601)-26	ettiesbu 8-7084	rg, MS 3 Email:	9402	ANY bateo.com	TQ SG	
MAME OF PERSON TO CONTACT:	Charles Jo	rd9n				-	F	ARAMET		OR ANA						LABORATOR	Y USE
CONTACT PERSON'S PHONE: CONTACT PERSON'S EMAIL:		{	FAX:				4						CTAINERS			Turen Around	
CLIENT PROJECT NO.	CLIENT PO#	- CI	JENT PRO	JECT NUMBE	A	1	7 5	2	<u> </u>				 О Н	RATION	- 6	Preoject Nun	ioer /
CAMPI E D	ESCRIPTION					ئے ا		2 1					NUMBER	HESE	()	254	YC'
	ESCRIPTION	ia	DATE	TIME	MATRIX		1	' ,		+	 	-	-			File ID	
1 MW-9			15/02	 	Liquid	X	X	×	-	4	ļ	ļ	1	<u> </u>	BTX	2516)
2 MW-4		12)	15/02	1315	Logurd			X			_		5		BT&	2871	
3MW-5		12,	15/02	1420	Liquin	X					1		2		BTS?	0812	_
4MN-6		12,	15/02	1930	Liguid	×							2.		вт	X17	3
5mm-8		l l	15/02	1610 200	Lizuid	×	·×	×					フ		BT 🐼	75/1	13.1
6 M 5			Stoz	1610		7	+	٠ <u>+</u>	-				7		DT C	101C	13.4
7M5D				1610	Figurd	· ~	· *	1					フ		21 (X)	10 IV	
	21				Liquid		· ·	1		-		· · -			BI 7	10 12 20 0	<u> </u>
BRinsatz	Dian K	12/	1122	1547	Liquin			7			-		7		BTS	75.1	1
9 Trip Blank		1 .	-	1	figurel.		- 4	X				·	3		BT 🛭	1579	<u>}</u>
10 Dup-					LEVICE		X	X	•				\$7		BTK	SOP	7 12.7
SAMPLE COLLECTOARELINOUISH Chard V. L	ED BY: DATE	7 1658		VEO BY:	Som-	RELING	OUSHE	O BY:				<u>D</u> A	TE .	"TIM	E RE	CEIVED BY:	
METHOD OF SHIPMENY (IT ATIV)		AELINOUISI	HED BY:	7		DA	ΤE	TRM	Æ	RECEI	ED FOA	BATCO	R	ul	<u>, </u>	DAT 12-	E/TIME
REMARKS: XX 5 & mi-	Vog Dup c	allected	ने वर्न	.K10						ispose (15	ionali ico	1	· · · · · · · · · · · · · · · · · · ·	REVIG	ON NO 1.2
						IF SAMI CHARG	PLE IS	OETERM 30.00 PE	INED A SAN	TO BE HA	ZARDOI L BE AS	US, A M	MÚMIM	ADDITIC	NAL	4	/22/01