

Technical Support Document

Estimating the Benefit per Ton of Reducing PM_{2.5} Precursors from 17 Sectors

U.S. Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, NC 27711

January 2013

CONTACT INFORMATION

This document has been prepared by staff from the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. Questions related to this document should be addressed to Neal Fann or Charles Fulcher, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Health and Environmental Impacts Division, Risk and Benefits Group, Research Triangle Park, North Carolina 27711 (email: fann.neal@epa.gov, fulcher.charles@epa.gov).

Overview

This Technical Support Document (TSD) describes an approach for estimating the average avoided human health impacts, and monetized benefits related to emissions of PM_{2.5} and PM_{2.5} precursors including NO_x and SO₂ from 17 sectors using the results of source apportionment photochemical modeling. We focus in particular on the aspects of our approach that represent a change from the benefit per ton calculation methodology described in Fann, Fulcher and Hubbell (2009) and subsequently applied in several EPA RIAs. We also describe the ways in which these new estimates can improve our characterization of the PM_{2.5}-related health benefits from the sectors that were modeled, as well as limitations and uncertainties associated with application of these estimates. We summarize the benefit per ton estimates for each of the 17 emission sectors. These source-apportionment based benefit per ton estimates are also discussed in Fann, Baker and Fulcher (2012).

Summary of Calculations

The procedure for calculating benefit per ton coefficients follows three steps, shown graphically in Figure 1:

- 1. Use source apportionment photochemical modeling to predict ambient concentrations of primary PM_{2.5}, nitrate and sulfate attributable to each of 17 emission sectors across the Continental U.S.; see below for a summary of the sectors modeled.
- 2. For each sector, estimate the health impacts, and the economic value of these impacts, associated with the attributable ambient concentrations of primary PM_{2.5}, sulfate and nitrate PM_{2.5} using the environmental Benefits Mapping and Analysis Program (BenMAP v4.0.66)¹.
- 3. For each sector, divide the $PM_{2.5}$ -related health impacts attributable to each type of $PM_{2.5}$, and the monetary value of these impacts, by the level of associated precursor emissions. That is, primary $PM_{2.5}$ benefits are divided by direct $PM_{2.5}$ emissions, sulfate benefits are divided by SO_2 emissions, and nitrate benefits are divided by NO_x emissions.

 $^{^{1}}$ In this stage we estimate the PM_{2.5}-related impacts associated with changes in directly emitted PM_{2.5}, nitrate and sulfate separately, so that we may ultimately calculate the benefit per ton reduced of the corresponding PM_{2.5} precursor, or directly emitted PM_{2.5}, in step 3. When estimating these impacts we apply effect coefficients that relate changes in total PM_{2.5} mass to the risk of adverse health outcomes; we do not apply effect coefficients that are differentiated by PM_{2.5} specie.

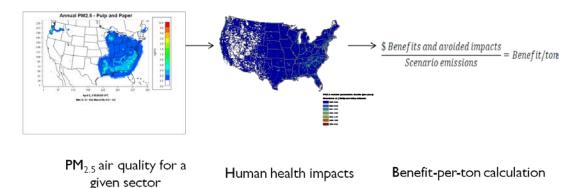


Figure 1. Conceptual overview of the steps for calculating benefit per-ton estimates

The example above depicts the total $PM_{2.5}$ contribution from the pulp and paper sector, though we repeat this process for each of the 17 sectors, which include:

- 1. Aircraft, locomotives and marine vessels
- 2. Area sources
- 3. Cement kilns
- 4. Coke ovens
- 5. Electric arc furnaces
- 6. Electricity generating units
- 7. Ferroalloy facilities
- 8. Industrial point sources
- 9. Integrated iron and steel facilities
- 10. Iron and steel facilities
- 11. Non-road mobile sources
- 12. Ocean-going vessels
- 13. On-road mobile sources
- 14. Pulp and paper facilities
- 15. Refineries
- 16. Residential wood combustion
- 17. Taconite mines

The "Area sources" and "Industrial point sources" categories are agglomerations of sectors that were not modeled separately. When selecting a benefit per ton estimate for use with a sector not specifically modeled, it is necessary to determine which composite sector is the best match with respect to the source characteristics that would affect the level of benefits. These attributes include the proximity to receptor populations, the geographic distribution of sources, and the release parameters of the source (e.g., stack height).

Readers interested in a full discussion of the air quality modeling performed to generate these benefit per ton estimates may consult "Air Quality Modeling Technical Support Document: Source Sector Assessments" (US EPA 2011a). Ambient PM_{2.5}

concentrations attributable to each sector were projected from the 2005 baseline to 2016 to represent growth and the application of controls. The starting point for the projections was the 2005 v4.3 emissions platform (US EPA 2005). EGU emission estimates for 2016 are from the Integrated Planning Model (IPM). The 2016 projection included emission reductions related to the NO_x State Implementation Plan Call (US EPA 1998), the Maximum Achievable Control Technology (MACT) Standards for Industrial Boilers (US EPA 2011d) and Reciprocating Internal Combustion Engines (US EPA 2010b), and the proposed Transport Rule affecting emissions from Electricity Generating Units (US EPA 2010c). Control and growth factors, including known plant shut-downs and economic growth in some sectors, were applied to a subset of the 2005 industrial point sources and area sources to create the 2016 projection. Other North American emissions are based on a 2006 Canadian inventory and 1999 Mexican inventory, which are not grown or controlled when used as part of future year baseline inventories (US EPA 2011b; US EPA 2011c). Global emissions are included in the modeling system through boundary condition inflow to the 36 km CAMx simulation. The initial and boundary conditions for the 36 km CAMx simulation are based on 3-hourly output from an annual 2005 GEOS-CHEM simulation (standard version 7-04-11). Table 1 summarizes the total precursor emissions attributable to each sector in 2016. Appendix B of this TSD includes plots of the PM_{2.5} levels attributed to each of these sectors for which we estimated benefit per-ton metrics.

Sector	VOC	NO_{x}	$PM_{2.5}^{a}$	SO ₂	NH ₃
Aircraft, locomotives and marine vessels	43,547	1,342,849	35,604	9,087	940
Area sources	9,380,925	1,633,261	325,820	1,243,154	126,802
Cem ent kilns	3,059	130,536	1,106	48,737	679
Coke ovens	7,821	16,110	368	27,952	1,084
Electric arc furnaces	3,560	15,707	622	6,088	119
Electricity generating units	63,198	1,826,582	30,078	3,793,362	36,706
Ferroalloy facilities	150	3,412	201	4,580	510
Industrial point sources	1,259,745	1,263,276	67,614	877,620	140,948
Integrated iron and steel facilities	9,620	31,925	2,856	29,045	167
Iron and steel facilities	14,384	5,867	1,366	3,590	166
Non-road mobile sources	1,953,067	1,259,578	106,975	2,879	2,345
Ocean-going vessels	66,093	1,534,234	7,407	439,987	0
On-road mobile sources	2,357,108	4,239,971	118,986	26,786	82,094
Pulp and paper facilities	121,597	240,139	10,067	170,393	10,859
Refineries	111,391	118,206	7,379	132,337	3,556
Residential wood combustion	538,466	33,786	192,492	4,720	6,586
Taconite mines	606	41,350	884	8,823	4

Table 1. 2016 emissions by sector (tons per year)

^a This value includes elemental and organic carbon, which were used for the benefit per ton calculations.

The photochemical modeling used here also produced estimates of ozone levels attributable to each sector. However, the complex non-linear chemistry governing ozone formation prevented us from developing a complementary array of ozone benefit per ton values. This limitation notwithstanding, we anticipate that the ozone-related benefits associated with reducing emissions of NO_x and VOC for many of these sectors could be substantial.

Finally, it is important to note that while most VOCs emitted are oxidized to carbon dioxide (CO₂) rather than to PM, a portion of VOC emission contributes to ambient PM_{2.5} levels as organic carbon aerosols (US EPA 2009). Therefore, reducing these emissions would reduce PM_{2.5} formation, human exposure to PM_{2.5}, and the incidence of PM_{2.5}-related health effects. However, we have not quantified VOC benefit per ton estimates in this analysis. Uncertainties in both the origin and quantity of emissions contributing to secondary organic aerosol on regional scales limit the quality of regional scale modeling of secondary organic carbon. Modeling and monitoring the relative amount of organic particles that are formed through secondary processes, versus primarily emitted organic particles, is highly uncertain. While the relative contributions of different sources to regional sulfate and nitrate can be quantified with certainty, the contributions from different sources to secondary organic aerosol are less clear. Carbonaceous aerosol reflects a complex mixture of hundreds to thousands of organic carbon compounds, many of which have not been successfully quantified. Despite progress that has been made in understanding the origin, properties, and key formation processes of SOA, it remains the least understood component of PM2.5 (Federal Register; 40CFR Parts 51, 72, 75, and 96 Rule to Reduce Interstate Transport of Fine Particulate Matter and Ozone (Interstate Air Quality Rule); Proposed Rule. January 30, 2004).

Below we provide an expanded discussion of each of the latter two steps to the calculation—estimating health impacts and economic value of PM_{2.5} attributable to each sector and calculating the benefit per ton coefficients. The discussion of these topics is not intended to be exhaustive, and readers interested in learning more about our approach to performing an air pollution health impact and benefits analysis may consult the PM NAAQS RIA (US EPA 2012).

Estimating the number of PM_{2.5}-related health impacts attributable to each sector

In this stage of the analysis we performed a Health Impact Assessment (HIA), which quantifies the changes in the incidence of adverse health impacts resulting from changes in human exposure to PM_{2.5} from each sector. HIAs are a well-established approach for estimating the retrospective or prospective change in adverse health impacts expected to result from population-level changes in exposure to pollutants (Levy et al. 2009). PC-based

tools such as the environmental <u>Ben</u>efits <u>Mapping and Analysis Program</u> (BenMAP) can systematize health impact analyses by applying a database of key input parameters, including health impact functions and population projections (Abt Associates Inc. 2012). Analysts have applied the HIA approach to estimate human health impacts resulting from hypothetical changes in pollutant levels (Hubbell et al. 2004; Davidson et al. 2007; Tagaris et al. 2009).

The HIA approach used in this analysis involves three basic steps: (1) utilizing CAMx--generated estimates of $PM_{2.5}$ levels attributed to each sector; (2) determining the subsequent change in population-level exposure; (3) calculating health impacts by applying concentration-response relationships drawn from the epidemiological literature to this change in population exposure (Hubbell et al. 2009). This procedure is operationalized within BenMAP using a health impact function.

A typical health impact function looks as follows:

$$\Delta y = y_o \cdot \left(e^{\beta \cdot \Delta x} - 1\right) \cdot Pop$$

where y_0 is the baseline incidence rate for the health endpoint being quantified (for example, a health impact function quantifying changes in mortality would use the baseline, or background, mortality rate for the given population of interest); *Pop* is the population affected by the change in air quality, whose size and distribution we have projected to the analysis year; Δx is the change in air quality; and β is the effect coefficient drawn from the epidemiological study. Tools such as BenMAP can systematize the HIA calculation process, allowing users to draw upon a library of existing air quality monitoring data, population data and health impact functions.

Figure 2 provides a simplified overview of this approach, using PM_{2.5}-related premature mortality as an example, though the procedure is generally the same for other health endpoints. This sequence of steps is performed for each of the 17 sectors for each PM_{2.5} component (primary PM_{2.5}, sulfate and nitrate). The PM_{2.5} health endpoints quantified and the health impact functions applied in this analysis are consistent with the PM NAAQS RIA (US EPA 2012). That RIA includes a detailed discussion of each of the data inputs, analytical assumptions and sources of uncertainty. In the interest of brevity, we do not repeat these here in detail. However, it is worth noting that we exclude the value of several important non-health endpoints, including recreational and residential visibility, climate-related impacts and ecological endpoints. Table 2 below summarizes the endpoints quantified in this benefit per ton TSD.

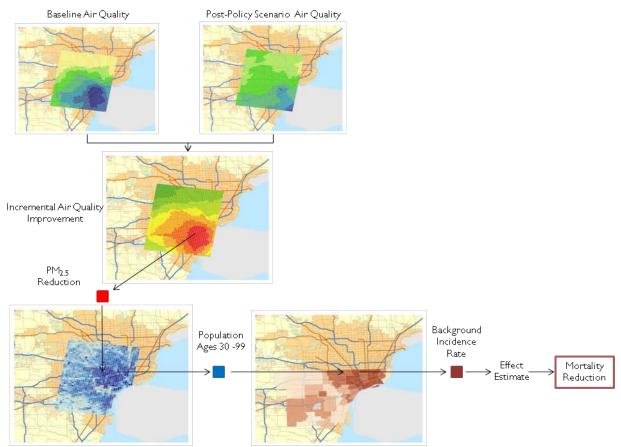


Figure 2. Illustration of BenMAP Approach

Category	Specific Effect	Effect Has Been Quantified	Effect Has Been Monetized	More Information in PM NAAQS RIA
Improved Human Hea	lth			
Reduced incidence of premature mortality from exposure to	Adult premature mortality based on cohort study estimates and expert elicitation estimates (age >25 or age >30)	✓	4	Section 5.6
PM _{2.5}	Infant mortality (age <1)	✓	✓	Section 5.6
	Non-fatal heart attacks (age > 18)	✓	✓	Section 5.6
	Hospital admissions—respiratory (all ages)	✓	~	Section 5.6
	Hospital admissions—cardiovascular (age >20)	✓	~	Section 5.6
	Emergency room visits for asthma (all ages)	✓	~	Section 5.6
	Acute bronchitis (age 8-12)	✓	✓	Section 5.6
	Lower respiratory symptoms (age 7-14)	✓	✓	Section 5.6
	Upper respiratory symptoms (asthmatics age 9-11)	✓	✓	Section 5.6
	Asthma exacerbation (asthmatics age 6- 18)	✓	✓	Section 5.6
	Lost work days (age 18-65)	✓	✓	Section 5.6
Reduced incidence of morbidity from	Minor restricted-activity days (age 18- 65)	✓	✓	Section 5.6
exposure to PM _{2.5}	Chronic Bronchitis (age >26)	1	1	Section 5.6
	Emergency room visits for cardiovascular effects (all ages)	1	1	Section 5.6
	Strokes and cerebrovascular disease (age 50-79)	1	1	Section 5.6
	Other cardiovascular effects (e.g., other ages)			PM ISA ²
	Other respiratory effects (e.g., pulmonary function, non-asthma ER visits, non-bronchitis chronic diseases, other ages and populations)			PM ISA ²
	Reproductive and developmental effects (e.g., low birth weight, pre-term births, etc)			PM ISA ^{2,3}
	Cancer, mutagenicity, and genotoxicity effects			PM ISA ^{2,3}

Table 2. Human health effects of PM2.5 quantified and not quantified in this analysis

¹We assess these benefits qualitatively due to time and resource limitations for this analysis. In the PM NAAQS RIA, these benefits were quantified in a sensitivity analysis, but not in the core analysis.

 2 We assess these benefits qualitatively because we do not have sufficient confidence in available data or methods.

³ We assess these benefits qualitatively because current evidence is only suggestive of causality or there are other significant concerns over the strength of the association.

Estimating the economic value of health impacts attributable to each sector

After quantifying the change in adverse health impacts, the next step is to estimate the economic value of these avoided impacts. The appropriate economic value for a change in a health effect depends on whether the health effect is viewed *ex ante* (before the effect has occurred) or *ex post* (after the effect has occurred). Reductions in ambient concentrations of air pollution generally lower the risk of future adverse health effects by a small amount for a large population. The appropriate economic measure is therefore *ex ante* Willingness to Pay (WTP) for changes in risk. However, epidemiological studies generally provide estimates of the relative risks of a particular health effect avoided due to a reduction in air pollution. A convenient way to use this data in a consistent framework is to convert probabilities to units of avoided statistical incidences. This measure is calculated by dividing individual WTP for a risk reduction by the related observed change in risk. For example, suppose a measure is able to reduce the risk of premature mortality from 2 in 10,000 to 1 in 10,000 (a reduction of 1 in 10,000). If individual WTP for this risk reduction is \$100, then the WTP for an avoided statistical premature mortality amounts to \$1 million (\$100/0.0001 change in risk). Using this approach, the size of the affected population is automatically taken into account by the number of incidences predicted by epidemiological studies applied to the relevant population. The same type of calculation can produce values for statistical incidences of other health endpoints.

For some health effects, such as hospital admissions, WTP estimates are generally not available. In these cases, we use the cost of treating or mitigating the effect as a primary estimate. For example, for the valuation of hospital admissions we use the avoided medical costs as an estimate of the value of avoiding the health effects causing the admission. These cost of illness (COI) estimates generally (although not in every case) understate the true value of reductions in risk of a health effect. They tend to reflect the direct expenditures related to treatment but not the value of avoided pain and suffering from the health effect.

Avoided premature deaths account for 98% of monetized PM-related benefits. The economics literature concerning the appropriate method for valuing reductions in premature mortality risk is still developing. The adoption of a value for the projected reduction in the risk of premature mortality is the subject of continuing discussion within the economics and public policy analysis community. Following the advice of the SAB's Environmental Economics Advisory Committee (SAB-EEAC), the EPA currently uses the value of statistical life (VSL) approach in calculating estimates of mortality benefits, because we believe this calculation provides the most reasonable single estimate of an individual's willingness to trade off money for reductions in mortality risk (US EPA-SAB 2000). The VSL approach is a summary measure for the value of small changes in mortality risk experienced by a large number of people.

EPA continues work to update its guidance on valuing mortality risk reductions, and the Agency consulted several times with the SAB-EEAC on the issue. Until updated guidance is available, the Agency determined that a single, peer-reviewed estimate applied consistently best reflects the SAB-EEAC advice it has received. Therefore, EPA has decided to apply the VSL that was vetted and endorsed by the SAB in the *Guidelines for Preparing Economic Analyses* (US EPA 2000) while the Agency continues its efforts to update its guidance on this issue.² This approach calculates a mean value across VSL estimates derived from 26 labor market and contingent valuation studies published between 1974 and 1991. The mean VSL across these studies is \$6.3 million (2000\$).³ We then adjust this VSL to account for the currency year used for the analysis and to account for income growth from 1990 to the analysis year. Table 3 shows the adjusted VSL estimates for currency years 2000-2012 for the income growth years used in the source apportionment benefit per ton calculations.

Table 3. Value of a Statistical Life Estimate Adjusted for Currency and Income Grow	/th
Years	

		VS	L with Income Growt	h to
Currency Year	Base VSL Estimate	2016	2020	2024 ^a
2000	\$6.3	\$7.3	\$7.6	\$7.8
2001	\$6.5	\$7.5	\$7.8	\$8.0
2002	\$6.6	\$7.7	\$7.9	\$8.1
2003	\$6.7	\$7.8	\$8.1	\$8.3
2004	\$6.9	\$8.0	\$8.3	\$8.5
2005	\$7.1	\$8.3	\$8.6	\$8.8
2006	\$7.4	\$8.6	\$8.9	\$9.1
2007	\$7.6	\$8.8	\$9.1	\$9.4
2008	\$7.9	\$9.2	\$9.5	\$9.7
2009	\$7.8	\$9.1	\$9.4	\$9.7
2010	\$8.0	\$9.3	\$9.6	\$9.8
2011	\$8.2	\$9.6	\$9.9	\$10.1
2012	\$8.4	\$9.8	\$10.1	\$10.4

^a Income growth projections are only available to 2024, so both the 2025 and 2030 estimates us e income growth to 2024 and are therefore likely underestimates.

² In the updated *Guidelines for Preparing Economic Analyses* (US EPA 2010a), EPA retained the VSL endors ed by the SAB with the understanding that further updates to the mortality risk valuation guidance would be forthcoming in the near future.

³ In 1990\$, this VSL is \$4.8 million.

In valuing premature mortality, we discount the value of premature mortality occurring in future years using rates of 3% and 7% (OMB 2003). We assume that there is a "cessation" lag between changes in PM exposures and the total realization of changes in health effects. Although the structure of the lag is uncertain, the EPA follows the advice of the SAB-HES to assume a segmented lag structure characterized by 30% of mortality reductions in the first year, 50% over years 2 to 5, and 20% over the years 6 to 20 after the reduction in $PM_{2.5}$ (US EPA-SAB 2004). Changes in the cessation lag assumptions do not change the total number of estimated deaths but rather the timing of those deaths.

We express the economic value of the avoided impacts using constant year 2010 dollars, adjusted for growth in real income out to the analysis year using projections provided by Standard and Poor's. However, these projections are only available to 2024, so both the 2025 and 2030 estimates use income growth to 2024. Economic theory argues that WTP for most goods (such as environmental protection) will increase if real income increases. Many of the valuation studies used in this analysis were conducted in the late 1980s and early 1990s. Because real income has grown since the studies were conducted, people's willingness to pay for reductions in the risk of premature death and disease likely has grown as well. We did not adjust cost of illness-based values because they are based on current costs. For these two reasons, the cost of illness estimates may underestimate the economic value of avoided health impacts in each analysis year. As with the selection of health studies, the economic valuation estimates applied in this analysis are consistent with those used in the PM NAAQS RIA.

Calculating the benefit per ton estimate

The final step is to divide the incidence of adverse health outcomes, and the economic value of those outcomes, associated with the primary $PM_{2.5}$, nitrate and sulfate attributable to each sector by the sector emissions of directly emitted $PM_{2.5}$, NO_x and SO_2 . The result is a suite of incidence per ton and \$ benefit per ton estimates for each sector. Below we summarize the total \$ per ton estimates for each of the 17 sectors, with more detailed health impacts per ton for each sector provided in Appendix A. The results for four analysis years (2016, 2020, 2025 and 2030) are presented.

Analysis Year	Population Year	Mortality Incidence Year	Income Growth Year	Currency Year	Emissions Year
2016	2016	2015	2016		
2020	2020	2020	2020	2010	2016
2025	2025	2025	2024		
2025	2030	2030	2024		

Table 4. Data used for Benefit per Ton Estimates

Results

	Krewski et a	al. (2009) mortali	ty estimate ^B	Lepeule et al. (2012) mortality estimate ^B			
	Directly emitted			Directly emitted			
Sector	PM _{2.5}	SO_2	NO _x	PM _{2.5}	SO_2	NO _x	
Aircraft, locomotives and marine vessels	\$240,000	\$85,000	\$6,900	\$530,000	\$190,000	\$16,000	
Area sources	\$320,000	\$48,000	\$7,500	\$710,000	\$110,000	\$17,000	
Cem ent kilns	\$350,000	\$42,000	\$5,500	\$790,000	\$95,000	\$12,000	
Coke ovens	\$450,000	\$50,000	\$10,000	\$1,000,000	\$110,000	\$24,000	
Electric arc furnaces	\$420,000	\$78,000	\$9,500	\$950,000	\$180,000	\$21,000	
Electricity generating units	\$130,000	\$35,000	\$5,200	\$290,000	\$78,000	\$12,000	
Ferroalloy facilities	\$270,000	\$43,000	\$4,300	\$620,000	\$98,000	\$9,700	
Industrial point sources	\$260,000	\$39,000	\$6,100	\$580,000	\$89,000	\$14,000	
Integrated iron and steel facilities	\$480,000	\$85,000	\$13,000	\$1,100,000	\$190,000	\$30,000	
Iron and steel facilities	\$490,000	\$400,000	\$16,000	\$1,100,000	\$900,000	\$36,000	
Non-road mobile sources	\$300,000	\$43,000	\$6,600	\$690,000	\$97,000	\$15,000	
Ocean-going vessels	\$45,000	\$12,000	\$1,800	\$100,000	\$26,000	\$4,200	
On-road mobile sources	\$360,000	\$19,000	\$7,300	\$810,000	\$43,000	\$17,000	
Pulp and paper facilities	\$150,000	\$44,000	\$3,600	\$330,000	\$100,000	\$8,200	
Refineries	\$310,000	\$66,000	\$6,500	\$710,000	\$150,000	\$15,000	
Residential wood combustion	\$360,000	\$97,000	\$13,000	\$810,000	\$220,000	\$29,000	
Taconite mines	\$81,000	\$33,000	\$5,900	\$180,000	\$74,000	\$13,000	

Table 5. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2016 (2010\$, 3% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

	Krewski et a	al. (2009) mortali	ty estimate ^B	Lepeule et al. (2012) mortality estimate ^B		
	Directly emitted			Directly emitted		
Sector	PM _{2.5}	SO_2	NO _x	PM _{2.5}	SO_2	NO_{x}
Aircraft, locomotives and marine vessels	\$210,000	\$77,000	\$6,200	\$480,000	\$170,000	\$14,000
Area sources	\$280,000	\$43,000	\$6,800	\$640,000	\$97,000	\$15,000
Cementkilns	\$320,000	\$38,000	\$4,900	\$710,000	\$86,000	\$11,000
Coke ovens	\$400,000	\$45,000	\$9,400	\$910,000	\$100,000	\$21,000
Electric arc furnaces	\$380,000	\$70,000	\$8,500	\$860,000	\$160,000	\$19,000
Electricity generating units	\$120,000	\$31,000	\$4,600	\$260,000	\$71,000	\$10,000
Ferroalloy facilities	\$250,000	\$39,000	\$3,900	\$560,000	\$88,000	\$8,700
Industrial point sources	\$230,000	\$36,000	\$5,500	\$520,000	\$80,000	\$12,000
Integrated iron and steel facilities	\$430,000	\$77,000	\$12,000	\$980,000	\$170,000	\$27,000
Iron and steel facilities	\$450,000	\$360,000	\$15,000	\$1,000,000	\$810,000	\$33,000
Non-road mobile sources	\$270,000	\$38,000	\$5,900	\$620,000	\$87,000	\$13,000
Ocean-going vessels	\$40,000	\$11,000	\$1,700	\$91,000	\$24,000	\$3,800
On-road mobile sources	\$320,000	\$17,000	\$6,600	\$730,000	\$39,000	\$15,000
Pulp and paper facilities	\$130,000	\$40,000	\$3,300	\$300,000	\$90,000	\$7,400
Refineries	\$280,000	\$60,000	\$5,900	\$640,000	\$130,000	\$13,000
Residential wood combustion	\$320,000	\$88,000	\$12,000	\$730,000	\$200,000	\$26,000
Taconite mines	\$73,000	\$30,000	\$5,300	\$170,000	\$67,000	\$12,000

Table 6. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2016 (2010\$, 7% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

	Krewski et a	al. (2009) mortali	ty estimate ^B	Lepeule et al. (2012) mortality estimate ^B			
	Directly emitted			Directly emitted			
Sector	PM _{2.5}	SO_2	NO_x	PM _{2.5}	SO_2	NO _x	
Aircraft, locomotives and marine vessels	\$250,000	\$93,000	\$7,300	\$570,000	\$210,000	\$16,000	
Area sources	\$340,000	\$51,000	\$8,000	\$760,000	\$110,000	\$18,000	
Cem ent kilns	\$380,000	\$45,000	\$5,800	\$850,000	\$100,000	\$13,000	
Coke ovens	\$470,000	\$53,000	\$11,000	\$1,100,000	\$120,000	\$24,000	
Electric arc furnaces	\$440,000	\$82,000	\$9,900	\$1,000,000	\$190,000	\$22,000	
Electricity generating units	\$140,000	\$37,000	\$5,400	\$310,000	\$83,000	\$12,000	
Ferroalloy facilities	\$290,000	\$46,000	\$4,500	\$650,000	\$100,000	\$10,000	
Industrial point sources	\$270,000	\$42,000	\$6,500	\$620,000	\$94,000	\$15,000	
Integrated iron and steel facilities	\$500,000	\$89,000	\$14,000	\$1,100,000	\$200,000	\$31,000	
Iron and steel facilities	\$520,000	\$420,000	\$17,000	\$1,200,000	\$940,000	\$39,000	
Non-road mobile sources	\$320,000	\$46,000	\$7,000	\$730,000	\$100,000	\$16,000	
Ocean-going vessels	\$48,000	\$13,000	\$2,000	\$110,000	\$29,000	\$4,500	
On-road mobile sources	\$380,000	\$21,000	\$7,700	\$860,000	\$47,000	\$17,000	
Pulp and paper facilities	\$160,000	\$47,000	\$3,800	\$350,000	\$110,000	\$8,600	
Refineries	\$330,000	\$71,000	\$7,000	\$750,000	\$160,000	\$16,000	
Residential wood combustion	\$380,000	\$100,000	\$14,000	\$860,000	\$230,000	\$31,000	
Taconite mines	\$86,000	\$34,000	\$6,200	\$190,000	\$78,000	\$14,000	

Table 7. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2020 (2010\$, 3% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

	Krewski et a	al. (2009) mortali	ty estimate ^B	Lepeule et al. (2012) mortality estimate ^B		
	Directly emitted			Directly emitted		
Sector	PM _{2.5}	SO_2	NO _x	PM _{2.5}	SO_2	NO_x
Aircraft, locomotives and marine vessels	\$230,000	\$84,000	\$6,600	\$510,000	\$190,000	\$15,000
Area sources	\$300,000	\$46,000	\$7,200	\$680,000	\$100,000	\$16,000
Cem ent kilns	\$340,000	\$40,000	\$5,200	\$770,000	\$91,000	\$12,000
Coke ovens	\$420,000	\$48,000	\$9,700	\$950,000	\$110,000	\$22,000
Electric arc furnaces	\$400,000	\$74,000	\$8,900	\$900,000	\$170,000	\$20,000
Electricity generating units	\$120,000	\$33,000	\$4,900	\$280,000	\$75,000	\$11,000
Ferroalloy facilities	\$260,000	\$41,000	\$4,000	\$580,000	\$93,000	\$9,100
Industrial point sources	\$250,000	\$38,000	\$5,800	\$560,000	\$85,000	\$13,000
Integrated iron and steel facilities	\$450,000	\$81,000	\$12,000	\$1,000,000	\$180,000	\$28,000
Iron and steel facilities	\$470,000	\$380,000	\$15,000	\$1,100,000	\$850,000	\$35,000
Non-road mobile sources	\$290,000	\$42,000	\$6,300	\$660,000	\$94,000	\$14,000
Ocean-going vessels	\$43,000	\$11,000	\$1,800	\$98,000	\$26,000	\$4,100
On-road mobile sources	\$350,000	\$19,000	\$7,000	\$780,000	\$42,000	\$16,000
Pulp and paper facilities	\$140,000	\$42,000	\$3,400	\$320,000	\$96,000	\$7,800
Refineries	\$300,000	\$64,000	\$6,300	\$680,000	\$140,000	\$14,000
Residential wood combustion	\$350,000	\$94,000	\$12,000	\$780,000	\$210,000	\$28,000
Taconite mines	\$77,000	\$31,000	\$5,600	\$170,000	\$70,000	\$13,000

Table 8. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2020 (2010\$, 7% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

	Krewski et a	al. (2009) mortali	ty estimate ^B	Lepeule et al. (2012) mortality estimate ^B		
	Directly emitted			Directly emitted		
Sector	PM _{2.5}	SO_2	NO_x	PM _{2.5}	SO_2	NO_x
Aircraft, locomotives and marine vessels	\$280,000	\$110,000	\$8,000	\$620,000	\$240,000	\$18,000
Area sources	\$370,000	\$56,000	\$8,700	\$840,000	\$130,000	\$20,000
Cem ent kilns	\$420,000	\$49,000	\$6,300	\$950,000	\$110,000	\$14,000
Coke ovens	\$500,000	\$57,000	\$12,000	\$1,100,000	\$130,000	\$26,000
Electric arc furnaces	\$480,000	\$89,000	\$11,000	\$1,100,000	\$200,000	\$24,000
Electricity generating units	\$150,000	\$40,000	\$5,800	\$340,000	\$90,000	\$13,000
Ferroalloy facilities	\$310,000	\$50,000	\$4,800	\$700,000	\$110,000	\$11,000
Industrial point sources	\$300,000	\$46,000	\$7,000	\$680,000	\$100,000	\$16,000
Integrated iron and steel facilities	\$540,000	\$96,000	\$15,000	\$1,200,000	\$220,000	\$34,000
Iron and steel facilities	\$570,000	\$450,000	\$19,000	\$1,300,000	\$1,000,000	\$42,000
Non-road mobile sources	\$360,000	\$52,000	\$7,700	\$810,000	\$120,000	\$17,000
Ocean-going vessels	\$53,000	\$14,000	\$2,300	\$120,000	\$32,000	\$5,100
On-road mobile sources	\$420,000	\$23,000	\$8,400	\$950,000	\$52,000	\$19,000
Pulp and paper facilities	\$170,000	\$51,000	\$4,200	\$380,000	\$120,000	\$9,400
Refineries	\$370,000	\$79,000	\$7,700	\$830,000	\$180,000	\$17,000
Residential wood combustion	\$420,000	\$120,000	\$15,000	\$950,000	\$260,000	\$34,000
Taconite mines	\$93,000	\$37,000	\$6,600	\$210,000	\$84,000	\$15,000

Table 9. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2025 (2010\$, 3% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

	Krewski et a	Krewski et al. (2009) mortality estimate ^B			Lepeule et al. (2012) mortality estimat		
	Directly emitted			Directly emitted			
Sector	PM _{2.5}	SO_2	NO_{x}	PM _{2.5}	SO_2	NO _x	
Aircraft, locomotives and marine vessels	\$250,000	\$96,000	\$7,200	\$560,000	\$220,000	\$16,000	
Area sources	\$330,000	\$50,000	\$7,900	\$750,000	\$110,000	\$18,000	
Cem ent kilns	\$380,000	\$44,000	\$5,700	\$850,000	\$99,000	\$13,000	
Coke ovens	\$450,000	\$51,000	\$10,000	\$1,000,000	\$120,000	\$24,000	
Electric arc furnaces	\$430,000	\$80,000	\$9,600	\$970,000	\$180,000	\$22,000	
Electricity generating units	\$130,000	\$36,000	\$5,200	\$300,000	\$82,000	\$12,000	
Ferroalloy facilities	\$280,000	\$45,000	\$4,400	\$630,000	\$100,000	\$9,800	
Industrial point sources	\$270,000	\$41,000	\$6,300	\$620,000	\$93,000	\$14,000	
Integrated iron and steel facilities	\$480,000	\$87,000	\$13,000	\$1,100,000	\$200,000	\$30,000	
Iron and steel facilities	\$510,000	\$410,000	\$17,000	\$1,200,000	\$920,000	\$38,000	
Non-road mobile sources	\$320,000	\$47,000	\$7,000	\$730,000	\$110,000	\$16,000	
Ocean-going vessels	\$48,000	\$13,000	\$2,000	\$110,000	\$29,000	\$4,600	
On-road mobile sources	\$380,000	\$21,000	\$7,600	\$860,000	\$47,000	\$17,000	
Pulp and paper facilities	\$150,000	\$46,000	\$3,700	\$350,000	\$100,000	\$8,500	
Refineries	\$330,000	\$71,000	\$6,900	\$750,000	\$160,000	\$16,000	
Residential wood combustion	\$380,000	\$100,000	\$14,000	\$860,000	\$230,000	\$31,000	
Taconite mines	\$84,000	\$34,000	\$6,000	\$190,000	\$76,000	\$14,000	

Table 10. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2025 (2010\$, 7% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

	Krewski et al. (2009) mortality estimate ^B			Lepeule et al. (2012) mortality estimate ^B		
	Directly emitted	Directly emitted		Directly emitted		
Sector	PM _{2.5}	SO_2	NO_x	PM _{2.5}	SO_2	NO _x
Aircraft, locomotives and marine vessels	\$300,000	\$120,000	\$8,700	\$680,000	\$270,000	\$20,000
Area sources	\$400,000	\$60,000	\$9,400	\$910,000	\$140,000	\$21,000
Cem ent kilns	\$460,000	\$52,000	\$6,800	\$1,000,000	\$120,000	\$15,000
Coke ovens	\$530,000	\$61,000	\$12,000	\$1,200,000	\$140,000	\$28,000
Electric arc furnaces	\$510,000	\$95,000	\$11,000	\$1,200,000	\$220,000	\$26,000
Electricity generating units	\$160,000	\$43,000	\$6,200	\$360,000	\$97,000	\$14,000
Ferroalloy facilities	\$330,000	\$53,000	\$5,100	\$740,000	\$120,000	\$12,000
Industrial point sources	\$330,000	\$49,000	\$7,600	\$740,000	\$110,000	\$17,000
Integrated iron and steel facilities	\$570,000	\$100,000	\$16,000	\$1,300,000	\$230,000	\$36,000
Iron and steel facilities	\$610,000	\$480,000	\$20,000	\$1,400,000	\$1,100,000	\$46,000
Non-road mobile sources	\$390,000	\$57,000	\$8,400	\$880,000	\$130,000	\$19,000
Ocean-going vessels	\$58,000	\$16,000	\$2,500	\$130,000	\$35,000	\$5,600
On-road mobile sources	\$460,000	\$26,000	\$9,100	\$1,000,000	\$58,000	\$21,000
Pulp and paper facilities	\$180,000	\$55,000	\$4,500	\$410,000	\$130,000	\$10,000
Refineries	\$400,000	\$86,000	\$8,300	\$900,000	\$190,000	\$19,000
Residential wood combustion	\$460,000	\$130,000	\$16,000	\$1,000,000	\$280,000	\$37,000
Taconite mines	\$100,000	\$40,000	\$7,100	\$220,000	\$90,000	\$16,000

Table 11. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2030 (2010\$, 3% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

	Krewski et a	al. (2009) mortali	ty estimate ^B	Lepeule et a	l. (2012) mortalit	y estimate ^B
	Directly emitted			Directly emitted		
Sector	PM _{2.5}	SO_2	NO_x	PM _{2.5}	SO_2	NO_x
Aircraft, locomotives and marine vessels	\$270,000	\$110,000	\$7,800	\$610,000	\$240,000	\$18,000
Area sources	\$360,000	\$54,000	\$8,500	\$820,000	\$120,000	\$19,000
Cem ent kilns	\$410,000	\$47,000	\$6,100	\$930,000	\$110,000	\$14,000
Coke ovens	\$480,000	\$55,000	\$11,000	\$1,100,000	\$120,000	\$25,000
Electric arc furnaces	\$460,000	\$86,000	\$10,000	\$1,000,000	\$190,000	\$23,000
Electricity generating units	\$140,000	\$39,000	\$5,600	\$330,000	\$87,000	\$13,000
Ferroalloy facilities	\$290,000	\$48,000	\$4,600	\$670,000	\$110,000	\$10,000
Industrial point sources	\$300,000	\$44,000	\$6,800	\$670,000	\$100,000	\$15,000
Integrated iron and steel facilities	\$510,000	\$92,000	\$14,000	\$1,200,000	\$210,000	\$32,000
Iron and steel facilities	\$550,000	\$440,000	\$18,000	\$1,200,000	\$980,000	\$41,000
Non-road mobile sources	\$350,000	\$52,000	\$7,600	\$790,000	\$120,000	\$17,000
Ocean-going vessels	\$53,000	\$14,000	\$2,300	\$120,000	\$32,000	\$5,100
On-road mobile sources	\$410,000	\$23,000	\$8,200	\$930,000	\$52,000	\$19,000
Pulp and paper facilities	\$170,000	\$50,000	\$4,000	\$370,000	\$110,000	\$9,100
Refineries	\$360,000	\$77,000	\$7,500	\$810,000	\$170,000	\$17,000
Residential wood combustion	\$420,000	\$110,000	\$15,000	\$940,000	\$250,000	\$33,000
Taconite mines	\$90,000	\$36,000	\$6,400	\$200,000	\$81,000	\$14,000

Table 12. Summary of the total dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursor reduced by each of 17 sectors in 2030 (2010\$, 7% discount rate)^A

^A Reported estimates are average \$/ton across the full range of emissions for each sector and do not reflect heterogeneity across locations. Estimates also do not capture important differences in marginal \$/ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions).

Lowest Measured Air Quality Level Exposure Assessment

Assessments quantifying PM_{2.5} related health impacts generally find that cases of avoided mortality represent the majority of the monetized benefits. For this reason, EPA has historically performed a series of analyses that characterize the uncertainty associated with the PM-mortality relationship and the economic value of reducing the risk of premature death (Mansfield et al. 2009; Roman et al. 2008; US EPA 2012). Here we focus on the level of uncertainty associated with the avoided premature deaths estimated to occur due to air quality improvements below the lowest levels of PM_{2.5} observed in the epidemiological studies used to quantify such risks.

In general, we are more confident in the magnitude of the risks we estimate from simulated PM_{2.5} concentrations that coincide with the bulk of the observed PM concentrations in the epidemiological studies that are used to estimate the benefits. Likewise, we are less confident in the risk we estimate from simulated PM_{2.5} concentrations that fall below the bulk of the observed data in these studies. Concentration benchmark analyses (e.g., lowest measured level [LML] or one standard deviation below the mean of the air quality data in the study) allow readers to determine the portion of population exposed to annual mean PM_{2.5} levels at or above different concentrations, which provides some insight into the level of uncertainty in the estimated PM_{2.5} mortality benefits. There are uncertainties inherent in identifying any particular point at which our confidence in reported associations becomes appreciably less, and the scientific evidence provides no clear dividing line. However, the EPA does not view these concentration benchmarks as a concentration threshold below which we would not quantify health benefits of air quality improvements.⁴ Rather, the benefits estimates reported are the best available estimates because they reflect the full range of air quality concentrations associated with the emission reduction strategies and because the current body of scientific literature indicates that a no-threshold model provides the best estimate of PM-related long-term mortality. In other words, although we may have less confidence in the magnitude of the risk at concentrations below these benchmarks, we still have high confidence that PM_{2.5} is causally associated with risk at those lower air quality concentrations.

For a benefit per ton analysis, policy-specific air quality data is not available due to time or resource limitations. For rules using benefit per ton estimates, we are unable to estimate the percentage of premature mortality associated with that rule's emission reductions at each PM_{2.5} level. However, we believe that it is still important to characterize

⁴ For a summary of the scientific review statements regarding the lack of a threshold in the PM_{2.5}-mortality relationship, see the Technical Support Document (TSD) entitled *Summary of Expert Opinions on the Existence of a Threshold in the Concentration-Response Function for PM_{2.5}-related Mortality (US EPA 2010d).*

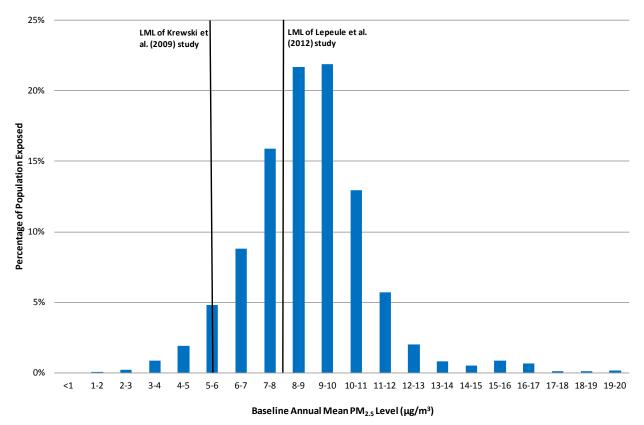
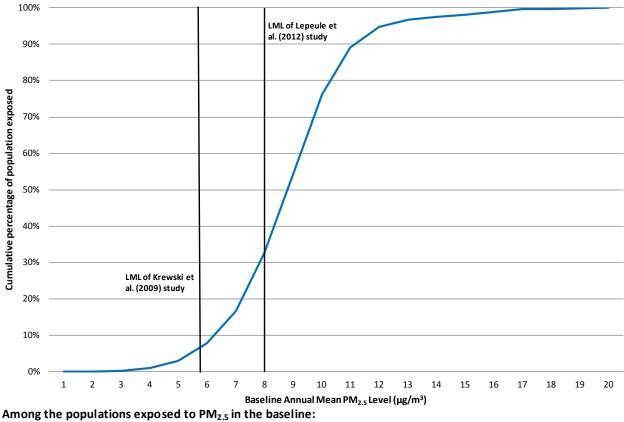

the distribution of exposure to baseline air quality levels as a representation of the starting point for any marginal reductions in air pollution as a result of sector specific emissions reductions. As a surrogate measure of mortality impacts, we provide the percentage of the population exposed at each PM_{2.5} level in the baseline of the source apportionment modeling used to calculate the benefit-per-ton estimates for this sector. It is important to note that baseline exposure is only one parameter in the health impact function, along with baseline incidence rates population, and change in air quality. In other words, the percentage of the population exposed to air pollution below the LML is not the same as the percentage of the population experiencing health impacts as a result of a specific emission reduction policy. The most important aspect, which we are unable to quantify for rules without rule-specific air quality modeling, is the shift in exposure associated with a specific rule. Therefore, caution is warranted when interpreting the LML assessment for any particular sector rule because these results are not consistent with results from rules that had air quality modeling.

Table 13 provides the percentage of the population exposed above and below two concentration benchmarks (i.e., LML and 1 standard deviation below the mean) in the modeled baseline. Figure 3 shows a bar chart of the percentage of the population exposed to various air quality levels in the baseline, and Figure 4 shows a cumulative distribution function of the same data. Both figures identify the LML for each of the major cohort studies.

Epidemiology Study	Below 1 Std. Dev. Below AQ Mean	At or Above 1 Std. Dev. Below AQ Mean	Below LML	At or Above LML
Krewski et al. (2009)	89%	11%	7%	93%
Lepeule et al. (2012)	N/A	N/A	23%	67%

Table 13. Population Exposure in the Baseline Above and Below VariousConcentration Benchmarks in the Underlying Epidemiology Studiesa


^a One standard deviation below the mean is equivalent to the middle of the range between the 10th and 25th percentile. For Krewski, the LML is 5.8 μ g/m³ and one standard deviation below the mean is 11.0 μ g/m³. For Lepeule et al., the LML is 8 μ g/m³ and we do not have the data for one standard deviation below the mean. It is important to emphasize that although we have lower levels of confidence in levels below the LML for each study, the scientific evidence does not support the existence of a level below which health effects from exposure to PM_{2.5} do not occur.

Among the populations exposed to PM_{2.5} in the baseline:

93% are exposed to $PM_{2.5}$ levels at or above the LML of the Krewski et al. (2009) study 67% are exposed to $PM_{2.5}$ levels at or above the LML of the Lepeule et al. (2012) study

Figure 3. Percentage of Adult Population by Annual Mean $PM_{2.5}$ Exposure in the Baseline

93% are exposed to $PM_{2.5}$ levels at or above the LML of the Krewski et al. (2009) study 67% are exposed to $PM_{2.5}$ levels at or above the LML of the Lepeule et al. (2012) study

Figure 4. Cumulative Distribution of Adult Population by Annual Mean PM_{2.5} Exposure in the Baseline

Limitations

This analysis includes many data sources as inputs, including emission inventories, air quality data from models (with their associated parameters and inputs), population data, health effect estimates from epidemiology studies, and economic data for monetizing benefits. Each of these inputs may be uncertain and would affect the benefits estimate. When the uncertainties from each stage of the analysis are compounded, small uncertainties can have large effects on the total quantified benefits. This analysis does not include the type of detailed uncertainty assessment found in the PM NAAQS RIA (US EPA 2012; US EPA 2006). However, the results of the Monte Carlo analyses of the health and welfare benefits presented in the PM RIAs can provide some evidence of the uncertainty surrounding the benefits results presented in this analysis.

In this analysis we assume that all fine particles, regardless of their chemical composition, are equally potent in causing premature mortality. This is an important

assumption, because $PM_{2.5}$ produced via transported precursors emitted from EGUs may differ significantly from direct $PM_{2.5}$ released from other industrial sources. However, the scientific evidence is not yet sufficient to allow differentiation of effect estimates by particle type. We also assume that the health impact function for fine particles is linear down to the lowest air quality levels modeled in this analysis. Thus, the estimates include health benefits from reducing fine particles in areas with varied concentrations of $PM_{2.5}$, including regions that are in attainment with fine particle standard.

It is also important to note that the monetized benefit per ton estimates used here reflect specific geographic patterns of emissions and specific air quality and benefits modeling assumptions. Great care should be taken in applying these estimates to emission reductions occurring in any specific location, as these are all based on national emission reduction assumptions and therefore represent an average benefit per ton over the entire United States. The benefit per ton for emission reductions in specific locations may be very different from the estimates presented here. In addition, estimates do not capture important differences in marginal benefit per ton that may exist due to different combinations of reductions (i.e., all other sectors are held constant) or nonlinearities within a particular pollutant (e.g., non-zero second derivatives with respect to emissions). The maps in Appendix B provide an indication of the location of the facilities that were modeled as well as the associated PM_{2.5} levels.

When using these benefit per ton estimates in analyses, care should be taken to not overstate the accuracy of the total benefits estimates or estimates of avoided incidence. For this reason, it is EPA practice to round total benefits estimates to two significant digits and to round estimates of avoided incidence to the nearest whole number. Appendix A

Detailed Results for Each Sector

2016 Analysis Year

Table 14. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the aircraft, locomotives and marine vessels sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,900	\$85,000	\$240,000
Lepeule et al. (2012)	\$16,000	\$190,000	\$530,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,200	\$77,000	\$210,000
Lepeule et al. (2012)	\$14,000	\$170,000	\$480,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 15. Incidence per ton of avoided mortalities and morbidities from the Petroleum Refineries sector for directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000800	0.009900	0.027000
Lepeule et al. (2012)	0.001800	0.023000	0.062000
Morbidity			
Respiratory emergency room visits	0.000440	0.005000	0.015000
Acute bronchitis	0.001300	0.018000	0.042000
Lower respiratory symptoms	0.017000	0.230000	0.540000
Upper respiratory symptoms	0.024000	0.320000	0.770000
Minor Restricted Activity Days	0.660000	9.600000	23.000000
Work loss days	0.110000	1.600000	3.800000
Asthma exacerbation	0.024000	0.340000	0.800000
Cardiovascular hospital admissions	0.000270	0.002900	0.009000
Respiratory hospital admissions	0.000220	0.002300	0.007300
Non-fatal heart attacks (Peters)	0.000870	0.009700	0.029000
Non-fatal heart attacks (All others)	0.000093	0.001000	0.003100

Table 16. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the area sources sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,500	\$48,000	\$320,000
Lepeule et al. (2012)	\$17,000	\$110,000	\$710,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,800	\$43,000	\$280,000
Lepeule et al. (2012)	\$15,000	\$97,000	\$640,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 17. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the area sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000880	0.005600	0.037000
Lepeule et al. (2012)	0.002000	0.013000	0.083000
Morbidity			
Respiratory emergency room visits	0.000510	0.003200	0.021000
Acute bronchitis	0.001400	0.008400	0.057000
Lower respiratory symptoms	0.018000	0.110000	0.730000
Upper respiratory symptoms	0.026000	0.150000	1.000000
Minor Restricted Activity Days	0.720000	4.400000	30.000000
Work loss days	0.120000	0.740000	5.100000
Asthma exacerbation	0.027000	0.380000	2.600000
Cardiovascular hospital admissions	0.000290	0.001900	0.012000
Respiratory hospital admissions	0.000240	0.001500	0.009900
Non-fatal heart attacks (Peters)	0.000950	0.006000	0.039000
Non-fatal heart attacks (All others)	0.000100	0.000650	0.004200

Table 18. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the cement kilns sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$5,500	\$42,000	\$350,000
Lepeule et al. (2012)	\$12,000	\$95,000	\$790,000
		7% Discount Rate	
Krewski et al. (2009)	\$4,900	\$38,000	\$320,000
Lepeule et al. (2012)	\$11,000	\$86,000	\$710,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 19. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the cement kilns sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000640	0.004900	0.041000
Lepeule et al. (2012)	0.001400	0.011000	0.093000
Morbidity			
Respiratory emergency room visits	0.000370	0.002600	0.021000
Acute bronchitis	0.001000	0.007200	0.068000
Lower respiratory symptoms	0.013000	0.092000	0.860000
Upper respiratory symptoms	0.018000	0.130000	1.200000
Minor Restricted Activity Days	0.510000	3.700000	33.000000
Work loss days	0.086000	0.620000	5.600000
Asthma exacerbation	0.019000	0.130000	1.300000
Cardiovascular hospital admissions	0.000220	0.001700	0.013000
Respiratory hospital admissions	0.000170	0.001300	0.010000
Non-fatal heart attacks (Peters)	0.000690	0.005300	0.043000
Non-fatal heart attacks (All others)	0.000075	0.000570	0.004700

Table 20. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the coke ovens sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$10,000	\$50,000	\$450,000
Lepeule et al. (2012)	\$24,000	\$110,000	\$1,000,000
		7% Discount Rate	
Krewski et al. (2009)	\$9,400	\$45,000	\$400,000
Lepeule et al. (2012)	\$21,000	\$100,000	\$910,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 21. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the coke ovens sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.001200	0.005900	0.052000
Lepeule et al. (2012)	0.002700	0.013000	0.120000
Morbidity			
Respiratory emergency room visits	0.000730	0.003100	0.026000
Acute bronchitis	0.001700	0.008100	0.067000
Lower respiratory symptoms	0.021000	0.100000	0.850000
Upper respiratory symptoms	0.031000	0.150000	1.200000
Minor Restricted Activity Days	0.880000	4.200000	35.000000
Work loss days	0.150000	0.700000	5.800000
Asthma exacerbation	0.031000	0.150000	1.200000
Cardiovascular hospital admissions	0.000440	0.002100	0.018000
Respiratory hospital admissions	0.000350	0.001700	0.015000
Non-fatal heart attacks (Peters)	0.001400	0.006600	0.057000
Non-fatal heart attacks (All others)	0.000150	0.000710	0.006200

Table 22. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the electric arc furnaces sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$9,500	\$78,000	\$420,000
Lepeule et al. (2012)	\$21,000	\$180,000	\$950,000
		7% Discount Rate	
Krewski et al. (2009)	\$8,500	\$70,000	\$380,000
Lepeule et al. (2012)	\$19,000	\$160,000	\$860,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 23. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the electric arc furnaces sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.001100	0.009100	0.049000
Lepeule et al. (2012)	0.002500	0.021000	0.110000
Morbidity			
Respiratory emergency room visits	0.000660	0.004500	0.024000
Acute bronchitis	0.001600	0.013000	0.067000
Lower respiratory symptoms	0.021000	0.160000	0.850000
Upper respiratory symptoms	0.030000	0.230000	1.200000
Minor Restricted Activity Days	0.830000	6.500000	35.000000
Work loss days	0.140000	1.100000	5.800000
Asthma exacerbation	0.030000	0.240000	1.300000
Cardiovascular hospital admissions	0.000390	0.003000	0.016000
Respiratory hospital admissions	0.000310	0.002400	0.013000
Non-fatal heart attacks (Peters)	0.001200	0.009900	0.053000
Non-fatal heart attacks (All others)	0.000130	0.001100	0.005700

Table 24. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the electricity generating units sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$5,200	\$35,000	\$130,000
Lepeule et al. (2012)	\$12,000	\$78,000	\$290,000
		7% Discount Rate	
Krewski et al. (2009)	\$4,600	\$31,000	\$120,000
Lepeule et al. (2012)	\$10,000	\$71,000	\$260,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 25. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the electricity generating units sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000600	0.004100	0.015000
Lepeule et al. (2012)	0.001400	0.009200	0.034000
Morbidity			
Respiratory emergency room visits	0.000330	0.002100	0.008300
Acute bronchitis	0.000910	0.005800	0.023000
Lower respiratory symptoms	0.012000	0.074000	0.290000
Upper respiratory symptoms	0.017000	0.110000	0.410000
Minor Restricted Activity Days	0.460000	3.000000	12.000000
Work loss days	0.077000	0.500000	1.900000
Asthma exacerbation	0.017000	0.260000	0.420000
Cardiovascular hospital admissions	0.000210	0.001400	0.005100
Respiratory hospital admissions	0.000170	0.001100	0.004100
Non-fatal heart attacks (Peters)	0.000670	0.004400	0.016000
Non-fatal heart attacks (All others)	0.000072	0.000480	0.001700

Table 26. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the ferroalloy facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$4,300	\$43,000	\$270,000
Lepeule et al. (2012)	\$9,700	\$98,000	\$620,000
		7% Discount Rate	
Krewski et al. (2009)	\$3,900	\$39,000	\$250,000
Lepeule et al. (2012)	\$8,700	\$88,000	\$560,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 27. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the ferroalloy facilities sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000500	0.005000	0.032000
Lepeule et al. (2012)	0.001100	0.011000	0.072000
Morbidity			
Respiratory emergency room visits	0.000230	0.002400	0.015000
Acute bronchitis	0.000650	0.006800	0.043000
Lower respiratory symptoms	0.008300	0.087000	0.550000
Upper respiratory symptoms	0.012000	0.120000	0.780000
Minor Restricted Activity Days	0.340000	3.500000	22.000000
Work loss days	0.058000	0.590000	3.700000
Asthma exacerbation	0.012000	0.130000	0.810000
Cardiovascular hospital admissions	0.000170	0.001700	0.011000
Respiratory hospital admissions	0.000130	0.001400	0.009000
Non-fatal heart attacks (Peters)	0.000550	0.005600	0.035000
Non-fatal heart attacks (All others)	0.000059	0.000600	0.003800

Table 28. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the industrial point sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,100	\$39,000	\$260,000
Lepeule et al. (2012)	\$14,000	\$89,000	\$580,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,500	\$36,000	\$230,000
Lepeule et al. (2012)	\$12,000	\$80,000	\$520,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 29. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the industrial point sources sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000710	0.004600	0.030000
Lepeule et al. (2012)	0.001600	0.010000	0.068000
Morbidity			
Respiratory emergency room visits	0.000400	0.002500	0.016000
Acute bronchitis	0.001100	0.006800	0.046000
Lower respiratory symptoms	0.014000	0.087000	0.590000
Upper respiratory symptoms	0.021000	0.120000	0.850000
Minor Restricted Activity Days	0.570000	3.500000	24.000000
Work loss days	0.096000	0.590000	4.000000
Asthma exacerbation	0.021000	0.130000	0.870000
Cardiovascular hospital admissions	0.000240	0.001600	0.009900
Respiratory hospital admissions	0.000190	0.001300	0.008000
Non-fatal heart attacks (Peters)	0.000780	0.005000	0.032000
Non-fatal heart attacks (All others)	0.000084	0.000540	0.003400

Table 30. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the integrated iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$13,000	\$85,000	\$480,000
Lepeule et al. (2012)	\$30,000	\$190,000	\$1,100,000
		7% Discount Rate	
Krewski et al. (2009)	\$12,000	\$77,000	\$430,000
Lepeule et al. (2012)	\$27,000	\$170,000	\$980,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 31. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the integrated iron and steel facilities sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.001500	0.010000	0.056000
Lepeule et al. (2012)	0.003500	0.023000	0.130000
Morbidity			
Respiratory emergency room visits	0.000910	0.005700	0.031000
Acute bronchitis	0.002200	0.014000	0.076000
Lower respiratory symptoms	0.028000	0.180000	0.970000
Upper respiratory symptoms	0.040000	0.250000	1.400000
Minor Restricted Activity Days	1.100000	7.200000	39.000000
Work loss days	0.190000	1.200000	6.600000
Asthma exacerbation	0.041000	0.260000	1.400000
Cardiovascular hospital admissions	0.000570	0.003600	0.020000
Respiratory hospital admissions	0.000450	0.002900	0.016000
Non-fatal heart attacks (Peters)	0.001800	0.011000	0.064000
Non-fatal heart attacks (All others)	0.000190	0.001200	0.006900

Table 32. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$16,000	\$400,000	\$490,000
Lepeule et al. (2012)	\$36,000	\$900,000	\$1,100,000
		7% Discount Rate	
Krewski et al. (2009)	\$15,000	\$360,000	\$450,000
Lepeule et al. (2012)	\$33,000	\$810,000	\$1,000,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 33. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the iron and steel facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.001900	0.046000	0.058000
Lepeule et al. (2012)	0.004200	0.110000	0.130000
Morbidity			
Respiratory emergency room visits	0.001000	0.024000	0.029000
Acute bronchitis	0.003100	0.067000	0.087000
Lower respiratory symptoms	0.040000	0.850000	1.100000
Upper respiratory symptoms	0.057000	1.200000	1.600000
Minor Restricted Activity Days	1.600000	35.000000	45.000000
Work loss days	0.270000	5.900000	7.600000
Asthma exacerbation	0.059000	1.300000	1.600000
Cardiovascular hospital admissions	0.000620	0.015000	0.019000
Respiratory hospital admissions	0.000500	0.012000	0.015000
Non-fatal heart attacks (Peters)	0.002000	0.049000	0.061000
Non-fatal heart attacks (All others)	0.000210	0.005300	0.006500

Table 34. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the non-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,600	\$43,000	\$300,000
Lepeule et al. (2012)	\$15,000	\$97,000	\$690,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,900	\$38,000	\$270,000
Lepeule et al. (2012)	\$13,000	\$87,000	\$620,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 35. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the non-road mobile sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000770	0.005000	0.035000
Lepeule et al. (2012)	0.001700	0.011000	0.080000
Morbidity			
Respiratory emergency room visits	0.000430	0.002600	0.021000
Acute bronchitis	0.001300	0.009100	0.056000
Lower respiratory symptoms	0.016000	0.120000	0.720000
Upper respiratory symptoms	0.023000	0.160000	1.000000
Minor Restricted Activity Days	0.650000	4.300000	30.000000
Work loss days	0.110000	0.730000	5.000000
Asthma exacerbation	0.024000	0.170000	1.100000
Cardiovascular hospital admissions	0.000250	0.001400	0.012000
Respiratory hospital admissions	0.000200	0.001200	0.009500
Non-fatal heart attacks (Peters)	0.000820	0.005000	0.038000
Non-fatal heart attacks (All others)	0.000089	0.000530	0.004100

Table 36. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the ocean-going vessels sector (2010\$)

		Pollutant emitted	1
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$1,800	\$12,000	\$45,000
Lepeule et al. (2012)	\$4,200	\$26,000	\$100,000
		7% Discount Rate	
Krewski et al. (2009)	\$1,700	\$11,000	\$40,000
Lepeule et al. (2012)	\$3,800	\$24,000	\$91,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 37. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the ocean-going vessels sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000210	0.001400	0.005200
Lepeule et al. (2012)	0.000490	0.003100	0.012000
Morbidity			
Respiratory emergency room visits	0.000120	0.000680	0.002600
Acute bronchitis	0.000380	0.002000	0.007800
Lower respiratory symptoms	0.004800	0.025000	0.099000
Upper respiratory symptoms	0.006800	0.036000	0.140000
Minor Restricted Activity Days	0.200000	1.100000	4.200000
Work loss days	0.034000	0.180000	0.720000
Asthma exacerbation	0.007100	0.037000	0.150000
Cardiovascular hospital admissions	0.000067	0.000440	0.001700
Respiratory hospital admissions	0.000054	0.000350	0.001300
Non-fatal heart attacks (Peters)	0.000220	0.001400	0.005500
Non-fatal heart attacks (All others)	0.000024	0.000160	0.000590

Table 38. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the on-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,300	\$19,000	\$360,000
Lepeule et al. (2012)	\$17,000	\$43,000	\$810,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,600	\$17,000	\$320,000
Lepeule et al. (2012)	\$15,000	\$39,000	\$730,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 39. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the on-road mobile sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000850	0.002200	0.042000
Lepeule et al. (2012)	0.001900	0.005000	0.094000
Morbidity			
Respiratory emergency room visits	0.000490	0.001100	0.024000
Acute bronchitis	0.001400	0.004000	0.067000
Lower respiratory symptoms	0.017000	0.051000	0.850000
Upper respiratory symptoms	0.025000	0.072000	1.200000
Minor Restricted Activity Days	0.690000	1.900000	35.000000
Work loss days	0.120000	0.320000	5.900000
Asthma exacerbation	0.061000	0.074000	3.000000
Cardiovascular hospital admissions	0.000290	0.000660	0.014000
Respiratory hospital admissions	0.000230	0.000530	0.011000
Non-fatal heart attacks (Peters)	0.000930	0.002200	0.044000
Non-fatal heart attacks (All others)	0.000100	0.000240	0.004800

Table 40. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the pulp and paper facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$3,600	\$44,000	\$150,000
Lepeule et al. (2012)	\$8,200	\$100,000	\$330,000
		7% Discount Rate	
Krewski et al. (2009)	\$3,300	\$40,000	\$130,000
Lepeule et al. (2012)	\$7,400	\$90,000	\$300,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 41. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the pulp and paper facilities sector

Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000420	0.005100	0.017000
Lepeule et al. (2012)	0.000960	0.012000	0.038000
Morbidity			
Respiratory emergency room visits	0.000230	0.002500	0.007800
Acute bronchitis	0.000630	0.007300	0.024000
Lower respiratory symptoms	0.008000	0.093000	0.310000
Upper respiratory symptoms	0.011000	0.130000	0.440000
Minor Restricted Activity Days	0.320000	3.800000	12.000000
Work loss days	0.054000	0.630000	2.100000
Asthma exacerbation	0.012000	0.140000	0.450000
Cardiovascular hospital admissions	0.000140	0.001700	0.005500
Respiratory hospital admissions	0.000110	0.001400	0.004400
Non-fatal heart attacks (Peters)	0.000460	0.005500	0.018000
Non-fatal heart attacks (All others)	0.000050	0.000600	0.001900

Table 42. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the refineries sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,500	\$66,000	\$310,000
Lepeule et al. (2012)	\$15,000	\$150,000	\$710,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,900	\$60,000	\$280,000
Lepeule et al. (2012)	\$13,000	\$130,000	\$640,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 43. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the refineries sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000760	0.007700	0.036000
Lepeule et al. (2012)	0.001700	0.017000	0.083000
Morbidity			
Respiratory emergency room visits	0.000420	0.004100	0.019000
Acute bronchitis	0.001300	0.013000	0.060000
Lower respiratory symptoms	0.016000	0.160000	0.760000
Upper respiratory symptoms	0.023000	0.230000	1.100000
Minor Restricted Activity Days	0.660000	6.600000	31.000000
Work loss days	0.110000	1.100000	5.200000
Asthma exacerbation	0.024000	0.240000	1.100000
Cardiovascular hospital admissions	0.000250	0.002500	0.012000
Respiratory hospital admissions	0.000200	0.002000	0.009700
Non-fatal heart attacks (Peters)	0.000810	0.008000	0.037000
Non-fatal heart attacks (All others)	0.000087	0.000860	0.004000

Table 44. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the residential wood combustion sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$13,000	\$97,000	\$360,000
Lepeule et al. (2012)	\$29,000	\$220,000	\$810,000
		7% Discount Rate	
Krewski et al. (2009)	\$12,000	\$88,000	\$320,000
Lepeule et al. (2012)	\$26,000	\$200,000	\$730,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 45. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2016 from the residential wood combustion sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001500	0.011000	0.042000
Lepeule et al. (2012)	0.003400	0.026000	0.094000
Morbidity			
Respiratory emergency room visits	0.000830	0.005700	0.021000
Acute bronchitis	0.002400	0.017000	0.064000
Lower respiratory symptoms	0.031000	0.220000	0.820000
Upper respiratory symptoms	0.044000	0.320000	1.200000
Minor Restricted Activity Days	1.200000	9.200000	34.000000
Work loss days	0.210000	1.500000	5.700000
Asthma exacerbation	0.045000	0.330000	2.900000
Cardiovascular hospital admissions	0.000470	0.003400	0.013000
Respiratory hospital admissions	0.000380	0.002800	0.010000
Non-fatal heart attacks (Peters)	0.001600	0.012000	0.043000
Non-fatal heart attacks (All others)	0.000170	0.001300	0.004700

Table 46. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the taconite mines sector (2010\$)

		Pollutant emitted	l
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$5,900	\$33,000	\$81,000
Lepeule et al. (2012)	\$13,000	\$74,000	\$180,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,300	\$30,000	\$73,000
Lepeule et al. (2012)	\$12,000	\$67,000	\$170,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 47. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2016 from the taconite mines sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000690	0.003800	0.009500
Lepeule et al. (2012)	0.001600	0.008700	0.022000
Morbidity			
Respiratory emergency room visits	0.000370	0.001900	0.004200
Acute bronchitis	0.001000	0.005500	0.013000
Lower respiratory symptoms	0.013000	0.070000	0.170000
Upper respiratory symptoms	0.019000	0.099000	0.240000
Minor Restricted Activity Days	0.530000	2.800000	6.700000
Work loss days	0.089000	0.470000	1.100000
Asthma exacerbation	0.019000	0.100000	0.240000
Cardiovascular hospital admissions	0.000230	0.001300	0.003000
Respiratory hospital admissions	0.000190	0.001000	0.002400
Non-fatal heart attacks (Peters)	0.000750	0.004200	0.009800
Non-fatal heart attacks (All others)	0.000081	0.000460	0.001100

2020 Analysis Year

Table 48. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the aircraft, locomotives and marine vessels sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,300	\$93,000	\$250,000
Lepeule et al. (2012)	\$16,000	\$210,000	\$570,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,600	\$84,000	\$230,000
Lepeule et al. (2012)	\$15,000	\$190,000	\$510,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 49. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the aircraft, locomotives and marine vessels sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000820	0.011000	0.028000
Lepeule et al. (2012)	0.001900	0.024000	0.064000
Morbidity			
Respiratory emergency room visits	0.000450	0.005100	0.015000
Acute bronchitis	0.001300	0.018000	0.044000
Lower respiratory symptoms	0.017000	0.230000	0.560000
Upper respiratory symptoms	0.024000	0.330000	0.800000
Minor Restricted Activity Days	0.670000	9.900000	23.000000
Work loss days	0.110000	1.700000	3.900000
Asthma exacerbation	0.025000	0.350000	0.830000
Cardiovascular hospital admissions	0.000280	0.003100	0.009700
Respiratory hospital admissions	0.000230	0.002600	0.007900
Non-fatal heart attacks (Peters)	0.000930	0.011000	0.031000
Non-fatal heart attacks (All others)	0.000100	0.001100	0.003300

Table 50. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the area sources sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$8,000	\$51,000	\$340,000
Lepeule et al. (2012)	\$18,000	\$110,000	\$760,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,200	\$46,000	\$300,000
Lepeule et al. (2012)	\$16,000	\$100,000	\$680,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 51. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the area sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000900	0.005700	0.038000
Lepeule et al. (2012)	0.002000	0.013000	0.086000
Morbidity			
Respiratory emergency room visits	0.000520	0.003300	0.021000
Acute bronchitis	0.001500	0.008700	0.059000
Lower respiratory symptoms	0.019000	0.110000	0.760000
Upper respiratory symptoms	0.027000	0.160000	1.100000
Minor Restricted Activity Days	0.730000	4.500000	31.000000
Work loss days	0.120000	0.760000	5.200000
Asthma exacerbation	0.028000	0.390000	2.700000
Cardiovascular hospital admissions	0.000310	0.002000	0.013000
Respiratory hospital admissions	0.000250	0.001700	0.011000
Non-fatal heart attacks (Peters)	0.001000	0.006400	0.042000
Non-fatal heart attacks (All others)	0.000110	0.000700	0.004500

Table 52. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the cement kilns sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$5,800	\$45,000	\$380,000
Lepeule et al. (2012)	\$13,000	\$100,000	\$850,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,200	\$40,000	\$340,000
Lepeule et al. (2012)	\$12,000	\$91,000	\$770,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 53. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the cement kilns sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000650	0.005000	0.042000
Lepeule et al. (2012)	0.001500	0.011000	0.096000
Morbidity			
Respiratory emergency room visits	0.000380	0.002700	0.022000
Acute bronchitis	0.001000	0.007400	0.070000
Lower respiratory symptoms	0.013000	0.095000	0.890000
Upper respiratory symptoms	0.019000	0.140000	1.300000
Minor Restricted Activity Days	0.520000	3.700000	34.000000
Work loss days	0.088000	0.630000	5.800000
Asthma exacerbation	0.020000	0.140000	1.300000
Cardiovascular hospital admissions	0.000230	0.001800	0.014000
Respiratory hospital admissions	0.000190	0.001400	0.011000
Non-fatal heart attacks (Peters)	0.000740	0.005700	0.047000
Non-fatal heart attacks (All others)	0.000080	0.000620	0.005100

Table 54. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the coke ovens sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$11,000	\$53,000	\$470,000
Lepeule et al. (2012)	\$24,000	\$120,000	\$1,100,000
		7% Discount Rate	
Krewski et al. (2009)	\$9,700	\$48,000	\$420,000
Lepeule et al. (2012)	\$22,000	\$110,000	\$950,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 55. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the coke ovens sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001200	0.006000	0.053000
Lepeule et al. (2012)	0.002800	0.014000	0.120000
Morbidity			
Respiratory emergency room visits	0.000740	0.003200	0.027000
Acute bronchitis	0.001700	0.008300	0.068000
Lower respiratory symptoms	0.022000	0.110000	0.860000
Upper respiratory symptoms	0.031000	0.150000	1.200000
Minor Restricted Activity Days	0.870000	4.200000	35.000000
Work loss days	0.150000	0.710000	5.800000
Asthma exacerbation	0.032000	0.160000	1.300000
Cardiovascular hospital admissions	0.000460	0.002200	0.019000
Respiratory hospital admissions	0.000370	0.001800	0.015000
Non-fatal heart attacks (Peters)	0.001400	0.007000	0.060000
Non-fatal heart attacks (All others)	0.000160	0.000760	0.006500

Table 56. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the electric arc furnaces sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$9,900	\$82,000	\$440,000
Lepeule et al. (2012)	\$22,000	\$190,000	\$1,000,000
		7% Discount Rate	
Krewski et al. (2009)	\$8,900	\$74,000	\$400,000
Lepeule et al. (2012)	\$20,000	\$170,000	\$900,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 57. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the electric arc furnaces sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.001100	0.009300	0.050000
Lepeule et al. (2012)	0.002500	0.021000	0.110000
Morbidity			
Respiratory emergency room visits	0.000680	0.004600	0.025000
Acute bronchitis	0.001700	0.013000	0.069000
Lower respiratory symptoms	0.021000	0.170000	0.880000
Upper respiratory symptoms	0.030000	0.240000	1.300000
Minor Restricted Activity Days	0.830000	6.500000	35.000000
Work loss days	0.140000	1.100000	5.800000
Asthma exacerbation	0.031000	0.240000	1.300000
Cardiovascular hospital admissions	0.000410	0.003200	0.017000
Respiratory hospital admissions	0.000330	0.002600	0.014000
Non-fatal heart attacks (Peters)	0.001300	0.011000	0.056000
Non-fatal heart attacks (All others)	0.000140	0.001100	0.006000

Table 58. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the electricity generating units sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$5,400	\$37,000	\$140,000
Lepeule et al. (2012)	\$12,000	\$83,000	\$310,000
		7% Discount Rate	
Krewski et al. (2009)	\$4,900	\$33,000	\$120,000
Lepeule et al. (2012)	\$11,000	\$75,000	\$280,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 59. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the electricity generating units sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000610	0.004200	0.015000
Lepeule et al. (2012)	0.001400	0.009400	0.035000
Morbidity			
Respiratory emergency room visits	0.000340	0.002200	0.008600
Acute bronchitis	0.000930	0.006000	0.023000
Lower respiratory symptoms	0.012000	0.077000	0.300000
Upper respiratory symptoms	0.017000	0.110000	0.420000
Minor Restricted Activity Days	0.460000	3.000000	12.000000
Work loss days	0.077000	0.510000	2.000000
Asthma exacerbation	0.018000	0.270000	0.440000
Cardiovascular hospital admissions	0.000220	0.001500	0.005500
Respiratory hospital admissions	0.000180	0.001200	0.004400
Non-fatal heart attacks (Peters)	0.000710	0.004700	0.017000
Non-fatal heart attacks (All others)	0.000077	0.000520	0.001900

Table 60. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the ferroalloy facilities sector (2010\$)

		Pollutant emitted	l
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$4,500	\$46,000	\$290,000
Lepeule et al. (2012)	\$10,000	\$100,000	\$650,000
		7% Discount Rate	
Krewski et al. (2009)	\$4,000	\$41,000	\$260,000
Lepeule et al. (2012)	\$9,100	\$93,000	\$580,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 61. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the ferroalloy facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000510	0.005200	0.032000
Lepeule et al. (2012)	0.001100	0.012000	0.073000
Morbidity			
Respiratory emergency room visits	0.000230	0.002400	0.015000
Acute bronchitis	0.000670	0.007000	0.044000
Lower respiratory symptoms	0.008500	0.090000	0.570000
Upper respiratory symptoms	0.012000	0.130000	0.810000
Minor Restricted Activity Days	0.350000	3.500000	22.000000
Work loss days	0.058000	0.600000	3.700000
Asthma exacerbation	0.013000	0.130000	0.840000
Cardiovascular hospital admissions	0.000180	0.001800	0.011000
Respiratory hospital admissions	0.000140	0.001500	0.009700
Non-fatal heart attacks (Peters)	0.000580	0.006000	0.037000
Non-fatal heart attacks (All others)	0.000062	0.000640	0.004000

Table 62. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the industrial point sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,500	\$42,000	\$270,000
Lepeule et al. (2012)	\$15,000	\$94,000	\$620,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,800	\$38,000	\$250,000
Lepeule et al. (2012)	\$13,000	\$85,000	\$560,000

 $^{\rm A}$ Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 63. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the industrial point sources sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000730	0.004700	0.031000
Lepeule et al. (2012)	0.001700	0.011000	0.070000
Morbidity			
Respiratory emergency room visits	0.000410	0.002500	0.016000
Acute bronchitis	0.001200	0.007100	0.048000
Lower respiratory symptoms	0.015000	0.090000	0.610000
Upper respiratory symptoms	0.021000	0.130000	0.880000
Minor Restricted Activity Days	0.580000	3.500000	24.000000
Work loss days	0.097000	0.600000	4.100000
Asthma exacerbation	0.022000	0.130000	0.910000
Cardiovascular hospital admissions	0.000260	0.001700	0.011000
Respiratory hospital admissions	0.000210	0.001400	0.008700
Non-fatal heart attacks (Peters)	0.000830	0.005400	0.034000
Non-fatal heart attacks (All others)	0.000090	0.000580	0.003700

Table 64. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the integrated iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$14,000	\$89,000	\$500,000
Lepeule et al. (2012)	\$31,000	\$200,000	\$1,100,000
		7% Discount Rate	
Krewski et al. (2009)	\$12,000	\$81,000	\$450,000
Lepeule et al. (2012)	\$28,000	\$180,000	\$1,000,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 65. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the integrated iron and steel facilities sector

Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001600	0.010000	0.057000
Lepeule et al. (2012)	0.003500	0.023000	0.130000
Morbidity			
Respiratory emergency room visits	0.000920	0.005700	0.031000
Acute bronchitis	0.002200	0.014000	0.077000
Lower respiratory symptoms	0.029000	0.180000	0.980000
Upper respiratory symptoms	0.041000	0.260000	1.400000
Minor Restricted Activity Days	1.100000	7.200000	39.000000
Work loss days	0.190000	1.200000	6.500000
Asthma exacerbation	0.042000	0.270000	1.500000
Cardiovascular hospital admissions	0.000600	0.003800	0.022000
Respiratory hospital admissions	0.000480	0.003100	0.018000
Non-fatal heart attacks (Peters)	0.001900	0.012000	0.068000
Non-fatal heart attacks (All others)	0.000200	0.001300	0.007300

Table 66. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$17,000	\$420,000	\$520,000
Lepeule et al. (2012)	\$39,000	\$940,000	\$1,200,000
		7% Discount Rate	
Krewski et al. (2009)	\$15,000	\$380,000	\$470,000
Lepeule et al. (2012)	\$35,000	\$850,000	\$1,100,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 67. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the iron and steel facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.001900	0.047000	0.059000
Lepeule et al. (2012)	0.004400	0.110000	0.130000
Morbidity			
Respiratory emergency room visits	0.001100	0.025000	0.030000
Acute bronchitis	0.003200	0.069000	0.089000
Lower respiratory symptoms	0.041000	0.880000	1.100000
Upper respiratory symptoms	0.058000	1.300000	1.600000
Minor Restricted Activity Days	1.600000	35.000000	45.000000
Work loss days	0.270000	5.900000	7.700000
Asthma exacerbation	0.060000	1.300000	1.700000
Cardiovascular hospital admissions	0.000670	0.016000	0.020000
Respiratory hospital admissions	0.000540	0.013000	0.016000
Non-fatal heart attacks (Peters)	0.002100	0.052000	0.065000
Non-fatal heart attacks (All others)	0.000230	0.005600	0.007000

Table 68. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the non-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,000	\$46,000	\$320,000
Lepeule et al. (2012)	\$16,000	\$100,000	\$730,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,300	\$42,000	\$290,000
Lepeule et al. (2012)	\$14,000	\$94,000	\$660,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 69. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the non-road mobile sources sector

		Pollutant emitted	l
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000790	0.005200	0.037000
Lepeule et al. (2012)	0.001800	0.012000	0.083000
Morbidity			
Respiratory emergency room visits	0.000450	0.002700	0.021000
Acute bronchitis	0.001300	0.009500	0.058000
Lower respiratory symptoms	0.017000	0.120000	0.740000
Upper respiratory symptoms	0.024000	0.170000	1.100000
Minor Restricted Activity Days	0.660000	4.500000	30.000000
Work loss days	0.110000	0.760000	5.100000
Asthma exacerbation	0.025000	0.180000	1.100000
Cardiovascular hospital admissions	0.000270	0.001600	0.013000
Respiratory hospital admissions	0.000220	0.001300	0.010000
Non-fatal heart attacks (Peters)	0.000880	0.005400	0.041000
Non-fatal heart attacks (All others)	0.000095	0.000590	0.004400

Table 70. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the ocean-going vessels sector (2010\$)

		Pollutant emitted	1
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$2,000	\$13,000	\$48,000
Lepeule et al. (2012)	\$4,500	\$29,000	\$110,000
		7% Discount Rate	
Krewski et al. (2009)	\$1,800	\$11,000	\$43,000
Lepeule et al. (2012)	\$4,100	\$26,000	\$98,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 71. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the ocean-going vessels sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000230	0.001400	0.005400
Lepeule et al. (2012)	0.000510	0.003200	0.012000
Morbidity			
Respiratory emergency room visits	0.000120	0.000700	0.002700
Acute bronchitis	0.000390	0.002100	0.008100
Lower respiratory symptoms	0.004900	0.026000	0.100000
Upper respiratory symptoms	0.007100	0.037000	0.150000
Minor Restricted Activity Days	0.210000	1.100000	4.300000
Work loss days	0.035000	0.190000	0.730000
Asthma exacerbation	0.007300	0.039000	0.150000
Cardiovascular hospital admissions	0.000072	0.000480	0.001800
Respiratory hospital admissions	0.000059	0.000380	0.001500
Non-fatal heart attacks (Peters)	0.000240	0.001600	0.006000
Non-fatal heart attacks (All others)	0.000026	0.000170	0.000640

Table 72. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the on-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,700	\$21,000	\$380,000
Lepeule et al. (2012)	\$17,000	\$47,000	\$860,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,000	\$19,000	\$350,000
Lepeule et al. (2012)	\$16,000	\$42,000	\$780,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 73. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the on-road mobile sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000870	0.002300	0.043000
Lepeule et al. (2012)	0.002000	0.005300	0.098000
Morbidity			
Respiratory emergency room visits	0.000500	0.001200	0.025000
Acute bronchitis	0.001400	0.004100	0.069000
Lower respiratory symptoms	0.018000	0.053000	0.880000
Upper respiratory symptoms	0.026000	0.075000	1.300000
Minor Restricted Activity Days	0.700000	2.000000	36.000000
Work loss days	0.120000	0.340000	6.100000
Asthma exacerbation	0.063000	0.078000	3.100000
Cardiovascular hospital admissions	0.000310	0.000720	0.015000
Respiratory hospital admissions	0.000250	0.000580	0.012000
Non-fatal heart attacks (Peters)	0.000990	0.002400	0.048000
Non-fatal heart attacks (All others)	0.000110	0.000260	0.005200

Table 74. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the pulp and paper facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$3,800	\$47,000	\$160,000
Lepeule et al. (2012)	\$8,600	\$110,000	\$350,000
		7% Discount Rate	
Krewski et al. (2009)	\$3,400	\$42,000	\$140,000
Lepeule et al. (2012)	\$7,800	\$96,000	\$320,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 75. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the pulp and paper facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000430	0.005300	0.018000
Lepeule et al. (2012)	0.000980	0.012000	0.040000
Morbidity			
Respiratory emergency room visits	0.000240	0.002600	0.008000
Acute bronchitis	0.000640	0.007600	0.025000
Lower respiratory symptoms	0.008200	0.097000	0.320000
Upper respiratory symptoms	0.012000	0.140000	0.460000
Minor Restricted Activity Days	0.320000	3.800000	12.000000
Work loss days	0.054000	0.640000	2.100000
Asthma exacerbation	0.012000	0.140000	0.480000
Cardiovascular hospital admissions	0.000150	0.001900	0.005900
Respiratory hospital admissions	0.000120	0.001500	0.004800
Non-fatal heart attacks (Peters)	0.000490	0.006000	0.019000
Non-fatal heart attacks (All others)	0.000053	0.000640	0.002100

Table 76. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the refineries sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,000	\$71,000	\$330,000
Lepeule et al. (2012)	\$16,000	\$160,000	\$750,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,300	\$64,000	\$300,000
Lepeule et al. (2012)	\$14,000	\$140,000	\$680,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 77. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the refineries sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000790	0.008000	0.038000
Lepeule et al. (2012)	0.001800	0.018000	0.085000
Morbidity			
Respiratory emergency room visits	0.000430	0.004200	0.020000
Acute bronchitis	0.001300	0.013000	0.062000
Lower respiratory symptoms	0.017000	0.170000	0.790000
Upper respiratory symptoms	0.024000	0.240000	1.100000
Minor Restricted Activity Days	0.660000	6.700000	31.000000
Work loss days	0.110000	1.100000	5.300000
Asthma exacerbation	0.025000	0.250000	1.200000
Cardiovascular hospital admissions	0.000270	0.002700	0.013000
Respiratory hospital admissions	0.000220	0.002200	0.011000
Non-fatal heart attacks (Peters)	0.000870	0.008600	0.040000
Non-fatal heart attacks (All others)	0.000093	0.000930	0.004300

Table 78. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the residential wood combustion sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$14,000	\$100,000	\$380,000
Lepeule et al. (2012)	\$31,000	\$230,000	\$860,000
		7% Discount Rate	
Krewski et al. (2009)	\$12,000	\$94,000	\$350,000
Lepeule et al. (2012)	\$28,000	\$210,000	\$780,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 79. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2020 from the residential wood combustion sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001600	0.012000	0.043000
Lepeule et al. (2012)	0.003500	0.027000	0.098000
Morbidity			
Respiratory emergency room visits	0.000850	0.005900	0.022000
Acute bronchitis	0.002500	0.018000	0.067000
Lower respiratory symptoms	0.032000	0.230000	0.850000
Upper respiratory symptoms	0.045000	0.330000	1.200000
Minor Restricted Activity Days	1.200000	9.400000	34.000000
Work loss days	0.210000	1.600000	5.800000
Asthma exacerbation	0.047000	0.340000	3.000000
Cardiovascular hospital admissions	0.000510	0.003700	0.014000
Respiratory hospital admissions	0.000410	0.003000	0.011000
Non-fatal heart attacks (Peters)	0.001700	0.013000	0.047000
Non-fatal heart attacks (All others)	0.000190	0.001400	0.005100

Table 80. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the taconite mines sector (2010\$)

		Pollutant emitted	l
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,200	\$34,000	\$86,000
Lepeule et al. (2012)	\$14,000	\$78,000	\$190,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,600	\$31,000	\$77,000
Lepeule et al. (2012)	\$13,000	\$70,000	\$170,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 81. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2020 from the taconite mines sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000700	0.003900	0.009700
Lepeule et al. (2012)	0.001600	0.008800	0.022000
Morbidity			
Respiratory emergency room visits	0.000380	0.002000	0.004300
Acute bronchitis	0.001100	0.005600	0.014000
Lower respiratory symptoms	0.013000	0.071000	0.170000
Upper respiratory symptoms	0.019000	0.100000	0.250000
Minor Restricted Activity Days	0.530000	2.800000	6.700000
Work loss days	0.089000	0.470000	1.100000
Asthma exacerbation	0.020000	0.110000	0.250000
Cardiovascular hospital admissions	0.000250	0.001400	0.003200
Respiratory hospital admissions	0.000200	0.001100	0.002600
Non-fatal heart attacks (Peters)	0.000800	0.004500	0.010000
Non-fatal heart attacks (All others)	0.000086	0.000490	0.001100

2025 Analysis Year

Table 82. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the aircraft, locomotives and marine vessels sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO_2	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$8,000	\$110,000	\$280,000
Lepeule et al. (2012)	\$18,000	\$240,000	\$620,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,200	\$96,000	\$250,000
Lepeule et al. (2012)	\$16,000	\$220,000	\$560,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 83. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the aircraft, locomotives and marine vessels sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000880	0.012000	0.030000
Lepeule et al. (2012)	0.002000	0.027000	0.069000
Morbidity			
Respiratory emergency room visits	0.000460	0.005400	0.016000
Acute bronchitis	0.001400	0.019000	0.046000
Lower respiratory symptoms	0.018000	0.250000	0.590000
Upper respiratory symptoms	0.025000	0.350000	0.840000
Minor Restricted Activity Days	0.680000	10.000000	23.000000
Work loss days	0.110000	1.700000	4.000000
Asthma exacerbation	0.026000	0.360000	0.870000
Cardiovascular hospital admissions	0.000310	0.003600	0.011000
Respiratory hospital admissions	0.000260	0.003000	0.008900
Non-fatal heart attacks (Peters)	0.001000	0.012000	0.034000
Non-fatal heart attacks (All others)	0.000110	0.001300	0.003700

Table 84. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the area sources sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$8,700	\$56,000	\$370,000
Lepeule et al. (2012)	\$20,000	\$130,000	\$840,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,900	\$50,000	\$330,000
Lepeule et al. (2012)	\$18,000	\$110,000	\$750,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 85. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the area sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000960	0.006100	0.041000
Lepeule et al. (2012)	0.002200	0.014000	0.092000
Morbidity			
Respiratory emergency room visits	0.000540	0.003500	0.022000
Acute bronchitis	0.001500	0.009100	0.062000
Lower respiratory symptoms	0.019000	0.120000	0.790000
Upper respiratory symptoms	0.028000	0.170000	1.100000
Minor Restricted Activity Days	0.740000	4.600000	31.000000
Work loss days	0.120000	0.780000	5.300000
Asthma exacerbation	0.029000	0.410000	2.800000
Cardiovascular hospital admissions	0.000340	0.002200	0.015000
Respiratory hospital admissions	0.000280	0.001800	0.012000
Non-fatal heart attacks (Peters)	0.001100	0.007100	0.046000
Non-fatal heart attacks (All others)	0.000120	0.000770	0.005000

Table 86. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the cement kilns sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,300	\$49,000	\$420,000
Lepeule et al. (2012)	\$14,000	\$110,000	\$950,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,700	\$44,000	\$380,000
Lepeule et al. (2012)	\$13,000	\$99,000	\$850,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 87. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the cement kilns sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000700	0.005400	0.046000
Lepeule et al. (2012)	0.001600	0.012000	0.100000
Morbidity			
Respiratory emergency room visits	0.000390	0.002800	0.023000
Acute bronchitis	0.001100	0.007700	0.074000
Lower respiratory symptoms	0.014000	0.099000	0.940000
Upper respiratory symptoms	0.020000	0.140000	1.300000
Minor Restricted Activity Days	0.530000	3.800000	35.000000
Work loss days	0.089000	0.640000	6.000000
Asthma exacerbation	0.020000	0.150000	1.400000
Cardiovascular hospital admissions	0.000250	0.002000	0.016000
Respiratory hospital admissions	0.000210	0.001600	0.013000
Non-fatal heart attacks (Peters)	0.000810	0.006300	0.052000
Non-fatal heart attacks (All others)	0.000087	0.000680	0.005600

Table 88. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the coke ovens sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$12,000	\$57,000	\$500,000
Lepeule et al. (2012)	\$26,000	\$130,000	\$1,100,000
		7% Discount Rate	
Krewski et al. (2009)	\$10,000	\$51,000	\$450,000
Lepeule et al. (2012)	\$24,000	\$120,000	\$1,000,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 89. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the coke ovens sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001300	0.006300	0.055000
Lepeule et al. (2012)	0.002900	0.014000	0.120000
Morbidity			
Respiratory emergency room visits	0.000750	0.003300	0.027000
Acute bronchitis	0.001800	0.008600	0.069000
Lower respiratory symptoms	0.022000	0.110000	0.890000
Upper respiratory symptoms	0.032000	0.160000	1.300000
Minor Restricted Activity Days	0.870000	4.200000	34.000000
Work loss days	0.150000	0.710000	5.800000
Asthma exacerbation	0.033000	0.160000	1.300000
Cardiovascular hospital admissions	0.000500	0.002400	0.021000
Respiratory hospital admissions	0.000410	0.002000	0.017000
Non-fatal heart attacks (Peters)	0.001600	0.007600	0.065000
Non-fatal heart attacks (All others)	0.000170	0.000820	0.007000

Table 90. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the electric arc furnaces sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$11,000	\$89,000	\$480,000
Lepeule et al. (2012)	\$24,000	\$200,000	\$1,100,000
		7% Discount Rate	
Krewski et al. (2009)	\$9,600	\$80,000	\$430,000
Lepeule et al. (2012)	\$22,000	\$180,000	\$970,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 91. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the electric arc furnaces sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001200	0.009800	0.053000
Lepeule et al. (2012)	0.002700	0.022000	0.120000
Morbidity			
Respiratory emergency room visits	0.000690	0.004800	0.025000
Acute bronchitis	0.001700	0.013000	0.072000
Lower respiratory symptoms	0.022000	0.170000	0.910000
Upper respiratory symptoms	0.031000	0.250000	1.300000
Minor Restricted Activity Days	0.830000	6.600000	35.000000
Work loss days	0.140000	1.100000	5.900000
Asthma exacerbation	0.032000	0.250000	1.400000
Cardiovascular hospital admissions	0.000450	0.003500	0.019000
Respiratory hospital admissions	0.000360	0.002900	0.015000
Non-fatal heart attacks (Peters)	0.001400	0.011000	0.061000
Non-fatal heart attacks (All others)	0.000150	0.001200	0.006500

Table 92. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the electricity generating units sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$5,800	\$40,000	\$150,000
Lepeule et al. (2012)	\$13,000	\$90,000	\$340,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,200	\$36,000	\$130,000
Lepeule et al. (2012)	\$12,000	\$82,000	\$300,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 93. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the electricity generating units sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000640	0.004400	0.016000
Lepeule et al. (2012)	0.001400	0.010000	0.037000
Morbidity			
Respiratory emergency room visits	0.000350	0.002300	0.008900
Acute bronchitis	0.000960	0.006300	0.024000
Lower respiratory symptoms	0.012000	0.080000	0.310000
Upper respiratory symptoms	0.018000	0.120000	0.440000
Minor Restricted Activity Days	0.460000	3.100000	12.000000
Work loss days	0.078000	0.520000	2.000000
Asthma exacerbation	0.018000	0.280000	0.460000
Cardiovascular hospital admissions	0.000240	0.001700	0.006000
Respiratory hospital admissions	0.000200	0.001400	0.004900
Non-fatal heart attacks (Peters)	0.000770	0.005200	0.019000
Non-fatal heart attacks (All others)	0.000083	0.000570	0.002100

Table 94. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the ferroalloy facilities sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$4,800	\$50,000	\$310,000
Lepeule et al. (2012)	\$11,000	\$110,000	\$700,000
		7% Discount Rate	
Krewski et al. (2009)	\$4,400	\$45,000	\$280,000
Lepeule et al. (2012)	\$9,800	\$100,000	\$630,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 95. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the ferroalloy facilities sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature morta lity			
Krewski et al. (2009)	0.000530	0.005500	0.034000
Lepeule et al. (2012)	0.001200	0.012000	0.077000
Morbidity			
Respiratory emergency room visits	0.000240	0.002500	0.015000
Acute bronchitis	0.000690	0.007300	0.046000
Lower respiratory symptoms	0.008700	0.093000	0.580000
Upper respiratory symptoms	0.012000	0.130000	0.840000
Minor Restricted Activity Days	0.350000	3.600000	22.000000
Work loss days	0.058000	0.610000	3.700000
Asthma exacerbation	0.013000	0.140000	0.860000
Cardiovascular hospital admissions	0.000200	0.002000	0.012000
Respiratory hospital admissions	0.000160	0.001700	0.011000
Non-fatal heart attacks (Peters)	0.000630	0.006500	0.041000
Non-fatal heart attacks (All others)	0.000067	0.000700	0.004400

Table 96. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the industrial point sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,000	\$46,000	\$300,000
Lepeule et al. (2012)	\$16,000	\$100,000	\$680,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,300	\$41,000	\$270,000
Lepeule et al. (2012)	\$14,000	\$93,000	\$620,000

 $^{\rm A}$ Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 97. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the industrial point sources sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000770	0.005000	0.033000
Lepeule et al. (2012)	0.001800	0.011000	0.075000
Morbidity			
Respiratory emergency room visits	0.000420	0.002600	0.017000
Acute bronchitis	0.001200	0.007400	0.050000
Lower respiratory symptoms	0.015000	0.094000	0.640000
Upper respiratory symptoms	0.022000	0.130000	0.920000
Minor Restricted Activity Days	0.580000	3.600000	25.000000
Work loss days	0.098000	0.610000	4.200000
Asthma exacerbation	0.023000	0.140000	0.950000
Cardiovascular hospital admissions	0.000280	0.001900	0.012000
Respiratory hospital admissions	0.000230	0.001500	0.009800
Non-fatal heart attacks (Peters)	0.000910	0.005900	0.038000
Non-fatal heart attacks (All others)	0.000098	0.000640	0.004100

Table 98. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the integrated iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$15,000	\$96,000	\$540,000
Lepeule et al. (2012)	\$34,000	\$220,000	\$1,200,000
		7% Discount Rate	
Krewski et al. (2009)	\$13,000	\$87,000	\$480,000
Lepeule et al. (2012)	\$30,000	\$200,000	\$1,100,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 99. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the integrated iron and steel facilities sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.001600	0.011000	0.059000
Lepeule et al. (2012)	0.003700	0.024000	0.130000
Morbidity			
Respiratory emergency room visits	0.000930	0.005900	0.032000
Acute bronchitis	0.002300	0.015000	0.079000
Lower respiratory symptoms	0.029000	0.190000	1.000000
Upper respiratory symptoms	0.042000	0.270000	1.400000
Minor Restricted Activity Days	1.100000	7.200000	38.000000
Work loss days	0.190000	1.200000	6.500000
Asthma exacerbation	0.043000	0.280000	1.500000
Cardiovascular hospital admissions	0.000650	0.004100	0.023000
Respiratory hospital admissions	0.000530	0.003400	0.019000
Non-fatal heart attacks (Peters)	0.002000	0.013000	0.073000
Non-fatal heart attacks (All others)	0.000220	0.001400	0.007800

Table 100. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$19,000	\$450,000	\$570,000
Lepeule et al. (2012)	\$42,000	\$1,000,000	\$1,300,000
		7% Discount Rate	
Krewski et al. (2009)	\$17,000	\$410,000	\$510,000
Lepeule et al. (2012)	\$38,000	\$920,000	\$1,200,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 101. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the iron and steel facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.002100	0.050000	0.063000
Lepeule et al. (2012)	0.004700	0.110000	0.140000
Morbidity			
Respiratory emergency room visits	0.001100	0.025000	0.031000
Acute bronchitis	0.003300	0.071000	0.093000
Lower respiratory symptoms	0.042000	0.910000	1.200000
Upper respiratory symptoms	0.060000	1.300000	1.700000
Minor Restricted Activity Days	1.600000	36.000000	46.000000
Work loss days	0.280000	6.000000	7.800000
Asthma exacerbation	0.062000	1.300000	1.800000
Cardiovascular hospital admissions	0.000740	0.018000	0.022000
Respiratory hospital admissions	0.000610	0.015000	0.018000
Non-fatal heart attacks (Peters)	0.002400	0.057000	0.071000
Non-fatal heart attacks (All others)	0.000250	0.006100	0.007600

Table 102. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the non-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,700	\$52,000	\$360,000
Lepeule et al. (2012)	\$17,000	\$120,000	\$810,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,000	\$47,000	\$320,000
Lepeule et al. (2012)	\$16,000	\$110,000	\$730,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 103. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the non-road mobile sources sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature morta lity			
Krewski et al. (2009)	0.000850	0.005700	0.040000
Lepeule et al. (2012)	0.001900	0.013000	0.089000
Morbidity			
Respiratory emergency room visits	0.000460	0.002800	0.022000
Acute bronchitis	0.001400	0.010000	0.061000
Lower respiratory symptoms	0.018000	0.130000	0.780000
Upper respiratory symptoms	0.025000	0.180000	1.100000
Minor Restricted Activity Days	0.670000	4.700000	31.000000
Work loss days	0.110000	0.800000	5.300000
Asthma exacerbation	0.026000	0.190000	1.200000
Cardiovascular hospital admissions	0.000300	0.001800	0.014000
Respiratory hospital admissions	0.000240	0.001500	0.012000
Non-fatal heart attacks (Peters)	0.000980	0.006100	0.045000
Non-fatal heart attacks (All others)	0.000110	0.000660	0.004900

Table 104. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the ocean-going vessels sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$2,300	\$14,000	\$53,000
Lepeule et al. (2012)	\$5,100	\$32,000	\$120,000
		7% Discount Rate	
Krewski et al. (2009)	\$2,000	\$13,000	\$48,000
Lepeule et al. (2012)	\$4,600	\$29,000	\$110,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 105. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the ocean-going vessels sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000250	0.001600	0.005900
Lepeule et al. (2012)	0.000560	0.003500	0.013000
Morbidity			
Respiratory emergency room visits	0.000130	0.000740	0.002800
Acute bronchitis	0.000410	0.002200	0.008500
Lower respiratory symptoms	0.005200	0.028000	0.110000
Upper respiratory symptoms	0.007400	0.040000	0.150000
Minor Restricted Activity Days	0.210000	1.100000	4.400000
Work loss days	0.036000	0.190000	0.750000
Asthma exacerbation	0.007600	0.041000	0.160000
Cardiovascular hospital admissions	0.000081	0.000540	0.002000
Respiratory hospital admissions	0.000067	0.000430	0.001600
Non-fatal heart attacks (Peters)	0.000270	0.001800	0.006600
Non-fatal heart attacks (All others)	0.000029	0.000190	0.000720

Table 106. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the on-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$8,400	\$23,000	\$420,000
Lepeule et al. (2012)	\$19,000	\$52,000	\$950,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,600	\$21,000	\$380,000
Lepeule et al. (2012)	\$17,000	\$47,000	\$860,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 107. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the on-road mobile sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000930	0.002600	0.047000
Lepeule et al. (2012)	0.002100	0.005800	0.110000
Morbidity			
Respiratory emergency room visits	0.000510	0.001200	0.026000
Acute bronchitis	0.001400	0.004400	0.072000
Lower respiratory symptoms	0.018000	0.056000	0.920000
Upper respiratory symptoms	0.027000	0.080000	1.300000
Minor Restricted Activity Days	0.710000	2.100000	37.000000
Work loss days	0.120000	0.350000	6.200000
Asthma exacerbation	0.065000	0.082000	3.300000
Cardiovascular hospital admissions	0.000340	0.000810	0.017000
Respiratory hospital admissions	0.000280	0.000660	0.014000
Non-fatal heart attacks (Peters)	0.001100	0.002700	0.053000
Non-fatal heart attacks (All others)	0.000120	0.000290	0.005700

Table 108. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the pulp and paper facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$4,200	\$51,000	\$170,000
Lepeule et al. (2012)	\$9,400	\$120,000	\$380,000
		7% Discount Rate	
Krewski et al. (2009)	\$3,700	\$46,000	\$150,000
Lepeule et al. (2012)	\$8,500	\$100,000	\$350,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 109. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the pulp and paper facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000460	0.005700	0.019000
Lepeule et al. (2012)	0.001000	0.013000	0.042000
Morbidity			
Respiratory emergency room visits	0.000240	0.002700	0.008400
Acute bronchitis	0.000670	0.008000	0.027000
Lower respiratory symptoms	0.008500	0.100000	0.340000
Upper respiratory symptoms	0.012000	0.150000	0.480000
Minor Restricted Activity Days	0.330000	3.900000	13.000000
Work loss days	0.055000	0.660000	2.100000
Asthma exacerbation	0.013000	0.150000	0.500000
Cardiovascular hospital admissions	0.000170	0.002000	0.006500
Respiratory hospital admissions	0.000130	0.001700	0.005300
Non-fatal heart attacks (Peters)	0.000540	0.006600	0.021000
Non-fatal heart attacks (All others)	0.000058	0.000710	0.002300

Table 110. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the refineries sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,700	\$79,000	\$370,000
Lepeule et al. (2012)	\$17,000	\$180,000	\$830,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,900	\$71,000	\$330,000
Lepeule et al. (2012)	\$16,000	\$160,000	\$750,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 111. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the refineries sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000850	0.008600	0.040000
Lepeule et al. (2012)	0.001900	0.020000	0.091000
Morbidity			
Respiratory emergency room visits	0.000440	0.004300	0.020000
Acute bronchitis	0.001400	0.014000	0.065000
Lower respiratory symptoms	0.018000	0.180000	0.820000
Upper respiratory symptoms	0.025000	0.250000	1.200000
Minor Restricted Activity Days	0.670000	6.800000	32.000000
Work loss days	0.110000	1.200000	5.300000
Asthma exacerbation	0.026000	0.260000	1.200000
Cardiovascular hospital admissions	0.000290	0.003000	0.014000
Respiratory hospital admissions	0.000240	0.002500	0.012000
Non-fatal heart attacks (Peters)	0.000960	0.009600	0.044000
Non-fatal heart attacks (All others)	0.000100	0.001000	0.004800

Table 112. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the residential wood combustion sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$15,000	\$120,000	\$420,000
Lepeule et al. (2012)	\$34,000	\$260,000	\$950,000
		7% Discount Rate	
Krewski et al. (2009)	\$14,000	\$100,000	\$380,000
Lepeule et al. (2012)	\$31,000	\$230,000	\$860,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 113. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2025 from the residential wood combustion sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.001700	0.013000	0.047000
Lepeule et al. (2012)	0.003800	0.029000	0.110000
Morbidity			
Respiratory emergency room visits	0.000880	0.006200	0.023000
Acute bronchitis	0.002600	0.019000	0.070000
Lower respiratory symptoms	0.033000	0.240000	0.890000
Upper respiratory symptoms	0.047000	0.340000	1.300000
Minor Restricted Activity Days	1.300000	9.600000	35.000000
Work loss days	0.210000	1.600000	5.900000
Asthma exacerbation	0.049000	0.360000	3.100000
Cardiovascular hospital admissions	0.000560	0.004100	0.015000
Respiratory hospital admissions	0.000460	0.003400	0.013000
Non-fatal heart attacks (Peters)	0.001900	0.014000	0.052000
Non-fatal heart attacks (All others)	0.000200	0.001500	0.005700

Table 114. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the taconite mines sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,600	\$37,000	\$93,000
Lepeule et al. (2012)	\$15,000	\$84,000	\$210,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,000	\$34,000	\$84,000
Lepeule et al. (2012)	\$14,000	\$76,000	\$190,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 115. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2025 from the taconite mines sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000730	0.004100	0.010000
Lepeule et al. (2012)	0.001700	0.009300	0.023000
Morbidity			
Respiratory emergency room visits	0.000380	0.002000	0.004500
Acute bronchitis	0.001100	0.005800	0.014000
Lower respiratory symptoms	0.014000	0.074000	0.180000
Upper respiratory symptoms	0.020000	0.110000	0.250000
Minor Restricted Activity Days	0.530000	2.800000	6.700000
Work loss days	0.089000	0.480000	1.100000
Asthma exacerbation	0.020000	0.110000	0.260000
Cardiovascular hospital admissions	0.000270	0.001500	0.003500
Respiratory hospital admissions	0.000220	0.001200	0.002800
Non-fatal heart attacks (Peters)	0.000870	0.004900	0.011000
Non-fatal heart attacks (All others)	0.000093	0.000530	0.001200

2030 Analysis Year

Table 116. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the aircraft, locomotives and marine vessels sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$8,700	\$120,000	\$300,000
Lepeule et al. (2012)	\$20,000	\$270,000	\$680,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,800	\$110,000	\$270,000
Lepeule et al. (2012)	\$18,000	\$240,000	\$610,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 117. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the aircraft, locomotives and marine vessels sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000960	0.013000	0.033000
Lepeule et al. (2012)	0.002200	0.030000	0.075000
Morbidity			
Respiratory emergency room visits	0.000480	0.005700	0.016000
Acute bronchitis	0.001400	0.020000	0.047000
Lower respiratory symptoms	0.018000	0.260000	0.600000
Upper respiratory symptoms	0.026000	0.370000	0.860000
Minor Restricted Activity Days	0.690000	10.000000	24.000000
Work loss days	0.120000	1.700000	4.000000
Asthma exacerbation	0.027000	0.380000	0.900000
Cardiovascular hospital admissions	0.000340	0.004100	0.012000
Respiratory hospital admissions	0.000290	0.003500	0.009900
Non-fatal heart attacks (Peters)	0.001100	0.014000	0.038000
Non-fatal heart attacks (All others)	0.000120	0.001500	0.004000

Table 118. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the area sources sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$9,400	\$60,000	\$400,000
Lepeule et al. (2012)	\$21,000	\$140,000	\$910,000
		7% Discount Rate	
Krewski et al. (2009)	\$8,500	\$54,000	\$360,000
Lepeule et al. (2012)	\$19,000	\$120,000	\$820,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 119. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the area sources sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001000	0.006600	0.044000
Lepeule et al. (2012)	0.002300	0.015000	0.100000
Morbidity			
Respiratory emergency room visits	0.000560	0.003600	0.023000
Acute bronchitis	0.001600	0.009400	0.064000
Lower respiratory symptoms	0.020000	0.120000	0.820000
Upper respiratory symptoms	0.029000	0.170000	1.200000
Minor Restricted Activity Days	0.750000	4.700000	32.000000
Work loss days	0.130000	0.790000	5.500000
Asthma exacerbation	0.030000	0.420000	2.900000
Cardiovascular hospital admissions	0.000380	0.002500	0.016000
Respiratory hospital admissions	0.000310	0.002000	0.013000
Non-fatal heart attacks (Peters)	0.001200	0.007800	0.051000
Non-fatal heart attacks (All others)	0.000130	0.000850	0.005600

Table 120. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the cement kilns sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,800	\$52,000	\$460,000
Lepeule et al. (2012)	\$15,000	\$120,000	\$1,000,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,100	\$47,000	\$410,000
Lepeule et al. (2012)	\$14,000	\$110,000	\$930,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 121. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the cement kilns sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000750	0.005800	0.051000
Lepeule et al. (2012)	0.001700	0.013000	0.110000
Morbidity			
Respiratory emergency room visits	0.000400	0.002900	0.024000
Acute bronchitis	0.001100	0.008000	0.077000
Lower respiratory symptoms	0.014000	0.100000	0.980000
Upper respiratory symptoms	0.020000	0.150000	1.400000
Minor Restricted Activity Days	0.540000	3.900000	36.000000
Work loss days	0.091000	0.660000	6.200000
Asthma exacerbation	0.021000	0.150000	1.400000
Cardiovascular hospital admissions	0.000280	0.002100	0.018000
Respiratory hospital admissions	0.000230	0.001800	0.014000
Non-fatal heart attacks (Peters)	0.000890	0.006900	0.058000
Non-fatal heart attacks (All others)	0.000096	0.000740	0.006300

Table 122. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the coke ovens sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$12,000	\$61,000	\$530,000
Lepeule et al. (2012)	\$28,000	\$140,000	\$1,200,000
		7% Discount Rate	
Krewski et al. (2009)	\$11,000	\$55,000	\$480,000
Lepeule et al. (2012)	\$25,000	\$120,000	\$1,100,000

 $^{\rm A}$ Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 123. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the coke ovens sector

	Pollutant emitted		
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.001400	0.006700	0.058000
Lepeule et al. (2012)	0.003100	0.015000	0.130000
Morbidity			
Respiratory emergency room visits	0.000760	0.003400	0.027000
Acute bronchitis	0.001800	0.008800	0.070000
Lower respiratory symptoms	0.023000	0.110000	0.890000
Upper respiratory symptoms	0.032000	0.160000	1.300000
Minor Restricted Activity Days	0.870000	4.300000	34.000000
Work loss days	0.150000	0.720000	5.800000
Asthma exacerbation	0.034000	0.170000	1.300000
Cardiovascular hospital admissions	0.000530	0.002600	0.022000
Respiratory hospital admissions	0.000440	0.002100	0.018000
Non-fatal heart attacks (Peters)	0.001700	0.008300	0.070000
Non-fatal heart attacks (All others)	0.000180	0.000890	0.007500

Table 124. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the electric arc furnaces sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$11,000	\$95,000	\$510,000
Lepeule et al. (2012)	\$26,000	\$220,000	\$1,200,000
		7% Discount Rate	
Krewski et al. (2009)	\$10,000	\$86,000	\$460,000
Lepeule et al. (2012)	\$23,000	\$190,000	\$1,000,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 125. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2030 from the electric arc furnaces sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.001200	0.011000	0.056000
Lepeule et al. (2012)	0.002800	0.024000	0.130000
Morbidity			
Respiratory emergency room visits	0.000710	0.005000	0.026000
Acute bronchitis	0.001800	0.014000	0.073000
Lower respiratory symptoms	0.022000	0.180000	0.940000
Upper respiratory symptoms	0.032000	0.250000	1.300000
Minor Restricted Activity Days	0.840000	6.800000	36.000000
Work loss days	0.140000	1.100000	6.000000
Asthma exacerbation	0.033000	0.260000	1.400000
Cardiovascular hospital admissions	0.000480	0.003800	0.020000
Respiratory hospital admissions	0.000400	0.003200	0.017000
Non-fatal heart attacks (Peters)	0.001500	0.012000	0.066000
Non-fatal heart attacks (All others)	0.000160	0.001300	0.007100

Table 126. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the electricity generating units sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$6,200	\$43,000	\$160,000
Lepeule et al. (2012)	\$14,000	\$97,000	\$360,000
		7% Discount Rate	
Krewski et al. (2009)	\$5,600	\$39,000	\$140,000
Lepeule et al. (2012)	\$13,000	\$87,000	\$330,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 127. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the electricity generating units sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000680	0.004800	0.018000
Lepeule et al. (2012)	0.001500	0.011000	0.040000
Morbidity			
Respiratory emergency room visits	0.000350	0.002300	0.009200
Acute bronchitis	0.000980	0.006500	0.025000
Lower respiratory symptoms	0.013000	0.083000	0.320000
Upper respiratory symptoms	0.018000	0.120000	0.460000
Minor Restricted Activity Days	0.470000	3.200000	12.000000
Work loss days	0.079000	0.540000	2.100000
Asthma exacerbation	0.019000	0.290000	0.480000
Cardiovascular hospital admissions	0.000260	0.001800	0.006600
Respiratory hospital admissions	0.000220	0.001500	0.005500
Non-fatal heart attacks (Peters)	0.000830	0.005700	0.021000
Non-fatal heart attacks (All others)	0.000090	0.000620	0.002300

Table 128. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the ferroalloy facilities sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$5,100	\$53,000	\$330,000
Lepeule et al. (2012)	\$12,000	\$120,000	\$740,000
		7% Discount Rate	
Krewski et al. (2009)	\$4,600	\$48,000	\$290,000
Lepeule et al. (2012)	\$10,000	\$110,000	\$670,000

 $^{\rm A}$ Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 129. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2030 from the ferroalloy facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000570	0.005900	0.036000
Lepeule et al. (2012)	0.001300	0.013000	0.082000
Morbidity			
Respiratory emergency room visits	0.000240	0.002600	0.016000
Acute bronchitis	0.000700	0.007500	0.047000
Lower respiratory symptoms	0.008900	0.096000	0.590000
Upper respiratory symptoms	0.013000	0.140000	0.850000
Minor Restricted Activity Days	0.350000	3.700000	23.000000
Work loss days	0.059000	0.620000	3.800000
Asthma exacerbation	0.013000	0.140000	0.880000
Cardiovascular hospital admissions	0.000210	0.002200	0.013000
Respiratory hospital admissions	0.000170	0.001800	0.012000
Non-fatal heart attacks (Peters)	0.000680	0.007100	0.044000
Non-fatal heart attacks (All others)	0.000073	0.000760	0.004700

Table 130. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the industrial point sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,600	\$49,000	\$330,000
Lepeule et al. (2012)	\$17,000	\$110,000	\$740,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,800	\$44,000	\$300,000
Lepeule et al. (2012)	\$15,000	\$100,000	\$670,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 131. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2030 from the industrial point sources sector

		Pollutant emitted	l
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000830	0.005400	0.036000
Lepeule et al. (2012)	0.001900	0.012000	0.082000
Morbidity			
Respiratory emergency room visits	0.000430	0.002700	0.018000
Acute bronchitis	0.001200	0.007600	0.052000
Lower respiratory symptoms	0.016000	0.097000	0.670000
Upper respiratory symptoms	0.023000	0.140000	0.950000
Minor Restricted Activity Days	0.590000	3.700000	26.000000
Work loss days	0.100000	0.630000	4.300000
Asthma exacerbation	0.023000	0.140000	0.990000
Cardiovascular hospital admissions	0.000310	0.002000	0.013000
Respiratory hospital admissions	0.000260	0.001700	0.011000
Non-fatal heart attacks (Peters)	0.001000	0.006400	0.042000
Non-fatal heart attacks (All others)	0.000110	0.000700	0.004500

Table 132. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the integrated iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$16,000	\$100,000	\$570,000
Lepeule et al. (2012)	\$36,000	\$230,000	\$1,300,000
		7% Discount Rate	
Krewski et al. (2009)	\$14,000	\$92,000	\$510,000
Lepeule et al. (2012)	\$32,000	\$210,000	\$1,200,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 133. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2030 from the integrated iron and steel facilities sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.001700	0.011000	0.063000
Lepeule et al. (2012)	0.003900	0.026000	0.140000
Morbidity			
Respiratory emergency room visits	0.000950	0.006000	0.032000
Acute bronchitis	0.002300	0.015000	0.079000
Lower respiratory symptoms	0.030000	0.190000	1.000000
Upper respiratory symptoms	0.042000	0.270000	1.400000
Minor Restricted Activity Days	1.100000	7.200000	38.000000
Work loss days	0.190000	1.200000	6.500000
Asthma exacerbation	0.044000	0.280000	1.500000
Cardiovascular hospital admissions	0.000700	0.004500	0.025000
Respiratory hospital admissions	0.000570	0.003700	0.021000
Non-fatal heart attacks (Peters)	0.002200	0.014000	0.078000
Non-fatal heart attacks (All others)	0.000240	0.001500	0.008500

Table 134. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the iron and steel facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$20,000	\$480,000	\$610,000
Lepeule et al. (2012)	\$46,000	\$1,100,000	\$1,400,000
		7% Discount Rate	
Krewski et al. (2009)	\$18,000	\$440,000	\$550,000
Lepeule et al. (2012)	\$41,000	\$980,000	\$1,200,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 135. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the iron and steel facilities sector

		Pollutant emitted	
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.002200	0.053000	0.068000
Lepeule et al. (2012)	0.005100	0.120000	0.150000
Morbidity			
Respiratory emergency room visits	0.001100	0.026000	0.032000
Acute bronchitis	0.003400	0.073000	0.095000
Lower respiratory symptoms	0.043000	0.930000	1.200000
Upper respiratory symptoms	0.062000	1.300000	1.700000
Minor Restricted Activity Days	1.700000	36.000000	47.000000
Work loss days	0.280000	6.100000	7.900000
Asthma exacerbation	0.064000	1.400000	1.800000
Cardiovascular hospital admissions	0.000810	0.019000	0.024000
Respiratory hospital admissions	0.000680	0.016000	0.020000
Non-fatal heart attacks (Peters)	0.002600	0.062000	0.078000
Non-fatal heart attacks (All others)	0.000280	0.006700	0.008400

Table 136. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the non-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$8,400	\$57,000	\$390,000
Lepeule et al. (2012)	\$19,000	\$130,000	\$880,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,600	\$52,000	\$350,000
Lepeule et al. (2012)	\$17,000	\$120,000	\$790,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 137. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2030 from the non-road mobile sources sector

		Pollutant emitted	l
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000930	0.006300	0.043000
Lepeule et al. (2012)	0.002100	0.014000	0.097000
Morbidity			
Respiratory emergency room visits	0.000480	0.003000	0.023000
Acute bronchitis	0.001400	0.010000	0.063000
Lower respiratory symptoms	0.018000	0.130000	0.810000
Upper respiratory symptoms	0.026000	0.190000	1.200000
Minor Restricted Activity Days	0.690000	4.900000	32.000000
Work loss days	0.120000	0.830000	5.400000
Asthma exacerbation	0.027000	0.200000	1.200000
Cardiovascular hospital admissions	0.000330	0.002000	0.016000
Respiratory hospital admissions	0.000270	0.001700	0.013000
Non-fatal heart attacks (Peters)	0.001100	0.006900	0.050000
Non-fatal heart attacks (All others)	0.000120	0.000740	0.005400

Table 138. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the ocean-going vessels sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$2,500	\$16,000	\$58,000
Lepeule et al. (2012)	\$5,600	\$35,000	\$130,000
		7% Discount Rate	
Krewski et al. (2009)	\$2,300	\$14,000	\$53,000
Lepeule et al. (2012)	\$5,100	\$32,000	\$120,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 139. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2030 from the ocean-going vessels sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000280	0.001700	0.006400
Lepeule et al. (2012)	0.000620	0.003900	0.015000
Morbidity			
Respiratory emergency room visits	0.000130	0.000780	0.002900
Acute bronchitis	0.000420	0.002300	0.008800
Lower respiratory symptoms	0.005300	0.029000	0.110000
Upper respiratory symptoms	0.007600	0.041000	0.160000
Minor Restricted Activity Days	0.210000	1.200000	4.500000
Work loss days	0.036000	0.200000	0.760000
Asthma exacerbation	0.007900	0.043000	0.170000
Cardiovascular hospital admissions	0.000092	0.000600	0.002200
Respiratory hospital admissions	0.000077	0.000490	0.001800
Non-fatal heart attacks (Peters)	0.000300	0.002000	0.007400
Non-fatal heart attacks (All others)	0.000033	0.000210	0.000800

Table 140. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the on-road mobile sources sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$9,100	\$26,000	\$460,000
Lepeule et al. (2012)	\$21,000	\$58,000	\$1,000,000
		7% Discount Rate	
Krewski et al. (2009)	\$8,200	\$23,000	\$410,000
Lepeule et al. (2012)	\$19,000	\$52,000	\$930,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 141. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the on-road mobile sources sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.001000	0.002800	0.051000
Lepeule et al. (2012)	0.002300	0.006400	0.110000
Morbidity			
Respiratory emergency room visits	0.000530	0.001300	0.026000
Acute bronchitis	0.001500	0.004600	0.075000
Lower respiratory symptoms	0.019000	0.058000	0.950000
Upper respiratory symptoms	0.027000	0.083000	1.400000
Minor Restricted Activity Days	0.720000	2.100000	37.000000
Work loss days	0.120000	0.360000	6.400000
Asthma exacerbation	0.067000	0.086000	3.400000
Cardiovascular hospital admissions	0.000370	0.000910	0.018000
Respiratory hospital admissions	0.000300	0.000750	0.015000
Non-fatal heart attacks (Peters)	0.001200	0.003100	0.059000
Non-fatal heart attacks (All others)	0.000130	0.000330	0.006400

Table 142. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the pulp and paper facilities sector (2010\$)

	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$4,500	\$55,000	\$180,000
Lepeule et al. (2012)	\$10,000	\$130,000	\$410,000
		7% Discount Rate	
Krewski et al. (2009)	\$4,000	\$50,000	\$170,000
Lepeule et al. (2012)	\$9,100	\$110,000	\$370,000

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 143. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the pulp and paper facilities sector

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Premature mortality			
Krewski et al. (2009)	0.000490	0.006100	0.020000
Lepeule et al. (2012)	0.001100	0.014000	0.046000
Morbidity			
Respiratory emergency room visits	0.000250	0.002900	0.008700
Acute bronchitis	0.000680	0.008200	0.027000
Lower respiratory symptoms	0.008700	0.100000	0.350000
Upper respiratory symptoms	0.012000	0.150000	0.500000
Minor Restricted Activity Days	0.330000	4.000000	13.000000
Work loss days	0.056000	0.680000	2.200000
Asthma exacerbation	0.013000	0.160000	0.520000
Cardiovascular hospital admissions	0.000180	0.002200	0.007100
Respiratory hospital admissions	0.000150	0.001800	0.005900
Non-fatal heart attacks (Peters)	0.000590	0.007200	0.023000
Non-fatal heart attacks (All others)	0.000063	0.000770	0.002500

Table 144. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the refineries sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$8,300	\$86,000	\$400,000
Lepeule et al. (2012)	\$19,000	\$190,000	\$900,000
		7% Discount Rate	
Krewski et al. (2009)	\$7,500	\$77,000	\$360,000
Lepeule et al. (2012)	\$17,000	\$170,000	\$810,000

 $^{\rm A}$ Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

Table 145. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the refineries sector

		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.000920	0.009500	0.044000
Lepeule et al. (2012)	0.002100	0.021000	0.099000
Morbidity			
Respiratory emergency room visits	0.000460	0.004500	0.021000
Acute bronchitis	0.001400	0.014000	0.066000
Lower respiratory symptoms	0.018000	0.180000	0.850000
Upper respiratory symptoms	0.026000	0.260000	1.200000
Minor Restricted Activity Days	0.680000	7.000000	32.000000
Work loss days	0.120000	1.200000	5.400000
Asthma exacerbation	0.027000	0.270000	1.300000
Cardiovascular hospital admissions	0.000330	0.003300	0.016000
Respiratory hospital admissions	0.000270	0.002800	0.013000
Non-fatal heart attacks (Peters)	0.001100	0.011000	0.049000
Non-fatal heart attacks (All others)	0.000110	0.001200	0.005300

Table 146. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the residential wood combustion sector (2010\$)

		Pollutant emitted	
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$16,000	\$130,000	\$460,000
Lepeule et al. (2012)	\$37,000	\$280,000	\$1,000,000
		7% Discount Rate	
Krewski et al. (2009)	\$15,000	\$110,000	\$420,000
Lepeule et al. (2012)	\$33,000	\$250,000	\$940,000

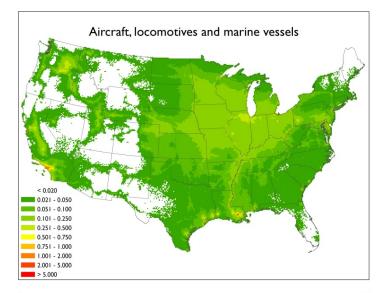
^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the $PM_{2.5}$ mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

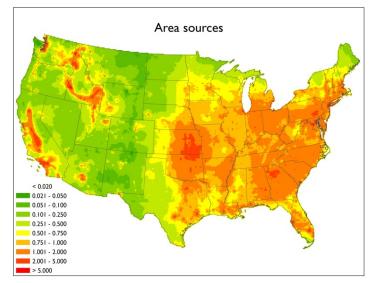
Table 147. Incidence of avoided mortalities and morbidities per ton of directly emitted $PM_{2.5}$ and $PM_{2.5}$ precursors reduced in 2030 from the residential wood combustion sector

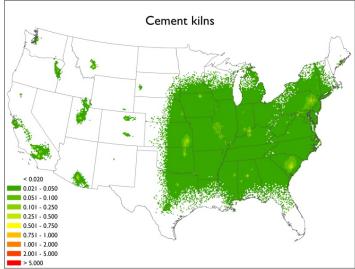
		Pollutant emitted	
Health Endpoint	NO _x	SO ₂	Directly emitted PM _{2.5}
Pre matu re mo rta lity			
Krewski et al. (2009)	0.001800	0.014000	0.051000
Lepeule et al. (2012)	0.004100	0.031000	0.110000
Morbidity			
Respiratory emergency room visits	0.000900	0.006400	0.024000
Acute bronchitis	0.002700	0.020000	0.072000
Lower respiratory symptoms	0.034000	0.250000	0.920000
Upper respiratory symptoms	0.049000	0.360000	1.300000
Minor Restricted Activity Days	1.300000	9.800000	36.000000
Work loss days	0.220000	1.700000	6.100000
Asthma exacerbation	0.050000	0.370000	3.300000
Cardiovascular hospital admissions	0.000610	0.004500	0.017000
Respiratory hospital admissions	0.000510	0.003800	0.014000
Non-fatal heart attacks (Peters)	0.002100	0.016000	0.057000
Non-fatal heart attacks (All others)	0.000220	0.001700	0.006300

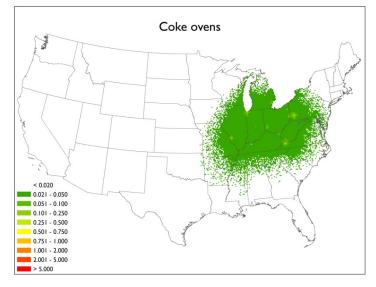
Table 148. Dollar value (mortality and morbidity) per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the taconite mines sector (2010\$)

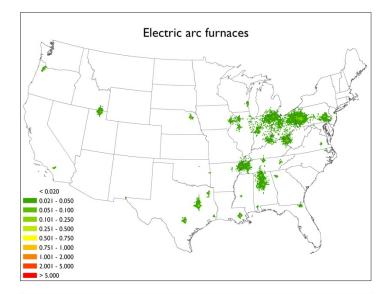
	Pollutant emitted		
Mortality risk estimate ^A	NO _x	SO ₂	Directly emitted PM _{2.5}
		3% Discount Rate	
Krewski et al. (2009)	\$7,100	\$40,000	\$100,000
Lepeule et al. (2012)	\$16,000	\$90,000	\$220,000
		7% Discount Rate	
Krewski et al. (2009)	\$6,400	\$36,000	\$90,000
Lepeule et al. (2012)	\$14,000	\$81,000	\$200,000

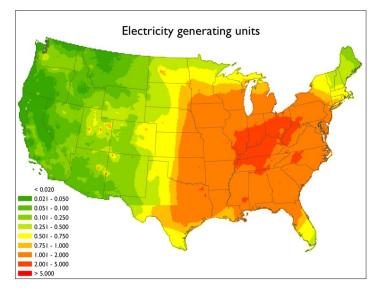

^A Value represents sum of the value of avoided morbidity impacts and mortality impacts quantified using the PM_{2.5} mortality risk estimate noted. Estimates are rounded to two significant digits in this table, but all calculations are performed with the unrounded estimates.

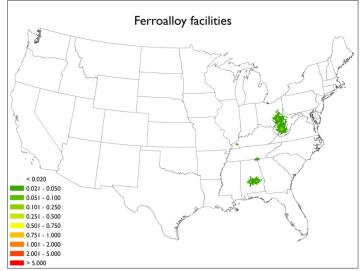

Table 149. Incidence of avoided mortalities and morbidities per ton of directly emitted PM_{2.5} and PM_{2.5} precursors reduced in 2030 from the taconite mines sector

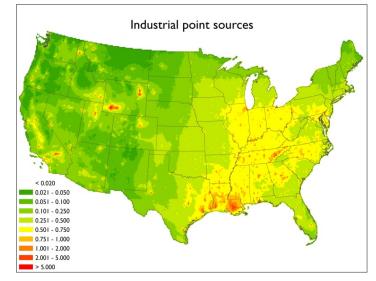

	Pollutant emitted		
Health Endpoint	NO _x	SO_2	Directly emitted PM _{2.5}
Pre mature mortality			
Krewski et al. (2009)	0.000780	0.004400	0.011000
Lepeule et al. (2012)	0.001800	0.010000	0.025000
Morbidity			
Respiratory emergency room visits	0.000390	0.002100	0.004600
Acute bronchitis	0.001100	0.005900	0.014000
Lower respiratory symptoms	0.014000	0.076000	0.180000
Upper respiratory symptoms	0.020000	0.110000	0.260000
Minor Restricted Activity Days	0.530000	2.900000	6.800000
Work loss days	0.090000	0.490000	1.100000
Asthma exacerbation	0.021000	0.110000	0.270000
Cardiovascular hospital admissions	0.000290	0.001600	0.003800
Respiratory hospital admissions	0.000240	0.001400	0.003100
Non-fatal heart attacks (Peters)	0.000940	0.005400	0.012000
Non-fatal heart attacks (All others)	0.000100	0.000580	0.001300

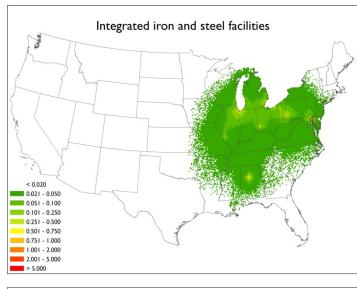

Appendix B

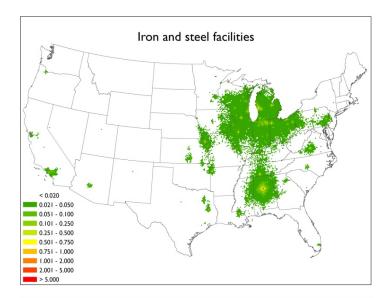

Modeled annual mean $PM_{2.5}$ levels attributable to sectors in 2016

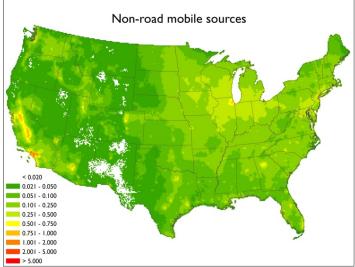


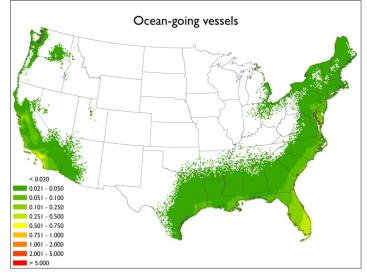


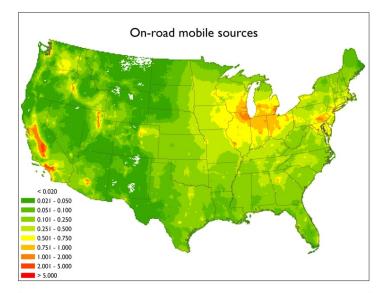


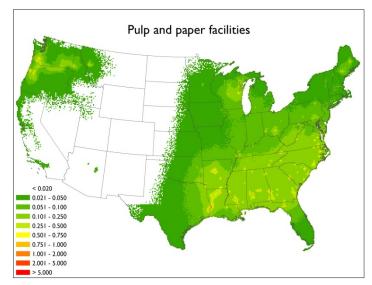


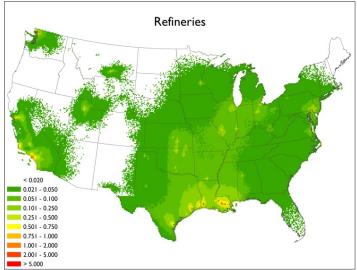


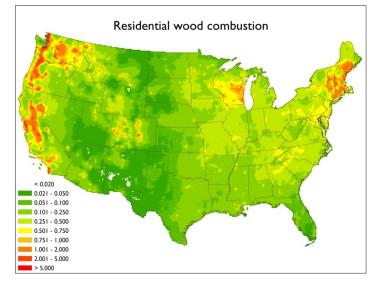


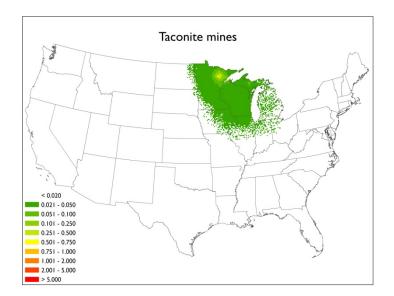












References

- Abt Associates Inc., 2012. *BenMAP User's Manual Appendices*, Prepared for U.S. Environmental Protection Agency Office of Air Quality Planning and Standards. Research Triangle Park, NC. Available at: http://www.epa.gov/air/benmap/models/BenMAPAppendicesOct2012.pdf.
- Davidson, K. et al., 2007. Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP). *Journal of Toxicology and Environmental Health. Part A*, 70(3-4), pp.332–46.
- Fann, N., Baker, K.R. & Fulcher, C.M., 2012. Characterizing the PM_{2.5}-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S. *Environment international*, 49, pp.141–51. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23022875 [Accessed January 14, 2013].
- Fann, N., Fulcher, C.M. & Hubbell, B.J., 2009. The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution. *Air Quality, Atmosphere, & Health*, 2(3), pp.169–176.
- Hubbell, B.J. et al., 2004. Health-Related Benefits of Attaining the 8-Hr Ozone Standard. *Environmental Health Perspectives*, 113(1), pp.73–82.
- Hubbell, B.J., Fann, N. & Levy, J.I., 2009. Methodological considerations in developing localscale health impact assessments: balancing national, regional, and local data. *Air Quality, Atmosphere & Health*, 2(2), pp.99–110.
- Levy, J.I., Baxter, L.K. & Schwartz, J., 2009. Uncertainty and Variability in Health-Related Damages from Coal-Fired Power Plants in the United States. *Risk Analysis*, 29(7), pp.1000–1014.
- Mansfield, C., Sinha, P. & Henrion, M., 2009. *Influence Analysis in Support of Characterizing Uncertainty in Human Health Benefits Analysis Influence Analysis in Support of Characterizing Uncertainty in Human Health Benefits Analysis: Final Report*, Prepared for U.S. EPA, Office of Air Quality Planning and Standards. Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/ecas/regdata/Benefits/influence_analysis_final_report_psg.p df.
- Office of Management and Budget (OMB), 2003. *Circular A-4: Regulatory Analysis*, Washington, DC. Available at: http://www.whitehouse.gov/omb/circulars/a004/a-4.html.
- Roman, H.A. et al., 2008. Expert judgment assessment of the mortality impact of changes in ambient fine particulate matter in the U.S. *Environmental Science & Technology*, 42(7), pp.2268–74.

- Tagaris, E. et al., 2009. Potential impact of climate change on air pollution-related human health effects. *Environmental Science & Technology*, 43(13), pp.4979–88.
- US EPA, 1998. *Regulatory impact analysis for the NOx SIP call, FIP, and Section 126 petitions,* EPA-452/R-98-003. Available at: http://www.epa.gov/ttn/oarpg/otag/sipriav2.zip.
- US EPA, 2000. *Guidelines for Preparing Economic Analyses*, EPA 240-R-00-003. National Center for Environmental Economics, Office of Policy Economics and Innovation. Washington, DC. Available at: http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/Guidelines.html/\$file/cover.pdf.
- US EPA, 2005. 2005 National Emissions Inventory Data & Documentation, Available at: www.epa.gov/ttnchie1/net/2005inventory.html.
- US EPA, 2006. *Regulatory Impact Analysis, 2006 National Ambient Air Quality Standards for Particulate Matter, Chapter 5*, Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/ecas/regdata/RIAs/Chapter 5--Benefits.pdf.
- US EPA, 2009. Integrated Science Assessment for Particulate Matter (Final Report), EPA-600-R-08-139F. National Center for Environmental Assessment – RTP Division. Research Triangle Park, NC. Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=216546.
- US EPA, 2010a. *Guidelines for Preparing Economic Analyses*, EPA 240-R-10-001. National Center for Environmental Economics, Office of Policy Economics and Innovation. Washington, DC. Available at: http://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0568-50.pdf/\$file/EE-0568- 50.pdf.
- US EPA, 2010b. *Regulatory Impact Analysis (RIA) for existing stationary Spark Ignition (SI) RICE NESHAP*, EPA-452/R-10-010. Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/ecas/regdata/RIAs/riceriafinal.pdf.
- US EPA, 2010c. *Regulatory impact analysis for the proposed federal transport rule*, EPA-HQ-OAR-2009-0491. Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/ecas/regdata/RIAs/proposaltrria_final.pdf.
- US EPA, 2010d. Technical Support Document: Summary of Expert Opinions on the Existence of a Threshold in the Concentration-Response Function for PM2.5-related Mortality, Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/ecas/regdata/Benefits/thresholdstsd.pdf.
- US EPA, 2011a. Air Quality Modeling Technical Support Document: Source Sector Assessments, Research Triangle Park, NC. Available at: http://www.epa.gov/scram001/reports/EPA454_R11_006.pdf.

- US EPA, 2011b. *North American Emissions Inventories Canada*, Available at: http://www.epa.gov/ttnchie1/net/canada.html.
- US EPA, 2011c. North American Emissions Inventories Mexico, Available at: http://www.epa.gov/ttnchie1/net/mexico.html.
- US EPA, 2011d. Regulatory impact analysis: national emissions standards for hazardous air pollutants for industrial, commercial, and institutional boilers and process heaters, Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/ecas/regdata/RIAs/boilersriafinal110221_psg.pdf.
- US EPA, 2012. *Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter*, Research Triangle Park, NC. Available at: http://www.epa.gov/pm/2012/finalria.pdf.
- US EPA-SAB, 2000. An SAB Report on EPA's White Paper Valuing the Benefits of Fatal Cancer Risk Reduction., EPA-SAB-EEAC-00-013. Available at: http://yosemite.epa.gov/sab\SABPRODUCT.NSF/41334524148BCCD6852571A7005 16498/\$File/eeacf013.pdf.
- US EPA-SAB, 2004. Advisory Council on Clean Air Compliance Analysis Response to Agency Request on Cessation Lag, EPA-COUNCIL-LTR-05-001. Available at: http://yosemite.epa.gov/sab/sabproduct.nsf/0/39F44B098DB49F3C8525717000529 3E0/\$File/council_ltr_05_001.pdf.