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General objective of research at CCL.:
integrative frameworks for exposure, dosimetry and toxicity that “translate” into
mathematical terms and subsequently into computational code the statement:

“Genetics loads the gun, but environment pulls the trigger”
Judith Stern, University of California at Davis

Aims: develop and apply mathematical/computational tools to:

» Characterize aggregate/cumulative exposures to environmental stressors
(by source, route, and pathway) for individuals and populations

* Interpret biomarkers of exposure and effect through biologically based
toxicokinetic and toxicodynamic models

... for any particular person, the risk of
developing environmentally caused
disease depends on many factors,
including how they are exposed to a
environment toxicant, the length and intensity of
the exposure, and the person's genetic
makeup...

paraphrased from the web site of the
American Cancer Society

behavior

“Integrative” consideration of environmental,
biological and behavioral factors is critical




Image in the center has been adapted from Science 26 May 2006: Vol. 312. no. 5777, p. 1162
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A general mathematical framework for environmental health risk analysis

must consider multiscale bionetwork dynamics
(spanning the genome, transcriptome, proteome, metabolome, cytome, physiome)
linked with the dynamics of environmental (“extragenomic™) stressor networks
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Image in the center has been adapted from Science 26 May 2006: Vol. 312. no. 5777, p. 1162

INHALATION

gaseous and
particulate air
pollutants;
bioaerosols;
radionuclides

liquids;
gases/vapors;
dust;

soil

DERMAL ABSORPTION

DIGESTION

dietary (food and
drinking water);
non-dietary (hand-
to-mouth)

pharmaceuticals and
illegal drugs

INJECTION




Analysis of exposures to environmental contaminants, and of subsequent doses and
effects is typically a complex multiscale problem in terms of both the
environmental

Continent, State, County Cell/Molecule

Example: Air Pollution

Tissue

7




Comparison of outdoor, indoor and personal air concentrations
RIOPA studies (Elizabeth, NJ; Houston, TX; and Los Angeles, CA):

Cumulative distributions of benzene measurements and “simple” predictions
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Comparison of outdoor, indoor and personal air concentrations
RIOPA studies (Elizabeth, NJ; Houston, TX; and Los Angeles, CA):
Cumulative distributions of formaldehyde measurements and “simple” predictions
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For most people the majority of exposures to
contaminants takes place through ingestion of
foods and beverages and through contact and
inhalation of chemicalsin indoor (residential or
occupational) microenvironments
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Exposure Factors and Exposure Biology: In
addition to time and geographic location, factors
such as: dynamic microenvironmental attributes,
demographics, behavior/activity, biological
(physiological) characteristics, etc. differentiate
significantly the exposures and doses of
individuals (and of selected subpopulations) that
result from environmental (or emergency) events
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Interpretation of health outcomes requires consideration
of individual susceptibility and population variability:
There arises the need to couple Exposure Biology with Genomics

Sir Winston Churchill Dr. Jim Fixx



A general “Exposure Biology” example:
digestion of nutrients

and environmental toxicants

that are present in food items

“Genome-Environment”
interactions take place at
various steps of the exposure-

to-effect sequence:
“Exposure Brology”

needs to be mechanistically

understood across multiple

scales

1 . Taste and food preferences

5 . Target tissue effect
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\\ Coactivators

. Absorption in
the intestine

Genes control processes
affecting exposure, dose,
toxicokinetics and
toxicodynamics;
however,
extragenomic factors and
development/aging may
control genome dynamics

. Transport bound to
carrier proteins

4 « Metabolism

Blood vessel

Schematic adapted from: Costa and Eaton (eds.) 2006 Gene-Environment Interactions



Connecting genotypes with phenotypes to assess toxicokinetic and toxicodynamic
variability - and associated disease susceptibility - to environmental agents
requires integrating data/information across multiple biological levels
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The hypothetical gene-protein-metabolite bionetwork of the left side of the figure has been adapted from
Brazhnik et al. (2002) T7rends Biotechnol, 20, 467-472
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in arsenic metabolism
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AS3MT is developmentally regulated and encodes
a protein that functions both as an As'"
methyltransferase and as an AsY reductase.
Variation in this gene may translate to an altered
methylation & reduction pathway, and therefore

altered toxicity.

In-vitro studies like this one, and in-vivo data of
arsenic metabolites in urine, are combined to
construct “modeling hypotheses” of toxicokinetics,
inter-individual variability, and toxicity.

Data from Drobna et al. (2004) Toxicol Appl Pharmacol 201 (2): 166-177



Research to address the toxicant “Source-to-Effect Continuum”
through development of an integrated, modular, computational framework
(CERM — development of MENTOR; ebCTC — development of DORIAN)
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Soil Poll: Focus 8 (1): 3-21

This schematic has evolved from various graphical
representations of the source-to-outcome sequence,

- Susceptible Individual
that were developed in recent years by USEPA. ’

+ Susceptible Sub-Populations
t Population Distributions

CERM: Center for Exposure and Risk Modeling

MENTOR: Modeling ENvironment for TOtal Risk studies (development started in 1993 with CDC funding; USEPA funding commenced in 1998)
ebCTC: environmental bioinformatics and Computational Toxicology Center

DORIAN: DOse-Response Information Analysis system (development started in 2006 with USEPA STAR funding; consortium of UMDNJ-RWJMS with
Rutgers, Princeton and USFDA)
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A “sample” of on-going applications
of MENTOR and DORIAN

Air Contaminant Applications

Multimedia Applications

= regional/multiscale ozone and
particulate matter (PM) control,

= urban/local/personal scale inhalation
exposures to complex mixtures of
co-occurring ozone, PM, other criteria
pollutants, and air toxics,

= exposures to contaminant releases
from forest and urban fires,

= exposures to contaminant releases
from chemical facility accidents,

= exposures to bioaerosols (ranging
from anthrax spores to birch and
ragweed pollen),

= efc.

= exposures to mixtures of metals and
metalloids (Hg, Cd, Cu, As, etc.) and
their compounds,

= exposures to pesticides
(organophosphates, pyrethroids,
conazoles),

= exposures to organic solvents,

= exposures to water chlorination by-
products,

= exposures to phthalates,

= exposures to PCBs and dioxin-like

compounds,
= exposures to CWAs,
= efc.




MENTOR employs an “anthropocentric” (person-oriented) approach, linking
multiple scales of macroenvironmental and local models and information with
microenvironmental conditions and human activities in time/space

Microenvironmental/exposure/dose modeling system

human
demographics Macro-environmental

Air Quality Model/Data

and ecology

land use ‘
Y

Air

watersheds and Microenvironment

topography

»

base grid and
subsurface

X properties |/

~ Nl
\\\\\
N
Macro-environmental Macro-environmental
Groundwater Model/Data Soil Model/Data

Source: 3MRA User Guide 2002 Source: Georgopoulos et al., ES&T, 1997, 31(1)
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MENTOR employs an “anthropocentric” (person-oriented) approach, linking
multiple scales of macroenvironmental and local models and information with
microenvironmental conditions and human activities in time/space

Human activities determine pathways of exposure
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Source: 3MRA User Guide 2002 Source: http://rivrisk.tetratech.com/inf_radionuclides.htm



MENTOR employs an “anthropocentric” (person-oriented) approach, linking
multiple scales of macroenvironmental and local models and information with
microenvironmental conditions and human activities in time/space

Human activities determine pathways of exposure

human
. demographics

land use
and ecology

watersheds and
topography

»

base grid and
subsurface

Please click to animate »

Source: 3MRA User Guide 2002 Animation source: EA Games - The Sims™
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The MENTOR modular framework for assessing cumulative/aggregate exposures and
doses for multiple contaminants: it relies on a wide range of existing models and
databases (environmental, demographic, behavioral, physiological, biomarker, etc.)

i.a. Databases: AIRS, NEI, NATA, CEP, WQN, ii.a. Databases: SDWIS/FED, TDS,
NAWQA, STORET, EMAP, NGA NHEXAS, NHANES, CSFII, RIOPA

i.b. Models: CMAQ, REMSAD, ISCST, AERMOD, ii.b. Models: APEX, HAPEM, EPANET,
ASPEN, GMS, FACT, MODFLOW, WMS, CATS EPA Dietary Module, DEPM, DEEM

Estimate multimedia Estimate local Estimate multimedia levels
background levels of multimedia pollutant and temporal profiles of

environmental pollutants levels in an administrative pollutants in various
(air, water and soil) unit (such as a census tract) microenvironments (residences, N
through either: or a conveniently defined grid offices, restaurants, streets,
a. multivariate through either: vehicles, etc.) through either:
spatiotemporal analysis a. field study measurements a. field study measurements
of monitor data b. subgrid “adjustments” of b. microenvironmental
. multiscale regional model estimates mass-balance modeling (air),
environmental c. application of a local scale drinking water distribution

modeling environmental model modeling (water), " .
dietary exposure Biologically
Calculate modeling (food) Calculate ¥ based target
Potential Exposures [ tissue _dose
(Screening) and mod_elmq__:; :
Exposures Characterize Develop activity event Calculate appropriate Intakes (toxicokinetics and

attributes of (or exposure event) inhalation rates, as well as toxicodynamics)

populations (geographic sequences for each member drinking water and food
density, age, gender, race, of the sample population or of consumption rates for the
income, etc.) each cohort for the exposure members of the sample
a. select fixed-size sample period through either: population, combining the
population that a. existing databases from physiological attributes of the
statistically reproduces composites of past studies study subjects and the
essential demographics (for baseline assessment) activities pursued during the
. or divide population of b. study-specific individual exposure events
interest into exhaustive information
set of cohorts (special registries)

ICRP and Other
CHAD, NHAPS Physiological & METS
Databases, CSFII, NHANES

US Census, US Housing
Survey, Local Data
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Example application of the PBTK modules of MENTOR:
year-long benzene intake, body burden time series, and biologically effective
dose for “virtual individuals” sharing location and similar physiological
attributes (variability due to activities sequences)
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Example “diagnostic” simulations: Comparison of population benzene doses
with/without roadway adjustments, commuting
and indoor sources (cigarettes, garage emissions, wood parquet)
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Example of urban/local scale results
from a MENTOR-1A application
employing CMAQ and “data fusion”:
comparison of PM 2.5 outdoor
concentrations with the 95th
percentiles of 24-hour PM 2.5 total
dose for 7/19/1999 across the
Philadelphia, PA and Camden, NJ area

@ 4 km x4 km Modeling Grid
PM 25 Concentration (ugfm!)
I 0.00-3521
e [ 35.22-36.36
B [ ]36.37-37.68
I 3760 - 38.65
I 3566 - 3067

N

A

Dose 95th Percentiles (ug)
[ 0.00 - 231.33

[ 231.34 - 253.06

[ 1253.07-27231

[ 272.32 - 301.22

I 301.23 - 588.50

A

0051 2 3 4
o Kilometers

Projection: Geographic

MENTOR-1A: MENTOR-"One Atmosphere”
CMAQ: Community Multiscale Air Quality Model

From Georgopoulos (2008) Water Air Soil Poll: Focus 8 (1): 3-21



Outcomes of the parallel MENTOR and DORIAN development efforts are
“research-oriented” computational toolboxes that provide modules
supporting consistent environmental/biological modeling

MENTOR DORIAN

MOdeling ENvironment DOse-Response Information ANalysis
for Total Risk SPARTA

BERTAD AR | System-wide Process
_MENTOR‘ 1A T OR-3P Analysis of Response to

Toxicant Actions

MENTOR-4M )

3P: physiological population pharmacokinetics
DOT: diagnostic and optimization tools
1A: “one atmosphere”

4M: multimedia, multiroute, multipathway, multicontaminant



MENTOR-4M provides a unified multimedia/multiscale/multipathway

modeling approach to support aggregate/cumulative exposure assessments
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ebTrack™ is a “research platform” that expands FDA ArrayTrack’s features

with tools for the analysis of “bionetwork perturbation data”

www.fda.gov/nctr/science/centers/toxicoinformatics/ArrayTrack/
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The Systemwide Process Analysis of Response to Toxicant Action (SPARTA)
project aims to provide in the long-term a general, modular, framework
supporting multiscale Biologically-Based Dose-Response (BBDR) Modeling

Genomic variation within a VI. whole "virtual cell” models Phenotypic and behavioral/
population [e.g. single linking all cellular processes demographic variation
nucleotide polymorphisms related to a particular within a population
(SNPs) etc.] initiates toxicological endpoint affect the patterns of
processes that affect contact with
individual responses environmental
of bi | |p V. integrative modules of cellular \!II. n_wdules of extracellular st "
iomoiecuiar processes (e.g. cell cycle signaling and cell-cell and cell ressors as we
networks to the differentiation, apoptosis, etc.) cluster interactions (e.g. neural as the organism
presence ‘ S dynamics, tumor growth, etc.) rates of intake
of xenobiotics and subsequent
and their uptake/clearance

metabolites. IV. modules addressing Vlll-f;:_ll;tl:l::ltl::l::csm:fdll|5 of contaminants.
spatial and stochastic y :

aspects of cell biochemistry hi:::::g:‘h%?og?églg:f:;cand .

III. modules for the dynamics IX. “virtual organ” modules
of intracellular biomolecular (e.g. lung, skin, liver, etc.)
(regulatory, metabolic, \ for both health
signaling) networks " and disease states
) Tissue/Organ '
Dynamics
I1I. modules quantifying
molecule-molecule interactions
(e.g. ligand-receptor
interactions)

X. “virtual physio-system”
modules (respiratory,
digestive, immune, etc.)

Small ; '
\ Bionetwork
DMO|ECU'|3 _ Dynamics - PR ism”
ynamics | . XI. integrative “virtual organism

toxicokinetic/toxicodynamic
models

1. tools for molecular
sequence/structure and
-> property characterization
for biomolecules & xenobiotics \i

4 EEN EEN NN BN NN NN EEN BN BEN EEN SEN SEN BN BEN N S S . .-
A O O N N O N BN B B B BN B N .

Macromolecule
Dynamics

whole body models provide the biological
representation of each “virtual individual”
in the exposure and risk analysis



“Real world” environmental health risks involve exposures to multiple

co-occurring contaminants via a variety of routes and pathways;

however “traditional” PBTK models are designed for single contaminants and their
structure and organ/tissue representations are “contaminant-specific”
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Shipp, et al. (2000) Toxicol Ind Health 16, 335-438
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Kjellstrom and Nordberg (1978) Environ Res 16, 248-69)

Mature Cortical Bone
(diffusion and remodeling)

Juvenile Cortical Bone
(active modeling only)
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Juvenile Trabecular Bone
(active modeling only)
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O'Flaherty (1993) Toxicol Appl Pharmacol 118, 16-29

Example: Existing PBTK models for metals have different mechanistic structures due to
differences in dominant transport processes. These structures are often inconsistent with
each other. Nevertheless, the "multi-component” nature of exposures to metals and their
compounds, and the presence of potentially significant metal-metal interactions, highlight
the need for simultaneous and consistent toxicokinetic modeling of these chemicals.




ultraﬁné
particle
deposition
.

Red Blood Cells

Venous Blood

White Blood Cells

Air Exposure Oral Dose
- ' :
: -
Upper Respiratory <
Naso-Pharynx — -q----- dssgs'ﬁiin ------ »  Oral Cavity

Tracheo-Bronchial Thyroid

blood-brain barrier

-
.

Colloid
¥ Foiice
v stoma 1

H
v

Lungs

——  Thymus

Blood \|| - :
_ Esophagus & ¢ P
T Stomach _'__, 3
: ©
—— I Spleen 8
" o
p—Poral Pancreas o
____________ o ___ly  Intestine b &

—

Kidney

Tissues

t 1
Nephrons 4
- ¢ @
EEE—
+  Bladder

Breast <

&
Al

SlI®2 PooId SlIYM

¥ Adipose 3

Trabecular Bone
Skin

Dermis A T
Y ViableSkin 4

v Stratum Corneum
r

* Muscles *

v
'
v

Contact Media

Color guide to
physiolgical systems:

digestive
endocrine
integumentary
muscular & fat
[ ___nervous |
respiratory

urinary

MENTOR-3P/DORIAN
provide a new

modular “whole body”
platform for consistent
characterization of
multicontaminant
toxicokinetic and
toxicodynamic processes
in individuals and
populations; it provides
links with physiology
databases to account for
intra- and interindividual
variation and variability

Generic compartmental substructure

blood cells

capillary
plasma

interstitial space

nonspecific
binding

tissue cells
specific
binding




Air Exposure

f [

H -
Upper Respiratory

P Naso-Pharynx  -1--
ultrafine Tracheo-Bronchial
particle ' FS
deposition ' H
' - H
Lungs

¥ roiice 1
¥ stoma 1

C
Colloid
Thymus

Red Blood Cells

Venous Blood

—

Nephrons 4
- ¢ @
(+\
Bladder

\_purtal
vein

AT bile
excretion

Esophagus & 4

Stomach
Spleen <—f'\-

Pancreas 4—"h

Intestine ¥

Oral Dose
rticl v
particle X
“"deposition” " > Oral Cavity
Thyroid

Kidney
Tissues

T

<

\

Fetal body

&
Al

White Blood Cells

¥ Adipose 3
* Muscles *

Skin
Dermis

Viable Skin

v
v

Stratum Corneum

Cortical Bone
Trabecular Bone
Bone Marrow

4 ]
'

Contact Media

S|I2D poolg pay

SlI®2 PooId SlIYM

Color guide to
physiolgical systems:

digestive
endocrine
integumentary
muscular & fat
[ ___nervous |
respiratory

urinary

MENTOR-3P/DORIAN
provide a new

modular “whole body”
platform for consistent
characterization of
multicontaminant
toxicokinetic and
toxicodynamic processes
in individuals and
populations; it provides
links with physiology
databases to account for
intra- and interindividual
variation and variability

“Standard” 70 kg male consuming a 1 mg oral
dose each of As(V), Cr(VI), MeHg, Pb, and Cd

Concentration (mg/L)

—AS(VJ 1
== = As(lll)
v MMA [
ceeees DMA T
— () |]
= = = MeHg |
- = Pb
Cd

1 2 3 4
Time (days)

Simulated concentration profile of chemicals
and metabolites in the liver of a standard
reference male ingesting a mixture of metals.
Source: Georgopoulos (2008) Water Air Soil Poll Focus 8: 3-21



Organ weight (g)

Individual and population human biology (physiology and biochemistry)

changes non-uniformly with

development, aging, disease, drug treatment, diet, environmental exposures, etc.

18001
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8004
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4001

2004

Age (years)

Organ weight from birth to
adolescence in boys (based
on Haddad et al. 2001)

Weight (kg)

Age (months)

Weights of water, fat,
protein, and other
components as a function
of age, from birth to one
year of age. [Figure
reproduced from Fomon
(1966) with permission
from W.B. Saunders Co.]

Adult levels (%)

100 -

OCYP1A2
ECYP2E1

<24 1-7
hours days

8-28 1-3 3-12 5-15 20-50
days months months years years
Hepatic cytochrome CYP1A2
and CYP2EL in children of
various age groups as a
percentage of adult weights
(from Cresteil, 1998).

from: WHO (2006). Principles for Evaluating Health Risks in Children Associated with
Exposure to Chemicals. World Health Organization. Environmental Health Criteria 237
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MENTOR-3P offers a “whole organism”

modular platform for incorporating a0
organ/tissue representations at various levels of detail Ordanism ”-.':j‘“;
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Lung and skin models are critical for assessing exposure and intake/uptake;
liver is critical for biotransformation and elimination of xenobiotics:
recent/current liver modeling efforts in MENTOR-3P development focus primarily on
computationally efficient representations of the effects of heterogeneity
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Lung and skin models are critical for assessing exposure and intake/uptake;
liver is critical for biotransformation and elimination of xenobiotics:
recent/current liver modeling efforts in MENTOR-3P development focus primarily on
computationally efficient representations of the effects of heterogeneity
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hepatic
artery
Hepatocytes

Sinusoids

Bile duct
Branch of
hepatic

portal vein

CYP concentration (nM)

Currently available liver modules within MENTOR-3P
can account efficiently for biochemical heterogeneity
through the use of either multi-compartment or
distribution-based approaches
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Example of on-going research: Modeling sources, transport,
biotransformations, and effects of As species in the human body

Metabolic network

» Induce chromosomal aberrations, genetic instability
 Induce alterations in methylation patterns

adapted from: drinking « Generate reactive oxygen species and 8-oxo-dG adducts
Kumagai and Sumi water « Interfere with DNA repair
,(32,22,//2/;””&/ and food « Induce p53 and cell proliferation
Pharmacology and l » Mouse carcinogen and co-carcinogen
Toxicology 47: .
243-262. <|3H i OH - SG —» Effluxed via MRP1/2
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microflora ' DNA breaks
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Research in-progress: “reconciliation” of biotransformation and transport of
As modeled at both the individual hepatocyte and the whole organ level

Time course prediction of As methylation in human
hepatocytes vs data from Styblo et al. 1999
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Dose-response predictions of As methylation in mice
hepatocytes vs data from Kedderis et al. 2000
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A parallel example of on-going research:
Modeling quantitative metrics of oxidative stress from exposure to TCE

Toxicokinetic model
“evolved” from Abbas & Fisher,Toxicol Appl Pharmacol (1997) 147: 15-30

P450
TCE ———> TCA — DCA
2000 mg/kg 1000 mg/kg
80 80
— °
g 60 60
> 40 . 40
~N
= 20 2{\‘
E ®
c 0 hd
o, 0 10 20 0 10 20 Dose
(n'eg
< 300 mg/kg 100 mg/kg of
— 80 80 TCA
©
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T
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: 20/\ B
0 O!/—\
0 10 20 0 10 20
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D~ 1000 mg/kg 300 mg/kg
< & 100 100
@2 ‘
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S5 50/ 50 of
= = ° DCA
o N
c
% 10 20 % 10 20

Experimental data of Larson & Bull, 7oxicol App/ Pharmacol (1992) 115: 268-277

time (hours)

d[TBARS] _ V,,[Toxicant]

Toxicodynamic model

Toxicant
(TCE, TCA,
DCA)

1. toxicant
activation

v

Activated + Poly unsaturated
Toxicant fatty acids

2. oxidation
autoxidation

hydroperoxide —»» ( TBARS
|

3. reduction

v

hydroxide

TBARS = thiobarbituric acid-
reactive substances

Toxicodynamic equation

time (hours)

K,, +[Toxicant]

(k[TBARS]+k, *TBARS,, . )



A prototype source-to-dose MENTOR-4M/3P evaluation for As

0.025

Source-to-dose assessments of exposures o

to multiple co-occurring contaminants = ; |

from multiple media for D S O » .

- the general population of three counties T ® o
with different demographics (OH, NJ, AZ) o " @ o, " awo, e §

- the NHEXAS Region-V population Wy s g e i

- the NHANES 2003 population =i SR e skl
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Total arsenic (mg/kg) measured in 12 major food groups generated
from a total 267 food items (from USFDA Total Dietary Study)
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Arsenic Concentration (ug/L)
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O 18.01-90.0

©  90.01-3200 Average and
Arsenic Concentrations in Groundwater (Wells) e 32001-870.0 maximum arsenic
from the NAWQA Dataset (1976-97) e 870.01-20000 concentations

measured in PM2.5
at AIRS monitoring
stations during 2001




Cumulative distributions of total arsenic amount in urine from
MENTOR predictions for Franklin County, OH and from individual NHEXAS-V
measurements (corresponding percentiles) for different age groups

0-4 years old . 5-19 years old 420—34 years old
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v.i.s. = virtual individuals

From: Georgopoulos, et al. (2008) J Expo Sci Environ Epidemiol 18 (5): 462-476.



Age group 1 (0-4 years old), Franklin County, Ohio
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to arsenic (total and inorganic) for NHEXAS o | = = Food Intake Route (Inorganic Arsenic) |
. . =1+ Food Intake Route (Total Arsenic)
Reg'on V modeled W|th MENTOR-4M: —— Nondietary Intake Route (Inorganic Arsenic)
. . - = 3
Comparlson of exposure route contributions S0 '
s
g0 :
=1 —
Franklin County, Ohio T <
4 o
10 T T T I I T I I I 'E
—— Inhalation Route (Inorganic Arsenic @
s - - Drinking Water Route (Inorganic Arsenic) =
107 f +++++ Food Intake Route {Inorganic Arsenic)
- Food Intake Route (Total Arsenic)
10? —— Non-dietary Ingestion
=
©
o 1
o 10 0 10 20 30 40 5 60 70 80 90 100
=2 Percentiles
@ _wu- . Age group 4 (35-54 years old), Franklin County, Ohio
: 10 Ll T T i 1 1 i 1§ i
@ — Inhalation Route (Inorganic Arsenic)
8_ il = = Drinking Water Route (Inorganic Arsenic)
o 10 3 = = Food Intake Route (Inorganic Arsenic)
10 F =+ Food Intake Route (Total Arsenic) E
g 2 —— Nondietary Intake Route (Inorganic Arsenic)
107 =
2 5
< )
107 £
g
]
107 E ]
a
>
LLi
1 L 1 1 L A 1 1 L .E
0 10 20 30 40 50 60 70 80 90 100 g
Percentiles -
Cumulative arsenic exposure distributions from inhalation,
food intake, non-dietary ingestion, and drinking water
consumption routes for Franklin County, Ohio - ) . ] ) . ) . .
0 10 20 30 40 50 60 70 80 90 100
Percentiles

From: Georgopoulos, et al. (2008) J Expos Sci Environ Epidemiol 18 (5). 462-476.



Predicted cumulative distributions of arsenic (inorganic and total) intake
(ingestion and inhalation) from the populations of Pima, AZ and Hunterdon, NJ

Pima County, Arizona Hunterdon County, New Jersey

I L 1 L) 1 1
= = Inhalation Route (Inorganic Arsenic)
+=++ Drinking Water Route (Inorganic Arsenic) H
— Food Intake Route (Inorganic Arsenic)
Food Intake Route (Total Arsenic)

LI I I L} I I
= = Inhalation Route (Inorganic Arsenic)
10" F =1+ Drinking Water Route (Inorganic Arsenic) H 10' |
—— Food Intake Route (Inorganic Arsenic)
Food Intake Route (Total Arsenic)

Arsenic Exposure (ug/day)
Arsenic Exposure (ug/aay)

70 80 90 100

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60
Percentiles Percentiles

Inhalation dose from arsenic component in outdoor PM estimated using the MENTOR-3P
gender/age/activity specific population inhalation dosimetry module (outdoor concentrations

calculated using EPA's NATA)

Drinking water concentration distributions from Pima, AZ and Hunterdon, NJ were derived
respectively from the Arsenic Occurrence and Exposure Database and from NJDEP’s Water
Quality Database. The bimodal distribution in NJ reflects the different source quality
(municipality system vs. private wells — the latter are arsenic contaminated).

From: Georgopoulos, et al. (2008) J Expos Sci Environ Epidemiol 18 (5).; 462-476.



MENTOR-DOT in conjunction with MENTOR-1A/74M/3P
provide a general framework for
systematic exposure reconstruction from biomarker data

Environmental &
Microenvironmental
Models
(MENTOR- 4M & 1A)

Tools for Sensitivity and
Uncertainty Analysis
(MENTOR-DOT)

Mechanistic Models for
Forward Modeling
(PBTK and BBDR Models
of MENTOR-3P & DORIAN)

-

%

Auxiliary Databases \

Environmental Concentrations

Intake Rates
Demographics/Housing

Population Genetic Variability

from USEPA, USGS, CDC, etcj

Biological Data

Tissue Concentrations
Metabolite Levels
Proteomic Biomarkers

Numerical
Optimization and
Inversion Techniques

stimates of Doses,
Exposures, and
Environmental
Concentrations




The Bayesian approach offers a powerful framework for the analysis of
“uncertain” environmental and biological information in

conjunction with process (“mechanistic”’) models and optimization algorithms

Objective and
Subjective
Information

i Biomarker
Uncertain and P i
Unknown Model 12
Inputs and PI‘Obablllty of
£ Biomarkers

Parameters Apply - .
Mechanistic M Apply AI?::E;?\:: o

Biological e Bayes' Rule rati
Models E Applications

“In this new century ... a
significant part of the everyday
practice of Statistics ... will
Reduce consist of applying Bayes'
Uncertainty in formula via MCMC ...”

Model Inputs in introduction of
and/or David Williams (2001) Weighing the Odds.
Parameters A Course in Probability and Statistics.
Cambridge University Press

e Assimilates prior information and information contained in data

e prior information on parameters are specified by probability distribution functions
Convenient for mechanistic, biological and environmental process models

e However — it presents serious challenges for the non-expert

e Parameters characterized by probability pdfs
e in contrast to classical parameter estimation, no single “true” value




Markov Chain convergence (left) and probability density (right) of

chlorpyrifos dose and metabolic parameters

Doze
[gn]

N\

1500

1000

0 a00

2000

1] 200 1000 1:300

2000

0 a00 1000 1500
Markow Chain Samples

2000

Probability density

15
10
5 4
|:| 1 1 _ﬂ'.’_""*-_
0 1 2 3 4
Dase (mokg)
0.04
0.0z
|:| L L
0 =] 100 150
LA [ prmolr g
0.01
0.005 /\/\
|:| M L M M
0 100 20 300 400 500

LA 21 prmolir e

<- Please click to animate

The red bar indicates the “burn-in”; the black lines indicate a span of samples;

the green bars indicate accepted samples after convergence
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Examples of available population biomarker databases

OP VOCs Metals

@ c

£lc|5 N5 e

— c

SRR E|Z2|2 Al =

| Cm oo |S|ZFX|w|lo|~|boo . ]
Program/Study OO |2 ||+ |W|E|6|< |0 |U|IT|a| Location; Number of Subjects
CHAMACOS (1999-2000) bd| bd| bd CA; 600 pregnant women
[Castorina et al., 2003]
CTEPP (2000-01) ac| ac NC, OH; 257 children (1.5-5 yrs)
[Wilson et al., 2004] (*)
MNCPES (1997) ac| ac| ac MN; 102 children (3-12 yrs)
[Quackenboss et al., 2000] (*)
NHANES-III (1988-94) c clclclclc c bc| US; 1000 adults (20-59 yrs)
[Hill et al., 1995] (*)
NHANES (1999-2000) cd| cd| cd| be| be| be| be| be c c | bc| US; 9,282 subjects (all ages)
[CDC, 2005b] (*)
NHANES 2001-02 cd| cd| cd C ¢ | bc| US; 10,477 subjects (all ages)
[CDC, 2005b] (*)
NHANES 2003-04 (*) cd|cd|cd clc c | bc| US; 9,643 subjects (all ages)
NHEXAS-AZ (1995-97) ac|ac|ac|ac|ac ac|ac|ac ac| AZ; 179 subjects (all ages)
[Robertson et al., 1999]
NHEXAS-MD (1995-96) ac ac ac|ac|ac ac| MD; 80 subjects (above 10 yrs)
NHEXAS-V (1995-97) ac|ac|bc|ac|ac|ac|ac|ac| c |ac| EPA Region V; 251 subj. (all ages)
[Whitmore et al., 1999] (*)

Key: a: Measurements of multimedia concentrations (indoor, outdoor, and personal air; drinking water; duplicate
diet; dust; and soil). b: Partial measurements of environmental concentrations (e.g. outdoor air concentrations; pesticide use;
etc.). c: Specific metabolites. d: Non-specific metabolites. OP: Organophosphates



Contribution of prior exposures to observed biomarker levels
as a function of biochemical properties:
Case of idealized linear single-compartment biokinetics

60 T T T T T

B <1 hour _
[ 1-24 hours
[ 1-7 days 50
[ 11-4 weeks
[ 11-6 months
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Contribution (%)
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o o
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||
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Half Life

e Pyrethroids (6-12 h)

e Organophosphates/BTEX (~1 d)

e As (2-3d)

e MeHg (2-3 mo)

e Cd (2-3 mo in blood; 10-40 y in body)




Contribution of prior exposures to observed biomarker levels as a function of
intake frequency, sampling time, and biochemical properties:
Case of idealized linear single-compartment biokinetics

A =

unknown

0.5 hour 12 hour

The rows represent
the time period of
exposure (e.g.
every 12 h, every 2
days, etc), the
columns represent
the time of
sampling after the
last exposure. For
cases when
sampling time is
unknown, the
mean values of the
contributions are
shown, assuming a
uniformly random
sampling time.
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“Brute-force” approach for exposure reconstruction
from inversion of biomarker data

Potential Exposures Distribution of Exposures
Distribution Consistent with Biomarker data

VaAER

N &E

>

E

Large proportion
of rejected
samples

\ A\

PBPK Model
run with E1 input ‘ :

v

Comparison with Biomarker Data

Biomarker data
(NHEXAS,
NHANES, etc)

Screening Supplemental Data

Level Model (“Exposure Related”)

Figure modified from Georgopoulos, et al. (2009) J Expos Sci Environ Epidemiol 19 (2): 149-171.



In progress: Optimization-aided Bayesian approach for exposure
reconstruction from inversion of biomarker data

Poten'-cial _EXQOSUFGS Distribution of Exposures
Distribution Improved Consistent with Biomarker data
Sampling

LI
e,
LI
..
......
e,
e,
..
..

Optimization
Algorithms

PBPK Model or
FEOM run
with E*N input

Small proportion
of rejected

samples
Biomarker data

(NHEXAS,

Figure modified from Georgopoulos,
NHANES, etc) et al. (2009) J Expos Sci Environ

Epidemiol 19 (2): 149-171.

PBPK Model or
FEOM run
with E*1 input

Comparison with Biomarker Data

Screening Supplemental Data
Level Model (“Exposure Related”)

Novel methods have been developed that allow the systematic construction of
Fast Equivalent Operational Models (FEOMSs);
these include the Stochastic Response Surface Method (SRSM)
and the High Dimensional Model Representation (HDMR)



NHEXAS Maryland (NHEXAS-MD) data for chlorpyrifos (CPF)

Longitudinal; multiple biomarkers
Environmental measurements at
homes
CPF data

e urinary TCPy measurements

 first void of the day
Concentrations of CPF chlorpyrifos in
food, air (at home), dust, etc.,
Corresponding TCPy concentrations in
food, however, were not measured
Food intake through 4-day duplicate
plate

e actual amount not available easily
Also not available

e Urinary void volume

e Time of earlier urination

e Last food intake time

Number of records
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160

180
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Probability

0.05+

Assumptions regarding unknown exposure factors (e.g. frequency of
exposures) affect substantially the outcomes of reconstruction (“inversion”):
Demonstration case study with with NHEXAS-MD data

I
Steady-state
----- 1x per week (Bayesian)
1x per week (ECF)
=== 7x per week (Bayesian)
----- 7x per week (ECF)

0.03-| 4

0.02+

0.01

1 1 1
0 20 40 60 80

100
Estimated average bolus CPF dose (ug/day)

120 140 160 180

Estimated average bolus CPF dose (ug/day)

1

1
Steady-state
1x per week (Bayesian)
1x per week (ECF)
t| ====7x per week (Bayesian)

----- 7x per week (ECF)

1 1 1 1 1 1 1 1

20 30 40 50 60 70 80 90
Percentile

100

From Georgopoulos, et al. (2009) J Expos Sci Environ Epidemiol 19 (2): 149-171.



Comparison of different methods
for exposure reconstruction (“inversion”) and Bayesian “caveats:”
Demonstration of a “computational” case study with synthetic data consistent with the
National Human Exposure Assessment Survey-Maryland (NHEXAS-MD) data
(incorporating lower but reasonable levels of uncertainty)

10°

T
Steady-state
----- Base-case {Bayesian)
———— Base-case (ECF) 3 —
----- Base-case with TCP (Bayesian}
Base-case with TCP (ECF)
== == = Apparent bolus CPF
e Actual bolus CPF 2

o

-
-
-
-

Steady-state
----- Base-case (Bayesian)
————— Base-case (ECF)
10 E _' ———- Base-case with TCP (Bayesian)
H Base-case with TCP (ECF)
== == == Apparent daily bolus CPF
m—— Average daily bolus CPF

Probability density (day/ug)
Synthetic average daily dose (ug/day)

-2 L L L L 1

. 02040 60 80 90 9596 97 98 99 100
Average daily dose (ug/day) Percentiles

CPF exposures were estimated from the urinary TCPy data (metabolite of CPF). However, direct exposures
to TCPy are possible, and are often an order of magnitude higher than CPF exposures. Therefore, if direct
exposure to TCPy is not considered in the reconstruction process, the "apparent” CPF dose will be
significantly higher than the true exposures.



Some concluding thoughts:
Integrative exposure-dosimetry-toxicity frameworks for environmental health risk
assessment provide several examples of situations that can benefit from incorporating

more detailed biology in mechanistic, person-oriented, population analyses

PAST:

Single Pathway
Analysis of Risk
Single Contaminant

PRESENT:

Multiple Pathway
Analysis of Risk
Multiple Contaminants

FUTURE:

Integrated “Person-Oriented”
Systems Analysis of Risk
Mixtures of Contaminants with
Environmental and Biological
Interactions

Multiple Contaminant Sources

Multiple Contaminant Sources

Multiple Co-occurring Chemical
and Nonchemical Stressors
Affecting an Individual

Single Medium Environmental
Fate & Transport

Linked Fate & Transport in
Different Environmental Media

Dynamically Integrated
Multimedia Fate & Transport
in the Environmental and
Biological systems

Single Exposure Route

Multiple Exposure Routes

Aggregate/Cumulative
Exposure and Dose Analysis

Phenotype-based Toxicity

Phenotype-based Toxicity with
Susceptibility Considerations

Mechanistic Linkage of
Phenotype with Genotype

Primary Human Health Criteria
for Individual Contaminants

Chemical and Exposure-Route
Specific Risk for “Standard
Individuals”

Aggregated Risk for Diverse
Human Populations (with
Susceptible Subpopulations)

Qualitative Uncertainty

Quantitative Uncertainty

Quantitative Uncertainty and
Variability Resolved for
Specific Environmental and
Biological Processes

“Exposure Biology” provides valuable tools for the systematic development of “quasi-personalized” risk
assessments that will improve accountability with more and better options for prevention and intervention
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