

Tox21 Targeted Testing

Mike DeVito, Ph.D.
National Institute of Environmental
Health Sciences
Division of the National Toxicology Program
December 15, 2011

Goals of Targeted Testing Work Group

- Evaluate the qualitative and quantitative relationships between in vitro HTS assays and predictive models to in vivo biological activity and toxicity.
 - Building bridges between HTS and risk management decisions
 - Presently, the only predictive models built on Tox21 data come from ToxCast.

The Tox21 Screening Timeline

Tox21 - a "Community Resource" Project

Agency Points of Contact

Christopher Austin, M.D. (NCGC) Thomas Colatsky, Ph.D. (FDA) Robert Kavlock, Ph.D. (EPA) Raymond Tice, Ph.D. (NTP)

Assays & Pathways Working Group

Co-Chairs

Kevin Gaido, Ph.D. (FDA) Keith Houck, Ph.D. (EPA) Kristine Witt, M.S. (NTP) Menghang Xia, Ph.D. (NCGC)

- Identify toxicity pathways & corresponding assays
- Review nominated assays
- Prioritize assays for qHTS

Chemical Selection Working Group

Co-Chairs

William Leister, Ph.D. (NCGC) Donna Mendrick, Ph.D. (FDA) Ann Richard, Ph.D. (EPA) Cynthia Smith, Ph.D. (NTP)

- Establish a 10K DMSO soluble compound library for qHTS
- Establish QC procedures
- Establish libraries of mixtures and aqueous soluble compounds for qHTS

Informatics Working Group

Co-Chairs

Ruili Huang, Ph.D. (NCGC) Richard Judson, Ph.D. (EPA) Jennifer Fostel, Ph.D. (NIEHS) Weida Tong, Ph.D. (FDA)

- Characterize assay output and evaluate assay performance
- Develop prioritization schemes and prediction models
- Make all data publicly accessible via CEBS, PubChem, ACToR

Targeted Testing Working Group

Co-Chairs

Kevin Crofton, Ph.D. (EPA) Michael DeVito, Ph.D. (NTP) David Gerhold, Ph.D. (NCGC) James Weaver, Ph.D. (FDA)

- Evaluate the relevance of prioritization schemes and prediction models
- Prioritize substances for more complex testing
- Extrapolate in vitro

Projects ongoing or planned

- Liver Cancer Model
- Reproductive Toxicity model
- Obesity/Diabetes

Liver Targeted Testing Study

- NCCT has developed a statistical model that predicts rodent liver proliferative lesions and rat liver tumors based on the ToxCast Phase I Screening data (Judson et al 2010).
 - Model developed using multivariate analysis based on a subset of 21 ToxCast chemicals with positive rat liver tumor findings.
 - Model was applied to the ToxCast data set

Goals of Liver Targeted Testing Project

- Test for in vivo presence of activity seen in vitro
 - Sensitivity, specificity
 - Dose-response

 Confirm that previously untested compounds show predicted in vivo activity

 See if Reverse Toxicokinetics (RTK) approach gives reasonable estimate of dose for in vitro to in vivo extrapolation

Hypothesis

• Hypothesis 1:

-In vitro activation of PPARγ along with one or more of the following pathways CCL2 / AR / OS/PPARα is highly predictive of the corresponding activation in vivo, at some dose level

• Hypothesis 2:

—Only at doses for which at least 2 of these pathways or processes are activated will we see liver tumors in the 2-year rat study.

Assays Associated with Rat Liver Tumors

Assay Name	Partner or Contractor	Assay type	Cell type	Pathway
ATA_PPARγ_TRANS	Attagene	Transactivation Reporter gene	HepG2	PPARγ
ATA_PPARα_TRANS	Attagene	Transactivation Reporter gene	HepG2	PPARα
NCGC_AR- Antagonist	NCGC	Reporter gene	НЕК293Н	Androgen Receptor
CLZD_HMGCS2_48	CellzDirect/ Invitrogen	RNAse Protection Assay	Primary Human Hepatocytes	PPARα
BSK_SM3C_MCP1_ up	BioSeek	Elisa	HUVEC, Primary Human vascular smooth muscle	Cytokine
CLM_Oxidative Stress_24hr	Cellumin	Flourescent	HepG2	H2AFX

ToxCast Markers

In vivo Endpoints	In vitro Assay	Justification
Affymetrix GeneChip Rat RAE230 2.0	PPARγ / CCL2 / AR / OS/PPARα	The in vitro assays are thought to be markers for pathway activation and the arrays are the most efficient method to assay all of these pathways
IHC for phosphor-gamma-H2AX	Cellumin Oxidative stress assay	The in vitro assay is an imaging assay which measures the amount of phosphorylated gamma H2AX. Thus a corresponding assay would be to measure phosphorylated H2AX protein. This method has been used in a variety of studies (ref)
Gene Tox Comet Assay on liver tissue (traditional and oxidative damage specific comet assay)	Cellumin Oxidative stress assay	Since the cellumin oxidative stress assay is really a measure of DNA repair, the design team thought it would be of value to reassess the genetic toxicity of these chemicals with newer methods.
RT-PCR for HMG-CoA synthase (HMGCS2)	CellzDirect hepatocyte assay PPARα	The PPARα assay was the induction of HMGCS2 in human hepatocytes after 48 hour exposure to the test chemical. This is a direct correlate for that assay in vivo.
RT-PCR for hepatic MCAD and PEPCK mRNA	PPARγ - transactivation assay	These two genes are directly regulated by PPAR and induction of these genes is a close correspondence to the in vitro assay for PPARγ activation
RT-PCR for CCL2	CCL2 mRNA induction	This is a direct correspondence to the in vitro assay.
Clinical Chemistry on blood for glucose, cholesterol and triglycerides, HDL, LDL, ALT, SDH	PPARγ - transactivation assay	PPAR _γ agonists alter glucose and lipid concentrations in rodent serum in short-term assays.

Additional Assays

- Serum Markers
 - Cholesterol, triglycerides, HDL, LDL
 - T4 and T3
- miRNA Arrays
 - Carole Yauk at Health Canada

Tiered Study Design

Tier 1 Pilot Study

 At the highest dose tested in a bioassay, do we see in vivo signatures consistent with in vitro results. Evaluate numerous chemicals at one dose and time point.

• Tier 2 In vivo time course and dose response studies.

- Dependent upon results of tier 1
- More limited number of chemicals
- Tissue dosimetry added as an endpoint Tissue dosimetry

Tier 3 Chemicals without 2-year bioassays

- Dependent upon results of Tier 2
- Prior to start of Tier 3, study design presented to PRC

NOTE: Possible that study does not progress beyond Tier 1 based on results

 All negative results from Tier 1 (no change in response to chemical exposures)

Tier 1 Pilot Screening Project

- Iterative process starting with 12 chemicals and maybe as high as 40.
- Single daily exposure by oral gavage to highest dose used in the 2-yr bioassay for 4 days. Sacrifice 4 hrs after last dose.
- Use strain and gender of rat that has positive liver tumor finding
- Measure
 - Body and liver weights at start and T-sac
 - Blood collected for
 - Serum chemistry for liver toxicity markers
 - Serum Thyroid hormones
 - Liver collected for
 - Immunohistochemistry
 - ToxCast markers

Initial Chemicals

	Tumor F	Results	ToxCast Results						
CHEMICAL	Rat Liver Tumors (% at high dose)	High Dose (mg/kg)**	PPARγ	Ox Stress	AR	HMGCS2	CCL2		
Acetoclor	+ (9)	250	+	+	+	+	-		
Dimethenamid	+ (12)	109	+	+	+	-	-		
Lactofen	+ (9)	79	+	-	+	+	-		
PFOA	+ (13)	300	+	-	-	+	-		
Simazine	+ (5)	63	+	-	-	-	+		
2,5- Pyridinedicarboxylic acid di-n-propyl ester (2,5-PCADPE)	+ (17)	1000	+	-	-	-	+		
PFOS	+ (12)	100	+	-	-	-	-		
Carbaryl	+ (2.9)	100	+	+	-	-	-		
Triclosan	-	1000	-	-	-	-	-		
fludioxonil	-	121	+	+	-	-	-		
Bisphenol A	-	1000	+	-	+	-	-		
Flusilazole	-	13	+	-	+	-	-		

^{** -} The exposures in the bioassay were dietary and exposures are estimated

Stage 1 Chemicals

Chemicals	Rat Liver Tumors (% at high dose)	High Dose (mg/kg)	PPARγ	PPARά	Ox Stress	AR	HMGCS2	CCL2
PFOA	+ (13%)	300	+	+	-	-	+	-
2,5- PCADPE	+ (17%)	1000	+	-	-	-	-	+
Carbaryl	+ (3%)	100	+	-	+	-	-	-
Bisphenol A	-	1000	+	-	-	+	-	-

mRNA changes using PCR assays

Total transcriptional changes

Androgen receptor signaling

PPAR Gamma genes

Normalized Intensity Values

Gene
Probe Set ID Symbol
1367689_a_
at Cd36
1367702_at Acadm
1368271_a_
at Fabp4
1368669_at Ucp2
1372264_at Pck1
1386901_at Cd36

Nrf2 responsive genes

Normalized Intensity Values

Response to Oxidative stress

Response to DNA Damage

Inflammatory response

Ccl2

miRNA

- No effect for 2, 5-Pyridinedicarboxylic acid or carbaryl vs Control
- BPA 1.26 fold increase in miR-193
- PFOA − 26 miRNA changed by 1.3 − 2.9 fold.

Assays still ongoing

- Gene Arrays
- IHC for H2AX
- Elisa for serum CCL2

Initial Chemicals Tested in Male SD rats

	Tumor	Results		ToxCast Results				
CHEMICAL	Rat Liver Tumors (% at high dose)	High Dose (mg/kg)**	PPARγ	PPARa	Ox Stress	AR	HMGCS2	CCL2
PFOA	+ (13)	300	++	++	-	-	++	- +
2,5- Pyridinedicarboxylic acid di-n-propyl ester (2,5-PCADPE)	+ (17)	1000	+-		-	-		+?
Carbaryl	+ (2.9)	100	+ -		+-	-		
Bisphenol A	-	1000	+	- -	-	+		

Stage 2 Chemicals

Chemicals	Rat Liver Tumors (% at high dose)	High Dose (mg/kg)	PPARγ	PPARά	Ox Stress	AR	HMGCS2	CCL2
Acetoclor	+ (9%)	250	+	-	+	+	+	-
Simazine	+ (12%)	109	+	+	-	-	+	-
Triclosan	-	1000	-	-	-	-	_	-
Flusilazole	-	13	+	-	-	+	-	-
Nn-DMPT	Not run in ToxCast; NTP chemical of interest.							

In life is done, samples are being processed

Liver Targeted Testing Team

NTP

- Mike DeVito
- Scott Auerbach
- Alex Merrick
- Kristine Witt
- Dave Marlarkey

EPA

- Richard Judson
- Imran Shah
- Chris Corton

NCGC

Dave Gerhold

ReproductiveToxicity Model Assessment

- Had initial meeting
- Goal is to have study design presented to NTP Project Review Committee by Feb 2012.

Reproductive Toxicity Team

NTP

- Mike DeVito
- Paul Foster
- Chad Blystone
- Cynthia Rider
- Barry McIntyre

EPA

- Matt Martin
- Richard Judson
- Thomas Knudsen
- David Reif
- David Dix
- Kevin Crofton

NCGC

Dave Gerhold

NTP Workshop:

Role of Environmental Chemicals in the Development of Diabetes and Obesity

January 11-13, 2011

Michael Gallo, Workshop Chair

Dept. of Environmental & Occupational Health, University of Medicine & Dentistry of New Jersey

Kristina Thayer, Director NTP Office of Health
Assessment and Translation

http://cerhr.niehs.nih.gov/evals/diabetesobesity/