NAC/Interim 2: 04/2010

INTERIM

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs)

FOR

BROMINE PENTAFLUORIDE

(CAS Reg. No. 7789-30-2)

BrF₅

1

2

14 15

17

18

19

20

25

29

PREFACE

3 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 4 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous 5 Substances (NAC/AEGL Committee) has been established to identify, review and interpret 6 relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic 7 chemicals. 8

9 AEGLs represent threshold exposure limits for the general public and are applicable to 10 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels – AEGL-1, AEGL-2 and AEGL-3 – are developed for each of five exposure periods (10 and 30 minutes, 1 11 12 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. 13 The three AEGLs are defined as follows:

AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per 16 cubic meter [ppm or mg/m^3]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

- 21 **AEGL-2** is the airborne concentration (expressed as ppm or mg/m^3) of a substance above 22 which it is predicted that the general population, including susceptible individuals, could 23 experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. 24
- **AEGL-3** is the airborne concentration (expressed as ppm or mg/m^3) of a substance above 26 27 which it is predicted that the general population, including susceptible individuals, could 28 experience life-threatening health effects or death.

30 Airborne concentrations below the AEGL-1 represent exposure levels that could produce 31 mild and progressively increasing but transient and nondisabling odor, taste, and sensory 32 irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentrations 33 above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity 34 of effects described for each corresponding AEGL. Although the AEGL values represent 35 threshold levels for the general public, including susceptible subpopulations, such as infants, 36 children, the elderly, persons with asthma, and those with other illnesses, it is recognized that 37 individuals, subject to unique or idiosyncratic responses, could experience the effects described 38 at concentrations below the corresponding AEGL.

1	TABLE OF CONTENTS	
2	PREFACE	2
3	LIST OF TABLES	5
4	EXECUTIVE SUMMARY	6
5	1. INTRODUCTION	7
6	2. HUMAN TOXICITY DATA	8
7	3. ANIMAL TOXICITY DATA	
8	3.1. Acute Lethality	
9	3.2. Nonlethal Toxicity	9
10	3.3. Neurotoxicity	9
11	3.4. Developmental/Reproductive Toxicity	9
12	3.5. Genotoxicity	9
13	3.6. Chronic Toxicity/Carcinogenicity	9
14	3.7. Summary	9
15	4. SPECIAL CONSIDERATIONS	9
16	4.1. Metabolism and Disposition	9
17	4.2. Mechanism of Toxicity	
18	4.3. Structure-Activity Relationships	
19	4.4. Other Relevant Information	
20	4.4.1. Species Variability	
21 22	4.4.2. Susceptible Populations4.4.3. Concentration-Exposure Duration Relationship	
23	4.4.4. Concurrent Exposure Issues	
24	5. DATA ANALYSIS FOR AEGL-1	
25	5.1. Summary of Human Data Relevant to AEGL-1	
26	5.2. Summary of Animal Data Relevant to AEGL-1	
27	5.3. Derivation of AEGL-1	
28	6. DATA ANALYSIS FOR AEGL-2	
29	6.1. Summary of Human Data Relevant to AEGL-2	
30	6.2. Summary of Animal Data Relevant to AEGL-2	
31	6.3. Derivation of AEGL-2	

NAC/Interim 2: 04/2010 Page 4 of 23

1	7. DA'	TA ANALYSIS FOR AEGL-3	
2	7.1.	Summary of Human Data Relevant to AEGL-3	14
3	7.2.	Summary of Animal Data Relevant to AEGL-3	14
4	7.3.	Derivation of AEGL-3	
5	8. SUI	MMARY OF AEGLS	14
6	8.1.	AEGL Values and Toxicity Endpoints	14
7	8.2.	Comparison with Other Standards and Guidelines	
8	8.3.	Data Adequacy and Research Needs	
9	9. REI	FERENCES	
10	APPEND	DIX A: DERIVATION OF AEGL VALUES	
11	APPEND	DIX B: CATEGORY GRAPH OF TOXICITY DATA AND AEGL VALUES	
12	APPEND	DIX C: DERIVATION SUMMARY	21

1			
2		LIST OF TABLES	
3			
4	S 1.	Summary of AEGL Values for Bromine Pentafluoride	7
5			
6	TABLE 1.	Chemical and Physical Properties	8
7	TABLE 2.	Summary of Acute Lethal Inhalation Data in Rats	9
8	TABLE 3.	Comparative 60-minute LC ₅₀ Values for Related Compounds (ppm)	11
9	TABLE 4.	AEGL-1 Values for Bromine Pentafluoride	12
10	TABLE 5.	Summary of AEGL Values for Chlorine Pentafluoride	13
11	TABLE 6.	AEGL-2 Values for Bromine Pentafluoride	13
12	TABLE 7.	AEGL-3 Values for Bromine Pentafluoride	14
13	TABLE 8.	Summary of AEGL Values	15
14		·	

3 4 5 6 7 8 9

1 2

agent and as an oxidizer in rocket propellant fuels. No data on human exposures were available. A single study provided information on lethal and non-lethal values for the rat. No information on time scaling could be ascertained from this study, although the data did indicate that the doseresponse curve for lethality is steep.

EXECUTIVE SUMMARY

Bromine pentafluoride (BrF_5) is a strong oxidizing chemical that is used as a fluorinating

10 11

In the absence of empirical data, no AEGL-1 values were developed.

12 In the absence of data relevant to derivation of AEGL-2 values for BrF_5 , data for the 13 structurally-related chemical, chlorine pentafluoride (ClF_5), were used. The data base for ClF_5 is more robust than the data base for BrF₅. Based on lethality data for the rat including the highest 14 15 60-minute non-lethal value for ClF₅ of 80 ppm and the highest 40-minute non-lethal value of 500 16 ppm for BrF₅, ClF₅ is considered more toxic than BrF₅. Setting the BrF₅ values equal to the more 17 toxic ClF₅ values should be protective. 18

19 The AEGL-2 values for ClF₅ are based on a series of exposures with four species 20 (MacEwen and Vernot 1972, 1973). Sensory irritation and reversible mild lung congestion were 21 observed in monkeys, rats, and mice following exposures to 30 ppm for 10 minutes, 20 ppm for 22 30 minutes, or 10 ppm for 60 minutes and following exposure of dogs to 30 ppm for 10 minutes. 23 For all exposures, effects were similar in the four species, although the 10-minute, 30 ppm 24 exposure was slightly more irritating. Therefore, separate data points, i.e., the 10-, 30-, and 60-25 minute values were used for the relevant AEGL-2 exposure durations. For contact irritants 26 without additional systemic effects, interspecies and intraspecies uncertainty factors of 3 each for 27 a total of 10 are generally applied (NRC 2001). The interspecies uncertainty factor of 3 is 28 supported by the similar toxic effects seen in four species of animals exposed to the same 29 concentrations of ClF₅ in the key study. In addition, 60-minute LC₅₀ values differed by a factor 30 of 3 among the four species. For chemicals with similar actions such as hydrogen fluoride (HF) 31 and chlorine trifluoride (ClF₃), interspecies and intraspecies uncertainty factors of 3 each for a 32 total of 10 were considered protective of sensitive individuals. The same total uncertainty factor 33 was applied to the ClF_5 values. In setting the BrF_5 values, a modifying factor was not applied to 34 the ClF₅ data because uncertainties stemming from the limited database were addressed by setting the BrF₅ values equal to those for ClF₅ despite its lower toxicity compared with ClF₅. For 35 ClF₅, a time scaling exponent of 1.9 ($C^{1.9}$ x t = k) was derived from rat lethality data. The 36 37 exponent of 1.9 was used to derive the 4- and 8-hour exposure values from the 60-minute value. 38 39 The AEGL-3 values for BrF_5 are based on the highest non-lethal value in the rat study of 40 Dost et al. (1970), 500 ppm for 40 minutes. This concentration was divided by inter- and intraspecies uncertainty factors of 3 each for a total of 10 and time scaled ($C^n x t = k$) using the 41 42 default values for n of 3 for shorter time intervals and 1 for longer time intervals (NRC 2001).

43 For similar irritants, CIF₃ and HF, interspecies and intraspecies uncertainty factors of 3 each were 44 applied for a total of 10. Based on similar irritant and corrosive properties for these halogen

- 45 fluoride chemicals, these uncertainty factors are applicable to BrF₅.
- 46
- 47 The calculated values are listed in the table below.

	S 1. Summary of AEGL Values for Bromine Pentafluoride					
Classification	10-min	30-min	1-hr	4-hr	8-hr	Endpoint (Reference)
AEGL-1 ^a	NR	NR	NR	NR	NR	No data
(Nondisabling)						
AEGL-2 ^b	3.0 ppm	2.0 ppm	1.0 ppm	0.48 ppm	0.33 ppm	Based on analogy with
(Disabling)	(21 mg/m^3)	(14 mg/m^3)	(7.2 mg/m^3)	(3.4 mg/m^3)	(2.4 mg/m^3)	chlorine pentafluoride
AEGL-3	79 ppm	55 ppm	33 ppm	8.3 ppm	4.2 ppm	Highest non-lethal
(Lethal)	(565 mg/m^3)	(393 mg/m^3)	(236 mg/m^3)	(59 mg/m^3)	(30 mg/m^3)	concentration in the rat
						(Dost et al. 1970)

^a The odor threshold is unknown; the odor has been described as sharp and penetrating.

^b The 10- and 30-minute and 1-hour AEGL-2 values are based on separate data points.

NR: Not recommended; AEGL-1 values are not recommended due to a lack of data.

1. INTRODUCTION

5 Bromine pentafluoride (BrF₅) is a colorless or light yellow liquid below its boiling point 6 of 40.8°C. Above its boiling point, BrF₅ is a colorless, pungent, and corrosive gas. It is stable to 7 heat, shock, and electric sparks (ACGIH 2003). Although nonflammable, fire may result from 8 contact of BrF₅ with combustibles at room temperature. Reaction with water is violent, with 9 potential release of bromine, fluorine, hydrogen bromide and hydrogen fluoride (Dost et al. 1968; 10 NIOSH 1992; Teitelbaum 2001). Chemical and physical properties are listed in Table 1.

11

2 3

4

12 Bromine pentafluoride is manufactured by the fluorination of bromine at 200°C in a metal 13 apparatus (O'Neil et al. 2001). It can also be prepared by heating a mixture of bromine 14 trifluoride and fluorine to 200°C. It is shipped in compressed gas containers under its own vapor pressure (Braker and Mossman 1980; NIOSH 1992). Predominant uses include as a fluorinating 15 16 agent to produce fluorocarbons and as an oxidizer in rocket propellant systems (ACGIH 2003). 17 Metal chlorides, bromides, and iodides are converted to fluorides by treatment with BrF₅ (Braker 18 and Mossman 1980). Uranium is converted to uranium hexafluoride by strong oxidizing agents 19 including BrF₅ (Bailey and Woytek 1994).

TABLE 1. Chemical and Physical Properties					
Parameter	Value	Reference			
Synonyms	Bromine fluoride	NIOSH 1992			
Chemical formula	BrF ₅	O'Neil et al. 2001			
Molecular weight	174.89	O'Neil et al. 2001			
CAS Reg. No.	7789-30-2	O'Neil et al. 2001			
Physical state	Fuming liquid below 40.3°C	O'Neil et al. 2001;			
	colorless gas above 40.3°C	NIOSH 1992			
Solubility in water	Explodes on contact with water	O'Neil et al. 2001			
Vapor pressure	328 mm Hg @ 20°C	NIOSH 1992			
Vapor density (air =1)	6.05 @ Boiling point	NIOSH 1992			
Liquid density (water =1)	2.48 @ 20°C	NIOSH 1992			
Melting point	-60.5°C	O'Neil et al. 2001			
Boiling point	40.8°C	O'Neil et al. 2001			
Flammability limits	Not flammable	NIOSH 1992			
Conversion factors	1 ppm = 7.15 mg/m^3 1 mg/m ³ = 0.14 ppm	Calculated			

1 2

3

2. HUMAN TOXICITY DATA

No information on lethality, sublethal effects, neurotoxicity, developmental/reproductive effects, genotoxicity, or carcinogenicity in humans was located. The odor threshold is unknown. According to Braker and Mossman (1980), BrF₅ provides adequate warning of its presence by its sharp, penetrating odor.

0 3. ANIMAL TOXICITY DATA

3.1. Acute Lethality

13 Dost et al. (1968) exposed groups of 10-14 male Sprague-Dawley rats to either 500 or 14 1000 ppm for various periods of time (Table 2). All rats (10/10) survived a 40-minute exposure to 500 ppm; whereas, 11/14 rats exposed to 500 ppm for 50 minutes died. All rats (10/10) 15 16 survived a 20-minute exposure to 1000 ppm, whereas, 12/12 exposed for 25 minutes died. Rats were observed for several days following exposures. All rats survived additional exposures to 17 500 ppm for time periods shorter than 40 minutes, and all rats survived additional exposures to 18 19 1000 ppm for time periods shorter than 20 minutes (data not provided). Exposed rats exhibited 20 corrosive damage to the lungs; corneal and conjunctival damage; yellow, sticky fur; and necrotic 21 damage to unprotected areas of the skin (neither concentrations nor exposure durations with 22 which to associate the reported signs were reported). 23

In citing their earlier, unpublished experiments on BrF_5 , Dost et al. (1970), reported a 1hour 95% lethal concentration of 500 ppm in rats. When groups of 4-6 male Sprague-Dawley rats inhaled 500 ppm BrF_5 for 30 minutes (half of the 95% lethal exposure time) and were sacrificed at intervals of 0, 2, 6, and 20 hours postexposure in order to study systemic fluorine distribution, no deaths were reported.

29

TABLE 2. Summary of Acute Lethal Inhalation Data in Rats					
Concentration (ppm) Exposure Time Effect					
1000	20 minutes	No deaths (0/10)			
	25 minutes	100% mortality (12/12)			
500	30 minutes	No deaths (0/4-6)			
	40 minutes	No deaths $(0/10)$			
	50 minutes	79% mortality (11/14)			
	60 minutes	95% mortality			

Source: Dost et al. 1968; 1970.

2		
3	3.2.	Nonlethal Toxicity
4 5 6		No additional data other than that cited in Section 3.1 were located.
0 7 8	3.3.	Neurotoxicity
9 10		No information on neurotoxicity in animals was located.
11 12	3.4.	Developmental/Reproductive Toxicity
13 14		No information on developmental/reproductive toxicity in animals was located.
15 16	3.5.	Genotoxicity
17 18		No information on genotoxicity was located.
19 20	3.6.	Chronic Toxicity/Carcinogenicity
21 22		No information on chronic toxicity/carcinogenicity was located.
23 24	3.7.	Summary
25 26 27 28 29	on neu	Toxicity data are available for one species, the rat. Highest non-lethal concentrations 00 ppm for 40 minutes and 1000 ppm for 20 minutes (Dost et al. 1968). No information rotoxicity, developmental/reproductive toxicity, genotoxicity, or chronic toxicity/ ogenicity was located in the available literature.
30 31 32	4. 4.1.	SPECIAL CONSIDERATIONS Metabolism and Disposition
33 34 35	and hy	Reaction of BrF_5 with water potentially releases bromine, fluorine, hydrogen bromide, drogen fluoride (Dost et al. 1968).
36 37	lining	The structurally-related chemical, chlorine pentafluoride (ClF ₅), reacts with the moist of the respiratory tract according to the following reaction (Darmer 1971):
38 39		$ClF_5 + 2H_2O \rightarrow ClO_2F + 4HF$

1 2 A similar reaction may occur for the brominated fluoride. 3 4 Dost et al. (1968) followed the distribution of fluoride in rat tissues following exposure to 5 500 ppm for 30 minutes. Initially, fluoride deposited at relatively high levels in most tissues 6 (lung, kidney, liver, spleen) and then declined over the 20-hour postexposure period. 7 Conversely, fluoride in bone increased from 300 to 353 µg F⁻/gm over the 20-hour postexposure 8 period. 9 10 4.2. **Mechanism of Toxicity** 11 Like other halogen fluorides, BrF5 is an irritant at the site of contact, and systemic effects 12 13 are unlikely to occur. The mechanism of toxicity is the same as that of the other halogen fluorides including ClF₃, ClF₅, and bromine trifluoride (BrF₃). BrF₅ exerts a direct corrosive 14 15 action on the lungs as well as on any exposed surface. Exposure results in destruction of lung 16 tissue and burns to the eyes and exposed skin (Dost et al. 1968). 17 18 4.3. **Structure-Activity Relationships** 19 20 According to Bailey and Woytek (1994), the chemical reactivity of the halogenated 21 fluorine compounds in order of decreasing reactivity are ClF₅, ClF₃, BrF₅, iodine heptafluoride 22 (IF₇), chlorine monofluoride (ClF), bromine trifluoride (BrF₃), and bromine monofluoride (BrF). 23 24 Dost et al. (1968) exposed male Sprague-Dawley rats to both ClF_3 and BrF_5 . The signs of 25 toxicity for the two chemicals were similar, with more severe damage to the respiratory tract resulting from the exposures to BrF₅. However, it is not clear that the authors were referring to 26 27 the same concentrations for both chemicals, as the reported exposures for BrF₅ were to 500 and 28 1000 ppm and the reported exposures to ClF_3 were to 400 and 800 ppm. 29 30 It may be anticipated that some relationships exist in the halogen fluorides between 31 structure and their respective toxicities in animals and humans. Symptoms during exposure to 32 BrF₅ are similar to those of other respiratory irritants including ClF₅, ClF₃ and HF. MacEwen 33 and Vernot (1971) and Darmer (1972) compared the toxicities of ClF_5 , oxygen difluoride (OF₂), 34 HF, and ClF₃. All of the data for these chemicals were generated at the Wright-Patterson AFB 35 Aerospace Medical Research Laboratory (as was the data on BrF₅ by Dost et al. 1968). Table 3 36 lists 60-minute LC₅₀ values for several species. The chemicals are listed in order of decreasing 37 toxicity. 38 39 The available data indicate that chlorine pentafluoride is more toxic than BrF₅. Because 40 BrF₅ was tested at only two exposure concentrations in one species (rat), there are few data with which to make relative toxicity comparisons. In rats exposed to ClF₅ for 30 minutes, the highest 41 42 nonlethal concentration was 163 ppm (30% mortality occurred at 185 ppm; see Table 5, Chlorine 43 Pentafluoride, this volume), while there were no deaths in rats exposed for 30 or 40 minutes to 44 500 ppm BrF₅, suggesting that ClF₅ is at least 3-fold more toxic. In rats exposed to ClF₅ for 60 45 minutes, a concentration of 136 ppm resulted in 80% mortality, while a similar response level (79% mortality) occurred after 50 minutes of exposure to 500 ppm BrF₅ (Table 2). Although the 46

1 exposure duration of 50 minutes for BrF_5 is slightly shorter, the concentration of 500 ppm is 2 higher than the concentration of 136 ppm for ClF_5 , suggesting lower relative toxicity for BrF_5 . 3

Using the rat data for BrF_5 (Table 2), a 60-minute LC_{50} of 375 ppm can be roughly estimated by assuming that 500 ppm represents the LC_{50} for the time point mid-way between 40 minutes (at which 500 ppm caused no mortality) and 50 minutes (at which 500 ppm caused 80% mortality). Starting with the estimate of 500 ppm as the 45-minute LC_{50} , time scaling (Cn x t = k, where n=1) can be used to estimate a 60-minute LC_{50} of 375 ppm. Using a value of 1.9 for n based on data from ClF₅, a 60-minute LC_{50} of 430 ppm is estimated.

10

11 While the estimated 60-minute LC_{50} values in rats are uncertain due to the extrapolations 12 used to calculate the values, these estimates can support the comparative toxicity of BrF₅and ClF₅ 13 because the comparison can be made within a single species. Comparing these values with the 14 60-minute rat LC_{50} of 122 ppm for ClF₅ indicates that ClF₅ may be 3- to 3.5-fold more toxic than 15 BrF₅. Even if the rat LC_{50} for BrF₅ is compared with ClF₅ LC_{50} values for other species (using 16 the monkey, dog, or mouse 60-minute LC_{50} values shown in Table 3 below, and neglecting 17 potential species differences in susceptibility), ClF₅ is shown to be more toxic than BrF₅ by a

- 18 factor ranging from 2- to 6.5-fold. Thus, the limited data indicate that BrF_5 is less toxic than 19 ClF_5 .
- 20

TABL	TABLE 3. Comparative 60-minute LC ₅₀ Values for Related Compounds (ppm)				
Species	OF ₂	ClF ₅	CIF ₃	HF	
Monkey	16.0	173	230	1774	
Dog	26.0	122	-	_	
Rat	2.6	122	299	1276	
Mouse	1.5	57	178	501	

Source: Darmer et al. 1972.

21

22 4.4. Other Relevant Information

23 4.4.1. Species Variability 24

No information on species variability was located. The only experimental animal species was the rat. In lethality studies with the related oxidizing chemical, ClF₅, the rat was similar in sensitivity to the dog and more sensitive than the monkey (Table 3; Darmer et al. 1972). For HF, the rat was intermediate in sensitivity between the monkey and mouse. For ClF₅, 60-minute LC₅₀ values differed by a factor of 3 among the four species listed in Table 3. For the endpoint of eye and nose irritation during exposures to ClF₃, the dog responded with more severe symptoms than the rat (Horn and Weir 1956).

32 33

4.4.2. Susceptible Populations

34

There are no human data specific to BrF_5 and sensitive individuals. As with other irritants, individuals with asthma may respond to exposure to irritants with increased bronchial responsiveness. The very old and those who are ill may also have increased susceptibility to the effects of irritants.

4.4.3. Concentration-Exposure Duration Relationship 1 2 3 The limited data on BrF₅ for the endpoint of lethality (Table 2) indicate that the doseresponse curve is steep. Using the two nonlethal data points, 500 ppm for 40 minutes and 1000 4 ppm for 20 minutes, an n value in the relationship $C^n x t = k$ of 1 might be approximated. For the 5 related chemical CIF₅, time-scaling for lethality at different exposure times vielded an n value of 6 7 1.9. The AEGL time-scaling relationship for HF for the endpoint of lethality in the rat is $C^2 x t =$ 8 k (NRC 2004). However, based on the limited lethality data for BrF₅, the more conservative 9 default time-scaling values for n of 3 and 1, respectively, for the shorter and longer exposure 10 durations were used when time-scaling the AEGL-3 values. 11 4.4.4. Concurrent Exposure Issues 12 13 14 No concurrent exposure issues were identified. 15 16 5. **DATA ANALYSIS FOR AEGL-1** 17 5.1. Summary of Human Data Relevant to AEGL-1 18 19 No human data relevant to development of AEGL-1 values were located. 20 21 5.2. Summary of Animal Data Relevant to AEGL-1 22 23 No animal data relevant to development of AEGL-1 values were located. 24 25 5.3. **Derivation of AEGL-1** 26 27 In the absence of chemical-specific data, no AEGL-1 values were developed for BrF₅

28 29

TABLE 4. AEGL-1 Values for Bromine Pentafluoride						
10-min	30-min	1-hr	4-hr	8-hr		
NR	NR	NR	NR	NR		

NR = Not recommended.

(Table 4).

```
30
31
```

34 35

36

38

32 6. DATA ANALYSIS FOR AEGL-2

33 6.1. Summary of Human Data Relevant to AEGL-2

No human data relevant to development of AEGL-2 values were located.

37 6.2. Summary of Animal Data Relevant to AEGL-2

- No animal data relevant to development of AEGL-2 values were located.
- 39 40

6.3. Derivation of AEGL-2

In the absence of data relevant to derivation of AEGL-2 values for BrF_5 , data for the structurally-related chemical, ClF_5 , were used. The data base for ClF_5 is more robust than the data base for BrF_5 . Based on lethality data for the rat including the highest 60-minute non-lethal value for ClF_5 of 80 ppm and the highest 40-minute non-lethal value of 500 ppm for BrF_5 , ClF_5 is considered more toxic than BrF_5 . Setting the BrF_5 values equal to the more toxic ClF_5 values should be protective.

9

1

2

10 The AEGL-2 values for ClF_5 (Table 5) are based on a series of exposures with four species (MacEwen and Vernot 1972, 1973). Sensory irritation and reversible mild lung 11 congestion were observed in monkeys, rats, and mice following exposures to 30 ppm for 10 12 13 minutes, 20 ppm for 30 minutes, or 10 ppm for 60 minutes and following exposure of dogs to 30 14 ppm for 10 minutes. For all exposures, effects were similar in the four species, although the 10-15 minute, 30 ppm exposure was slightly more irritating. Therefore, separate data points, i.e., the 16 10-, 30-, and 60-minute values were used for the relevant AEGL-2 exposure durations. For 17 contact irritants without additional systemic effects, interspecies and intraspecies uncertainty 18 factors of 3 each for a total of 10 are generally applied (NRC 2001). The interspecies uncertainty 19 factor of 3 is supported by the similar toxic effects seen in four species of animals exposed to the 20 same concentrations of ClF₅ in the key study. In addition, 60-minute LC₅₀ values differed by a 21 factor of 3 among the four species. For chemicals with similar actions such as HF and ClF₃, an 22 intraspecies uncertainty factor of 3 was considered protective of sensitive individuals. The total 23 uncertainty factor of 10 was applied to the ClF₅ values. A modifying factor was not applied to 24 the ClF_5 data because uncertainties stemming from the limited database were addressed by 25 setting the BrF₅ values equal to those for ClF₅ despite its lower toxicity compared with ClF₅ For ClF₅, a time scaling exponent of 1.9 ($C^{1.9}$ x t = k) was derived from rat lethality data. The 26 27 exponent of 1.9 was used to derive the 4- and 8-hour exposure values from the 60-minute value. 28 The AEGL-2 values for BrF₅, set equal to the AEGL-2 values for ClF₅, are listed in Table 6. 29

	TABLE 5. Summary of AEGL Values for Chlorine Pentafluoride					
Classification	10-min	30-min	1-hr	4-hr	8-hr	Endpoint (Reference)
AEGL-1 ^a	NR	NR	NR	NR	NR	Insufficient data
(Nondisabling)						
AEGL-2	3.0 ppm	2.0 ppm	1.0 ppm	0.48 ppm	0.33 ppm	Sensory irritation, mild lung
(Disabling)	(16 mg/m^3)	$11(mg/m^3)$	(5.3 mg/m^3)	(2.6 mg/m^3)	(1.8 mg/m^3)	congestion - monkey, dog,
						rat, and mouse (MacEwen
						and Vernot 1972; 1973)
AEGL-3	21 ppm	12 ppm	8.0 ppm	3.9 ppm	2.7 ppm	Highest non-lethal
(Lethal)	(112 mg/m^3)	(64 mg/m^3)	(43 mg/m^3)	(21 mg/m^3)	(1.8 mg/m^3)	concentration in rats
						(Darmer et al. 1972)

NR = Not recommended.

The 10- and 30-minute and 1-hour AEGL-2 values are based on separate data points.

TABLE 6. AEGL-2 Values for Bromine Pentafluoride							
10-min	30-min	1-hr	4-hr	8-hr			
3.0 ppm	2.0 ppm	1.0 ppm	0.48 ppm	0.33 ppm			
(21 mg/m^3)	(14 mg/m^3)	(7.2 mg/m^3)	(3.4 mg/m^3)	(2.4 mg/m^3)			

=						
	The 10-	and 30-minute and 1-hour AEGL-2 values are based on separate data points				
1						
2						
3	7.	DATA ANALYSIS FOR AEGL-3				
4	7.1.	Summary of Human Data Relevant to AEGL-3				
5						
6	No	b human data relevant to development of AEGL-3 values were located.				
7						
8	7.2.	Summary of Animal Data Relevant to AEGL-3				
9						
10	_	A single study provided lethal and non-lethal concentration-exposure durations for the				
11		ost et al. (1968) reported no deaths in rats following exposures to 500 ppm for 40 minutes				
12		000 ppm for 20 minutes (Table 2). Sacrifice times, up to 20 hours postexposure, were short				
13	-	ared with the usual two-week postexposure-observation period, but for most strong				
14		ing chemicals, death occurs during or shortly after exposure as concentrations approach				
15	lethali	ty (MacEwen and Vernot 1970; Darmer et al. 1972; Dost et al. 1974).				
16						
17	7.3.	Derivation of AEGL-3				
18						
19	T 1	Data were unavailable for calculation of a benchmark concentration or an LC_{01} .				
20		fore, the highest exposures that resulted in no mortality in rats were considered. These				
21		were 500 ppm for 40 minutes and 1000 ppm for 20 minutes (Dost et al. 1968). The longer				
22	-	ure duration was considered more reliable. For similar irritants, ClF_3 and HF, interspecies transpices uncertainty factors of 2 each were applied for a total of 10. Based on similar				
23		traspecies uncertainty factors of 3 each were applied for a total of 10. Based on similar				
24 25	irritant properties for these halogen fluoride chemicals, these uncertainty factors are applicable for BrF ₅ . The resulting 40-minute value is 50 ppm. For time scaling ($C^n x t = k$), the default					
23 26		of $n = 3$ and $n = 1$ for the shorter and longer exposure durations, respectively, were				
20 27		d. The time-scaled AEGL-3 concentrations for BrF_5 are summarized in Table 7.				
28		lations are in Appendix A.				
28 29	Carcu					
-		TABLE 7. AEGL-3 Values for Bromine Pentafluoride				

TABLE 7. AEGL-3 Values for Bromine Pentafluoride						
10-min 30-min 1-hr 4-hr 8-hr						
79 ppm	55 ppm	33 ppm	8.3 ppm	4.2 ppm		
(565 mg/m^3)	(393 mg/m^3)	(236 mg/m^3)	(59 mg/m^3)	(30 mg/m^3)		

Because of the sparse data base for BrF₅, application of a modifying factor of 2 was 31 considered when deriving AEGL-3 values. A modifying factor was not applied because the 32 33 derived AEGL-3 values reflect the toxicity of BrF₅ relative to that of ClF₅ and ClF₃. The AEGL-3 values for the slightly more toxic ClF₃ for the 10-minute through 8-hour exposure durations are 34 35 84, 36, 21, 7.3, and 7.3 ppm, respectively (NRC 2007).

36

39

37 8. **SUMMARY OF AEGLS**

38 8.1. **AEGL Values and Toxicity Endpoints**

40 The AEGL values for BrF₅ are summarized in Table 8. Appendix B is a summary of the derivations. 41

TABLE 8. Summary of AEGL Values					
	Exposure Duration				
Classification	10-min	30-min	1-hr	4-hr	8-hr
AEGL-1 (Nondisabling)	NR	NR	NR	NR	NR
AEGL-2 (Disabling)	3.0 ppm	2.0 ppm	1.0 ppm	0.48 ppm	0.33 ppm
AEGL-3 (Lethal)	79 ppm	55 ppm	33 ppm	8.3 ppm	4.2 ppm
NR = Not recommended.					

The 10- and 30-minute and 1-hour AEGL-2 values are based on separate data points.

8.2. Comparison with Other Standards and Guidelines

Bromine pentafluoride has limited uses, and only a few standards and guidelines have been developed. The American Conference of Governmental Industrial Hygienists (ACGIH 2003) has assigned a TLV of 0.1 ppm as an 8-hour TWA exposure that should not be exceeded at any time during a workday. The TLV-TWA was based on the toxicologic analogy with ClF₃ which at the time of the recommendation (1969) had a TLV-Ceiling of 0.1 ppm. The NIOSH REL-TWA for BrF₅ is 0.1 ppm (NIOSH 1977). NIOSH has not established an IDLH. There is no OSHA PEL for BrF₅.

8.3. Data Adequacy and Research Needs

No human data were available. A single study that provided lethal and non-lethal values for the rat was available to derive AEGL-3 values. In the absence of empirical data for the AEGL-1, AEGL-1 values were not recommended. AEGL-2 values were based on the relative reactivity and toxicity of BrF₅ to the similar oxidizing chemical ClF₅.

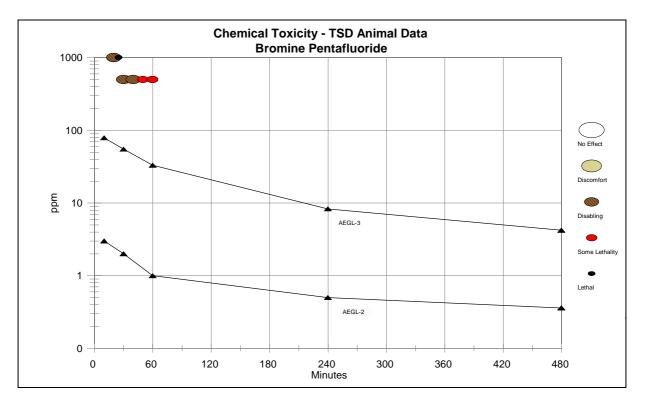
9. **REFERENCES**

- ACGIH (American Conference of Government and Industrial Hygienists). 2003. Documentation of the
 Threshold Limit Values and Biological Exposure Indices: Bromine Pentafluoride. Cincinnati, OH:
 ACGIH.
 - Bailey, W.I. and A.J. Woytek. 1994. Fluorine Compounds, Inorganic (Halogens). pp. 342-355 in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed. Vol. 11. New York: John Wiley & Sons.
- Braker, W. and A.L. Mossman. 1980. Bromine pentafluoride. In Matheson Gas Data Book, 6th ed.
 Lyndhurst, NJ: Matheson.
- Dalbey, W. 1996. Evaluation of the toxicity of hydrogen fluoride at short exposure times. Petroleum
 Environmental Research Forum Project 92-09, performed at Stonybrook Laboratories Inc.,
 Pennington, NJ.
- Darmer, K.I. 1971. The acute toxicity of chlorine pentafluoride. AMRL-TR-71-120, Paper No. 21,
 Proceedings of the 2nd Annual Conference on Environmental Toxicology, 31 August, 1 and 2
 September 1971, Wright-Patterson Air Force Base, Ohio.

26

27 28

31


1 2 3 4	Darmer, K.I., C.C. Haun, and J.D. MacEwen. 1972. The acute inhalation toxicity of chlorine pentafluoride. Am. Ind. Hygiene Assoc. J. 33:661-668.
5 6 7 8	Dost, F.N., D.J. Reed, A. Finch, and C.H. Wang. 1968. Metabolism and Pharmacology of Inorganic and Fluorine Containing Compounds. AMRL-TR-67-224, AD 681 161, Available from National Technical Information Center, Springfield, VA.
9 10 11 12	Dost, F.N., D.J. Reed, T.D. Cooper, and C.H. Wang. 1970. Fluorine distribution in rats following acute intoxication with nitrogen and halogen fluorides and with sodium fluoride. Toxicol. Appl. Pharmacol. 17:573-584.
13 14 15	Dost, F.N., D.J. Reed. V.N. Smith and C.H. Wang. 1974. Toxic properties of chlorine trifluoride. Toxicol. Appl. Pharmacol. 27:527-536.
16 17 18	Horn, H.J. and R.J. Weir. 1956. Inhalation toxicology of chlorine trifluoride. II. Chronic toxicity. A.M.A. Archives Indust. Health 13:340-345.
19 20 21 22	MacEwen, J.D. and E.H. Vernot. 1970. Toxic Hazards Research Unit Annual Technical Report: 1970. AMRL-TR-70-77, Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, OH; National Technical Information Service, Springfield, VA.
23 24 25 26	MacEwen, J.D. and E.H. Vernot. 1971. Toxic Hazards Research Unit Annual Technical Report: 1971. AD-734 543; AMRL-TR-71-83; available from National Technical Information Service, Springfield, VA.
27 28 29 30	MacEwen, J.D. and E.H. Vernot. 1972. Toxic Hazards Research Unit Annual Technical Report: 1972. AD-755 358; AMRL-TR-72-62; available from National Technical Information Service, Springfield, VA.
31 32 33 34	MacEwen, J.D. and E.H. Vernot. 1973. Toxic Hazards Research Unit Annual Technical Report: 1973. AD-771 025; AMRL-TR-73-83; available from National Technical Information Service, Springfield, VA.
35 36 37	NIOSH (National Institute for Occupational Safety and Health). 1992. Occupational Safety and Health Guideline for Bromine Pentafluoride. U.S. Department of Labor.
38 39 40	NIOSH (National Institute for Occupational Safety and Health). 1997. NIOSH Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services. June, 1997.
41 42 43	NRC (National Research Council). 2001. Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Hazardous Chemicals. Washington, DC: National Academy Press.
44 45 46	NRC (National Research Council). 2004. Acute Exposure Guidelines for Selected Airborne Chemicals: Vol. 4, pp. 123-197. Washington, DC: National Academy Press.
47 48 49	NRC (National Research Council). 2007. Acute Exposure Guidelines for Selected Airborne Chemicals: Vol. 5, pp. 53-83. Washington, DC: National Academy Press.
50 51 52	O'Neil, M.J., A. Smith, and P.E. Heckelman, eds. 2001. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 13 th ed. Whitehouse Station, NJ: Merck & Co., Inc.

- Teitelbaum, D.T. 2001. The Halogens. In Patty's Industrial Hygiene and Toxicology, 5th ed., Vol 3, pp. 731-825. New York: John Wiley & Sons, Inc.
- 1 2 3 4 5 6 U.S. EPA (U.S. Environmental Protection Agency). 2006. Interim Acute Exposure Guideline Values for Chlorine Pentafluoride. Washington, DC: U.S. EPA.

1	1	APPENDIX A: DERIVATION OF AEGL VALUES				
2						
3	Derivation of AEGL-1:					
4 5	Not recommended due to lack of empirical data.					
6	Derivation of AEGI	_2.				
7		th ClF ₅ (see Chlorine Pentafluoride, this volume).				
8						
9	Derivation of AEGI	3 :				
10	Key Study:	Dost et al. 1970				
11						
12	Toxicity endpoint:	40-minute highest non-lethal concentration, 500 ppm in the rat.				
13						
14	Uncertainty factors:	Interspecies and intraspecies of 3 each for a total of 10; these factors				
15		should be protective of sensitive subjects exposed to irritants (NRC 2001).				
16 17	Time coolings	Default values of $n = 2$ and $1 (C^{n} + t = 1)$ for shorton and langer every				
17	Time scaling:	Default values of $n = 3$ and 1 ($C^n x t = k$) for shorter and longer exposure durations, respectively (NRC 2001).				
18 19		durations, respectively (IVIC 2001).				
20	Modifying factor:	None applied				
21						
22	Calculations:	$C^3 x t = k$				
23		$(500 \text{ ppm}/10)^3 \text{ x } 40 \text{ minutes} = 5.0 \text{ x } 10^6 \text{ ppm}^3 \cdot \text{minutes}$				
24		$C^1 x t = k$				
25		$(500 \text{ ppm}/10) \ge 40 \text{ minutes} = 2.0 \ge 10^3 \text{ ppm}^3 \cdot \text{minutes}$				
26		6 2 1/2				
27	10-minute AEGL-3:	$C = ([5.0 \times 10^6 \text{ ppm}^3 \cdot \text{minutes}/10 \text{ minutes}])^{1/3}$				
28		C = 79 ppm				
29 20	20 min to AECL 2	$C = (15.0 - 10^6 - 3^3$				
30 31	30-minute AEGL-3:	$C = ([5.0 \times 10^6 \text{ ppm}^3 \cdot \text{minutes}/30 \text{ minutes}])^{1/3}$				
31 32		C = 55 ppm				
33	1-hour AEGL-3:	$C = 2.0 \times 10^3 \text{ ppm}^3 \cdot \text{minutes}/60 \text{ minutes})$				
34	T HOUT THEOL 5.	C = 33 ppm				
35						
36	4-hour AEGL-3:	$C = 2.0 \times 10^3 \text{ ppm}^3 \cdot \text{minutes}/240 \text{ minutes}$				
37		C = 8.3 ppm				
38						
39	8-hour AEGL-3:	$C = 2.0 \times 10^3 \text{ ppm}^3 \cdot \text{minutes}$				
40		C = 4.2 ppm				

APPENDIX B: CATEGORY GRAPH OF TOXICITY DATA AND AEGL VALUES

Data:

For Category 0 = No effect, 1 = Discomfort, 2 = Disabling, SL = Some Lethality, 3 = Lethal					
Source	Species	ppm	Minutes	Category	
NAC/AEGL-1		NR	10	AEGL	
NAC/AEGL-1		NR	30	AEGL	
NAC/AEGL-1		NR	60	AEGL	
NAC/AEGL-1		NR	240	AEGL	
NAC/AEGL-1		NR	480	AEGL	
NAC/AEGL-2		3	10	AEGL	
NAC/AEGL-2		2	30	AEGL	
NAC/AEGL-2		1	60	AEGL	
NAC/AEGL-2		0.48	240	AEGL	
NAC/AEGL-2		0.33	480	AEGL	
NAC/AEGL-3		79	10	AEGL	
NAC/AEGL-3		55	30	AEGL	
NAC/AEGL-3		33	60	AEGL	
NAC/AEGL-3		8.3	240	AEGL	
NAC/AEGL-3		4.2	480	AEGL	
Dost et al. 1970	rat	500	30	2, no mortality	
		500	40	2, no mortality	
		500	50	SL, 79% mortality	
		500	60	SL, 95% mortality	
		1000	20	2, no mortality	
		1000	25	3, 100% mortality	

3

NR = Not recommended.

APPENDIX C: DERIVATION SUMMARY

ACUTE EXPOSURE GUIDELINE LEVELS FOR BROMINE PENTAFLUORIDE (CAS Reg. No. 7789-30-2)

AEGL-1 VALUES							
10 min 30 min 1 hr 4 hr 8 hr							
NR	NR	NR	NR	NR			
Key Reference:							
Test Species/Strain/N	Number:						
Exposure Route/Concentration/Duration:							
Effects:							
Endpoint/Concentration/Rationale: Due to insufficient data, values are not recommended.							
Uncertainty Factors/Rationale:							
Modifying Factor:							
Animal to Human Dosimetric Adjustment:							
Time Scaling:							
Data Adequacy: No data meets the definition of an AEGL-1							

6 NR = Not recommended.

AEGL-2 VALUES						
10 min	30 min	1 hr	4 hr	8 hr		
3.0 ppm	2.0 ppm	1.0 ppm	0.48 ppm	0.33 ppm		
Key References: The	e following references	and derivations are for	chlorine pentafluoride	e (ClF ₅):		
		Toxic Hazards Research				
		le from National Technica				
		Toxic Hazards Research le from National Technica				
Test Species/Strain/S	Sex/Number: Monkey/	rhesus/male and female/6	; dog/beagle/not specifi	ied/8; rat/Sprague-		
	; mouse/ICR/male/30					
-		Inhalation: 30 ppm for 10 buse); 30 ppm for 10 minu	· • • • • •	30 minutes; 10 ppm		
Effects: Monkeys: lac	crimation and nausea; t	ransient weight gain depre	ssion; congested lungs	following 60-		
		ion and salivation; no gros				
		m for 10 minutes, 20 ppm				
	resulted in strong signs of irritation (in several species) which is consistent with the definition of the					
AEGL-2.						
		oint for ClF ₅ was used fo	r BrF ₅ .			
Uncertainty Factors/Rationale:						
Total uncertainty factor: 10						
Interspecies : 3 - Considered sufficient for similar irritants such as ClF_3 and HF (breakdown product). In						
addition, LC_{50} values differed by a factor of 3 among four species. Intraspecies : 3 - Considered sufficient for similar irritants such as CIF ₃ and HF. For CIF ₅ , there was little						
species variation seen among four animal species. The concentration that induces irritation among the						
general population should not vary greatly among individuals.						
Modifying Factor: Not applicable						
Animal to Human Dosimetric Adjustment: Insufficient data.						
Time Scaling: $C^n x t = k$ where $n = 1.9$; based on the time-concentration relationship for ClF ₅ LC ₅₀ values in rats						
for exposure durations of 15, 30, and 60 minutes; data from Darmer et al. (1972).						
Data Adequacy: Two species were tested. Two additional species (dog and mouse) tested at similar						
concentrations sl	concentrations showed similar effects. Values are in general agreement with those of similar irritants.					

AEGL-3 VALUES							
10 min	30 min 1 hr 4 hr 8 h			8 hr			
79 ppm	55 ppm	33 ppm	8.3 ppm	4.2 ppm			
Key Reference:							
		H. Wang. 1968. Metabol		e			
		AMRL-TR-67-224, AD 6	581 161, Available from	n National Technical			
	n Center, Springfield, V						
-	^	ague-Dawley/male/10-12					
-		: Inhalation: 500 ppm for	30, 40, 50, or 60 minut	es or 1000 ppm for			
20 or 25 minute	S.						
Effects:							
Concentration	<u>Time</u> <u>Effec</u>	<u>et</u>					
· · FF	30 minutes no dea	aths					
FF	40 minutes no dea						
· · FF		nortality					
· · · · · · · · · · · · · · · · · · ·	60 minutes 95% mortality						
FF	20 minutes no deaths						
1000 ppm 25 minutes 100% mortality							
Endpoint/Concentration/Rationale: The highest non-lethal concentration of 500 ppm for 40 minutes was							
chosen as the point of departure.							
Uncertainty Factors/Rationale:							
Total uncertainty factor: 10							
Interspecies : 3 - Considered sufficient for similar irritants such as ClF_3 and HF (breakdown product).							
Intraspecies: 3 - Considered sufficient for related chemicals, ClF ₃ and HF. The concentration at which							
extreme irritation and pulmonary damage may lead to lethality should not differ by more than a factor							
of 3 among the general population.							
Modifying Factor: Not applicable							
Animal to Human Dosimetric Adjustment: Insufficient data.							
Time Scaling: $C^n x t = k$ where $n = 3$ and 1 for shorter and longer exposure durations, respectively (NRC 2001).							
Data Adequacy: The data set is sparse, but data on related chemicals allowed structure-activity relationships to							
be made. Values are in general agreement with those of similar irritants.							