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Fetal Brain Culture as Neurospheres 

NPC Proliferation: 
-Increase in size/time 
-BrdU incorporation 

NPC Differentiation: 
-Neurons 
-Astrocytes 
-Oligodendrocytes 

NPC Migration: 
-Total migration distance 
-number of migrated cells 
-neuronal migration 

Neural Stem/Progenitor  
Cells (NPCs, Lonza) 

Fetal Brain 

Neural Stem/Progenitor  
Cells self-prepared 
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Outline	
  

•  Thyroid Hormone (TH) 

•  Arylhydrocarbon Receptor (AhR) 

•  Valproic Acid 

-  Histone Deacetylase (HDAC) inhibition 

-  Apoptosis 

•  HCA (Cellomics Arrayscan & self-written 

algorithms ‘Omnisphero’) 
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Ontogeny of T3 receptors in rat 
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by 3-MC or B(a)P (Figure 2D). Interestingly, 
TCDD did not disrupt wild-type mNPC 
migration despite AhR activation (Figure 2D). 
This might be due to the fact that, in con-
trast to 3-MC and B(a)P, TCDD is hardly 
metabolized and thus does not produce  
reactive intermediates.

AhR-dependent gene transcription. AhR-
dependent gene transcription is inducible 
only in mNPCs, and not in hNPCs because 
of low abundance of AhR and ARNT tran-
scripts and absence of AhR protein in human 
cells. Because 3-MC, B(a)P, and MNF did 
not influence hNPC viability, proliferation, 

or migration but did modulate proliferation 
or migration of mNPCs, we determined AhR 
and ARNT mRNA expression after exposure 
to these compounds in hNPCs and mNPCs 
under proliferating and differentiating condi-
tions. AhR and ARNT mRNAs were expressed 
at very low copy numbers in hNPCs (0.6–2.5 
and 13/1,000 copies -actin, respectively) 
and higher copy numbers in mNPCs (20–63 
and 716–1,045/1,000 copies -actin, respec-
tively) (Table 1). In addition, CYP1A1 expres-
sion was undetectable in untreated hNPCs. 
That -actin was in this case valid to use as 
a house keeping gene was demonstrated by 

normalization of proliferating versus differ-
entiating NPCs to three additional house-
keeping genes [RPL27, RPL30, OAZ1; see 
Supplemental Material, Figure 2 (doi:10.1289/
ehp.0901545)]. Expression of the AhR target 
genes AhRR, CYP1A1, CYP1B1, and c-myc 
was not significantly induced by 10 µM 3-MC 
after 6, 12, 24, and 48 hr of differentiation in 
hNPCs (Figure 3A). We obtained comparable 
results for hNPCs from a second individual 
after 6 hr of treatment (data not shown). In 
contrast, 6 hr of exposure to 10 µM 3-MC 
significantly induced Cyp1a1 and Cyp1b1 
mRNA in wild-type mNPCs to levels 6.6 ± 
1.7 and 2.5 ± 0.25 times higher than con-
trols, respectively (Figure 3C). Although 1 nM 
TCDD did not disturb neural migration, it 
induced AhR signaling in wild-type mNPCs, 
increasing Cyp1a1 expression 21 times relative 
to controls (Figure 3C, inset).

Comparison of mRNA expression lev-
els between hNPCs and mNPCs showed 
that genes belonging to the AhR machin-
ery and AhR-dependent genes were gener-
ally expressed in higher copy numbers/1,000 
copies -actin in mNPCs than in hNPCs 
(Table 1). Lack of AhR protein in hNPCs 
was confirmed by Western blot (Figure 3B). 
"ese results demonstrate that AhR signaling 
pathway gene products mediate the effects of 
the AhR agonists 3-MC and B(a)P and the 
AhR antagonist MNF on proliferation and 
migration in mNPCs, because AhR-deficient 
mNPCs are protected against these effects 
(Figure 3C, inset).

Discussion
"e development of cell-based, non animal test-
ing strategies for hazard assessment of chemicals 
is currently one of the most important tasks in 
toxicological research. In this regard, it is most 
important to choose appropriate model systems 
that are truly predictive for humans (Krewski 
et al. 2009; National Research Council 2007). 
Human tumor cell lines that are easily acces-
sible in large quantities bear the restriction that 
they do not represent cellular metabolism and 
signal transduction of normal cells. In con-
trast, primary cells are often obtained as ex vivo 
cultures from rodents. Such primary cultures 
are regarded as superior to tumor-derived 
cells. However, species-specific differences 
limit their application. One example of how 
rodent primary cells can indeed mis classify 
hazards for humans is provided by this study, 
which shows mouse-derived primary cells 
to be more susceptible to AhR modulation 
than their human counter parts. With regard 
to chemical testing, it is critical to be aware 
of such differences in order to avoid over- or 
under estimating hazards that chemicals pose 
to humans, and thereby protect human health 
and allow industry production and develop-
ment of chemicals at the same time.

Figure 2. AhR agonists shorten wild-type mNPC but not hNPC migration. hNPCs (A and C) and wild-type (B 
and D) and AhR-KO (D) mNPCs were exposed to 3-MC, B(a)P, TCDD, MNF, or MeHgCl (PC) during differen-
tiation for 48 hr. Migration distance from the edge of the sphere to the furthest outgrowth was measured. 
Data represent means ± SEs of two (AhR-KO) to five independent experiments (5–8 spheres/exposure). 
Bar = 500 μm. 
*p < 0.05 compared with 0.1% DMSO.
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Table 1. Comparison of human and mouse mRNA copy numbers/1,000 copies of -actin in proliferating 
and 24-hr differentiating NPCs.a

Human Mouse Mouse:human ratio
Gene Prolif Diff Prolif Diff Prolif Diff
AhR 2.45 0.62 20.08 63.21 8.19 102.12
ARNT 12.95 13.55 716.26 1045.07 55.31 77.13
AhRR 0.94 0.61 79.21 387.55 84.24 638.85
CYP1A1 < 0.001 < 0.001 18.63 31.64 ND ND
CYP1B1 0.01 0.06 146.24 834.91 16407.23 14990.75
C-MYC 5559.59 3017.13 14835.55 15967.72 2.67 5.29
Abbreviations: Diff, differentiating; ND, not detectable; Prolif, proliferating.
aData represent at least three independent experiments. The mouse:human ratio is shown to compare human and 
mouse mRNA expression levels.
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TCDD did not disrupt wild-type mNPC 
migration despite AhR activation (Figure 2D). 
This might be due to the fact that, in con-
trast to 3-MC and B(a)P, TCDD is hardly 
metabolized and thus does not produce  
reactive intermediates.
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dependent gene transcription is inducible 
only in mNPCs, and not in hNPCs because 
of low abundance of AhR and ARNT tran-
scripts and absence of AhR protein in human 
cells. Because 3-MC, B(a)P, and MNF did 
not influence hNPC viability, proliferation, 

or migration but did modulate proliferation 
or migration of mNPCs, we determined AhR 
and ARNT mRNA expression after exposure 
to these compounds in hNPCs and mNPCs 
under proliferating and differentiating condi-
tions. AhR and ARNT mRNAs were expressed 
at very low copy numbers in hNPCs (0.6–2.5 
and 13/1,000 copies -actin, respectively) 
and higher copy numbers in mNPCs (20–63 
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sion was undetectable in untreated hNPCs. 
That -actin was in this case valid to use as 
a house keeping gene was demonstrated by 

normalization of proliferating versus differ-
entiating NPCs to three additional house-
keeping genes [RPL27, RPL30, OAZ1; see 
Supplemental Material, Figure 2 (doi:10.1289/
ehp.0901545)]. Expression of the AhR target 
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was not significantly induced by 10 µM 3-MC 
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hNPCs (Figure 3A). We obtained comparable 
results for hNPCs from a second individual 
after 6 hr of treatment (data not shown). In 
contrast, 6 hr of exposure to 10 µM 3-MC 
significantly induced Cyp1a1 and Cyp1b1 
mRNA in wild-type mNPCs to levels 6.6 ± 
1.7 and 2.5 ± 0.25 times higher than con-
trols, respectively (Figure 3C). Although 1 nM 
TCDD did not disturb neural migration, it 
induced AhR signaling in wild-type mNPCs, 
increasing Cyp1a1 expression 21 times relative 
to controls (Figure 3C, inset).

Comparison of mRNA expression lev-
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that genes belonging to the AhR machin-
ery and AhR-dependent genes were gener-
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(Table 1). Lack of AhR protein in hNPCs 
was confirmed by Western blot (Figure 3B). 
"ese results demonstrate that AhR signaling 
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AhR antagonist MNF on proliferation and 
migration in mNPCs, because AhR-deficient 
mNPCs are protected against these effects 
(Figure 3C, inset).

Discussion
"e development of cell-based, non animal test-
ing strategies for hazard assessment of chemicals 
is currently one of the most important tasks in 
toxicological research. In this regard, it is most 
important to choose appropriate model systems 
that are truly predictive for humans (Krewski 
et al. 2009; National Research Council 2007). 
Human tumor cell lines that are easily acces-
sible in large quantities bear the restriction that 
they do not represent cellular metabolism and 
signal transduction of normal cells. In con-
trast, primary cells are often obtained as ex vivo 
cultures from rodents. Such primary cultures 
are regarded as superior to tumor-derived 
cells. However, species-specific differences 
limit their application. One example of how 
rodent primary cells can indeed mis classify 
hazards for humans is provided by this study, 
which shows mouse-derived primary cells 
to be more susceptible to AhR modulation 
than their human counter parts. With regard 
to chemical testing, it is critical to be aware 
of such differences in order to avoid over- or 
under estimating hazards that chemicals pose 
to humans, and thereby protect human health 
and allow industry production and develop-
ment of chemicals at the same time.

Figure 2. AhR agonists shorten wild-type mNPC but not hNPC migration. hNPCs (A and C) and wild-type (B 
and D) and AhR-KO (D) mNPCs were exposed to 3-MC, B(a)P, TCDD, MNF, or MeHgCl (PC) during differen-
tiation for 48 hr. Migration distance from the edge of the sphere to the furthest outgrowth was measured. 
Data represent means ± SEs of two (AhR-KO) to five independent experiments (5–8 spheres/exposure). 
Bar = 500 μm. 
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Long-Term Culture (25d) of hNPCs in Mal-PVA Hydrogels (Cellendis) 
(Hellwig et al. in preparation) 

200 x mag. 200 x mag. Phalloidin, Hoechst, ß-III tubulin  



Summary	
  (I)	
  

•  Primary Neurospheres seem to conserve NPC molecular signatures 
and functions ex vivo into in vitro.  

•  Due to the multiple neurodevelopmental processes neurospheres are 
apt to mimic in vitro, they are well suited for investigations ‘from 
pathway to function’. 

•  A variety of interspecies differences in NPC signaling seem to exist 
between human and rodent NPCs. 

•  Studying the molecular similarities/differences of neurospheres will 
contribute to human risk assessment for DNT, especially in the context 
of the ‘Adverse Outcome Pathway’ concept.  
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Ø  Information on the whole 
migration area, not just 
random areas of a well. 

Ø  Software needs to 
distinguish between different 
cell types. 

Ø  Issue of a high density 
culture needs to be 
overcome and neurons 
correctly identified. 

Ø  Varying densities in different 
areas around sphere core. 

196x 



From: Breier et al., Toxicological Science, 2008 
          Harrill et al., Neuro Toxicology, 2010 
          Harrill et al., Toxicology in vitro, 2011   
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Optional: Manual annotation Composite Fill Neuron Tracer 

Schmuck et al. in preparation 
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EC50-Values EGF [ng/
ml] 

Acrylamide 
[mM] 

MeHgCl [µM] 

Manual 0,96 0,30 0,045 

Neuronal Profiling 1,442 0,34 0,049 

Composite Fill 0,67 0,31 0,104 

Neuron Tracer 1,022 0,41 0,051 

Neurogenesis:	
  comparison	
  of	
  methods	
  (IC50	
  values)	
  

Acrylamide EGF Methylmercury 

Schmuck et al. in preparation 
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Schmuck et al. in preparation 
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Schmuck et al. in preparation 



Floodfill-Filter 

Program written by Thomas Temme   
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Summary	
  (II)	
  

•  The Neurosphere assay needs specific algorithms for HCA: 
development of ‘Omnisphero’.  

•  Composite fill and Neuron tracer significantly improve true neuronal 
detection rate as a ‘conventional’ HCA endpoint. 

•  Sphere-specific endpoints like migration and neuronal positioning can 
be assessed by ‘Ominsphero’. 
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