1	
2	
3	ACUTE EXPOSURE GUIDELINE
4	LEVELS (AEGLS)
5	FOR
5	MONOMETHVI AMINE
6	MUNUMETHYLAMINE
7	(CAS Reg. No. 74-89-5)
8	
9	
10	
11	
12	
13	
14	INTERIM
15	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
26	
21	
20 29	
30	
31	
32	
33	
34	
35 26	
37	
38	
39	
40	
41	

1

14

PREFACE

Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of
1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous
Substances (NAC/AEGL Committee) has been established to identify, review and interpret
relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic
chemicals.

AEGLs represent threshold exposure limits for the general public and are applicable to
 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels – AEGL-1,
 AEGL-2 and AEGL-3 – are developed for each of five exposure periods (10 and 30 minutes, 1
 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects.
 The three AEGLs are defined as follows:

AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per
 cubic meter [ppm or mg/m³]) of a substance above which it is predicted that the general
 population, including susceptible individuals, could experience notable discomfort, irritation, or
 certain asymptomatic, non-sensory effects. However, the effects are not disabling and are
 transient and reversible upon cessation of exposure.

AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

30 Airborne concentrations below the AEGL-1 represent exposure levels that could produce 31 mild and progressively increasing but transient and nondisabling odor, taste, and sensory 32 irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentrations 33 above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity 34 of effects described for each corresponding AEGL. Although the AEGL values represent 35 threshold levels for the general public, including susceptible subpopulations, such as infants, 36 children, the elderly, persons with asthma, and those with other illnesses, it is recognized that 37 individuals, subject to unique or idiosyncratic responses, could experience the effects described 38 at concentrations below the corresponding AEGL.

1	TABLE OF CONTENTS	
2	PREFACE	2
3	LIST OF TABLES	5
4	EXECUTIVE SUMMARY	6
5	1. INTRODUCTION	
6	2. HUMAN TOXICITY DATA	
7	2.1 Acute Lethality	9
8	2.2. Nonlethal Toxicity	9
9	2.2.1. Odor Threshold/ Odor Awareness	9
10	2.2.2. Incidental or Occupational Exposure	9
11	2.3. Neurotoxicity	
12	2.4. Developmental and Reproductive Toxicity	10
13	2.5. Genotoxicity	10
14	2.0. Caremogementy 2.7 Summary	10 10
16	$2 \qquad \text{ANIMAL TOYICITY DATA}$	
10	5. ANIMAL IOAICH I DATA	
17/ 10	3.1. Acute Lethality	
18	3.1.1. Kats	
20	3.1.2. Mile	13
20	3.2.1 Rats	15 16
22	3.2.2. Mice	
23	3.2.3. Rabbits	
24	3.2.4. Cats	
25	3.3. Subchronic and Chronic Toxicity	
26	3.4 Neurotoxicity	
27	3.5. Developmental and Reproductive Toxicity	
28	3.6. Genotoxicity	
29	3.7. Carcinogenicity	19 10
21	5.8. Summary	
31	4. SPECIAL CONSIDERATIONS	20
32	4.1. Metabolism and Distribution	20
33	4.2. Toxicity Mechanisms	
34	4.3. Structure-Activity Relationship	
33 26	4.4. Other Relevant Information	
30	4.4.1. Species variability	
38	4.4.2. Susceptible i optiations	23 24
30	5 DATA ANALYSIS FOR AFGL-1	24
10		
40 41	5.1. Summary of Animal Data Relevant to AEGL-1	
41	5.2. Summary of Ammar Data Relevant to AEOL-1	24 25
12	6 DATA ANALVEIS FOR AFCL 2	
43	0. DATA ANALISIS FUK AEGL-2	
44	6.1. Human Data Relevant to AEGL-2	
43 16	6.2. Animal Data Relevant to AEGL-2	
40	U.J. DEIIVAUUII UI AEUL-2	

INTERIM: 06/2008; Page 4 of 46

1	7. DATA ANALYS	S FOR AEGL-3	
2	7.1. Summary of	Human Data Relevant to AEGL-3	
3	7.2. Summary of	Animal Data Relevant to AEGL-3	
4	7.3. Derivation of	f AEGL-3	
5	8. SUMMARY OF	AEGLs	
6	8.1. AEGL Valu	es and Toxicity Endpoints	
7	8.2. Comparison	with Other Standards and Guidelines	
8	8.3. Data Adequ	cy and Research Needs	
9	9. REFERENCES		
10	APPENDIX A: Deriva	tion of the Level of Distinct Odor Awareness (LOA)	
11	APPENDIX B: Deriva	tion of AEGL Values	
12	APPENDIX C: Catego	ry Plot for Methylamine (MMA)	
13	APPENDIX D: Deriva	tion Summary of Acute Exposure Guideline Levels for Methylamine	44
14			

1	LIST OF TABLES	
2		
3	TABLE 1.Summary of AEGL Values for Monoethylamine	7
4	TABLE 2. Physical and Chemical Properties of Monomethylamine	8
5	TABLE 3. Monoethylamine Acute Lethality Animal Studies	11
6	TABLE 4. Summary of Lethality Data in Rats Following Exposure to Monomethylamine	14
7	TABLE 5. Non-lethal Inhalation Toxicity Studies for Monomethylamine	15
8	TABLE 6. AEGL-1 Values for Monomethylamine	
9	TABLE 7. AEGL-2 Values for Monomethylamine	27
10	TABLE 8. AEGL-3 Values for Monomethylamine	
11	TABLE 9. Summary of AEGL Values for Monomethylamine	29
12	TABLE 10. Extant Standards and Guidelines for Monomethylamine	
13		

1 2 3

EXECUTIVE SUMMARY

3 Methylamine (monomethylamine; MMA) is a primary aliphatic amine which has an 4 offensive fishy odor. It is a degradation product of alkaloids and proteins in many species, and is 5 an endogenous metabolite of epinephrine, sarcosine, and creatine in humans. MMA is a high production volume chemical in the U.S. with a wide range of industrial applications as a 6 7 compressed gas and as a 40% aqueous solution. MMA is a potent eve and mucous membrane 8 irritant, which largely determines the clinical picture of MMA vapor intoxication. In both 9 humans and animals, MMA causes respiratory system toxicity (impaired breathing, lung 10 congestion and edema) that can lead to death, as well as corneal opacity. Animal studies have 11 also shown MMA-induced toxicity to the liver, brain, and hematopoietic and nervous systems.

12

13 MMA is metabolized in mammals by semicarbazide-sensitive amine oxidase (SSAO), to 14 form formaldehyde, hydrogen peroxide, and ammonia. Elevated levels of endogenous MMA 15 and/or increased SSAO activity, and the increased levels of the MMA metabolites, are believed to cause vascular endothelial damage, and are associated with a number of disease states 16 17 (diabetes, heart disease, non-diabetic obesity, Alzheimer's disease, cerebral arteriopathy, 18 inflammatory liver disease, atherosclerosis, and congestive heart failure). Individuals with 19 increased SSAO activity may therefore be a sensitive sub-population. Several studies indicate 20 that SSAO activity is greater in human than rodent tissues (Lewinsohn et al. 1978; Boomsma et 21 al. 2000). 22

The level of distinct odor awareness (LOA) for MMA is 0.56 ppm. The LOA represents the concentration above which it is predicted that more than half of the exposed population will experience at least a distinct odor intensity, and about 10% of the population will experience strong odor intensity. The LOA should help chemical emergency responders in assessing the public awareness of the exposure due to odor perception.

28

29 The AEGL-1 is based on two studies. The point of departure in the Kinney et al. (1990) 30 study was a single 6-hour exposure of male CD rats to 75 ppm. Exposures were actually repeated for two-weeks (10 exposures) and resulted in mild irritation of the nasal turbinates. 31 32 Repeat exposure to higher concentrations (250 and/or 750 ppm) caused more severe nasal lesions 33 and /or systemic toxicity and mortality. A single 6-hour exposure to 75 ppm is expected to cause 34 no more than mild sensory irritation. In the second study, exposure of male Wistar rats to 465 35 ppm for 30 minutes was a NOAEL for notable signs of discomfort, but resulted in interstitial 36 pneumonitis progressing to fibrosis (Jeevaratnam and Sriramachari 1994; Sriramachari and 37 Jeevaratnam 1994). A total UF of 10 was applied to the point of departure in both studies. 38 including 3 for interspecies uncertainty and 3 for human variability, because mild nasal irritation 39 from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and is 40 not likely to vary greatly between species or among humans (NRC 2001). Because the wellconducted study of Kinney et al. (1990) was a repeat exposure study and the effect was 41 42 essentially a NOAEL, a modifying factor of 0.5 was applied. The study of Sriramachari and 43 Jeevaratnam (1994) used only one exposure, the description of the study results lacked details, 44 and the endpoint was above the definition of an AEGL-1. In the absence of robustness and in 45 light of the seriousness of the endpoint, a modifying factor of 3 was applied to the 465 ppm value 46 for a combined uncertainty and modifying factor of 30. Application of these uncertainty and modifying factors to the respective studies yields an AEGL-1 value of 15 ppm. The resulting 47 48 AEGL-1 value of 15 ppm was adopted for 10 minutes to 8 hours because mild sensory irritation 49 is not expected to vary greatly over time.

1 AEGL-2 values were derived from the Kinney et al. (1990) repeat exposure study. Ten 2 exposures of male CD rats to 250 ppm, 6 hours/day, caused reversible lesions of the anterior 3 respiratory tract. The severity of the lesions (focal erosion and ulceration of the nasal turbinate 4 mucosa) was attributed to the repeat exposure scenario, i.e., repeated local irritation. Lesions did 5 not extend into the trachea or lungs. Lesions following a single exposure would be less severe 6 and also reversible. A total uncertainty factor of 10 was applied, including 3 for interspecies 7 uncertainty and 3 for human variability, because nasal irritation from an alkaline irritant gas is a 8 direct surface-contact effect not involving metabolism, and is not likely to vary greatly between species or among humans (NRC 2001). Time scaling, $C^n x t = k$ where n = 1.9, was based on rat 9 10 lethality data ranging from 6 to 60 minutes (data set of IRDC 1992a). Lethality data were used to time-scale the AEGL-2 values because local irritation is considered the first step leading to 11 12 pulmonary irritation and death.

13

14 The AEGL-3 was based on the study provided by the International Research and 15 Development Corporation (IRDC 1992a) in which rats were exposed to concentrations of 17,600-35,300 ppm for 6 minutes, 10,600-17,400 ppm for 20 minutes, or 4100-8670 ppm for 16 60 minutes. The mortality response data of IRDC (1992a) were used in the probit-analysis based 17 18 dose-response program of ten Berge (2006) to calculate the LC_{01} at each AEGL-3 exposure duration. The program incorporated all of the data at the 6-, 20-, and 60-minute time points. The 19 data indicated a time-scaling value of 1.9 ($C^{1.9}$ x t = k). A total uncertainty factor of 10 was 20 applied, including 3 for interspecies uncertainty and 3 for human variability, because lethality 21 22 from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and is 23 not likely to vary greatly between species or among humans (NRC 2001).

24 25

26

AEGI	l values for	r MMA ai	re presented	in Table

	TABLE 1.Summary of AEGL Values for Monomethylamine					
Classification	10-min	30-min	1-h	4-h	8-h	Endpoint (Reference)
AEGL–1 ¹ (Non-disabling)	15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)	Mild sensory (nasal) irritation in rats (Kinney et al. 1990; Sriramachari and Jeevaratnam and 1994)
AEGL–2 (Disabling)	160 ppm (200 mg/m ³)	92 ppm (120 mg/m ³)	64 ppm (80 mg/m ³)	31 ppm (39 mg/m ³)	21 ppm (27 mg/m ³)	Reversible nasal lesions in rats (Kinney et al. 1990)
AEGL–3 (Lethal)	910 ppm (1200 mg/m ³)	510 ppm (650 mg/m ³)	350 ppm (440 mg/m ³)	170 ppm (220 mg/m ³)	110 ppm (140 mg/m ³)	LC_{01} in rats (IRDC 1992a)

1.

27

¹ A Level of Distinct Odor Awareness (LOA) of 0.56 ppm was calculated for MMA based on the odor threshold of

0.035 ppm provided by Ruijten (2005). The LOA is defined as the concentration above which it is predicted that
 more than half of the exposed population will experience at least a distinct odor intensity, and about 10% of the

30 population will experience a strong odor intensity (Van Doorn et al. 2002).

1. INTRODUCTION

3 Methylamine (monomethylamine; MMA) is a primary aliphatic amine which has an 4 offensive fishy odor. It is a natural degradation product of alkaloids and proteins in many 5 vegetable and animal species. Human endogenous sources of MMA also include epinephrine. 6 sarcosine, and creatine (Dar et al. 1985). MMA is a potent eye and mucous membrane irritant, 7 which largely determines the clinical picture of MMA vapor intoxication. In both humans and 8 animals, MMA at sufficiently high concentrations has caused severe toxicity to the respiratory 9 system (impaired breathing, lung congestion and edema) leading to death, as well as corneal 10 opacity. Animal studies have also shown MMA-induced toxicity to the liver, brain, and hematopoietic system, as well as behavioral changes. 11

12

1

2

13 MMA is a colorless, easily liquefiable gas that is soluble in water, alcohol, acetone, and 14 benzene. It has a wide range of industrial applications as a compressed gas and as a 40% 15 aqueous solution. MMA is used in organic synthesis, as a fuel additive, in manufacture of pharmaceutical preparations, insecticides, surfactants, explosives, plastic monomers, ion 16 17 exchange resins, rubber accelerates, cellulose acetate, rayon, photographic developers, and in the tanning and dyeing industries (HSDB 2006). MMA is manufactured by several methods, 18 19 including heating methanol, ammonium chloride, and zinc chloride to approximately 300°C; 20 reacting ammonia and methanol at high temperature and pressure in the presence of silica-21 alumina catalyst; and by the reductive amination of formaldehyde (Cavender 2001). In the U.S., MMA is a high production volume chemical with an annual production volume of over 50 22 23 million pounds in 1985 (HSDB 2006). In 1997, the demand for the methylamines (MMA, 24 dimethylamine [DMA], and trimethylamine [TMA]) was estimated as 318 million lbs (Chemical Marketing Reporter 1997). Selected physical and chemical properties of MMA are listed in 25 26 Table 2.

~	_
2	/

TABLE 2. Physical and Chemical Properties of Monomethylamine				
Parameter	Value	Reference		
Synonyms	Monomethylamine; MMA; amino- methane; methanamine;	O'Neil et al. 2001		
Chemical Formula	CH ₃ NH ₂	NIOSH 2006a		
Molecular Weight	31.06	O'Neil et al. 2001		
CAS Registration Number	74-89-5	O'Neil et al. 2001		
Physical State	Colorless gas	NIOSH 2006a		
Water Solubility	Very soluble	Cavender 2001		
Acid ionization constant, pK _a	10.65 at 25°C	Cavender 2001		
Vapor Pressure	2 atm at 25°C	Cavender 2001		
Vapor Density (Air =1)	1.07	Cavender 2001		
Liquid Density (water =1)	0.7691	Cavender 2001		
Melting Point	-93.5°C	O'Neil et al. 2001		
Boiling Point	-6.3°C at 760 torr	O'Neil et al. 2001		
Explosive Limits	4.9 to 20.7 vol% in air	NIOSH 2006a		
Conversion Factors	$1 \text{ ppm} = 1.27 \text{ mg/m}^3$; $1 \text{ mg/l} = 783 \text{ ppm}$	NIOSH 2006a		

1 2. HUMAN TOXICITY DATA

2 **2.1.** Acute Lethality 3

4 No quantitative human acute exposure studies were located. Yang et al. (1995) described 5 the care and treatment of 35 people accidentally exposed to MMA vapor that leaked from an 6 overturned truck carrying liquid MMA through a residential area in China. The exposure 7 duration was unknown, but was certainly no more than a few hours. The exposed group of 18 8 males and 17 females were 7-71 years old, and were hospitalized within 7-8 hours of exposure. 9 All had varying degrees of respiratory toxicity, including difficulty breathing, hoarse voice, dry 10 hurting throat, pink saliva, and chemical burns that led to edema and tissue damage of the nose, mouth, and lungs. Many had lesions of the eyes (lids stuck together and painful, cloudy cornea, 11 impaired eyesight) and painful burns on exposed skin, with drainage and bleeding. Other 12 13 symptoms included coma, fainting, dizziness, headache, nausea, vomiting, stomach ache, black 14 stool, high body temperature (up to 39.5°C), rapid heart rate, circulatory failure, and seizures. 15 The patients were treated with oxygen and various antibiotics and rinses (boric acid, sodium bicarbonate, hydrogen peroxide), and every effort was made to keep their respiratory systems 16 17 clear of the viscous mucous lumps of tissue that obstructed breathing. No one lost their evesight, 18 but 6 of the 35 people died within 10 days of exposure. The period of highest mortality was 1-4 19 days after exposure, the major cause being chemical burns and tissue death of the lungs.

20

21 **2.2.** Nonlethal Toxicity

22 2.2.1. Odor Threshold/ Odor Awareness

23

MMA has a pungent, fishy odor. The MMA odor awareness threshold in humans was reported as 0.021 ppm (Leonardos et al. 1969), 0.02-9.4 ppm (Ruth 1986), 0.0009-4.7 ppm (AIHA 1989), and 3.2 ppm (Amoore and Hautala 1983). An odor awareness threshold (Lim_{olf}) of 0.008 ppm was determined in 31 volunteers aged 18 to 50 by Dabaev (1981). Olfactory fatigue to MA occurs readily (Sutton 1963).

29

A level of distinct odor awareness (LOA) of 0.56 ppm was calculated for MMA based on an odor threshold of 0.035 ppm (Ruijten 2005). The LOA represents the concentration above which it is predicted that more than half of the exposed population will experience at least a distinct odor intensity, and about 10 % of the population will experience a strong odor intensity. Calculations for the LOA are in Appendix A.

35

36 **2.2.2.** Incidental or Occupational Exposure

37

38 No studies were located in which the MMA air concentration, duration of exposure, and 39 resulting effects were all quantified. The concentration of MMA, DMA (dimethylamine), and 40 ammonia in workroom air and in the workers' urine were measured over a 24-hour period in a 41 German factory processing DMA (Bittersohl and Heberer 1980). Air measurements taken at 14 42 locations in the factory (30-minute sampling time) revealed MMA levels of 0.55-29 ppm (13/14 43 were <3 ppm), DMA levels of 0.65-18 ppm (10/14 were <7 ppm), and ammonia levels of 1.4-50 44 ppm (9/14 \leq 12 ppm). It was not noted whether the workers experienced any adverse effect from 45 the exposures. The results of the excretion study are described in Section 4.1.

Secondary sources reported the irritation threshold of MMA as 7.9 ppm (Izmerov et al.
1982) and 18 ppm (Ruth 1986). Exposure to 10 ppm MMA for a prolonged period was
reportedly not irritating, possibly due to olfactory fatigue, which is caused by aliphatic amines
(Sutton 1963). A worker exposed to 25 ppm MA reported "some irritation," whereas 2-60 ppm
caused "allergic or chemical bronchitis," but no other exposure details were provided (ACGIH
1992).

8 A secondary source reports that "methylamines" (defined as MMA, TMA, and DMA) 9 have a pungent, fishy odor below 100 ppm, but at air concentrations "somewhere in the range of 10 100-500 ppm," their odor is indistinguishable from that of ammonia (Deichmann and Gerarde 1969). Short exposures (unknown duration) to 20-100 ppm MMA were reported to cause 11 irritation of the eyes, nose, and throat, whereas at >100 ppm, MMA vapors are "intolerably 12 13 ammoniacal," and caused irritation of the nose and throat, violent sneezing, coughing, a burning 14 sensation of the throat, larynx constriction, difficulty breathing, pulmonary congestion, and lung 15 edema (Sutton 1963; Deichmann and Gerarde 1969).

16

18

17 **2.3.** Neurotoxicity

The only report of MMA neurotoxic effects to humans was made by Yang et al. (1995) in their description of the accidental exposure to MMA vapor of 35 people who were hospitalized. In addition to severe respiratory and ocular effects, symptoms included coma, fainting, dizziness, headache, nausea, vomiting, and seizures. The exposure concentration and duration were not reported but were certainly a small fraction of a day.

24 25

26 27

28

30 31

32

34 35

36

37

39

2.4. Developmental and Reproductive Toxicity

No human data regarding MMA reproductive or developmental toxicity were located.

29 2.5. Genotoxicity

No data were found on the genotoxic potential of MMA in humans.

33 **2.6.** Carcinogenicity

No human carcinogenicity studies were found for MMA, and no regulatory bodies have evaluated its carcinogenic potential.

38 2.7. Summary

40 MMA has a pungent, fishy odor with an odor awareness threshold of 0.0009-4.7 ppm and 41 an irritation threshold of 7.9-18 ppm. Olfactory fatigue to MMA occurs readily. Secondary 42 source reports indicate that exposure to 20-100 ppm irritates the eyes, nose, and throat, and 43 concentrations >100 ppm are "intolerably ammoniacal," causing irritation of the nose and throat, burning throat, larynx constriction, difficulty breathing, pulmonary congestion, and lung edema. 44 45 No studies were located that evaluated MMA developmental or reproductive toxicity, 46 genotoxicity, or carcinogenicity to humans. The accidental poisoning (undefined exposure time 47 or concentration) of 35 people was described in which six people died within 10 days of

48 exposure, mainly due to lung chemical burns and tissue death. Other effects included difficulty

breathing, chemical burns of the nose, mouth, eyes, and exposed skin, coma, dizziness, headache, nausea, black stool, high body temperature, rapid heart rate, and circulatory failure.

The available acute lethality animal studies are presented in Table 3.

3 4

1

2

3. ANIMAL TOXICITY DATA

3.1. **Acute Lethality**

	TABLE 3. Monoethylamine Acute Lethality Animal Studies					
Species	Exposure Time	Concentration (ppm)	Mortality	Effects (Reference)		
	6 min 20 min 60 min	17,600-35,300 10,600-17,400 4100-8670	$\begin{array}{c} LC_{50} = 24,400 \text{ ppm} \\ LC_{50} = 9600 \text{ ppm} \\ LC_{50} = 7110 \text{ ppm} \end{array}$	Labored breathing, rales, gasping, corneal opacity, lung lesions (IRDC 1992a)		
	60 min	1500 3000 6000 12,000 24,000	0/10 2/10 6/10 10/10, 10/10 LC ₅₀ =4830 ppm	Rats huddled during exposure; necropsy of decedents showed congestion of the upper respiratory mucosa, lungs, and liver (Air Products 1976)		
	150 min	100, 200, 300, 400, 500	LC ₅₀ =448 ppm (24-hour)	24-hour observation, static exposure; labored breathing, dyspnea, lacrimation, excitement, facial skin necrosis; lung hemorrhage; increased lung lipid peroxidation at 400 and 500 ppm (Sarkar and Sastry 1992)		
Rat	4 hrs	1865 – 10469	LC ₅₀ =4800 ppm	Dyspnea, restlessness, apathy, convulsions, redness and/or hemorrhage of mouth, nose, and eyes, copious salivation, spasmodic eye closures, bronchopneumonia; signs persisted for 8-14 days after exposure (Koch et al. 1980)		
	4 hrs	517 1465 2063 3213	2/20 5/20 17/20 20/20 LC ₅₀ =1740 ppm	Lethality as noted; at unspecified concentrations: respiratory irritation, difficult breathing, nasal lesions, corneal opacity, lung congestion, emphysema, gastric bleeding, gum and tongue cyanosis, facial skin damage, renal cortex necrosis in females (Klimisch et al. 1983)		
	6 hr/d, 5 d/wk, for 2 wk	75 250 750	0/10 0/10 5/10	All had red nasal discharge, severe at \geq 250 ppm; at 75 ppm had mild irritation of nasal turbinates; at \geq 250 ppm had nasal lesions; at 750 ppm rats were hyperactive, aggressive, and had lung noise, labored breathing, salivation, ocular opacity, diarrhea, altered blood chemistry; pathology of bone marrow, lungs, liver; 5/10 died at \geq day 8 (Kinney et al. 1990)		
Mouse	2 hrs	unknown	LC ₅₀ =1890 ppm	Agitation, nasal blood discharge, labored breathing, cyanosis, head tremors, shaky gait, clonic spasms, death; pulmonary hemorrhage, pathology in blood vessels of internal organs and brain, liver, kidneys (Gorbachev 1957)		

1 3.1.1. Rats

2 3

Incomplete details are available from a secondary source (IUCLID 2004) of a one-hour 4 LC_{50} study in which male rats were exposed to 1500, 3000, 6000, 12,000, or 24,000 ppm MMA 5 (Air Products 1976). Exposure was whole-body in a 70-liter chamber with an airflow of 16.7 L/minute. The only reported clinical signs were that all rats huddled during exposure. The 6 7 incidence of mortality was 0/10, 2/10, 6/10, 10/10, and 10/10, respectively at exposure 8 concentrations of 1500, 3000, 6000, 12,000, and 24,000 ppm. The LC_{50} was approximated as 9 5000 ppm; an LC₅₀ of 4830 ppm was subsequently obtained using EPA BenchMark dose 10 software (version 1.3.2). All deaths occurred within four days of exposure. Necropsy, only performed on decedents, revealed congestion of the upper respiratory mucosa, lungs, and liver. 11 No other study details were available. 12

13

14 Koch et al. (1980) exposed 8-week-old female Wistar rats (10/group) for 4 hours to 1865-15 10.469 ppm at 22.3°C (experiment V), to 2778-6912 ppm at 22.2°C (experiment VIIIa), or to 2778-6912 ppm at 29.1°C (experiment VIIIb). The actual concentrations tested were not stated, 16 but only that they were monitored by gas chromatography and were a geometric progression 17 18 series using a factor of 1.25. A control group was included. Animals were exposed and 19 observed in colorless transparent cages. The post-exposure period was two weeks. The chamber 20 humidity, temperature, and CO_2 content (<0.2 vol %) were controlled. Inspiratory dyspnea was 21 observed in all animals within the first exposure hour, sooner at the higher temperature. During 22 the first hour of treatment, at least half the animals (at unspecified concentrations) displayed 23 restlessness, apathy, convulsions, rough unkempt fur, and severe irritation of the eyes and 24 respiratory tract (mucous membrane redness and/or hemorrhage of the mouth, nose, and eyes, 25 copious salivation, and spasmodic eve closures). The animals did not eat for 2-3 days and had 26 noisy breathing (whistling, rattling) due to bronchopneumonia, which was associated with 27 lethality. The symptoms increased in severity with dose and persisted for 8-14 days after 28 exposure. Lethality occurred in a few animals during exposure, was most frequent during days 29 1-6 after exposure, and was seen last on day 12 (temperature not specified). The incidence of lethality at specific concentrations was not stated, but a text figure suggested that mortality 30 31 increased proportionately to test concentration. LC_{50} values were calculated using the statistical 32 method of Spearman and Kärber and by probit analysis as approximately 4800 ppm at 22°C and 4400 ppm at 29°C. The mean survival time was 7.3 days at 22°C and 4.4 days at 29°C. 33 34

35 Groups of Wistar rats (10/sex/group) were exposed for 4 hours to 517, 1465, 2063, or 36 3213 ppm MMA, as determined by gas chromatography (Klimisch et al. 1983). During 37 exposure, the primary effect was ocular and nasal irritation and respiratory difficulty. Difficulty 38 breathing persisted after exposure, and was accompanied by ocular and nasal mucosal lesions, 39 with one case of corneal opacity. The concentrations at which these effects occurred, incidence, 40 and duration were not specified. Mortality over the 14-day observation period was 2/20, 5/20, 17/20, and 20/20, respectively, at 517, 1465, 2063, or 3213 ppm. Several animals died during 41 42 treatment at 2063 and 3213 ppm, but most deaths occurred 24-48 hours after exposure. 43 Necropsy revealed lung congestion, emphysema, decrease of mucus amount in the trachea, gastric bleeding, cyanosis of the gums and the tongue, facial skin damage, and necrosis in the 44 45 renal cortex of some females. The mean lethal MMA concentration was determined to be 46 between 1465 and 2,063 ppm. Using BenchMark dose software (Version 1.3.2), the calculated LC₅₀, BMCL₀₅, and BMC₀₁ are 1740, 1020, and 1150 ppm, respectively. The validity of the 47 48 BMCL₀₅ and BMC₀₁ values is questionable, since they are inconsistent with the study's finding 49 of 10% mortality at 517 ppm and 25% mortality at 1465 ppm.

1

2 Sarkar and Sastry (1992) exposed 2-month old female albino rats (number not stated) to 3 0, 100, 200, 300, 400, or 500 ppm MMA for 2.5 hours. Exposure was in a 12.5 L bell jar in 4 which a 40% aqueous MMA solution had been placed for 3 hours prior to the exposure. The 5 concentrations were not verified analytically. Animals were observed for 24 hours after 6 exposure, at which time survivors were sacrificed and the following samples collected: blood for 7 enzyme activity analysis (serum glutamate oxaloacetate transaminase, glutamate pyruvate 8 transaminase, lactate dehydrogenase and alkaline phosphatase); muscle to evaluate MMA levels; 9 and lungs to measure lipid peroxidation. The rats (not stated if some or all) exhibited labored 10 breathing, dyspnea, lacrimation, excitement, and facial skin necrosis. Necropsy showed lung 11 hemorrhage (did not state which organs were examined at necropsy) and skin necrosis. The number of rats that died at a given concentration was not stated, only that the LC₅₀ was 448 12 13 mL/L (i.e., 448 ppm) by the method of Litchfield and Wilcoxon (1949). Serum enzyme levels 14 and muscle MMA content did not differ from controls, but there were 58% and 78% increases in 15 lung lipid peroxidation at 400 and 500 ppm, respectively, consistent with the lung being a target 16 organ.

17

18 In an inhalation LC₅₀ study (IRDC 1992a; Ulrich et al. 1994), CD Sprague-Dawley rats 19 (5/sex/dose; 49-65 days old) were exposed whole-body to anhydrous MMA for 6 minutes 20 (17,600-35,300 ppm), 20 minutes (10,600-17,400 ppm), or 60 minutes (4100-8670 ppm). 21 Exposure concentrations were generated by diluting MMA gas with air, and were quantitated by IR spectroscopy. Animals were observed daily for 14 days and weighed on days 0, 7, and 14. 22 23 All animals were necropsied. The study results are summarized in Table 4. Observations in all 24 groups included labored breathing, rales, and corneal opacity that persisted throughout the study. 25 Body weight gains were decreased during the first week in both sexes, and in some cases during 26 the second week. Almost all deaths occurred during the first 3 days after exposure. Necropsy 27 revealed eve abnormalities (primarily corneal opacity) and lung congestion (red, discolored 28 lungs) at almost all test concentrations. The incidence of lung congestion was correlated with 29 lethality and was generally dose-related, particularly for the 60-minute exposure. Lethality was 30 clearly dose-related for the 60-minute exposure, but less so for the 6 and 20 minute exposures. 31 The LC₅₀ values were 24,400 ppm for 6 minutes, 9600 ppm for 20 minutes, and 7110 ppm for 60 32 minutes, as calculated by the method of C.I. Bliss (1938). The mortality data were subsequently 33 re-evaluated using EPA BenchMark dose software (Version 1.3.2.), which yielded LC₅₀ values 34 for 6, 20, and 60 minutes of 24,439, 9600, and 7108 ppm, respectively, and BMCL₀₅ values of 35 14,067 ppm, 489 ppm, and 4485 ppm, respectively. However, confidence in the values was 36 good for only the 60-minute mortality data (p=0.89), but poor for the 6- and 20-minute data (p= 37 0.15 and 0.06, respectively), which lacked a clear dose-response. 38

In a range-finding study, presumably with young adult male Crl:CD rats, the approximate
40 4-hour LC₅₀ was 4300 ppm (DuPont Company 1985). This study preceded the repeat-dose study
41 by Kinney et al. (1990) described below.

TABLE 4. Summary of Lethality Data in Rats Following Exposure to Monomethylamine						
Exposure	MMA	T (1 1)		Necropsy gross findings		
duration	(ppm)	Letnanty	Observations; calculated LC ₅₀	Eye abnormalities	Congested or red lungs	
6 minutes	17,600 22,500 26,200 26,500 35,300	0/10 3/10 9/10 6/10 9/10	Labored breathing, rales, gasping, corneal opacity; LC ₅₀ =24,400 ppm	10/10 10/10 7/10 10/10 9/10	0/10 3/10 9/10 4/10 8/10	
20 minutes	10,600 10,800 11,000 11,600 13,900 17,400	3/10 7/10 6/10 10/10 8/10 9/10	Labored breathing, rales, gasping, corneal opacity; one 10,800 ppm female had abnormal gait immediately after exposure; LC ₅₀ =9600 ppm	7/10 10/10 10/10 10/10 10/10 10/10	2/10 6/10 7/10 8/10 8/10 9/10	
60 minutes	4100 6370 7000 7100 8670	0/10 2/10 4/10 6/10 9/10	Labored breathing, rales, gasping, corneal opacity; $LC_{50}=7110$ ppm	4/10 8/10 5/10 7/10 10/10	0/10 2/10 4/10 6/10 8/10	

Source: IRDC 1992a.

1

2 3 Kinney et al. (1990) exposed groups of eight-week old male CD rats (10/group) nose-4 only to 0 (air only), 75, 250, or 750 ppm MMA for 6 hours a day, 5 days a week for 2 weeks (2-5 day rest after 5th day). The concentrations were generated by diluting pure MMA gas with 15 6 L/min air, and were confirmed analytically by IR spectroscopy at 30-minute intervals. Rats were 7 weighed and observed daily, and blood and urine were collected from all animals at the end of 8 exposure (10/group), and at the end of a two-week recovery period (5/group) for evaluation of 9 clinical pathology parameters. Half of the rats were sacrificed immediately after the last 10 exposure, and the other five after the recovery period, except for the 750 ppm group. Four rats in the 750-ppm group died or were sacrificed in extremis during exposures 8 or 10 and one died on 11 12 the 12th day of the recovery period. Of the five survivors, three were sacrificed after the 10th 13 exposure, and two after the 2-week recovery. All animals were necropsied and tissues examined 14 by light microscopy, and selected organs were weighed (heart, lungs, liver, spleen, kidneys, 15 testes, thymus).

16 17 All groups exhibited red nasal discharge, which was most severe at 250 and 750 ppm. 18 Rats in the 750-ppm group were hyperactive, aggressive, and had hunched posture, lung noise, 19 labored breathing, gasping, dry red nasal and ocular discharge, salivation, wet perineum, 20 diarrhea, ruffled fur, and facial hair loss. During the exposures, no adverse clinical signs were 21 observed in the control, 75 ppm, or 250 ppm exposure groups. During the recovery period, the 22 group exposed to 750 ppm continued to have lung noise, clear or dry red nasal discharge, ocular 23 opacity, diarrhea and discolored fur (and one died on day 12). Body weight and weight gain were decreased at only 750 ppm, starting on day 2, the decrease being significant (6-30%; 24 p < 0.05) from exposure day 3 through the 2-week recovery period. Rats in the 750-ppm group 25 also had significantly (p<0.05) increased erythrocyte, neutrophil, and monocyte counts, 26 27 hemoglobin, hematocrit, serum alanine and aspartate aminotransferase, blood urea nitrogen and 28 cholesterol, decreased serum total protein, and acidic urine (also seen at 250 ppm). The most

29 notable organ weight changes were decreased absolute and relative weight of the spleen and

1 thymus at 750 ppm. After the 14-day recovery period, the clinical chemistry and organ weights

2 either returned to normal or improved. Pathomorphological changes at 750 ppm consisted of

3 distended gastrointestinal tract, small spleen and thymus (due to depletion of lymphocytes), bone

- 4 marrow hypocellularity, focal hepatic necrosis, dark or dull red lungs, red nasal discharge,
- 5 congested brain, and nasal lesions (degeneration, severe necrosis leading to atrophy, and septal
- perforation in the nasal turbinate mucosa). At 250 ppm, the nasal mucosa was the primary
 target, lesions consisting of focal erosions and/or ulcerations, blood clots, and degeneration
- and/or necrosis. Blood clots were still visible after the two-week recovery period, but the lesions
- 9 (necrosis/ulceration) were not detected following the two-week recovery period, but the lesion
- exception of elevated BUN values, the clinical chemistry and hematologic findings in the 250-

11 ppm group were normal. Animals exposed to 75 ppm had "only a mild irritation of the nasal

12 turbinate mucosa," which was not observed following the two-week recovery period.

13

14 **3.1.2.** Mice

Gorbachev (1957) determined an LC₅₀ of 1890 ppm for mice exposed for 2 hours to
MMA. No further method details, including the test concentrations, were available. MMA
intoxication was characterized by agitation, nasal blood discharge, labored breathing, cyanosis,
head tremors, shaky gait, heightened reflexes, clonic spasms, and death from respiratory
standstill. Pathomorphological study of dead animals revealed pulmonary hemorrhage, necrotic
tracheobronchitis, and hyperemia in blood vessels of internal organs and of the brain. Animals
that died later had dystrophic changes in the liver and kidneys.

3.2. Non-Lethal Toxicity

The available non-lethal MMA inhalation toxicity animal data are presented in Table 5.

	TABLE 5. Non-lethal Inhalation Toxicity Studies for Monomethylamine					
Species	Exposure Time	Concentrat ion (ppm)	Effect (Reference)			
Rat	30 min	465	Sacrificed after 24 hrs.; no visible respiratory distress but had thoracic cavity filled with a blood clot and serosanguinous fluid, marked interstitial pneumonitis, splitting of blood vessel coats (Jeevaratnam and Sriramachari 1994)			
Rat	30 min	465	Sacrificed after 1, 4, or 10 wks.; after 1 wk lungs were pale with extensive edema and monocyte and histiocyte infiltration; after 4 wks had mild interstitial edema and severe interstitial pneumonitis that progressed to fibrosis after 10 wks (Sriramachari and Jeevaratnam 1994)			
Mouse	15 min	85-192	$RD_{50} = 141 \text{ ppm}$ (calculated 50% decrease in breathing rate) (Gagnaire et al. 1989)			
Rabbit	40 min	102	Threshold of irritation, manifested as decreased respiratory rate (Izmerov et al. 1982; Gorbachev 1957)			
		39	Disrupted conditional and reflex activity (Gorbachev 1957)			
Cat	30 min	157	Threshold of irritation, manifested as increased salivation (Izmerov et al. 1982; Gorbachev 1957)			

1 3.2.1. Rats

2 3 Jeevaratnam and Sriramachari (1994) exposed four male Wistar rats for 30 minutes to 4 19 umol/L MA (465 ppm). The atmosphere was generated from a 40% aqueous solution that 5 was heated in a static exposure chamber and the air concentration was calculated and not 6 measured analytically. The animals were sacrificed after 24 hours and examined histologically, 7 although only the results for the lungs were reported. The animals showed no visible signs of 8 respiratory distress and none died. Histopathological examination showed the thoracic cavity of 9 almost all animals (not specified) was "filled with a blood clot and serosanguinous fluid. The 10 lungs were moderately heavy but there was no obvious evidence of hemorrhages." The lungs displayed marked interstitial pneumonitis (cellular elements included mononuclears, 11 macrophages, and lymphocytes) and perivascular edema without interstitial damage or intra-12 13 alveolar edema. Some of the larger blood vessels had splitting or widening of the muscular coats 14 without endothelial damage.

15

16 A follow-up study was conducted by the same laboratory, using the same experimental 17 set-up, in which male Wistar rats were exposed for 30 minutes to 19 umol/L MA (465 ppm) 18 (Sriramachari and Jeevaratnam 1994). However, instead of being sacrificed 24 hours after 19 exposure, four rats were sacrificed at 1, 4, and 10 weeks after exposure and their lungs examined 20 histologically. The appearance and behavior of the rats were not reported. After one week, the 21 lungs were pale and translucent and there was extensive edema. The lung parenchyma and 22 perivascular areas were filled with a clear aqueous liquid with widespread tissue separation that 23 extended to the walls of the blood vessels. The interstitial spaces were infiltrated with 24 mononuclear cells and histiocytes without foamy cells. Four weeks after exposure, the lungs 25 showed severe interstitial pneumonitis but only mild interstitial edema, and reticulin staining 26 revealed fibrillogenesis in the interstitial septa. After 10 weeks, the lungs had severe interstitial 27 pneumonitis that extended into peribronchial and perivascular areas, and was accompanied by an 28 abundance of collagen fibers. Thus, although pulmonary edema was seen primarily after one 29 week, the interstitial pneumonitis progressed to fibrosis over time. 30

31 **3.2.2.** Mice

The RD₅₀ (i.e., concentration of MMA causing a 50% decrease in the breathing rate) of male OF₁ Swiss mice was determined to be 141 ppm by Gagnaire et al. (1989) in an oronasal exposure study. Exposure was for a total of 15 minutes to 85-192 ppm MA, which was delivered to the 200 liter stainless steel exposure chamber by bubbling air through the liquid amine. The effect on breathing rate was seen within 30-60 seconds, and recovery after the 15-minute exposure occurred within one minute.

- 40 3.2.3. Rabbits
- 41

The irritating properties from a single inhalation exposure of MMA in rabbits were most vividly observed as breathing inhibition (Gorbachev 1957; Izmerov et al. 1982). The threshold for irritation for a 40-minute exposure, manifest as a decreased respiratory rate, was 102 ppm. However, exposure to 39 ppm MMA for 40 minutes disrupted the conditional and reflex activity in the animals. No further study details were available.

3.2.4. Cats

In cats, the threshold for MMA irritation, manifested as an increase in salivation, was 157 ppm for a single 30-minute exposure (Gorbachev 1957; Izmerov et al. 1982). No further study details were available.

Subchronic and Chronic Toxicity 3.3.

9 A chronic experiment tested the effects of continuous exposure for six months to 0 10 (control), 0.213, 0.042, 0.008, or 0.003 ppm MMA on 800 male and female white rats (Dabaev 1981). Parameters monitored included the general status and activity of the animals, body mass, 11 routine biochemical and immunological studies, the mass of internal organs, and histological 12 13 analysis. MMA inhalation caused adverse effects on the nervous system (decreased orientational 14 activity, summation threshold index, cholinesterase activity), and decreased levels of 15 erythrocytes, and the activity of blood peroxidase and catalase activity. Neurological effects were seen earliest (second test week) and were the most pronounced in the 0.213 ppm group. At 16 0.042 ppm, neurological effects were seen by test day 48-49, at 0.008 ppm after 159-180 days, 17 18 and no changes occurred at 0.003 ppm. The high-dose animals had adverse histopathological 19 changes in the liver (marked hepatocyte protein and lipid dystrophy, lipdosis, decreased 20 glycogen content), kidneys (lymphoid follicle dystrophy), lungs (inflammation), and heart 21 (myocardial dystrophy). Less marked changes were seen in the liver and lungs of the 0.042 and 22 0.008 ppm groups, whereas none were found at 0.003 ppm. 23

3.4 Neurotoxicity

26 Neurotoxic signs were reported in several animal studies at concentrations that caused 27 marked respiratory and ocular irritation and lesions, and in some cases death. Female Wistar rats 28 exposed for 4 hours to 1865-10,469 ppm displayed restlessness or excitement, apathy, 29 convulsions, rough unkempt fur, and severe irritation of the eves and respiratory tract, and some 30 died (at unspecified concentrations) (Koch et al. 1980). The symptoms increased in severity with 31 dose and persisted for 8-14 days after exposure. Male CD rats exposed nose-only to 750 ppm 32 MMA for 6 hours a day, 5 days a week for 2 weeks, were hyperactive, aggressive, and had 33 hunched posture, labored breathing, nasal and ocular discharge, salivation, wet perineum, 34 diarrhea, ruffled fur, and 5/10 died starting on day 8 of exposure (Kinney et al. 1990). During 35 the recovery period, the rats continued to have respiratory and ocular signs, diarrhea, and 36 discolored fur. Mice exposed for 2 hours to MMA (concentrations not specified but the LC_{50} 37 was 1890 ppm) showed agitation, nasal blood discharge, labored breathing, cyanosis, head 38 tremors, shaky gait, heightened reflexes, clonic spasms, and death from respiratory standstill 39 (Gorbachev 1957). Microscopic findings included lung lesions and hyperemia in blood vessels 40 of the internal organs and of the brain. Gorbachev (1957) reported that exposure to 39 ppm MMA for 40 minutes disrupted the conditional and reflex activity of rats, and exposure to 157 41 42 ppm for 30 minutes caused increased salivation in cats, but no other study details were available. 43

44 Pirisino et al. (2005) has proposed that MMA, like ammonia, may modulate neuron firing 45 (see Section 4.2.) by targeting the voltage-operated neuronal potassium channels. MMA also 46 stimulated nitric oxide (NO) release from the rat hypothalamus, suggesting a role in neurodegenerative diseases. Like ammonia, MMA was hypophagic in mice (causing them to eat 47 48 abnormally small amounts of food) without having amphetamine-like effects (no induction of 49 dopamine or serotonin release).

24

1 2 3 4

3.5. Developmental and Reproductive Toxicity

Guest and Varma (1991) conducted *in vivo* and *in vitro* studies to investigate the 5 developmental toxicity of MMA in mice. Pregnant CD-1 mice were injected intraperitoneally (*ip*) with 0.25, 1, 2.5, or 5 mmol/kg MMA daily, from gestational day (GD) 1 to 17. Dams were killed 6 7 on GD 18. Parameters examined included maternal body weight and mortality, fetal and placental 8 weight, resorptions, and fetal death. Half of the embryos were used for visceral examination and 9 half for skeletal examination. For the *in vitro* experiments, dams were sacrificed on the morning of day 8 and the embryos cultured 48 hours in 0.5 to 2.0 mM MMA. On day 10, embryo development 10 was scored by the method of Brown and Fabro (1981). The embryos were frozen at -80°C, 11 homogenized, and used to determine levels of DNA (diphenylamine method), RNA (orcinol 12 13 reaction), and protein (Coomassie staining). There was a decrease in fetal body weight in vivo but 14 no effect on maternal body weight. MMA did not cause maternal toxicity or adversely affect 15 pregnancy outcome or the incidence of external, visceral, or skeletal abnormalities. The cultured 16 mouse embryos, however, had concentration-dependent decreases in the yolk sac diameter, crown-17 rump length, head length, fetal survival, developmental score, somite number, and content of DNA, 18 RNA, and protein. At ≥ 0.5 mM, there was retardation in forelimb and branchial bar development 19 relative to other organs, and the embryos were dorsally convex at 1 mM.

20

21 Male white rats exposed by inhalation continuously to 0.008, 0.042, or 0.213 ppm MMA for 6 months had decreased total spermatozoid count and motility, atrophy of spermatogenic 22 23 epithelium, and decreased relative and absolute mass of the testicles at 0.213 ppm (Dabaev 24 1981). Testicular changes were similar but less pronounced at 0.042 ppm, were seen only 25 occasionally at 0.008 ppm, and were not seen at 0.003 ppm. Similarly exposed females had a 26 prolonged diestrous phase of the estrous cycle after four months at 0.042 and 0.213 ppm 27 (Dabaev 1981). Male and female rats were mated (3 females to one male), but details of the 28 exposure, mating, and embryonic evaluation protocol were not provided. Treatment resulted in 29 a dose-dependent increase in post-implantation embryonic deaths (3% in controls; 7%, 17%, and 30 62% at 0.008, 0.042, or 0.213 ppm, respectively) and considerable enlargement of post 31 implantation embryos, although the progeny were not examined for developmental anomalies. 32

Groups of six female rats 12-13 weeks of age with regular estrous cycles were administered 5 mg/kg/day MMA by stomach tube and mated with non-treated rats with proven fertility (Sarkar and Sastry, 1990). Treatment did not cause changes in the estrous cycle, reproductive indices of fertility, gestation, live birth, lactation, average weight of pups at birth or weaning, although the average litter size was significantly decreased (6.33 vs. 8.83 in control group, p<0.05). Many experimental details (e.g., treatment duration of dams), were absent in the study report.

40

41 **3.6.** Genotoxicity 42

MMA was tested in the *Salmonella*/microsome preincubation assay at 0.033, 0.10, 0.33,
1.0, 3.3, and 10 mg/plate in strains TA98, TA100, TA1535, and TA1537, in the presence and
absence of metabolic activation (Mortelmans et al. 1986; NTP 1986). The tests produced
negative results and toxicity was seen at only 10 mg/plate (total clearing of background lawn).
Meshram et al. (1992) tested 0.08-64 mg/plate MMA hydrochloride (0.04-29 mg/plate MMA)
by liquid preincubation using strains TA98, TA100, and TA104 in the presence and absence of
rat liver S9 mixture. A mutagenic response was not seen in any of the tested strains, and

1 cytotoxicity occurred at 64 mg/plate. Hussain and Ehrenberg (1974) found that Escherichia coli SD-4 incubated with 0.25 or 0.50 M MMA for 1 hour did not mutate to become

2

3 streptomycin-resistant, whereas cells incubated with 1.00 M MMA had a slight increase in the 4 number of mutants (historical control ranges were not provided, however).

5 6

7

8

9

In contrast, MMA was mutagenic at the tk locus in the L5178Y mouse lymphoma cell forward mutation assay, in the absence of exogenous metabolic activation (Caspary and Myhr 1986). Duplicate assays tested concentrations of 0-5 mM. Mutation frequency was increased at >2.5 mM in one assay and at >3.8 mM in the second assay, and cytotoxicity occurred at 400 nL/mL in both assays.

10 11 12

13

24

Carcinogenicity 3.7.

14 No studies were found that examined the carcinogenic potential of MMA in animals. Under acidic (e.g. stomach) conditions, the related compounds DMA and TMA, but not MMA, 15 16 can react with nitrite to form dialkylnitrosamines, which are known carcinogens. However, 17 neither DMA nor TMA have shown carcinogenic activity in long-term animal studies. Lijinsky 18 and Taylor (1977) found that chronic dietary administration to rats of the TMA metabolite 19 TMAO did not increase tumor formation. A 2-year inhalation study with DMA found no 20 increase in neoplasia in rats or mice exposed to 10, 50, or 175 ppm 6 hours/day, 5 days/week 21 (CIIT 1990). 22

23 3.8. **Summary**

25 Rat and mouse MMA inhalation studies found signs consistent with severe irritation of 26 the respiratory tract and eves (labored breathing, rales, lacrimation, nasal and ocular discharge) 27 and neurotoxicity (hyperactivity, apathy, head tremors, shaky gait, convulsions, salivation, and 28 diarrhea). The symptoms generally increased in severity with test concentration and persisted for 29 one to two weeks after exposure. Macroscopic and/or microscopic lesions occurred consistently 30 in the eyes (corneal opacity) and lungs (congestion, hemorrhage, emphysema, interstitial 31 pneumonitis, perivascular edema, and blood vessel damage that progressed to pulmonary 32 fibrosis). Some studies also found facial skin necrosis, gastric bleeding, cyanosis of the gums 33 and the tongue, renal cortex necrosis, nasal lesions, and hematological alterations. Rat LC_{50} studies obtained values of 4300 ppm and 1740 ppm for 4 hours (Koch et al. 1980; Klimisch et al. 34 35 1983), 448 ppm for 2.5 hours (Sarkar and Sastry 1992), 24,400 ppm for 6 minutes, 9600 ppm for 20 minutes, and 4830 ppm and 7110 ppm for 60 minutes (Air Products 1976; IRDC 1992a), and 36 37 a mouse 2-hour LC₅₀ of 1890 ppm was obtained by Gorbachev (1957). The reasons for the 38 inconsistencies among some of the data are unclear; it is possible that the rat 2.5-hour LC_{50} of 39 448 ppm was a poor estimate of the actual test concentration as this was a static exposure and 40 analytical concentrations were not determined. Gagnaire et al. (1989) determined an RD₅₀ of 141 ppm for male OF₁ Swiss mice exposed to MMA for 15 minutes. An irritation threshold study 41 42 found that rabbits exposed for 40 minutes to 102 ppm had a decreased the respiratory rate and at 43 39 ppm had disrupted conditional and reflex activity, whereas a 30-minute exposure to 157 ppm 44 caused increased salivation in cats (Gorbachev 1957; Izmerov et al. 1982). 45

46 MMA neurotoxic potential was shown in several animal studies, at concentrations that 47 caused marked respiratory and ocular irritation and lesions, and in some cases death. A recent 48 study has suggested that MMA may modulate neuron firing. Effects on development and 49 reproduction were not evaluated after an acute inhalation exposure, although male rats exposed

1 for 6 months to 0.042 or 0.213 ppm had adverse effects on spermatogenesis and decreased 2 testicular weight (Dabaev 1981). MMA oral or intraperitoneal administration caused decreased 3 fetal body weight in mice and decreased litter size in rats (Guest and Varma 1991; Sarkar and 4 Sastry 1990). MMA and MMA-HCl were generally negative in bacterial mutagenicity studies, 5 but induced mutations in mouse lymphoma cells in the absence of metabolic activation (Caspary 6 and Myhr 1986). There was no evidence of MMA carcinogenic potential in animals. 7 8 4. SPECIAL CONSIDERATIONS 9 4.1. **Metabolism and Distribution** 10 11 MMA is metabolized in mammals by semicarbazide-sensitive amine oxidase (SSAO: 12 EC 1.4.3.6), to form formaldehyde, hydrogen peroxide, and ammonia (Yu 1990). The SSAO 13 responsible for MMA metabolism has benzylamine oxidase activity. SSAO is believed to be 14 involved in the regulation of leukocyte trafficking to sites of inflammation, glucose transport 15 signaling in adjocytes, and adhesive events between leukocytes and vascular walls (Yu et al. 16 2006). SSAO was found to be highly homologous to vascular adhesion protein-1 (VAP-1) 17 cloned from human gut smooth muscle, and is likely the same protein (Smith et al. 1998). 18 Plasma membrane-bound SSAO is found in a variety of tissues in animals, the highest 19 concentrations being in vascular endothelial cells, smooth muscle cells, and adipocytes, but a 20 soluble form is also present in blood (Lyles 1996; Stolen et al. 2004). Rodents and humans have 21 high lung SSAO activity, which was found to be greater in humans than rats (Lewinsohn et al. 1978; Boomsma et al. 2000; see Section 4.4.1.). 22 23 24 The fate of MMA following inhalation exposure was examined in only one study, where 25 MMA. DMA, and ammonia were measured in the urine of workers over a 24-hour period in a 26 German factory processing DMA (Bittersohl and Heberer 1980). Air amine levels measured at 27 14 locations in the factory were 0.55-29 ppm MMA (13/14 were <3 ppm), 0.65-18 ppm DMA 28 (10/14 were < 7 ppm), and 1.4-50 ppm ammonia $(9/14 \le 12 \text{ ppm})$. DMA excretion increased in 29 parallel with DMA exposure during the work day, whereas urinary MMA levels remained 30 relatively constant, being about 10 to 30-fold lower than urinary DMA levels. 31 32 Rechenberger (1940) reported that a human subject who ingested 2, 4, or 10 g MMA-33 HCl did not experience any adverse effects, and his urine contained 1.74-1.93% of the ingested (unchanged) MMA within 24 hours of exposure. 34 35 The toxicokinetics of $[^{14}C]$ -MMA-HCl (75 µg/kg) was studied after *ip* injection of 36 female Wistar rats and female Dutch rabbits (Dar et al. 1985; Dar and Bowman 1985). Urine 37 38 and expired air were collected for 24 hours in metabolism cages; feces were not collected due to 39 expected low radioactivity. The majority of the administered radioactivity was excreted as 40 14 CO₂ in both species. At 2, 6, and 24 hours after treatment, rats exhaled 36, 46, and 53%,

41 respectively, of the given dose, and rabbits exhaled 11, 32, and 46% of the given dose as $^{14}CO_2$.

42 The 24-hour urine contained 14% and 6% of the given radioactivity of rats and rabbits,

43 respectively, of which approximately 2% and 6%, respectively, was [14 C]-methylurea labeled in

44 the methyl and carbonyl positions. A group of similarly MMA-treated rats that was pretreated

45 with antibiotics to sterilize the gut had total 24-hour ${}^{14}CO_2$ and urinary excretion similar to a 46 non-pretreated group. This indicated that intestinal microorganisms do not play a major role in

47 MMA metabolism (Dar et al 1985).

Streeter et al. (1990) examined the disposition of MMA in male Fischer-F344/NCr-rats 1 (53 days old) administered 18 μ m/kg ¹⁴C-MMA or 3 μ m/kg ¹⁴C-MMA-d₃ (deuterated) 2 3 intravenously (iv). Twenty blood samples were collected over a period 50 minutes and their MMA and total radioactivity content measured. Urine samples were collected from a separate 4 5 group of MMA-treated rats over 0-24, 24-48, and 48-72 hours after dosing. To determine bioavailability of MMA, rats were also gavaged with 0.08 mmol/kg ¹⁴C-MMA or 0.09 mmol/kg 6 7 ¹⁴C-MMA-d₃. Following *iv* administration, the elimination of MMA from the blood was 8 biphasic first-order for both compounds, with a terminal half-life $[t_{4}(\beta)]$ of 19.1 minutes for 9 ¹⁴C-MMA and 40.0 minutes for ¹⁴C-MMA-d₃. Calculation using the AUC (area under the 10 curve) for unmetabolized MMA and the total radioactivity after *iv* and oral dosing indicated that MMA systemic bioavailability and total absorption from the gut were, respectively, 69% and 11 93% for MMA and 121% and 120% for MMA-d₃. The latter values were considered erroneous 12 13 and due to the incomplete elimination of the compound during the experimental timeframe (for 14 blood collection). The vast majority of the radioactivity in the 0-72-hour urine of *iv*-treated rats consisted of unchanged MMA, which represented 11% and 48% of the given dose for ¹⁴C-MMA 15 and ¹⁴C-MMA-d₃, respectively, and corresponded to renal blood clearances of 6 and 12 16 mL/minute/kilogram. The remainder of the urinary radioactivity had HPLC peaks with retention 17 18 times consistent with those of formaldehyde, monomethylurea, and formate. Deuterium isotope effects were calculated to be 1.9 for the terminal half-life after an *iv* dose, 2.2 for systemic 19 20 bioavailability, and 1.8 for systemic blood clearance. The magnitude of the deuterium isotope 21 effects suggests that C-H bond breakage may be the rate-determining step in MMA biotransformation (Klinman 1978). 22

23 24

25

4.2. Toxicity Mechanisms

The mechanism of MMA toxicity has not been defined, although its irritant properties are likely related to its high alkalinity (pK_a of 10.65 at 25°C) and corrosiveness to exposed tissues such as skin, eyes, and the respiratory mucosa. Thus, MMA has been reported to cause respiratory and ocular irritation in both humans and animals and at sufficiently high concentrations causes breathing difficulties, lesions of the eyes and lungs, and death associated with lung lesions. MMA vapor is also associated with systemic effects in exposed animals (e.g., neurotoxicity, pathological alterations of the liver, thymus, spleen, and brain), the etiology of which is less clear.

34 Since SSAO has high activity in vascular tissue, it was proposed that elevated levels of 35 formaldehyde-protein cross-links may cause vascular disease. Consistent with this theory, MMA 36 was toxic to cultured human and rat aortic smooth muscle cells when incubated with soluble bovine 37 SSAO, as determined by the MTT [3-(4,5-dimethylthiazol-2-vl)-2,5-diphenyltetrazolium bromide)] 38 reduction cell viability assay (Hernandez et al. 2006). Co-incubation with the SSAO-specific inhibitor MDL72974A completely eliminated the cytotoxic effect. The rat cells (A7r5) also showed 39 40 evidence of apoptosis, which appeared to be primarily mediated by formaldehyde. Protein-41 formaldehyde crosslinking was also shown *in vitro* after incubation of the bipeptide lysine-leucine 42 or bovine serum albumin with formaldehyde (Gubisne-Haberle et al. 2004).

43

44 Neurotoxicity may be related to the ability of MMA, like ammonia, to modulate neuron 45 firing, as proposed by Pirisino et al. (2005). Both MMA and ammonia target the voltage-operated 46 neuronal potassium channels, probably inducing release of transmitter, although the two appear to 47 interact with different Kv1.6 channels. Like ammonia, MMA is hypophagic in mice (i.e. causing 48 them to eat abnormally little) without inducing dopamine or serotonin release. MMA also

stimulated nitric oxide (NO) release from the rat hypothalamus, which has been associated with
 some neurodegenerative diseases.

3

4 Yu et al. (2006) examined the role of SSAO-mediated deamination in pulmonary 5 inflammation using transgenic (Tg) mice. The Tg mice overexpressed human SSAO (referred to as VAP-1) targeted to endothelial cells. SSAO levels were an order of magnitude greater in the 6 7 lungs than in other examined Tg mouse tissues (heart, liver, spleen, and pancreas). Inhalation of 8 MMA vapor (1 hour/day for 2 days, examined on day 3; MMA concentration undefined) 9 significantly increased the cell counts in bronchiolar lavage (BAL) fluid of Tg mice, but not of non-Tg mice. Pretreatment with the SSAO inhibitor MDL-72974A significantly reduced the 10 MMA-induced BAL cell numbers. Tg mice injected ip with MMA had increased protein-11 formaldehyde deposits in tissues including the lungs after 72 hours (primarily at the lysine 12 13 residues), which were significantly reduced by the SSAO inhibitor MDL-72974A. Yu et al. 14 (2006) concluded that SSAO-catalyzed deamination to form formaldehyde plays an important 15 role in MMA-induced acute lung inflammation.

16 17

4.3. Structure-Activity Relationship

18

19 The upper respiratory irritation (i.e., RD_{50}) of a series of aliphatic amines including 20 MMA, DMA, TMA, and EA (ethylamine) were determined by Gagnaire et al. (1989). Male 21 Swiss-OF₁ mice were exposed oronasally for 15 minutes while their respiratory rates were 22 measured by a plethysmographic technique. A decreased respiratory rate was considered to be 23 an indicator of upper airway irritation. The respiratory rate was decreased within 30-60 seconds 24 of exposure, and returned to normal within one minute after the end of exposure. The 25 concentration that reduced the respiratory rate by 50% (RD_{50}) was calculated to be 61 ppm for 26 TMA, 70 ppm for DMA, 141 ppm for MMA, and 151 ppm for ethylamine. The results indicate 27 that TMA and DMA (RD₅₀ of 61 and 70 ppm) are stronger upper respiratory irritants than MMA 28 and EA (RD₅₀ of 141 and 151 ppm). Gagnaire et al. (1989) also tested 16 other less closely 29 structurally related aliphatic amines that had RD₅₀ values of 51-202 ppm.

29 30

31 The acute toxicities (i.e., LC₅₀) of MMA, DMA, TMA, and/or EA were evaluated by two 32 sets of investigators, with somewhat different results. Koch et al. (1980) compared the toxicity 33 of MMA, DMA, and TMA in female Wistar rats exposed for 4 hours and observed during 34 exposure and for 14 days thereafter. The clinical picture of acute MMA and DMA toxicity were 35 similar, but differed considerably from that of TMA. All three amines caused inspirational 36 dyspnea, but the severity was markedly greater for MMA and DMA than for TMA. MMA and 37 DMA caused severe irritation of exposed mucous membranes (hemorrhage, reddening, 38 salivation, nasal secretion, conjunctivitis, and lacrimation), and the main factor affecting lethality 39 was lung damage (bronchopneumonia). Most deaths occurred on post-exposure days 1-6, and 40 the last deaths were on day 11 or 12. TMA exposure caused a lower incidence and severity of 41 mucous membrane irritation than MMA or DMA, but its primary clinical effect was central 42 nervous system disturbance (excitability, convulsions, and tremors). The CNS effects frequently 43 led to death during exposure, and the last deaths occurred on day 4. CNS effects were barely detectable for MMA or DMA. The LC₅₀ values for MMA, DMA, and TMA were approximately 44 45 4800, 4600, and 4300 ppm, respectively, indicating relative toxicity of TMA>DMA>MMA. 46

The International Research and Development Corporation (IRDC 1992a,b; 1993a) found somewhat different relative potencies (LC_{50} values) than Koch et al. (1980) for MMA, DMA, and TMA when exposing Sprague-Dawley rats for 6, 20, or 60 minutes. All four amines caused

1 gasping and/or labored breathing, rales, and corneal opacity during the exposure and recovery

2 period, and decreased body weight primarily during the first week after exposure. Necropsy

3 revealed eye abnormalities (corneal opacity) and lung congestion (red, discolored lungs) at

4 almost all test concentrations, from treatment with each of the amines. The incidence of gross

5 lung lesions generally correlated with lethality. Most deaths occurred within 3 days of exposure

6 to MMA, within 2 days of exposure to DMA, during exposure to TMA, and the time of death 7 was not specified for EA. LC₅₀ values for MMA, DMA, TMA, and EA were, respectively

8 24,400, 17,600, not determined for TMA, and 22,200 ppm for 6 minutes; 9600 7340, 12,000, and

9 9136 ppm for 20 minutes; 7,110 5,290 7,910 and 5,540 ppm for 60 minutes. Thus the relative

10 acute toxicities (causing lethality) for all exposure durations were DMA>EA>MMA>TMA,

although the differences in LC_{50} values were not great (within approximately 40% for a given 11 exposure time). 12

13

14 4.4. **Other Relevant Information**

15 4.4.1. Species Variability

16

17 Acute toxicity data were available for only rats and mice, which both had primarily 18 respiratory and neurological effects from MMA, but the data were insufficient to define which 19 of the two species was more sensitive. Mice were exposed for only 2 hours, whereas rats were 20 exposed for 6, 20, 60, and 240 minutes [results of the 2.5-hour exposure experiment by Sarkar 21 and Sastry (1992) were inconsistent with the other rat data]. The mouse 2-hour LC_{50} of 1890 22 ppm (Gorbachev 1957) was lower than the rat 1-hour LC_{50} of 7110 ppm (IRDC 1992a) and the 23 rat 4-hour LC₅₀ of 4800 ppm obtained by Koch (1980), but was comparable to the 4-hour LC₅₀ 24 of 1740 ppm obtained by Klimisch et al. (1983). Therefore, there did not appear to be a great 25 deal of variability in MMA acute toxicity between rats and mice.

26

27 Lewinsohn et al. (1978) found that the aorta and lung had the highest SSAO activity 28 among examined tissues in rats and humans, using benzylamine as the substrate. SSAO activity 29 in the aorta was comparable between rats and humans, but humans had an approximately 2-fold greater SSAO activity in the lungs than rats. For both rats and humans, serum SSAO activity 30 31 was >100-fold lower than in the aorta or lung. Boomsma et al. (2000) evaluated SSAO activity 32 in tissues from rats, pigs, and humans, and found that it was highest in humans in almost all 33 tissues examined, followed by rat and pig. All three species had relatively high SSAO activity in 34 artery and vein tissue, and low activity (on a per gram basis) in the plasma. Humans and rats 35 also had high lung SSAO activity, which was highest in humans (14-fold greater than in rats, and 36 52-fold greater than in pigs). Boomsma et al. (2000) also examined plasma SSAO activity in a number of mammalian species and found that the V_{max} was approximately 20 to 300-fold higher 37 38 in goats, sheep, cows, horses, pigs, rabbits, and dogs than in humans, but the V_{max} for rat and guinea pig SSAO was approximately 10 to 20-fold lower than of humans. Thus, if SSAO 39 40 activity is positively correlated with sensitivity to MMA toxicity, especially in the lungs and 41 vascular system, humans appear to be more sensitive than the other tested species.

42

43 4.4.2. Susceptible Populations

44 45 Humans with elevated levels of endogenous MMA and/or those with elevated SSAO 46 activity may be more susceptible to toxicity from MMA vapor than the general population. 47 SSAO has been implicated as having a role in vascular endothelial damage via metabolism of 48 MMA to formaldehyde, ammonia and hydrogen peroxide, thus contributing to a number of 49

disease states (Yu et al. 2003). These include diabetes, heart disease, obesity (non-diabetic),

Alzheimer's disease, cerebral arteriopathy, inflammatory liver disease, atherosclerosis, and congestive heart failure.

3 4 5

1

2

4.4.3. Concentration-Exposure Duration Relationship

6 ten Berge et al. (1986) determined that the concentration-time relationship for many 7 irritant and systemically acting vapors and gases may be described by $C^n x t = k$, where the 8 exponent n ranged from 0.8 to 3.5, and n ranged from 1 to 3 for 90% of the chemicals examined. 9 Bisson et al. (2003) examined the value of n in $C^n x t = k$ for time scaling MMA exposure 10 concentrations from 1 to 60 minutes. They obtained n = 1.88 (rounded to 1.9) by probit analysis 11 of the IRDC (1992a) 6, 20, and 60-minute LC₅₀ values for MMA.

12

13 A computer program, developed by ten Berge (2006) and based on probit analysis 14 according to Finney (1971), integrates all concentration and time information for a range of 15 lethality data. Concentration, time, and response (including number of animals responding) are 16 considered simultaneously in a linear regression equation, with the Maximum Likelihood 17 statistical method used to find the closest estimates of the regression coefficients for each 18 parameter. The probit-analysis dose-response program of ten Berge was used to estimate the 19 LC_{01} , considered the threshold for lethality, at each AEGL exposure duration (with confidence 20 limits of 95%). The full data set on lethality was used. The calculated n value was 1.87 (rounded to 1.9). 21

- 22
- 23

25

5. DATA ANALYSIS FOR AEGL-1

24 5.1. Summary of Human Data Relevant to AEGL-1

26 The available published data on MMA toxicity in humans is inappropriate for derivation 27 of AEGLs due to lack of information on concentrations and exposure times correlated with 28 observed effects. Secondary sources (see Section 2.2.2.), none of which gave the exposure 29 duration, have reported that the MMA irritation threshold was 7.9 and 18 ppm; "prolonged" 30 inhalation of 10 ppm was not irritating; 25 ppm caused "some irritation;" 2-60 ppm caused 31 "allergic or chemical bronchitis;" "short" exposure to 20-100 ppm MMA was irritating to the 32 eyes, nose, and throat; and that >100 ppm was "intolerably ammoniacal," and caused irritation of 33 the nose and throat, violent sneezing, coughing, burning throat, larynx constriction, difficulty 34 breathing, pulmonary congestion, and lung edema. Defining concentrations that cause irritation 35 is confounded by the fact that olfactory fatigue to MMA occurs readily (Sutton 1963).

36 37

5.2. Summary of Animal Data Relevant to AEGL-1

38 39

40 41

42

43

44 45

46 47

Animal studies potentially useful for derivation of AEGL-1 values include:

- (1) the 2-week Kinney et al. (1990) study in which male CD rats were exposed nose-only to 0, 75, 250, or 750 ppm MMA 6 hours/day, 5 days/week for 2 weeks. Animals exposed to 75 ppm had "mild irritation of the nasal turbinates," whereas more pronounced nasal lesions occurred at 250 and 750 ppm; the latter group had 50% mortality with severe respiratory and neurological effects. A single exposure to 75 ppm could be the AEGL-1 point of departure (POD);
- 48 (2) the static exposure studies in which male rats inhaled 465 ppm (nominally) for 30
 49 minutes and were sacrificed after 24 hours (Jeevaratnam and Sriramachari 1994) or

1		after 1, 4, and 10 weeks (Sriramachari and Jeevaratnam 1994), and their lungs were
2		examined histologically. After 24 hours, the animals had no signs of respiratory
3		distress but had thoracic cavities "filled with a blood clot and serosanguinous fluid"
4		lungs with marked interstitial pneumonitis and perivascular edema, and solitting or
5		widening of the muscular coats of some large blood vessels. After one week there
6		was extensive edema that extended to the walls of the blood vessels, whereas at later
0		time points, the main logion was severe interstitial pnoumonitis that progressed to
/		time points, the main resion was severe interstruar pheumonitus that progressed to
ð		norosis. Because the pulmonary lesions were severe and irreversible, an adjustment
9		factor of 3 could be applied to 465 ppm to obtain a 30-minute POD of 155 ppm.
10		
11		(3) the RD ₅₀ study in which 141 ppm was calculated to cause a 50% decrease in the
12		breathing rate of male OF_1 Swiss mice exposed to 85-192 ppm for 15 minutes
13		(Gagnaire et al. 1989); and
14		
15		(4) the irritation threshold studies in which a 40-minute exposure to 102 ppm decreased
16		the respiratory rate of rabbits, a 40-minute exposure to 39 ppm disrupted the
17		conditional and reflex activity of rabbits, and a 30-minute exposure to 157 ppm
18		caused increased salivation in cats (Gorbachev 1957; Izmerov et al. 1982). Few study
19		details were available.
20		
21	5.3.	Derivation of AEGL-1
22	0.01	
23		The AEGL-1 is based on two studies. The point of departure in the Kinney et al. (1990)
23 74	study	was a single 6-hour exposure of male CD rats to 75 npm Exposures were actually
4 7	Study	was a single o nour exposure of male CD fails to 75 ppm. Exposures were actually

25 repeated for two-weeks (10 exposures) and resulted in mild irritation of the nasal turbinates. 26 Repeat exposure to higher concentrations (250 and/or 750 ppm) caused more severe nasal lesions 27 and /or systemic toxicity and mortality. A single 6-hour exposure to 75 ppm is expected to cause no more than mild sensory irritation. In the second study (Jeevaratnam and Sriramachari1994), 28 29 exposure of male Wistar rats to 465 ppm for 30 minutes was a NOAEL for notable signs of 30 discomfort, but caused interstitial pneumonitis progressing to fibrosis (Sriramachari and 31 Jeevaratnam 1994). A total UF of 10 was applied, including 3 for interspecies uncertainty and 3 32 for human variability, because mild nasal irritation from an alkaline irritant gas is a direct 33 surface-contact effect not involving metabolism, and is not likely to vary greatly between species 34 or among humans (NRC 2001). Because the well-conducted study of Kinney et al. (1990) was a 35 repeat exposure study and the effect was essentially a NOAEL, a modifying factor of 0.5 was 36 applied. The study of Jeevaratnam and Sriramachari (1994) used only one exposure, the 37 description of the study results lacked details, and the endpoint was more serious than that 38 defined by an AEGL-1. In the absence of robustness and due to lung histopathology, a 39 modifying factor of 3 was applied. Application of these uncertainty and modifying factors to the 40 respective studies yields an AEGL-1 value of 15 ppm. Because there is adaptation to the mild irritation that defines the AEGL-1, the value was used for all exposure durations. Additionally, 41 42 Sutton (1963) notes that olfactory fatigue to amines occurs readily.

43

44 The AEGL-1 of 15 ppm is consistent with the mouse respiratory inhibition study that 45 determined an RD₅₀ of 141 ppm for MMA (Gagnaire et al. 1989). According to Alarie (1981), 46 exposure to the RD₅₀ is intolerable to humans, 0.1 of the RD₅₀ (i.e., 14 ppm) for several hours-47 days causes sensory irritation in humans, 0.01 x RD₅₀ (1.4 ppm) should cause no sensory 48 irritation, and 0.03 x RD₅₀ (4.2 ppm) is an estimate of an occupational exposure threshold limit

1 2 value (TLV). The resulting AEGL-1 value is shown in Table 6 and calculations are detailed in Appendix B. A category graph of the AEGL values in relation to the data is in Appendix C.

3

	TABLE 6. AEC	GL-1 Values for Mono	methylamine	
10-min	30-min	1-h	4-h	8-h
15 ppm (19 mg/m ³)				

4 5

7

8

18

19 20

21 22

23

24

25

26 27

28

29

30

6. **DATA ANALYSIS FOR AEGL-2**

6.1. Human Data Relevant to AEGL-2

9 No human data were found appropriate for derivation of AEGL-2 values. Secondary 10 sources possibly useful as supporting evidence state that short exposure (unknown duration) to 11 20-100 ppm MMA was irritating to the eyes, nose, and throat, whereas >100 ppm (unknown duration) was "intolerably ammoniacal," and caused irritation of the nose and throat, violent 12 13 sneezing, coughing, burning throat, larynx constriction, difficulty breathing, pulmonary 14 congestion, and lung edema (Sutton 1963; Deichmann and Gerarde 1969). 15

16 6.2. **Animal Data Relevant to AEGL-2** 17

Animal studies potentially useful for derivation of AEGL-2 values include:

- (1) the 2-week Kinney et al. (1990) study in which male CD rats were exposed nose-only to 0, 75, 250, or 750 ppm MMA 6 hours/day, 5 days/week for 2 weeks. Animals exposed to 75 ppm had mild irritation of the nasal turbinates; 250 ppm caused marked red nasal discharge, nasal mucosa focal erosions and/or ulcerations, blood clots, degeneration and/or necrosis, which were reversible following a 2-week recovery period; rats in the 750 ppm group had 50% mortality and were hyperactive, aggressive, salivated, had labored breathing, ocular opacity, hematotoxicity, and pathological alterations of the nasal passages, lungs, liver, thymus, spleen, and brain. A single exposure to 250 ppm could be the point of departure (POD) for AEGL-2 development;
- 31 (2) the static exposure studies in which male rats inhaled 465 ppm (nominal) for 30 32 minutes and were sacrificed after 24 hours (Jeevaratnam and Sriramachari 1994) or 33 after 1, 4, and 10 weeks (Sriramachari and Jeevaratnam 1994), and their lungs were 34 examined histologically. After 24 hours, the animals had no signs of respiratory 35 distress but had thoracic cavities "filled with a blood clot and serosanguinous fluid," 36 lungs with marked interstitial pneumonitis and perivascular edema, and splitting or 37 widening of the muscular coats of some large blood vessels. After one week, there 38 was extensive edema that extended to the walls of the blood vessels, whereas at later 39 time points, the main lesion was severe interstitial pneumonitis that progressed to 40 fibrosis. Because the pulmonary lesions were severe and irreversible, an adjustment 41 factor of 3 could be applied to 465 ppm to obtain a 30-minute POD of 155 ppm. 42

- (3) the RD₅₀ study in which 141 ppm was the RD₅₀ (50% decrease in the breathing rate) of male OF₁ Swiss mice exposed to 85-192 ppm for 15 minutes (Gagnaire et al. 1989); and
- (4) the IRDC (1992a) LC₅₀ study in which CD Sprague-Dawley rats were exposed wholebody to MMA for 60 minutes (4100-8670 ppm). All groups of rats exhibited labored breathing, rales, and corneal opacity throughout the 14-day study. Mortality and reddened lungs were found in all but the 4100 ppm group, although microscopic evaluation was not conducted. Because corneal opacity exceeds the severity of AEGL-2, and the presence of lung lesions was not excluded microscopically, this endpoint is above the definition of an AEGL-2.
- 11 12 13

1

2

3

4 5

6

7

8

9

10

6.3. Derivation of AEGL-2

14 15 AEGL-2 values were derived from the Kinney et al. (1990) repeat exposure study. Ten exposures of male CD rats to 250 ppm, 6 hours/day, caused reversible lesions of the anterior 16 17 respiratory tract. The severity of the lesions (focal erosion and ulceration of the nasal turbinate 18 mucosa) was attributed to the repeat exposure scenario, i.e., repeated local irritation. Lesions did 19 not extend into the trachea or lungs. Lesions following a single exposure would be less severe 20 and also reversible. A total uncertainty factor of 10 was applied, including 3 for interspecies 21 uncertainty and 3 for human variability, because nasal irritation from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and is not likely to vary greatly between 22 species or among humans (NRC 2001). Time scaling, $C^n x t = k$ where n = 1.9, was based on rat 23 lethality data ranging from 6 to 60 minutes (data set of IRDC 1992a). Lethality data were used 24 25 to time-scale the AEGL-2 values because local irritation is considered the first step leading to 26 pulmonary irritation and death. The derived AEGL-2 values are presented in Table 7, and the 27 calculations are shown in Appendix B.

28

	TABLE 7. AEC	GL-2 Values for Monor	methylamine	
10-min	30-min	1-h	4-h	8-h
160 ppm (200 mg/m ³)	92 ppm (120 mg/m ³)	64 ppm (80 mg/m ³)	31 ppm (39 mg/m ³)	21 ppm (27 mg/m ³)

29 30

31

33

7. DATA ANALYSIS FOR AEGL-3

32 7.1. Summary of Human Data Relevant to AEGL-3

The only available MMA human lethality study described in detail the symptoms experienced by a group of 35 people accidentally exposed to MMA, but did not quantitate exposure concentration or duration (Yang et al. 1995).

38 7.2. Summary of Animal Data Relevant to AEGL-3
39

The acute lethality studies consistently found that MMA caused severe respiratory system
 toxicity, and many also reported eye irritation and neurotoxicity. The studies considered for
 derivation of AEGL-3 values were:

1		(1) the inhalation LC_{50} study of IRDC (1992a), where rats were exposed for 6, 20, or 60			
2		minutes yielding LC_{50} values of 24,400 ppm, 9600 ppm, and 7110 ppm, respectively;			
3		the highest non-lethal value at 60 minutes was 4100 ppm;			
4					
5		(2) the one-hour LC ₅₀ study in which male rats exposed to 1500-24,000 ppm MMA (Air			
6		Products 19/6) had an LC ₅₀ of 4830 ppm, but the unpublished study report and many			
/		experimental details were unavailable;			
8		(2) the Keep et al. (1080) study in which note annead for 4 hours to 865, 10,460 mm at			
9 10		(5) the Koch et al. (1980) study in which rats exposed for 4 hours to 805-10,409 ppm at			
10		approximately 22 C had an LC_{50} of 4800 ppm, but individual dose-response data			
11		were not provided,			
12		(A) the study of Klimisch et al. (1983) where rate exposed for A hours to $517-3213$ nmm			
14		MMA had a calculated BMCL of value of 1020 ppm which was inconsistent with 2/20			
15		deaths seen at 517 nnm.			
16		deaths seen at 517 ppni,			
17		(5) the Sarkar and Sastry (1992) 150-minute static exposure study in which an LC_{50} of			
18		448 ppm was determined in rats exposed to 0, 100, 200, 300, 400, or 500 ppm MMA,			
19		but the test concentrations were not verified analytically;			
20					
21		(6) the repeat-exposure study of Kinney et al. (1990), in which rats inhaled 75, 250, or			
22		750 ppm 6 hours/day, 5 days/week for 2 weeks and 5/10 of the 750 ppm rats died,			
23		starting on day 8; and			
24					
25		(7) the 2-hour exposure mouse study by Gorbachev (1957), which determined an LC_{50} of			
26		1,890 ppm, but many study details (such as all test concentrations) were unavailable.			
27					
28	7.3.	Derivation of AEGL-3			
29					
30	-	Using the rat data of IRDC (1992a), the probit-analysis based dose-response program of			
31	ten Bo	erge (2006) was used to calculate the LC_{01} at each AEGL-3 exposure duration. The			
32	progr	am incorporated all of the data at the 6-, 20-, and 60-minute time points in Table 4. The			
33	data indicated a time-scaling value of 1.9 ($C^{**} \times t = k$). A total uncertainty factor of 10 was				
34 25	applie	ed, including 3 for interspecies uncertainty and 3 for human variability, because lethality			
35	from	an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and is			
30	not III	kely to vary greatly between species or among humans (NRC 2001). The derived AEGL-3			

37 values are presented in Table 8, and the calculations are shown in Appendix B.

38

	TABLE 8. AEC	GL-3 Values for Monor	methylamine	
10-min	30-min	1-h	4-h	8-h
910 ppm (1200 mg/m ³)	510 ppm (650 mg/m ³)	350 ppm (440 mg/m ³)	170 ppm (220 mg/m ³)	110 ppm (140 mg/m ³)

1 8. SUMMARY OF AEGLs

2 3

8.1. AEGL Values and Toxicity Endpoints

4 The AEGL-1 is based on two studies with the rat: Kinney et al. (1990) and Sriramachari 5 and Jeevaratnam (1994). The repeat dose study of Kinney et al. (1990) was also used to derive 6 AEGL-2 values. The point of departure for the AEGL-1 was the mild nasal irritation observed in 7 rats following 10 exposures to 75 ppm for 6 hours/day. In the second study (Sriramachari and Jeevaratnam 1994), exposure of male Wistar rats to 465 ppm for 30 minutes was a NOAEL for 8 9 notable signs of discomfort, but the thorax showed signs of hemorrhage; lung fibrosis was 10 present after several weeks. Inter- and intraspecies uncertainty factors of 3 each for a total of 10 were applied because the mechanism of action is direct contact irritation. Because exposures 11 were repeated in the Kinney et al. study and the lesions was mild, essentially below the definition 12 13 of an AEGL-1, a modifying factor of 0.5 was applied. Because the lesions in the second study 14 were above the definition of an AEGL-1, a modifying factor of 3 was applied. Both sets of 15 adjustments result in a value of 15 ppm. Because there is adaptation to the slight sensory irritation that defines the AEGL-1, the 15 ppm value was set across all exposure durations. 16

17

18 The point of departure for the AEGL-2 was the 250 ppm repeat exposure of rats that 19 resulted in reversible lesions of the anterior nasal cavity; there were no effects on the lungs 20 (Kinney et al. 1990). A total uncertainty factor of 10 was applied, including 3 for interspecies 21 uncertainty and 3 for human variability, because nasal irritation from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and is not likely to vary greatly between 22 species or among humans. Time scaling, $C^n x t = k$ where n = 1.9, was based on rat lethality data 23 ranging from 6 to 60 minutes (data set of IRDC 1992a). Lethality data were used to time-scale 24 25 the AEGL-2 values because local irritation is considered the first step in a continuum leading to 26 pulmonary irritation and death.

27

Using the full rat data set on lethality, the probit-analysis based dose-response program of ten Berge (2006) was used to calculate the LC_{01} at each AEGL-3 exposure duration. The program incorporated all of the data at the 6-, 20-, and 60-minute time points in Table 4. The data indicated a time-scaling value of 1.9 ($C^{1.9} x t = k$). A total uncertainty factor of 10 was applied, including 3 for interspecies uncertainty and 3 for human variability, because lethality from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and is not likely to vary greatly between species or among humans

35 36

A summary of the AEGL values for MMA and their relationship to one another are shown in Table 9. Summary derivations are in Appendix D.

TABLE 9. Summary of AEGL Values for Monomethylamine					
		-	Exposure Duratio	n	
Classification	10 min	30-min	1-h	4-h	8-h
AEGL-1	15 ppm	15 ppm	15 ppm	15 ppm	15 ppm
(Non-disabling)	(19 mg/m ³)	(19 mg/m ³)	(19 mg/m ³)	(19 mg/m ³)	(19 mg/m ³)
AEGL-2	160 ppm	92 ppm	64 ppm	31 ppm	21 ppm
(Disabling)	(200 mg/m ³)	(120 mg/m ³)	(80 mg/m ³)	(39 mg/m ³)	(27 mg/m ³)
AEGL-3	910 ppm	510 ppm	350 ppm	170 ppm	110 ppm
(Lethal)	(1200 mg/m ³)	(650 mg/m ³)	(440 mg/m ³)	(220 mg/m ³)	(140 mg/m ³)

1 2

8.2. Comparison with Other Standards and Guidelines

3 The existing standards and guidelines for MMA are shown in Table 10. The 1-hour 4 ERPG-1 of 10 ppm was based on a clearly defined objectionable odor. Although different 5 endpoints were used, the AEGL-1 and ERPG-1 values are similar. The 1-hour ERPG-2 of 100 6 ppm was based on worker reports of sensory irritation at 100 ppm and the repeat-dose rat study 7 of Kinney et al. (1990) in which 75 ppm was shown to have no effect. The 1-hour AEGL-2 of 8 64 ppm was based on the next highest concentration in the study of Kinney et al. (250 ppm), but 9 with addition of several uncertainty factors. The ERPG-3 was based on several mortality studies including the data set of IRDC (1992a). Based on the 60-minute data, AIHA calculated an LC_{10} 10 of 5771 ppm. The 1-hour AEGL-3 is 1.4-fold lower. 11

12

13 The ACGIH (1992) TLV-TWA of 5 ppm and STEL of 15 ppm are intended to protect 14 workers from MMA irritation of the eyes, skin, and respiratory tract. The ACGIH noted that 15 repeated exposure to 75 ppm caused marginal respiratory tract pathology in rats but a NOEL was 16 not determined, and that transient exposure to <10 ppm was not associated with irritation in 17 workers (the referred to data are from Kinney et al. 1990, and Sutton 1963). The NIOSH IDLH 18 of 100 ppm was based on the report by Deichmann and Gerarde (1969) that short exposures 19 (unknown duration) to 20-100 ppm MMA caused transient irritation of the eves, nose, and throat, 20 whereas >100 ppm MMA caused irritation of the nose and throat, violent sneezing, coughing, a 21 burning sensation of the throat, larynx constriction, difficulty breathing, pulmonary congestion, and lung edema (NIOSH 2006b).

TABLE 10. Extant Standards and Guidelines for Monomethylamine					
		E	xposure Durat	tion	
Standard	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	15	15	15	15	15
AEGL-2	160	92	64	31	21
AEGL-3	910	510	350	170	110
ERPG-1 (AIHA) ^a			10		
ERPG-2 (AIHA)			100		
ERPG-3 (AIHA)			500		
PEL-TWA (OSHA) ^b					10
IDLH (NIOSH) °		100 ppm			
REL-TWA (NIOSH) ^d					10
TLV-TWA (ACGIH) ^e					5
TLV-STEL (ACGIH) ^f	15 (15 min)				
MAK (Germany) ^g					10
MAK Peak Limit (Germany) ^h	10 (15 min and momentary)				
MAC (Netherlands) ⁱ	15 (15 min)				5
LLV (Swedish) ^j					10
$STV (Swedish)^k$	(15 min)				

The ERPG-1 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing other than mild, transient adverse health effects or without perceiving a clearly defined objectionable odor.

The ERPG-2 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing irreversible or other serious health effects or symptoms that could impair an individual's ability to take protective action.

The ERPG-3 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing life-threatening health effects.

- ^b OSHA PEL-TWA (Occupational Safety and Health Administration, Permissible Exposure Limits Time Weighted Average) (OSHA 2006) is defined analogous to the ACGIH-TLV-TWA, but is for exposures of no more than 10 hours/day, 40 hours/week.
- ^c **IDLH (Immediately Dangerous to Life and Health, National Institute of Occupational Safety and Health)** (NIOSH 2006b) represents the maximum concentration from which one could escape within 30 minutes without any escape-impairing symptoms, or any irreversible health effects.
- ^d NIOSH REL-TWA (National Institute of Occupational Safety and Health, Recommended Exposure Limits -Time Weighted Average) (NIOSH 2006a) is defined analogous to the ACGIH-TLV-TWA.
- ^e ACGIH TLV-TWA (American Conference of Governmental Industrial Hygienists, Threshold Limit Value -Time Weighted Average) (ACGIH 1992; 2005) is the time-weighted average concentration for a normal 8hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect.
- ^f ACGIH TLV-STEL (Threshold Limit Value Short Term Exposure Limit) (ACGIH 1992; 2005) is defined as a 15-minute TWA exposure which should not be exceeded at any time during the workday even if the 8-hour TWA is within the TLV-TWA.
- ^g MAK (Maximale Arbeitsplatzkonzentration [Maximum Workplace Concentration]) (Deutsche Forschungsgemeinschaft [German Research Association] 2005) is defined analogous to the ACGIH-TLV-TWA.
- ^h MAK Spitzenbegrenzung (Peak Limit [Category I, excursion factor 1]) (Deutsche Forschungsgemeinschaft [German Research Association] 2005) constitutes the maximum average concentration to which workers can be exposed for a period of 15 minutes, no more than 4 times per shift at 1-hour intervals; total exposure may not exceed the 8-hour MAK. A momentary value of 10 ppm should not be exceeded.
- ⁱ MAC (Maximaal Aanvaarde Concentratie [Maximal Accepted Concentration]) (SDU Uitgevers [under the auspices of the Ministry of Social Affairs and Employment], The Hague, The Netherlands 2000) is defined analogous to the ACGIH-TLV-TWA.
- ^jLLV (Level Limit Value) Swedish Occupational Exposure Limits. 2000. Swedish National Board of Occupational Safety and Health. Defined analogous to the ACGIH-TLV-TWA.
- ^kSTV (Short-Term Value) Swedish Occupational Exposure Limits. 2000. Swedish National Board of Occupational Safety and Health. Defined as a recommended value consisting of a time-weighed average for exposure during a reference period of 15 minutes.

8.3. Data Adequacy and Research Needs

53 The clinical picture of MMA toxicity is defined by its irritant properties, although no 54 quantitative single exposure irritation data were available for humans or animals. This type of 55 data should be collected to confirm the validity of the developed AEGL-1 and AEGL-2 values. 56

1 There were no quantitative human data for MMA exposures that caused systemic effects, 2 although a fairly consistent picture of MMA-induced toxicity was seen from the tested animal 3 species, and the accidental human exposure report of Yang et al. (1995). A shortcoming of the 4 animal data, however, was the lack of a study that examined the toxicity of a range of exposure 5 durations, i.e., >4 hours and <4 hours. This is a concern because there was some inconsistency 6 between LC₅₀ values obtained among laboratories [e.g. if we compare 60-minute rat LC₅₀ of 7 7110 ppm (IRDC 1992a) and 2-hour mouse LC_{50} of 1890 ppm (Gorbachev 1957) to the 4-hour 8 rat LC₅₀ of 4800 ppm (Koch et al. 1980), 4300 ppm (DuPont Company 1985), or 1740 ppm 9 (Klimisch et al. 1983)]. If one study had been conducted that tested over a period of >4 hours, it 10 would have added confidence to the choice of studies used for AEGL derivation, and for the calculation of n in $C^n x t = k$. 11 12 13 9. REFERENCES 14 15 ACGIH (American Conference of Government Industrial Hygienists). 1992. Methylamine. In: 16 Documentation of the threshold limit values and biological exposure indices. Cincinnati, OH: 17 American Conference of Governmental Industrial Hygienists. 18 ACGIH. 2005. Monomethylamine. In: TLVs[®] and BEIs[®] based on the documentation of the threshold 19 20 limit values for chemical substances and physical agents and biological exposure indices. 21 ACGIH, Cincinnati, OH. 22 23 AIHA (American Industrial Hygiene Association). 1989. Odor thresholds for chemicals with established 24 occupational health standards. Fairfax, Virginia. 25 26 AIHA. 2004. Emergency Response Planning Guidelines for Monomethylamine. Fairfax, Virginia. 27 28 Air Products (Air Products and Chemicals, Inc.). 1976. Acute inhalation toxicity – rats. Original study 29 was unavailable; data were obtained from IUCLID (2004) for methylamine. 30 31 Alarie, Y. 1981. Dose-response analysis in animal studies: Prediction of human responses. Environ. 32 Health Persp. 42: 9-13. 33 34 Amoore, J.E., and E. Hautala. 1983. Odor as an aid to chemical safety: Odor thresholds compared with 35 thresholds limit values and volatilities for 214 industrial chemicals in air and water dilution. J. 36 Appl. Toxicol. 3:272-290. 37 38 Bisson, M., S. Tissot, and A. Pichard. 2003. Seuils de toxicité aiguë méthylamine (CH₃NH₂). Institut 39 National De L'environnement Industriel et des Risques (INERIS): Rapport Final. 40 41 Bittersohl, G., and H. Heberer. 1980. [Results of job site and urine analyses in exposure to aliphatic 42 amines] [Article in German]. Z. Ges. Hyg. 26: 258-259. 43 44 Bliss, C.I. 1938. The determination of the dosage-mortality curve from small numbers. Quart. J. Pharm. 45 Pharmacol, Vol. 11. 46 Boomsma, F., J. van Dijk, U.M. Bhaggoe, et al. 2000. Variation in semicarbazide-sensitive amine 47 48 oxidase activity in plasma and tissues of mammals. Compar. Biochem. Physiol. Part C 126: 69-49 78. 50 51 Brown, N.A., and S. Fabro. 1981. Quantitation of rat embryonic development in vitro: A morphological 52 scoring system. Teratology 24: 65-78.

1	
1 2 3	Caspary,W.J., and B. Myhr. 1986. Mutagenicity of methylisocyanate and its reaction products to cultured mammalian cells. Mutat Res. 174: 285-293.
4 5 6	Cavender, F.L. 2001. Aliphatic and alicyclic amines. In: E. Bingham, B. Cohrssen, and C.H. Powell, Eds., Patty's Toxicology, Volume 4, 5 th ed., Wiley, NY, pp. 706-711.
7 8 9	Chemical Marketing Reporter. 1997. Chemical Profile: Methylamines. April 14, 1997. NY, NY: Schnell Pub Co.
10 11 12 13	CIIT (Chemical Industry Institute of Toxicology). 1990. Twenty four month final report. Inhalation toxicity of dimethylamine in F-344 rats and B6C3F1 mice and third party audit report summary. Report issued June 15, 1990. Docket #11957.
14 15 16	Dabaev, N.Z. 1981. On hygienic standards for monomethylamine in ambient air. Gig. Sanit. 5: 7-9.
17 18 19	Dar, M.S., and E.R. Bowman. 1985. In vivo mammalian metabolism of methylamine and methylurea and their metabolic interrelationship. Drug Metab. Dispos. 13: 682-9.
20 21	Dar, M.S., P.L. Morselli, and E.R. Bowman. 1985. The enzymatic systems involved in the mammalian metabolism of methylamine. Gen. Pharmacol. 16: 557-560.
22 23 24 25	Deichmann, W.B. and H.W. Gerarde. 1969. Methylamines. In: Toxicology of Drugs and Chemicals, p. 385. Academic Press, New York.
25 26 27 28 29 30	 Deutsche Forschungsgemeinschaft (German Research Association). 2005. List of MAK and BAT Values 2005. Maximum concentrations and biological tolerance values at the workplace. Commission for the investigation of health hazards of chemical compounds in the work area. Report no. 41. Wiley-VCH Verlag GmbH & Co. KGaA (publisher), Weinheim, Germany.
31 32 33	DuPont Company. 1985. Subchronic Inhalation Toxicity of Anhydrous Monomethylamine. Haskell Laboratory Report No. 181-85.
34 35	Finney, D.J. 1971. Probit Analysis, 3 rd Ed. London: Cambridge University Press.
36 37 38	Gagnaire, F., S. Azim, P. Bonnet et al. 1989. Nasal irritation and pulmonary toxicity of aliphatic amines in mice. J. Appl. Toxicol. 9: 301-304.
39 40 41	Gorbachev, E. M. 1957. On toxicology of certain aliphatic amines. In: Collected Research Papers of Novosibirsk Sanitary Institute, Issue12. Novosibirsk, 1957, pp. 3-52.
42 43 44 45	Gubisne-Haberle, D., W. Hill, M. Kazachkov, et al. 2004. Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine. J. Pharm. Exp. Ther. 310: 1125-1132.
46 47 48	Guest I., and D.R. Varma. 1991. Developmental toxicity of methylamine in mice. J. Toxicol. Environ. Health 32: 319-330.
49 50 51	HSDB (Hazardous Substances Data Bank). 2006. Methylamine. National Library of Medicine TOXNET database (<u>http://toxnet.nlm.nih.gov</u>), National Institutes of Health, U.S.A.

1 2 3	Hernandez, M., M. Solé, M. Boada, and M. Unzeta. 2006. Soluble semicarbazide sensitive amine oxidase (SSAO) catalysis induces apoptosis in vascular smooth muscle cells. Biochim. Biophys. Acta. 1763: 164-73.
4 5 6	Hussain, S., and L. Ehrenberg. 1974. Mutagenicity of primary amines combined with nitrite. Mutat. Res.
0 7	26: 419-422.
8	IRDC (International Research and Development Corporation) 1992a Acute inhalation toxicity
9 10	evaluation on monomethylamine in rats. Study sponsored by Air Products and Chemicals, Inc., Allentown, PA. See also Ulrich et al. 1994.
11	
12	IRDC (International Research and Development Corporation). 1992b. Acute inhalation toxicity
13 14	evaluation on dimethylamine in rats. Study sponsored by Air Products and Chemicals, Inc., Allentown, PA.
15	
16 17	IRDC (International Research and Development Corporation). 1993a. Acute inhalation toxicity evaluation on trimethylamine in rats. Study sponsored by Air Products and Chemicals, Inc.,
18	Allentown, PA.
19	
20	IRDC (International Research and Development Corporation). 1993b. Acute inhalation toxicity
21	Allentown DA EDA Dog ID 86 020000102
22	Anentown, PA. EPA Doc. ID 80-930000195.
23 74	IIICLID (International Uniform Chemical Information Database) 2004 Data set for methylamine (74-89-
2 4 25	5) Report produced by the American Chemistry Council Amines Panel Received March 2006
26	courtesv of Nancy Sandrof ACC
27	
28	Izmerov, N.F., I.V. Santosky, and K.K. Sidorov. 1982. Toxicometric parameters of industrial toxic
29	chemicals under single exposure, p. 81. USSR Commission for the United Nations Environment
30	Programme, International Registry of Potentially Toxic Chemicals.
31	
32	Jeevaratnam, K., and S. Sriramachari. 1994. Comparative toxicity of methyl isocyanate and its
33 34	hydrolytic derivatives in rats. I. Pulmonary histopathology in the acute phase. Arch. Toxicol. 69: 39-44.
35	
36	Kinney, L.A., R. Valentine, H.C. Chen et al. 1990. Inhalation toxicology of methylamine. Inhal.
37	Toxicol. 2: 29-39. (See also DuPont Company 1985 for details).
38	
39 40	Klimisch, H.J., B. Hildebrand, and O. Freisberg. 1983. Akute inhalationstoxizitat LC50 4h (ratte)
40 41	Dampi-versuch von monomethylamin. – Unveroitenti. BASF Ludwigshafen. Original study was unavailable, but the date were cited in Bisson et al. (2003), and in the IUCLID (2004) for
41 12	unavailable, but the data were cited in Bisson et al. (2003), and in the IUCLID (2004) for methylamine, where it was attributed to BASE AG. Department of Toxicology, unpublished
42 43	studies (82/234) 17 Aug 1983
44	studies (62/254) 17 Aug 1965.
45	Klinman J.P. 1978 Kinetic isotope effects in enzymology Adv Enzymol 46 [,] 415-494
46	
47	Koch, F., G. Mehlhorn, R. Kliche, and L. Rüdiger, 1980. Untersuchungen zur Aerogenen Intoxikation
48	bei Ratten durch Methylamine. Mathnaturwiss 29: 463-474.
49	-
50	Leonardos, G., D. Kendall, and N. Barnard. 1969. Odor Threshold Determinations of 53 Odorant
51	Chemicals. J. Air Pollut. Control Assoc. 19: 91-95.
52	
53	Litchfield, J.T. and F. Wilcoxon. 1949. A simplified method of evaluating dose-effect experiments J.

Pharmacol. Exp. Ther. 96:99-113.

- Lewinsohn, R., K.H. Bohm, V. Glover, and M. Sandler. 1978. A benzylamine oxidase distinct from monoamine oxidase B – widespread distribution in man and rat. Biochem. Pharmacol. 27:1857-1863.
- Lijinsky, W. and H.W. Taylor. 1977. Feeding tests in rats on mixtures of nitrite with secondary and tertiary amines of environmental importance. Fd. Cosmet. Toxicol. 15:269-274.
- Lyles, G.A. 1996. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int. J. Biochem. Cell Biol. 28: 259-74.
- Meshram, G.P., R.P. Malini, and K.M. Rao. 1992. Mutagenicity of N,N'-dimethylurea and methylamine hydrochloride in the Ames Salmonella /microsome test: Absence of mutagenic response. Mutat. Res. 279: 275-280.
- Mortelmans, K., S. Haworth, T. Lawlor, et al. 1986. Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ. Mutagen. 8(Suppl 7): 1-119.
- NIOSH (National Institute for Occupational Safety and Health). 2006a. Methylamine. In: NIOSH Pocket Guide to Chemical Hazards; online at <u>http://www.cdc.gov/niosh/npg/npgd0398.html</u>.
- NIOSH. 2006b. Documentation for Immediately Dangerous to Life or Health Concentrations (IDLH). Methylamine. Online at <u>http://www.cdc.gov/niosh/idlh/74895.html</u>.
- NRC (National Research Council). 2001. Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Hazardous Chemicals. Washington, DC: National Academy Press.
- NTP (National Toxicology Program). 1986. Status of ITC chemicals submitted by Dr. D. Canter, National Toxicology Program, Bethesda, MD to R. Brink, Interagency Testing Committee, Washington, DC on April 3, 1986.
- O'Neil, M.J., A. Smith, P.E. Heckelman et al. (Eds.). 2001. Methylamine. In: The Merck Index, 13th ed. Merck & Co., Inc., Whitehouse Station, NJ, p. 1076.
- OSHA (Occupational Safety and Health Administration). 2006. U.S. Department of Labor, Occupational
 Safety and Health Administration 29 CFR Part 1910, Table Z-1: Limits for Air Contaminants.
 Online at www.access.gpo.gov.
- Pirisino, R., C. Ghelardini, G. DeSiena, et al. 2005. Methylamine: A new endogenous modulator of neuron firing? Med. Sci. Monit. 11: RA257-RA261.
- Rechenberger, J. 1940. The Volatile Alkyl Amines in Human Metabolism. Report II: Elimination in the
 Urine Following Oral Application. Hoppe-Seylers Zeitchrift fuer Physiologische Chemie 265:
 275-284.
- 48 Ruth I. H. 1986. Odor thresholds and irritation levels of several chemical substances: A review. Amer.
 49 Ind. Hyg. Assoc. Jour., 47, A124-A151.
 50
- Ruijten, M. 2005. Personal Communication from Dr. Marc Ruijten, National Institute of Public Health
 and Environment (RIVM), The Netherlands, AEGL Committee Member, June 14, 2005.

1 2 3	Sarkar, S.N., and M.S. Sastry. 1990. Chronic toxicity of methylamine on oral administration and feed contamination in rats. Indian J. Anim. Sci. 60: 319-320.
5 4 5 6	Sarkar, S.N., and M.S. Sastry. 1992. Studies on the acute inhalation toxicity of methylamine vapors in rats. J. Environ. Biol. 13: 273-276.
7 8 9	SDU Uitgevers. 2000. Nationale MAC List. Under the Auspices of the Ministry of Social Affairs and Employment, The Netherlands.
10 11	Simenhoff, M.L. 1975. Metabolism and Toxicity of Aliphatic Amines. Kidney Int. 7: S314-S317.
12 13 14	Smith, D.J., M. Salmi, P. Bono et al. 1998. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J. Exp. Med. 188: 17-27.
15 16 17 18	Sriramachari, S. and K. Jeevaratnam. 1994. Comparative toxicity of methyl isocyanate and its hydrolytic derivatives in rats. II. Pulmonary histopathology in the subacute and chronic phases. Arch. Toxicol. 69: 45-51.
19 20 21	Stolen, C.M., G.G. Yegutkin, R. Kurkijarvi, P. Bono, K. Alitalo, and S. Jalkanen. 2004. Origins of serum semicarbazide amine oxidase. Circ. Res. 95:50-57.
22 23 24	Streeter, A. J., R.W. Nims, P.R. Sheffels, et al. 1990. Deuterium isotope effect on the toxicokinetics of monomethylamine in the rat. Drug Metabol. Dispos. 18: 447-452.
25 26 27	Sutton, W.L. 1963. Aliphatic and Alicyclic Amines. In: Patty's Industrial Hygiene and Toxicology, 2 nd Ed., Vol. 2, p. 2052. F.A. Patty, Ed., Interscience, New York.
28 29	Swedish National Board of Occupational Safety and Health. 2000. Solna, Sweden.
30 31 32 33	ten Berge, W.F., A. Zwart and L.M. Appelman. 1986. Concentration-time mortality response relationship of irritant and systemically acting vapors and gases. J. Hazard. Materials. 13: 302- 309.
34 35	ten Berge, W. 2006. Online Excel Program: <u>http://home.wxs.nl/~wtberge/doseresp.hyml.</u>
36 37	Ulrich, C.E., B.Z. Drozdowica, B.A. Culp, J.J. Stone, and R.E. Stork. 1994. Acute inhalation toxicity of
38	five aliphatic amines. The Toxicologist 14:1214 (abstract).
38 39 40 41	five aliphatic amines. The Toxicologist 14:1214 (abstract).van Doorn, R., M. Ruijten and T. Van Harreveld. 2002. Guidance for the application of odor in 22 chemical emergency response. Version 2.1, 29.08.2002.
38 39 40 41 42 43 44	 five aliphatic amines. The Toxicologist 14:1214 (abstract). van Doorn, R., M. Ruijten and T. Van Harreveld. 2002. Guidance for the application of odor in 22 chemical emergency response. Version 2.1, 29.08.2002. Yang, G.H., Y.M. Wang, and L. Chen. 1995. Treatment and care of 35 cases of monomethylamine poisoning. Zhonghua Hu Li Za Zhi [Chinese journal of nursing] 30: 83-5.
38 39 40 41 42 43 44 45 46 47	 five aliphatic amines. The Toxicologist 14:1214 (abstract). van Doorn, R., M. Ruijten and T. Van Harreveld. 2002. Guidance for the application of odor in 22 chemical emergency response. Version 2.1, 29.08.2002. Yang, G.H., Y.M. Wang, and L. Chen. 1995. Treatment and care of 35 cases of monomethylamine poisoning. Zhonghua Hu Li Za Zhi [Chinese journal of nursing] 30: 83-5. Yu, P.H. 1990. Oxidative deamination of aliphatic amines by rat aorta semicarbazide-sensitive amine oxidase. J. Pharm. Pharmacol. 42: 882-4.
38 39 40 41 42 43 44 45 46 47 48 49 50	 five aliphatic amines. The Toxicologist 14:1214 (abstract). van Doorn, R., M. Ruijten and T. Van Harreveld. 2002. Guidance for the application of odor in 22 chemical emergency response. Version 2.1, 29.08.2002. Yang, G.H., Y.M. Wang, and L. Chen. 1995. Treatment and care of 35 cases of monomethylamine poisoning. Zhonghua Hu Li Za Zhi [Chinese journal of nursing] 30: 83-5. Yu, P.H. 1990. Oxidative deamination of aliphatic amines by rat aorta semicarbazide-sensitive amine oxidase. J. Pharm. Pharmacol. 42: 882-4. Yu, P.H., S. Wright, E.H. Fan, et al. 2003. Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta. 1647: 193-9.

APPENDIX A: Derivation of the Level of Distinct Odor Awareness (LOA) 1 2 3 The level of distinct odor awareness (LOA) represents the concentration above which it is 4 predicted that more than half of the exposed population will experience at least a distinct odor 5 intensity, about 10 % of the population will experience a strong odor intensity. The LOA should 6 help chemical emergency responders in assessing the public awareness of the exposure due to 7 odor perception. The LOA derivation follows the guidance given by van Doorn et al. (2002). 8 9 The odor detection threshold (OT_{50}) for methylamine was reported to be 0.035 ppm 10 (Ruijten 2005). 11 12 The concentration (C) leading to an odor intensity (I) of distinct odor detection (I=3) is derived 13 using the Fechner function: 14 15 $I = kw x log (C / OT_{50}) + 0.5$ 16 17 For the Fechner coefficient, the default of kw = 2.33 will be used due to the lack of chemical-18 specific data: 19 20 $3 = 2.33 \times \log (C/0.035) + 0.5$, which can be rearranged to $\log (C / 0.035) = (3 - 0.5) / 2.33 = 1.07$, and results in 21 $C = (10^{1.07}) \times 0.035 = 0.41 \text{ ppm}$ 22 23 24 The resulting concentration is multiplied by an empirical field correction factor. It takes into 25 account that in every day life factors such as sex, age, sleep, smoking, upper airway infections 26 and allergy as well as distraction, may increase the odor detection threshold by a factor of 4. In 27 addition, it takes into account that odor perception is very fast (about 5 seconds) which leads to 28 the perception of concentration peaks. Based on the current knowledge, a factor of 1/3 is applied 29 to adjust for peak exposure. Adjustment for distraction and peak exposure lead to a correction 30 factor of 4 / 3 = 1.3331 32 LOA = C x 1.33 = 0.41 ppm x 1.33 = 0.56 ppm 33 34 The LOA for methylamine is 0.56 ppm. 35 36

 Derivation of AEGL-1 Key studies: Kinney at al. (1990). Male rats were exposed to 0, 75, 250, or 750 ppm MMA 6 hours/day, 5 days/week for 2 weeks. Rats exposed to 75 ppm had mild irritation of nasal turbinates, whereas 250 ppm caused marked red nasal discharge and nasal muce lesions, and 750 ppm caused 50% mortality (starting on day 8) and lesions of the lung eyes, and other organs. Although a no-effect level for mild irritation of the nasal turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour exposure to 75 ppm is expected to cause no more than mild sensory irritation and is the 	
 Derivation of AEGL-1 Key studies: Kinney at al. (1990). Male rats were exposed to 0, 75, 250, or 750 ppm MMA 6 hours/day, 5 days/week for 2 weeks. Rats exposed to 75 ppm had mild irritation of 7 nasal turbinates, whereas 250 ppm caused marked red nasal discharge and nasal muce 8 lesions, and 750 ppm caused 50% mortality (starting on day 8) and lesions of the lung 9 eyes, and other organs. Although a no-effect level for mild irritation of the nasal 10 turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour 11 exposure to 75 ppm is expected to cause no more than mild sensory irritation and is the AEGL-1 POD. 	
 Key studies: Kinney at al. (1990). Male rats were exposed to 0, 75, 250, or 750 ppm MMA 6 hours/day, 5 days/week for 2 weeks. Rats exposed to 75 ppm had mild irritation of 7 nasal turbinates, whereas 250 ppm caused marked red nasal discharge and nasal muce 8 lesions, and 750 ppm caused 50% mortality (starting on day 8) and lesions of the lung 9 eyes, and other organs. Although a no-effect level for mild irritation of the nasal 10 turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour 11 exposure to 75 ppm is expected to cause no more than mild sensory irritation and is the 12 AEGL-1 POD. 	
 Key studies: Kinney at al. (1990). Male rats were exposed to 0, 75, 250, or 750 ppm MMA 6 hours/day, 5 days/week for 2 weeks. Rats exposed to 75 ppm had mild irritation of 7 nasal turbinates, whereas 250 ppm caused marked red nasal discharge and nasal muce 8 lesions, and 750 ppm caused 50% mortality (starting on day 8) and lesions of the lung 9 eyes, and other organs. Although a no-effect level for mild irritation of the nasal 10 turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour 11 exposure to 75 ppm is expected to cause no more than mild sensory irritation and is the 12 AEGL-1 POD. 	c
 6 hours/day, 5 days/week for 2 weeks. Rats exposed to 75 ppm had mild irritation of 7 nasal turbinates, whereas 250 ppm caused marked red nasal discharge and nasal muce 8 lesions, and 750 ppm caused 50% mortality (starting on day 8) and lesions of the lung 9 eyes, and other organs. Although a no-effect level for mild irritation of the nasal 10 turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour 11 exposure to 75 ppm is expected to cause no more than mild sensory irritation and is the 12 AEGL-1 POD. 	tor
 lesions, and 750 ppm caused 50% mortality (starting on day 8) and lesions of the lung eyes, and other organs. Although a no-effect level for mild irritation of the nasal turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour exposure to 75 ppm is expected to cause no more than mild sensory irritation and is th AEGL-1 POD. 	the osa
 9 eyes, and other organs. Although a no-effect level for mild irritation of the nasal 10 turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour 11 exposure to 75 ppm is expected to cause no more than mild sensory irritation and is th 12 AEGL-1 POD. 	gs,
 turbinates was not determined, mild irritation after 10 exposures, and a single 6-hour exposure to 75 ppm is expected to cause no more than mild sensory irritation and is the AEGL-1 POD. 	
exposure to 75 ppm is expected to cause no more than mild sensory irritation and is the AEGL-1 POD.	
12 AEGL-1 POD.	ne
14 Sriramachari and Jeevaratnam (1994). Male rats were exposed to 465 ppm for 30	
15 minutes. Rats showed no visible signs of respiratory distress, but the thorax showed	
16 edema and hemorrhage. The lungs showed pneumonitis and perivascular edema, but	no
17 edema of the alveolar spaces. The interstitial pheumonitis progressed to fibrosis over	
10 time.	
20 Toxicity endpoint: Mild sensory (nasal) irritation	
21 Toxicity endpoint. Wind sensory (nasar) initiation	
22 Scaling: None: The same AEGL-1 value was used for 10 minutes to 8 hours because mild n	asal
23 sensory irritation does not vary greatly over time	
24	
25 Uncertainty Factors: Total uncertainty factor: 10	
26 Interspecies: 3: Mild nasal irritation from an alkaline irritant gas is a direct surface-contact	
27 effect not involving metabolism, and not likely to vary greatly between species.	
28 Intraspecies: 3: Mild nasal irritation from an alkaline irritant gas is a direct surface-contact	
29 effect not involving metabolism, and not likely to vary greatly among humans.	
30	
31 Modifying Factor: A modifying factor of 0.5 was applied to the Kinney et al. (1990) study	
32 because the exposures were repeated and the effect was essentially a NOAEL. A	
33 modifying factor of 3 was applied to the Sriramachari and Jeevaratnam (1994) study	~-
because the study was not robust and the endpoint was beyond that defined by an AE	GL-
36 27 Calculations	
37 Calculations:	
30 10 minute through 8 hour AECI 1: 75 nnm/10 x 0.5 = 15 nnm (10 mg/m ³)	
$10^{-1111100000000000000000000000000000$	
41	

1		Derivation of AEGL-2
2		
3	Key study: Kinney	at al. (1990). Male rats were exposed to 0, 75, 250, or 750 ppm MMA for 6
4	hours/day, 5	days/week for 2 weeks. Rats exposed to 75 ppm had mild irritation of the
5	nasal turbina	ites, whereas 250 ppm caused marked red nasal discharge and nasal mucosa
6	lesions, and	750 ppm caused 50% mortality (starting on day 8) and lesions of the lungs,
7	eyes, and oth	her organs. At 250 ppm, lesions did not extend into the lungs. After a two
8	week recove	ry period, the lesions observed at 250 ppm were largely reversible.
9	Reversible n	asal lesions are within the scope of AEGL-2 and were used as the point of
10	departure.	
11		
12	Toxicity endpoint:	Reversible nasal cavity lesions following repeat exposure of rats to 250 ppm,
13	6 hours/day	for two weeks.
14	G 1' TT' 1'	
15	Scaling: Time scali	ng, C ^a x t = k, where n = 1.9 was calculated from both the LC ₅₀ data of IRDC
16	(1992a) and (2000)	the full data set on lethality of IRDC (1992a), the latter using the ten Berge
l / 10	(2006) comp	buter program.
10	Un containty Factors	Total uncontainty factor: 10
19 20	Intermosiog: 2 No.	al irritation from an alkaling irritant gas is a direct surface contact affect not
20 21	involving m	sal initiation from an alkaline initiant gas is a uncet surface-contact effect not
21	Intraspecies: 3. Na	sal irritation from an alkaline irritant gas is a direct surface-contact effect not
22	involving me	etabolism and not likely to vary greatly among humans
23	involving in	eubonshi, and not likely to vary greatly among humans.
25	Modifying Factor: 1	None
26		
27	Calculations:	$(C/UF)^{1.9} x t = k$
28		$(250 \text{ ppm}/10)^{1.9} \text{ x } 360 \text{ minutes} = 1.631 \text{ x } 10^5 \text{ ppm}^{1.9} \cdot \text{min} = \text{k}$
29		
30	10-min AEGL-2	$C = (1.631 \text{ x } 10^5 \text{ ppm}^{1.9} \cdot \text{min}/10 \text{ min})^{1/1.9}$
31		C = 160 ppm
32		
33	30-min AEGL-2	$C = (1.631 \text{ x } 10^{5} \text{ ppm}^{1.9} \cdot \text{min}/30 \text{ min})^{1/1.9}$
34		C = 92 ppm
35		5 10 1/10
36	1-hour AEGL-2	$C = (1.631 \text{ x } 10^{5} \text{ ppm}^{1.9} \cdot \text{min}/60 \text{ min})^{1/1.9}$
37		C = 64 ppm
38		
39	4-hour AEGL-2	$C = (1.631 \times 10^{9} \text{ ppm}^{1.9} \cdot \text{min}/240 \text{ min})^{171.9}$
40		C = 31 ppm
41		C_{1} (1 (21 10 ⁵ 19 · (400 ·)) ^{1/1} 9
42	8-hour AEGL-2	$C = (1.631 \times 10^{\circ} \text{ ppm}^{-3} \cdot \text{min}/480 \text{ min})^{+1.00}$
43		C = 21 ppm
44		

1	Derivation of AEGL-3
2	
3	Key study: IRDC (1992a). Sprague-Dawley rats (5/sex/dose) exposed whole-body to 4100,
4	6370, 7000, 7100 or 8670 ppm MMA for 60 minutes had 14-day mortalities of 0/10,
5	2/10, 4/10, 6/10, and 9/10, respectively. An LC ₅₀ of 7110 was obtained.
6	
7	Toxicity endpoint: LC_{01} (lethality threshold) in rats
8	
9	Scaling: The probit-analysis dose-response program of ten Berge was used to estimate the LC ₀₁
10	at each AEGL exposure duration. The full data set on lethality was used (see table
11	below). The calculated n value was 1.87 (rounded to 1.9). A linear regression of the
12	LC_{50} values at each of the exposure durations in the key study (6, 20, and 60 minutes)
13	results in the same value of n.
14	
15	Uncertainty Factors: Total uncertainty factor: 10
16	Interspecies: 3. Extreme pulmonary irritation from an alkaline irritant gas is a direct surface-
17	contact effect not involving metabolism, and not likely to vary greatly between species.
18	Intraspecies: 3: Extreme pulmonary irritation from an alkaline irritant gas is a direct surface-
19	contact effect not involving metabolism, and not likely to vary greatly among humans.
20	
21	Modifying Factor: None
22	
23	Data for calculations:

Exposure duration	MMA		Necropsy gross findings			
	concentration (ppm)	Lethality	Eye abnormalities	Congested or red lungs		
	17,600	0/10	10/10	0/10		
	22,500	3/10	10/10	3/10		
6 minutes	26,200	9/10	7/10	9/10		
	26,500	6/10	10/10	4/10		
	35,300	9/10	9/10	8/10		
	10,600	3/10	7/10	2/10		
	10,800	7/10	10/10	6/10		
20 minutos	11,000	6/10	10/10	7/10		
20 minutes	11,600	10/10	10/10	8/10		
	13,900	8/10	10/10	8/10		
	17,400	9/10	10/10	9/10		
	4100	0/10	4/10	0/10		
60 minutes	6370	2/10	8/10	2/10		
	7000	4/10	5/10	4/10		
	7100	6/10	7/10	6/10		
	8670	9/10	10/10	8/10		

l Program output:

Exposure Duration	AEGL-3 Value
10 minutes	910 ppm
30 minutes	510 ppm
60 minutes	350 ppm
4 hours	170 ppm
8 hours	110 ppm
n = 1.87	

APPENDIX C: Category Plot for Methylamine (MMA)

3 4 5

6 The data included in this plot are shown below. The only study with reported exposure 7 durations and concentrations that was omitted from the plot was Sarkar and Sastry (1992), 8 because its 2.5-hour LC₅₀ value of 448 ppm (24-hour observation) was grossly inconsistent with the other rat studies. This study used static exposure (in 12 L jar) and the analytical 9 concentration was not determined. 10

For Category, 0 = No effect, 1 = Discomfort, 2 = Disabling, SL = Some Lethality, 3 = Lethal									
Source	Species	Sex	# Expo-	ppm	Minutes	Cate-	Comments		
			sures			gory			
NAC/AEGL-1	rat	m	10	15	10	AEGL	Kinney et al 1990; 6 hr/day for 10 days		
NAC/AEGL-1				15	30	AEGL	Sriramachari and Jeevaratnam 1994, 465 ppm		
							for 30 minutes		
NAC/AEGL-1				15	60	AEGL			
NAC/AEGL-1				15	240	AEGL			
NAC/AEGL-1				15	480	AEGL			
NAC/AEGL-2	rat	m, f	1	160	10	AEGL	Kinney et al 1990; 6 hr/day for 10 days		
NAC/AEGL-2				92	30	AEGL			
NAC/AEGL-2				64	60	AEGL			
NAC/AEGL-2				31	240	AEGL			
NAC/AEGL-2				21	480	AEGL			
NAC/AEGL-3	rat	m, f	1	910	10	AEGL	IRDC 1992a; LC_{01} (threshold for lethality)		

NAC/AEGL-3				510	30	AEGL	
NAC/AEGL-3				350	60	AEGL	
NAC/AEGL-3				170	240	AEGL	
NAC/AEGL-3				110	480	AEGL	
IRDC 1992a	rat	m, f	1	24400	6	sl	LC ₅₀ in rats; exposed to 16,600 - 35,300 ppm
			1	9600	20	sl	LC ₅₀ in rats; exposed to 10,600 - 17,400 ppm
			1	7110	60.0	sl	LC ₅₀ in rats; exposed to 4100 - 8670 ppm
Air Products 1976	rat	m, f	1	4830	60	sl	LC ₅₀ in rats; exposed to 1500 - 24,000 ppm
Koch et al. 1980	rat	f	1	4800	240.0	sl	LC ₅₀ in rats; exposed to 1865 - 10,469 ppm
Klimisch et al. 1983	rat	m, f	1	1740	240	sl	LC ₅₀ in rats; exposed to 517 - 3213 ppm
Kinney et al. 1990	rat	m	10	75	360	1	Mild irritation & discharge of nasal turbinates,
			10	250	360	2	Nasal lesions, severe discharge
			10	750	360	sl	Nasal lesions & discharge, mortality, ocular
							opacity, respiratory and neuro toxicity
Gorbachev 1957	mouse	?	1	1890	120	sl	LC_{50} in mice; actual exposure concentrations.
							Unknown
Jeevaratnam &	rat	m	1	465	30	2	24-hr observation; lung hemorrhage,
Sriramachari 1994							pneumonitis, split blood vessels
	1		1	1	1	1	1
			1	165	20		
Sriramachari &	rat	m	1	465	30	2	10-week observation; lung edema,
Jeevaraunann 1994							pheumonitus progressing to indrosis

2
4

Siliamachan 1774							plicumonitis, split blobd vessels
							1
Sriramachari & Jeevaratnam 1994	rat	m	1	465	30	2	10-week observation; lung edema, pneumonitis progressing to fibrosis
Gagnaire et al. 1989	mouse	m	1	141	15	2	RD ₅₀ in mice; tested 85-192 ppm
Gorbachev 1957	rabbit	?	1	102	40	1	Threshold for irritation, manifested as decreased breathing rate
			1	39	40	1	Disrupted conditional and reflex activit
Gorbachev 1957	cat	?	1	157	30	1	Threshold for irritation, manifested as increased salivation

1 2

AEGL-1 Values								
10-min	30-min 1-h 4-h 8-h							
15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)	15 ppm (19 mg/m ³)				
 Key References: (1) Kinney, L.A., R. 2: 29-39. (2) Sriramachari, S. derivatives in rate 45-51. 	 Key References: (1) Kinney, L.A., R. Valentine, H.C. Chen et al. 1990. Inhalation Toxicology of Methylamine. Inhal. Toxicol. 2: 29-39. (2) Sriramachari, S. and K. Jeevaratnam. 1994. Comparative toxicity of methyl isocyanate and its hydrolytic derivatives in rats. II. Pulmonary histopathology in the subacute and chronic phases. Arch. Toxicol. 69: 45-51. 							
Test species/Strain/Se	ex/Number: (1) Male Cl	D rats, 10/group; (2) Ma	ale Wistar rats, four tota	1				
Exposure Route/Conc 5 days/week for	centrations/Duration: (1 2 weeks; (2) Inhalation) Inhalation, nose-only t , 465 ppm for 30 minute	to 0, 75, 250, or 750 pp es	m MMA 6 hours/day,				
 Effects: (1) Rats exposed to 75 ppm had mild irritation of the nasal turbinates, whereas 250 ppm caused marked red nasal discharge and nasal mucosa lesions (focal erosions, ulcerations, blood clots, degeneration, necrosis) which in some cases persisted through the 2-week recovery period. Rats exposed to 750 ppm had 50% mortality (starting on day 8) and additionally had lesions of the lungs, eyes, liver, thymus, spleen, and brain; (2) No clinical signs; pulmonary edema was observed after one week with progression to fibrosis after 10 weeks. 								
Endpoint/Concentrati ppm; (2) Pulmor	on/Rationale: (1) Mild hary congestion after a s	sensory (nasal) irritatio	n from a single 30-min	te exposure to 75				
 Uncertainty Factors/Rationale: Total uncertainty factor: 10 Interspecies: 3: Mild sensory irritation from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and not likely to vary greatly between species. Intraspecies: 3: Mild sensory irritation from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and not likely to vary greatly between species. 								
Modifying Factor: (1) 0.5 based on the mild endpoint; (2) 3 based on the lack of robustness of the study and the lung histopathology								
Animal to Human Dosimetric Adjustment: Not applied								
Time Scaling: None irritar	; using the same value f nt effects do not vary gr	for 10 minutes to 8 hour eatly over time	s was considered appro	priate because mild				
Data Adequacy: The cau mo	e data are considered su use some sensory irritati use respiratory inhibitio	fficient. The AEGL-1 f on (14 ppm) per method on study of Gagnaire et	falls in the concentration dology proposed by Ala al. (1989).	n range expected to urie (1981), and the				

APPENDIX D: Derivation Summary of Acute Exposure Guideline Levels for Methylamine

AEGL-2 Values								
10-min	30-min 1-h 4-h 8-h							
160 ppm (200 mg/m ³)	92 ppm (120 mg/m ³)	64 ppm (80 mg/m ³)	31 ppm (39 mg/m ³)	21 ppm (27 mg/m ³)				
Key reference: Kinne Toxic	y, L.A., R. Valentine, H col. 2: 29-39.	I.C. Chen et al. 1990.	Inhalation Toxicology o	of Methylamine. Inhal.				
Tested species/Strains	s/Number: Male CD rat	s, 10/group						
Exposure Route/Condays/week for 2	centrations/Duration: I weeks	nhalation, nose-only to	0, 75, 250, or 750 ppm	MMA 6 hours/day, 5				
Effects: Rats exposed nasal discha which in son mortality (st brain	to 75 ppm had mild in rge and nasal mucosa lo ne cases persisted throu arting on day 8) and ad	ritation of the nasal turk esions (focal erosions, u igh the 2-week recovery ditionally had lesions o	pinates, whereas 250 pp ilcerations, blood clots, y period. Rats exposed f the lungs, eyes, liver, t	m caused marked red degeneration, necrosis) to 750 ppm had 50% thymus, spleen, and				
Endpoint/Concentrati repeat exposure to 25	on/Rationale: Reversib 0 ppm for 6 hours.	le nasal lesions (NOAE	EL for irreversible nasal	lesions) following				
 Uncertainty Factors/Rationale: Total uncertainty factor: 10 Interspecies: 3: Irritation from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and not likely to vary greatly between species. Intraspecies: 3: Irritation from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and not likely to vary greatly among humans 								
Modifying Factor: N	one							
Animal to Human Do	simetric Adjustment: N	Not applied						
Time Scaling: $C^n x t = k$, where the same n value of 1.9 was calculated from the three LC ₅₀ values of IRDC (1992a) or the whole IRDC data set, the latter using the ten Berge (2006) probit analysis computer program.								
Data Adequacy: The cor 100 vap pul IRI fac tha	program. Data Adequacy: The data were considered adequate to derive AEGL-2 values. The developed AEGL-2 values are consistent with secondary source human reports that short exposures (unknown duration) to 20- 100 ppm MMA caused irritation of the eyes, nose, and throat, whereas above 100 ppm, MMA vapors were "intolerably ammoniacal," and caused larynx constriction, difficulty breathing, pulmonary congestion, and lung edema (Sutton 1963; Deichmann and Gerarde 1969). Using the IRDC (1992a) highest non-lethal value at 60 minutes (4100 ppm) and applying a modifying factor of 3 (a conservative approach) along with the total uncertainty factor of 10 yields values that are two-fold higher.							

1

AEGL-3 Values									
10-min	30-min 1-h 4-h 8-h								
910 ppm (1200 mg/m ³)	510 ppm (650 mg/m ³)	350 ppm (440 mg/m ³)	170 ppm (220 mg/m ³)	110 ppm (140 mg/m ³)					
Key reference: IRDC evalu Allen	Key reference: IRDC (International Research and Development Corporation). 1992a. Acute inhalation toxicity evaluation on monomethylamine in rats. Study sponsored by Air Products and Chemicals, Inc., Allentown, PA.								
Tested species/Strains	s/Number: CD Sprague	-Dawley rats, 5/group/se	ex						
Exposure Route/Conc minutes; 10,600, 8670 ppm for 60	centrations/Duration: Ir 10,800, 11,000, 11,600 minutes	halation of 17,600, 22, , 13,900, or 17,400 ppm	500, 26,200, 26,500, or n for 20 minutes; 4100,	35,300 ppm for 6 6370, 7000, 7100,					
Effects: Labored breathing, rales, and corneal opacity persisted throughout the study. Body weight gains were decreased primarily during the first week. Necropsy revealed eye abnormalities (primarily corneal opacity) and lung congestion (red, discolored lungs). Mortalities for the respective 6-minute exposure duration were 0/10, 3/10, 9/10, 6/10, and 9/10. Mortalities for the respective 20-minute exposure duration were 3/10, 7/10, 6/10, 10/10, 8/10, and 9/10. Mortalities for the respective 60-minute exposure duration were 0/10, 2/10, 4/10, 6/10, and 9/10.									
Endpoint/Concentration Berge (2006) pro	on/Rationale: LC ₀₁ (let bit analysis software pr	hality thresholds) at eac ogram	ch exposure duration as	calculated by the ten					
 Uncertainty Factors/Rationale: Total uncertainty factor: 10 Interspecies: 3: Pulmonary congestion from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and not likely to vary greatly between species. Intraspecies: 3: Pulmonary congestion from an alkaline irritant gas is a direct surface-contact effect not involving metabolism, and not likely to vary greatly among humans. 									
Modifying factor: None									
Animal to Human Dosimetric Adjustment: Not applied									
Time Scaling: $C^n x t = k$, where the same n value of 1.9 was calculated from the three LC ₅₀ values of IRDC (1992a) or the whole IRDC data set, the latter using the ten Berge (2006) probit analysis computer program.									
Data Adequacy: The and	e key study was consist I was the best of the sev	ent with the overall MM ren available acute letha	IA data set, showed a club lity studies.	lear dose-response,					