

# Recent Improvements in IRIS

Vincent Cogliano, PhD Director, IRIS Division (acting)

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington DC



### Improving IRIS Assessments through Systematic Review



- IRIS assessments are adopting the principles of systematic review
- Greater use of tables and figures for clarity
- Plain-language summary of key conclusions



### Example: Identifying and Selecting Pertinent Studies





### Example: Evaluating the Quality of Individual Studies

#### Diethyl Phthalate – Anogenital Distance Studies (Draft)

| Reference                          | Exposure Measure<br>and Range                                                          | Outcome classification                                                                                                                                                     | Participant<br>Selection and<br>Comparability                                                                                                                                                                                                                              | Consideration of<br>Likely Confounding                                                                                                                                                         | Completeness of results                                                                                                                                                             | Adequate<br>Sample<br>Size | Additional Comments -<br>Limitations in<br>Confidence in Results                                                                               |
|------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Suzuki et al.,<br>2011             | Maternal urine (9 – 40<br>weeks; mean 29<br>weeks), MEP, 75th<br>percentile = 32 ng/mL | Anogenital<br>distance ,<br>measured at<br>birth (1-3 days);<br>blinded to<br>exposure                                                                                     | Japan. Birth<br>cohort; 120 of<br>344 enrollees<br>excluded<br>because did not<br>delivery at study<br>hospital. Internal<br>comparison<br>group.                                                                                                                          | Gestational age,<br>birth order,<br>maternal age,<br>maternal smoking<br>and environmental<br>tobacco smoke<br>exposure (stepwise<br>regression);<br>Used SG-corrected<br>urine concentrations | Described as<br>not associated<br>(details not<br>reported)                                                                                                                         | n = 111<br>male<br>infants | Relatively low, narrow<br>exposure range. Unclear<br>if approach to dilution<br>adjustment is optimal                                          |
| Swan 2008;<br>Swan et al.,<br>2005 | Maternal urine (3rd<br>trimester), MEP, 75th<br>percentile = 437 ng/mL                 | Anogenital<br>distance,<br>measured at<br>ages 0 - 36<br>months;<br>assessors<br>blinded to<br>exposure but no<br>information on<br>agreement<br>between sites /<br>raters | United States (3<br>sites). Birth<br>cohort; 21 of 172<br>enrollees<br>excluded<br>because exam<br>not considered<br>reliable (child<br>too active); 2<br>declined<br>interview); other<br>exclusions based<br>on lack of urine<br>sample. Internal<br>Comparison<br>group | Adjusted for weight percentile and age                                                                                                                                                         | Percent change<br>per interquartile<br>increase in<br>metabolite and<br>p-value; also<br>presented as<br>metabolite<br>distribution by 3<br>categories of<br>anogenital<br>distance | n =106<br>boys             | Is age-size adjustment<br>adequate (considering<br>potential temporal<br>changes in exposure)?<br>No adjustment for urine<br>dilution in model |



## Example: Deriving Toxicity Values

| Endpoint and Reference                                                     | POD <sub>HED</sub> <sup>a</sup> | POD type            | UFA  | UF <sub>H</sub> | UFL | UFs | UFD | Composite<br>UF | Candidate<br>value (mg/kg-d)       |          |                                |
|----------------------------------------------------------------------------|---------------------------------|---------------------|------|-----------------|-----|-----|-----|-----------------|------------------------------------|----------|--------------------------------|
| DEVELOPMENTAL                                                              |                                 |                     |      |                 |     |     |     |                 |                                    |          |                                |
| Neurodevelopmental<br>impairments in rats<br>Chen et al., 2012             | 0.01                            | BMDL <sub>1SD</sub> | 10   | 10              | 1   | 1   | 3   | 300             | 2 x 10 <sup>-4</sup>               | •        | Composite<br>UF<br>▲ Candidate |
| Cardiovascular effects<br>Jules et al., 2012                               | 0.15                            | LOAEL               | 3    | 10              | 10  | 1   | 3   | 1000            | 2 x 10 <sup>-4</sup>               | •        | RfD<br>● PODHEC                |
|                                                                            |                                 | REPI                | RODU | CTIVE           |     |     |     |                 |                                    |          |                                |
| Decreased ovary weight and<br>ovarian follicles in rats<br>Xu et al., 2010 | 0.37                            | BMDL <sub>1SD</sub> | 3    | 10              | 1   | 10  | 3   | 1000            | 4 x 10 <sup>-4</sup>               | •        |                                |
| Decreased sperm count in mice<br>Mohamed et al., 2010                      | 0.15                            | LOAEL               | 3    | 10              | 10  | 10  | 3   | 10000           | Not calculated due<br>to UF > 3000 |          |                                |
| Cervical epithelial hyperplasia<br>Gao et al. (2011)                       | 0.06                            | BMDL <sub>10</sub>  | 3    | 10              | 1   | 10  | 3   | 1000            | 6 x 10 <sup>-5</sup>               | <b>A</b> | •                              |
| IMMUNOLOGICAL                                                              |                                 |                     |      |                 |     |     |     |                 |                                    |          |                                |
| Decreased thymus weights<br>Kroese et al., 2001                            | 1.9                             | BMDL <sub>1SD</sub> | 3    | 10              | 1   | 10  | 3   | 1000            | 2 x 10 <sup>-3</sup>               | <b>▲</b> | •                              |
| Decreased serum IgM in rats<br>De Jong et al., 1999                        | 1.7                             | NOAEL               | 3    | 10              | 1   | 10  | 3   | 1000            | 2 x 10 <sup>-3</sup>               | <b>A</b> | •                              |
| Decreased serum IgA in rats<br>De Jong et al., 1999                        | 5.2                             | NOAEL               | 3    | 10              | 1   | 10  | 3   | 1000            | 5 x 10 <sup>-3</sup>               | ▲        | •                              |
| Decreased number of B cells in<br>rats<br>De Jong et al., 1999             | 5.2                             | NOAEL               | 3    | 10              | 1   | 10  | 3   | 1000            | 5 x 10 <sup>-3</sup>               | <b></b>  | •                              |

. 0.0001 0.001 0.01 0.1 1 10

Doses (mg/kg-d)



# Improving IRIS Assessments through Early Public Engagement

- Public engagement will occur early during draft development
  - > Are the pertinent studies included?
  - > What evidence is there for each health effect?
  - > What are the pivotal usues?
  - > What are the options for resolving the issues?
- Early public engagement should lead to an outcome that everyone can respect



- Peer review panels will be larger
- In pivotal areas, there will be multiple experts to provide different perspectives
- EPA will post the names of potential reviewers and ask for comment on their expertise and conflicting interests



### Summary

| Improved<br>product     | IRIS assessments are becoming more clear, more concise, more systematic                   |
|-------------------------|-------------------------------------------------------------------------------------------|
| Improved<br>process     | IRIS is committed to early public engagement during draft development                     |
| Improved<br>peer review | More transparent peer review should<br>ensure impartiality and high scientific<br>quality |
| Improved<br>throughput  | We invite your suggestions for how to complete more assessments in less time              |

Thank you for participating today!