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Disclaimer

This document has been reviewed in accordance with U.S. Environmental Protection Agency (EPA)
policy and approved for publication. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

This document was produced by a Technical Panel of the EPA Risk Assessment Forum (RAF). The
authors drew on their experience in doing probabilistic assessments and interpreting them to
improve risk management of environmental and health hazards. Interviews, presentations and
dialogues with risk managers conducted by the Technical Panel have contributed to the insights
and recommendations in this white paper and the associated document titled Probabilistic Risk
Assessment to Inform Decision Making: Frequently Asked Questions.

U.S. Environmental Protection Agency (USEPA). 2014. Risk Assessment Forum White Paper:
Probabilistic Risk Assessment Methods and Case Studies. EPA/100/R-09/001A. Washington, D.C.:
Risk Assessment Forum, Office of the Science Advisor, USEPA.
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Foreword

Throughout many of the U.S. Environmental Protection Agency’s (EPA) program offices and
regions, various forms of probabilistic methods have been used to answer questions about
exposure and risk to humans, other organisms and the environment. Risk assessors, risk managers
and others, particularly within the scientific and research divisions, have recognized that more
sophisticated statistical and mathematical approaches could be utilized to enhance the quality and
accuracy of Agency risk assessments. Various stakeholders, inside and outside of the Agency, have
called for a more comprehensive characterization of risks, including uncertainties, to improve the
protection of sensitive or vulnerable populations and lifestages.

The EPA identified the need to examine the use of probabilistic approaches in Agency risk
assessments and decisions. The RAF developed this paper and the companion document,
Probabilistic Risk Assessment to Inform Decision Making: Frequently Asked Questions, to provide a
general overview of the value of probabilistic analyses and similar or related methods, as well as
provide examples of current applications across the Agency. Drafts of both documents were
released, with slightly different titles, for public comment and external peer review in August 2009.
An external peer review was held in Arlington, Virginia in May 2010.

The goal of these publications is not only to describe potential and actual uses of these tools, but
also to encourage their further implementation in human, ecological and environmental risk
analysis and related decision making. The enhanced use of probabilistic analyses to characterize
uncertainty in assessments will not only be responsive to external scientific advice (e.g.,
recommendations from the National Research Council) on how to further advance risk assessment
science, but also will help to address specific challenges faced by managers and increase the
confidence in the underlying analysis used to support Agency decisions.

Robert Kavlock
Interim Science Advisor
U.S. Environmental Protection Agency
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EXECUTIVE SUMMARY

Probabilistic risk assessment (PRA), in its simplest form, is a group of techniques that incorporate
uncertainty and variability into risk assessments. Variability refers to the inherent natural
variation, diversity and heterogeneity across time, space or individuals within a population or
lifestage, while uncertainty refers to imperfect knowledge or a lack of precise knowledge of the
physical world, either for specific values of interest or in the description of the system (USEPA
2011c). Variability and uncertainty have the potential to result in overestimates or underestimates
of the predicted risk.

PRA provides estimates of the range and likelihood of a hazard, exposure or risk, rather than a
single point estimate. Stakeholders inside and outside of the Agency have recommended a more
complete characterization of risks, including uncertainties and variability, in protecting more
sensitive or vulnerable populations and lifestages. PRA can be used to support risk management by
assessment of impacts of uncertainties on each of the potential decision alternatives.

Numerous advisory bodies, such as the Science Advisory Board (SAB) and the National Research
Council (NRC) of the National Academy of Sciences (NAS), have recommended that EPA incorporate
probabilistic analyses into the Agency’s decision-making process. EPA’s Risk Assessment Forum
(RAF) formed a Technical Panel, consisting of representatives from the Agency’s program and
regional offices, to develop this white paper and its companion document, titled Probabilistic Risk
Assessment to Inform Decision Making: Frequently Asked Questions (FAQ). The RAF is recommending
the development of Agency resources, such as a clearinghouse of PRA case studies, best practices,
resources and seminars, to raise general knowledge about how these probabilistic tools can be
used.

The intended goal of this white paper is to explain how EPA can use probabilistic methods to
address data, model and scenario uncertainty and variability by capitalizing on the wide array of
tools and methods that comprise PRA. This white paper describes where PRA can facilitate more
informed risk management decision making through better understanding of uncertainty and
variability related to Agency decisions. The information contained in this document is intended for
both risk analysts and managers faced with determining when and how to apply these tools to
inform their decisions. This document does not prescribe a specific approach but, rather, describes
the various stages and aspects of an assessment or decision process in which probabilistic
assessment tools may add value.

Probabilistic Risk Assessment

PRA is an analytical methodology used to incorporate information regarding uncertainty and/or
variability into analyses to provide insight regarding the degree of certainty of a risk estimate and
how the risk estimate varies among different members of an exposed population, including
sensitive populations or lifestages. Traditional approaches, such as deterministic analyses, often
report risks as “central tendency,” “high end” (e.g., 90th percentile or above) or “maximum
anticipated exposure,” but PRA can be used to describe more completely the uncertainty
surrounding such estimates and identify the key contributors to variability or uncertainty in
predicted exposures or risk estimates. This information then can be used by decision makers to
achieve a science-based level of safety, to compare the risks related to different management
options, or to invest in research with the greatest impact on risk estimate uncertainty.

To support regulatory decision making, PRA can provide information to decision makers on specific
questions related to uncertainty and variability. For example, in the context of a decision analysis
that has been conducted, PRA can: identify “tipping points” where the decision would be different if



the risk estimates were different; estimate the degree of confidence in a particular decision; and
help to estimate trade-offs related to different risks or management options. PRA can provide
useful (even critical) information about the uncertainties and variability in the data, models,
scenario, expert judgments and values incorporated in risk assessments to support decision making
across the Agency.

PRA is applicable to both human health risk assessment (HHRA) and ecological risk assessment
(ERA); however, there are differences between how PRA is used for the two. Both HHRA and ERA
have a similar structure and use the same risk assessment steps, but HHRA focuses on individuals, a
single species, morbidity and mortality, but ERA is more concerned with multiple populations of
organisms (e.g., individual species of fish in a river) or ecological integrity (e.g., will the types of
species living in the river change over time). In ERA, there also is a reliance on indicators of impacts
(e.g., sentinel species and other metrics).

Risk Assessment at EPA

PRA began playing an increasingly important role in Agency risk assessments following the 1997
release of EPA’s Policy for Use of Probabilistic Analysis in Risk Assessment at the U.S. Environmental
Protection Agency (USEPA 1997a) and publication of the Guiding Principles for Monte-Carlo Analysis
(USEPA 1997b). PRA was a major focus in an associated review of EPA risk assessment practices by
the SAB (USEPA 2007b). The NRC recommended that EPA adopt a “tiered” approach for selecting
the level of detail used in uncertainty and variability assessment (NRC 2009). Furthermore, the NRC
recommended that a discussion about the level of detail used for uncertainty analysis and
variability assessment should be an explicit part of the planning, scoping and problem formulation
step in the risk assessment process. Both this white paper and the companion FAQ document take
into account recommendations on risk assessment processes described in the NRC’s report Science
and Decisions: Advancing Risk Assessment (NRC 2009) and Environmental Decisions in the Face of
Uncertainty (I0OM 2013).

EPA’s recent risk assessment publications, including the document titled Framework for Human
Health Risk Assessment to Inform Decision Making (UAEPA 2014b) as well as this white paper,
emphasize the importance of communicating the results of a PRA because it provides the range and
likelihood estimates for one or more aspects of hazard, exposure or risk, rather than a single point
estimate. Risk assessors are responsible for sharing information on probabilistic results so that
decision makers have a clear understanding of quantitative assessments of uncertainty and
variability, and how this information will affect the decision. Effective communication between the
risk assessor and decision maker is key to promote understanding and use of the results from the
PRA.

PRA generally requires more resources than standard Agency default-based deterministic
approaches. Appropriately trained staff and the availability of adequate tools, methods and
guidance are essential for the application of PRA. Proper application of probabilistic methods
requires not only software and data, but also guidance and training for analysts using the tools, and
for managers and decision makers tasked with interpreting and communicating the results. In most
circumstances, probabilistic assessments may take more time and effort to conduct than
conventional approaches, primarily because of the comprehensive inclusion of available
information on model inputs. The potentially higher resource costs may be offset, however, by a
more informed decision than would be provided by a comparable deterministic analysis.

Content of the White Paper and Frequently Asked Questions Companion Documents

These two documents describe how PRA can be applied to enhance the scientific foundation of
EPA’s decision making across the Agency. This white paper describes the challenges faced by EPA



decision makers, defines and explains the basic principles of probabilistic analysis, briefly
highlights instances where these techniques have been implemented in EPA decisions, and
describes criteria that may be useful in determining whether and how the application of
probabilistic methods may be useful and/or applicable to decision making. This white paper also
describes commonly employed methods to address uncertainty and variability, including those
used in the consideration of uncertainty in scenarios and uncertainty in models. Additionally, it
addresses uncertainty and variability in the inputs and outputs of models and the impact of these
uncertainties on each of the potential management options. A general description of the range of
methods from simple to complex, rapid to more time consuming and least to most resource
intensive is provided, as well as uses of these methods.

Both documents address issues such as uncertainty and variability, their relevance to decision
making and the PRA goal to provide quantitative characterization of the uncertainty and variability
in estimates of hazard, exposure, or risk. The difference between the white paper and the FAQs
document is the level of detail provided about PRA concepts and practices, and the intended
audience (e.g., risk assessors vs. decision makers). Detailed examples of applications of these
methods are provided in the Appendix of this white paper, which is titled “Case Study Examples of
the Application of Probabilistic Risk Analysis in U.S. Environmental Protection Agency Decision
Making.” The white paper Appendix includes 16 case studies—11 HHRA and 5 ERA examples—that
illustrate how EPA’s program and regional offices have used probabilistic techniques in risk
assessment. To aid in describing how these tools were applied, the 16 case studies are subdivided
among 3 categories for purposes of this document. Group 1 includes 2 case studies demonstrating
point estimate, including sensitivity analysis; Group 2 is comprised of 5 case studies demonstrating
probabilistic risk analysis, including one-dimensional Monte Carlo analysis and probabilistic
sensitivity analysis; and Group 3 includes 9 case studies demonstrating advanced probabilistic risk
analysis, including two-dimensional Monte Carlo analysis with micro exposure (micro
environments) modeling, Bayesian statistics, geostatistics and expert elicitation.

The FAQ document provides answers to common questions regarding PRA, including key concepts
such as scientific and institutional motivations for the use of PRA, and challenges in the application
of probabilistic techniques. The principal reason for including PRA as an option in the risk
assessor’s toolbox is its ability to support the refinement and improvement of the information
leading to decision making by incorporating known uncertainties.



1. INTRODUCTION: RELEVANCE OF UNCERTAINTY TO
DECISION MAKING: HOW PROBABILISTIC APPROACHES
CAN HELP

1.1. EPA Decision Making

To discuss where probabilistic approaches can aid EPA’s decision making, it is important to
generally describe the Agency’s current decision-making processes and how better understanding
and improving elements within these processes can clarify where probabilistic approaches might
provide benefits. The enhanced use of PRA and characterization of uncertainty would allow EPA
decision makers opportunities to use a more robust and transparent process, which may allow
greater responsiveness to outside comments and recommendations. Such an approach would
support higher quality EPA assessments and improve confidence in Agency decisions.

There are two major areas in the decision-making process that might be improved with PRA.
Scientists currently are generally focused on the first area—the understanding of data, model and
scenario uncertainties and variability. The second area is one that has not, until recently and only in
a limited fashion, been used by EPA decision makers. This area is formal decision analysis. With
decision analytic techniques, decision makers can weigh the relative importance of risk information
compared to other information in making the decision, understand how uncertainty affects the
relative attractiveness of potential decision alternatives, and assess overall confidence in a decision.
In addition to data, model and scenario uncertainty, there is a separate category of uncertainties
specifically associated with how the decision criteria relate to the decision alternatives. Although it
is quite relevant to risk management decisions, the topic and decision analysis in general are
outside of the scope of this report. This white paper focuses on technical information that would
allow better understanding of the relationships among alternative decisions in assessing risks.

1.2. The Role of Probabilistic Risk Analysis in Characterizing
Uncertainty and Variability

Probabilistic analyses include techniques that can be applied formally to address both uncertainty
and variability, typically arising from limitations of data, models or adequately formulating the
scenarios used in assessing risks. Probability is used in science, business, economics and other
fields to examine existing data and estimate the chance of an event, from health effects to rain to
mental fatigue. One can use probability (chance) to quantify the frequency of occurrence or the
degree of belief in information. For variability, probability distributions are interpreted as
representing the relative frequency of a given state of the system (e.g., that the data are distributed
in a certain way); for uncertainty, they represent the degree of belief or confidence that a given
state of the system exists (e.g., that we have the appropriate data; Cullen and Frey 1999). PRA often
is defined narrowly to indicate a statistical or thought process used to analyze and evaluate the
variability of available data or to look at uncertainty across data sets.

For the purposes of this document, PRA is a term used to describe a process that employs
probability to incorporate variability in data sets and/or the uncertainty in information (such as
data or models) into analyses that support environmental risk-based decision making. PRA is used
here broadly to include both quantitative and qualitative methods for dealing with scenario, model
and input uncertainty. Probabilistic techniques can be used with other types of analysis, such as
benefit-cost analysis, regulatory impact analysis and engineering performance standards; thus, they
can be used for a variety of applications and by experts in many disciplines.



1.3. Goals and Intended Audience

The primary goals of this white paper are to introduce PRA, describe how it can be used to better
inform and improve the decision-making process, and provide case studies where it has been used
in human health and ecological analyses at EPA (see the Appendix for the case studies). A secondary
goal of this paper is to bridge communication gaps regarding PRA among analysts of various
disciplines, between these analysts and Agency decision makers, and among affected stakeholders.
This white paper also is intended to serve as a communication tool to introduce key concepts and
background information on approaches to risk analysis that incorporate uncertainty and provide a
more comprehensive treatment of variability. Risk analysts, decision makers and affected
stakeholders can benefit from understanding the potential uses of PRA. PRA and related
approaches can be used to identify additional research that may reduce uncertainty and more
thoroughly characterize variability in a risk assessment. This white paper explains how PRA can
enhance the decision-making processes faced by managers at EPA by better characterizing data,
model, scenario and decision uncertainties.

1.4. Overview of This Document

This white paper provides an overview of EPA’s interest and experience in addressing uncertainty
and variability using probabilistic methods in risk assessment; identifies key questions asked or
faced by Agency decision makers; demonstrates how conventional deterministic approaches to risk
analysis may not answer these questions fully; provides examples of applications; and shows how
and why “probabilistic risk analysis” (broadly defined) could provide added value, compared to
traditional methods, with regard to regulatory decision making by more fully characterizing risk
estimates and exploring decision uncertainties. For the purposes of this white paper, PRA and
related tools for both human health and ecological assessments include a range of approaches, from
statistical tools, such as sensitivity analysis, to multi-dimensional Monte Carlo models, geospatial
approaches and expert elicitation. Key points addressed by this document include definitions and
key concepts pertaining to PRA, benefits and challenges of PRA, a general conceptual framework for
PRA, conclusions regarding products and insights obtained from PRA, and examples where EPA has
used PRA in human health and ecological analyses. A Glossary and a Bibliography also are provided.

1.5. What Are Common Challenges Facing EPA Risk Decision
Makers?

EPA operates under statutory and regulatory constraints that often limit the types of criteria that
can be considered (including whether the use of PRA is appropriate) and impose strict timeframes
in which decisions must be made. Typically, the decision begins with understanding (1) who or
what will be protected; (2) the relationship between the data and decision alternatives; and (3) the
impact of data, model and decision uncertainties related to each decision alternative. These are
among the considerations of the planning and scoping and problem formulation phases of risk
assessment (US EPA 2014). EPA decision makers need to consider multiple decision criteria, which
are informed by varying degrees of confidence in the underlying information. Decision makers need
to balance the regulatory/ statutory requirements and timeframes, resources (i.e., expertise, costs
of the analysis, review times, etc.) to conduct the assessment, management options, and
stakeholders while at the same time keeping risk assessment and decision making separate.

Uncertainty can be introduced into any assessment at any step in the process, even when using
highly accurate data with the most sophisticated models. Uncertainty can be reduced or better
characterized through knowledge. Variability or natural heterogeneity is inherent in natural
systems and therefore cannot be reduced, but can be examined and described. Uncertainty in
decisions is unavoidable because real-world situations cannot be perfectly measured, modeled or



predicted. As a result, EPA decision makers face scientifically complex problems that are
compounded by varying levels of uncertainty and variability. If uncertainty and variability have not
been well characterized or acknowledged, potential complications arise in the process of decision
making. Increased uncertainty can make it more difficult to determine, with reasonable confidence,
the balance point between the costs of regulation and the implications for avoiding damages and
producing benefits. Characterization facilitated by probabilistic analyses can provide insight into
weighing the relative costs and benefits of varying levels of regulation and also can assist in risk
communication activities.

Decision makers often want to know who is at risk and by how much, the tradeoffs between
alternative actions and the likely or possible consequences of decisions. To this end, it is
particularly useful for decision makers to understand the distribution of risk across potentially
impacted populations and ecological systems. It can be important to know the number of
individuals experiencing different magnitudes of risk, the differences in risk magnitude experienced
by individuals in different lifestages or populations or the probability of an event that may lead to
unacceptable levels of risk. Given the limitations of data, traditional methods of risk analyses are
not well suited to produce such estimates. Probabilistic analytical methods are capable of
addressing these shortcomings and can contribute to a more thorough recognition of the impact of
data gaps on the projected risk estimates. Although PRA can be used to characterize the uncertainty
and variability in situations with limited data, currently there is not extensive experience using PRA
to characterize the range of effects or dose-response relationships for populations, including
sensitive populations and lifestages.

Other challenges facing EPA decision makers include the need to consider multiple decision criteria,
which are informed by varying degrees of confidence in the underlying information, understanding
the relationship between and among those decision criteria (including multi-pollutant and multi-
media effects) and the decision alternatives, and the timeliness of the decision making.
Furthermore, even when PRA is used, EPA decision makers must be mindful of potential misuses
and obfuscations when conducting or presenting PRA results. Decision makers also need to
consider the evolving science behind PRA. As the use of PRA increases decision makers will become
more familiar with the techniques and their application.

A risk assessment process needs to consider uncertainties, variability and the rationale or factors
influencing how they may be addressed by a decision maker. Decision makers need a foundation for
estimating the value of collecting additional information to allow for better informed decisions.
There are costs associated with ignoring uncertainty (McConnell 1997 and Toll 1999), and a focus
by decision makers on the information provided by uncertainty analysis can strengthen their
choices.

1.6. What Are Key Uncertainty and Variability Questions Often Asked
by Decision Makers?

As described above, determining the decision-making context and specific concerns is a critical first
step toward developing a useful and responsive risk assessment that will support the decision. For
example, the appropriate focus and level of detail of the analysis should be commensurate with the
needs of the decision maker and stakeholders, as well as the appropriate use of science. Analyses
often are conducted at a level of detail dictated by the issue being addressed, the breadth and
quality of the available information upon which to base an analysis, and the significance
surrounding a decision. The analytical process tends to be iterative. Although a guiding set of
questions may frame the initial analyses, additional questions can arise that further direct or even
reframe the analyses.



Based on a series of discussions with Agency decision makers and risk assessors, some typical
questions about uncertainty and variability relevant to risk analyses including:

O Factors influencing decision uncertainty:

e  Would my decision be different if the data were different, improved or expanded?
Would additional data collection and research likely lead to a different decision?
How long will it take to collect the information, how much would it cost, and would
the resulting decision be significantly altered?

e What are the liabilities and consequences of making a decision under the current
level of knowledge and uncertainty?

e How do the alternatives and their associated uncertainty and variability affect the
target population or lifestage?

O Considerations for evaluating data or method uncertainty:

e How representative or conservative is the estimate due to data or method
uncertainty (also incorporating variability)?

e What are the major gaps in knowledge, and what are the major assumptions used in
the assessment? How reasonable are the assumptions?

O Issues arising when addressing variability:

e (Can a probabilistic approach (e.g., to better characterize uncertainties and
variability) be accomplished in a timely manner?

e What is the desired percentile of the population to be protected? By choosing this
percentile, who may not be protected?

The questions that arise concerning uncertainty and variability change depending on the stage and
nature of the decision-making process and analysis. General phases of the risk assessment process
are illustrated in Figure 1. For further information on the process of decision making, we suggest
referring to the description provided by EPA Region 3 on the Multi-Criteria Integrated Resource



Figure 1. General Phases of the Risk Assessment Process. Risk assessment is an iterative process
comprised of planning, scoping and problem formulation; analysis (e.g., hazard identification, dose-
response assessment and exposure assessment); interpretation and risk characterization; and risk
communication. The highlighted boxes explain how PRA fits into the overall process.

Assessment Internet page at http://www.epa.gov/reg3esd1/data/mira.htm. The utility of various
levels of analysis and sophistication in answering these questions is illustrated in the case studies
described in Section 1.10 and presented in the Appendix of this white paper. References to
examples beyond these EPA case studies can be found in the Bibliography. Additionally, Lester et al.
(2007) identified more than 20 PRA application case studies (including EPA examples) performed
since 2000; these case study examples are categorized as site-specific applications and regional risk
assessments.



1.7. Why Is the Implementation of Probabilistic Risk Analysis
Important?

The principal reason for the inclusion of PRA as an option in the risk assessor’s toolbox is PRA’s
ability to support refinement and improvement of the information leading to decision making by
incorporating known uncertainties. Beginning as early as the 1980s, expert scientific advisory
groups, such as the National Research Council (NRC), recommended that risk analyses include a
clear discussion of the uncertainties in risk estimation (NRC 1983). The NRC stated the need to
describe uncertainty and to capture variability in risk estimates (NRC 1994). The Presidential/
Congressional Commission on Risk Assessment and Risk Management (PCCRARM) recommended
against a requirement or need for a “bright line” or single-number level of risk (PCCRARM 1997).
See Section 2.4 for more information regarding the scientific community’s opinion on the use of
PRA.

Regulatory science often requires selection of a limit for a contaminant, yet that limit always
contains uncertainty as to how protective it is. PRA and related tools quantitatively describe the
very real variations in natural systems and living organisms, how they respond to stressors, and the
uncertainty in estimating those responses.

Risk characterization became EPA policy in 1995 (USEPA 1995b), and the principles of
transparency, clarity, consistency and reasonableness are explicated in the 2000 Risk
Characterization Handbook (USEPA 2000a). Transparency, clarity, consistency and reasonableness
criteria require decision makers to describe and explain the uncertainties, variability and known
data gaps in the risk analysis and how they affect the resulting decision-making processes (USEPA
1992, 19954, 2000a).

The use of probabilistic methods also has received support from some decision makers within the
Agency, and these methods have been incorporated into a number of EPA decisions to date.
Program offices, such as the Office of Pesticide Programs (OPP), Office of Solid Waste and
Emergency Response (OSWER), Office of Air and Radiation (OAR), and Office of Water (OW), as well
as the Office of Research and Development (ORD), have utilized probabilistic approaches in
different ways and to varying extents, for both human exposure and ecological risk analyses. In
addition, OSWER has provided explicit guidance on the use of probabilistic approaches for
exposure analysis (USEPA 2001). Some program offices have held training sessions on Monte Carlo
simulation (MCS) software that is used frequently in probabilistic analyses.

The NRC recommended that EPA should adopt a tiered approach for selecting the level of detail
used in uncertainty and variability assessment (NRC 2009). Furthermore, NRC recommended that a
discussion about the level of detail used for uncertainty analysis and variability assessment should
be an explicit part of the planning, scoping and problem formulation step in the risk assessment
process. The way that PRA fits into a graduated hierarchical (tiered) approach is more fully
described in Section 2.10 and illustrated in Figure 2.

When it is beneficial to refine risk estimates, the use of PRA can help in the characterization and
communication of uncertainty, variability and the impact of data gaps in risk analyses for assessors,
decision makers and stakeholders (including the target population or lifestage).
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Figure 2. Tiered Approach for Risk Assessment. The applicability of a probabilistic approach depends on
the needs of decision makers and stakeholders. Assessments that are high in complexity and regulatory
significance benefit from the application of probabilistic techniques.

Source: Adapted from USEPA 2004a and WHO 2008.

1.8. How Does EPA Typically Address Scientific Uncertainty and
Variability?

Environmental assessments can be complex, such as covering exposure to multiple chemicals in
multiple media for a wide-ranging population. The Agency has developed simplified approaches to
characterize risks associated with such complex assessments through the use of point estimates for
model variables or parameters. Such an approach typically produces point estimates of risks (e.g.,
10-5 or a lifetime probability of cancer risk of one individual in 100,000). These often are called
“deterministic” assessments. As a result of the use of point estimates for variables in model
algorithms, deterministic risk results usually are reported as what are assumed to be either average
or worst-case estimates. They do not contain any quantitative estimate of the uncertainty in that
estimate, nor report what percentile of the exposed population the estimate applies. The methods
typically used in EPA risk assessments rely on a combination of point values with potentially
varying levels of conservatism and certainty, yielding a point estimate of exposure at some point in
the range of possible risks.

Because uncertainty is inherent in all risk assessments, it is important that the risk assessment
process enable handling uncertainties in a logical way that is transparent and scientifically
defensible, consistent with the Agency’s statutory mission and responsive to the needs of decision
makers (NRC 1994). Uncertainty is a factor in both ecological and human health risk assessments.
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For human health risk assessments, uncertainties arise for both noncancer and cancer endpoints.
Thus, when data are missing, EPA often uses several options to provide boundaries on uncertainty
and variability in an attempt to avoid risk underestimation; attempting to give a single
quantification of how much confidence there is in the risk estimate may not be informative or
feasible.

In exposure assessment, for example, the practice at EPA is to collect new data where they are
needed and where time and resources allow. Alternative approaches to address uncertainty include
narrowing the scope of the assessment; using screening-level default assumptions that include
upper-end values and/or central tendency values that are generally combined to generate risk
estimates that fall within the higher end of the population risk range (USEPA 2004b); applying
models to estimate missing values; using surrogate data (e.g., data on a parameter that come from a
different region of the country than the region being assessed); or applying professional judgment.
The use of individual assumptions can range from qualitative (e.g., assuming that one is secured to
the residence location and does not move through time or space) to more quantitative (e.g., using
the 95th percentile of a sample distribution for an ingestion rate). This approach also can be
applied to the practice of hazard identification and dose-response assessment when data are
missing. [dentifying the sensitivity of exposure or risk estimates to key inputs can help focus efforts
to reduce uncertainty by collecting additional data.

Current EPA practices to address uncertainty and variability are focused on the evaluation of data,
model, and scenario uncertainty and variability. In addition, decision makers are faced with
combining many different decision criteria that may be informed by science and PRA as well as by
expert judgment or the weighting of values to choose a decision alternative. Data, model, and
scenario uncertainties and variability (including their probability distributions), as well as expert
judgment, can be important considerations in the selection of one alternative over another
(Costanza et al. 1997; Morgan et al. 2009; Stahl and Cimorelli 2005; Wright et al. 2002).

1.9. What Are the Limitations of Relying on Default-Based
Deterministic Approaches?

Default-based deterministic approaches are applied to data, model and scenario uncertainties.
Deterministic risk assessment (DRA) often is considered a traditional approach to risk analysis
because of the existence of established guidance and procedures regarding its use, the ease with
which it can be performed, and its limited data and resource needs. The use of defaults supporting
DRA provides a procedural consistency that allows for risk assessments to be feasible and tractable.
Decision makers and members of the public tend to be relatively familiar with DRA, and the use of
such an approach addresses assessment-related uncertainties primarily through the incorporation
of predetermined default values and conservative assumptions. It addresses variability by
combining input parameters intended to be representative of typical or higher end exposure (i.e.,
considered to be conservative assumptions). The intention often is to implicitly provide a margin of
safety (i.e., more likely to overestimate risk than underestimate risk) or construct a screening-level
estimate of high-end exposure and risk (i.e., an estimate representative of more highly exposed and
susceptible individuals).

DRA provides an estimation of the exposures and resulting risks that addresses uncertainties and
variabilities in a qualitative manner. The methods typically used in EPA DRA rely on a combination
of point values—some conservative and some typical—yielding a point estimate of exposure that is
at some unknown point in the range of possible risks. Although this conservative bias aligns with
the public health mission of EPA (USEPA 2004b), the degree of conservatism in these risk estimates
(and in any concomitant decision) cannot be estimated well or communicated (Hattis and
Burmaster 1994). Typically, this results in unquantified uncertainty in risk statements.
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Quantitative information regarding the precision or potential systematic error and the distribution
of exposures, effects and resulting risks across different members of an exposed population are
usually not provided with estimates generated using default approaches. Although DRA may
present qualitative information regarding the robustness of the estimates, the impact of data and
model limitations on the quality of the results cannot be quantified. Reliance on deterministically
derived estimations of risk can result in decision making based solely on point estimates with an
unknown degree of conservatism, which can complicate the comparison of risks or management
options.

In risk assessments of noncancer endpoints, metrics such as an oral reference dose (RfD) and an
inhalation reference concentration (RfC) are typically used. The use of conservative defaults long
has been the target of criticism (Finkel 1989) and has led to the presumption by critics that EPA
assessments are overly conservative and unrealistic. The use of PRA would be advantageous in
eliminating a single value and might be less likely to imply undue precision and lessen the need for
conservative assumptions, thereby reducing bias in the estimate. In the probabilistic framework, a
probability distribution would be used to express the belief that any particular value represents the
dose or exposure concentration that would pose no appreciable risk of adverse effects (NRC 2009).
EPA is investigating the use of PRA to derive risk values for RfD and RfC in EPA’s Integrated Risk
Information System (IRIS) Database (www.epa.gov/IRIS/).

EPA commissioned a white paper (Hattis and Lynch 2010) presented at the Hazardous Air Pollutant
Workshop, 2009, illustrating the implementation of probabilistic methods in defining RfDs and
assessing the benefits for reducing exposure to toxicants that act in part through traditional
individual threshold processes. The use of PRA, among other things, makes provision for
interactions with background pathological processes, as recommended by the NRC (2009), and
shows how the system can inform assessments for “data-poor” toxicants.

PRA may be more suitable than DRA for complex assessments, including those of aggregate and
cumulative exposures and time-dependent individual exposure, dose and effects analyses.
Identification and prioritization of contributory sources of uncertainty can be difficult and time
consuming when using deterministic methods, leading to difficulties in model evaluation and the
subsequent appraisal of risk estimates (Cullen and Frey 1999). Quantitative analyses of model
sensitivities are essential for the prioritization of key uncertainties—a critical process in identifying
steps for data collection or research to improve exposure or risk estimates.

1.10. What Is EPA’s Experience with the Use of Probabilistic Risk
Analysis?

EPA’s experience with PRA has, to date, primarily been limited to the evaluation of data, model and
scenario uncertainties. To assist with the growing number of probabilistic analyses of exposure
data in these uncertainty areas, EPA issued Guiding Principles for Monte Carlo Analysis (USEPA
1997b). Given adequate supporting data and credible assumptions, probabilistic analysis
techniques, such as Monte Carlo analysis, can be viable statistical tools for analyzing uncertainty
and variability in risk assessments. EPA’s policy for the use of probabilistic analysis in risk
assessment, released in 1997, is inclusive of human exposure and ecological risk assessments and
does not rule out probabilistic health effects analyses (USEPA 1997a). Subsequently, EPA’s SAB and
Scientific Advisory Panel (SAP) have reviewed PRA approaches to risks used by EPA offices such as
OAR, OPP and others. Several programs have developed specific guidance on the use of PRA,
including OPP and OSWER (USEPA 1998a, 2001).

To illustrate the practical application of PRA to problems relevant to the Agency, several example
case studies are briefly described here. The Appendix titled Case Study Examples of Application of
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Probabilistic Risk Analysis in U.S. Environmental Protection Agency Regulatory Decision Making,
discusses these and other case studies in greater detail, including the procedures and outcomes.
The Appendix includes 16 case studies—11 HHRA and 5 ERA examples—that are intended to
illustrate how some of EPA’s programs and offices currently utilize PRA. To aid in describing how
probabilistic analyses were used, the 16 case studies are subdivided among 3 categories of PRA
tools: Group 1—point estimate, including sensitivity analysis; Group 2—probabilistic risk analysis,
including one-dimensional Monte Carlo analysis (1-D MCA) and probabilistic sensitivity analysis;
and Group 3—advanced probabilistic risk analysis, including two-dimensional Monte Carlo analysis
(2-D MCA) with microexposure (microenvironments) modeling, Bayesian statistics, geostatistics
and expert elicitation .

It is useful to note that the NRC (2009) recommended a tiered approach to risk assessment using
both qualitative and quantitative (deterministic and probabilistic) tools, with the complexity of the
analysis increasing as progress is made through the tiers. The use of PRA tools to address issues of
uncertainty and variability in a tiered approach is described more completely in Section 2.10 and
was illustrated in Figure 2. The three tiers illustrated in that figure approximately correspond to the
three groups of EPA case studies described in the Appendix that provide examples of the use of
various PRA tools.

Table A-1 in the Appendix offers a summary of the 16 case studies based on the type of risk
assessment, the PRA tools used in the assessment, and the EPA program or regional office
responsible for the assessment. Some of the approaches that are profiled in these case studies can
be used in the planning and scoping phases of risk assessments and risk management. Other, more
complex PRA approaches are used to answer more specific questions and provide a richer
description of the risks. Most studies show that PRA can improve or expand on information
generated by deterministic methods. In some of the case studies, the use of multiple PRA tools is
illustrated. For example, Case Study 1 describes the use of a point estimate sensitivity analysis to
identify exposure variables critical to the analysis summarized in Case Study 9. Both of these case
studies focus on children’s exposure to chromated copper arsenate (CCA)-treated wood. In Case
Study 9, an MCA was used as an example of a two-dimensional (i.e., addressing both variability and
uncertainty) probabilistic exposure assessment.

Overall, the case studies illustrate that the Agency already has applied the science of PRA to
ecological risk and human exposure estimation and has begun using PRA to describe health effects.
Some of the applications have used existing “off-the-shelf” software, whereas others have required
significant effort and resources. Once developed, however, some of the more complex models have
been used many times for different assessments. All of the assessments have been validated by
internal and external peer review. Table 1 gives some highlights the case studies from deterministic
to more complex assessments, which are described in more detail in the Appendix.
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Table 1. Selected Examples of EPA Applications of Probabilistic Risk Assessment Techniques

StuC;;eNo. Description Group }ézee:;nséﬂi Office/Region
Atmospheric Deposition to Watershed
Contamination: The Office of Research and
Development (ORD) developed an analysis of Groun 1: Point
2 nitrogen, mercury and polycyclic aromatic Estimpaté Ecological ORD
hydrocarbons (PAHS) depositions toward
watershed contamination in the Casco Bay
Estuary in southwestern Maine.
Hudson River Polychlorinated Biphenyl
(PCB)-Contaminated Sediment Site: Region G ,
luated the variability in risks to anglers foup 2: Super fund/
5 2 eva ity g 1-D Monte Carlo Human Health Region 2
who consume recreationally caught fish Analysis (New York)
contaminated with PCBs from sediment
contamination in the Hudson River.
Environmental Monitoring and Assessment
Program (EMAP): ORD developed and the Group 2;
7 Office.of Water'(OW) applied probabilistip ’ Probqpiljstic Ecological ORD/OW
sampling techniques to evaluate the Nation’s Sensitivity
aquatic resources under the Clean Water Act | Analysis
(CWA) Section 305(h).
Chromated Copper Arsenate (CCA) Risk
Assessment: ORD and the Office of Pesticide
Programs (OPP) conducted a probabilistic Group 3:
9 assessment of children’s exposure 2-D Monte Carlo Human Health ORD/OPP
(addressing both variability and uncertainty) to | Analysis
arsenic and chromium from contact with CCA-
treated wood play sets and decks.
Evaluating Ecological Effects of Pesticide
Uses: OPP developed a probabilistic model, Group 3:
13 which evaluates acute mortality levels in Probabilistic Ecological OPP
generic and specific ecological species for Analysis
user-defined pesticide uses and exposures.
Fine Particulate Matter Health Impacts:
ORD and the Office of Air and Radiation
(OAR) used expert elicitation to more
14 compl_ete_ly characterize, b_ot_h qualitati_vely and Gr_o_up _3: Expert Human Health ORD/OAR
quantitatively, the uncertainties associated Elicitation
with the relationship between reduction in fine
particulate matter (PM2.s) and benefits of
reduced PMs-related mortality.
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2. PROBABILISTIC RISK ANALYSIS

2.1. What Are Uncertainty and Variability, and How Are They Relevant
to Decision Making?

The concepts of uncertainty and variability are introduced here, and the relevance of these
concepts to decision making is discussed.

2.1.1. Variability

Variability refers to real differences over time, space or members of a population and is a property
of the system being studied (e.g., drinking water consumption rates for each of the many individual
adult residents living in a specific location or differences in body lengths or weights for humans or
ecological species) (Cullen and Frey 1999; USEPA 2011c). Variability can arise from inherently
random processes, such as variations in wind speed over time at a given location or from true
variation across members of a population that, in principle, could be explained, but which, in
practice, may not be explainable using currently available models or data (e.g., the range of lead
levels in the blood of children 6 years old or younger following a specific degree of lead exposure).
Of particular interest in both HHRA and ERA is inter-individual variability, which typically refers to
differences between members of the same population in either behavior related to exposure (e.g.,
dietary consumption rates for specific food items), or biokinetics related to chemical uptake (e.g.,
gastrointestinal uptake rates for lead following intake) or toxic response (e.g., differences among
individuals or species in the internal dose needed to produce a specific amount of neurological
impairment).

Inter-individual variability is illustrated in Case Study 5 in the Appendix, which assesses a PCB-
contaminated sediment site in the Hudson River. In this case study, the quantification of variability
is illustrated through the use of a PRA tool—1-D MCA—to describe the variability of exposure as a
function of individual exposure factors (i.e., young children’s fish ingestion).

2.1.2. Uncertainty

Uncertainty is the lack of knowledge of the true value of a quantity or relationships among
quantities (USEPA 2011c). For example, there may be a lack of information regarding the true
distribution of variability between individuals for consumption of certain food items. There are a
number of types of uncertainties for both risk analysis. The following descriptions of the types of
uncertainty (adapted from Cullen and Frey 1999) addresses uncertainties that arise during risk
analyses. These uncertainties can be separated broadly into three categories: (1) scenario
uncertainty; (2) model uncertainty; and (3) input or parameter uncertainty. Each of these is
explained in the paragraphs that follow.

Scenario uncertainty refers to errors, typically of omission, resulting from incorrect or incomplete
specification of the risk scenario to be evaluated. The risk scenario refers to a set of assumptions
regarding the situation to be evaluated, such as: (1) the specific sources of chemical emissions or
exposure to be evaluated (e.g., one industrial facility or a cluster of varied facilities impacting the
same study area); (2) the specific receptor populations and associated exposure pathways to be
modeled (e.g., indoor inhalation exposure, track-in dust or consumption of home-produced dietary
items); and (3) activities by different lifestages to be considered (e.g., exposure only at home, or
consideration of workplace or commuting exposure). Mis-specification of the risk scenario can
result in underestimation, overestimation or other mischaracterization of risks. Underestimation
may occur because of the exclusion of relevant situations or the inclusion of irrelevant situations
with respect to a particular analysis. Overestimation may occur because of the inclusion of
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unrealistic or irrelevant situations (e.g., assuming continuous exposure to an intermittent airborne
contaminant source rather than accounting for mobility throughout the day).

Model uncertainty refers to limitations in the mathematical models or techniques that are
developed to represent the system of interest and often stems from: (1) simplifying assumptions;
(2) exclusion of relevant processes; (3) mis-specification of model boundary conditions (e.g., the
range of input parameters); or (4) misapplication of a model developed for other purposes. Model
uncertainty typically arises when the risk model relies on missing or improperly formulated
processes, structures or equations. Sources of model uncertainty are defined in the Glossary.

Input or parameter uncertainty typically refers to errors in characterizing the empirical values used
as inputs to the model (e.g., engineering, physical, chemical, biological or behavioral variables).
Input uncertainty can originate from random or systematic errors involved in measuring a specific
phenomenon (e.g., biomarker measurements, such as the concentration of mercury in human hair);
statistical sampling errors associated with small sample sizes (e.g., if the data are based on samples
selected with a random, representative sampling design); the use of surrogate data instead of
directly measured data; the absence of an empirical basis for characterizing an input (e.g., the
absence of measurements for fugitive emissions from an industrial facility); or the use of summary
measures of central tendency rather than individual observations. Nonlinear random processes can
exhibit a behavior that, for small changes in input values, produces a large variation in results.

Input or parameter uncertainty is illustrated in Case Study 3 in the Appendix titled “Probabilistic
Assessment of Angling Duration Used in the Assessment of Exposure to Hudson River Sediments via
Consumption of Contaminated Fish.” In this case study, a probabilistic analysis of one parameter in
an exposure assessment—the time an individual spends fishing in a large river system—was
assessed using sensitivity analysis. This analysis was conducted because there was uncertainty that
the individual exposure duration based on residence duration may underestimate the time spent
fishing (i.e., angling duration). The full distribution of the calculated values was used in conducting
the 1-D MCA for the fish consumption pathway, which is presented in Case Study 5.

Decision uncertainty refers to a decision analysis that would include not only the impact of scenario,
model and input uncertainties on the relative attractiveness of potential decision alternatives, but
also would include the degree to which specific choices (such as selecting input data, models, and
scenarios, and even how the problem or decision analysis is framed) impact the relative
attractiveness of potential decision alternatives. In decision making, analysts use data to represent
decision criteria that decision makers and other stakeholders believe will help them to answer their
decision question(s). These questions might include which policy alternative best meets Agency
goals (that must be articulated) or which risk assessment scenario best describes the observed
effects. Data, model and scenario uncertainties will influence the risk assessment results and those,
in turn, will influence the risk management options. Decision makers who understand the
uncertainty associated with their specific choices can be more confident that the decision will
produce the results that they seek. In addition, these decision makers will be able to defend their
decisions better and explain how the decision meets Agency and stakeholder goals.

While this is beyond the scope of this document, Stahl and Cimorelli (2005 and 2012) illustrate how
uncertainty throughout the decision making process can be assessed. These case studies explored
the assessment of ozone monitoring networks and air quality management policies that seek to
minimize the adverse impacts from ozone, fine particulate matter and air toxics simultaneously.
These case studies demonstrate the importance and feasibility of better understanding the
uncertainty introduced by specific choices (e.g., selecting input data, models, and scenarios) when
making public policy decisions.
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2.2. When Is Probabilistic Risk Analysis Applicable or Useful?

PRA may be particularly useful, for example, in the following (Cooke 1991; Cullen and Frey 1999;
NRC 2009; USEPA 2001):

O When a screening-level DRA indicates that risks are possibly higher than a level of concern
and a more refined assessment is needed.

0 When the consequences of using point estimates of risk are unacceptably high.

a

When significant equity or environmental justice issues are raised by inter-individual
variability.

a

To estimate the value of collecting additional information to reduce uncertainty.

a

To identify promising critical control points and levels when evaluating management
options.

O To rank exposure pathways, sites, contaminants and so on for the purposes of prioritizing
model development or further research.

a

When combining expert judgments on the significance of the data.

a

When exploring the impact of the probability distributions of stakeholder and decision-
maker values on the attractiveness of potential decision alternatives (Fischhoff 1995; Illing
1999; Kunreuther and Slovic 1996; USEPA 2000b).

0 When exploring the impact of the probability distributions of the data, model and scenario
uncertainties, and variability together to compare potential decision alternatives.

PRA may add minimal value to the assessment in the following types of situations (Cullen and Frey
1999; USEPA 1997a):

0 When a screening-level deterministic risk assessment indicates that risks are negligible,
presuming that the assessment is known to be conservative enough to produce
overestimates of risk.

O When the cost of averting the exposure and risk is smaller than the cost of a probabilistic
analysis.

O When there is little uncertainty or variability in the analysis (this is a rare situation).

2.3. How Can Probabilistic Risk Analysis Be Incorporated Into
Assessments?

As illustrated in the accompanying case studies in the Appendix, probabilistic approaches can be
incorporated into any stage of a risk assessment, from problem formulation or planning and
scoping to the analysis of alternative decisions. In some situations, PRA can be used selectively for
certain components of an assessment. It is common in assessments that some model inputs are
known with high confidence (i.e., based on site-specific measurements), whereas values for other
inputs are less certain (i.e., based on surrogate data collected for a different purpose). For example,
an exposure modeler may determine that relevant air quality monitoring data exists, but there is a
lack of detailed information on human activity patterns in different microenvironments. Thus, an
assessment of the variability in exposure to airborne pollutants might be based on direct use of the
monitoring data, whereas assessment of uncertainty and variability in the inhalation exposure
component might be based on statistical analysis of surrogate data or use of expert judgment. The
uncertainties are likely to be larger for the latter than the former component of the assessment;
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efforts to characterize uncertainties associated with pollutant exposures would focus on the latter.
PRA also deals with dependency issues; a description of these issues is available in Section 3.3.2.

2.4. What Are the Scientific Community’s Views on Probabilistic Risk
Analysis, and What Is the Institutional Support for Its Use in
Performing Assessments?

The NRC and IOM recently emphasized their long-standing advocacy for PRA (NRC 2007a and b;
IOM 2013). Dating from its 1983 Risk Assessment in the Federal Government: Managing the Process
(NRC 1983)—which first formalized the risk assessment paradigm—through reports released from
the late 1980s through the early 2000s, various NRC panels have maintained consistently that
because risk analysis involves substantial uncertainties, these uncertainties should be evaluated
within a risk assessment. These panels noted that:

1. When evaluating the total population risk, EPA should consider the distribution of exposure
and sensitivity of response in the population (NRC 1989).

2. When assessing human exposure to air pollutants, EPA should present model results along
with estimated uncertainties (NRC 1991).

3. When conducting ERA, EPA should discuss thoroughly uncertainty and variability within
the assessment (NRC 1993).

4. “Uncertainty analysis is the only way to combat the ‘false sense of certainty,” which is caused
by a refusal to acknowledge and [attempt to] quantify the uncertainty in risk predictions,”
as stated in the NRC report, Science and Judgment in Risk Assessment (NRC 1994).

5. EPA’s estimation of health benefits was not wholly credible because EPA failed to deal
formally with uncertainties in its analyses (NRC 2002).

6. EPA should adopt a “tiered” approach for selecting the level of detail used in uncertainty
and variability assessment. Furthermore, the NRC recommended that a discussion of the
level of detail used for uncertainty analysis and variability assessment should be an explicit
part of the planning, scoping and problem formulation phase of the risk assessment process
(NRC 2009).

7. EPA should develop methods to systematically describe and account for uncertainties in
decision-relevant factors in addition to estimates of health risk in its decision-making
process (IOM 2013).

Asked to recommend improvements to the Agency’s HHRA practices, EPA’s SAB echoed the NRC’s
sentiments and urged the Agency to characterize uncertainty and variability more fully and
systematically and to replace single-point uncertainty factors with a set of distributions using
probabilistic methods (Parkin and Morgan 2007). The key principles of risk assessment cited by the
Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB)
include “explicit” characterization of the uncertainties in risk judgments; they proceed to cite the
National Academy of Science’s (NAS) 2007 recommendation to address the “variability of effects
across potentially affected populations” (OSTP/OMB 2007).
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2.5. Additional Advantages of Using Probabilistic Risk Analysis and
How It Can Provide More Comprehensive, Rigorous Scientific
Information in Support of Regulatory Decisions.

External stakeholders previously have used the Administrative Procedure Act and the Data Quality
Act to challenge the Agency for a lack of transparency and consistency or for not fully analyzing and
characterizing the uncertainties in risk assessments or decisions (Fisher et al. 2006). The more
complete implementation of PRA and related approaches to deal with uncertainties in decision
making would address stakeholder concerns in regard to characterizing uncertainties.

The results of any assessment, including PRA, are dependent on the underlying methods and
assumptions. Accompanied by the appropriate documentation, PRA may communicate a more
robust representation of risks and corresponding uncertainties. This characterization may be in the
form of a range of possible estimates as opposed to the more traditionally presented single-point
values. Depending on the use of the assessment, ranges can be derived for variability and
uncertainty (or a combination of the two) in both model inputs and resulting estimations of risk.

PRA quantifies how exposures, effects and risks differ among human populations or lifestages or
target ecological organisms. PRA also provides an estimation of the degree of confidence with
which these estimates may be made, given the current uncertainty in scientific knowledge and
available data. A 2007 NRC panel stated that the objective of PRAs is not to decide “how much
evidence is sufficient” to adopt an alternative but, rather, to describe the scientific bases of
proposed alternatives so that scientific and policy considerations may be more fully evaluated (NRC
2007a). EPA’s SAB similarly noted that PRAs provide more “value of information” through a
quantitative assessment of uncertainty and clarify the science underlying Agency decisions (USEPA
2007b).

The SAB articulated a number of advantages for EPA decision makers from the utilization of
probabilistic methods (Parkin and Morgan 2007):

O A probabilistic reference dose could help reduce the potentially inaccurate implication of
zero risk below the RfD.

O By understanding and explicitly accounting for uncertainties underlying a decision, EPA can
estimate formally the value of gathering more information. By doing so, the Agency can
better prioritize its information needs by investing in areas that yield the greatest
information value.

(O Strategic use of PRA would allow EPA to send the appropriate signal to the intellectual
marketplace, thereby encouraging analysts to gather data and develop methodologies
necessary for assessing uncertainties.

2.6. What Are the Challenges to Implementation of Probabilistic
Analyses?

Currently, EPA is using PRA in a variety of programs to support decisions, but challenges remain
regarding the expanded use of these tools within the Agency. The challenges include:

O Alack of understanding of the value of PRA for decision making. PRA helps to improve the
rigor of the decision-making process by allowing decision makers to explore the impacts of
uncertainty and variability on the decision choices.

O A clear institutional understanding of how to incorporate the results of probabilistic
analyses into decision making is lacking.
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O PRA typically requires a different skill set than used in current evaluations, and limited
resources (staff, time, training or methods) to conduct PRA are available.

O Communicating probabilistic analysis results and the impact of those results on the
decision/policy options can be complex.

O Communication with stakeholders is often difficult and results in the appearance of
regulatory delays due the necessity of analyzing numerous scenarios using various models.

O PRA complicates decision making and risk communication in instances where a more
comprehensive characterization of the uncertainties leads to a decrease in clarity regarding
how to estimate risk for the scenario under consideration. These challenges are discussed in
more detail in Sections 2.7 through 2.13.

2.7. How Can Probabilistic Risk Analysis Support Specific Regulatory
Decision Making?

Decision makers sometimes perceive that the binary nature of regulatory decisions (e.g., Does an
exposure exceed a reference dose or not? Do emissions comply with Agency standards or not?)
precludes the use of a risk range developed through PRA. Generally, it is necessary to explain the
rationale underlying a particular decision. PRA’s primary purpose is to provide information to
enhance the ability to make transparent decisions based on the best available science. By
conducting a sensitivity analysis of the influence of the uncertainty on the decision-making process,
it can be determined how or if PRA can help to improve the process.

PRA can provide information to decision makers on specific questions related to uncertainty and
variability. For questions of uncertainty and to minimize the likelihood of unintended
consequences, PRA can help to provide the following types of information:

(3 Characterization of the uncertainty in estimates (i.e.,, What is the degree of confidence in the
estimate?). Could the prediction be off by a factor of 2, a factor of 10 or a factor of 1,000?

O Critical parameters and assumptions that most affect or influence a decision and the risk
assessment.

O “Tipping points” where the decision would be altered if the risk estimates were different, or
if a different assumption was valid.

O Estimate the likelihood that values for critical parameters will occur or test the validity of
assumptions.

(O Estimate the degree of confidence in a particular decision and/or the likelihood of specific
decision errors.

O The possibility of alternative outcomes with additional information, or estimate tradeoffs
related to different risks or risk-management decisions.

O The impact of additional information on decision making, considering the cost and time to
obtain the information and the resulting change in decision (i.e., the value of the
information).

For the consideration of variability, PRA can help to provide the following types of information for
exposures:

O Explicitly defined exposures for various populations or lifestages (i.e., Who are we trying to
protect?). That is, will the regulatory action keep 50 percent, 90 percent, 99.9 percent or
some other fraction of the population below a specified exposure, dose or risk target?
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O Variability in the exposures, among various populations or lifestages, and information on
the percentile of the population that is being evaluated in the risk assessment (e.g.,
variations in the number of liters of water per kilogram [kg] body weight per day consumed
by the population). This information is helpful in addressing comments:

e On the conservatism of EPA’s risk assessments;

e Concerns about whether their particular exposures were evaluated in the risk
assessment;

e Whom or what is being protected by implementing a decision; and
e Whether and what additional research may be needed to reduce uncertainty.

PRA helps to inform decisions by characterizing the alternatives available to the decision maker
and the uncertainty he or she faces, and by providing evaluation measures of outcomes.
Uncertainties often are represented as probabilities or probability distributions numerically or in
graphs. As part of a decision analysis, stakeholders can more fully examine how uncertainties
influence the preference among alternatives.

2.8. Does Probabilistic Risk Analysis Require More Resources Than
Default-Based Deterministic Approaches?

PRA generally can be expected to require more resources than standard Agency default-based
deterministic approaches. There is extensive experience within EPA in conducting and reviewing
DRA. These assessments tend to follow standardized methods that minimize the effort required to
conduct them and to communicate the results. Probabilistic assessments often entail a more
detailed analysis, and as a result, these assessments require substantially more resources, including
time and effort, than do deterministic approaches.

Appropriately trained staff and the availability of adequate tools, methods and guidance are
essential for the application of PRA. Proper application of probabilistic methods requires not only
software and data, but also guidance and training for analysts using the tools and for managers and
decision makers tasked with interpreting and communicating the results.

An upfront increase in resources needed to conduct a probabilistic assessment can be expected, but
development of standardized approaches and/or methods can lead to the routine incorporation of
PRA in Agency approaches (e.g., OPP’s use of the Dietary Exposure Evaluation Model [DEEM;
http://www.epa.gov/pesticides/science/deem/], a probabilistic dietary exposure model). The
initial and, in some cases, ongoing resource cost (e.g., for development of site-specific models for
site assessments) may be offset by a more informed decision than a comparable deterministic
analysis. Probabilistic methods are useful for identifying effective management options and
prioritizing additional data collection or research aimed at improving risk estimation, ultimately
resulting in decisions that enable improved environmental protection while simultaneously
conserving more resources.

2.9. Does Probabilistic Risk Analysis Require More Data Than
Conventional Approaches?

There are differences of opinion within the technical community as to whether PRA requires more
data than other types of analyses. Although some emphatically believe that PRA requires more data,
others argue that probabilistic assessments make better use of all of the available data and
information. Stahl and Cimorelli (2005) discuss when and how much data are necessary for a
decision. PRA can benefit from more data than might be used in a DRA. For example, where DRA
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might employ selected point estimates (e.g., the mean or 95th percentile values) from available data
sets for use in model inputs, PRA facilitates the use of frequency-weighted data distributions,
allowing for a more comprehensive consideration of the available data. In many cases, the data that
were used to develop the presumptive 95th percentile can be employed in the development of
probabilistic distributions.

Restriction of PRA to principally data-rich situations may prevent its broader application where it is
most useful. Because PRA incorporates information on data quality, variability and uncertainty into
risk models, the influence of these factors on the characterization of risk can become a greater focus
of discussion and debate.

A key benefit of using PRA is its ability to reveal the limitations as well as the strengths of data that
often are masked by a deterministic approach. In doing so, PRA can help to inform research
agendas, as well as support regulatory decision making, based on the state of the best available
science. In summary, PRA typically requires more time for developing input assumptions than a
DRA, but when incorporated into the relevant steps of the risk assessment process, PRA can
demonstrate added benefits. In some cases, PRA can provide additional interpretations that
compensate for the extra effort required to conduct a PRA.

2.10. Can Probabilistic Risk Analysis Be Used to Screen Risks or Only
in Complex or Refined Assessments?

Probabilistic methods typically are not necessary where traditional default-based deterministic
methods are adequate for screening risks. Such methods are relatively low cost, intended to
produce conservatively biased estimates, and useful for identifying situations in which risks are so
low that no further action is needed. The application of probabilistic methods can be targeted to
situations in which a screening approach indicates that a risk may be of concern or when the cost of
managing the risk is high, creating a need for information to help inform decision making. PRA fits
directly into a graduated hierarchical approach to risk analysis. This tiered approach, depicted in
Figure 2, is a process for a systematic informed progression to increasingly more complex risk
assessment methods, depending on the decision-making context and need. Higher tiers reflect
increasing complexity and often will require more time and resources. An analysis might typically
start at a lower tier and only progress to a higher tier if there is a need for a more sophisticated
assessment commensurate with the importance of the problem. Higher tiers also reflect increasing
characterization of variability and/or uncertainty in the risk estimate, which may be important for
risk-management decisions. The case studies described in the Appendix are presented in three
groups that generally correspond to the tiers identified in Figure 2. Group 1 case studies are point
estimate (sensitivity analysis) examples (Tier 1); Group 2 case studies include most moderate-
complexity PRA examples (Tier 2); and Group 3 case studies are advanced (high complexity) PRA
examples (Tier 3).

The tiered approach in Figure 2 depicts a continuum from screening level point estimate that is
done with little data and conservative assumptions to PRA that requires an extensive data set and
more realistic (less conservative) assumptions. In between, there can be a wide variety of tiers of
increasing complexity, or there may be only a few reasonable choices between screening methods
and highly refined analyses (USEPA 2004a). A similar four-tiered approach for characterizing the
variability and/or uncertainty in the estimated exposure or risk analysis (WHO 2008) has been
adapted by EPA in the risk and exposure assessments conducted for the National Ambient Air
Quality Standards (NAAQS).

PRA also could be used to examine more fully the existing default-based methods based on the
current state of information and knowledge to determine if such methods are truly conservative

22



and adequate for screening (e.g., in dose-response analyses dealing with hazard characterization)
(Swartout et al. 1998; Hattis et al. 2002).

The use of a spectrum of data should be employed both in determining screening risks and in more
complex assessments. For HHRA, data from human, animal, mechanistic and other studies should
be used to develop a probabilistic characterization of cancer and noncancer risks and to identify
uncertainties. The NRC recommended that EPA facilitate this approach by redefining RfD and RfC
within the probabilistic framework to take into account the probability of harm (NRC 2009). Itis
likely that both DRA and PRA will be part of this framework.

2.11. Does Probabilistic Risk Analysis Present Unique Challenges to
Model Evaluation?

The concept of “validation” of models used for regulatory decision making has been a topic of
intense discussion. In a recent report on the use of models in environmental regulatory decision
making, the NRC recommended using the notion of model “evaluation” rather than “validation,”
suggesting that use of a process that encompasses the entire life cycle of the model and
incorporates the spectrum of interested parties in the application of the model often extends
beyond the model builder and decision maker. Such a process can be designed to ensure that
judgment of the model application is based not only on its predictive value determined from
comparison with historical data, but also on its comprehensiveness, rigor in development,
transparency and interpretability (NRC 2007b).

Model evaluation is important in all risk assessments. In the case of PRA, there is an additional
question as to the validity of the assumptions regarding probability and frequency distributions for
model inputs and their dependencies. Probabilistic information can be accounted for during
evaluation analyses by considering the range of uncertainty in the model prediction and whether
such a range overlaps with the “true” value based on independent data. Thus, probabilistic
information can aid in characterizing the precision of the model predictions and whether a
prediction is significantly different from a benchmark of interest. For example, comparisons of
probabilistic model results and monitoring data were performed for multiple models in developing
the cumulative pesticide exposure model. Concurrent PRA model evaluations using a Bayesian
analysis also have been published (Clyde 2000).

When risk assessors develop models of risk, they rely on two predominant statistical methods. Both
methods arise from axioms of probability, but each applies these axioms differently. Under the
frequentist approach, one develops and evaluates a model by testing whether the model—as
applied to the observations—conforms to idealized distributions. Under the Bayesian approach,
one develops and evaluates a model by testing which—among alternative models—best yields the
underlying distribution describing the data. The practical differences between these two
approaches can perhaps best be appreciated when considering the structural uncertainty in models
(Section 3.3.3). Because Bayesians estimate model parameters with the expectation that these
parameters—or even model structures—will be updated as new data become available, they have
developed formal techniques to provide uncertainty bounds around these parameter estimates,
select models that best explain the given data, or combine the results of alternative models.

2.12. How Do You Communicate the Results of Probabilistic Risk
Analysis?

Effective communication makes it easier for regulators and stakeholders to understand the decision
criteria driving the decision-making process. In other words, communication of PRA results within
the decision-making context facilitates understanding. The specific approaches for reporting results
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from PRA vary depending on the assessment objective and the intended audience. Beyond the basic
1997 principles and the policy from the same year (USEPA 1997a and b), the Risk Assessment
Guidance for Superfund: Volume I1I—Part A, Process for Conducting Probabilistic Risk Assessment also
provides some guidance on the quality and criteria for acceptance as well as communication basics
(USEPA 2001). There have been limited studies of how information from PRA regarding uncertainty
and variability can or should be communicated to key audiences, such as decision makers and
stakeholders (e.g., Morgan and Henrion 1990; Bloom et al. 1993; Krupnick et al. 2006). Among the
analyst community, there often is an interest in visualization of the structure of a scenario and
model using influence diagrams and depiction of the uncertainty and variability in model inputs
and outputs using probability distributions in the form of cumulative density functions or
probability distribution functions (Figure 3). Sensitivity of the model output to uncertainty and
variability in model inputs can be depicted using graphical tools.

In some cases, these graphical methods can be useful for those less familiar with PRA, but in many
cases there is a need to translate the quantitative results into a message that extracts the key
insights without burdening the decision maker with obscure technical details. In this regard, the
use of ranges of values for a particular metric of decision-making relevance (e.g., the range of
uncertainty associated with a particular estimate of risk) may be adequate. The presentation of PRA
results to a decision maker may be conducted best as an interactive discussion, in which a principal
message is conveyed, followed by exploration of issues such as the source, quality and degree of
confidence associated with the information. There is a need for the development of
recommendations and a communication plan regarding how to communicate the results of PRA to
decision makers and stakeholders, building on the experience of various programs and regions.

2.13. Are the Results of Probabilistic Risk Analysis Difficult to
Communicate to Decision Makers and Stakeholders?

Research has shown that the ability of decision makers to deal with concepts of probability and
uncertainty varies. Bloom et al. (1993) surveyed a group of senior managers at EPA and found that
many could interpret information about uncertainty if it was communicated in a manner
responsive to decision-maker interests, capabilities and needs. In a more recent survey of ex-EPA
officials, Krupnick et al. (2006) concluded that most had difficulty understanding information on
uncertainty with conventional scientific presentation approaches. The findings of these studies
highlight the need for practical strategies for the communication of results of PRA and uncertainty
information between risk analysts and decision makers, as well as between decision makers and
other stakeholders. The Office of Emergency and Remedial Response (OERR) has compiled
guidance to assist analysts and managers in understanding and communicating the results of PRA
(USEPA 2001).

Risk analysts need to focus on how to use uncertainty analysis to characterize how confident
decision makers should be in their choices. As Wilson (2000) explained, “... uncertainty is the bane
of any decision maker’s existence. Thus, anyone who wants to inform decisions using scientific
information needs to assure that their analyses transform uncertainty into confidence in
conclusions.” Hence, although environmental risk assessments are complicated and it is easy to get
lost in the details, presenting and discussing these results within the context of the decision
facilitates understanding. The translation of uncertainty into confidence statements forces a “top-
down” perspective that promotes accounting for whether and how uncertainties affect choices (Toll
etal. 1997).
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Figure 3. Graphical Description of the Likelihood (Probability) of Risk. Hypothetical fitted data

distribution with upper and lower confidence intervals are depicted for the output of a 2-D MCA
model.
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3. AN OVERVIEW OF SOME OF THE TECHNIQUES USED IN
PROBABILISTIC RISK ANALYSIS

3.1. What Is the General Conceptual Approach in Probabilistic Risk
Analysis?

PRA includes several major steps, which parallel the accepted environmental health risk
assessment process. These include: (1) problem and/or decision criteria identification;

(2) gathering information; (3) interpreting the information; (4) selecting and applying models and
methods for quantifying variability and/or uncertainty; (5) quantifying inter-individual or
population uncertainty and variability in metrics relevant to decision making; (6) sensitivity
analysis to identify key sources of variability and uncertainty; and (7) interpreting and reporting
results.

Problem formulation entails identifying the assessment endpoints or issues that are relevant to the
decision-making process and stakeholders, and that can be addressed in a scientific assessment
process. Following problem formulation, information is needed from stakeholders and experts
regarding the scenarios to evaluate. Based on the scenarios and assessment endpoints, the analysts
select or develop models, which in turn leads to identification of model input data requirements
and acquisition of data or other information (e.g., expert judgment encoded as the result of a formal
elicitation process) that can be used to quantify inputs to the models. The data or other information
for model inputs is interpreted in the process of developing probability distributions to represent
variability, uncertainty or both for a particular input. Thus, steps (1) through (4) listed above are
highly interactive and iterative in that the data input requirements and how information is to be
interpreted depend on the model formulation, which depends on the scenario and that in turn
depends on the assessment objective. The assessment objective may have to be refined depending
on the availability of information.

Once a scenario, model and inputs are specified, the model output is estimated. A common
approach is to use Monte Carlo Analysis (MCA) or other probabilistic methods to generate samples
from the probability distributions of each model input, run the model based on one random value
from each probabilistic input, and produce one corresponding estimate of the model outputs. This
process is repeated typically hundreds or thousands of times to create a synthetic statistical sample
of model outputs. These output data are interpreted as a probability distribution of the output of
interest. Sensitivity analysis can be performed to determine which model input distributions are
most highly associated with the range of variation in the model outputs. The results may be
reported in a wide variety of forms depending on the intended audience, ranging from qualitative
summaries to tables, graphs and diagrams.

Detailed introductions to PRA methodology are available elsewhere, such as Ang and Tang (1984),
Cullen and Frey (1999), EPA (2001), and Morgan and Henrion (1990). A few key aspects of PRA
methodology are briefly mentioned here. Readers who seek more detail should consult these
references and see the Bibliography for additional references.

3.2. What Levels and Types of Probabilistic Risk Analyses Are There
and How Are They Used?

There are multiple levels and types of analysis used to conduct risk assessments (illustrated in
Figure 2 and Table 1, respectively). Graduated approaches to analysis are widely recognized (e.g.,
USEPA 19973, 2001; WHO 2008). The idea of a graduated approach is to choose a level of detail and
refinement for an analysis that is appropriate to the assessment objective, data quality, information
available and importance of the decision (e.g., resource implications).
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As discussed in section 1.8, there is a variety of approaches to risk assessment that differ in their
complexity and the manner in which they address uncertainty and variability. In DRA one does not
formally characterize uncertainty or variability but rather typically relies on using default-based
assumptions and factors to generate a single estimate of risk. In PRA there is a variety of
approaches to explicitly address or characterize uncertainty or variability in risk estimates and
these differ in terms of how they accomplish this, the data used, and the overall complexity. Some
examples are:

O  Sensitivity analysis

Monte Carlo analysis of variability in exposure data
Human health or ecological effects data

Monte Carlo analysis of uncertainty

“Cumulative” PRA—multi-pathway or multi-chemical
Two-dimensional PRA of uncertainty and variability

Decision uncertainty analysis

aaogaogaaaaq

Geospatial analysis
O  Expertelicitation

The DRA approaches described in Section 1.8 are examples of lower levels in a graduated approach
to analysis. Risk at the lower levels of analysis is assessed by conservative, bounding assumptions.
If the risk estimate is found to be very low despite the use of conservative assumptions, then there
exists a great deal of certainty that the actual risks to the population of interest for the given
scenario are below the level of concern and no further intervention is required, assuming that the
scenario and model specifications are correct. When a conservative DRA indicates that a risk may
be high, it is possible that the risk estimate is biased and the actual risk may be lower. In such a
situation, depending on the resource implications of the decision, it may be appropriate to proceed
with a more refined or higher level of analysis. The relative costs of intervention versus further
analysis should be considered when deciding whether to proceed with a decision based on a lower
level analysis or to escalate to a higher level of analysis. In some deterministic assessments (e.g.,
ecological risks), the assumptions are not well assured of conservatism, and the estimated risks
might be biased to appear lower than the unseen actual risk.

A more refined analysis could involve the application of DRA methods, but with alternative sets of
assumptions intended to characterize central tendency and reasonable upper bounds of exposure,
effects and risk estimates, such that the estimates could be for an actual individual in the population
of interest rather than a hypothetical maximally exposed individual. Such analyses are not likely to
provide quantification regarding the proportion of the population at or below a particular exposure
or risk level of concern, uncertainties for any given percentile of the exposed population, or
priorities among input assumptions with respect to their contributions to uncertainty and
variability in the estimates.

To more fully answer the questions often asked by decision makers, the analysis can be further
refined by incorporating quantitative comparisons of alternative modeling strategies (to represent
structural uncertainties associated with scenarios or models), quantifying ranges of uncertainty
and variability in model outputs, and providing the corresponding ranges for model outputs of
interest. When performing probabilistic analyses, choices are made regarding whether to focus on
the quantification of variability only, uncertainty only, both variability and uncertainty together
(representing a randomly selected individual), or variability and uncertainty independently (e.g., in
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a two-dimensional depiction of probability bands for estimates of inter-individual variability; see
Figure 4). The simultaneous but distinct propagation of uncertainty and variability in a two-
dimensional framework enables quantification of uncertainty in the risk for any percentile of the
population. For example, one could estimate the range of uncertainty in the risk faced by the
median member of the population or the 95th percentile member of the population. Such
information can be used by a decision maker to gauge the confidence that should be placed in any
particular estimate of risk, as well as to determine whether additional data collection or
information might be useful to reduce the uncertainty in the estimates. The OPP assessment of
Chromated Copper Arsenate-treated wood used such an approach. (See Case Study 9 in the
Appendix.)
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Figure 4. Diagrammatic Comparison of Three Alternative Probabilistic Approaches for the Same
Exposure Assessment. In Option 1 (one dimensional Monte Carlo analysis), only variability is quantified.
In Option 2 (one dimensional Monte Carlo analysis), both uncertainty and variability are combined. In
Option 3 (two dimensional Monte Carlo analysis), variability and uncertainty are analyzed separately.
Source: WHO 2008.

When conducting an analysis for the first time, it may not be known or clear, prior to analysis,
which components of the model or which model inputs contribute the most to the estimated risk or
its uncertainty and variability. As a result of completing an analysis, however, the analyst often
gains insight into the strengths and weaknesses of the models and input information. Probabilistic
analysis and sensitivity analysis can be used together to identify the key sources of quantified
uncertainty in the model outputs to inform decisions regarding priorities for additional data
collection. Ideally, time should be allowed for collecting such information and refining the analysis
to arrive at a more representative and robust estimate of uncertainty and variability in risk. Thus,
the notion of iteration in developing and improving an analysis is widely recommended.
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The notion of iteration can be applied broadly to the risk assessment framework. For example, a
first effort to perform an analysis may lead to insight that the assessment questions might be
impossible to address, or that there are additional assessment questions that may be equally or
more important. Thus, iteration can include reconsideration of the initial assessment questions and
the corresponding implications for definition of scenarios, selection of models and priorities for
obtaining data for model inputs. Alternatively, in a time-limited decision environment, probabilistic
and sensitivity analyses may offer insight into the effect of management options on risk estimates.

3.3. What Are Some Specific Aspects of and Issues Related to
Methodology for Probabilistic Risk Analysis?

This section briefly describes a few key aspects of PRA, model development and associated
uncertainties. Detailed introductions to PRA methodology are available elsewhere, such as Ang and
Tang (1984), Morgan and Henrion (1990), Cullen and Frey (1999) and EPA (2001). For more
detailed information, consult these references and see the Bibliography for additional sources.

3.3.1. Developing a Probabilistic Risk Analysis Model

There are two key issues that should be considered in developing a PRA model; as discussed below.

Structural Uncertainty in Scenarios

A potentially key source of uncertainty in an analysis is the scenario, which includes specification of
pollutant sources, transport pathways, exposure routes, timing and locations, geographic extent
and related issues. There is no formalized methodology for dealing quantitatively with uncertainty
and variability in scenarios. Decisions regarding what to include or exclude from a scenario could
be recast as hypotheses regarding which agents, pathways, microenvironments, etc., contribute
significantly to the overall exposure and risk of interest. In practice, however, the use of qualitative
methods to frame an assessment tends to be more common, given the absence of a formal
quantitative methodology.

Coupled Models

For source-to-outcome risk assessments, it often is necessary to work with multiple models, each of
which represents a different component of a scenario. For example, there may be separate models
for emissions, air quality, exposure, dose and effects. Such models may have different spatial and
temporal scales. When conducting an integrated assessment, there may be significant challenges
and barriers to coupling such models into one coherent framework. Sometimes, the coupling is
done dynamically in a software environment. In other cases, the output of one model might be
processed manually to prepare the information for input to the next model. Furthermore, there may
be feedback between components of the scenario (e.g., poor air quality might affect human activity,
which, in turn, could affect both emissions and exposures) that are incompletely captured or not
included. Thus, the coupling of multiple models can be a potentially significant source of structural
uncertainty (Ozkaynak 2009).

3.3.2. Dealing With Dependencies Among Probabilistic Inputs

When representing two or more inputs to a model as probability distributions, the question arises
as to whether it is reasonable to assume that the distributions are statistically independent. If there
is a dependence, it could be as simple as a linear correlation between two inputs, or it could be
more complicated, such as nonlinear or nonmonotonic relationships. Dependencies typically are
not important if the risk estimate or other model output is sensitive to one or none of the
probabilistic inputs that might have interdependence. Furthermore, dependencies typically are not
of practical importance if they are weak. When dependencies exist and might significantly influence
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the risk estimate, they can be taken into account using a variety of statistical simulation methods or,
perhaps more appropriately, by modeling the dependence analytically where possible. Details on
methods for assessing the importance of possible dependencies and of quantifying them when
needed are described in Ferson et al. (2004 and 2009).

For some types of models, such as air quality models, it is not possible to introduce a probability
distribution to one input (e.g., ambient temperature at a particular location) without affecting
variables at other locations or times (e.g., temperatures in other locations at the same times or
temporal trends in temperature). In such cases, it is better to produce an “ensemble” of alternative
temperature fields, each of which is internally consistent. Individual members of an ensemble
usually are not interpreted as representing a probability sample; however, comparison of multiple
ensembles of meteorological conditions, for example, can provide insight into natural sources of
variability in ambient concentrations.

3.3.3. Conducting the Probabilistic Analysis

uantifying Uncertainty and Variability in Model Inputs and Parameters

After the models are selected or developed to simulate a scenario of interest, attention typically
turns to the development of input data for the model. There is a substantial amount of literature
regarding the application of statistical methods for quantifying uncertainty and variability in model
inputs and parameters based on empirical data (e.g., Ang and Tang 1984; Cullen and Frey 1999;
Morgan and Henrion 1990; USEPA 2001). For example, a commonly used method for quantifying
variability in a model input is to obtain a sample of data, select a type of parametric probability
distribution model to fit to the data (e.g., normal, lognormal or other form), estimate the
parameters of the distribution based on the data, critique the goodness-of-fit using graphical (e.g.,
probability plot) and statistical (e.g., Anderson-Darling, Chi-Square or Kolmogorov-Smirnov tests)
methods and choose a preferred fitted distribution. This methodology can be adjusted to
accommodate various types of data, such as data that are samples from mixtures of distributions or
that contain non-detected (censored) values. Uncertainties can be estimated based on confidence
intervals for statistics of interest, such as mean values, or the parameters of frequency distributions
for variability. Various texts and guidance documents, both Agency and programmatic, describe
these approaches, including the Guiding Principles for Monte Carlo Analysis (USEPA 1997b).

The most common method for estimating a probability distribution in the output of a model, based
on probability distributions specified for model inputs, is MCS (Cullen and Frey 1999; Morgan and
Henrion 1990). MCS is popular because it is very flexible. MCS can be used with a wide variety of
probability distributions as well as different types of models. The main challenge for MCS is that it
requires repetitive model calculations to construct a set of pseudo-random numbers for model
inputs and the corresponding estimates for model outputs of interest. There are alternatives to MCS
that are similar but more computationally efficient, such as Latin Hypercube Sampling (LHS).
Techniques are available for simulating correlations between inputs in both MCS and LHS. For
models with very simple functional forms, it may be possible to use exact or approximate analytical
calculations, but such situations are encountered infrequently in practice. There may be situations
in which the data do not conform to a well-defined probability distribution. In such cases,
algorithms (such as Markov Chain Monte Carlo) can estimate a probability distribution by
calculating a mathematical form describing the pattern of observed data. This form, called the
likelihood function, is a key component of Bayesian inference and, therefore, serves as the basis for
some of the analytical approaches to uncertainty and variability described below.

The use of empirical data presumes that the data comprise a representative, random sample. If
known biases or other data quality problems exist, or if there is a scarcity or absence of relevant
data, then naive reliance on available empirical data is likely to result in misleading inferences in
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the analysis. Alternatively, estimates of uncertainty and variability can be encoded, using formal
protocols, based on elicitation of expert judgment (e.g., Morgan and Henrion 1990, USEPA 2011a).
Elicitation of expert judgment for subjective probability distributions is used in situations where
there are insufficient data to support a statistical analysis of uncertainty, but in which there is
sufficient knowledge on the part of experts to make an inference regarding uncertainty. For
example, EPA conducted an expert elicitation study on the concentration-response relationship
between the annual average ambient less than 2.5 micrometer (um) diameter particulate matter
(PM25) exposure and annual mortality (IEC 2006; see also Case Studies 6 and 14 in the Appendix).
Subjective probability distributions that are based on expert judgment can be “updated” with new
data as they become available using Bayesian statistical methods.

Structural Uncertainty in Models

There may be situations in which it proves useful to evaluate not just the uncertainties in inputs
and parameter values, but also uncertainties regarding whether a model adequately captures—in a
hypothesized, mathematical, structured form—the relationship under investigation. A qualitative
approach to evaluating the structural uncertainty in a model includes describing the critical
assumptions within a model, the documentation of a model or the model quality, and how the
model fits the purpose of the assessment. Quantitative approaches to evaluating structural
uncertainty in models are manifold. These include parameterization of a general model that can be
reduced to alternative functional forms (e.g.,, Morgan and Henrion 1990), enumeration of
alternative models in a probability tree (e.g., Evans et al. 1994), comparing alternative models by
evaluating likelihood functions (e.g., Royall 1997; Burnham and Anderson 2002), pooling results of
model alternatives using Bayesian model averaging (e.g., Hoeting et al. 1999) or testing the causal
relationships within alternative models using Bayesian Networks (Pearl 2009).

Sensitivity Analysis: Identifying the Most Important Model Inputs

Probabilistic methods typically focus on how uncertainty or variability in a model input affect [or
result in] with respect to uncertainty or variability in a model output. After a probabilistic 