

SUSTAIN–Programmer’s Manual:

Simulation Engine

DRAFT FOR EPA REVIEW

Submitted to

U.S. Environmental Protection Agency

Office of Research and Development

National Risk Management Research Laboratory

Water Supply and Water Resources Division

2890 Woodbridge Avenue (MS-104)

Edison, NJ 08837

Submitted by

Tetra Tech, Inc.

10306 Eaton Place, Suite 340

Fairfax, VA 22030

January 31, 2012

 SUSTAIN–Programmer’s Manual: Simulation Engine

i

Contents
SUSTAIN Software Design ... 1

SUSTAIN BMP Models .. 3

BMP Type Classifications ... 3

BMP Simulation Components ... 4

SUSTAIN Optimization Model ... 22

Optimization Setup .. 23

Optimization Problem Formulations .. 26

Tiered Optimization .. 28

SUSTAIN Simulation Engine Project .. 31

Software Requirements .. 31

Project Properties .. 31

Data Flow Model .. 32

Class Documentation... 36

Microsoft Foundation Class References ... 36

ADJUSTABLE_PARAM Struct Reference ... 36

BMP_A Struct Reference ... 38

BMP_B Struct Reference ... 40

BMP_C Struct Reference ... 42

BMP_D Struct Reference ... 43

BMP_E Struct Reference ... 45

BMPCOST Struct Reference ... 47

CAquifer Class Reference .. 48

CBMPData Class Reference ... 50

CBMPOptimizer Class Reference .. 62

CBMPOptimizerGA Class Reference .. 72

CBMPRunner Class Reference .. 83

CBMPSite Class Reference .. 92

CIndividual Class Reference .. 102

CLandUse Class Reference .. 106

COST_PARAM Struct Reference ... 108

CPopulation Class Reference ... 110

CPUMP Class Reference .. 118

CSiteLandUse Class Reference ... 120

CSitePointSource Class Reference .. 122

DS_BMPSITE Struct Reference .. 125

EVALUATION_FACTOR Struct Reference ... 126

 SUSTAIN–Programmer’s Manual: Simulation Engine

ii

GA_PROBLEM Struct Reference ... 128

HOLTAN_PARAM Struct Reference.. 130

POLLUT_RAConc Class Reference ... 131

POLLUTANT Struct Reference .. 132

PUMP_CONTROL Struct Reference ... 133

SAND Struct Reference... 134

SCATTER_SEARCH Struct Reference .. 135

SEDIMENT Struct Reference .. 137

SILTCLAY Struct Reference ... 138

TradeOffCurve Class Reference ... 139

US_BMPSITE Struct Reference .. 141

File Documentation ... 142

Aquifer.cpp File Reference .. 142

Aquifer.h File Reference.. 143

BMPData.cpp File Reference .. 144

BMPData.h File Reference ... 150

BMPOptimizer.cpp File Reference ... 151

BMPOptimizer.h File Reference .. 152

BMPOptimizerGA.cpp File Reference ... 153

BMPOptimizerGA.h File Reference .. 154

BMPRunner.cpp File Reference .. 155

BMPRunner.h File Reference ... 156

BMPSite.cpp File Reference ... 159

BMPSite.h File Reference .. 160

Global.cpp File Reference .. 162

Global.h File Reference ... 167

Individual.cpp File Reference ... 168

Individual.h File Reference .. 170

LandUse.cpp File Reference .. 171

LandUse.h File Reference .. 172

Population.cpp File Reference .. 173

Population.h File Reference ... 174

Pump.cpp File Reference .. 175

Pump.h File Reference .. 176

Resource.h File Reference ... 177

Sediment.cpp File Reference ... 178

Sediment.h File Reference .. 181

 SUSTAIN–Programmer’s Manual: Simulation Engine

iii

SiteLandUse.cpp File Reference ... 182

SiteLandUse.h File Reference .. 183

SitePointSource.cpp File Reference .. 184

SitePointSource.h File Reference ... 185

StdAfx.cpp File Reference ... 186

StdAfx.h File Reference .. 187

SUSTAIN.cpp File Reference .. 188

SUSTAIN.h File Reference ... 189

References ... 190

 SUSTAIN–Programmer’s Manual: Simulation Engine

iv

Tables

Table 1. BMP type classifications .. 3
Table 2. Summary of inputs, methods, and outputs in the BMP module .. 5
Table 3. Available optional methods for BMP simulation processes ... 6
Table 4. Coefficient Cw (in English units) for rectangular sharp-crested weirs 7
Table 5. Quality ratings of conceptual pond shapes simulated by Persson et al. (1999)14
Table 6. Recommended k' and C* values ...15
Table 7. Summary of inputs, methods, and outputs in the optimization module22
Table 8. Example control targets for a typical evaluation factor assessment in SUSTAIN25

 SUSTAIN–Programmer’s Manual: Simulation Engine

v

Figures

Figure 1. SUSTAIN components and flow chart. ... 1
Figure 2. A schematic showing the BMP simulation processes modeled in SUSTAIN. 4
Figure 3. Example of an aggregate BMP treatment train and contributing area distribution. 5
Figure 4. A weir and orifice stage-outflow representaion in SUSTAIN. ... 6
Figure 5. Conceptual illustration of the BMP pump curve. .. 8
Figure 6. Processes considered in an underdrain structure..12
Figure 7. Conceptual pond shapes simulated by Persson et al. (1999). ..14
Figure 8. Conceptual flow diagram of Area BMP simulation. ..15
Figure 9. Schematic of sediment transport, deposition, and scour in conduits.16
Figure 10. Conceptual overview of the optimization module. ...23
Figure 11. Illustration of assessment points. ...24
Figure 12. Tiered application of SUSTAIN for developing cost-effectiveness curves.29
Figure 13. Construction of the tier-2 search domain using tier-1 results. ..30
Figure 14. Simulation process for each iteration run. ...30
Figure 15. Screenshots of SUSTAIN Visual C++ project settings. ..31
Figure 16. Screenshots of SUSTAIN Visual C++ project options. ...31
Figure 17. SUSTAIN simulation data flow diagram. ..32

 SUSTAIN–Programmer’s Manual: Simulation Engine

vi

Class Index

ADJUSTABLE_PARAM .. 36

BMP_A .. 38

BMP_B .. 40

BMP_C .. 42

BMP_D .. 43

BMP_E .. 45

BMPCOST .. 47

CAquifer .. 48

CBMPData ... 50

CBMPOptimizer .. 62

CBMPOptimizerGA .. 72

CBMPRunner .. 83

CBMPSite .. 92

CIndividual .. 102

CLandUse .. 106

COST_PARAM .. 108

CPopulation ... 110

CPUMP .. 118

CSiteLandUse .. 120

CSitePointSource .. 122

DS_BMPSITE ... 125

EVALUATION_FACTOR .. 126

GA_PROBLEM .. 128

HOLTAN_PARAM .. 130

POLLUT_RAConc .. 131

POLLUTANT ... 132

PUMP_CONTROL .. 133

SAND ... 134

SCATTER_SEARCH ... 135

SEDIMENT ... 137

SILTCLAY .. 138

TradeOffCurve ... 139

US_BMPSITE ... 141

 SUSTAIN–Programmer’s Manual: Simulation Engine

vii

File Index

Aquifer.cpp .. 142

Aquifer.h ... 143

BMPData.cpp ... 144

BMPData.h .. 150

BMPOptimizer.cpp .. 151

BMPOptimizer.h ... 152

BMPOptimizerGA.cpp .. 153

BMPOptimizerGA.h ... 154

BMPRunner.cpp .. 155

BMPRunner.h ... 156

BMPSite.cpp .. 159

BMPSite.h ... 160

Global.cpp ... 162

Global.h .. 167

Individual.cpp .. 168

Individual.h ... 170

LandUse.cpp .. 171

LandUse.h ... 172

Population.cpp ... 173

Population.h .. 174

Pump.cpp .. 175

Pump.h ... 176

Resource.h .. 177

Sediment.cpp .. 178

Sediment.h ... 181

SiteLandUse.cpp .. 182

SiteLandUse.h ... 183

SitePointSource.cpp .. 184

SitePointSource.h ... 185

StdAfx.cpp .. 186

StdAfx.h ... 187

SUSTAIN.cpp ... 188

SUSTAIN.h .. 189

 SUSTAIN–Programmer’s Manual: Simulation Engine

1

SUSTAIN Software Design
The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the

U.S. Environmental Protection Agency (EPA) to support practitioners in developing cost-effective

management plans for municipal stormwater programs and evaluating and selecting best management

practices (BMPs) to achieve water resource goals. It includes a process-based, continuous-simulation

BMP module for representing flow and pollutant transport routing through various types of structural

BMPs. SUSTAIN simulates certain hydrologic and water quality processes that allow users to evaluate

runoff volume reduction, peak flow attenuation, and pollutant load reduction. Users can select from

various algorithms for certain processes depending on available data, consistency with coupled modeling

assumptions, and the level of detail required. SUSTAIN includes a cost database composed of typical

BMP component cost data from a number of published sources for reference purposes. Cost information

for any BMP can be specified as a function of physical features such as excavation volume, soil media or

other construction materials, or even aggregated cost per unit volume.

SUSTAIN extends the capabilities and functionality of traditionally available models by providing

integrated analysis of water quantity, quality, and cost factors. The difference between SUSTAIN and

other BMP models is SUSTAIN’s ability to evaluate a range of BMP locations, types, and sizes during

stormwater management planning. Certain BMP properties in SUSTAIN are specifically represented as

decision variables, meaning that they are permitted to change across a predefined range of variability

during the course of model simulation to support BMP selection and placement optimization. As BMP

size changes, so do cost and performance. SUSTAIN runs iteratively to generate a cost-effectiveness

curve of BMP opportunities in the modeled study area to support decision making. Figure 1 shows

SUSTAIN’s overall software design, including system components, relationships between components,

and the general flow of information. Each of the components shown in Figure 1 are described in more

detail in Chapter 2 of EPA-published SUSTAIN technical report (EPA/600/R-09/095) available at the EPA

SUSTAIN website (http://www.epa.gov/nrmrl/wswrd/wq/models/sustain).

Figure 1. SUSTAIN components and flow chart.

Conduit

BMP

Reach

Land

Modules

Decision Matrix

Land

Land

(Watershed)

Land

(Micro scale)

CSO

Land

Land

(buffer strip)

Sewershed

Watershed

GIS

Potential

Location

BMP types BMP configuration

1 (0-1) A, B, C… Depth Surface area …

2 (0-1) A, B, C… Depth Surface area …

… … … … …

Framework

Manager

Network

construction

Network/Reach

Routing

Network

construction

Network/Reach

Routing

Output

Post-Processor

Decision

Optimization

Engine

E
x
te

rn
al

 I
n
p

u
ts

http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1005IFG.txt
http://www.epa.gov/nrmrl/wswrd/wq/models/sustain

 SUSTAIN–Programmer’s Manual: Simulation Engine

2

SUSTAIN is designed to perform the following sequence of operations.

 From the GIS view (ArcMap 9.3.1) and database (File-based Geodatabase containing spatial and

tabular dataset), the GIS interface is first used to develop a simulation network defining the

relationship between land-area units, BMPs, and stream segments in a watershed.

 The purpose of the GIS interface is to facilite creation of a SUSTAIN model input file.

 SUSTAIN engine reads the input file and performs a run in which the external inputs (boundary

conditions such as hydrology and water quality data timeseries and/or climate data timeseries)

are passed to appropriate modules (i.e., land, BMP, conduit/reach) and their outputs are routed

to receiving modules.

 The Optimization Engine evaluates the current option and selects the next preferred option in the

Feasible Options Matrix (FOM) on the basis of cost and defined flow and water quality criteria.

The preferred option can be a different combination of BMP locations and types as

conceputualized in the Decision Matrix of Figure 1. The Decision Matrix is the user-specified

range of decision variables (BMP configuration), but the Feasible Options Matrix is composed of

feasible combinations of decision variables (types, configurations, locations, and costs) in

context within the overall BMP network. While the true search space might include thousands,

millions, or billions of possible combinations, depending on the number and ranges of decision

variables, the purpose of the optimization algorithm is to navigate a more efficient path through

the search space to reduce the number of searches by orders of magnitude. The FOM includes

the range of solutions with different BMP configurations prepared by the optimization search

techniques, taking into account the total cost and evaluation factors to compare against the

target evaluation criteria. SUSTAIN performs numerous iterations until the user-defined

convergence criteria are met.

Depending on how the land simulation is approached, SUSTAIN provides two options for defining loading

conditions to BMPs: internal land simulation and external land simulation:

 Internal Land Simulation Option: With this option, the land module computes the hydrograph

and pollutograph for each catchment using algorithms adapted from the SWMM (version

5.0.009) land surface compartment and sediment algorithms adapted from the HSPF model, and

generate flow and water quality time series for each and every catchment. The time series are

then used to drive the routing and BMP simulation.

 External Land Simulation Option: With this option, externally generated time series are used to

represent hydrology and water quality at the landscape level. The runoff boundary condition is

represented using text files containing a unit-area hydrograph and pollutograph(s) for each land

use type, generated from a precalibrated external watershed model such as HSPF (Hydrologic

Simulation Program FORTRAN), LSPC (Loading Simulation Program in C++), or any

continuous-simulation model capable of generating hourly (or subhourly) time series. SWMM

can also be applied and linked to SUSTAIN using the external land simulation option, which saves

the overhead of having to generate runoff and pollutant loads as part of the optimization

simulation.

 SUSTAIN–Programmer’s Manual: Simulation Engine

3

SUSTAIN BMP Models

BMP Type Classifications

The BMP module is designed to provide a process-based simulation of flow and pollutant transport

routing for a wide range of structural BMPs. It is also modular so that new best management practices

(BMPs) and alternative solution techniques can be added over time as needed. Depending on the

simulation processes involved, BMPs are classified into five types: Type A, Type B, Type C, Type D, and

Type E. Table 1 lists the BMP type classification, example practices, and relevant simulation processes.

The simulation processes are discussed in details in BMP Simulation Components section of this report.

Table 1. BMP type classifications

BMP type Example practices Simulation processes

Type A Bioretention Stage-outflow storage routing using

weir or orifice equations

 Pump-curve outflow

 Green-Ampt/Holtan/Horton

 Complete mixed/continuously stirred
tank reactor (CSTR) in series

 1st order decay

 Kadlec and Knight method

Cistern

Constructed Wetland

Green Roof

Infiltration Basin

Infiltration Trench

Porous Pavement

Rain Barrel

Sand Filter (non-surface)

Sand Filter (surface)

Wet Pond

Dry Pond

Regulator

Type B Grassed Swale Kinematic flow routing by solving the

coupled continuity equation and
Manning’s equation

 Green-Ampt/Holtan/Horton

 Completely mixed

 1st order decay

 Kadlec and Knight method

Type C Conduit Conduit simulation involves kinematic
wave flow routing and pollutant routing as

implemented in SWMM and sediment
transport as implemented in HSPF. See
detailed descriptions in SUSTAIN report

(USEPA 2009)

Type D Filter strip Nonlinear reservoir flow routing

 Green-Ampt/Holtan/Horton

 1st order decay

 Kadlec and Knight method

Type E Impervious Area Disconnection (Area
BMP)

 Nonlinear reservoir flow routing

 Steady state infiltration

 1st order decay

 Kadlec and Knight method

 SUSTAIN–Programmer’s Manual: Simulation Engine

4

BMP Simulation Components

The BMP module simulates the following hydrologic processes to reduce land runoff volume and

attenuate peak flows: evaporation of standing surface water, infiltration of ponded water into the soil

media, deep percolation of infiltrated water into groundwater, and outflow through weir or orifice control

structures. Figure 2 shows a schematic of the BMP simulation processes.

Figure 2. A schematic showing the BMP simulation processes modeled in SUSTAIN.

Table 2 provides an overview of the required inputs, the methods used to manage and process the inputs,

and the resulting outputs of the BMP module. To help manage model scale, SUSTAIN also allows the

user to apply an aggregate BMP, which defines a BMP treatment train template to a larger portion of land

use within a subcatchment. For example, if a rain barrel is in series with a rain garden at the lot level,

and the user wishes to apply the same treatment train to multiple lots, in lieue of specifying every single

rain barrel and rain garden, the aggregate BMP approach allows the user to simulate one template that

can be replicated as many times as necessary in the subwatershed. The aggregate BMP approach

recognizes that not all the drainage area can be treated. While some of the land can be defined as

tributary to individual BMP components in the train, any untreatable or untreated areas will be routed

directly to the watershed outlet. Figure 3 shows an example of an aggregate BMP treatment train and

contributing area distribution, with untreated land area routed directly to the outlet. Some resolution is

sacrificed using that approach because a fixed land use distribution and average size for the lot must be

assumed; however, this is offset by simulation efficiencies gained. Alternatively, the user can always

manually delineate the subareas (BMP drainage areas) within a subcatchment and assign individual BMP

to each drainage area if that level of resolution is needed.

BMP

Simulation

Processes

Deep Percolation

Under drain outflow

Weir/Orifice Outflow

Evapotranspiration

Infiltration

In
flo

w

(L
a
n
d

 &
 U

p
s
tre

a
m

)

BMP

Simulation

Processes

Deep Percolation

Under drain outflow

Weir/Orifice Outflow

Evapotranspiration

Infiltration

In
flo

w

(L
a
n
d

 &
 U

p
s
tre

a
m

)

 SUSTAIN–Programmer’s Manual: Simulation Engine

5

Table 2. Summary of inputs, methods, and outputs in the BMP module

BMP Module

Inputs

 Define BMP dimensions

 Define substrate (soil and underdrain media) properties

 Define sediment settling and transport parameters

 Define pollutant removal and routing parameters

 Define cost for each functional component of a BMP

 Sub-hourly inflow time series

 Sub-hourly sediment (sand, silt, and clay) concentration time series

 Sub-hourly pollutant concentration time series

Methods

 Evapotranspiration (ET) is calculated (user-selected constant, monthly,
or daily values; derived from daily temperature using Hamon method)

 Infiltration is computed using the Green-Ampt or Holtan or Horton
methods

 Deep percolation is calculated according to user-specified background
infiltration rate

 Surface outflow is computed using weir or orifice equations

 Underdrain outflow is computed using orifice equation

 Sediment (sand, silt, and clay) settling and routing is computed using the
process-based algorithms adopted from the HSPF model

 Pollutant removal is calculated using 1st order decay or Kadlec and Knight
method

 Pollutant routing is computed using completely mixed or CSTR in series
method

Outputs

 Sub-hourly outflow time series

 Sub-hourly sediment (sand, silt, and clay) concentration time series

 Sub-hourly pollutant concentration time series

Figure 3. Example of an aggregate BMP treatment train and contributing area distribution.

Green Street

Bioinfiltration

Pervious

Area

Pervious

Pavement

outlet

Bioinfiltration

Treated Drainage Area Land Distribution

Rain

Barrel

Untreated

Land

Green Parking

Disconnected

Rooftop

Road/Street

Sidewalk

Driveway

Parking

 SUSTAIN–Programmer’s Manual: Simulation Engine

6

Table 3 provides a summary of the key BMP simulation processes included in SUSTAIN.

Table 3. Available optional methods for BMP simulation processes

Processes Options

Flow Routing Stage-outflow storage routing using weir or orifice equations

Pump-curve outflow

For swale: kinematic routing by solving the coupled continuity
equation and Manning’s equation

For filter strip and area BMP: Nonlinear reservoir flow routing

Infiltration Green-Ampt method

Holtan-Lopez equation

Horton method

Evapotranspiration Constant potential evapotranspiration (PET) rate or monthly average

value, or daily values

Calculate PET using Hamon’s method

Pollutant Routing Completely mixed, single CSTR

CSTRs in series

Pollutant Removal 1st order decay

k’-C* method

BMPs in SUSTAIN are simulated using a combination of fundamental algorithms to represent the

processes of flow routing, infiltration, ET, underdrain infiltration, and pollutant routing and removal.

The fundamental algorithms associated with each method are described in more detail below.

Flow Routing

Storage Routing Method

Water balance storage routing is a commonly used method for flow routing in ponds and impoundments.

OIΔV/Δt (1)

where

 V = change in storage (volume),

 t = time interval (time),

 I = inflow (volume per unit time), and

 O = outflow (volume per unit time).

Stage-outflow relationships are widely used for flow routing through an orifice or over a weir as shown in

Figure 4.

Figure 4. A weir and orifice stage-outflow representaion in SUSTAIN.

Reservoir level

h

Sharp crested weir

H

Orifice diameter

Qw

Qo

Reservoir level

h

Sharp crested weir

H

Orifice diameter

Qw

Qo

 SUSTAIN–Programmer’s Manual: Simulation Engine

7

Weir Outflow

Three commonly used weir types (i.e., sharp-crested rectangular weir, sharp-crested triangular weir,

and broad-crested rectangular weir) are supported in SUSTAIN.

The equation for the rectangular, sharp-crested weir overflow is (Linsley et al. 1992)

3/2

www hLCQ (2)

where

 Qw = outflow over sharp-crested weir (ft3/s),

 Cw = coefficient of discharge,

 Lw = length of weir crest (ft), and

 h = depth of the water above weir crest (ft).

Values of Cw (English units) for sharp-crested rectangular weirs are given in Table 4.

Table 4. Coefficient Cw (in English units) for rectangular sharp-crested weirs

Hd/h

Head h on Weir, ft

0.2 0.4 0.6 0.8 1.0 2.0 5.0

0.5 4.18 4.13 4.12 4.11 4.11 4.10 4.10

1.0 3.75 3.71 3.69 3.68 3.68 3.67 3.67

2.0 3.53 3.49 3.48 3.47 3.46 3.46 3.45

10 3.36 3.32 3.30 3.30 3.29 3.29 3.28

 3.32 3.28 3.26 3.26 3.25 3.25 3.24

Source: Linsley et al. 1992
Hd = Height of the weir

The equation for the triangular (V-notch) sharp-crested weir overflow is (Linsley et al. 1992)

2

θ
tanh"4.28C

2

θ
tanh 2g

15

8
"CQ 5/2

w

5/2

ww (3)

where

 Qw = outflow over sharp-crested weir (ft3/s),

 Cw
” = coefficient of discharge, default value is 0.58 for English units,

 h = depth of the water above weir crest (ft),

 = vertex angle of the V-notch, and

 g = acceleration of gravity (32.2 ft/s2).

True broad-crested weir flow occurs when the upstream head above the crest is between about 1/20 and

1/2 the crest length in the direction of flow (USBR 2001). For broad-crested weirs, it is recommended

that weir coefficient Cw be determined by measuring the flow at various flow rates (Linsley et al. 1992).

The value of the weir coefficient varies with h/Hd.

2g
3

2

H

h
1

0.65
C

1/2

d

w

(4)

where

 h = depth of the water above the weir crest (ft),

 Hd = height of the weir (ft), and

 SUSTAIN–Programmer’s Manual: Simulation Engine

8

 g = acceleration of gravity (32.2 ft/s2).

Orifice outflow

The equation for the orifice flow is

2gHACQ ooo (5)

where

 Qo = outflow through orifice (ft3/s),

 Co = orifice coefficient of discharge,

 Ao = orifice cross sectional area (ft2),

 g = acceleration due to gravity (ft/s2), and

 H = depth of the water level above the orifice (ft).

Nonlinear Reservoir Overland Flow Routing Method

A nonlinear reservoir routing algorithm is applied to route the surface runoff from the impervious area to

the Area BMP (i.e., pervious area), also the overland flow through buffer strips. Surface runoff, Q,

occurs only when the surface water depth, d, exceeds the maximum surface storage depth, dp, in which

case, the outflow is given by Manning’s equation:

 1/2

p Sd-d
n

WQ 3
549.1

 (6)

where

 Q = outflow rate (cfs),

 W = pervious area width (ft),

 n = Manning’s roughness coefficient,

 d = water depth (ft),

 dp = depth of surface storage (ft), and

 S = pervious area slope (ft/ft).

Pump Curve

Certain management practices require an external pump to convey flow out of the BMP. Pump curves

define the numeric relationship between BMP water depth and pump flow rate, similar to the Type 4

pump curve available in SWMM (Rossman 2005). Figure 5 presents a conceptual illustration of a pump

implemented in a storage tank.

Figure 5. Conceptual illustration of the BMP pump curve.

The curve is represented as a table of paired water depth and flow rate values. The water depths

represent the pump’s operating bounds, where Do is the depth of the pump’s minimum operating

Pump

Do DiDepth

Fl
o

w
 R

at
e

Do

Di

 SUSTAIN–Programmer’s Manual: Simulation Engine

9

capacity and Di is the depth of the pump’s maximum operating capacity after which flow rate becomes

constant. The pump can be implemented in a BMP that also has orifice, weir, or underdrain; however,

the pump demand will take priority over the outlets.

Infiltration/Filtration

SUSTAIN supports three options for simulating infiltration in BMPs: (1) Holtan-Lopez equation,

(2) Green-Ampt equation, and the (3) Horton equation.

Holtan-Lopez Empirical Model

The Holtan-Lopez empirical model computes the infiltration rate as a function of the actual available soil

water storage, Sa, of the surface soil layer, as shown below (Maidment 1993):

c

1.4

a fSAGRIf (7)

where

 f = infiltration rate (in./hr),

 GRI = growth index of vegetation in percent maturity, varying from 0.1 to 1.0,

 A = infiltration capacity (an index representing surface-connected porosity and density of plant

roots),

 Sa = available storage in the surface layer (in.), and

 fc = constant final infiltration rate (in./hr).

In Equation (7), A is the vegetative parameter that characterizes surface-connected porosity and the

density of plant roots, which affect infiltration (a value of 0.8 is a typical number for sod or vegetation

that would be found in a BMP). fc is the final constant infiltration rate (in./hr), which is a function of the

hydrologic soil group. The value of fc ranges from 0.3 in./hr for group-A soils to between 0.0 and 0.05

in./hr for group-D soils (Maidment 1993). In a continuous calculation, the available soil storage (Sa) and

infiltration rate (f) are computed at each simulation time step. Available soil storage is updated each

time increment and the infiltration is calculated. The available storage in the surface layer is recovered

through evapotrapsiration between storm events.

This method was developed using the premise that soil moisture storage, surface-connected porosity,

and the effect of root density of the control soil layer are the dominant factors influencing the infiltration

process.

A difficulty with using this method is estimating the control soil layer depth. For simulating the

infiltration process, it is assumed that the soil column depth is the control depth because BMP devices

normally have a confined soil/substrate layer.

Green-Ampt Infiltration Equation

The Green-Ampt infiltration method assumes that a sharp wetting front exists in the soil column that

separates the unwetted zone of soil with some initial moisture content below and the wetted zone of soil

above (Rossman 2005). The infiltration rate is calculated as a function of soil moisture, saturated

hydraulic conductivity, and average wetting front suction head, and is based on Darcy’s law and the

principle of mass conservation (Huber and Dickinson 1988).

If I ≤ Ks, then f = I.

If I > Ks, then f = I, until F = Fs =

s

fis

I/K1

ψθθ

.

 SUSTAIN–Programmer’s Manual: Simulation Engine

10

After surface saturation,

F

ψθθ
1K

dt

dF
f

fis

s
 (8)

For I > Ks, and f = I for I ≤ Ks

where

 I = inflow rate (in./hr),

 F = amount of infiltration (in.),

 Fs = amount of infiltration up to surface saturation (in.),

 F = infiltration rate (in./hr),

 Ks = saturated hydraulic conductivity (in./hr),

 s
= saturated moisture content,

 i
= initial moisture content, and

f = average wetting front suction head (in. of water).

This differential equation is solved iteratively to determine f at each time step by using Newton-Raphson

method. The infiltration volume during the time interval is equal to the inflow volume if the surface does

not saturate. If saturation occurs during the time interval, the infiltration volumes over each stage of

the process within the time steps are calculated and summed. When there is no inflow, any water

ponded on the surface is allowed to infiltrate and added to the cumulative infiltration volume. The soil

moisture content is changed through soil evapotranspiration and percolation losses between storm

events. In using the Green-Ampt method, a complication occurs when the inflow rate starts at a value

above, drops below, and then rises above Ks again during the infiltration computation. In such a case,

the moisture content must be redistributed as the assumption of saturation from the surface down to the

wetting front does not hold. When performing BMP infiltration simulation, the impact of the underdrain

layer, the impermeable bottom layer, or both, on the infiltration process must be considered in the

simulation. Because the Green-Ampt method can be applied to a layered soil column, the underdrain

layer can be represented as a separate layer under the soil column. In cases where an impermeable

layer is present at the bottom of the soil column, the infiltration rate ceases when the soil storage

capacity is reached. A drawback of the Green-Ampt method is that it does not include a parameter to

explicitly reflect the effect of the vegetation root zone on the infiltration rate.

Horton Infiltration Method

The Horton infiltration method is implemented in SUSTAIN using the Storm Water Management Model

(SWMM) formulation (Rossman 2005). The Horton infiltration method is an empirically based model

parameterized by specifying an initial (maximum) infiltration rate and a final, saturated infiltration rate.

The model assumes that infiltration begins at a constant, maximum rate that decreases exponentially

over time. The shape of the curve as the infiltration rate changes from initial to final is controlled by a

decay rate specific to the type of soil (USEPA 1998). The equation follows:

 -kt

coct effff (9)

where ft is the infiltration rate at time t, fo is the maximum infiltration rate, fc is the saturated infiltration

rate, and k is the decay constant.

 SUSTAIN–Programmer’s Manual: Simulation Engine

11

The present time (t) on the infiltration curve between the storm events is regenerated using a

regeneration coefficient of infiltration rate based on the user-specified number of drying days along an

exponential drying curve.

Evapotranspiration

PET time series can be estimated using the U.S. Weather Bureau Class A pan records with adjustment for

plant influences. Several methods are also available to estimate PET. The Penman-Monteith method is

a comprehensive energy-balance approach (Maidment 1993) that requires time series values for solar

radiation, air temperature, relative humidity, and wind speed. The Priestley-Taylor method (Maidment

1993) requires solar radiation, air temperature, and relative humidity. The Hargreaves method

(Maidment 1993) requires only air temperature. This method estimates reference crops’

evapotranspiration on a monthly or larger time interval and can be used when climatological data are

limited. The Hamon method (1961) also requires only air temperature but estimates daily PET.

SUSTAIN provides three options to estimate PET: (1) apply 12 user-supplied monthly PET rates (2)

calculate PET from a user-supplied pan evaporation time series input and a monthly pan coefficient that

is a function of BMP vegetation, or (3) internally calculate PET rates for each hour using Hamon’s method

(1961).

As previously noted, Hamon’s (1961) method generates daily PET using air temperature, a monthly

variable coefficient, and absolute humidity (computed from air temperature). The PET value is

computed as follows:

ws

2

hrTS ρDCPET (10)

where

 PET = daily PET (in.),

 TSC = monthly variable coefficient, and

 hrD = possible hours of sunshine computed as a function of latitude and time of year.

273.3T

p216.7
ρ

av

ws
ws

 (11)

where

ws = saturated water vapor density (absolute humidity) at daily mean air temperature (g/cm3)

and

 avT = mean daily air temperature (°C).

273.3T

T17.26939
exp6.108p

av

av
ws

 (12)

where

 wsp = saturated vapor pressure at the air temperature and

 avT = mean daily air temperature (°C).

Hamon (1961) suggests a constant value of 0.0055 for CTS. However, monthly values can be specified

to avoid underestimating PET in some areas, especially for the winter months.

 SUSTAIN–Programmer’s Manual: Simulation Engine

12

Calculate Actual Evapotranspiration

Once PET is determined, the actual evapotranspiration (ET) is calculated as a function of PET and soil

moisture storages. While PET represents the maximum possible achievable ET on the basis of

atmospheric conditions alone, actual ET is determined using an accounting of the status of the various

components of the hydrologic budget. The actual ET is equal to PET when the soil moisture is greater

than or equal to the moisture at the field capacity. There is no actual ET if the moisture content is less

than or equal to the moisture at the wilting point.

Evapotranspiration (ET) Multiplier

An ET multiplier was added allowing a unique multiplier value to be set for each BMP instance in a

SUSTAIN model. The multiplier is applied to the global ET rate (e.g., constant monthly, time series, and

so on) to account for unique ET conditions that are BMP specific. For example, a multiplier greater than

one can be used to parameterize an individual BMP with more abundant or efficient vegetation that tends

to enhance ET above and beyond direct pan evaporation.

Underdrain Method

Underdrain Outflow

The underdrain outflow in a BMP is modeled using a simple water balance concept. The available

underdrain storage is represented as the total of void spaces beneath the upper soil layer. Inflow into

underdrain storage is limited by the final saturated infiltration rate of the upper soil layer. Because the

primary function of the underdrain is to provide additional water storage and to delay outflow, the

outflow pipe draining the underdrain layer is placed at the interface between the upper soil layer and the

underdrain layer, creating that supplemental storage compartment in the underdrain layer. Figure 6

illustrates the function of the underdrain together with other substrate model components.

Figure 6. Processes considered in an underdrain structure.

Outflow from the underdrain layer is assumed to be unrestricted; therefore, no pipe outflow is required.

Underdrain outflow is part of the modeled BMP effluent and occurs when all available underdrain storage

is used up, when the water level meets or exceeds the underdrain level, or when both occur. So

underdrain outflow equals the storage zone inflow that exceeds the available underdrain capacity minus

the background infiltration—it can never be greater than the saturated layer infiltration rate minus the

background infiltration rate. Each infiltration management practice can be modeled with or without

underdrain outflow. If underdrain outflow is enabled, the user must specify the thickness of the

underdrain storage layer, the media void fraction, and the background infiltration rate (Figure 6). Water

and pollutants are removed from the system entirely through background infiltration.

 SUSTAIN–Programmer’s Manual: Simulation Engine

13

Underdrain Filtration of Pollutants

If underdrain is specified in the soil properties of a BMP, an additional reduction in pollutant load leaving

the underdrain can be applied. This reduction is applied using the underdrain percent removal, which is

a user-supplied parameter. This is the only place in SUSTAIN where a percent removal is applied.

Because the underdrain outflow rate is relatively constant, it is reasonable to apply a percent reduction

to represent the impact of soil media filtration. All other pollutant reductions are estimated using a

first-order decay rate, which is a loss computed as a function of the retention time of water in the BMP,

as discussed below.

Pollutant Routing and Removal Methods

The methods of pollutant routing to achieve pollutant reduction are described in this subsection for a

completely mixed system and a multiple impoundments in series. The flow through a plug flow reactor

(PFR), as a series of infinitely thin coherent plugs, each with a uniform composition, is assumed to be

perfectly mixed in the lateral direction, but not in the longitudinal direction (direction of flow). Each plug

of differential volume is considered as a separate entity, with an infinitesimally small volume that

requires a very small time steps (in seconds) during calculation. Because SUSTAIN uses time steps

rainging between one minute and one hour to simulate flow and pollutant routing, the current version

does not support the plug flow option. However, it can be seen that an infinite number of small

continuously stirred tank reactors (CSTRs) operating in series mimics the behavior of a PFR as compared

to a single completely mixed segment.

First-Order Decay with Complete Mixing

This method is commonly used and suitable for small ponds where complete mixing is a reasonable

simplifying assumption. The numeric expression is as follows:

KC(t)V(t)O(t)C(t)(t)I(t)C
dt

d(VC)
I (13)

where
 V = reservoir volume (ft3),

 CI = influent pollutant concentration (mg/L),

 C = effluent and reservoir pollutant concentration (mg/L),

 I = inflow rate (ft3/s),

 O = outflow rate (ft3/s),

 t = time (sec), and

 K = decay coefficient (1/s).

Continuously Stirred Tank Reactors in Series and Kadlec and Knight’s Model

CSTRs in series are used to represent a hydraulic condition intermediate between a completely mixed

and plug flow (Wong et al. 2001, 2002). That method is applied for simulating first-order pollutant

removal processes (e.g., settling, decay) that occur in ponds, wetlands, and other similar BMPs. It is

not as relevant for soil infiltration systems, such as rain gardens or green roofs because water does not

pond for long periods of time. The calculation is a two-step process that begins by estimating the

number of reactors in series to be selected to represent the shape of the BMP, and then applying first

order kinetics with a nonreactive background concentration (Kadlec and Knight 1996).

Step 1: Estimate N, the number of CSTRs in series.

N, the number of CSTRs in series, can be approximated on the basis of BMP shape (Persson et al. 1999;

Wong et al. 2001, 2002). Values of N for the various pond shapes, shown in Figure 7, are presented in

Table 5. Highest N values are for ponds with a distributed inflow (pond E), baffles (pond G), and very

elongated flow or high length to width ratio (pond J).

http://en.wikipedia.org/wiki/Infinite

 SUSTAIN–Programmer’s Manual: Simulation Engine

14

Figure 7. Conceptual pond shapes simulated by Persson et al. (1999).

Table 5. Quality ratings of conceptual pond shapes simulated by Persson et al. (1999)

Pond N ≈ 1 / (1-λ) Qualitative rating

J 10.0 Good

G 4.2

E 4.1

P 2.6 Satisfactory

Q 2.5

I 1.7 Poor

K 1.6

A 1.4

B 1.4

O 1.3

D 1.2

H 1.1

C 1.1

Step 2: Apply first-order decay to each CSTR.

After selecting the number of reactors, pollutants are modeled for each tank at each time step using the

first-order kinetic model, described in Equation (14).

/qk*

in

*

out

'

e)C)/(CC(C (14)

where

 C* = background concentration (mg/L),

 Cin = input concentration (mg/L),

 Cout = output concentration (mg/L),

 q = hydraulic loading or overflow rate (m/yr),

 k' = k·h = rate constant (m/yr),

 k = first order decay rate (1/yr), and

 h = pond depth (m).

This equation is computed separately for each time step at each CSTR. The main difference between

this equation and ordinary first-order decay modeling for a CSTR is the inclusion of C*, the background

concentration, below which the effluent cannot be reduced. Another advantage of this method is that

A B C D E

G H I J

K O P Q

A B C D E

G H I J

K O P Q

A B C D E

G H I J

K O P Q

 SUSTAIN–Programmer’s Manual: Simulation Engine

15

using an areal rate constant (units of depth/time) instead of a volumetric one (units of inverse time)

helps avoid having to specify an average depth or the volume for odd natural configurations. Instead,

only the pond surface area is required to compute the hydraulic loading rate q.

Wong et al. (2002) recommend some k' and C* values as shown in Table 6, on the basis of limited model

calibrations for total suspended solids (TSS), total phosphorus (TP), and total nitrogen (TN) in urban

areas near Melbourne. Those default values should be used with caution because conditions vary by

location. However, they could be used as a starting point for baseline model calibration where local

values are not available.

Localized calibration can be performed to customize the simulation technique for specific areas. The C*

and k' values can be determined or calibrated using monitoring data (particle size distribution in

particular) and treatment measure design specifications.

Table 6. Recommended k' and C* values

Treatment measures

k'
(m/yr)

C*
(mg/L)

TSS TP TN TSS TP TN

Sedimentation Basins 15,000 12,000 1,000 30 0.18 1.7

Ponds 1,000 500 50 12 0.13 1.3

Vegetated Swales 15,000 12,000 1,000 30 0.18 1.7

Wetlands 5,000 2,800 500 6 0.09 1.3

Representation of Area BMP – Impervious Disconnection

The Area BMP is a pervious land segment over which a portion of impervious runoff, from disconnected

impervious areas like rooftops, is routed. The BMP simulation occurs only when there is no runoff from

the BMP area. Otherwise, the total inflow to the BMP is bypassed. The Area BMP simulation is an

approximation to the reality where the runoff from the disconnected impervious area is routed to and

simulated on the pervious area. The runoff from the disconnected impervious area is captured by the

Area BMP through the infiltration (under saturated soil condition) and the surface storage. The runoff

from the BMP area (i.e., pervious area) is not simulated by the Area BMP and is always bypassed. Figure

8 shows the conceptual flow diagram of Area BMP simulation.

Figure 8. Conceptual flow diagram of Area BMP simulation.

BMP Inflow

Runoff from pervious

area?

BMP Simulation

BMP Outflow

• Runoff from the disconnected

impervious areas and the

BMP area

• No inflow to the BMP

if bypass occurs

• No evapotranspiration

• Saturated infiltration rate

• Nonlinear reservoir routing

Area BMP (Pervious Land)

B
y
p

a
s
s

(N
o

 s
im

u
la

ti
o

n
)

No

 SUSTAIN–Programmer’s Manual: Simulation Engine

16

Sediment Transport Simulation

This section describes the transport, deposition, and scour of inorganic sediment through BMPs using the
HSPF algorithms (Bicknell et al. 2001). These routines are most applicable for BMP types with significant
ponded water depth (e.g., ponds, swales, conduits, and the like). Figure 9 shows the principal state
variables and fluxes involved in the sediment transport processes.

Figure 9. Schematic of sediment transport, deposition, and scour in conduits.

Both the migration characteristics and the adsorptive capacities of sediment vary significantly with

particle size. To facilitate analyses to account for the effects of particle sizes, SUSTAIN divides the

inorganic sediment load into three components (sand, silt, and clay), each with its own properties. Sand

has a particle size ranging from 0.05 millimeter (mm) to 2.0 mm in diameter, silt from 0.002 mm to 0.05

mm in diameter, and clay smaller than 0.002 mm. The user specifies the fraction of each component by

land use in the surface runoff and the model applies those fractions to distribute the total sediment load

into sand, silt, and clay portions from each land use and routes them independently through the BMP

network.

The system assumes that scour or deposition of inorganic sediment does not affect the hydraulic

properties of the water column (i.e. sediment movement does not change the shape of the channel).

Furthermore, it is assumed that sand, silt, and clay deposit independently in the water column bed so

that the deposition or scour of one material is not linked to the changes of others. Longitudinal

movement of bed sediments by flow shear stress is not modeled, although sediment can be resuspended

from one segment and deposited in another one downstream.

First, the volume occupied by each component of bed sediment is calculated as shown in Equation (15).

_i

bed_i

bed_i
ρ

S
V (15)

where

 Vbed_i = volume occupied by component i of bed sediment (ft3),

 Sbed_i = bed storage of component i of sediment (lb), and

 _i = particle density of component i (lb/ft3).

Ssus_i

Suspended

Storage

SEDro_i

Total

Sediment

Outflow

SEDds_i

Deposition

Scour

Sbed_i

Bed

Storage

+

_

i = 1 for Sand

i = 2 for Silt

i = 3 for Clay

SEDso

Total Soil &

Sediment

Removal

SEDin_1

Sand

SEDin_2

Silt

SEDin_3

Clay

Ssus_i

Suspended

Storage

SEDro_i

Total

Sediment

Outflow

SEDds_i

Deposition

Scour

Sbed_i

Bed

Storage

+

_

i = 1 for Sand

i = 2 for Silt

i = 3 for Clay

SEDso

Total Soil &

Sediment

Removal

SEDin_1

Sand

SEDin_2

Silt

SEDin_3

Clay

 SUSTAIN–Programmer’s Manual: Simulation Engine

17

The volumes of the three components of bed sediment are summed, and the total bed volume is adjusted

to account for voids in the sediment (i.e., the porosity):

η1

V

V

3i

1i

bed_i

b

(16)

where

 Vb = volume of bed (ft3),

 Vbed_i = volume of sediment contained in the bed (sand, silt, and clay) (ft3), and

 = porosity of bed sediment (ratio of pore volume to total volume).

Finally, the depth of bed sediment is calculated as

br

b
b

WL

V
d

 (17)

where

 db = depth of bed (ft),

 Vb = volume of bed (ft3),

 Lr = length of water column (ft), and

 Wb = effective width of bed (ft).

Cohesive sediments

Two steps are used to model the deposition, scour, and transport processes of cohesive sediments (silt

and clay). The first step computes the advective transport, and the second step calculates the amount

of deposition or scouring on the basis of the bed shear stress.

Advective Transport of Constituent

This step computes the concentration of material in a water column and the quantities of material that

leave the water column due to longitudinal advection. Two assumptions are made in the solution

technique for normal advection: (1) each constituent is uniformly dispersed throughout the waters of the

water column and (2) the constituent is completely entrained by the flow—that is, the material moves at

the same horizontal velocity as the water.

The equation of continuity can be written as

 ssroin VCVCSEDSED (18)

where

 SEDin = total inflow of sediment over the interval (lb),

 SEDro = total outflow of sediment over the interval (lb),

 Cs = sediment concentration at the start of the interval (lb/ft3),

 C = sediment concentration at the end of the interval (lb/ft3),

 Vs = volume of water stored at the start of the interval (ft3), and

 V = volume of water stored at the end of the interval (ft3).

 SUSTAIN–Programmer’s Manual: Simulation Engine

18

The other basic equation states that the total outflow of material over the time interval is a weighted

mean of two estimates; one based on conditions at the start of the interval, the other on ending

conditions:

 cojsQCjsQCSED ssro (19)

where

 Qs = outflow rate at the start of the interval (ft3/time interval),

 Q = outflow rate at the end of the interval (ft3/time interval),

 js = weighting factor, and

 cojs = 1 – js.

By combining equations (18 and (19), we can solve for the concentration C:

cojsQV

jsQVCSED
C sssin

 (20)

The total amount of material leaving the water column during the interval is calculated using Equation

(19). If the water column goes dry during the interval, the total amount of material leaving the water

column is the sum of the material coming in and the material leaving according to the concentration at

the start of the interval:

 jsQCSEDSED ssinro (21)

Deposition and Scouring

Exchange of cohesive sediments with the bed is dependent on the shear stress exerted on the bed

surface. When the shear stress () in the water column is less than the user-supplied, critical, shear

stress for deposition (cd), sediment deposition occurs. On the other hand, when the shear stress is

greater than the user-supplied, critical, shear stress for scour (cs), scouring of cohesive bed sediments

takes place. The rate of deposition for a fraction of cohesive sediment is based on a simplification of

Krone’s equation in the following form:

cdτ

τ
1CωD (22)

where

 D = rate at which sediment settles out of suspension (lb/ft2 interval),

 = settling velocity for cohesive sediment (ft/interval),

 C = concentration of suspended sediment (lb/ft3),

 = shear stress (lb/ft2), and

 cd = critical shear stress for deposition (lb/ft2).

The rate of change of suspended sediment concentration in the water column due to deposition can be

expressed as follows:

avd

D

dt

dC
 (23)

where

 dav = average depth of water in the water column (ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

19

By substituting the expression for deposition rate (D) from Equation (22), and integrating and

rearranging Equation (23), a solution can be obtained for the concentration of suspended sediment lost

to deposition during a simulation interval (Cdep):

cdav

dep
τ

τ
1

d

ω
exp1CC 24

where

 C = concentration of suspended sediment at the start of interval (lb/ft3),

 = settling velocity for sediment fraction (ft/interval),

 dav = average depth of water in water column (ft),

 = shear stress (lb/ft2), and

 cd = critical shear stress for deposition (lb/ft2).

The user must supply values for settling velocity () and critical shear stress for deposition (cd) for silt

and clay fractions in cohesive sediment.

The amount of sediment in suspension (Ssus) is updated by subtracting the amount settled. Likewise,

the amount of sediment in bed (Sbed) is updated by adding the amount settled on it.

The rate of resuspension, or scour, of cohesive sediments from the bed is derived from a modified form

of Partheniades’ (1962) equation:

 1

τ

τ
μS

cs

 (25)

where

 S = rate at which sediment is scoured from the bed (lb/ft2 interval),

 = erodibility coefficient for the sediment fraction (lb/ft2 interval), and

 cs = critical shear stress for scour (lb/ft2).

The rate of change of suspended sediment fraction concentration in the water column due to scour can be

expressed as follows:

avd

S

dt

dC
 (26)

By substituting the expression for scour rate (S) from Equation (25) and integrating and rearranging

Equation (26), a solution can be obtained for the concentration of suspended sediment added to

suspension by scour during a simulation interval (Cscr):

 1

τ

τ

d

μ
C

csav

scr (27)

where

 = erodibility coefficient (lb/ft2 interval), and

 dav = average depth of water (ft).

The user is required to supply values for the erodibility coefficient () and critical shear stress for scour

(cs) for each fraction of cohesive sediment (silt and clay) that is modeled.

 SUSTAIN–Programmer’s Manual: Simulation Engine

20

The amount of sediment in suspension (Ssus) is updated by adding the scoured mass, as is the amount of

sediment in bed (Sbed) by subtracting the scoured mass.

If the amount of scoured sediment is greater than the original sediment in the bed, all sediment in the

bed will be resuspended and the amount of sediment in the bed is set to zero.

Non-Cohesive Sediment

Erosion and deposition of sand, or non-cohesive sediment, is affected by the amount of sediment that the

flow is capable of carrying. If the amount of sand being transported is less than the flow can carry for

the hydrodynamic conditions of the water column, sand is scoured from the bed. This occurs until the

actual sand transport rate becomes equal to the carrying capacity of the flow or until the available bed

sand is all scoured. Conversely, deposition occurs if the sand transport rate exceeds the flow’s carrying

capacity.

The sand transport capacity for a water column is calculated by using an input power function of the

velocity. The potential sand concentration (Cp) is determined by the following conversion:

j

avp υkC (28)

where

 Cp = potential sand concentration (lb/ft3),

 k = coefficient in the sandload suspension equation (input parameter),

 j = exponent in sandload suspension equation (input parameter), and

 av = average velocity (ft/s).

The potential outflow of sand (SEDpro) is calculated as follows:

 cojsQCjsQCSED psspro (29)

where Cs, Qs, js, Q, and cojs are as previously defined for equations (18) and (19).

The potential scour from, or deposition to, the bed storage is found using the continuity equation:

 inprossppds SEDSEDCVCVSED (30)

where

 SEDpds = potential scour (+) or deposition (-) (lb),

 Cp = potential sand concentration at the end of the interval (lb/ft3),

 Cs = sand concentration at the start of the interval (lb/ft3),

 SEDpro = potential outflow of sand over the interval (lb), and

 SEDin = inflow of sand during the interval (lb).

The potential scour is compared to the amount of available sand for resuspension. If scouring potential

is less than the available sands, the demand is satisfied in full and the bed storage is adjusted

accordingly. If the potential scour cannot be satisfied by bed storage, all the available bed sand is

suspended, and the bed storage is exhausted. The concentration of suspended sand (C) is calculated as

follows:

cojsQV

jsQVCSEDSED
C sssdsin

 (31)

where

 C = concentration of sand at end of interval (lb/ft3),

 SUSTAIN–Programmer’s Manual: Simulation Engine

21

 Cs = concentration of sand at start of interval (lb/ft3),

 SEDin = inflow of sand during the interval (lb), and

 SEDds = sand scoured from, or deposited to, the bottom (lb).

The total amount of sand leaving the water column during the interval is calculated using equation (31).

If water column goes dry during an interval, or if there is no outflow, all the sand in suspension at the

beginning of the interval is assumed to settle out, and the bed storage is correspondingly increased.

Sediment Transport Input Parameters

Parametric information required for silt and clay includes particle diameter (particle settling velocity in

still water (particle density (critical shear stress for deposition (cd), critical shear stress for scour

(cs), and erodibility coefficient (Parameter values required for sand include median bed sediment

diameter (50) and particle settling velocity ().

 SUSTAIN–Programmer’s Manual: Simulation Engine

22

SUSTAIN Optimization Model

SUSTAIN includes an optimization module to develop cost-effective BMP placement and selection

strategies on the basis of a preselected list of potential sites and applicable BMP types and size ranges.

The module uses evolutionary optimization techniques to perform the searches for optimal combinations

of BMPs that meet the user-defined decision criteria. Table 7 summarizes the required inputs, methods

used, and outputs and Figure 10 presents a conceptual overview of the module.

The optimization module works hand-in-hand with the BMP, land, and conveyance modules during the

search process iteratively and evolutionarily. The simulation modules evaluate the BMP performance,

as defined via evaluation factors, and cost data of a set of chosen BMP options and pass that information

to the optimization engine. The optimization engine synthesizes the information, modifies the search

path, and generates new solutions that are repeatedly evaluated using the simulation modules.

Through this evolutionary search process, the module progressively marches toward indentifying the

best or most cost-effective BMP solutions that meet the user’s conditions and objectives.

Table 7. Summary of inputs, methods, and outputs in the optimization module

Inputs

 Define decision variables (the size ranges of potential BMPs)

 Define assessment point(s) and evaluation factor(s)

 Define management targets (for the minimize cost option)

 Define BMP cost functions

Methods

 For the minimize cost option, optimization search is performed using the Scatter Search technique

 For the generate cost-effectiveness curve option, optimization search is performed using the
NSGA-II technique

Outputs

 For the minimize cost option, the optimization process outputs optimal solutions that meet the
specified treatment targets

 For the cost-effectiveness curve option, the optimization process outputs the optimal solutions
along the cost-effectiveness curve

 SUSTAIN–Programmer’s Manual: Simulation Engine

23

Figure 10. Conceptual overview of the optimization module.

Optimization Setup

The objective of the optimization module is to determine BMP locations, types, and design configurations

that minimize the total cost of management while satisfying water quality and quantity constraints. To

formulate an optimization problem, SUSTAIN requires the user to specify this information: decision

variables, BMP cost functions, assessment points and evaluation factors, and management targets.

Decision Variables

Placing BMPs at different spatial levels or locations (or both) affects the overall cost-effectiveness of the

stormwater control system (Zhen and Yu 2004). Therefore, BMP location represents one important

decision variable for optimization. The possible BMP locations are typically preselected on the basis of

multiple factors, including availability of space site characteristics (slope, soil infiltration rates, and water

table elevation) and other logistical considerations. Another important decision variable involves BMP

configuration. At a given feasible location of a BMP type, the configuration parameters can be treated as

decision variables with the specified minimum, maximum, and discrete search interval values. The user

can specify the minimum decision variable value as zero, which can be selected if that BMP location is not

required to meet the evaluation target. To optimize how much drainage area is to be treated, the user

can define a fixed-dimension BMP with a specified design drainage area. In this case, the maximum

number of BMPs is the decision variable. The maximum treated drainage area equals the design

drainage area times the maximum number of BMPs. The optimizer determines the number of

BMP-and-drainage-area units needed to achieve the target—all unteated drainage area is routed to the

watershed outlet.

ArcGIS Map Interface

Input File Loader

BMP Performance

Evaluation/Simulator

BMP

Calculator

Changeable Variables
(#, min, max, increment)

Control Target

Generate Initial
BMP Input Values

Generate BMP
Model Input File

Cost

Estimating

Routing

Evaluation

Factor

SOLUTION

Initial Run Results:

Evaluation Factor &
Cost Values

New Changeable
Variable Values

BMP Optimizer

Feed new possible

solution to

evaluator/simulator

based on the previous

simulation result

 SUSTAIN–Programmer’s Manual: Simulation Engine

24

BMP Cost Function

The total cost of a solution is the sum of costs of every BMPs in the project. The cost of each BMP is

represented using a generic cost function:

Cost ($) = (LinearCost×LengthLengthExp + AreaCost×AreaAreaExp + TotalVolumeCost ×TotalVolumeTotalVolExp

+ MediaVolumeCost×SoilMediaVolumeMediaVolExp + UnderDrainVolumeCost ×UnderDrainVolumeUDVolExp +

ConstantCost) × (1+PercentCost/100)

where

LinearCost = cost per unit length of the BMP structure ($/ft),

AreaCost = cost per unit area of the BMP structure ($/ft2),

TotalVolumeCost = cost per unit total volume of the BMP structure ($/ft3),

MediaVolumeCost = cost per unit volume of the soil media ($/ft3),

UnderDrainVolumeCost = cost per unit volume of the under drain structure ($/ft3),

LengthExp = exponent for linear unit,

AreaExp = exponent for area unit,

TotalVolExp = exponent for total volume unit,

MediaVolExp = exponent for soil media volume unit, and

UDVolExp = exponent for underdrain volume unit.

ConstantCost = constant cost ($) (e.g., land cost),

PercentCost = costs expressed as a percentage of all other costs, such as engineering and design

cost, project management cost, operational and maintenance costs, and the like (%). This

multiplier is applied to the total cost.

Assessment Points and Evaluation Factors

An assessment point is a location where the water quantity or quality or both are evaluated. Any node

in the BMP or flow network can be an assessment point. Figure 11 shows an example of assessment

points that can be at the watershed outlet, key tributary outlets, or the most downstream node of a

stream segment. It is even possible to define a virtual outlet in a network and use it as an assessment

point. A virtual outlet is a node where multiple disconnected areas can be routed for evaluation

purposes.

Figure 11. Illustration of assessment points.

 SUSTAIN–Programmer’s Manual: Simulation Engine

25

SUSTAIN provides the user with a menu of evaluation factors for selection when defining the optimization

problem. For example, the optimization objective can be to minimize peak flow, maximize volume

controlled, maximize load reduction, or minimize an exceedance frequency of a pollutant concentration.

Using these options, a flow target or total maximum daily load (TMDL) water quality target can be

formulated as an optimization objective. Table 8 lists the evaluation factor options in SUSTAIN.

Table 8. Example control targets for a typical evaluation factor assessment in SUSTAIN

Control
target Target value Note

Flow

Peak
Discharge

Cubic feet per second --

Parameters

related to
increased runoff
from
urbanization

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Annual
Average
Volume

Cubic feet per year --

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Exceeding
Frequency

Times per year of a given threshold flow rate (cfs) --

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Sediment

Annual
Average Load

Pounds per year value ––
Parameters to

meet the water
quality standards
or biologically
derived

parameters to

meet designated
uses in the
waterbody of
concern

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Annual

Average
Concentration

Milligram per liter value --

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Maximum

Days Average
Concentration

Milligram per liter value of given days --

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Pollutants (TN, TP, or User Defined)

Annual
Average Load

Pounds per year value -- Parameters to

meet the
pollutant criteria
(numeric
concentration or
frequency of

exceedance) or
TMDL (load

allocation) or
other locally
defined
water-protection
goals

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Annual

Average
Concentration

Milligram per liter value --

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Maximum

Days Average
Concentration

Milligram per liter value of given days --

Percent reduction of the existing condition 0–100

Fraction between existing and pre-developed conditions 0–1

Management Targets

Management targets can be related to either water quality or quantity. The user specifies the water

quality or water quantity target value or range for each assessment point.

 SUSTAIN–Programmer’s Manual: Simulation Engine

26

Optimization Problem Formulations

SUSTAIN provides two optimization options: (1) cost minimization, and (2) cost-effectiveness curve.

Option (1) uses the Scatter Search method introduced by Glover (1977), which is a meta-heuristic search

technique that has been explored and used in optimizing complex systems (Glover et al. 2000; Laguna

and Marti 2002; Zhen et al. 2004). Option (2) uses NSGA-II, which is an advanced genetic algorithm

based on Pareto dominance, and uses non-domination and distribution instead of fitness value to score

individuals (Deb et al. 2002). In the Scatter Search option, the optimization search process identifies

the near-optimal solutions that meet the user-specified management targets. Multiple objectives can

be defined during a Scatter Search. With the NSGA-II method, the optimization process reveals all the

cost-effective solutions that provide the highest benefit at each cost interval. Only one objective can be

defined when generating a cost-effectiveness curve.

Both optimization formulations are defined with the objective of minimizing cost subject to desired water

quality or water quantity (or both) objectives at a specified location (assessment point). The

optimization problem formulation can be mathematically expressed as below. In the formulation, a

group of BMPi (i = 1,…, n) forms the decision matrix, which defines the optimization engine’s search

domain. For each potential location, the user defines the feasible range of BMP type and configuration

parameters.

The objective is to

Minimize

n

1i

i)Cost(BMP

subject to

Qj Qmaxj and

Lk Lmaxk

where
BMPi = a set of BMP configuration decision variables associated with location i,
Qj = the computed amount of water quantity factor at the assessment point j,
Qmaxj =the maximum value of the water quantity factor targeted at the assessment point j,

Lk = the computed amount of water quality loading factor at the assessment point k, and
Lmaxk = the maximum value of the water quality loading targeted at the assessment point k.

Optimization Technique – Scatter Search

For the minimize cost option, Scatter Search is more efficient (finding the best solutions with fewer runs

of the simulation module) than NSGA-II because the search is more focused around the target. The

major operation steps of Scatter Search are described below.

Generating a starting set of diverse points (function: InitProblem)

Generating a starting set of diverse solutions which are array of decision variables is accomplished by

dividing the range of each variable into four sub-ranges of equal size. Next, a solution is constructed in

two steps: a sub-range is first randomly selected and then a value is randomly chosen from the selected

sub-range. The starting set of solution points also includes all variables at their lower bound, all

variables at their upper bound, all variables at their midpoints, and other solution points suggested by

the user.

Choosing a subset of diverse points as the reference set (function: InitRefSet)

The reference set (RefSet), is a collection of both high-quality solutions and diverse solutions that are

used to generate new solutions. Specifically, the RefSet consists of the union of two subsets, RefSet1

 SUSTAIN–Programmer’s Manual: Simulation Engine

27

and RefSet2, of size b1 and b2, respectively. That is, |RefSet| = b = b1 + b2. The construction of the

initial reference set starts with the selection of the best b1 solutions from the starting set of diverse points

(P). The notion of best in this step is a measure given by evaluating the objective function. These

solutions are added to RefSet and deleted from P. For each improved solution in P – RefSet, the

minimum of the Euclidean distances to the solutions in RefSet is computed. Euclidean distance is the

straight line distance between two points. For example, in a two-dimensional plane, the Euclidean

distance is the straight line between point 1 at (x1, y1) and point 2 at (x2, y2) and is equal to

²)y - (y ²)x - (x 2121 .

Then, the solution with the maximum of these minimum distances is selected. This solution is added to

RefSet and deleted from P and the minimum distances are updated. This process is repeated b2 times.

The resulting reference set has b1 high-quality solutions and b2 diverse solutions.

Starting the search for the optimal solution by using a linear combination method to construct new

solution points from the reference solution points, and Updating the Refset (function: PerformSearch)

The linear combination is based on the three types of formulation, in which x′ and x″ are reference

solution points, and x1–3 is the newly generated solution points:

 x1 = x′ – d

 x2 = x″ – d

 x3 = x′ + d

where
2

xx
rd

'"
 and r is a random number in the range of (0, 1).

In the course of searching for a global optimum, the RefSet is continuously updated. The solutions

having better quality, or ones that can improve the diversity of the reference set, replace the old points

in the set.

This is a generic description of the scatter search algorithm to illustrate how the new solutions are

constructed. In SUSTAIN, to improve the search efficiency, the user defines the search increment of

each decision variables. Scatter search works with continuous numbers, but if the decision variable has

only two states/values (minimum = 0, maximum = 1, and search increment = 1), the new solution is

forced to sample only 0 and 1.

Stop the search if the stopping criteria are met

The stopping criteria can be defined, at the user’s option, either as the maximum number of iteration

runs, or the minimum improvement between updates of the reference set, or both, in which case, the

search process will be stopped when either of the criteria is met.

Optimization Technique – NSGA-II

Under the NSGA-II cost-effectiveness curve option, the search aims at identifying the cost-effective

solutions within the specified management target range. The multi-objective problem can be expressed

as follows:

Minimize

n

1i

i)Cost(BMP and

Minimize (EF – Target)

where
BMPi = a set of BMP configuration decision variables associated with location i and

 SUSTAIN–Programmer’s Manual: Simulation Engine

28

EF = the management evaluation factor (EF) at one given assessment point, and the EF can be
any of the options listed in Table 8.

Target = the target value of the EF.

For the cost-effectiveness curve option, NSGA-II (genetic algorithm) is more efficient than Scatter

Search because it applies the non-dominated sorting technique and the search proceeds in a manner of

fronts. The major operation steps of NSGA-II are described below.

Creation of first generation

When applying the NSGA-II, a random parent population (P0) consisting of N solutions is first created.

The population is then sorted by the non-dominant level. A solution x(1) is non-dominant to another

solution when x(1) performs no worse than the other solution in all objectives, and x(1) performs better

than the other solution in at least one objective. At the end of the sorting, each solution is assigned a

fitness (or rank) equal to its non-dominant level, with a smaller value indicating that the solution is

dominated by fewer other solutions.

The processes of tournament selection, crossover, and mutation are used to create a child population

(Q0), which has a same size of P0 with N solutions.

Main loop

In the first step of the main loop, the parent population and the child population are combined (R0). The

population of R0 will have 2N solutions. The 2N solutions in R0 are then sorted according to

non-domination. Elitism is ensured in this step because both the parent and the child population are

used in the sorting. The sorted 2N solutions will form various best non-dominated subsets (in which all

the solutions are non-dominant to each other, but overall they dominate other subsets). The first N

solutions from the ranked best non-dominant subsets, F1,…, Fi, are then selected to form a new parent

population (P1). The new parent population is used to create a new child population (O1), and the

process continues until the stopping criteria are met.

The NSGA-II uses the crowding distance (the size of the largest cuboid enclosing solution x(1) without

including any other solution in the population) concept to maintain solution diversity. That is, in cases

where two solutions have the same non-domination rank, the solution with larger crowding distance is

always preferred.

Stopping criteria

The user can make the NSGA-II stop when the new parent population does not change for two

consecutive loops. The stopping criterion can also be that the fitness function does not improve after a

certain number of iterations.

Tiered Optimization

SUSTAIN is able to evaluate management practices at multiple scales, ranging from local to watershed

applications. Management plans often need to evaluate the cumulative benefit of management

practices at multiple- scale watersheds on downstream water quality in rivers, lakes, or estuaries. The

site or local-scale evaluation involves simulation and analyses of individual BMPs and various

combinations of practices and treatment trains to derive local runoff quantity and quality. For a

larger-scale watershed, there could be hundreds or thousands of individual management practices that

are implemented to achieve a desired cumulative benefit. SUSTAIN incorporates an innovative, tiered

approach that allows for cost-effectiveness evaluation of both individual and multiple nested watersheds

to address the needs of both regional and local-scale applications (Figure 12).

A relatively large watershed can usually be subdivided into several smaller subwatersheds as shown in

Figure 12. Users need to select, with, say, the use of the siting tool in SUSTAIN, an appropriate suite of

 SUSTAIN–Programmer’s Manual: Simulation Engine

29

feasible BMP options (types, configurations, and costs) at strategic locations for each subwatershed.

SUSTAIN then generates the time series rainfall-runoff data from BMP drainage areas and routes them

through BMPs, in parallel or in series, to produce the quantity and quality data at downstream

assessment points. SUSTAIN uses the cost and effectiveness data to derive the cost-effectiveness

curve that relates flow or pollutant-load reductions with costs. Each point on the cost-effectiveness

curve represents an optimal combination of BMPs that will collectively remove the targeted amount of

pollutant load at the least cost.

The tiered optimization procedures implemented in SUSTAIN provides an efficient and manageable

means for large-scale applications and allows users to evaluate and optimize on the basis of the

hydrologic and water quality characteristics at the specified assessment points. Tier-1 performs the

optimization search to develop cost-effectiveness curves for each tier-1 subwatershed. In a tier-2

analysis, the tier-1 solutions are used to construct a new optimization search domain and run the

transport module, if needed, with solutions from all the tier-1 subwatersheds to develop the combined

cost-effectiveness curve for the entire watershed.

Figure 12. Tiered application of SUSTAIN for developing cost-effectiveness curves.

Figure 13 illustrates the tiered application process in more detail. At the first step (tier-1) of the tiered

optimization analysis, the cost-effectiveness curve for each subwatershed is generated by performing

continuous multiple optimization runs at incremental flow/pollutant reduction targets. In the second

step (tier-2), the search domain is constructed using the tier-1 results. As shown, the search domain for

tier-2 contains the discrete solutions on the tier-1 cost-effectiveness curves at assessment points i and j.

The third step is to perform the tier-2 optimization for the search domain constructed. The optimization

engine strategically samples the discrete options in the search domain. The cost-effectiveness of each

sample is measured, stored, and analyzed to guide the next search direction.

 SUSTAIN–Programmer’s Manual: Simulation Engine

30

Figure 13. Construction of the tier-2 search domain using tier-1 results.

Figure 14 illustrates the simulation process used to generate the results for measuring the

cost-effectiveness of each iteration in the tier analysis. The simulated time series outputs for all discrete

points on the tier-1 cost-effectiveness curve are stored and used when a point, hence the BMP options

associated with it, is chosen in the tier-2 analysis. Similarly, the time series runoff data of the

watershed area that is not part of the tributary areas of the tier-1 assessment points is generated and

stored before the tiered analysis. This data, however, might also be generated during the tier-2 search

process. The transport module is often required to perform routing of the time series data from the

upstream tier-1 subwatershed to merge with that for the downstream tier-1 subwatershed. In such a

manner, the tiered approach is applied to a large watershed which contains subwatersheds or to a small

watershed that requires the development of a detailed management plan at a parcel- or a

street-block-level.

Figure 14. Simulation process for each iteration run.

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

inte rval

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

in terval

Tier-1 Solutions for

A ssessm ent Point j

T
ie

r-1
 S

o
lu

ti
o

n
s

 f
o

r

A
s

s
e

s
s

m
e

n
t

p
o

in
t

i

Tier-2 Search
Dom ain

Tier-1 Cost-Effectiveness C urve

for A ssessm ent Point j

Tier-1 C ost-Effectiveness C urve

for A ssessment Point i

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

inte rval

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

inte rval

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

in terval

Tier-1 Solutions for

A ssessm ent Point j

T
ie

r-1
 S

o
lu

ti
o

n
s

 f
o

r

A
s

s
e

s
s

m
e

n
t

p
o

in
t

i

Tier-2 Search
Dom ain

Tier-1 Cost-Effectiveness C urve

for A ssessm ent Point j

Tier-1 C ost-Effectiveness C urve

for A ssessment Point i

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

inte rval

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

inte rval

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

in terval

Tier-1 Solutions for

A ssessm ent Point j

T
ie

r-1
 S

o
lu

ti
o

n
s

 f
o

r

A
s

s
e

s
s

m
e

n
t

p
o

in
t

i

Tier-2 Search
Dom ain

Tier-1 Cost-Effectiveness C urve

for A ssessm ent Point j

Tier-1 C ost-Effectiveness C urve

for A ssessment Point i

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

inte rval

C ost

L
o

a
d

 R
e

d
u

c
ti

o
n

inte rval

Transport

M odu le :
Tim e S eries:

C hannel

C onduit

Sim ulation process for each iteration run:

Tie r-1 solu tion time series at assessm ent points

Tim e series fo r the areas/ca tchm ent tha t a re no t covered

by tie r-1 assessment po in ts

Transport

M odu le :
Tim e S eries:

C hannel

C onduit

Sim ulation process for each iteration run:

Tie r-1 solu tion time series at assessm ent points

Tim e series fo r the areas/ca tchm ent tha t a re no t covered

by tie r-1 assessment po in ts

 SUSTAIN–Programmer’s Manual: Simulation Engine

31

SUSTAIN Simulation Engine Project
This section provides the software requirements and the properties settings for Visual C++ project of

SUSTAIN simulation engine. The required software is Miscrosoft Visual C++ program, which is part of

the Visual Studio 6.0 package. Microsoft Visual Studio 6.0 is compatible with Windows XP and might not

be supported by any latest Windows operating system. The simulation engine uses the Microsoft

Foundation Class library to use many of the available functionalities in that library and, therefore, needs

to be specified in the project settings as shown inFigure 15. Figure 15 also shows the output file name

of the dynamic link library for the simulation engine (i.e., SUSTAINOPT.dll). Figure 16 shows the project

options for defining the directory paths of source and library files used in compiling the source code. The

project settings and options are required only once before compiling the source code for the first time.

Software Requirements

 Microsoft Visual C++ (Visual Studio 6.0)

 Operating System: Windows XP

Project Properties

Figure 15. Screenshots of SUSTAIN Visual C++ project settings.

Figure 16. Screenshots of SUSTAIN Visual C++ project options.

 SUSTAIN–Programmer’s Manual: Simulation Engine

32

Data Flow Model

The SUSTAIN simulation engine is called from the model’s ArcGIS interface. The ArcGIS interface loads

the GIS database and BMP cost database to populate the user input screens for defining BMP templates,

placing BMPs on the map, and defining the BMP routing network. The data flow model for the simulation

engine is shown in Figure 17. The ArcGIS interface launches the post-processor for viewing the model

results once the simulation engine finishes the optimization runs.

Figure 17. SUSTAIN simulation data flow diagram.

 SUSTAIN–Programmer’s Manual: Simulation Engine

33

The list of data files used in SUSTAIN simulation engine is shown below.

1. Input data for internal land simulation (1: Input Data in Figure 17): This dataset is optional if

the user selects to use the external land use time series option in SUSTAIN. The dataset for

internal land simulation option includes the following:

 Climate time series file: The land simulation module of SUSTAIN uses the daily air

temperature, evaporation, and wind speed data from the user-specified climate file. The

format for climate file is consistent with that used in the SWMM, where each line in the file

contains a recording station name, year, month, day, maximum temperature, minimum

temperature, and, optionally, the evaporation rate and wind speed. The data must be in U.S.

units: temperature in degrees F, evaporation in in./day, and wind speed in mi/hr, all

separated by one or more spaces.

 Precipitation time series file: The precipitation data is input in a separate file where each

line of the file contains the station ID, year, month, day, hour, minute, and precipitation, all

separated by one or more spaces. The precipitation data type in any one of these three

formats: (1) intensity, where the value is an average rate (in./hr) over the recording

interval; (2) interval volume, where the value is the volume of rain that fell in the recording

interval (in.); or (3) cumulative volume, where the value represents the cumulative rainfall

that has occurred since the start of the last series of non-zero values (in.).

 The input text files: The ArcGIS interface of SUSTAIN creates two input text files for the EPA

SWMM to simulate the land compartment. One file is for the current land use scenario, and

the other one is for the user-specified, predeveloped single land use scenario.

2. Output time series from internal land simulation (2: Output Timeseries in Figure 17): The land

simulation module in SUSTAIN outputs the aggregated land response (i.e., hydrograph and

pollutograph) at each node of the BMP network (BMP or Junction) defined in the SUSTAIN

project. The output data include the following:

 The output time series files (ASCII format): The internal land simulation module creates

two time series files. One file is for the current land use scenario, and the other one is for

user-specified, predeveloped land use scenario. The format for these files is consistent with

that used in the SWMM, where each line in the file contains a node ID, year, month, day,

hour, minute, second, the outflow rate (cfs), and the concentration for each pollutant

(mg/L).

 The output time series files (binary format): These files (the current land use scenario and

the predeveloped land use scenario) are similar to the above mentioned time series files but

are in binary format and are not used in SUSTAIN. Those files can be used with EPA SWMM

(external to SUSTAIN model) to view the land output results. SUSTAIN does not provide

any utility tool to view or process the land output time series.

 The output summary text files: The summary text files (the current land use scenario and

the predeveloped land use scenario) summarize the SWMM results and report error

messages if errors occur in the model run.

3. External time series for land simulation (3: External Timeseries in Figure 17): This dataset is

optional if the user selects to use the internal land use simulation option in SUSTAIN. The

externally generated time series represent hydrology and water quality at the landscape level.

The external option in SUSTAIN allows importation of the hydrograph and pollutograph for each

land use category (or combination of land use, slope, and hydrologic soil group) from an external

watershed model such as HSPF or LSPC model. It uses the sub-hourly (1–60 min) flow and

pollutant loading data from the user-specified time series file. The format for the time series file

is consistent with that output from the HSPF or LSPC model, where each line in the file contains

a watershed ID (dummy value not used in SUSTAIN), year, month, day, hour, minute, flow

volume (in.-acre), groundwater recharge volume (in.-acre), and the loads for each pollutant per

unit area (acre). The data must be in U.S. units, separated by space or tab delimiters.

 SUSTAIN–Programmer’s Manual: Simulation Engine

34

4. Input data for BMP network simulation (4: Input Data in Figure 17): This dataset is in addition

to the external/internal land use time series data mentioned in the previous steps 2 and 3.

These additional data include the following:

 Climate time series file (optional): The BMP simulation module of SUSTAIN uses the daily

air temperature and evaporation data from the user-specified climate file if specified in the

input text file. The format for climate file is consistent with that used in the SWMM, where

each line in the file contains a recording station name, year, month, day, maximum

temperature, minimum temperature, and the evaporation rate. The data must be in U.S.

units: temperature in degrees F, and evaporation in in./day, all separated by one or more

spaces.

 Pont source time series file (optional): The point source data can be input at any node of

BMP network (BMP or Junction). It uses the sub-hourly (1–60 min) flow and pollutant

loading data from the user-specified time series file. The format for the time series file is

consistent with the external watershed model time series, where each line in the file contains

a point source ID (dummy value not used in SUSTAIN), year, month, day, hour, minute, flow

volume (in.-acre), and the loads for each pollutant. The data must be in U.S. units,

separated by space or tab delimiters. Note that the point source time series file does not

have a groundwater recharge column as compared to the external time series file.

 The input text file: The ArcGIS interface of SUSTAIN creates an input text file for BMP

network simulation. The file contains the file path for the land output (internal/external)

time series, BMP specifications, BMP network routing information, and optimization

parameters.

5. Output data at the assessment point (5: Output Data in Figure 17): The SUSTAIN simulation

engine outputs the model results at the user-specified assessment point (BMP or Junction). The

output data include the following:

 Hydrology and water quality time series files: The SUSTAIN model generates output time

series files for Initial Condition (no optimization), Pre-Development, Post-Development, and

Best-Solution (optimized) scenarios at each assessment point. The data in the time series

file are in tab-delimited format, where each line in the file contains assessment point ID (BMP

or Junction), year, month, day, hour, minute, BMP volume (ft3), water depth (ft), total inflow

(cfs), weir outflow (cfs), orifice or channel outflow (cfs), underdrain outflow (cfs), untreated

(bypass) outflow (cfs), total outflow (cfs), surface infiltration (cfs), percolation from soil

media to underdrain storage (cfs), total evapotranspiration (cfs), seepage to groundwater

(cfs), and the total mass entering the BMP (lbs), mass leaving (weir outflow) the BMP (lbs),

mass leaving (orifice outflow) the BMP (lbs), mass leaving (underdrain outflow) the BMP

(lbs), mass bypassing (untreated) the BMP (lbs), total mass leaving the BMP (lbs), total

outflow concentration (mg/L) for each pollutant. The time series file also contains a header

section describing the output parameters in the order they are reported in the file. If the

user runs a best solution scenario on the cost-effectiveness curve from the spreadsheet

post-processor, the model generates a similar time series file labeled as BestPop with the

solution ID shown on the curve.

 Evaluation summary files: The model outputs an evaluation summary file for Initial

Condition (no optimization), Pre-Development, Post-Development, and Best-Solution

(optimized) scenarios at each assessment point. The data in the summary file are in

tab-delimited format, where each line in the file contains assessment point ID (BMP or

Junction), evaluation factor type (such as average annual flow volume), evaluation factor

value, and the total project cost.

 Optimization summary files: The model outputs two summary files for the optimization

runs, AllSolutions and BestSolutions. The data in each summary file are in tab-delimited

format, where each line in the file contains the solution ID, total project cost, total surface

area of the selected BMPs, total excavation volume of the selected BMPs, total surface

 SUSTAIN–Programmer’s Manual: Simulation Engine

35

storage volume of the selected BMPs, total soil storage volume of the selected BMPs, total

underdrain storage volume of the selected BMPs, value for each evaluation factor, total cost

for each selected BMP type, and the selected value for the decision variables (such as BMP

sizes) in this solution. If the user runs a best solution scenario on the cost-effectiveness

curve from the spreadsheet post-processor, the model generates a summary file labeled as

CECurve_Solutions that contains the sequence number for the selected best population and

solution, total project cost, value for each evaluation factor, and the selected value for the

decision variables (such as BMP sizes) in that solution.

 SUSTAIN–Programmer’s Manual: Simulation Engine

36

Class Documentation
The section describes the functions and variables used in different classes, and it identifies all relevant

links to the classes, member functions, and member variables. A standard program, Doxygen

(http://www.stack.nl/~dimitri/doxygen/index.html), for generating technical documentation from

source code files was used to create the essential elements of this document. The program uses the

comments blocks, which are written in a required format, to document the functions and variables used

in SUSTAIN.

Microsoft Foundation Class References

The following class objects are used from the Microsoft Foundation Class (MFC) Library in this program.

 CString: A CString object represents a sequence of a variable number of characters and can be

thought of as arrays of characters. This class provides support for manipulating strings and

extends the functionality normally provided by the C runtime library string package. The

CString class provides member functions and operators for simplified string handling. This also

provides constructors and operators for constructing, assigning, and comparing CString data

types.

 COleDateTime: A COleDateTime value represents an absolute date and time value that

encapsulates the DATE data type. The DATE type is implemented as a floating-point value,

measuring days from midnight. This class handles dates from January 1, 100 – December 31,

9999 and does not support Julian dates.

 CObList: A CObList class supports list of CObject pointers accessible sequentially or by pointer

value. A variable of type POSITION is used as an iterator to navigate a list sequentially.

Adding an element is very fast at the list head, at the tail, and at a known POSITION. A

sequential search is necessary to look up an element by value or index, and it can be slow if the

list is long. When a CObList object is deleted, or when its elements are removed, only the

CObject pointers are removed, not the objects they reference.

 CPtrList: A CPtrList class supports lists of void pointers. The member functions of CPtrList are

similar to the member functions of class CObList. When a CPtrList object is deleted, or when its

elements are removed, only the pointers are removed, not the entities they reference.

ADJUSTABLE_PARAM Struct Reference

#include "BMPSite.h"

Public Attributes

 CString m_strVariable
 double m_lfFrom
 double m_lfTo
 double m_lfStep

Detailed Description

This is the data structure class for BMP decision variables. The decision variables are the BMP properties
(length, soil depth, etc.) that are allowed to vary during the course of an optimization run with in the
user-specified range and increment.

Member Data Documentation

double ADJUSTABLE_PARAM::m_lfFrom

This is the minimum value of the decision variable.

 SUSTAIN–Programmer’s Manual: Simulation Engine

37

double ADJUSTABLE_PARAM::m_lfStep

This is the increment value of the decision variable.

double ADJUSTABLE_PARAM::m_lfTo

This is the maximum value of the decision variable.

CString ADJUSTABLE_PARAM::m_strVariable

This is the name of the BMP decision variable.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

38

BMP_A Struct Reference

#include "BMPSite.h"

Collaboration diagram for BMP_A:

Public Attributes

 int m_nExitType

 int m_nWeirType

 int m_nORelease
 int m_nPeople
 int m_nDays
 double m_lfBasinWidth
 double m_lfBasinLength
 double m_lfOrificeHeight

 double m_lfOrificeDiameter
 double m_lfOrificeCoeff
 double m_lfWeirHeight
 double m_lfWeirWidth
 double m_lfWeirAngle
 double m_lfPETmultiplier
 double m_lfWatDep_i

 double m_lfTheta_i
 double m_lfRelease [24]

 TGrnAmpt m_pGAInfil
 THorton m_pHortonInfil
 PUMP_CONTROL m_pPumpControl
 CPUMP * m_pPumpCurve

Detailed Description

This is the data structure class for BMP Type A. The supported BMPs in SUSTAIN under this type are

Bioretention, Cistern, Constructed Wetland, Green Roof, Infiltration Basin, Infiltration Trench, Porous
Pavement, Rain Barrel, Sand Filter (non-surface), Sand Filter (surface), Wet Pond, Dry Pond, and
Regulator.

Member Data Documentation

double BMP_A::m_lfBasinLength

This is the BMP length (ft).

double BMP_A::m_lfBasinWidth

This is the BMP width (ft).

double BMP_A::m_lfOrificeCoeff

This is the orifice discharge coefficient for the orifice equation.

double BMP_A::m_lfOrificeDiameter

This is the orifice diameter (ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

39

double BMP_A::m_lfOrificeHeight

This is the orifice height (ft) from the bed.

double BMP_A::m_lfPETmultiplier

This is the PET multiplier.

double BMP_A::m_lfRelease[24]

This is the hourly water release per capita from the cistern control (ft3/hr/capita).

double BMP_A::m_lfTheta_i

This is the initial soil moisture that identifies antecedent soil moisture conditions (ft/ft).

double BMP_A::m_lfWatDep_i

This is the initial water depth that identifies standing water on surface from antecedent conditions
(ft).

double BMP_A::m_lfWeirAngle

This is the weir angle in degrees (for Triangular type).

double BMP_A::m_lfWeirHeight

This is the weir height (ft).

double BMP_A::m_lfWeirWidth

This is the weir width (ft).

int BMP_A::m_nDays

This is the number of dry days after which the stored water is released (for Rain Barrel only).

int BMP_A::m_nExitType

This is the orifice shape type.

int BMP_A::m_nORelease

This is the release type (1-Cistern, 2-Rain Barrel, 3-Orifice).

int BMP_A::m_nPeople

This is the number of people that use the stored water (for Cistern only).

int BMP_A::m_nWeirType

This is the weir type (1-Rectangular and 2-Triangular).

TGrnAmpt BMP_A::m_pGAInfil

This is the data structure for Green-Ampt infiltration parameters.

THorton BMP_A::m_pHortonInfil

This is the data structure for Horton infiltration parameters.

PUMP_CONTROL BMP_A::m_pPumpControl

This is the data structure type of PUMP_CONTROL class.

CPUMP * BMP_A::m_pPumpCurve

This is the pointer to the CPUMP class.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

40

BMP_B Struct Reference

#include "BMPSite.h"

Public Attributes

 double m_lfBasinWidth
 double m_lfBasinLength

 double m_lfMaximumDepth
 double m_lfSideSlope1
 double m_lfSideSlope2
 double m_lfSideSlope3
 double m_lfManning
 double m_lfPETmultiplier
 double m_lfWatDep_i

 double m_lfTheta_i
 TGrnAmpt m_pGAInfil
 THorton m_pHortonInfil

Detailed Description

This is the data structure class for BMP Type B. The supported BMP in SUSTAIN under this type is Grassed

Swale.

Member Data Documentation

double BMP_B::m_lfBasinLength

This is the BMP length (ft).

double BMP_B::m_lfBasinWidth

This is the BMP width (ft).

double BMP_B::m_lfManning

This is the Manning's roughness coefficient used in Manning’s equation.

double BMP_B::m_lfMaximumDepth

This is the BMP maximum depth (ft).

double BMP_B::m_lfPETmultiplier

This is the PET multiplier.

double BMP_B::m_lfSideSlope1

This is the BMP side slope for trapezoidal cross-section (ft/ft).

double BMP_B::m_lfSideSlope2

This is the BMP side slope for trapezoidal cross-section (ft/ft).

double BMP_B::m_lfSideSlope3

This is the BMP longitudinal slope (ft/ft).

double BMP_B::m_lfTheta_i

This is the initial soil moisture that identifies antecedent soil moisture conditions (ft/ft).

double BMP_B::m_lfWatDep_i

This is the initial water depth that identifies standing water on surface from antecedent conditions

(ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

41

TGrnAmpt BMP_B::m_pGAInfil

This is the data structure for Green-Ampt infiltration parameters.

THorton BMP_B::m_pHortonInfil

This is the data structure for Horton infiltration parameters.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

42

BMP_C Struct Reference

#include "BMPSite.h"

Public Attributes

 int m_nIndex
 CString m_strID

 CString m_strCondType
 CString m_strCondName
 TLink m_pTLink
 TConduit m_pTConduit
 TTransect m_pTTransect

Detailed Description

This is the data structure class for BMP Type C. A Conduit (open channel and pipes) in SUSTAIN is an
example of this type.

Member Data Documentation

int BMP_C::m_nIndex

This is the BMP index in the conduit object list.

TConduit BMP_C::m_pTConduit

This is the data structure for conduit parameters.

TLink BMP_C::m_pTLink

This is the data structure for link parameters.

TTransect BMP_C::m_pTTransect

This is the data structure for transect parameters.

CString BMP_C::m_strCondName

This is the name of conduit for an irregular cross-section.

CString BMP_C::m_strCondType

This is the shape type of the conduit cross-section.

CString BMP_C::m_strID

This is the unique identifier of the conduit.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

43

BMP_D Struct Reference

#include "BMPSite.h"

Public Attributes

 CString m_strID
 int m_nPolRemMethod

 float m_lfN
 float m_lfdStore
 float m_lfalpha
 float m_lfinflow
 float m_lfrunoff
 float m_lfdepth
 float m_lflosses

 double m_lfBufferWidth
 double m_lfFlowLength
 double m_lfPETmultiplier
 double m_lfWatDep_i
 double m_lfTheta_i
 double m_lfOverlandSlope
 TGrnAmpt m_pGAInfil

 THorton m_pHortonInfil

Detailed Description

This is the data structure class for BMP Type D. A Filterstrip in SUSTAIN is an example of this type.

Member Data Documentation

float BMP_D::m_lfalpha

This is the overland flow factor used in the nonlinear reservoir routing equation.

double BMP_D::m_lfBufferWidth

This is the buffer width perpendicular to the surface runoff (ft).

float BMP_D::m_lfdepth

This is the depth of surface runoff (ft).

float BMP_D::m_lfdStore

This is the depression storage on the surface (ft).

double BMP_D::m_lfFlowLength

This is the buffer length along the surface runoff (ft).

float BMP_D::m_lfinflow

This is the inflow rate (ft/sec).

float BMP_D::m_lflosses

This is the evaporation and infiltration loss rate (ft/sec).

float BMP_D::m_lfN

This is the Manning's roughness coefficient.

double BMP_D::m_lfOverlandSlope

This is the overland slope (ft/ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

44

double BMP_D::m_lfPETmultiplier

This is the PET multiplier to reflect the vegetation cover.

float BMP_D::m_lfrunoff

This is the runoff rate (ft/sec).

double BMP_D::m_lfTheta_i

This is the initial soil moisture that identifies antecedent soil moisture conditions (ft/ft).

double BMP_D::m_lfWatDep_i

This is the initial water depth that identifies standing water on the surface from antecedent conditions
(ft).

int BMP_D::m_nPolRemMethod

This is the pollutant removal method (0-1st order decay, 1-Kadlec and Knight method).

TGrnAmpt BMP_D::m_pGAInfil

This is the data structure for Green-Ampt infiltration parameters.

THorton BMP_D::m_pHortonInfil

This is the data structure for Horton infiltration parameters.

CString BMP_D::m_strID

This is the unique identifier of the BMP.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

45

BMP_E Struct Reference

#include "BMPSite.h"

Public Attributes

 CString m_strID
 int m_nPolRemMethod

 float m_lfN
 float m_lfdStore
 float m_lfalpha
 float m_lfinflow
 float m_lfrunoff
 float m_lfdepth
 float m_lflosses

 float m_lfsArea
 float m_lfSatInfil
 double m_lfDCIA
 double m_lfFlowLength
 double m_lfOverlandSlope
 double m_lfTotImpArea

Detailed Description

This is the data structure class for BMP Type E. An Impervious Area Disconnection (Area BMP) in

SUSTAIN is an example of this type.

Member Data Documentation

float BMP_E::m_lfalpha

This is the overland flow factor.

double BMP_E::m_lfDCIA

This is the percent of a directly connected impervious area (0-100).

float BMP_E::m_lfdepth

This is the depth of surface runoff (ft).

float BMP_E::m_lfdStore

This is the surface depression storage (ft).

double BMP_E::m_lfFlowLength

This is the buffer length along the surface runoff (ft).

float BMP_E::m_lfinflow

This is the inflow rate (ft/sec).

float BMP_E::m_lflosses

This is the evaporation and infiltration loss rate (ft/sec).

float BMP_E::m_lfN

This is the Manning's roughness coefficient.

double BMP_E::m_lfOverlandSlope

This is the overland slope (ft/ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

46

float BMP_E::m_lfrunoff

This is the runoff rate (ft/sec).

float BMP_E::m_lfsArea

This is the BMP surface area (ft2).

float BMP_E::m_lfSatInfil

This is the saturated infiltration rate (ft/sec).

double BMP_E::m_lfTotImpArea

This is the total impervious area (acre).

int BMP_E::m_nPolRemMethod

This is the pollutant removal method (0-1st order decay, 1-Kadlec and Knight method).

CString BMP_E::m_strID

This is the unique identifier of the BMP.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

47

BMPCOST Struct Reference

#include "BMPData.h"

Public Attributes

 int m_nBMPClass
 CString m_strBMPType

 double m_lfCost

Detailed Description

This is the BMP cost data structure class.

Member Data Documentation

double BMPCOST::m_lfCost

This is the total cost for the same BMP types.

int BMPCOST::m_nBMPClass

This is the unique identifier for the BMP type (1-class A, 2-class B, 3-class C, 4-class D, 5-class E).

CString BMPCOST::m_strBMPType

This is the descriptive name for the BMP type.

The documentation for this struct was generated from the following file:

 BMPData.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

48

CAquifer Class Reference

#include "Aquifer.h"

Public Member Functions

 CAquifer ()
 CAquifer (int nAquiferID, CString strAquiferName, double lfGWrc, double lfGWsc, double

lfGWStorage)
 virtual ~CAquifer ()

Public Attributes

 int m_nAquiferID
 double m_lfGWrc

 double m_lfGWsc

 double m_lfGWStorage
 double * m_pConc
 CString m_sAquiferName

Detailed Description

This is the data structure for the CAquifer class. The aquifer system in SUSTAIN is supported in the
External Land Simulation option only. An aquifer receives water from the groundwater recharge
provided in the external land time series and the background infiltration in BMPs. An aquifer can receive

water from more than one land use or BMP, but it can release the water to only one conduit.

Constructor & Destructor Documentation

CAquifer::CAquifer ()

This is the CAquifer class constructor (default).

CAquifer::CAquifer (int nAquiferID, CString strAquiferName, double lfGWrc, double lfGWsc, double lfGWStorage)

This is the CAquifer class constructor that initializes the following class parameters.

Parameters:

nAquiferID Aquifer unique ID (non zero).

strAquiferName Aquifer descriptive name.

lfGWrc Groundwater recession coefficient (per hour).

lfGWsc Groundwater seepage coefficient (per hour).

lfGWStorage Groundwater stored volume (ac-ft).

CAquifer::~CAquifer () [virtual]

This is the CAquifer class destructor.

Member Data Documentation

double CAquifer::m_lfGWrc

This is the groundwater recession coefficient used to release water to a conduit (per hour).

double CAquifer::m_lfGWsc

This is the groundwater seepage coefficient used to calculate the deep percolation (loss) from the
system (per hour).

double CAquifer::m_lfGWStorage

This is the available stored volume in the aquifer system (ac-ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

49

int CAquifer::m_nAquiferID

This is the aquifer’s unique ID (non zero).

double * CAquifer::m_pConc

It is an array of pollutants concentration in the aquifer (mg/L).

CString CAquifer::m_sAquiferName

This is the aquifer’s descriptive name.

The documentation for this class was generated from the following files:

 Aquifer.h
 Aquifer.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

50

CBMPData Class Reference

#include "BMPData.h"

Collaboration diagram for CBMPData:

Public Member Functions

 CBMPData ()

 virtual ~CBMPData ()
 CBMPSite * FindBMPSite (const CString &strID)
 CLandUse * FindLandUse (int nLuID)
 CAquifer * FindAquifer (int nAquiferID)

 CPUMP * FindPumpCurve (CString strPCurveID)
 void SkipCommentLine (FILE *fp)
 void OutputFileHeaderForTradeOffCurve (FILE *fp)
 void WriteFileHeader (FILE *fp, int NWQ)
 void AddRouteNode (CBMPSite *pBMPSite)
 bool ReadInputFile (CString strFileName)
 bool ReadFileSection (FILE *fp, int nSection)

 bool ReadDataLine (FILE *fp, CString &strData)
 bool ReadBestPopFile (int nBestPopId)
 bool RoutingCycleExist (CBMPSite *pBMPSite)
 bool PrepareDataForModel ()

 bool OpenOutputFiles (const CString &runID)
 bool CloseOutputFiles ()

 bool ProcessPollutantData ()
 bool ProcessTransportData ()
 bool LoadClimateTSData (COleDateTime startDate, COleDateTime endDate)

Public Attributes

 CString strInputDir

 CString strOutputDir
 CString strMixLUFileName
 CString strPreLUFileName
 CString strError
 CString strClimateFileName
 COleDateTime startDate
 COleDateTime endDate

 int m_nSedQualFlag

 int nStrategy
 int nLandSimulation
 int nLANDTimeStep
 int nBMPTimeStep
 int nOutputTimeStep

 int nBIORETENTION
 int nWETPOND
 int nCISTERN
 int nDRYPOND
 int nINFILTRATIONTRENCH
 int nGREENROOF

 SUSTAIN–Programmer’s Manual: Simulation Engine

51

 int nPOROUSPAVEMENT
 int nRAINBARREL

 int nREGULATOR
 int nSWALE
 int nBUFFERSTRIP
 int nAREABMP
 int nBMPtype
 int nBMPA

 int nBMPB
 int nBMPC
 int nBMPD
 int nBMPE
 int nAdjVariable
 int nEvalFactor
 int nRunOption

 int nSolution

 int nPollutant
 int nNWQ
 int m_nNum
 int nETflag
 int * nSedflag
 double lfStopDelta

 double lfMaxRunTime
 double lfLatitude
 double lfmonET [12]
 double * m_pDataClimate
 double * polmultiplier
 CObList luList

 CObList siteluList
 CObList bmpsiteList
 CObList routeList

 CObList sitepsList
 CObList AquiferList
 CObList PumpList
 POLLUTANT * m_pPollutant

 BMPCOST * m_pBMPcost

Detailed Description

This is the Data Management class in SUSTAIN that defines the data structure for the model input and

output parameters. This class populates the data structures (arrays, variables, objects pointers, etc.)
while reading the BMP optimization input text file. The member functions of this class open the model
output file, write the model output, and process the input data for the model simulation run.

Constructor & Destructor Documentation

CBMPData::CBMPData ()

This is the CBMPData class constructor (default).

CBMPData::~CBMPData () [virtual]

This is the CBMPData class destructor.

Member Function Documentation

CBMPData::AddRouteNode (CBMPSite * pBMPSite)

This function adds the given BMP to the routing list of BMP sites in the correct sequence for the model
simulation run.

 SUSTAIN–Programmer’s Manual: Simulation Engine

52

Parameter:

pBMPSite The pointer to the given BMP site.

This is the caller graph for this function:

CBMPData::CloseOutputFiles ()

This function closes the model output time series file.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

CBMPData::FindAquifer (int nAquiferID)

This function searches for the given aquifer in the AquiferList.

Parameter:

nAquiferID Unique identifier for the given aquifer.

Returns:

Null if it fails, else pointer to the given aquifer of CAquifer class type.

This is the caller graph for this function:

CBMPData::FindBMPSite (const CString & strID)

This function searches for the given BMP site in the bmpsiteList.

Parameter:

strID Unique identifier for the given BMP site.

Returns:

Null if it fails, else pointer to the given BMP site of CBMPSite class type.

This is the caller graph for this function:

CBMPData::FindLandUse (int nLuID)

This function searches for the given land use in the luList.

Parameter:

nLuID Unique identifier for the given land use.

 SUSTAIN–Programmer’s Manual: Simulation Engine

53

Returns:

Null if it fails, else pointer to the given land use of CLandUse class type.

This is the caller graph for this function:

CBMPData::FindPumpCurve (CString strPCurveID)

This function searches for the given pump curve in the PumpList.

Parameter:

strPCurveID Unique identifier for the pump object.

Returns:

Null if it fails, else pointer to the given pump of CPUMP class type.

This is the caller graph for this function:

CBMPData::LoadClimateTSData (COleDateTime startDate, COleDateTime endDate)

This function reads the climate time series data for the daily air temperature (maximum and
minimum) and PET values.

Parameters:

startDate Start date of model simulation.

endDate End date of model simulation.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

CBMPData::OpenOutputFiles (const CString & runID)

This function opens the BMP output time series file.

Parameter:

runID The model simulation type (Init, PreDev, and PostDev).

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

54

CBMPData::OutputFileHeaderForTradeOffCurve (FILE * fp)

This function writes the header information for the cost-effectiveness curve output file. The file

contains the information about the best solution ID, the total cost of the project, the evaluation factor
for the cost-effectiveness curve, and the optimized decision variables.

Parameter:

fp The pointer to the cost-effectiveness curve output file.

This is the caller graph for this function:

CBMPData::PrepareDataForModel ()

This function processes the model input data to start the BMP simulation. It loads the flow and

pollutant time series data from the external land use, point source, and the model output time series

if needed. It also loads the weather data from the climate time series file. It processes the pollutant
data and assigns the routing sequence to the BMP network.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

CBMPData::ProcessPollutantData ()

This function processes the pollutant data to be used in the model simulation. It splits the total

sediment into three sediment classes (Sand, Silt, and Clay) if the sediment is defined as a total

 SUSTAIN–Programmer’s Manual: Simulation Engine

55

sediment in the pollutant definition. This function resizes the data arrays for the pollutant 1st order
decay rates, K’, C*, and underdrain removal rates to incorporate the sand, silt, and clay if the total

sediment is simulated.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

CBMPData::ProcessTransportData ()

This function processes the conveyance data to be used in the model simulation. It initializes the

conduit-related parameters and creates a copy of the Link, Conduit, and Transect input data to be

used for the optimization run.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

CBMPData::ReadBestPopFile (int nBestPopId)

This function reads the best solutions output file (BestSolutions.out) for the given solution. It reads
the optimized decision variables for the given best solution to be used for the tier-two optimization
run.

Parameter:

nBestPopId The unique identifier for the best solution in the output file.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

56

CBMPData::ReadDataLine (FILE * fp, CString & strData)

This function reads a single data line from the model input text file.

Parameters:

fp The pointer to the model input text file.

strData The model data line from the input text file.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

CBMPData::ReadFileSection (FILE * fp, int nSection)

This function reads the model input parameters for the selected card from a section of the input file.

It calls several other companion functions to read and initialize the model input parameters.

Parameters:

fp The pointer to the model input text file.

nSection The section of the model input text file (referred as card number).

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

57

CBMPData::ReadInputFile (CString strFileName)

This function reads the model input text file. It parses the input text file into several sections and

calls the CBMPData::ReadFileSection to read each section.

Parameter:

strFileName The full path for the model input text file.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

CBMPData::RoutingCycleExist (CBMPSite * pBMPSite)

This function checks the closed loops in the BMP routing network. It checks the connected
downstream BMPs of the selected BMP site for the closed loops.

Parameter:

pBMPSite The pointer to the given BMP site.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

58

CBMPData::SkipCommentLine (FILE * fp)

This function skips the comment lines while reading the model input file.

Parameter:

fp The pointer to the model input text file.

This is the caller graph for this function:

CBMPData::WriteFileHeader (FILE * fp, int NWQ)

This function writes the header information for all the output parameters in the time series output

file.

Parameters:

fp The pointer to the model time series output file.

NWQ The number of modeled pollutants.

This is the caller graph for this function:

Member Data Documentation

CObList CBMPData::AquiferList

This is the list of aquifer objects (for external land simulation).

CObList CBMPData::bmpsiteList

This is the list of total BMP site objects.

COleDateTime CBMPData::endDate

This is the DATE data type for the model simulation end time.

double CBMPData::lfLatitude

This is the latitude in decimal degrees and is required if the ET flag is equal to 2.

double CBMPData::lfMaxRunTime

This is the user-specified maximum simulation run time.

double CBMPData::lfmonET[12]

This is the monthly PET rate (inch/day) if the ET flag is equal to 0; the monthly pan coefficient

(multiplier to PET value) if the ET flag is equal to 1; the monthly variable coefficient to calculate PET

values if the ET flag is equal to 2.

double CBMPData::lfStopDelta

This is the user-specified criteria for stopping the optimization iterations.

CObList CBMPData::luList

This is the list of total land use objects.

int CBMPData::m_nNum

This is the number of weather parameters in the climate file.

 SUSTAIN–Programmer’s Manual: Simulation Engine

59

int CBMPData::m_nSedQualFlag

This is the flag to distinguish if there is any adsorbed pollutant.

BMPCOST * CBMPData::m_pBMPcost

This is an array of BMPCOST structure data type for the total BMPs in the project.

double * CBMPData::m_pDataClimate

This is an array for storing the climate time series data.

POLLUTANT * CBMPData::m_pPollutant

This is an array of POLLUTANT structure data type for the total pollutants in the project.

int CBMPData::nAdjVariable

This is the number of decision variables (BMP parameters that vary during the iteration process) in
the project.

int CBMPData::nAREABMP

This is the number of disconnected impervious area BMP types in the project.

int CBMPData::nBIORETENTION

This is the number of bioretention BMP types in the project.

int CBMPData::nBMPA

This is the number of class-A BMP types in the project.

int CBMPData::nBMPB

This is the number of class-B BMP types in the project.

int CBMPData::nBMPC

This is the number of class-C BMP types in the project.

int CBMPData::nBMPD

This is the number of class-D BMP types in the project.

int CBMPData::nBMPE

This is the number of class-E BMP types in the project.

int CBMPData::nBMPTimeStep

This is the model timestep for the BMP simulation.

int CBMPData::nBMPtype

This is the total number of BMP types in the project.

int CBMPData::nBUFFERSTRIP

This is the number of buffer strip BMP types in the project.

int CBMPData::nCISTERN

This is the number of cistern BMP types in the project.

int CBMPData::nDRYPOND

This is the number of dry pond BMP types in the project.

int CBMPData::nETflag

This is the ET Flag (0-constant monthly PET, 1-daily PET from the time series, 2-calculate daily PET

from the daily temperature data).

 SUSTAIN–Programmer’s Manual: Simulation Engine

60

int CBMPData::nEvalFactor

This is the total number of evaluation factors.

int CBMPData::nGREENROOF

This is the number of green roof BMP types in the project.

int CBMPData::nINFILTRATIONTRENCH

This is the number of infiltration trench BMP types in the project.

int CBMPData::nLandSimulation

This is the land simulation option (0-external, 1-internal).

int CBMPData::nLANDTimeStep

This is the model timestep for the land simulation (minutes).

int CBMPData::nNWQ

This is the number of modeled pollutants (sediment is modeled as sand, silt, and clay).

int CBMPData::nOutputTimeStep

This is the model timestep for the BMP output time series.

int CBMPData::nPollutant

This is the number of user-defined pollutants.

int CBMPData::nPOROUSPAVEMENT

This is the number of porous pavement BMP types in the project.

int CBMPData::nRAINBARREL

This is the number of rain barrel BMP types in the project.

int CBMPData::nREGULATOR

This is the number of regulator BMP types in the project.

int CBMPData::nRunOption

This is the unique identifier for simulation run (0-no optimization, 1-minimize cost,
2-cost-effectiveness curve).

int * CBMPData::nSedflag

This is an array of pollutants storing the sediment flag (1-sand, 2-silt, 3-clay).

int CBMPData::nSolution

This is the number of best solutions time series to output.

int CBMPData::nStrategy

This is the flag for the optimization strategy (1-Scatter Search, 2-Genetic Algorithm).

int CBMPData::nSWALE

This is the number of swale BMP types in the project.

int CBMPData::nWETPOND

This is the number of wet pond BMP types in the project.

double * CBMPData::polmultiplier

This is an array of the total number of pollutants that stores the multiplier for each pollutant loading

rate.

 SUSTAIN–Programmer’s Manual: Simulation Engine

61

CObList CBMPData::PumpList

This is the list of pump objects.

CObList CBMPData::routeList

This is the list of BMP site objects sorted in the routing order from upstream to downstream.

CObList CBMPData::siteluList

This is the list of land use objects for the given BMP site.

CObList CBMPData::sitepsList

This is the list of point source objects for the given BMP site.

COleDateTime CBMPData::startDate

This is the DATE data type for the model simulation start time.

CString CBMPData::strClimateFileName

This is the full path for the climate time series file (required if PET is read from the climate time series

or calculated in the model).

CString CBMPData::strError

This is the string to save error messages.

CString CBMPData::strInputDir

This is the land output directory (containing land output time series) that is input to BMP simulation

module in SUSTAIN.

CString CBMPData::strMixLUFileName

This is the full path of mixed land use output file (for internal land simulation).

CString CBMPData::strOutputDir

This is the BMP simulation output directory where the BMP output time series are stored.

CString CBMPData::strPreLUFileName

This is the full path of pre-developed land use output file (for internal land simulation).

The documentation for this class was generated from the following files:

 BMPData.h
 BMPData.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

62

CBMPOptimizer Class Reference

#include "BMPOptimizer.h"

Collaboration diagram for CBMPOptimizer:

Public Member Functions

 CBMPOptimizer ()
 CBMPOptimizer (CBMPRunner *pBMPRunner)
 virtual ~CBMPOptimizer ()
 void InitRefSet ()

 void ResetRefSet ()
 void CombineRefSet ()
 void InitProblem (int nVar, int b1, int b2, int pSize, bool localSearch)
 void Combine_inc (double *x, double *y, double **offsprings, int number)

 void TryAddRefSet1 (double *sol)
 void TryAddRefSet2 (double *sol)

 void UpdateRefSet2 ()
 void TryAddEvaluation (double *sol, double current_value)
 void GetOrderIndices (int *indices, double *pesos, int num, int tipo)
 void PerformSearch ()
 void OutputFileHeader (CString header, FILE *fp)
 void OutputBestSolutions ()
 bool IsNewSolution (double **solutions, int dim, double *sol)

 double GenerateValue (int a)
 double Evaluate (double *sol)
 double Evaluate_MinCost (double *sol)
 double DistanceToRefSet1 (double *sol)
 double DistanceToRefSet (double *sol)

Public Attributes

 int nMaxIter
 int nRunCounter
 int nMaxRun
 int nRUN_BATCH
 double m_lfPrevResult

 double m_lfPrevValue
 double ** m_pVariables
 CBMPRunner * m_pBMPRunner
 FILE * m_pAllSolutions
 SCATTER_SEARCH problem

 SUSTAIN–Programmer’s Manual: Simulation Engine

63

Detailed Description

This is the class that runs the BMP optimization module for minimizing the project cost to achieve an

evaluation target. The module uses evolutionary Scatter Search optimization technique to perform the
searches for optimal combinations of BMPs that meet the user-defined decision criteria. The Scatter
Search technique is more efficient than NSGA-II because the search is more focused around a target.

Constructor & Destructor Documentation

CBMPOptimizer::CBMPOptimizer ()

This is the CBMPOptimizer class constructor (default).

CBMPOptimizer::CBMPOptimizer (CBMPRunner * pBMPRunner)

This is the CBMPOptimizer class constructor that initializes the class variables. It assigns a pointer to
CBMPRunner class.

Parameters:

in,out pBMPRunner If non-null, a pointer to CBMPRunner class.

CBMPOptimizer::~CBMPOptimizer () [virtual]

This is the CBMPOptimizer class destructor.

Member Function Documentation

void CBMPOptimizer::Combine_inc (double * x, double * y, double ** offsprings, int number)

This function constructs new solution points from the reference solution points. The method

consists of finding linear combinations of reference solutions. The number of solutions created from
the linear combination of two reference solutions depends on the membership of the solutions being
combined. These combinations are based on the following three types, assuming that the reference
solutions are x' and x":

C1: x1 = x' - d

C2: x2 = x' + d

C3: x3 = x" + d

where

d = r (x" - x')/2, r is a random number in the range (0, 1), and x is the new solution point.

Parameters:

 number The number of new solutions to be constructed

in,out x An array of reference solution set x (as x’ in the equations

above)

in,out y An array of reference solution set y (as x” in the equations

above)

in,out offsprings A two-dimensional array of new solutions

This is the caller graph for this function:

void CBMPOptimizer::CombineRefSet ()

This function generates new solutions by combining solutions from RefSet1 and RefSet2. It calls

function CBMPOptimizer::Combine_inc to perform the Combination Method. The following rules are
used to generate solutions with these three types of linear combinations:

 If both x' and x" are elements of RefSet1, generate four solutions by applying C1 and C3 once and
C2 twice.

 SUSTAIN–Programmer’s Manual: Simulation Engine

64

 If only one of x' and x" is a member of RefSet1, generate three solutions by applying C1, C2 and
C3 once.

 If neither x' nor x" is a member of RefSet1, generate two solutions by applying C2 once and
randomly choosing between applying C1 or C3.

This is the call graph for this function:

This is the caller graph for this function:

double CBMPOptimizer::DistanceToRefSet (double * sol)

This function calculates the Euclidean distance of a solution to the solutions in both reference set 1

(RefSet1) and reference set 2 (RefSet2).

Parameter:

in,out sol An array of solution

Returns:

The minimum distance between a solution and all the solutions in both reference sets.

This is the caller graph for this function:

double CBMPOptimizer::DistanceToRefSet1 (double * sol)

This function calculates the Euclidean distance of a solution to the solutions in reference set 1

(RefSet1).

Parameter:

in,out sol An array of solution

Returns:

The minimum distance between a solution and the solutions in reference set 1 (RefSet1).

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

65

double CBMPOptimizer::Evaluate (double * sol)

This function calls CBMPOptimizer::Evaluate_MinCost function.

Parameter:

in,out sol An array of solution

Returns:

The value of the solution evaluated. The value is a composite measurement of the solution’s
merit, considering both its performance and cost.

This is the call graph for this function:

This is the caller graph for this function:

double CBMPOptimizer::Evaluate_MinCost (double * sol)

This function returns the value of a solution. The value is calculated on the basis of a solution’s cost
and performance. The performance of a solution is measured by whether the target is met. If the
target is not met, measure how close it is to the target.

Parameter:

in,out sol An array of solution

Returns:

The value of the solution evaluated.

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

66

This is the caller graph for this function:

double CBMPOptimizer::GenerateValue (int a)

This function generates a number in the specified low and high bounds of a decision variable.

Parameter:

a Decision variable index

Returns:

A number for decision variable between its low and high bounds.

This is the caller graph for this function:

void CBMPOptimizer::GetOrderIndices (int * indices, double * pesos, int num, int tipo)

This function sorts solutions in a set.

Parameters:

 num Number of solutions to be sorted

 tipo Sorting order; 1 indicates increasing, -1 indicates decreasing

in,out indices An array of indexes

in,out pesos An array of values of the solutions

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

67

void CBMPOptimizer::InitProblem (int nVar, int b1, int b2, int pSize, bool localSearch)

This function initializes all the arrays, including the problem solution set, reference set 1, and

reference set 2.

Parameters:

nVar Number of decision variables

b1 Number of solutions in RefSet1

b2 Number of solutions in RefSet2

pSize Population size

localSearch Flag for local search, it is intended for continuous variable, not

applicable in SUSTAIN.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizer::InitRefSet ()

This function populates the initial problem solution set, chooses the best b1 solutions to populate

reference set 1, and chooses b2 solutions with the maximum distance to the reference set 1 solutions
to populate reference set 2.

This is the call graph for this function:

This is the caller graph for this function:

bool CBMPOptimizer::IsNewSolution (double ** solutions, int dim, double * sol)

This function checks whether a newly generated solution is identical to the solutions in the reference

set.

Parameters:

 dim Dimensions of the solution array

in,out sol An array of solution

in,out solutions A set of solutions (two dimentional array)

 SUSTAIN–Programmer’s Manual: Simulation Engine

68

Returns:

True if the solution is different from any solution in the reference set, false if the solution is

identical to a solution in the reference set.

This is the caller graph for this function:

void CBMPOptimizer::OutputBestSolutions ()

This function writes the best solutions to the BestSolutions.out output file.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizer::OutputFileHeader (CString header, FILE * fp)

This function writes the output file header.

Parameters:

 header Header information to be written in the output file

in,out fp Pointer to the output file

This is the caller graph for this function:

void CBMPOptimizer::PerformSearch ()

This function performs the search process after initializing the reference sets. It combines the
reference sets, updates reference set, and if the stopping criteria are met, it stops the search.

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

69

This is the caller graph for this function:

void CBMPOptimizer::ResetRefSet ()

This function is not used in the current version of SUSTAIN. It was to reset the reference set, if the

Scatter Search was used for the Cost-Effectiveness Curve option.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizer::TryAddEvaluation (double * sol, double current_value)

This function is not used in the current version of SUSTAIN. It was to be used if the Scatter Search

was used for the Cost-Effectiveness Curve option.

2

1

1

1

2

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

70

Parameters:

 current_value Current value of the evaluation factor

in,out sol An array of solution

void CBMPOptimizer::TryAddRefSet1 (double * sol)

In the process of combining reference sets, this function evaluates the newly combined solutions

against the existing solutions in reference set 1. If the new solutions are superior, they will replace
the inferior solutions currently in reference set 1.

Parameter:

in,out sol An array of solution to be evaluated

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizer::TryAddRefSet2 (double * sol)

In the process of combining reference sets, this function evaluates the newly combined solutions

against the existing solutions in reference set 2. If the new solutions are superior, they will replace
the inferior solutions in reference set 2.

Parameter:

in,out sol An array of solution to be evaluated

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizer::UpdateRefSet2 ()

This function updates reference set 2 by replacing the old solution with newly generated solutions to

increase diversity.

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

71

This is the caller graph for this function:

Member Data Documentation

double CBMPOptimizer::m_lfPrevResult

This is the cost of the previously evaluated solution.

double CBMPOptimizer::m_lfPrevValue

This is the value of the previously evaluated solution.

FILE * CBMPOptimizer::m_pAllSolutions

This is a pointer to the AllSolutions.out output file.

CBMPRunner * CBMPOptimizer::m_pBMPRunner

This is a pointer to CBMPRunner class.

double ** CBMPOptimizer::m_pVariables

This is the two-dimensional array that stores the decision variables for all solutions.

int CBMPOptimizer::nMaxIter

This is the maximum number of iterations in an optimization run.

int CBMPOptimizer::nMaxRun

This is the maximum number of runs.

int CBMPOptimizer::nRUN_BATCH

This is an indicator of batch mode run; if it is equal to 1, it skips all messages and time series output
files.

int CBMPOptimizer::nRunCounter

This is the counter for the number of optimization runs.

SCATTER_SEARCH CBMPOptimizer::problem

This is a data structure class of SCATTER_SEARCH type.

The documentation for this class was generated from the following files:

 BMPOptimizer.h
 BMPOptimizer.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

72

CBMPOptimizerGA Class Reference

#include "BMPOptimizerGA.h"

Collaboration diagram for CBMPOptimizerGA:

Public Member Functions

 CBMPOptimizerGA ()
 CBMPOptimizerGA (CBMPRunner *pBMPRunner)

 virtual ~CBMPOptimizerGA ()
 bool OpenOutputFiles ()
 bool CloseOutputFiles ()
 bool LoadData ()
 bool ValidateParams ()
 bool InitProblem ()

 bool PerformSearch ()
 bool EvaluateSolution (double *xreal, double *obj, double *bmpcost, double *constr)
 bool Evaluate_TradeOff (double *xreal, double *obj, double *bmpcost, double *constr)
 void OutputBestPopulation ()
 void Selection (CPopulation *old_pop, CPopulation *new_pop)
 void CrossOver (CIndividual *parent1, CIndividual *parent2, CIndividual *child1, CIndividual

*child2)

 void CrossOverReal (CIndividual *parent1, CIndividual *parent2, CIndividual *child1, CIndividual
*child2)

 void Merge (CPopulation *pop1, CPopulation *pop2, CPopulation *pop3)
 void FillNondominatedSort (CPopulation *mixed_pop, CPopulation *new_pop)
 void CrowdingFill (CPopulation *mixed_pop, CPopulation *new_pop, int count, int front_size, void

*list)
 void OutputFileHeader (CString header, FILE *fp)

 CIndividual * Tournament (CIndividual *ind1, CIndividual *ind2)

Public Attributes

 int nRunCounter

 SUSTAIN–Programmer’s Manual: Simulation Engine

73

 int nMaxRun
 int nRUN_BATCH

 double ** m_pVariables
 GA_PROBLEM problem
 CPopulation * parent_pop
 CPopulation * child_pop
 CPopulation * mixed_pop
 CBMPRunner * m_pBMPRunner

 FILE * fpBestPop
 FILE * m_pAllSolutions

Detailed Description

This class defines the functions that are necessary for carrying out the BMP optimization process using

the NSGA-II algorithm. The functions include construction and destruction of the CBMPOptimizerGA
class, opening and closing the optimization output files, loading optimization parameters, validating the
optimization parameters, initializing the optimization problem, and performing the optimization search.

Constructor & Destructor Documentation

CBMPOptimizerGA::CBMPOptimizerGA ()

This is the CBMPOptimizerGA class constructor (default).

CBMPOptimizerGA::CBMPOptimizerGA (CBMPRunner * pBMPRunner)

This is the CBMPOptimizerGA class constructor that initializes the class variables. It assigns a

pointer to the CBMPRunner class.

Parameter:

in,out pBMPRunner If non-null, a pointer to CBMPRunner class.

CBMPOptimizerGA::~CBMPOptimizerGA () [virtual]

This is the CBMPOptimizerGA class destructor.

This is the call graph for this function:

Member Function Documentation

bool CBMPOptimizerGA::CloseOutputFiles ()

This function closes the output files associated with the optimization process. The output files are

the AllSolutions.out and the BestPop.out.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

74

void CBMPOptimizerGA::CrossOver (CIndividual * parent1, CIndividual * parent2, CIndividual * child1, CIndividual *

child2)

This function performs simulated binary crossover (SBX) for two individuals in a population. It calls
the CBMPOptimizerGA::CloseOutputFiles function.

Parameters:

in,out parent1 A pointer to Individual #1 in the current population.

in,out parent2 A pointer to Individual #2 in the current population.

in,out child1 A pointer to new Individual #1 after crossover.

in,out child2 A pointer to new Individual #2 after crossover.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizerGA::CrossOverReal (CIndividual * parent1, CIndividual * parent2, CIndividual * child1,

CIndividual * child2)

This function carries out the crossover for real variables. In this function two individuals are

randomly selected in the current population, and two new individuals are created as a result of the
crossover process. The SBX process is carried out only when the system-generated random
percentage is smaller than the user-specified random percentage, the system-generated random
percentage is smaller than 0.5, and the two individuals are different from each other.

Parameters:

in,out parent1 A pointer to Individual #1 in the current population.

in,out parent2 A pointer to Individual #2 in the current population.

in,out child1 A pointer to new Individual #1 after crossover.

in,out child2 A pointer to new Individual #2 after crossover.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizerGA::CrowdingFill (CPopulation * mixed_pop, CPopulation * new_pop, int count, int front_size,

void * list)

This function fills a population with individuals in the decreasing order of crowding distance. When
carrying out the filling process, a crowding distance is first calculated for a mixed population and then

the mixed population is sorted on the crowding distance of the individual solutions. The new
population is filled with solutions from the mixed population.

 SUSTAIN–Programmer’s Manual: Simulation Engine

75

Parameters:

 count An index of the individual solution in the current front.

 front_size The size of the current front.

in,out list A list that stores individual solutions in the current front.

in,out mixed_pop An array that stores the mixed population.

in,out new_pop An array that stores the new population.

This is the call graph for this function:

This is the caller graph for this function:

bool CBMPOptimizerGA::Evaluate_TradeOff (double * xreal, double * obj, double * bmpcost, double * constr)

This function carries out the BMP optimization process for cost-effectiveness curve generation. For

individual solutions through the optimization process, it calculates the total BMP cost, total BMP
surface area, total BMP excavation volume, total BMP surface storage volume, total BMP soil storage
volume, and the total BMP underdrain storage volume. All solutions evaluated during the
optimization process are exported to an output file.

Parameters:

in,out xreal An array of real number decision variables.

in,out obj An array of the optimization targets.

in,out bmpcost An array of the costs of BMPs.

in,out constr An array of the constraints.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

2

1

1

1

2

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

76

This is the caller graph for this function:

bool CBMPOptimizerGA::EvaluateSolution (double * xreal, double * obj, double * bmpcost, double * constr)

This function calls corresponding functions for carrying out the optimization process. The ArcGIS
interface of SUSTAIN version 1.2 supports only the cost-effectiveness curve option.

Parameters:

in,out xreal An array of real number decision variables.

in,out obj An array of the optimization targets.

in,out bmpcost An array of the costs of BMPs.

in,out constr An array of the constraints.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizerGA::FillNondominatedSort (CPopulation * mixed_pop, CPopulation * new_pop)

This function performs the non-dominated sorting of a mixed population and retrieves a new
population after the sorting process is completed. During the sorting process, this function calls the

CIndividual::CheckDominance function to check whether one solution dominate another. When
filling the new population with individuals from the mixed population, it uses the

 SUSTAIN–Programmer’s Manual: Simulation Engine

77

CIndividual::CopyFrom function. The CPopulation::AssignCrowdingDistanceIndices and the
CBMPOptimizerGA::CrowdingFill functions are also used for filling the new population.

Parameters:

in,out mixed_pop An array that stores the mixed population.

in,out new_pop An array that stores the new population.

This is the call graph for this function:

This is the caller graph for this function:

bool CBMPOptimizerGA::InitProblem ()

This function initializes the optimization problem.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

bool CBMPOptimizerGA::LoadData ()

This function loads data that are used during the optimization process.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

2

1
3

1

1

1

2

1
3

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

78

This is the caller graph for this function:

void CBMPOptimizerGA::Merge (CPopulation * pop1, CPopulation * pop2, CPopulation * pop3)

This function merges the parent population and the child population to create a mixed population.

Parameters:

in,out pop1 An array that stores the parent population 1.

in,out pop2 An array that stores the parent population 2.

in,out pop3 An array that stores the mixed population 3.

This is the call graph for this function:

This is the caller graph for this function:

bool CBMPOptimizerGA::OpenOutputFiles ()

This function opens up the output files for writing. The output files being opened are the

AllSolutions.out and BestSolutions.out. An error message is displayed if an output file cannot be
opened.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPOptimizerGA::OutputBestPopulation ()

This function exports the best population from the optimization process. The best population

consists of individual solutions, each of which includes an array of BMPs. For each individual solution
in the best population, the exported information includes Total Surface Area (totalSurfaceArea),
Total Excavation Volume (totalExcavatnVol), Total Surface Storage Volume (totalSurfStorVol), Total
Soil Storage Volume (totalSoilStoreVol), Total Underdrain Storage Volume (totalUdrnStorVol), total
cost, and the value of each optimization target.

During the exporting process, individual solutions in the best population are first mapped to

corresponding BMP design parameters. The BMP design parameters in each individual solution are
then used for calculating the surface area, excavation volume, surface storage volume, soil storage
volume, and underdrain storage volume for the individual solution. The aggregated values for each

 SUSTAIN–Programmer’s Manual: Simulation Engine

79

of these parameters are calculated by summing corresponding values for all the BMPs in each
individual, along with the total cost and the total value of each optimization target.

This is the caller graph for this function:

void CBMPOptimizerGA::OutputFileHeader (CString header, FILE * fp)

This function writes the header information to the specified output file.

Parameters:

 header A string that contains the header information.

in,out fp A pointer to the output file

This is the caller graph for this function:

bool CBMPOptimizerGA::PerformSearch ()

This function performs the optimization analysis. In this function, a parent population generated

during the initialization process (CBMPOptimizerGA::InitProblem) is first evaluated, with the rank
and the crowding distances of the individual solutions in the population assigned
(CPopulation::AssignRankAndCrowdingDistance). The best solution in the population is also
identified (CPopulation::GetBestSolutionIndex) along with its corresponding cost. Starting with the
second generation, the optimization process first carries out a tournament selection

(CBMPOptimizerGA::Selection; CBMPOptimizerGA::Tournament) to individuals in the parent
population and thus creates a child population. A simulated binary crossover
(CBMPOptimizerGA::CrossOver) is then carried out on individuals in the child population, to which

the polynomial mutation (CPopulation::Mutate) is then applied. Each individual solution in the child
population is then evaluated (CPopulation::Evaluate) according to the type of optimization (i.e.
Cost-Effectiveness Curve Generation) (CBMPOptimizerGA::EvaluateSolution). After individual

solutions in the child population are evaluated, the parent population and the child population are
merged (CBMPOptimizerGA::Merge) to create a mixed population. A non-dominated sorting
(CBMPOptimizerGA::FillNondominatedSort) is then carried out on the mixed population, creating a
new parent population. Explicit elitism is maintained during the creation of this new parent
population. The best solution in this new parent population is identified
(CPopulation::GetBestSolutionIndex) along with its corresponding cost. The value of this cost is
compared with the previous best solution total cost. If the difference between the two values is

smaller than the user-specified value (lfStopDelta), a pop-up window asks the user to specify
whether to continue the optimization process. The optimization process continues until the
maximum number of generations is reached.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

80

This is the caller graph for this function:

void CBMPOptimizerGA::Selection (CPopulation * old_pop, CPopulation * new_pop)

This function performs the tournament selection and crossover to an old population and creates a

new population. The function randomly selects two pairs of individuals from the old population, and
then calls the CBMPOptimizerGA::Tournament to carry out tournament selection on each pair. A
crossover on the resulting pair of individual is then carried out through

CBMPOptimizerGA::CrossOver. The crossover process results in two new individuals. The processes
of tournament and crossover are then repeated for another four randomly selected individuals in the
old population. This function is carried out until the population size is reached.

Parameters:

in,out old_pop An array that stores the old population.

in,out new_pop An array that stores the new population.

This is the call graph for this function:

2

1
3

1

1

1

4

1 5

1
6

1

2

1
3

1

1

1

4

1 5

1
6

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

81

This is the caller graph for this function:

CIndividual * CBMPOptimizerGA::Tournament (CIndividual * ind1, CIndividual * ind2)

This function carries out the tournament selection to two individual solutions. The tournament

selection process chooses the non-dominant solution, and when the two solutions do not dominate
each other, it chooses the solution with the larger crowding distance.

Parameters:

in,out ind1 The first individual that participates in the tournament

selection.

in,out ind2 The second individual that participates in the tournament

selection.

Returns:

The individual solution either non-dominant or the solution with the larger crowding distance.

This is the call graph for this function:

This is the caller graph for this function:

bool CBMPOptimizerGA::ValidateParams ()

This function checks the validity of optimization parameters. The check runs through the population

size, number of generations, number of optimization objectives, number of constraints, real number
variables, probability of real number crossover and mutation, and the distribution indexes for
crossover and mutation.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

82

Member Data Documentation

CPopulation * CBMPOptimizerGA::child_pop

This is an array of the child population of CPopulation class type.

FILE * CBMPOptimizerGA::fpBestPop

This is a pointer to the output file that stores the best population.

FILE * CBMPOptimizerGA::m_pAllSolutions

This is a pointer to the output file that stores all the solutions.

CBMPRunner * CBMPOptimizerGA::m_pBMPRunner

This is a pointer to the CBMPRunner class.

double ** CBMPOptimizerGA::m_pVariables

This is an array that stores the decision variables.

CPopulation * CBMPOptimizerGA::mixed_pop

This is an array that stores the mixed population of CPopulation class type.

int CBMPOptimizerGA::nMaxRun

This is the number of maximum runs for evaluation.

int CBMPOptimizerGA::nRUN_BATCH

This is an indicator of batch mode run. If it is equal to 1, it skips all messages and time series output
files.

int CBMPOptimizerGA::nRunCounter

This is the counter for number of optimization runs.

CPopulation * CBMPOptimizerGA::parent_pop

This is an array that stores the parent population of CPopulation class type.

GA_PROBLEM CBMPOptimizerGA::problem

This is a data structure that defines the NSGA-II optimization parameters of GA_PROBLEM class type.

The documentation for this class was generated from the following files:

 BMPOptimizerGA.h
 BMPOptimizerGA.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

83

CBMPRunner Class Reference

#include "BMPRunner.h"

Collaboration diagram for CBMPRunner:

Public Member Functions

 CBMPRunner ()
 CBMPRunner (CBMPData *bmpData)
 virtual ~CBMPRunner ()
 void advect (double imat, double svol, double sro, double evol, double ero, double delts, double crrat,

double &conc, double &romat)
 void bmp_a (int nInfiltMethod, int nInfil_Index, bool underdrain_on, int LANDtimestep, int

BMPtimestep, int npeople, int ddays, int releasetype, int weirtype, int &counter, double oinflow,
double BMParea, double orifice_dia, double orificeheight, double orificecoef, double weirwidth,
double weirheight, double weirangle, double cisternoutflow, double soildepth, double soilporosity,
double finalf, double vegparma, double holtpar, double udfinalf, double udsoildepth, double

udsoilporosity, double FC, double WP, double ETrate, double &AET, double &perc, double &ovolume,
double &ostage, double &infilt, double &orifice, double &weir, double &osa, double &ostorage, double

&udout, double &seepage, double &pump, BMP_A *pBMP)
 void bmp_b (int nInfiltMethod, int nInfil_Index, bool underdrain_on, int LANDtimestep, int

BMPtimestep, double oinflow, double BMPdepth, double BMPwidth, double BMPlength, double slope1,
double slope2, double slope3, double man_n, double soildepth, double soilporosity, double finalf,
double vegparma, double holtpar, double udfinalf, double udsoildepth, double udsoilporosity, double

FC, double WP, double ETrate, double &AET, double &perc, double &ovolume, double &ostage,
double &infilt, double &channel, double &weir, double &osa, double &ostorage, double &udout,
double &seepage)

 void bmp_d (int nInfiltMethod, int nInfil_Index, int LANDtimestep, int BMPtimestep, double oinflow,
double BMParea, double soildepth, double soilporosity, double finalf, double vegparma, double
holtpar, double FC, double WP, double ETrate, double &AET, double &ovolume, double &ostage,
double &infilt, double &weir, double &osa, double &seepage, CBMPSite *pBMPSite)

 void UpdateXareaStageSarea (double nvolume, double vol_max, double s_area_max, double
BMPdepth, double BMPwidth, double BMPlength, double slope1, double slope2, double &x_area,
double &nstage, double &sur_area)

 void RunModel (int nRunMode)
 bool OpenOutputFiles (const CString &runID, int nRunOption, int nRunMode)
 bool CloseOutputFiles ()

 void WriteFileHeader (int nRunOption, int nRunMode)

Public Attributes

 int optcounter
 int outcounter
 double lInitRunTime

 long nMaxRun
 CBMPData * pBMPData
 CProgressWnd * pWndProgress

 SUSTAIN–Programmer’s Manual: Simulation Engine

84

 COleDateTime time_i
 FILE * fp

 int nRUN_BATCH

Detailed Description

This is the class that runs the BMP simulation module and computes the evaluation factors at the

assessment points. It runs the baseline scenario without BMPs (Post-Dev) and with BMPs (Init) and a
pristine condition (PreDev). The BMP optimization module calls this class to run the BMP simulation
module for number of iteration to find the optimal solution.

Constructor & Destructor Documentation

CBMPRunner::CBMPRunner ()

This is the CBMPRunner class constructor (default).

CBMPRunner::CBMPRunner (CBMPData * bmpData)

This is the CBMPRunner class constructor that initializes the class variables. It assigns a pointer to

CBMPData class.

Parameter:

in,out bmpData If non-null, a pointer to CBMPData class.

CBMPRunner::~CBMPRunner () [virtual]

This is the CBMPRunner class destructor.

Member Function Documentation

void CBMPRunner::advect (double imat, double svol, double sro, double evol, double ero, double delts, double crrat,

double & conc, double & romat)

This function simulates the advection of the pollutants in the water column. It is called by each BMP

type that computes the concentration of material present in the BMP and the quantities of material
that leave the BMP under an advection process.

Parameters:

 imat The quantity of material entering during the land simulation

interval (lbs/ivl).

 svol The volume at the beginning of the simulation interval (ft3).

 sro The flow rate at the beginning of the simulation interval (cfs).

 evol The volume at the end of the simulation interval (ft3).

 ero The flow rate at the end of the simulation interval (cfs).

 delts Number of seconds in simulation interval (sec/ivl).

 crrat The factor used to calculate the weighted volume of outflow

based on conditions at start/end of the interval.

in,out conc The updated concentration in the BMP during the simulation

interval (lbs/ft3).

in,out romat The total amount of material leaving the BMP during the

simulation interval (lbs/ivl).

 SUSTAIN–Programmer’s Manual: Simulation Engine

85

void CBMPRunner::bmp_a (int nInfiltMethod, int nInfil_Index, bool underdrain_on, int LANDtimestep, int

BMPtimestep, int npeople, int ddays, int releasetype, int weirtype, int & counter, double oinflow, double BMParea,

double orifice_dia, double orificeheight, double orificecoef, double weirwidth, double weirheight, double

weirangle, double cisternoutflow, double soildepth, double soilporosity, double finalf, double vegparma, double

holtpar, double udfinalf, double udsoildepth, double udsoilporosity, double FC, double WP, double ETrate, double &

AET, double & perc, double & ovolume, double & ostage, double & infilt, double & orifice, double & weir, double &

osa, double & ostorage, double & udout, double & seepage, double & pump, BMP_A * pBMP)

This function simulates the BMP Class A. This BMP class represents the practices that capture

upstream drainage at a specific location and can use a combination of detention, infiltration,
evaporation, settling, and transformation to manage flow and remove pollutants.

Parameters:

 nInfiltMethod The infiltration method (0-Green Ampt, 1-Horton, 2-Holtan).

 nInfil_Index Zero-based index for the unique BMP site.

 underdrain_on True to enable, false to disable the underdrain.

 LANDtimestep The land simulation timestep (min).

 BMPtimestep The BMP simulation timestep (min).

 npeople The number of people (for Cistern only).

 ddays The number of dry days (for Rain Barrel only).

 releasetype The release type (1-Cistern, 2-Rain Barrel, 3-Orifice).

 weirtype The weir type (1-Rectangular, 2-Triangular).

in,out counter The counter for counting the dry days (for Rain Barrel only).

 oinflow The total inflow to the BMP (ft3 per land timestep).

 BMParea The BMP surface area (ft2).

 orifice_dia The orifice diameter (ft).

 orificeheight The orifice height (ft).

 orificecoef The orifice discharge coefficient.

 weirwidth The weir width (ft).

 weirheight The weir height (ft).

 weirangle The weir angle in degrees (for Triangular type).

 cisternoutflow The cistern outflow (ft3 per land timestep).

 soildepth The soil media depth (ft).

 soilporosity The soil porosity.

 finalf The saturated hydraulic conductivity (in./hr).

 vegparma The vegetative coefficient for Holtan infiltration method (0.1–

1.0).

 holtpar The growth index for Holtan infiltration method (0–1).

 udfinalf The back ground soil infiltration rate (in./hr).

 udsoildepth The underdrain soil depth (ft).

 udsoilporosity The underdrain soil porosity.

 FC The field capacity (in./in.).

 WP The wilting point (in./in.).

 ETrate The ET rate (in./land timestep).

in,out AET The actual ET (cfs).

in,out perc The percolation (cfs).

in,out ovolume The current volume in the water column (ft3).

in,out ostage The water column depth (ft).

in,out infilt The infiltrated volume (cfs).

in,out orifice The orifice outflow (cfs).

in,out weir The weir outflow (cfs).

 SUSTAIN–Programmer’s Manual: Simulation Engine

86

in,out osa The available soil media storage (in.).

in,out ostorage The available underdrain storage (in.).

in,out udout The underdrain outflow (cfs).

in,out seepage The seepage loss (cfs).

in,out pump The pumped outflow (cfs).

in,out pBMP If non-null, a pointer to the BMP class A.

This is the call graph for this function:

void CBMPRunner::bmp_b (int nInfiltMethod, int nInfil_Index, bool underdrain_on, int LANDtimestep, int

BMPtimestep, double oinflow, double BMPdepth, double BMPwidth, double BMPlength, double slope1, double

slope2, double slope3, double man_n, double soildepth, double soilporosity, double finalf, double vegparma, double

holtpar, double udfinalf, double udsoildepth, double udsoilporosity, double FC, double WP, double ETrate, double &

AET, double & perc, double & ovolume, double & ostage, double & infilt, double & channel, double & weir, double &

osa, double & ostorage, double & udout, double & seepage)

This function simulates the BMP Class B. This BMP class represents the channel type management
practices such as swale that does not necessarily detain the flow but provides infiltration,

evaporation, and settling to attenuate the flow and remove pollutants.

Parameters:

 nInfiltMethod The infiltration method (0-Green Ampt, 1-Horton, 2-Holtan).

 nInfil_Index Zero-based index for the unique BMP site.

 underdrain_on True to enable, false to disable the underdrain.

 LANDtimestep The land simulation timestep (min).

 BMPtimestep The BMP simulation timestep (min).

 oinflow The total inflow to the BMP (ft3 per land timestep).

 BMPdepth The BMP depth to the bed (ft).

 BMPwidth The BMP bottom width (ft).

 BMPlength The BMP length (ft).

 slope1 The x-sectional side slope (ft/ft).

 slope2 The x-sectional side slope (ft/ft).

 slope3 The longitudinal slope (ft/ft).

 man_n Manning's roughness coefficient.

 soildepth The soil media depth (ft).

 soilporosity The soil porosity.

 finalf The saturated hydraulic conductivity (in./hr).

 vegparma The vegetative coefficient for Holtan infiltration method (0.1–1.0).

 holtpar The growth index for Holtan infiltration method (0–1).

 udfinalf The back ground soil infiltration rate (in./hr).

 udsoildepth The underdrain soil depth (ft).

 udsoilporosity The underdrain soil porosity.

 FC The field capacity (in./in.).

 WP The wilting point (in./in.).

 ETrate The ET rate (in./land timestep).

in,out AET The actual ET (cfs).

in,out perc The percolation (cfs).

in,out ovolume The current volume in the water column (ft3).

in,out ostage The water column depth (ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

87

in,out infilt The infiltrated volume (cfs).

in,out channel The channel outflow (cfs).

in,out weir The weir outflow (cfs).

in,out osa The available soil media storage (in.).

in,out ostorage The available underdrain storage (in.).

in,out udout The underdrain outflow (cfs).

in,out seepage The seepage loss (cfs).

This is the call graph for this function:

void CBMPRunner::bmp_d (int nInfiltMethod, int nInfil_Index, int LANDtimestep, int BMPtimestep, double oinflow,

double BMParea, double soildepth, double soilporosity, double finalf, double vegparma, double holtpar, double FC,

double WP, double ETrate, double & AET, double & ovolume, double & ostage, double & infilt, double & weir, double

& osa, double & seepage, CBMPSite * pBMPSite)

This function simulates the BMP Class D. This BMP class represents the buffer strip that provides

infiltration, evaporation, and settling to remove pollutants.

Parameters:

 nInfiltMethod The infiltration method (0-Green Ampt, 1-Horton, 2-Holtan).

 nInfil_Index Zero-based index for the unique BMP site.

 LANDtimestep The land simulation timestep (min).

 BMPtimestep The BMP simulation timestep (min).

 oinflow The total inflow to the BMP (ft3 per land timestep).

 BMParea The BMP surface area (ft2).

 soildepth The soil media depth (ft).

 soilporosity The soil porosity.

 finalf The saturated hydraulic conductivity (in./hr).

 vegparma The vegetative coefficient for Holtan infiltration method (0.1–1.0).

 holtpar The growth index for Holtan infiltration method (0–1).

 FC The field capacity (in./in.).

 WP The wilting point (in./in.).

 ETrate The ET rate (in./land timestep).

in,out AET The actual ET (cfs).

in,out ovolume The current volume in the water column (ft3).

in,out ostage The ponded water depth (ft).

in,out infilt The infiltrated volume (cfs).

in,out weir The surface outflow (cfs).

in,out osa The available soil media storage (in.).

in,out seepage The seepage loss (cfs).

in,out pBMPSite If non-null, the pointer to the BMP site.

This is the call graph for this function:

bool CBMPRunner::CloseOutputFiles ()

This function closes an evaluation output file for the assessment points.

 SUSTAIN–Programmer’s Manual: Simulation Engine

88

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

bool CBMPRunner::OpenOutputFiles (const CString & runID, int nRunOption, int nRunMode)

This function opens an evaluation output file for the assessment points.

Parameters:

runID The identifier for the assessment point.

nRunOption The optimization run option (0-no optimization, 1-minimize cost,

2-cost effectiveness curve).

nRunMode The simulation run mode (0-baseline, 1-optimize, 2-output, 3-preDev,

4-postDev).

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

void CBMPRunner::RunModel (int nRunMode)

This function executes the BMP simulation module. This module simulates the BMP and conveyance

network. It performs the following key steps.

 Gets the inflow time series to the BMP network (Nodes and Links) for the given run mode.

 Calculates the BMP cost on the basis of the BMP dimensions for the given run mode.

 Simulates the BMP network for flow and water quality.

 Calculates the assessment point evaluation factors.

 Outputs the simulation results at the assessment points.

Parameter:

nRunMode The simulation run mode (0-baseline, 1-optimize, 2-output, 3-preDev,

4-postDev).

 SUSTAIN–Programmer’s Manual: Simulation Engine

89

This is the call graph for this function:

This is the caller graph for this function:

void CBMPRunner::UpdateXareaStageSarea (double nvolume, double vol_max, double s_area_max, double

BMPdepth, double BMPwidth, double BMPlength, double slope1, double slope2, double & x_area, double & nstage,

double & sur_area)

This function updates the water column parameters for BMP Class B. It updates the cross-sectional

area, depth, and surface area for the water column in a swale BMP.

Parameters:

 nvolume The current volume of the water column (ft3).

 vol_max The maximum possible volume based on the channel

geometry (ft3).

 s_area_max The maximum possible surface area based on the channel

geometry (ft2).

 BMPdepth The BMP depth to the bed (ft).

 BMPwidth The BMP bottom width (ft).

2

1
3

1

1

1

4

1
5

1

2

1
3

1

1

1

4

1
5

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

90

 BMPlength The BMP length (ft).

 slope1 The x-sectional side slope (ft/ft).

 slope2 The x-sectional side slope (ft/ft).

in,out x_area The x-sectional area for the water column (ft2).

in,out nstage The water column depth (ft).

in,out sur_area The water column surface area (ft2).

This is the caller graph for this function:

void CBMPRunner::WriteFileHeader (int nRunOption, int nRunMode)

This function writes an evaluation output file header for the assessment points.

Parameters:

nRunOption The optimization run option (0-no optimization, 1-minimize cost,

2-cost effectiveness curve).

nRunMode The simulation run mode (0-baseline, 1-optimize, 2-output, 3-preDev,

4-postDev).

This is the caller graph for this function:

Member Data Documentation

FILE * CBMPRunner::fp

This is the pointer to the evaluation output file.

double CBMPRunner::lInitRunTime

This is the baseline scenario run time (in milliseconds).

long CBMPRunner::nMaxRun

This is the maximum number of optimization runs.

int CBMPRunner::nRUN_BATCH

This is the flag for batch mode (0-off, 1-on).

int CBMPRunner::optcounter

This is the number of optimization runs.

int CBMPRunner::outcounter

This is the number of ouput runs.

CBMPData * CBMPRunner::pBMPData

This is the pointer to CBMPData class.

CProgressWnd * CBMPRunner::pWndProgress

This is the pointer to CProgressWnd class. This is used to display and update the progress bar

window for the model simulation runs.

 SUSTAIN–Programmer’s Manual: Simulation Engine

91

COleDateTime CBMPRunner::time_i

This is the time at the beginning of the BMP simulation module.

The documentation for this class was generated from the following files:

 BMPRunner.h

 BMPRunner.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

92

CBMPSite Class Reference

#include "BMPSite.h"

Collaboration diagram for CBMPSite:

Public Member Functions

 CBMPSite ()
 CBMPSite (const CString &strID, const CString &strName, const CString &strType, int bmpClass)

 virtual ~CBMPSite ()
 double * GetVariablePointer (CString strVarName)
 double GetBMPArea ()
 bool ReadTradeOffCurveCosts ()
 bool LoadTradeOffCurveData (long deltm, int BPindex, COleDateTime startDate, COleDateTime

endDate)
 bool UnLoadTradeOffCurveData (int nBrPtIndex)
 bool LoadWatershedTSData (long deltm, CString BMPSiteID, COleDateTime startDate,

COleDateTime endDate, CString strFileName, double *multiplier, int landfg)
 void updatePondedDepth2 (float *depth, float *dt)
 void getSubareaRunoff2 (float inflow, float precip, float evap, float tStep, float *infil, float *depth,

float *runoff)

Public Attributes

 CString m_strID

 CString m_strName
 CString m_strType

 bool m_bChecked
 bool m_bUndSwitch
 int m_nInfiltMethod
 int m_nPolRotMethod
 int m_nPolRemMethod
 int m_nInfil_Index
 int m_nBMPClass

 int m_nInterEvent
 double m_lfBMPUnit
 double m_lfDDarea

 SUSTAIN–Programmer’s Manual: Simulation Engine

93

 double m_lfAccDArea
 double m_lfPerArea

 double m_lfImpArea
 double m_lfSoilDepth
 double m_lfPorosity
 double m_lfFCapacity
 double m_lfWPoint
 double m_lfInfilt

 double m_lfUndDepth
 double m_lfUndVoid
 double m_lfUndInfilt
 double m_lfCost
 double m_lfSurfaceArea
 double m_lfExcavatnVol
 double m_lfSurfStorVol

 double m_lfSoilStorVol

 double m_lfUdrnStorVol
 double m_lfThreshFlow
 double m_lfSiteDArea
 double * m_pDecay
 double * m_pK
 double * m_pCstar

 double * m_pConc
 double * m_pUndRemoval
 void * m_pSiteProp
 CLandUse * m_preLU
 CAquifer * m_pAquifer
 POLLUT_RAConc * m_RAConc

 FILE * m_fileOut
 HOLTAN_PARAM m_holtanParam
 COST_PARAM m_costParam

 CPtrList m_dsbmpsiteList
 CPtrList m_adjustList
 CPtrList m_factorList
 CPtrList m_usbmpsiteList

 CObList m_siteluList
 CObList m_sitepsList
 int m_nBreakPoints
 double m_lfBreakPtID
 CString m_strCostFile
 TradeOffCurve * m_TradeOff
 int m_nQualNum

 long m_nTSNum
 double * m_pDataMixLU
 double * m_pDataPreLU
 COleDateTime m_tmStart

 SEDIMENT m_sediment
 SAND m_sand

 SILTCLAY m_silt
 SILTCLAY m_clay
 queue< double > qFlow

Detailed Description

This class defines the data structure for the given BMP site. The BMP site is a unique location of each

BMP class simulated in SUSTAIN. This class defines the data structure for hydrology and water quality
parameters. It also defines the arrays of pre-developed and post-developed land output timeseries data

(described in Data Flow Model section) for the iternal land simulation option. The CBMPData class

handles the collection of all BMP sites using CObList from MFC library.

 SUSTAIN–Programmer’s Manual: Simulation Engine

94

Constructor & Destructor Documentation

CBMPSite::CBMPSite ()

This is the CBMPSite class constructor (default).

CBMPSite::CBMPSite (const CString & strID, const CString & strName, const CString & strType, int bmpClass)

This is the CBMPSite class constructor that initializes the class variables.

Parameters:

strID The BMP unique identifier.

strName The BMP name.

strType The BMP type.

bmpClass The BMP class type.

CBMPSite::~CBMPSite () [virtual]

This is the CBMPSite class destructor.

Member Function Documentation

double CBMPSite::GetBMPArea ()

This function computes the BMP surface area.

Returns:

The surface area of the given BMP.

This is the caller graph for this function:

void CBMPSite::getSubareaRunoff2 (float inflow, float precip, float evap, float tStep, float * infil, float * depth, float *

runoff)

This function computes runoff and losses from a subarea over the current time step.

Parameters:

 inflow The runoff over subarea (ft/sec).

 precip The dummy argument (not used)

 evap The evaporation (ft/sec).

 tStep The time step (sec/ivl).

in,out infil The infiltration rate (ft/sec).

in,out depth The depth of surface runoff (ft).

in,out runoff The runoff for the current time step (ft/sec).

Returns:

True if it succeeds, false if it fails.

2

1

1

1

2

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

95

This is the call graph for this function:

This is the caller graph for this function:

double * CBMPSite::GetVariablePointer (CString strVarName)

This function gets a pointer to the decision variable.

Parameter:

strVarName The name of the decision variable.

Returns:

Null if it fails, the pointer to the decision variable.

This is the caller graph for this function:

bool CBMPSite::LoadTradeOffCurveData (long deltm, int BPindex, COleDateTime startDate, COleDateTime endDate)

This function reads the time series results for the cost-effectiveness curve solution.

Parameters:

deltm The simulation timestep in minutes.

BPindex The index for the break point in the best solution file.

startDate The start date of the model simulation.

endDate The end date of the model simulation.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

96

bool CBMPSite::LoadWatershedTSData (long deltm, CString BMPSiteID, COleDateTime startDate, COleDateTime

endDate, CString strFileName, double * multiplier, int landfg)

This function reads internal land simulation time series data.

Parameters:

 deltm The model timestep in minutes.

 BMPSiteID The BMP site unique identifier.

 startDate The start date of BMP simulation.

 endDate The end date of BMP simulation.

 strFileName The land simulation output file name.

in,out multiplier If non-null, the multiplier to the time series data.

 landfg The flag to distinguish the time series file for pre-developed

run or baseline run.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

bool CBMPSite::ReadTradeOffCurveCosts ()

This function reads the total cost for the cost-effectiveness curve solution.

2

1

3

1

1

1

4

1
5

1

6

1 7

1

2

1

3

1

1

1

4

1
5

1

6

1 7

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

97

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

bool CBMPSite::UnLoadTradeOffCurveData (int nBrPtIndex)

This function releases the assigned memory for the cost-effectiveness curve time series data.

Parameter:

nBrPtIndex The index for the break point associated with the time series file.

Returns:

True if it succeeds, false if it fails.

void CBMPSite::updatePondedDepth2 (float * depth, float * dt)

This function computes new ponded depth over subarea after current time step.

Parameters:

in,out depth The depth of surface runoff (ft).

in,out dt The time step (sec).

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

This is the caller graph for this function:

Member Data Documentation

CPtrList CBMPSite::m_adjustList

This is the element type of ADJUSTABLE_PARAM in the pointer list.

bool CBMPSite::m_bChecked

This is the flag to check for the closed loop when creating the BMP routing list.

bool CBMPSite::m_bUndSwitch

This is the switch to turn on the underdrain option (0-off, 1-on).

SILTCLAY CBMPSite::m_clay

This is the data structure of SILTCLAY type for sediment transport.

COST_PARAM CBMPSite::m_costParam

This is the data structure for BMP cost parameters.

 SUSTAIN–Programmer’s Manual: Simulation Engine

98

CPtrList CBMPSite::m_dsbmpsiteList

This is the element type in the list DS_BMPSITE.

CPtrList CBMPSite::m_factorList

This is the element type in the list is EVALUATION_FACTOR.

FILE * CBMPSite::m_fileOut

This is the file pointer used for outputing the simulation result.

HOLTAN_PARAM CBMPSite::m_holtanParam

This is the data structure for the Holtan infiltration parameters.

double CBMPSite::m_lfAccDArea

This is the accumulative drainage area for the BMP site (acres).

double CBMPSite::m_lfBMPUnit

This is the number of BMP units.

double CBMPSite::m_lfBreakPtID

This is the break point ID for the time series.

double CBMPSite::m_lfCost

This is the BMP cost ($).

double CBMPSite::m_lfDDarea

This is the BMP design drainage area (acres).

double CBMPSite::m_lfExcavatnVol

This is the BMP excavation volume (acre-ft).

double CBMPSite::m_lfFCapacity

This is the soil field capacity (fraction).

double CBMPSite::m_lfImpArea

This is the impervious drainage area for the BMP site (acres).

double CBMPSite::m_lfInfilt

This is the saturated soil infiltration rate (in./hr).

double CBMPSite::m_lfPerArea

This is the pervious drainage area for the BMP site (acres).

double CBMPSite::m_lfPorosity

This is the soil porosity (fraction).

double CBMPSite::m_lfSiteDArea

This is the drainage area for the BMP site (acres).

double CBMPSite::m_lfSoilDepth

This is the BMP substrate soil depth (ft).

double CBMPSite::m_lfSoilStorVol

This is the BMP soil storage volume (acre-ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

99

double CBMPSite::m_lfSurfaceArea

This is the BMP surface area (acres).

double CBMPSite::m_lfSurfStorVol

This is the BMP surface storage volume (acre-ft).

double CBMPSite::m_lfThreshFlow

This is the user-defined threshold flow (cfs).

double CBMPSite::m_lfUdrnStorVol

This is the BMP underdrain storage volume (acre-ft).

double CBMPSite::m_lfUndDepth

This is the depth of filter media for underdrain option (ft).

double CBMPSite::m_lfUndInfilt

This is the soil infiltration rate underneath the filter media (in./hr).

double CBMPSite::m_lfUndVoid

This is the filter media voids for the underdrain option (fraction).

double CBMPSite::m_lfWPoint

This is the soil wilting point (fraction).

int CBMPSite::m_nBMPClass

This is the BMP class type (1-class A, 2-class B, 3-class C, 4-class D).

int CBMPSite::m_nBreakPoints

This is the total number of break points on the cost effectiveness curve.

int CBMPSite::m_nInfil_Index

This is an index for the Green-Ampt or Horton infiltration array.

int CBMPSite::m_nInfiltMethod

This is the infiltration method (0-Green-Ampt, 1-Horton, 2-0-Holtan).

int CBMPSite::m_nInterEvent

This is an inter-event duration to define the start and end of an overflow event (hr).

int CBMPSite::m_nPolRemMethod

This is the pollutant removal method (0-1st order decay, 1-Kadlec and Knight method).

int CBMPSite::m_nPolRotMethod

This is the pollutant routing method (1-Completely mixed, >1-number of CSTRs in series).

int CBMPSite::m_nQualNum

This is the total number of constituents in the time series including flow and water quality.

long CBMPSite::m_nTSNum

This is the total number of records for the simulation duration.

CAquifer * CBMPSite::m_pAquifer

This is an aquifer and the actual pointer type is CAquifer.

 SUSTAIN–Programmer’s Manual: Simulation Engine

100

double * CBMPSite::m_pConc

This is an array of concentration for pollutants.

double * CBMPSite::m_pCstar

This is an array of background concentration for pollutants (mg/L)

double * CBMPSite::m_pDataMixLU

This is the pointer to the time series data for internal land simulation (mixed landuses).

double * CBMPSite::m_pDataPreLU

This is the pointer to the time series data for internal land simulation (predeveloped landuses).

double * CBMPSite::m_pDecay

This is an array of decay/loss rate for pollutants.

double * CBMPSite::m_pK

This is an array of constant rate for pollutants (ft/hr).

CLandUse * CBMPSite::m_preLU

This is the pre-developed land use type and the actual pointer type is CLandUse.

void * CBMPSite::m_pSiteProp

This is the BMP type pointer for the BMP site.

double * CBMPSite::m_pUndRemoval

This is an array of removal rate for underdrain pollutants.

POLLUT_RAConc * CBMPSite::m_RAConc

This is the data structure of running average concentration evaluation factor.

SAND CBMPSite::m_sand

This is the data structure of sand parameters for sediment transport.

SEDIMENT CBMPSite::m_sediment

This is the data structure of general parameters for sediment transport.

SILTCLAY CBMPSite::m_silt

This is the data structure of silt parameters for sediment transport.

CObList CBMPSite::m_siteluList

This is the list for all site land use associated with this BMP site.

CObList CBMPSite::m_sitepsList

This is the list for all site point sources associated with this BMP site.

CString CBMPSite::m_strCostFile

This is the cost-effectiveness curve solution file.

CString CBMPSite::m_strID

This is the BMP unique identifier.

CString CBMPSite::m_strName

This is the descriptive BMP name.

 SUSTAIN–Programmer’s Manual: Simulation Engine

101

CString CBMPSite::m_strType

This is the BMP type.

COleDateTime CBMPSite::m_tmStart

This is the start date of the time series data.

TradeOffCurve * CBMPSite::m_TradeOff

This is an array of break point time series files.

CPtrList CBMPSite::m_usbmpsiteList

This is the pointer list for all upstream BMP sites that flow into this BMP site directly, element type in
the list is DS_BMPSITE.

queue< double > CBMPSite::qFlow

This is an array that stores the previous day values for flow (cfs).

The documentation for this class was generated from the following files:

 BMPSite.h
 BMPSite.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

102

CIndividual Class Reference

#include "Individual.h"

Collaboration diagram for CIndividual:

Public Member Functions

 CIndividual ()
 CIndividual (GA_PROBLEM *pProb, CBMPOptimizerGA *pOptimizer)
 virtual ~CIndividual ()
 void Allocate (GA_PROBLEM *pProb, CBMPOptimizerGA *pOptimizer)

 void Initialize ()
 void Evaluate ()
 void Mutate ()

 void CopyFrom (const CIndividual &ind)
 int CheckDominance (const CIndividual &ind)

Public Attributes

 bool validSolution
 int rank
 double crowd_dist
 double constr_violation
 double * xreal

 double * obj
 double * BMPcost
 double * constr
 GA_PROBLEM * pProblem
 CBMPOptimizerGA * pGAOptimizer

Detailed Description

This class defines functions for NSGA-II operations that are carried out to individual solutions. The
functions are construction and destruction of the CIndividual class, allocating memory space for the GA

optimization problem (CIndividual::Allocate), initializing the optimization (CIndividual::Initialize),
evaluating individual solutions (CIndividual::Evaluate), mutating individual solutions, copying individual
solutions, and checking the dominance of one individual solution over another
(CIndividual::CheckDominance).

 SUSTAIN–Programmer’s Manual: Simulation Engine

103

Constructor & Destructor Documentation

CIndividual::CIndividual ()

This is the CIndividual class constructor (default).

CIndividual::CIndividual (GA_PROBLEM * pProb, CBMPOptimizerGA * pOptimizer)

This is the CIndividual class constructor that initializes the class variables. It assigns a pointer to

CBMPOptimizerGA class.

Parameters:

in,out pProb If non-null, a pointer to GA_PROBLEM class.

in,out pOptimizer If non-null, a pointer to CBMPOptimizerGA class.

This is the call graph for this function:

CIndividual::~CIndividual () [virtual]

This is the CIndividual class destructor.

Member Function Documentation

void CIndividual::Allocate (GA_PROBLEM * pProb, CBMPOptimizerGA * pOptimizer)

This function allocates memory for arrays that are associated with each individual solution. The
arrays include real number decision variables, the optimization targets, the BMP costs, and the
optimization constraints.

Parameters:

in,out pProb If non-null, a pointer to GA_PROBLEM class.

in,out pOptimizer If non-null, a pointer to CBMPOptimizerGA class.

This is the caller graph for this function:

int CIndividual::CheckDominance (const CIndividual & ind)

This function performs the dominance checking between the current individual and the subject
individual (ind). The dominance checking is performed on two aspects: violation of constraints and
value of optimization target.

Parameter:

in,out ind A subject individual that is to be compared with the current

individual for dominance.

Returns:

1 if the current individual dominates the subject individual
-1 if the subject individual dominates the current individual
0 if the two individuals do not dominate each other

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

104

void CIndividual::CopyFrom (const CIndividual & ind)

This function creates a copy of the subject individual (ind). The real number decision variables,

objective target values, BMP costs, and the constraint values are all copied from the subject
individual to the current individual.

Parameter:

in,out ind A subject individual that is to be copied to the current

individual.

This is the caller graph for this function:

void CIndividual::Evaluate ()

This function evaluates individual solutions through a call of the

CBMPOptimizerGA::EvaluateSolution function. The constraint violations for an individual solution
are also calculated.

This is the call graph for this function:

void CIndividual::Initialize ()

This function initializes a real number individual for the optimization process. The BMP costs are
also initialized as zero.

This is the call graph for this function:

void CIndividual::Mutate ()

This function carries out polynomial mutation to individual solutions.

This is the call graph for this function:

Member Data Documentation

double * CIndividual::BMPcost

This function carries out polynomial mutation to individual solutions.

 SUSTAIN–Programmer’s Manual: Simulation Engine

105

double * CIndividual::constr

This is an array of constraint values for an individual solution.

double CIndividual::constr_violation

This is the number of constraint violations by an individual solution.

double CIndividual::crowd_dist

This is the crowding distance of an individual solution.

double * CIndividual::obj

This is an array of objective target values calculated for an individual solution.

CBMPOptimizerGA * CIndividual::pGAOptimizer

This is a pointer to CBMPOptimizerGA class.

GA_PROBLEM * CIndividual::pProblem

This is a pointer to GA_PROBLEM class.

int CIndividual::rank

This is the rank of an individual solution in a population.

bool CIndividual::validSolution

This is an indicator of whether the evaluation of an individual solution is successful.

double * CIndividual::xreal

This is an array of real numbers that represents the decision variables during the optimization

process.

The documentation for this class was generated from the following files:

 Individual.h
 Individual.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

106

CLandUse Class Reference

#include "LandUse.h"

Public Member Functions

 CLandUse ()
 virtual ~CLandUse ()

 bool LoadLanduseTSData (long deltm, COleDateTime startDate, COleDateTime endDate, double
*multiplier)

Public Attributes

 int m_nID
 int m_nType

 int m_nQualNum

 long m_nTSNum
 double m_lfsand_fr
 double m_lfsilt_fr
 double m_lfclay_fr
 double * m_pData
 CString m_strLanduse

 CString m_strFileName
 COleDateTime m_tmStart

Detailed Description

This is the data structure for CLandUse class.

Constructor & Destructor Documentation

CLandUse::CLandUse ()

This is the CLandUse class constructor (default).

CLandUse::~CLandUse () [virtual]

This is the CLandUse class destructor.

Member Function Documentation

bool CLandUse::LoadLanduseTSData (long deltm, COleDateTime startDate, COleDateTime endDate, double *

multiplier)

This function reads the land use time series data.

Parameters:

 deltm The timestep in minutes.

 startDate The start date of model simulation.

 endDate The end date of model simulation.

in,out multiplier If non-null, the multiplier to the time series pollutants

loading.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

107

Member Data Documentation

double CLandUse::m_lfclay_fr

This is the fraction of clay in the total sediment loading from this land use type.

double CLandUse::m_lfsand_fr

This is the fraction of sand in the total sediment loading from this land use type.

double CLandUse::m_lfsilt_fr

This is the fraction of silt in the total sediment loading from this land use type.

int CLandUse::m_nID

This is the land use type unique identifier.

int CLandUse::m_nQualNum

This is the number of pollutants.

long CLandUse::m_nTSNum

This is the number of records in the land output time series file.

int CLandUse::m_nType

This is the land use type (0-pevious, 1-impevious).

double * CLandUse::m_pData

This is an array of time series data for this land use type.

CString CLandUse::m_strFileName

This is the full path of the time series file for this land use type.

CString CLandUse::m_strLanduse

This is the land use type name.

COleDateTime CLandUse::m_tmStart

This is the start date (first data record) in the time series file.

The documentation for this class was generated from the following files:

 LandUse.h
 LandUse.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

108

COST_PARAM Struct Reference

#include "BMPSite.h"

Public Attributes

 double m_lfLinearCost
 double m_lfAreaCost

 double m_lfTotalVolumeCost
 double m_lfMediaVolumeCost
 double m_lfUnderDrainVolumeCost
 double m_lfConstantCost
 double m_lfPercentCost
 double m_lfLengthExp
 double m_lfAreaExp

 double m_lfTotalVolExp
 double m_lfMediaVolExp
 double m_lfUDVolExp

Detailed Description

This is the data structure of BMP cost parameters.

Member Data Documentation

double COST_PARAM::m_lfAreaCost

This is the cost per unit area of the BMP structure ($/ft2).

double COST_PARAM::m_lfAreaExp

This is the cost exponent value of the BMP area variable for economy of the scale (default = 1).

double COST_PARAM::m_lfConstantCost

This is the constant cost ($).

double COST_PARAM::m_lfLengthExp

This is the cost exponent value of the BMP length variable for economy of the scale (default = 1).

double COST_PARAM::m_lfLinearCost

This is the cost per unit length of the BMP structure ($/ft).

double COST_PARAM::m_lfMediaVolExp

This is the cost exponent value of the BMP soil media volume variable for economy of the scale
(default = 1).

double COST_PARAM::m_lfMediaVolumeCost

This is the cost per unit volume of the soil media ($/ft3).

double COST_PARAM::m_lfPercentCost

This is the cost in percentage of all other cost (%).

double COST_PARAM::m_lfTotalVolExp

This is the cost exponent value of the BMP total volume variable for economy of the scale (default =

1).

double COST_PARAM::m_lfTotalVolumeCost

This is the cost per unit total volume of the BMP structure ($/ft3).

 SUSTAIN–Programmer’s Manual: Simulation Engine

109

double COST_PARAM::m_lfUDVolExp

This is the cost exponent value of the BMP underdrain media volume variable for economy of the

scale (default = 1).

double COST_PARAM::m_lfUnderDrainVolumeCost

This is the cost per unit volume of the under drain structure ($/ft3).

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

110

CPopulation Class Reference

#include "Population.h"

Collaboration diagram for CPopulation:

Public Member Functions

 CPopulation ()
 CPopulation (int nsize, GA_PROBLEM *pProblem, CBMPOptimizerGA *pOptimizer)

 virtual ~CPopulation ()
 int GetBestSolutionIndex ()

 int GetNextBestSolutionIndex (double prevMinCost)
 void Initialize ()
 void Evaluate ()
 void Mutate ()
 void AssignRankAndCrowdingDistance ()
 void AssignCrowdingDistanceList (void *list, int front_size)

 void AssignCrowdingDistance (int *dist, int **obj_array, int front_size)
 void AssignCrowdingDistanceIndices (int c1, int c2)
 void QuickSortFront (int objcount, int *obj_array, int obj_array_size)
 void QuickSortFrontImpl (int objcount, int *obj_array, int left, int right)
 void QuickSortDist (int *dist, int front_size)
 void QuickSortDistImpl (int *dist, int left, int right)
 void ReportIndividualToFile (FILE *fp, int index)

 void ReportAllToFile (FILE *fp)

 void ReportBestToFile (FILE *fp)

Public Attributes

 int nSize
 GA_PROBLEM * pProblem

 CBMPOptimizerGA * pGAOptimizer
 CIndividual * individuals

Detailed Description

This class defines functions for NSGA-II operations carried out at the population level during the

optimization process. The functions consist of include construction and destruction of the CPopulation

 SUSTAIN–Programmer’s Manual: Simulation Engine

111

class, identifying the best and the second-best individual solutions in a population
(CPopulation::GetBestSolutionIndex, CPopulation::GetNextBestSolutionIndex), initializing individuals in

a population (CPopulation::Initialize), evaluating individual solutions in a population
(CPopulation::Evaluate), mutating individual solutions in a population (CPopulation::Mutate), and to
assign rank and crowding distances for individuals in a population
(CPopulation::AssignRankAndCrowdingDistance).

When assigning rank and crowding distance for individuals, the population is first divided into different

fronts through the non-dominated sorting (CIndividual::CheckDominance), along with the rank of each
individual. Subsequently, the crowding distances between individuals in each front are also calculated
(CPopulation::AssignCrowdingDistanceList, CPopulation::AssignCrowdingDistance). In preparing the
crowding distance calculation, the individuals in each front are first sorted by the optimization objectives
(CPopulation::QuickSortFront, CPopulation::QuickSortFrontImpl). The class also includes functions for
sorting a population on the basis of the crowding distance (CPopulation::QuickSortDist,
CPopulation::QuickSortDistImpl).

The population class also includes functions to write the solutions into output files. The output files can
include single individual solution (CPopulation::ReportIndividualToFile), all individual solutions in a
population (CPopulation::ReportAllToFile), or only the best solutions identified
(CPopulation::ReportBestToFile).

Constructor & Destructor Documentation

CPopulation::CPopulation ()

This is the CPopulation class constructor (default).

CPopulation::CPopulation (int nsize, GA_PROBLEM * pProblem, CBMPOptimizerGA * pOptimizer)

This is the CPopulation class constructor that initializes the class variables. It assigns a pointer to

GA_PROBLEM class and CBMPOptimizerGA class.

Parameters:

 nsize The population size.

in,out pProblem If non-null, a pointer to GA_PROBLEM class.

in,out pOptimizer If non-null, a pointer to CBMPOptimizerGA class.

CPopulation::~CPopulation () [virtual]

This is the CPopulation class destructor.

Member Function Documentation

void CPopulation::AssignCrowdingDistance (int * dist, int ** obj_array, int front_size)

This function assigns crowding distances to individuals in a front for specific objectives. Before the

crowding distances are calculated, the front is first sorted according to the objectives through
CPopulation::QuickSortFront.

Parameters:

 front_size The size of the front.

in,out dist An array of crowding distances of individual solutions in the

front

in,out obj_array An array of the objective values of individual solutions in the

front

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

112

This is the caller graph for this function:

void CPopulation::AssignCrowdingDistanceIndices (int c1, int c2)

This function assigns crowding distances to individuals that are between the denoted starting and

ending indices.

Parameters:

c1 The index of the starting individual for the crowding distance

calculation.

c2 The index of the ending individual for the crowding distance

calculation.

This is the call graph for this function:

This is the caller graph for this function:

void CPopulation::AssignCrowdingDistanceList (void * list, int front_size)

This function assigns crowding distances to individuals that are in an array (list) that resides in a front

with certain size (front_size). This function calls the previously defined
CPopulation::AssignCrowdingDistance.

Parameters:

 front_size The size of the front in which that the array resides.

in,out list The array that contains the individuals to have their crowding

distances calculated.

This is the call graph for this function:

This is the caller graph for this function:

2

1 3

1

1

1

2

1 3

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

113

void CPopulation::AssignRankAndCrowdingDistance ()

This function assigns the rank and crowding distances to all individuals in the population. The

ranking is calculated through the non-dominated sorting process, and the crowding distance is
calculated through a call of CPopulation::AssignCrowdingDistanceList.

This is the call graph for this function:

This is the caller graph for this function:

void CPopulation::Evaluate ()

This function evaluates all individual solutions in the population. The evaluation of individual

solutions is carried out through a call of CIndividual::Evaluate, which then calls
CBMPOptimizerGA::EvaluateSolution.

This is the caller graph for this function:

int CPopulation::GetBestSolutionIndex ()

This function retrieves the index of the best individual solution in the current population. The

solution with the lowest total cost is regarded as the best solution in the current population.

Returns:

The index of the best solution in the current population.

This is the caller graph for this function:

int CPopulation::GetNextBestSolutionIndex (double prevMinCost)

This function retrieves the index of the individual solution with a total cost that is the lowest and at

the same time only higher than a pre-specified cost value (prevMinCost).

Parameter:

prevMinCost The pre-specified cost value that is used to search within the current

population for the individual that has a lowest cost while being larger

than this specified cost value.

Returns:

The index of the individual solution that has the lowest cost while being larger than the

pre-specified cost value.

1

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

114

void CPopulation::Initialize ()

This function initializes individual solutions in the population. This function calls the function of

CIndividual::Initialize.

This is the caller graph for this function:

void CPopulation::Mutate ()

This function performs mutation to individual solutions in the population. This function calls the

function of CIndividual::Mutate.

This is the caller graph for this function:

void CPopulation::QuickSortDist (int * dist, int front_size)

This function quickly sorts of a population using the crowding distances of individual solutions. This
function calls for the function of CPopulation::QuickSortDistImpl.

Parameters:

 front_size The size of the front to be sorted.

in,out dist The array that stores the crowding distances of individual

solutions.

This is the call graph for this function:

This is the caller graph for this function:

void CPopulation::QuickSortDistImpl (int * dist, int left, int right)

This function quickly sorts a population according to the crowding distance, with the population being

defined by the left and right indices of the individual solutions. A recursion of the function is
implemented to help expedite the sorting process.

Parameters:

 left The starting index of the individual in the population to be

sorted.

 right The ending index of the individual in the population to be

sorted.

in,out dist An array that stores the crowding distances of the individual

solutions.

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

115

This is the caller graph for this function:

void CPopulation::QuickSortFront (int objcount, int * obj_array, int obj_array_size)

This function quickly sorts a population using an objective. This function calls the function of
CPopulation::QuickSortFrontImpl.

Parameters:

 objcount The index of objectives.

 obj_array_size The size of the population to be sorted.

in,out obj_array The array that stores the objectives.

This is the call graph for this function:

This is the caller graph for this function:

void CPopulation::QuickSortFrontImpl (int objcount, int * obj_array, int left, int right)

This function quickly sorts a population on an objective, with the population being defined with the

left and the right indices of the individual solutions. A recursion of the function is implemented to
help expedite the sorting process.

Parameters:

 objcount The index of objectives.

 left The starting index of the individual in the population to be

sorted.

 right The ending index of the individual in the population to be

sorted.

in,out obj_array The array that stores the objectives.

This is the call graph for this function:

This is the caller graph for this function:

2

1 3

1

1

1

2

1 3

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

116

void CPopulation::ReportAllToFile (FILE * fp)

This function reports all individual solutions in a population to an output file. This function calls the
function of CPopulation::ReportIndividualToFile.

Parameter:

in,out fp A pointer to the designated output file for storing all

solutions.

This is the call graph for this function:

void CPopulation::ReportBestToFile (FILE * fp)

This function reports only the best solutions to an output file. The best solution is defined as the one
without constraint violation and has a rank equal to one.

Parameter:

in,out fp A pointer to the designated output file for storing the best

solution.

This is the call graph for this function:

void CPopulation::ReportIndividualToFile (FILE * fp, int index)

This function reports an individual solution to an output file.

Parameters:

 index The index of the individual solution in the population.

in,out fp A pointer to the designated output file for storing the

individual solution.

This is the caller graph for this function:

2

1
3

1

1

1

2

1
3

1

1

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

117

Member Data Documentation

CIndividual * CPopulation::individuals

This is a pointer to the CIndividual class.

int CPopulation::nSize

This is the population size.

CBMPOptimizerGA * CPopulation::pGAOptimizer

This is a pointer to the CBMPOptimizerGA class.

GA_PROBLEM * CPopulation::pProblem

This is a pointer to the GA_PROBLEM class.

The documentation for this class was generated from the following files:

 Population.h
 Population.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

118

CPUMP Class Reference

#include "Pump.h"

Public Member Functions

 CPUMP ()
 CPUMP (CString strPCurveID, int nRecords, double *lfDepth, double *lfFlow)

 virtual ~CPUMP ()
 double table_interpolate (double x, double x1, double y1, double x2, double y2)
 double table_lookup (double x)

Public Attributes

 CString m_strPCurveID

 int m_nRecords

 double * m_lfDepth
 double * m_lfFlow

Detailed Description

This class defines the data structure for the pump option.

Constructor & Destructor Documentation

CPUMP::CPUMP ()

This is the CPUMP class constructor (default).

CPUMP::CPUMP (CString strPCurveID, int nRecords, double * lfDepth, double * lfFlow)

This is the CPUMP class constructor that initializes the class variables on the basis of the user inputs.

Parameters:

 strPCurveID The identifier for the unique curve ID as a string.

 nRecords The total number of records for the pump curve.

in,out lfDepth If non-null, the array of water depth (ft).

in,out lfFlow If non-null, the array of pump flow rate (cfs).

CPUMP::~CPUMP () [virtual]

This is the CPUMP class destructor.

Member Function Documentation

double CPUMP::table_interpolate (double x, double x1, double y1, double x2, double y2)

This function interpolates a y value for a given x value.

Parameters:

x The value being interpolated.

x1 The values on either side of x.

y1 The values on either side of y.

x2 The values on either side of x.

y2 The values on either side of y.

Returns:

The y value corresponding to the x value.

 SUSTAIN–Programmer’s Manual: Simulation Engine

119

This is the caller graph for this function:

double CPUMP::table_lookup (double x)

This function retrieves the y-value corresponding to an x-value in a table using interploation if

necessary.

Parameter:

x The value being looked up.

Returns:

The y-value.

This is the call graph for this function:

This is the caller graph for this function:

Member Data Documentation

double * CPUMP::m_lfDepth

This is an array of water depth (ft).

double * CPUMP::m_lfFlow

This is an array of the pump flow rate (cfs).

int CPUMP::m_nRecords

This is the total number of records for the given pump curve.

CString CPUMP::m_strPCurveID

This is the unique identifier for the pump curve as a string.

The documentation for this class was generated from the following files:

 Pump.h
 Pump.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

120

CSiteLandUse Class Reference

#include "SiteLandUse.h"

Collaboration diagram for CSiteLandUse:

Public Member Functions

 CSiteLandUse ()
 CSiteLandUse (CLandUse *pLU, CBMPSite *pBMPSite, double lfArea)
 virtual ~CSiteLandUse ()

Public Attributes

 double m_lfArea
 CLandUse * m_pLU
 CBMPSite * m_pBMPSite

Detailed Description

The data structure for the CSiteLandUse class.

Constructor & Destructor Documentation

CSiteLandUse::CSiteLandUse ()

This is the CSiteLandUse class constructor (default).

CSiteLandUse::CSiteLandUse (CLandUse * pLU, CBMPSite * pBMPSite, double lfArea)

This is the CSiteLandUse class constructor that initializes the class variables. It assigns a pointer to

CLandUse and CBMPSite classes.

Parameters:

 lfArea The drainage area for this land use type for the BMP site.

in,out pLU If non-null, a pointer to CLandUse class.

in,out pBMPSite If non-null, a pointer to CBMPSite class.

CSiteLandUse::~CSiteLandUse () [virtual]

This is the CSiteLandUse class destructor.

Member Data Documentation

double CSiteLandUse::m_lfArea

This is the drainage area for this land use type for the BMP site.

CBMPSite * CSiteLandUse::m_pBMPSite

This is a pointer to the BMP site object of type CBMPSite class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

121

CLandUse * CSiteLandUse::m_pLU

This is a pointer to this land use type of type CLandUse class.

The documentation for this class was generated from the following files:

 SiteLandUse.h

 SiteLandUse.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

122

CSitePointSource Class Reference

#include "SitePointSource.h"

Collaboration diagram for CSitePointSource:

Public Member Functions

 CSitePointSource ()
 virtual ~CSitePointSource ()

 bool LoadPointsourceTSData (long deltm, COleDateTime startDate, COleDateTime endDate, double
*multiplier)

Public Attributes

 CString m_strPSDesc
 CString m_strPSFile
 COleDateTime m_tmStart
 int m_nID
 int m_nQualNum
 long m_nTSNum
 double m_lfMult

 double m_lfSand
 double m_lfSilt
 double m_lfClay
 double * m_pDataPS

 CBMPSite * m_pBMPSite

Detailed Description

This is the data structure class for the point source.

Constructor & Destructor Documentation

CSitePointSource::CSitePointSource ()

This is the CSitePointSource class constructor (default).

 SUSTAIN–Programmer’s Manual: Simulation Engine

123

CSitePointSource::~CSitePointSource () [virtual]

This is the CSitePointSource class destructor.

Member Function Documentation

bool CSitePointSource::LoadPointsourceTSData (long deltm, COleDateTime startDate, COleDateTime endDate,

double * multiplier)

This function reads the point source time series data.

Parameters:

 deltm The timestep in minutes.

 startDate The start date of model simulation.

 endDate The end date of model simulation.

in,out multiplier If non-null, the multiplier to the time series.

Returns:

True if it succeeds, false if it fails.

This is the caller graph for this function:

Member Data Documentation

double CSitePointSource::m_lfClay

This is the fraction of total sediment that is clay.

double CSitePointSource::m_lfMult

This is the multiplier to the time series file.

double CSitePointSource::m_lfSand

This is the fraction of total sediment that is sand.

double CSitePointSource::m_lfSilt

This is the fraction of total sediment that is silt.

int CSitePointSource::m_nID

This is the unique point source identifier.

int CSitePointSource::m_nQualNum

This is the number of pollutants.

long CSitePointSource::m_nTSNum

This is the number of records in the time series file.

CBMPSite * CSitePointSource::m_pBMPSite

This is the pointer to the associated BMPSite.

double * CSitePointSource::m_pDataPS

This is an array storing the point source time series data.

CString CSitePointSource::m_strPSDesc

This is the point source description.

 SUSTAIN–Programmer’s Manual: Simulation Engine

124

CString CSitePointSource::m_strPSFile

This is the point source file name.

COleDateTime CSitePointSource::m_tmStart

This is the start date of model simulation.

The documentation for this class was generated from the following files:

 SitePointSource.h

 SitePointSource.cpp

 SUSTAIN–Programmer’s Manual: Simulation Engine

125

DS_BMPSITE Struct Reference

#include "BMPSite.h"

Collaboration diagram for DS_BMPSITE:

Public Attributes

 int m_nOutletType
 CBMPSite * m_pDSBMPSite

Detailed Description

This is the data structure class for downstream BMP site.

Member Data Documentation

int DS_BMPSITE::m_nOutletType

This is the outflow type (1-total outflow, 2-weir outflow, 3-orifice or channel outflow, and
4-underdrain outflow).

CBMPSite * DS_BMPSITE::m_pDSBMPSite

This is the pointer to a downstream BMP site.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

126

EVALUATION_FACTOR Struct Reference

#include "BMPSite.h"

Public Attributes

 CString m_strFactor
 int m_nFactorGroup

 int m_nFactorType
 int m_nCalcMode
 int m_nCalcDays
 double m_lfThreshold
 double m_lfTarget
 double m_lfLowerTarget
 double m_lfUpperTarget

 double m_lfInit
 double m_lfCurrent
 double m_lfPreDev
 double m_lfPostDev

Detailed Description

This is the data structure class for BMP evaluation factor parameters.

Member Data Documentation

double EVALUATION_FACTOR::m_lfCurrent

This is the current value of the evaluation factor for the optimization run.

double EVALUATION_FACTOR::m_lfInit

This is the initial value of the evaluation factor for the baseline run.

double EVALUATION_FACTOR::m_lfLowerTarget

This is the lower target value for the cost-effectiveness curve.

double EVALUATION_FACTOR::m_lfPostDev

This is the value of the evaluation factor for the post-developed run (developed land uses and no

BMPs).

double EVALUATION_FACTOR::m_lfPreDev

This is the value of the evaluation factor for the pre-developed run (single land use and no BMPs).

double EVALUATION_FACTOR::m_lfTarget

This is the target value of evaluation factor.

double EVALUATION_FACTOR::m_lfThreshold

This is the flow threshold if the evaluation factor is flow exceeding frequency.

double EVALUATION_FACTOR::m_lfUpperTarget

This is the upper target value for the cost-effectiveness curve.

int EVALUATION_FACTOR::m_nCalcDays

If the evaluation factor type is 3, it is the maxmimum number of days. If the evaluation factor type

is -3, it is the flow threshold (cfs).

int EVALUATION_FACTOR::m_nCalcMode

This is the evaluation factor calculation mode; 1 = %, 2 = Scale, 3 = Value.

 SUSTAIN–Programmer’s Manual: Simulation Engine

127

int EVALUATION_FACTOR::m_nFactorGroup

This is the evaluation factor group; a negative number for flow, a positive number for a pollutant.

int EVALUATION_FACTOR::m_nFactorType

This is the evaluation factor type: -1 = Annual Average Flow Volume (ft3/yr), -2 = Peak Discharge
Flow (cfs), -3 = Flow Exceeding frequency (cfs), 1 = Annual Average Load (lb/yr), 2 = Annual
Average Concentration (mg/L), 3 = Maximum #days Average Concentraion (mg/L).

CString EVALUATION_FACTOR::m_strFactor

This is the evaluation factor name, e.g., FlowVolume or TSSLoad.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

128

GA_PROBLEM Struct Reference

#include "Global.h"

Public Attributes

 int popsize
 int ngen

 int nobj
 int ncon
 int nBMPtype
 int nreal
 int nrealmut
 int nrealcross
 double eta_c

 double eta_m
 double pcross_real
 double pmut_real
 double * min_realvar
 double * max_realvar
 double * inc_realvar

Detailed Description

This is the NSGA-II optimization class structure. The structure defines basic parameters for carrying out

the optimization process. The parameters are the population size; number of generations to be
evaluated; the number of objectives; the number of constraints; the number of BMP types; the number
of real number variables; the number of real number mutations; the number of real number crossovers;
the distribution index for crossover; the distribution index for mutation; the probability for real number
crossover; the probability for real number mutation; the arrays of minimum, maximum, and increment
values for each real number variable.

Member Data Documentation

double GA_PROBLEM::eta_c

This is the distribution index for crossover. The distribution index must be a positive value.

double GA_PROBLEM::eta_m

This is the distribution index for mutation. The distribution index must be a positive value.

double * GA_PROBLEM::inc_realvar

This is the array of increment values associated with real number variables in each individual
solution.

double * GA_PROBLEM::max_realvar

This is the array of maximum real number variable values in each individual solution.

double * GA_PROBLEM::min_realvar

This is the array of minimum real number variable values in each individual solution.

int GA_PROBLEM::nBMPtype

This is the BMP type in an individual solution.

int GA_PROBLEM::ncon

This is the number of constraints for the optimization process.

int GA_PROBLEM::ngen

This is the number of generations to be carried out for the optimization process.

 SUSTAIN–Programmer’s Manual: Simulation Engine

129

int GA_PROBLEM::nobj

This is the number of objectives for the optimization process.

int GA_PROBLEM::nreal

This is the number of real number variables for the optimization problem.

int GA_PROBLEM::nrealcross

This is the number of real number variable crossovers carried out during the optimization process.

int GA_PROBLEM::nrealmut

This is the number of real number mutations carried out during the optimization process.

double GA_PROBLEM::pcross_real

This is the probability for carrying out crossover for real number variables. The probability is a value
between 0 and 1 (including bounds).

double GA_PROBLEM::pmut_real

This is the probability for carrying out mutation for real number variables. The probability is a value

between 0 and 1 (including bounds).

int GA_PROBLEM::popsize

This is the population size during the optimization process. The population size must be a multiple of

4.

The documentation for this struct was generated from the following file:

 Global.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

130

HOLTAN_PARAM Struct Reference

#include "BMPSite.h"

Public Attributes

 double m_lfVegA
 double m_lfGrowth [12]

Detailed Description

This is the data structure class for the Holtan infiltration method.

Member Data Documentation

double HOLTAN_PARAM::m_lfGrowth[12]

This is an array of monthly growth index used in the Holtan infiltration equation.

double HOLTAN_PARAM::m_lfVegA

This is the vegetative coefficient A used in the Holtan infiltration equation.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

131

POLLUT_RAConc Class Reference

#include "BMPSite.h"

Public Member Functions

 POLLUT_RAConc ()
 virtual ~POLLUT_RAConc ()

Public Attributes

 int m_nRDays
 double * m_lfRFlow
 double * m_lfRLoad

Detailed Description

This is the data structure class for running average pollutant concentration.

Constructor & Destructor Documentation

POLLUT_RAConc::POLLUT_RAConc () [inline]

This is the POLLUT_RAConc class constructor (default).

POLLUT_RAConc::~POLLUT_RAConc () [inline, virtual]

This is the POLLUT_RAConc class destructor.

Member Data Documentation

double * POLLUT_RAConc::m_lfRFlow

This is an array for storing the running average flow rate.

double * POLLUT_RAConc::m_lfRLoad

This is an array for storing the running average pollutant load.

int POLLUT_RAConc::m_nRDays

This is the maximum number of running average days.

The documentation for this class was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

132

POLLUTANT Struct Reference

#include "BMPData.h"

Public Attributes

 CString m_sName
 int m_nID

 int m_nSedfg
 int m_nSedQual
 double m_lfMult
 double m_lfsand_qfr
 double m_lfsilt_qfr
 double m_lfclay_qfr

Detailed Description

This is data structure class for pollutants.

Member Data Documentation

double POLLUTANT::m_lfclay_qfr

This is the fraction of adsorbed pollutant on clay.

double POLLUTANT::m_lfMult

This is the multiplier to covert the pollutant load into pounds.

double POLLUTANT::m_lfsand_qfr

This is the fraction of adsorbed pollutant on sand.

double POLLUTANT::m_lfsilt_qfr

This is the fraction of adsorbed pollutant on silt.

int POLLUTANT::m_nID

This is the unique pollutant identifier.

int POLLUTANT::m_nSedfg

This is the flag to distinguish the pollutant as sediment.

int POLLUTANT::m_nSedQual

This is the flag to distinguish the adsorbed pollutant on sediment.

CString POLLUTANT::m_sName

This is the name description of the pollutant type.

The documentation for this struct was generated from the following file:

 BMPData.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

133

PUMP_CONTROL Struct Reference

#include "BMPSite.h"

Public Attributes

 int m_nPumpFlag
 bool m_bIsPumping

 double m_lfDepth_ON
 double m_lfDepth_OFF
 CString m_strPCurveID

Detailed Description

This is data structure class for the pump parameters.

Member Data Documentation

bool PUMP_CONTROL::m_bIsPumping

This is the flag for pumping status (0-false, 1-true).

double PUMP_CONTROL::m_lfDepth_OFF

This is the depth (ft) at which pump is stopped.

double PUMP_CONTROL::m_lfDepth_ON

This is the depth (ft) at which pump is started.

int PUMP_CONTROL::m_nPumpFlag

This is the pump option (0-no, 1-yes).

CString PUMP_CONTROL::m_strPCurveID

This is the unique pump curve identifier (continuous string).

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

134

SAND Struct Reference

#include "BMPSite.h"

Public Attributes

 double m_lfD
 double m_lfW

 double m_lfRHO
 double m_lfKSAND
 double m_lfEXPSND

Detailed Description

This is the data structure class for non-cohesive sediment parameters.

Member Data Documentation

double SAND::m_lfD

This is the effective diameter of the transported sand particles (in.).

double SAND::m_lfEXPSND

This is the exponent in the sandload power function formula.

double SAND::m_lfKSAND

This is the coefficient in the sandload power function formula.

double SAND::m_lfRHO

This is the density of the sand particles (lb/ft3).

double SAND::m_lfW

This is the corresponding fall velocity in still water (in./sec).

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

135

SCATTER_SEARCH Struct Reference

#include "Global.h"

Public Attributes

 int b1
 int b2

 int PSize
 int iter
 int n_var
 int last_combine
 int new_elements
 int * iter1
 int * iter2

 int * order1
 int * order2
 int * evaOrders
 int ** ranges
 double digits
 double * high
 double * low

 double * inc
 double * value1
 double * value2
 double * evaValues
 double ** evaSolutions
 double ** refSet1

 double ** refSet2

Detailed Description

This is the data structure class for the Scatter Search optimization option.

Member Data Documentation

int SCATTER_SEARCH::b1

This is the number of solutions in reference set 1.

int SCATTER_SEARCH::b2

This is the number of solutions in reference set 2.

double SCATTER_SEARCH::digits

This is the number of digits after the decimal point.

int * SCATTER_SEARCH::evaOrders

This is an array storing the sorting order of solutions.

double ** SCATTER_SEARCH::evaSolutions

This is an array storing solutions of all generations.

double * SCATTER_SEARCH::evaValues

This is an array storing the values of solutions.

double * SCATTER_SEARCH::high

This is an array of high bounds of decision variables.

 SUSTAIN–Programmer’s Manual: Simulation Engine

136

double * SCATTER_SEARCH::inc

This is an array of increments of decision variables.

int SCATTER_SEARCH::iter

This is the number of iterations of the combine reference set process.

int * SCATTER_SEARCH::iter1

This is an array of index for the solutions in reference set 1 indicating whether it was used in the last
combining reference set process.

int * SCATTER_SEARCH::iter2

This is an array of index for the solutions in reference set 2 indicating whether it was used in the last

combining reference set process.

int SCATTER_SEARCH::last_combine

This is the last number of iterations of the combine reference set process.

double * SCATTER_SEARCH::low

This is an array of low bound of the decision variables.

int SCATTER_SEARCH::n_var

This is the number of decision variables.

int SCATTER_SEARCH::new_elements

This is the new solution flag. A value of 1 indicates a solution was added to the reference set, 0

indicates no new solution was added.

int * SCATTER_SEARCH::order1

This is an array of index for the order of solutions in reference set 1.

int * SCATTER_SEARCH::order2

This is an array of index for the order of solutions in reference set 2.

int SCATTER_SEARCH::PSize

This is the population size, i.e., number of solutions in one population.

int ** SCATTER_SEARCH::ranges

This is an array storing the number of solutions in a specific range of a decision variable.

double ** SCATTER_SEARCH::refSet1

This is an array of solutions for reference set 1.

double ** SCATTER_SEARCH::refSet2

This is an array of solutions for reference set 2.

double * SCATTER_SEARCH::value1

This is an array of values of solutions in reference set 1.

double * SCATTER_SEARCH::value2

This is an array of values of solutions in reference set 2.

The documentation for this struct was generated from the following file:

 Global.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

137

SEDIMENT Struct Reference

#include "BMPSite.h"

Public Attributes

 double m_lfBEDWID
 double m_lfBEDDEP

 double m_lfBEDPOR
 double m_lfSAND_FRAC
 double m_lfSILT_FRAC
 double m_lfCLAY_FRAC

Detailed Description

This is the data structure class for sediment parameters.

Member Data Documentation

double SEDIMENT::m_lfBEDDEP

This is the initial sediment bed depth that is available for scour.

double SEDIMENT::m_lfBEDPOR

This is the sediment bed porosity.

double SEDIMENT::m_lfBEDWID

This is the sediment bed width that is available for scour.

double SEDIMENT::m_lfCLAY_FRAC

This is the fraction of sediment in bed that is clay.

double SEDIMENT::m_lfSAND_FRAC

This is the fraction of sediment in bed that is sand.

double SEDIMENT::m_lfSILT_FRAC

This is the fraction of sediment in bed that is silt.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

138

SILTCLAY Struct Reference

#include "BMPSite.h"

Public Attributes

 double m_lfD
 double m_lfW

 double m_lfRHO
 double m_lfTAUCD
 double m_lfTAUCS
 double m_lfM

Detailed Description

This is the data structure class for cohesive sediment parameters.

Member Data Documentation

double SILTCLAY::m_lfD

This is the effective diameter of the transported silt/clay particles (in.).

double SILTCLAY::m_lfM

This is the erodibility coefficient of the sediment (lb/ft2/day).

double SILTCLAY::m_lfRHO

This is the density of the silt/clay particles (lb/ft3).

double SILTCLAY::m_lfTAUCD

This is the critical bed shear stress for deposition (lb/ft2).

double SILTCLAY::m_lfTAUCS

This is the critical bed shear stress for scour (lb/ft2).

double SILTCLAY::m_lfW

This is the corresponding fall velocity in still water (in./sec).

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

139

TradeOffCurve Class Reference

#include "BMPSite.h"

Public Member Functions

 TradeOffCurve ()
 virtual ~TradeOffCurve ()

Public Attributes

 int m_nID
 int m_nQualNum
 long m_nTSNum
 double m_lfMult

 double m_lfCost

 double m_lfSand
 double m_lfSilt
 double m_lfClay
 double * m_pDataBrPt
 CString m_strBrPtFile
 COleDateTime m_tmStart

Detailed Description

This is the data structure class for the cost-effectiveness curve parameters.

Constructor & Destructor Documentation

TradeOffCurve::TradeOffCurve () [inline]

This is the TradeOffCurve class constructor (default).

TradeOffCurve::~TradeOffCurve () [inline, virtual]

This is the TradeOffCurve class destructor.

Member Data Documentation

double TradeOffCurve::m_lfClay

This is the fraction of total sediment that is clay.

double TradeOffCurve::m_lfCost

This is the total cost associated with the tier-1 solution.

double TradeOffCurve::m_lfMult

This is the multiplier to the time series file.

double TradeOffCurve::m_lfSand

This is the fraction of total sediment that is sand.

double TradeOffCurve::m_lfSilt

This is the fraction of total sediment that is silt.

int TradeOffCurve::m_nID

This is the break point identifier.

int TradeOffCurve::m_nQualNum

This is the number of pollutants in the time series file.

 SUSTAIN–Programmer’s Manual: Simulation Engine

140

long TradeOffCurve::m_nTSNum

This is the number of records in the time series file.

double * TradeOffCurve::m_pDataBrPt

This is the pointer to the break point data array.

CString TradeOffCurve::m_strBrPtFile

This is the time series file name for the break point on the cost-effectiveness curve.

COleDateTime TradeOffCurve::m_tmStart

This is the DATE data type for the start time.

The documentation for this class was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

141

US_BMPSITE Struct Reference

#include "BMPSite.h"

Collaboration diagram for US_BMPSITE:

Public Attributes

 int m_nOutletType
 CBMPSite * m_pUSBMPSite

Detailed Description

This is the data structure class for the upstream BMP site.

Member Data Documentation

int US_BMPSITE::m_nOutletType

This is the outflow type (1-total outflow, 2-weir outflow, 3-orifice or channel outflow, and
4-underdrain outflow).

CBMPSite * US_BMPSITE::m_pUSBMPSite

This is the pointer to a upstream BMP site.

The documentation for this struct was generated from the following file:

 BMPSite.h

 SUSTAIN–Programmer’s Manual: Simulation Engine

142

File Documentation

Aquifer.cpp File Reference

#include "stdafx.h"

#include "Aquifer.h"

Detailed Description

This file implements the CAquifer class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

143

Aquifer.h File Reference

Classes

 class CAquifer

Detailed Description

This is header file for the CAquifer class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

144

BMPData.cpp File Reference

#include "stdafx.h"

#include <direct.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "LandUse.h"

#include "BMPSite.h"

#include "SiteLandUse.h"

#include "SitePointSource.h"

#include "BMPData.h"

#include "BMPRunner.h"

#include "StringToken.h"

#include "Global.h"

#include "Aquifer.h"

#include "Pump.h"

Functions

 void InitializeGAInfil (int nNum)
 void CopyGAInfil (TGrnAmpt *Source, TGrnAmpt *Target)
 void InitializeHortonInfil (int nNum)
 void CopyHortonInfil (THorton *Source, THorton *Target)

 void InitializeLinkConduitTransect (int nNum)
 void CopyLink (TLink *Source, TLink *Target, int nPollutant)
 void CopyConduit (TConduit *Source, TConduit *Target)
 void CopyTransect (TTransect *Source, TTransect *Target)
 int FindObIndexFromList (CObList &list, CObject *ob)

 void Validate_Conduit (int nNum)

Detailed Description

This file implements the CBMPData class.

Global Function Documentation

CopyConduit (TConduit * Source, TConduit * Target)

This function assigns the user-defined conduit parameters to another conduit object.

Parameters:

Source The source data structure.

Target The target data structure.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

145

CopyGAInfil (TGrnAmpt * Source, TGrnAmpt * Target)

This function creates a copy of the user-defined Green-Ampt infiltration parameters.

Parameters:

Source The source data structure.

Target The target data structure.

This is the caller graph for this function:

2

1

3

1

1

1

4

1
5

1

6

1
7

1

2

1

3

1

1

1

4

1
5

1

6

1
7

1

2

1

3

1

1

1

4

1
5

1

6

1
7

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

146

CopyHortonInfil (THorton * Source, THorton * Target)

This function creates a copy of the user-defined Horton infiltration parameters.

Parameters:

Source The source data structure.

Target The target data structure.

This is the caller graph for this function:

2

1

3

1

1

1

4

1
5

1

6

1
7

1

2

1

3

1

1

1

4

1
5

1

6

1
7

1

2

1

3

1

1

1

4

1
5

1

6

1
7

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

147

CopyLink (TLink * Source, TLink * Target, int nPollutant)

This function creates a copy of the user-defined link parameters.

Parameters:

Source The source data structure.

Target The target data structure.

nPollutant The number of user-defined pollutants.

This is the caller graph for this function:

CopyTransect (TTransect * Source, TTransect * Target)

This function assigns the user-defined transect parameters to another transect object.

Parameters:

Source The source data structure.

Target The target data structure.

This is the caller graph for this function:

2

1

3

1

1

1

4

1
5

1

6

1
7

1

2

1

3

1

1

1

4

1
5

1

6

1
7

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

148

FindObIndexFromList (CObList & list, CObject * ob)

This function finds the object index from the list of objects.

Parameters:

in,out list If non-null, a pointer to the list of objects.

in,out ob If non-null, a pointer to the object.

Returns:

An index of the given object from the list of objects.

InitializeGAInfil (int nNum)

This function initializes the Green-Ampt infiltration parameters.

Parameters:

nNum The number of BMPs.

This is the caller graph for this function:

InitializeHortonInfil (int nNum)

This function initializes the Horton infiltration parameters.

2

1

3

1

1

1

4

1
5

1

6

1
7

1

2

1

3

1

1

1

4

1
5

1

6

1
7

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

149

Parameter:

nNum The number of BMPs.

This is the caller graph for this function:

InitializeLinkConduitTransect (int nNum)

This function initializes the link, conduit, and transect parameters.

Parameter:

nNum The number of objects.

This is the caller graph for this function:

Validate_Conduit (int nNum)

This function validates the conduit parameters.

Parameter:

nNum number of Conduits.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

150

BMPData.h File Reference

#include <afxtempl.h>

#include <queue>

Classes

 struct POLLUTANT
 struct BMPCOST
 class CBMPData

Defines

 #define STRATEGY_SCATTER_SEARCH 1
 #define STRATEGY_GENETIC_ALGORITHM 2

Detailed Description

This is header file for the CBMPData class.

Define Documentation

#define STRATEGY_GENETIC_ALGORITHM 2

This is the definition for the Genetic Algorithm optimization method.

#define STRATEGY_SCATTER_SEARCH 1

This is the definition for the Scatter Search optimization method.

 SUSTAIN–Programmer’s Manual: Simulation Engine

151

BMPOptimizer.cpp File Reference

#include "stdafx.h"

#include "Global.h"

#include "BMPSite.h"

#include "BMPData.h"

#include "BMPRunner.h"

#include "BMPOptimizer.h"

#include "ProgressWnd.h"

#include <math.h>

#include <float.h>

Detailed Description

This file implements the CBMPOptimizer class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

152

BMPOptimizer.h File Reference

Classes

 class CBMPOptimizer

Detailed Description

This is header file for the CBMPOptimizer class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

153

BMPOptimizerGA.cpp File Reference

#include "stdafx.h"

#include "Global.h"

#include "Individual.h"

#include "Population.h"

#include "BMPSite.h"

#include "BMPData.h"

#include "BMPRunner.h"

#include "BMPOptimizerGA.h"

#include <math.h>

#include <float.h>

Detailed Description

This file implements the CBMPOptimizerGA class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

154

BMPOptimizerGA.h File Reference

Classes

 class CBMPOptimizerGA

Detailed Description

This is header file for the CBMPOptimizerGA class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

155

BMPRunner.cpp File Reference

#include "stdafx.h"

#include "Global.h"

#include "LandUse.h"

#include "BMPSite.h"

#include "SiteLandUse.h"

#include "SitePointSource.h"

#include "Sediment.h"

#include "BMPData.h"

#include "BMPRunner.h"

#include <math.h>

#include <afxtempl.h>

#include "ProgressWnd.h"

#include "BMPOptimizer.h"

#include "Aquifer.h"

#include "Pump.h"

Global Functions

 void findLinkQual2 (int i, float tStep, double wAdded, double kDecay, double &c)
 float getHydRad (TXsect *xsect, float y)

Detailed Description

This file implements the CBMPRunner class.

Function Documentation

void findLinkQual2 (int i, float tStep, double wAdded, double kDecay, double & c)

This function finds new quality in a conduit after the current time step.

Parameters:

 i Zero-based index of the conduit.

 tStep Routing time step (sec).

 wAdded The added material (lb/ivl).

 kDecay The first order decay rate (per sec).

in,out c The updated concentration (lb/ft3).

float getHydRad (TXsect * xsect, float y)

This function gets the hydraulic radius for the conduit cross-section and water depth.

Parameters:

in,out xsect If non-null, the pointer to the conduit cross-section data

structure.

 y The float; water depth (ft).

Returns:

The hydraulic radius (ft).

 SUSTAIN–Programmer’s Manual: Simulation Engine

156

BMPRunner.h File Reference

Classes

 class CBMPRunner

Defines

 #define RUN_INIT 0
 #define RUN_OPTIMIZE 1
 #define RUN_OUTPUT 2
 #define RUN_PREDEV 3

 #define RUN_POSTDEV 4
 #define TOTAL 1
 #define WEIR_ 2
 #define ORIFICE_CHANNEL 3
 #define UNDERDRAIN 4

 #define OPTION_NO_OPTIMIZATION 0

 #define OPTION_MIMIMIZE_COST 1
 #define OPTION_TRADE_OFF_CURVE 2
 #define AAFV -1
 #define PDF -2
 #define FEF -3
 #define AAL 1
 #define AAC 2

 #define MAC 3
 #define CALC_PERCENT 1
 #define CALC_SCALE 2
 #define CALC_VALUE 3
 #define SAND 1
 #define SILT 2
 #define CLAY 3

 #define TSS 4
 #define POUND2GRAM 453.5924
 #define LBpCFT2MGpL 16018.46
 #define CFS2CMS 0.0283
 #define CF2CM 0.0283
 #define FpS2MpS 0.3048

 #define FOOT2METER 0.3048
 #define fThreshold 1.0e-7

Detailed Description

This is header file for the CBMPRunner class.

Define Documentation

#define AAC 2

This is the definition for evaluation factor type: average annual concentration (mg/L).

#define AAFV -1

This is the definition for evaluation factor type: annual average flow volume (ft3/yr).

#define AAL 1

This is the definition for evaluation factor type: annual average load (lb/yr).

#define CALC_PERCENT 1

This is the definition for calculating the percent value.

 SUSTAIN–Programmer’s Manual: Simulation Engine

157

#define CALC_SCALE 2

This is the definition for calculating the scale value.

#define CALC_VALUE 3

This is the definition for calculating the absolute value.

#define CF2CM 0.0283

This is the definition for converting units from ft3 to m3.

#define CFS2CMS 0.0283

This is the definition for converting units from cfs to cms.

#define CLAY 3

This is the definition for the sediment class: clay identifier.

#define FEF -3

This is the definition for the evaluation factor type: flow exceeding frequency (cfs).

#define FOOT2METER 0.3048

This is the definition for converting units from feet to meters.

#define FpS2MpS 0.3048

This is the definition for converting units from ft/s to m/s.

#define fThreshold 1.0e-7

This is the definition for the flow threshold (cfs).

#define LBpCFT2MGpL 16018.46

This is the definition for converting units from lbs/ft3 to mg/L.

#define MAC 3

This is the definition of the evaluation factor type: maximum days of average conc. (mg/L).

#define OPTION_MIMIMIZE_COST 1

This is the definition of the BMP optimization option: mimimize cost.

#define OPTION_NO_OPTIMIZATION 0

This is the definition of the BMP optimization option: no optimization.

#define OPTION_TRADE_OFF_CURVE 2

This is the definition of the BMP optimization option: cost-effective curve.

#define ORIFICE_CHANNEL 3

This is the definition of the BMP orifice/channel outflow flag.

#define PDF -2

This is the definition of the evaluation factor type: peak discharge flow (cfs).

#define POUND2GRAM 453.5924

This is the definition of converting units from pounds to grams.

#define RUN_INIT 0

This is the definition of the BMP simulation flag for the baseline scenario with existing BMPs.

 SUSTAIN–Programmer’s Manual: Simulation Engine

158

#define RUN_OPTIMIZE 1

This is the definition of the BMP simulation flag for the optimize scenario.

#define RUN_OUTPUT 2

This is the definition of the BMP simulation flag for the best solution scenario.

#define RUN_POSTDEV 4

This is the definition of the BMP simulation flag for the post-developed scenario.

#define RUN_PREDEV 3

This is the definition of the BMP simulation flag for the pre-developed scenario.

#define SAND 1

This is the definition of the sediment class flag: sand identifier.

#define SILT 2

This is the definition of the sediment class flag: silt identifier.

#define TOTAL 1

This is the definition of the BMP total outflow identifier.

#define TSS 4

This is the definition of the sediment class flag: total sediment identifier.

#define UNDERDRAIN 4

This is the definition of the BMP underdrain outflow identifier.

#define WEIR_ 2

This is the definition of the BMP weir outflow identifier.

 SUSTAIN–Programmer’s Manual: Simulation Engine

159

BMPSite.cpp File Reference

#include "stdafx.h"

#include "BMPSite.h"

#include "StringToken.h"

#include "./swmm5/odesolve.h"

#include <math.h>

Global Functions

 void getDdDt2 (float t, float *d, float *dddt)
 void getDdDt3 (float t, float *d, float *dddt)

Detailed Description

This file implements the CBMPSite class.

Function Documentation

getDdDt2 (float t, float * d, float * dddt)

This function evaluates the derivative of stored depth with respect to time for the BUFFERSTRIP

whose runoff is being computed.

Parameters:

 t The current time (not used).

in,out d The stored depth (ft).

in,out dddt The derivative of d with respect to time.

This is the caller graph for this function:

getDdDt3 (float t, float * d, float * dddt)

This function evaluates the derivative of stored depth with respect to time for the AREABMP whose
runoff is being computed.

Parameters:

 t current time (not used).

in,out d The stored depth (ft).

in,out dddt The derivative of d with respect to time.

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

160

BMPSite.h File Reference

#include <queue>

#include "./SWMM5/headers.h"

Classes

 struct PUMP_CONTROL
 struct ADJUSTABLE_PARAM
 struct COST_PARAM
 struct EVALUATION_FACTOR
 struct HOLTAN_PARAM
 struct BMP_A

 struct BMP_B
 struct BMP_C

 struct BMP_D
 struct BMP_E
 struct SEDIMENT
 struct SAND
 struct SILTCLAY

 class TradeOffCurve
 class POLLUT_RAConc
 class CBMPSite
 struct DS_BMPSITE
 struct US_BMPSITE

Defines

 #define CLASS_A 1
 #define CLASS_B 2
 #define CLASS_C 3
 #define CLASS_D 4

 #define CLASS_E 5

 #define CLASS_X 100

Detailed Description

This is header file for the CBMPSite class.

Define Documentation

#define CLASS_A 1

This is the definition flag for BMP Class A. This BMP class represents the practices that capture
upstream drainage at a specific location and can use a combination of detention, infiltration,
evaporation, settling, and transformation to manage flow and remove pollutants.

#define CLASS_B 2

This is the definition flag for BMP Class B. This BMP class represents the channel type management

practices such as swale that does not necessarily detain the flow but provides infiltration,
evaporation, and settling to attenuate the flow and remove pollutants.

#define CLASS_C 3

This is the definition flag for BMP Class C. This BMP class represents the conveyance system such as

a pipe or open channel.

#define CLASS_D 4

This is the definition flag for BMP Class D. This BMP class represents the linear type practices such
as a buffer strip.

 SUSTAIN–Programmer’s Manual: Simulation Engine

161

#define CLASS_E 5

This is the definition flag for BMP Class E. This BMP class represents the nonstructural practices such

as disconnected impervious areas routed to pervious land segment.

#define CLASS_X 100

This is the definition flag for BMP Class X. This BMP class represents the outlet node such as a
junction.

 SUSTAIN–Programmer’s Manual: Simulation Engine

162

Global.cpp File Reference

#include "stdafx.h"

#include "Global.h"

#include "BMPSite.h"

#include "BMPData.h"

#include "BMPRunner.h"

#include "BMPOptimizer.h"

#include "BMPOptimizerGA.h"

#include "ProgressWnd.h"

#include "StringToken.h"

#include "./swmm5/swmm5.h"

#include "./swmm5/odesolve.h"

#include <math.h>

Global Functions

 double random_perc ()
 int random_int (int low, int high)
 double random_real (double low, double high)
 double random_real_with_inc (double low, double high, double inc)
 BOOL PASCAL EXPORT StartLandSimulation (char *strLandPreDevFilePath, char

*strLandPostDevFilePath)

 BOOL PASCAL EXPORT StartSimulation (char *strInputFilePath, char *strBestPopRun, char
*strRun_Mode)

 int LandSimulation (int landfg, char *strInputFilePath, CProgressWnd *pwndProgress)
 double pet_Hamon (double lat, double cts, double tavc, double day)

Detailed Description

This file implements the exported function for SUSTAIN DLL.

Function Documentation

int LandSimulation (int landfg, char * strInputFilePath, CProgressWnd * pwndProgress)

This function calls the SWMM for internal land simulation option in SUSTAIN.

Parameters:

landfg The flag indicating the pre/post development scenario (landfg=0 for

pre-development and landfg=1 for post-development).

strInputFilePath The full path of the SWMM input text file created by SUSTAIN land

simulation module.

pwndProgress The pointer to the CProgressWnd class for the land simulation progress

bar.

Returns:

The error code if the simulation fails otherwise 0.

This is the caller graph for this function:

double pet_Hamon (double lat, double cts, double tavc, double day)

This function calculates daily PET value based on the Hamon method.

 SUSTAIN–Programmer’s Manual: Simulation Engine

163

Parameters:

lat The latitude.

cts A monthly variable coefficient.

tavc The mean daily air temperature (degrees C).

day The day of the year.

Returns:

The PET value for this day of the year (in./day).

int random_int (int low, int high)

This function generates a random integer between the low and high values including the bounds.

Parameters:

low The lower bound of the random integer to be generated.

high The upper bound of the random integer to be generated.

Returns:

The generated random integer.

This is the call graph for this function:

This is the caller graph for this function:

double random_perc ()

This function generates a random number between 0.0 and 1.0.

Returns:

A random number that is between 0.0 and 1.0 with up to four digits.

This is the caller graph for this function:

2

1 3

1

1

1

4

1 5

1

2

1 3

1

1

1

4

1 5

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

164

double random_real (double low, double high)

This function generates a random real number between the user-specified low and high values

including the bounds.

Parameters:

low The lower bound of the random real number to be generated.

high The upper bound of the random real number to be generated.

Returns:

The generated random real number.

This is the call graph for this function:

double random_real_with_inc (double low, double high, double inc)

This function generates a random real number between the user-specified low and high values with

user-specified increment, including the bounds.

Parameters:

low The lower bound of the random real number to be generated.

high The upper bound of the random real number to be generated.

inc The increment of the random number for the lower bound.

Returns:

The generated random real number.

This is the call graph for this function:

This is the caller graph for this function:

2

1
3

1

1

1

4

1

2

1
3

1

1

1

4

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

165

C BOOL PASCAL EXPORT StartLandSimulation (char * strLandPreDevFilePath, char * strLandPostDevFilePath)

This function is the DLL entry point for the SUSTAIN GIS interface to run the land simulation module.

Parameters:

strLandPreDevFil

ePath

The full path for the pre-development land simulation input file.

strLandPostDevF

ilePath

The full path for the post-development land simulation input file.

Returns:

True if it succeeds, false if it fails.

This is the call graph for this function:

C BOOL PASCAL EXPORT StartSimulation (char * strInputFilePath, char * strBestPopRun, char * nRun_Mode)

This function is the DLL entry point for the SUSTAIN GIS interface to run the BMP simulation module.

Parameters:

strInputFilePath The full path for the BMP simulation input file.

strBestPopRun The best population ID to run the optimized solution from the

cost-effective curve.

nRun_Mode A flag indicating the BMP simulation run mode (0=regular mode,

1=batch mode).

Returns:

True if it succeeds, false if it fails.

 SUSTAIN–Programmer’s Manual: Simulation Engine

166

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

167

Global.h File Reference

Classes

 struct SCATTER_SEARCH

 struct GA_PROBLEM

Defines

 #define INF 1.0e14
 #define EPS 1.0e-14
 #define E 2.71828182845905

 #define pi 3.14159265358979
 #define SUSTAIN_VERSION "Version 1.2 - November 30, 2011"

Detailed Description

This is the main header file for the SUSTAINOPT DLL. It defines the values for global constants,

optimization data structure, and export functions for DLL entry points from the SUSTAIN GIS interfaces.

Define Documentation

#define E 2.71828182845905

This is the definition of the base of natural logarithm.

#define EPS 1.0e-14

This is the definition of the infinitely small value.

#define INF 1.0e14

This is the definition of the infinitely large value.

#define pi 3.14159265358979

This is the definition of the value of pi.

#define SUSTAIN_VERSION "Version 1.2 - November 30, 2011"

This is the definition of the software version.

 SUSTAIN–Programmer’s Manual: Simulation Engine

168

Individual.cpp File Reference

#include "stdafx.h"

#include "Global.h"

#include "Individual.h"

#include "BMPOptimizerGA.h"

#include <math.h>

Functions

 double random_perc ()
 double random_real (double low, double high)
 double random_real_with_inc (double low, double high, double inc)

Detailed Description

This file implements the CIndividual class. The three external functions for random number or
percentage generation are as previously defined in the Global.cpp file.

Function Documentation

double random_perc ()

This function generates a random number between 0.0 and 1.0.

Returns:

A random number that is between 0.0 and 1.0 with up to four digits.

This is the caller graph for this function:

double random_real (double low, double high)

This function generates a random real number between the user-specified low and high values

including the bounds.

Parameters:

low The lower bound of the random real number to be generated.

high The upper bound of the random real number to be generated.

2

1
3

1

1

1

4

1

2

1
3

1

1

1

4

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

169

Returns:

The generated random real number.

This is the call graph for this function:

double random_real_with_inc (double low, double high, double inc)

This function generates a random real number between the user-specified low and high values with

user-specified increment including the bounds.

Parameters:

low The lower bound of the random real number to be generated.

high The upper bound of the random real number to be generated.

inc The increment of the random number for the lower bound.

Returns:

The generated random real number.

This is the call graph for this function:

This is the caller graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

170

Individual.h File Reference

Classes

 class CIndividual

Detailed Description

This is header file for the CIndividual class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

171

LandUse.cpp File Reference

#include "stdafx.h"

#include "LandUse.h"

#include "StringToken.h"

Detailed Description

This file implements the CLandUse class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

172

LandUse.h File Reference

Classes

 class CLandUse

Detailed Description

This is header file for the CLandUse class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

173

Population.cpp File Reference

#include "stdafx.h"

#include "Global.h"

#include "Individual.h"

#include "Population.h"

#include <afxtempl.h>

#include <math.h>

#include <float.h>

Functions

 int random_int (int low, int high)

Detailed Description

This file implements the CPopulation class.

Function Documentation

int random_int (int low, int high)

This function generates a random integer between the low and high values including the bounds.

Parameters:

low The lower bound of the random integer to be generated.

high The upper bound of the random integer to be generated.

Returns:

The generated random integer.

This is the call graph for this function:

This is the caller graph for this function:

2

1 3

1

1

1

4

1 5

1

2

1 3

1

1

1

4

1 5

1

 SUSTAIN–Programmer’s Manual: Simulation Engine

174

Population.h File Reference

Classes

 class CPopulation

Detailed Description

This is header file for the CPopulation class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

175

Pump.cpp File Reference

#include "stdafx.h"

#include "Pump.h"

#include <math.h>

Detailed Description

This file implements the CPUMP class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

176

Pump.h File Reference

Classes

 class CPUMP

Detailed Description

This is header file for the CPUMP class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

177

Resource.h File Reference

Detailed Description

This is Microsoft Visual C++ generated resource file.

 SUSTAIN–Programmer’s Manual: Simulation Engine

178

Sediment.cpp File Reference

#include "stdafx.h"

#include <math.h>

#include <string.h>

#include "Sediment.h"

Global Functions

 float dayval (float mval1, float mval2, int day, int ndays)

 int detach (int crvfg, int csnofg, int mon, int nxtmon, int day, int ndays, float *coverm, float rain, float
snocov, float delt60, float smpf, float krer, float jrer, float &cover, float &dets, float &det)

 int attach (float affix, float deltd, float &dets)
 int sosed1 (float runoff, float surs, float delt60, float kser, float jser, float kger, float jger, float &dets,

float &sosed)

 int BDEXCH (double AVDEPM, double W, double TAU, double TAUCD, double TAUCS, double M,

double VOL, double FRCSED, double *SUSP, double *BED, double *DEPSCR)
 int sandld (double isand, double vols, double srovol, double vol, double erovol, double ksand, double

avvele, double expsnd, double rom, int sandfg, double db50e, double hrade, double slope, double tw,
double wsande, double twide, double db50m, double fsl, double avdepe, double *sand, double
*rsand, double *bdsand, double *depscr, double *rosand)

Detailed Description

This file implements the sediment simulation functions.

Function Documentation

int attach (float affix, float deltd, float & dets)

This function simulates attachment or compaction of detached sediment on the surface. If the

previous day was dry, the calculation is done at the start of the day.

Parameters:

 affix The fraction by which detached sediment storage decreases

each day as a result of soil compaction.

 deltd Number of days in the time step.

in,out dets The storage of detached sediment (tons/ac).

int BDEXCH (double AVDEPM, double W, double TAU, double TAUCD, double TAUCS, double M, double VOL, double

FRCSED, double * SUSP, double * BED, double * DEPSCR)

This function simulates deposition and scour of cohesive sediment.

Parameters:

 AVDEPM The average depth of water in meters .

 W The settling velocity for cohesive sediment fraction (len/ivl).

 TAU The shear stress (lb/ft2).

 TAUCD The critical shear stress for deposition (lb/ft2).

 TAUCS The critical shear stress for scour (lbs/ft2).

 M The erodibility coefficient for the sediment fraction.

 VOL The volume of water in BMP (ft3).

 FRCSED The fraction of sediment in the bed.

in,out SUSP The suspended storage of sediment fraction.

in,out BED The storage of sediment fraction in bed.

in,out DEPSCR The deposition (positive) or scour (negative).

 SUSTAIN–Programmer’s Manual: Simulation Engine

179

float dayval (float mval1, float mval2, int day, int ndays)

This function linearly interpolates a value for this day using the values for the start of the month and

the next month.

Parameters:

mval1 The value at the start of this month.

mval2 The value at the start of the next month.

day The day of this month.

ndays The number of days in this month.

Returns:

The value for this day.

This is the caller graph for this function:

int detach (int crvfg, int csnofg, int mon, int nxtmon, int day, int ndays, float * coverm, float rain, float snocov, float

delt60, float smpf, float krer, float jrer, float & cover, float & dets, float & det)

This function calculates the rate of soil detachment and updates the detached sediment storage.

Parameters:

 crvfg If crvfg is 1, erosion-related cover may vary throughout the

year (crvfg = 0 in SUSTAIN).

 csnofg If csnofg is 1, the snow accumulation and melt is being

considered (csnofg = 0 in SUSTAIN).

 mon This month.

 nxtmon Next month.

 day This day.

 ndays Number of days in this month.

 rain The rainfall (in./timestep).

 snocov The fraction of land use covered by snow pack (snocov = 0 in

SUSTAIN).

 delt60 Number of hours in the simulation timestep.

 smpf The supporting management practice factor used in sediment

detach equation.

 krer The detachment coefficient dependent on soil properties.

 jrer The detachment exponent dependent on soil properties.

in,out coverm If non-null, monthly values of the cover parameter.

in,out cover The fraction of land surface that is shielded from rainfall

erosion.

in,out dets The storage of detached sediment (tons/ac).

in,out det The sediment detached from the soil matrix by rainfall

(tons/ac/interval).

This is the call graph for this function:

 SUSTAIN–Programmer’s Manual: Simulation Engine

180

int sandld (double isand, double vols, double srovol, double vol, double erovol, double ksand, double avvele, double

expsnd, double rom, int sandfg, double db50e, double hrade, double slope, double tw, double wsande, double twide,

double db50m, double fsl, double avdepe, double * sand, double * rsand, double * bdsand, double * depscr, double *

rosand)

This function simulates the behavior of sand.

Parameters:

 isand The inflow of sand over the timestep.

 vols The volume of water at the start of timestep (ft3).

 srovol The outflow volume component based on the start of the interval

(ft3/timestep).

 vol The volume of water at the end of the timestep (ft3).

 erovol The outflow volume component based on the end of the interval

(ft3/timestep).

 ksand The coefficient in the sandload power function formula.

 avvele The average flow velocity (ft/s).

 expsnd The exponent in the sandload power function formula.

 rom The total rate of outflow of water (m3/sec).

 sandfg It indicates the method that will be used for sandload simulation

(SUSTAIN supports user-specified power function method).

 db50e The median diameter of bed material (ft).

 hrade The hydraulic radius (ft).

 slope The longitudinal slope (ft/ft).

 tw The water temperature (degree C).

 wsande The fall velocity of sand (ft/sec).

 twide The width of reach (ft).

 db50m The median diameter of bed material (m).

 fsl The fine sediment load concentration.

 avdepe The average water depth (ft).

in,out sand The concentration of sand in suspension (mg/L).

in,out rsand The sand material in suspension (g).

in,out bdsand The sand material available in the bed.

in,out depscr The deposition (positive) or scour (negative).

in,out rosand The total amount of sand leaving the reach during the timestep (g).

int sosed1 (float runoff, float surs, float delt60, float kser, float jser, float kger, float jger, float & dets, float & sosed)

This function calculates the washoff from both detached surface sediment and soil matrix by surface
runoff.

Parameters:

 runoff The surface runoff (in./timestep).

 surs The surface water storage (in.).

 delt60 Number of hours in the simulation timestep.

 kser The coefficient in the detached sediment washoff equation.

 jser The exponent in the detached sediment washoff equation.

 kger The coefficient in the matrix soil scour equation.

 jger The exponent in the matrix soil scour equation.

in,out dets The storage of detached sediment (tons/ac).

in,out sosed Total removal of soil and sediment (tons/ac/timestep).

 SUSTAIN–Programmer’s Manual: Simulation Engine

181

Sediment.h File Reference

Detailed Description

This is header file for the sediment simulation functions.

 SUSTAIN–Programmer’s Manual: Simulation Engine

182

SiteLandUse.cpp File Reference

#include "stdafx.h"

#include "LandUse.h"

#include "BMPSite.h"

#include "SiteLandUse.h"

Detailed Description

This file implements the CSiteLandUse class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

183

SiteLandUse.h File Reference

Classes

 class CSiteLandUse

Detailed Description

This is header file for the CSiteLandUse class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

184

SitePointSource.cpp File Reference

#include "stdafx.h"

#include "BMPSite.h"

#include "StringToken.h"

#include "SitePointSource.h"

Detailed Description

This file implements the CSitePointSource class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

185

SitePointSource.h File Reference

Classes

 class CSitePointSource

Detailed Description

This is header file for the CSitePointSource class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

186

StdAfx.cpp File Reference

#include "stdafx.h"

Detailed Description

This file includes the stdafx header file.

 SUSTAIN–Programmer’s Manual: Simulation Engine

187

StdAfx.h File Reference

#include <afxwin.h>

#include <afxext.h>

#include <afxole.h>

#include <afxodlgs.h>

#include <afxdisp.h>

#include <afxdb.h>

#include <afxdao.h>

#include <afxdtctl.h>

#include <afxcmn.h>

Detailed Description

This file includes the standard or project-specific include files that are used frequently.

 SUSTAIN–Programmer’s Manual: Simulation Engine

188

SUSTAIN.cpp File Reference

#include "stdafx.h"

#include "SUSTAIN.h"

Detailed Description

This file implements the CSUSTAINApp class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

189

SUSTAIN.h File Reference

#include "resource.h"

Detailed Description

This is header file for the CSUSTAINApp class.

 SUSTAIN–Programmer’s Manual: Simulation Engine

190

References

Bicknell, B.R., J.C. Imhoff, J.L. Kittle Jr., T.H. Jobes, and A.S. Donigian Jr. 2001. Hydrological Simulation

Program—FORTRAN, Version 12, User’s Manual. U.S. Environmental Protection Agency, National

Exposure Research Laboratory, Athens, GA., in cooperation with U.S. Geological Survey, Water

Resources Division, Reston, VA.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multi-objective genetic

algorithm: NSGAII. IEEE Transactions on Evolutionary Computation 6(2):182–197.

Glover, F., M. Laguna, and R. Marti. 2000. Fundamentals of Scatter Search and Path Relinking. Control

and Cybernetics 29(3):653–684.

Glover, F. 1977. Heuristics for Integer Programming Using Surrogate Constraints. Decision Sciences

8(7):156–166.

Hamon, W.R. 1961. Estimating Potential Evapotranspiration. Journal of the Hydraulic Division.

Proceedings of the American Society of Civil Engineers 87:107–120.

Huber, W.C., and R.E. Dickinson. 1988. Storm Water Management Model Version 4, User’s Manual. EPA

600/388/001a (NTIS PB88-236641/AS). U.S. Environmental Protection Agency, Athens, GA.

Kadlec, R.H., and R.L. Knight. 1996. Treatment Wetlands. CRC Press, Lewis Publishers, Boca Raton, FL.

Laguna, M., and R. Marti. 2002. The OptQuest Callable Library to Appear in Optimization Software Class

Libraries. eds. S. Voss and D.L. Woodruff, pp. 193–218. Kluwer Academic Publishers, Boston,

MA.

Linsley, R.K., J.B. Franzini, D.L. Freyberg, and G. Tchobanoglous. 1992. Water-Resources Engineering.

4th ed. McGraw-Hill, New York, NY.

Maidment, D.R., ed. 1993. Handbook of Hydrology. McGraw-Hill, New York, NY.

Partheniades, E. 1962. A Study of Erosion and Deposition of Cohesive Soils in Sult Water. Ph.D.

dissertation. University of California, Berkeley, CA.

Persson, J., N.L.G. Sommes, and T.H.F. Wong. 1999. Hydraulics efficiency of constructed wetlands and

ponds. Water Science and Technology 40(3):291–300.

Rossman, L.A. 2005. Stormwater Management Model User’s Manual, Version 5.0. EPA/600/R-05/040.

U.S. Environmental Protection Agency, Water Supply and Water Resources Division, National

Risk Management Research Laboratory, Cincinnati, OH.

USBR (U.S. Bureau of Reclamation). 2001. Water Measurement Manual. U.S. Department of the Interior,

Bureau of Reclamation, Washington, DC.

USEPA (U.S. Environmental Protection Agency). 1998. Estimation of Infiltration Rate in the Vadose Zone:

Compilation of Simple Mathematical Models Volume I. U.S. Environmental Protection Agency,

Washington, DC.

USEPA (U.S. Environmental Protection Agency). 2009. SUSTAIN - A Framework for Placement of Best

Management Practices in UrbanWatersheds to Protect Water Quality. EPA/600/R-09/095. U.S.

Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.

Wong, T.H.F., H.P. Duncan, T.D. Fletcher, and G.A. Jenkins. 2001. A unified approach to modelling urban

stormwater treatment. In Proceedings of the Second South Pacific Stormwater Conference. June

27–29, 2001, Auckland, New Zealand.

 SUSTAIN–Programmer’s Manual: Simulation Engine

191

Wong, T.H.F., and P.F. Breen. 2002. Recent advances in Australian practice on the use of constructed

wetlands for stormwater treatment. In Global Solutions for Urban Drainage, Proceedings of the

Ninth International Conference on Urban Drainage, eds. E.W. Strecker and W.C. Huber.

American Society of Civil Engineers, September 2002, Portland, OR. CD-ROM.

Zhen, X., and S.L. Yu. 2004. Optimal location and sizing of stormwater basins at watershed scale. Journal

of Water Resources Planning and Management 130(4):339–347

