AN INTERSPECIES COMPARISON OF
TOXICITY PATHWAYS MEDIATING
NEURODEVELOPMENTAL TOXICITY IN
NEUROSPHERES - AND NOVEL
COMPUTATIONAL APPROACHES FOR HIGH
CONTENT IMAGE ANALYSES (HCA)

Ellen Fritsche EPA's Computational Toxicology Communities of Practice September 25th 2014 Mitglied der Leibniz-Gemeinschaft

Cell Biological Processes performed by NPC

With courtesy from William Mundy, U.S. Environmental Protection Agency and John Havel, SRA International, Inc.

The Neurosphere Method

Neural Stem/Progenitor Cells (NPCs, Lonza)

Neural Stem/Progenitor Cells self-prepared

Culture as Neurospheres

Fetal Brain

- **NPC Proliferation:** -Increase in size/time
- -BrdU incorporation
- **NPC Migration:**
- -Total migration distance
- -number of migrated cells
- -neuronal migration

NPC Differentiation:

- -Neurons
- -Astrocytes
- -Oligodendrocytes

The 'Neurosphere-Assay'

Apoptosis

Fritsche et al. Environ Health Perspect 2005
Moors et al. Toxicol Appl Pharmacol 2007
Moors et al. Environ Health Perspect 2009
Moors et al. Genes & Immunity 2010
Tegenge et al. Cell. Mol. Life Sci. 2010
Schreiber et al. Environ Health Perspect 2010
Gassmann et al. Environ Health Perspect 2010
Verner et al. Toxicol in Vitro 2011
Fritsche et al. Methods Mol Biol 2011
Gassmann et al. Toxicol in Vitro 2012
Bal-Price et al. ALTEX 2012
Baumann et al. Curr. Protoc. Toxicol. 2014
Gassmann et al. Arch. Toxicol. 2014
Fritsche Methods Pharmacol. Toxicol. 2014
Alépée et al. ALTEX 2014

Outline

Growth/Synaptogenesis

- Thyroid Hormone (TH)
- Arylhydrocarbon Receptor (AhR)
- Valproic Acid
 - Histone Deacetylase (HDAC) inhibition
 - Apoptosis
- HCA (Cellomics Arrayscan & self-written algorithms 'Omnisphero')

Differentiation/Migration

Thyroid Hormone

E11-E14
35 days GW 6-9

Www.translatingtime.net

GW 18-30

Five months

P8-14

=
GW 32-40

Nine months

Ontogeny of T3 receptors in rat

Perez-Castillo et al, Endocrinology 117:2457-2461,1985

Thyroid Hormone

Transgenic animals kindly provided by Heike Heuer, IUF

Thyroid Hormone

Thyroid Hormone

AhR - migration

Gassmann et al. Environ Health Perspect 2010

AhR - gene/protein expression

Human NPC are protected against AhR-dependent toxicity of PAH due to lack of AhR expression

MEDIZINISCHE FORSCHUNG

Lnibniz-

Valproic Acid - NPC proliferation

RAT

HUMAN

Valproic Acid- NPC differentiation

HUMAN

Lnibniz-

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE FORSCHUNG

- NPC proliferation is inhibited by VPA-dependent HDAC inhibition (Baumann et al. in prep)
- VPA does not inhibit neuronal differentiation of rat NPC, but induces neuronal apoptosis due to formation of ROS.
- Human neurons are protected against VPA-induced apoptosis.

Long-Term Culture (25d) of hNPCs in Mal-PVA Hydrogels (Cellendis) (Hellwig et al. in preparation)

Summary (I)

- Primary Neurospheres seem to conserve NPC molecular signatures and functions ex vivo into in vitro.
- Due to the multiple neurodevelopmental processes neurospheres are apt to mimic in vitro, they are well suited for investigations 'from pathway to function'.
- A variety of interspecies differences in NPC signaling seem to exist between human and rodent NPCs.
- Studying the molecular similarities/differences of neurospheres will contribute to human risk assessment for DNT, especially in the context of the 'Adverse Outcome Pathway' concept.

HCA in differentiating NPC

Migration

Differentiation

Neurons

Oligodendrocytes

Astrocytes

- Information on the whole migration area, not just random areas of a well.
- Software needs to distinguish between different cell types.
- Issue of a high density culture needs to be overcome and neurons correctly identified.
- > Varying densities in different areas around sphere core.

High Content Image Analyses (HCA) for DNT testing

Neurite Outgrowth A

Proliferation/ Viability

From: Breier et al., *Toxicological Science*, 2008 Harrill et al., *Neuro Toxicology*, 2010 Harrill et al., *Toxicology in vitro*, 2011

HCA in differentiating NPC

Omnisphero

Neuronal Positioning

Lnibniz

LEIBNIZ-INSTITU' FÜR UMWELT-MEDIZINISCHE FORSCHUNG

Neuronal Morphology

Omnisphero: Image Pre-processing

Schmuck et al. in preparation

EIBNIZ-INSTITUT ÜR UMWELT-MEDIZINISCHE

Omnisphero: Neuron Identification

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE FORSCHUNG

Omnisphero: Automated Analyses

Neurogenesis: comparison of methods (IC₅₀ values)

EC ₅₀ -Values	EGF [ng/ ml]	Acrylamide [mM]	MeHgCl [μM]
Manual	0,96	0,30	0,045
Neuronal Profiling	1,442	0,34	0,049
Composite Fill	0,67	0,31	0,104
Neuron Tracer	1,022	0,41	0,051

Neurogenesis: Accuracy & Precision

Detection Power (DP)

False-Positives (FP)

Lnibmiz-

Neurite outgrowth: Accuracy & Precision

Lnibniz-

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE FORSCHUNG

Sphere-specific Endpoints

Program written by Thomas Temme

FORSCHUNG

Sphere-specific Endpoints: Migration distance

Lnibniz-

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE FORSCHUNG

Neuronal Density Distribution

$$\sigma_{n} = \frac{\frac{n_{n}(Neurons)}{n_{n}(Nuclei)}}{\sum_{1}^{n} \frac{n_{n}(Neurons)}{n_{n}(Nuclei)}}$$

EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons

Dirk Puehringer¹, Nadiya Orel¹, Patrick Lüningschrör¹, Narayan Subramanian¹, Thomas Herrmann¹, Moses V Chao² & Michael Sendtner¹

Neuronal Density Distribution

FÜR UMWELT-MEDIZINISCHE FORSCHUNG

Summary (II)

- The Neurosphere assay needs specific algorithms for HCA: development of 'Omnisphero'.
- Composite fill and Neuron tracer significantly improve true neuronal detection rate as a 'conventional' HCA endpoint.
- Sphere-specific endpoints like migration and neuronal positioning can be assessed by 'Ominsphero'.

Acknowledgements

Dr. Janette Schuwald

Katharina Dach

Martin Schmuck

Maxi Hofrichter

Stefan Masjosthusmann

Cooperation partners:

Pamela Lein, UC Davis, USA Heike Heuer, IUF, Düsseldorf Axel Mosig, University of Bochum Kai Stühler, HHU Düsseldorf

German Alternative Methods Award 2007

Bundesinstitut für Risikobewertung

Leibniz - DAAD

Dr. Julia Tigges

Dr. Susanne Giersiefer

Dr. Henrik Alm

Jenny Baumann

Christine Hellwig

Christiane Hohensee

Laura Nimtz

Denise de Boer

Ulrike Hübenthal

Thank you for your attention!

DNT – Translating Time

TRANSLATING TIME

Processes: Brain Growth & Neurogenesis, whole brain

www.translatingtime.net

Lnibniz-

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE FORSCHUNG