RASL-Seq: A Gene Expression Platform to Identify Toxicity Mechanisms and Adaptive Responses

DAVID GERHOLD

NIH - NCATS

20 MARCH, 2014

EPA'S COMMUNITIES OF PRACTICE

NCATS

Summary

- RASL-Seq Selected, Results
- RASL-Seq platform works well
- Industrialization proceeding

- Selecting 1,400 genes to represent the genome(s)
- Goal: HT Gene Expression Core Facility
- How to apply it? Elucidate modes and mechanisms of toxicities or AEs. 'Secondary screening'
- How will we use these results for risk assessment?

Goals

- A technology that will quantify mRNA responses in hundreds-thousands of genes
- Throughput > Thousands of samples to address: many compounds x multiple cell lines x multiple concentrations x multiple time points
- >> Gene Expression Core Facility at NCATS
- Low variance, intra- & inter-experiment, will enable data interpretation and construction of a rich reference database
- Data analysis pipeline

Gerhold

RASL-Seq Schematic

NextGen sequence 1.5 x 108 molecules:

- Barcodes ID 384 samples,
- Ligated oligos ID & count 1,000 genes

RASL-Seq Characteristics

RASL-Seq has emerged from evaluation of six technologies based on:

- Multiplex: >1,000 genes/sample, and 384 samples/sequencing reaction
- Throughput: (384 samples/run x ~10 runs/week)
- **Economy**: roughly \$10.43/sample or \$4,000/384 sample-run, including NextGen sequencing
- Accuracy: uses 3 redundant assays/gene
- Reproducible: avoids chaotic cDNA synthesis step. Intraexperiment $R^2 \ge 0.99$
- **Gene-Specific**: % mispairing events (after removing 5 promiscuous assays, of 360) is 0.26%

RASL-Seq invented by Xiang-Dong Fu Lab, Stanford U. Li H et al. PNAS 2012;109:4609-4614

Collaboration between BioSpyder (J. Yeakley & J. McComb) and NCATS to optimize RASL-Seq. Includes SBIR grant from NCATS.

Gerhold

RASL Product Sequencing

3 RASL-Seq assays/gene vary widely in # counts

- ⇒ Remove 'greedy' assays
- ⇒ ignore assays that give low counts

RASL-Seq Progress March 2014

1st Gene set 120 genes (x 3 assays/gene) =360 assays. 13 'greedy' assays removed, and 5 non-specific (mispairing) assays removed.

- All steps performed by hand, using 384 samples, in microplates.
- Biomek FX robot installed 18 March 2014
- Good yields from PCR step in all five 'runs'
- 1-of-3 sequencing primers has been problematic. Two datasets now have resolved that issue for MiSeq instrument (24 or 50 samples ⇒ 11 million high-quality seq). Excellent data!
- Testing on HiSeq2000 instrument set for April 2014. Expect 150 million sequences/lane. 150 million sequences/384 samples = 390,000 sequences/sample.

2nd Gene set: 320 genes (x 3 assays/gene) 960 assays being designed 3rd Gene set: ~1,000 genes being selected by working group.

RASL-Seq Results

50-of-384 samples > 5 million reads on MiSeq

Gerhold

9

RASL-Seq Describes Differential Expression in Liver vs Kidney for First 120 Genes

Data courtesy of J. Yeakley, BioSpyder, 14 March 2014

Intra-Experiment Variability is Low in RASL-Seq

The twelve replicate pairwise R² values ranged from 0.990 to 0.995

Data courtesy of J. Yeakley, BioSpyder 14 March 2014

Redundant RASL-Seq Assays Give Similar T/C Ratios

Tox21 Gene Set Selection

Select <u>core set of 1000 genes</u> to assay on all cell lines & samples.

Working Group established to select ~1,000 genes for humans...then other species. Led by Rick Paules

- to: identify ~ 1000 genes that will optimally represent the gene expression responses of the entire genome to diverse chemical and biological challenges.
- We reviewed costs. Selecting new genes and assays will cost ~\$90/gene

Typical RASL-Seq Application

Example:

- 60 compounds selected from primary mitochondrial membrane permeability screen Tox21
- Treat 3 models: (e.g. HepG2, LUHMES dopa-neurons, cardiomyocytes) x 2 concentrations x 2 time pts x 60 cpds = 720 treatments (2 x 384-well plates x 3 reps?).

Interpretation:

- Do cpds fall into groups that imply mechanisms?
- Do gene expression changes suggest mechanisms?
- Do cellular models react differently to same cpds?

Gerhold 14

Data Analysis & Interpretation

Data analysis pipeline:

- Filter to remove low quality sequences
- Deconvolute pooled sequences to 384 samples via <u>barcodes</u> for rows & columns
- Count matches to <u>target genes</u> (e.g. >45/50nt). Adapt NCATS extant pipeline for RNAseq data
- Perform statistical tests for significance for each assay (treated vs controls). Use median if 2-3 assays/gene?

John Braisted's scripts.
Can be automated

Data interpretation:

- Associate cpds that cause similar gene expression profiles. Does cpd profile resemble a reference perturbation profile?
 - > Implies similar mode or mechanism of toxicity.
- Do early-responding genes *describe* the mode, *e.g.* DNA repair genes or E.R. stress genes?
- Clarify hypotheses by referring to RNAseq baseline data for each cell line. *E.g.* Is the hypothesized receptor/transcription factor/pathway transcribed in these cells?
- Do cellular models react differently to same cpds?

How Would a Baseline RNAseq Dataset for Each Cell Line Inform RASL-Seq Data? Example:

Disease Cell Models General Phenotype Cell Models Pathway Informing Cell Models **1)** Ν**F**κ**B** 1) Cancer 1) Autophagy · Multiple Myeloma · HEK 293A line • Me-180 line Viability & Apoptosis 2) Mitochondrial Potential 2) STAT3 HEPG2 lin • Rhabdomyosarcoma and Neuroblastoma • Parkin line 3) DNA Damage/Repair Viability & Apoptosis 3) HIF1α • P53 HCT-116 line 2) Diabetes • ME-180 line • INS-1E pancreatic β-cells **4)** TNFα secretion 4) NRF2 • Insulin secretions in • THP-1 line • HEPG2 line 3) Neurodegenerative Diseases 5) ROS Induction/Mitigation **5)** AP1 · Hela line w/GFP-parkin • HEPG2 line • ME-180 line Parkin Transloc **6)** Type 1 interferon response 6) Estrogen Receptor • HEK293 line 4) Innate Immunity • *h*Fibroblast line • A549 line w/GFP-RSV 7) Lipid Droplet accumulation 7) Androgen Receptor RSV spread • 3TL1 line • HEK293 line • Hela line w/GFP-Vaccinia 8) CREB • Vaccinia spread • HEK293 line

Summary

- RASL-Seq Selected, Results
- RASL-Seq platform works well
- Industrialization proceeding
- Selecting 1,400 genes to represent the genome(s)
- Goal: HT Gene Expression Core Facility
- How to apply it? Elucidate modes and mechanisms of toxicities or AEs. 'Secondary screening'
- How will we use these results for risk assessment?

Collaborators

"Vieles ist bekannt, aber leider in verschiedenen Kopfen", W. Kollath ("much is known, but unfortunately in different heads")

<u>NCATS</u>

John Braisted

David Kuo

Pei-Hsuan Chu

David Gerhold

Anton Simeonov

<u>Tox21 – NTP & EPA</u>

Ray Tice

Rick Paules

BioSpyder Corp.

JoAnn Yeakley

Joel McComb

Bruce Seligmann

Manfred Boehm

Avram Walts

NHLBI Seq Core

Jun Zhu

Yan Luo

Poching Liu

