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Disclaimer 
This	document	has	been	reviewed	in	accordance	with	U.S.	Environmental	Protection	Agency	(EPA)	
policy	and	approved	for	publication.	Mention	of	trade	names	or	commercial	products	does	not	
constitute	endorsement	or	recommendation	for	use.	

This	document	was	produced	by	a	Technical	Panel	of	the	EPA	Risk	Assessment	Forum	(RAF).	The	
authors	drew	on	their	experience	in	doing	probabilistic	assessments	and	interpreting	them	to	
improve	risk	management	of	environmental	and	health	hazards.	Interviews,	presentations	and	
dialogues	with	risk	managers	conducted	by	the	Technical	Panel	have	contributed	to	the	insights	
and	recommendations	in	this	white	paper	and	the	associated	document	titled	Probabilistic	Risk	
Assessment	to	Inform	Decision	Making:	Frequently	Asked	Questions.	
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Foreword 
Throughout	many	of	the	U.S.	Environmental	Protection	Agency’s	(EPA)	program	offices	and	
regions,	various	forms	of	probabilistic	methods	have	been	used	to	answer	questions	about	
exposure	and	risk	to	humans,	other	organisms	and	the	environment.	Risk	assessors,	risk	managers	
and	others,	particularly	within	the	scientific	and	research	divisions,	have	recognized	that	more	
sophisticated	statistical	and	mathematical	approaches	could	be	utilized	to	enhance	the	quality	and	
accuracy	of	Agency	risk	assessments.	Various	stakeholders,	inside	and	outside	of	the	Agency,	have	
called	for	a	more	comprehensive	characterization	of	risks,	including	uncertainties,	to	improve	the	
protection	of	sensitive	or	vulnerable	populations	and	lifestages.	

The	EPA	identified	the	need	to	examine	the	use	of	probabilistic	approaches	in	Agency	risk	
assessments	and	decisions.	The	RAF	developed	this	paper	and	the	companion	document,	
Probabilistic	Risk	Assessment	to	Inform	Decision	Making:	Frequently	Asked	Questions,	to	provide	a	
general	overview	of	the	value	of	probabilistic	analyses	and	similar	or	related	methods,	as	well	as	
provide	examples	of	current	applications	across	the	Agency.	Drafts	of	both	documents	were	
released,	with	slightly	different	titles,	for	public	comment	and	external	peer	review	in	August	2009.	
An	external	peer	review	was	held	in	Arlington,	Virginia	in	May	2010.	

The	goal	of	these	publications	is	not	only	to	describe	potential	and	actual	uses	of	these	tools,	but	
also	to	encourage	their	further	implementation	in	human,	ecological	and	environmental	risk	
analysis	and	related	decision	making.	The	enhanced	use	of	probabilistic	analyses	to	characterize	
uncertainty	in	assessments	will	not	only	be	responsive	to	external	scientific	advice	(e.g.,	
recommendations	from	the	National	Research	Council)	on	how	to	further	advance	risk	assessment	
science,	but	also	will	help	to	address	specific	challenges	faced	by	managers	and	increase	the	
confidence	in	the	underlying	analysis	used	to	support	Agency	decisions.	

	
	
	
	
	
	
	
	
	
____________________________________________	
Robert	Kavlock	
Interim	Science	Advisor		
U.S.	Environmental	Protection	Agency	 	
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EXECUTIVE SUMMARY 
Probabilistic	risk	assessment	(PRA),	in	its	simplest	form,	is	a	group	of	techniques	that	incorporate	
uncertainty	and	variability	into	risk	assessments.	Variability	refers	to	the	inherent	natural	
variation,	diversity	and	heterogeneity	across	time,	space	or	individuals	within	a	population	or	
lifestage,	while	uncertainty	refers	to	imperfect	knowledge	or	a	lack	of	precise	knowledge	of	the	
physical	world,	either	for	specific	values	of	interest	or	in	the	description	of	the	system	(USEPA	
2011c).	Variability	and	uncertainty	have	the	potential	to	result	in	overestimates	or	underestimates	
of	the	predicted	risk.		

PRA	provides	estimates	of	the	range	and	likelihood	of	a	hazard,	exposure	or	risk,	rather	than	a	
single	point	estimate.	Stakeholders	inside	and	outside	of	the	Agency	have	recommended	a	more	
complete	characterization	of	risks,	including	uncertainties	and	variability,	in	protecting	more	
sensitive	or	vulnerable	populations	and	lifestages.	PRA	can	be	used	to	support	risk	management	by	
assessment	of	impacts	of	uncertainties	on	each	of	the	potential	decision	alternatives.	

Numerous	advisory	bodies,	such	as	the	Science	Advisory	Board	(SAB)	and	the	National	Research	
Council	(NRC)	of	the	National	Academy	of	Sciences	(NAS),	have	recommended	that	EPA	incorporate	
probabilistic	analyses	into	the	Agency’s	decision‐making	process.	EPA’s	Risk	Assessment	Forum	
(RAF)	formed	a	Technical	Panel,	consisting	of	representatives	from	the	Agency’s	program	and	
regional	offices,	to	develop	this	white	paper	and	its	companion	document,	titled	Probabilistic	Risk	
Assessment	to	Inform	Decision	Making:	Frequently	Asked	Questions	(FAQ).	The	RAF	is	recommending	
the	development	of	Agency	resources,	such	as	a	clearinghouse	of	PRA	case	studies,	best	practices,	
resources	and	seminars,	to	raise	general	knowledge	about	how	these	probabilistic	tools	can	be	
used.	

The	intended	goal	of	this	white	paper	is	to	explain	how	EPA	can	use	probabilistic	methods	to	
address	data,	model	and	scenario	uncertainty	and	variability	by	capitalizing	on	the	wide	array	of	
tools	and	methods	that	comprise	PRA.	This	white	paper	describes	where	PRA	can	facilitate	more	
informed	risk	management	decision	making	through	better	understanding	of	uncertainty	and	
variability	related	to	Agency	decisions.	The	information	contained	in	this	document	is	intended	for	
both	risk	analysts	and	managers	faced	with	determining	when	and	how	to	apply	these	tools	to	
inform	their	decisions.	This	document	does	not	prescribe	a	specific	approach	but,	rather,	describes	
the	various	stages	and	aspects	of	an	assessment	or	decision	process	in	which	probabilistic	
assessment	tools	may	add	value.	

Probabilistic	Risk	Assessment	

PRA	is	an	analytical	methodology	used	to	incorporate	information	regarding	uncertainty	and/or	
variability	into	analyses	to	provide	insight	regarding	the	degree	of	certainty	of	a	risk	estimate	and	
how	the	risk	estimate	varies	among	different	members	of	an	exposed	population,	including	
sensitive	populations	or	lifestages.	Traditional	approaches,	such	as	deterministic	analyses,	often	
report	risks	as	“central	tendency,”	“high	end”	(e.g.,	90th	percentile	or	above)	or	“maximum	
anticipated	exposure,”	but	PRA	can	be	used	to	describe	more	completely	the	uncertainty	
surrounding	such	estimates	and	identify	the	key	contributors	to	variability	or	uncertainty	in	
predicted	exposures	or	risk	estimates.	This	information	then	can	be	used	by	decision	makers	to	
achieve	a	science‐based	level	of	safety,	to	compare	the	risks	related	to	different	management	
options,	or	to	invest	in	research	with	the	greatest	impact	on	risk	estimate	uncertainty.	

To	support	regulatory	decision	making,	PRA	can	provide	information	to	decision	makers	on	specific	
questions	related	to	uncertainty	and	variability.	For	example,	in	the	context	of	a	decision	analysis	
that	has	been	conducted,	PRA	can:	identify	“tipping	points”	where	the	decision	would	be	different	if	
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the	risk	estimates	were	different;	estimate	the	degree	of	confidence	in	a	particular	decision;	and	
help	to	estimate	trade‐offs	related	to	different	risks	or	management	options.	PRA	can	provide	
useful	(even	critical)	information	about	the	uncertainties	and	variability	in	the	data,	models,	
scenario,	expert	judgments	and	values	incorporated	in	risk	assessments	to	support	decision	making	
across	the	Agency.	

PRA	is	applicable	to	both	human	health	risk	assessment	(HHRA)	and	ecological	risk	assessment	
(ERA);	however,	there	are	differences	between	how	PRA	is	used	for	the	two.	Both	HHRA	and	ERA	
have	a	similar	structure	and	use	the	same	risk	assessment	steps,	but	HHRA	focuses	on	individuals,	a	
single	species,	morbidity	and	mortality,	but	ERA	is	more	concerned	with	multiple	populations	of	
organisms	(e.g.,	individual	species	of	fish	in	a	river)	or	ecological	integrity	(e.g.,	will	the	types	of	
species	living	in	the	river	change	over	time).	In	ERA,	there	also	is	a	reliance	on	indicators	of	impacts	
(e.g.,	sentinel	species	and	other	metrics).		

Risk	Assessment	at	EPA	

PRA	began	playing	an	increasingly	important	role	in	Agency	risk	assessments	following	the	1997	
release	of	EPA’s	Policy	for	Use	of	Probabilistic	Analysis	in	Risk	Assessment	at	the	U.S.	Environmental	
Protection	Agency	(USEPA	1997a)	and	publication	of	the	Guiding	Principles	for	Monte‐Carlo	Analysis	
(USEPA	1997b).	PRA	was	a	major	focus	in	an	associated	review	of	EPA	risk	assessment	practices	by	
the	SAB	(USEPA	2007b).	The	NRC	recommended	that	EPA	adopt	a	“tiered”	approach	for	selecting	
the	level	of	detail	used	in	uncertainty	and	variability	assessment	(NRC	2009).	Furthermore,	the	NRC	
recommended	that	a	discussion	about	the	level	of	detail	used	for	uncertainty	analysis	and	
variability	assessment	should	be	an	explicit	part	of	the	planning,	scoping	and	problem	formulation	
step	in	the	risk	assessment	process.	Both	this	white	paper	and	the	companion	FAQ	document	take	
into	account	recommendations	on	risk	assessment	processes	described	in	the	NRC’s	report	Science	
and	Decisions:	Advancing	Risk	Assessment	(NRC	2009)	and	Environmental	Decisions	in	the	Face	of	
Uncertainty	(IOM	2013).	

EPA’s	recent	risk	assessment	publications,	including	the	document	titled	Framework	for	Human	
Health	Risk	Assessment	to	Inform	Decision	Making	(UAEPA	2014b)	as	well	as	this	white	paper,	
emphasize	the	importance	of	communicating	the	results	of	a	PRA	because	it	provides	the	range	and	
likelihood	estimates	for	one	or	more	aspects	of	hazard,	exposure	or	risk,	rather	than	a	single	point	
estimate.	Risk	assessors	are	responsible	for	sharing	information	on	probabilistic	results	so	that	
decision	makers	have	a	clear	understanding	of	quantitative	assessments	of	uncertainty	and	
variability,	and	how	this	information	will	affect	the	decision.	Effective	communication	between	the	
risk	assessor	and	decision	maker	is	key	to	promote	understanding	and	use	of	the	results	from	the	
PRA.	

PRA	generally	requires	more	resources	than	standard	Agency	default‐based	deterministic	
approaches.	Appropriately	trained	staff	and	the	availability	of	adequate	tools,	methods	and	
guidance	are	essential	for	the	application	of	PRA.	Proper	application	of	probabilistic	methods	
requires	not	only	software	and	data,	but	also	guidance	and	training	for	analysts	using	the	tools,	and	
for	managers	and	decision	makers	tasked	with	interpreting	and	communicating	the	results.	In	most	
circumstances,	probabilistic	assessments	may	take	more	time	and	effort	to	conduct	than	
conventional	approaches,	primarily	because	of	the	comprehensive	inclusion	of	available	
information	on	model	inputs.	The	potentially	higher	resource	costs	may	be	offset,	however,	by	a	
more	informed	decision	than	would	be	provided	by	a	comparable	deterministic	analysis.	

Content	of	the	White	Paper	and	Frequently	Asked	Questions	Companion	Documents	

These	two	documents	describe	how	PRA	can	be	applied	to	enhance	the	scientific	foundation	of	
EPA’s	decision	making	across	the	Agency.	This	white	paper	describes	the	challenges	faced	by	EPA	
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decision	makers,	defines	and	explains	the	basic	principles	of	probabilistic	analysis,	briefly	
highlights	instances	where	these	techniques	have	been	implemented	in	EPA	decisions,	and	
describes	criteria	that	may	be	useful	in	determining	whether	and	how	the	application	of	
probabilistic	methods	may	be	useful	and/or	applicable	to	decision	making.	This	white	paper	also	
describes	commonly	employed	methods	to	address	uncertainty	and	variability,	including	those	
used	in	the	consideration	of	uncertainty	in	scenarios	and	uncertainty	in	models.	Additionally,	it	
addresses	uncertainty	and	variability	in	the	inputs	and	outputs	of	models	and	the	impact	of	these	
uncertainties	on	each	of	the	potential	management	options.	A	general	description	of	the	range	of	
methods	from	simple	to	complex,	rapid	to	more	time	consuming	and	least	to	most	resource	
intensive	is	provided,	as	well	as	uses	of	these	methods.	

Both	documents	address	issues	such	as	uncertainty	and	variability,	their	relevance	to	decision	
making	and	the	PRA	goal	to	provide	quantitative	characterization	of	the	uncertainty	and	variability	
in	estimates	of	hazard,	exposure,	or	risk.	The	difference	between	the	white	paper	and	the	FAQs	
document	is	the	level	of	detail	provided	about	PRA	concepts	and	practices,	and	the	intended	
audience	(e.g.,	risk	assessors	vs.	decision	makers).	Detailed	examples	of	applications	of	these	
methods	are	provided	in	the	Appendix	of	this	white	paper,	which	is	titled	“Case	Study	Examples	of	
the	Application	of	Probabilistic	Risk	Analysis	in	U.S.	Environmental	Protection	Agency	Decision	
Making.”	The	white	paper	Appendix	includes	16	case	studies—11	HHRA	and	5	ERA	examples—that	
illustrate	how	EPA’s	program	and	regional	offices	have	used	probabilistic	techniques	in	risk	
assessment.	To	aid	in	describing	how	these	tools	were	applied,	the	16	case	studies	are	subdivided	
among	3	categories	for	purposes	of	this	document.		Group	1	includes	2	case	studies	demonstrating	
point	estimate,	including	sensitivity	analysis;	Group	2	is	comprised	of	5	case	studies	demonstrating	
probabilistic	risk	analysis,	including	one‐dimensional	Monte	Carlo	analysis	and	probabilistic	
sensitivity	analysis;	and	Group	3	includes	9	case	studies	demonstrating	advanced	probabilistic	risk	
analysis,	including	two‐dimensional	Monte	Carlo	analysis	with	micro	exposure	(micro	
environments)	modeling,	Bayesian	statistics,	geostatistics	and	expert	elicitation.	

The	FAQ	document	provides	answers	to	common	questions	regarding	PRA,	including	key	concepts	
such	as	scientific	and	institutional	motivations	for	the	use	of	PRA,	and	challenges	in	the	application	
of	probabilistic	techniques.	The	principal	reason	for	including	PRA	as	an	option	in	the	risk	
assessor’s	toolbox	is	its	ability	to	support	the	refinement	and	improvement	of	the	information	
leading	to	decision	making	by	incorporating	known	uncertainties.		
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1. INTRODUCTION: RELEVANCE OF UNCERTAINTY TO 
DECISION MAKING: HOW PROBABILISTIC APPROACHES 
CAN HELP 

1.1. EPA Decision Making 
To	discuss	where	probabilistic	approaches	can	aid	EPA’s	decision	making,	it	is	important	to	
generally	describe	the	Agency’s	current	decision‐making	processes	and	how	better	understanding	
and	improving	elements	within	these	processes	can	clarify	where	probabilistic	approaches	might	
provide	benefits.	The	enhanced	use	of	PRA	and	characterization	of	uncertainty	would	allow	EPA	
decision	makers	opportunities	to	use	a	more	robust	and	transparent	process,	which	may	allow	
greater	responsiveness	to	outside	comments	and	recommendations.	Such	an	approach	would	
support	higher	quality	EPA	assessments	and	improve	confidence	in	Agency	decisions.		

There	are	two	major	areas	in	the	decision‐making	process	that	might	be	improved	with	PRA.	
Scientists	currently	are	generally	focused	on	the	first	area—the	understanding	of	data,	model	and	
scenario	uncertainties	and	variability.	The	second	area	is	one	that	has	not,	until	recently	and	only	in	
a	limited	fashion,	been	used	by	EPA	decision	makers.	This	area	is	formal	decision	analysis.	With	
decision	analytic	techniques,	decision	makers	can	weigh	the	relative	importance	of	risk	information	
compared	to	other	information	in	making	the	decision,	understand	how	uncertainty	affects	the	
relative	attractiveness	of	potential	decision	alternatives,	and	assess	overall	confidence	in	a	decision.	
In	addition	to	data,	model	and	scenario	uncertainty,	there	is	a	separate	category	of	uncertainties	
specifically	associated	with	how	the	decision	criteria	relate	to	the	decision	alternatives.	Although	it	
is	quite	relevant	to	risk	management	decisions,	the	topic	and	decision	analysis	in	general	are	
outside	of	the	scope	of	this	report.	This	white	paper	focuses	on	technical	information	that	would	
allow	better	understanding	of	the	relationships	among	alternative	decisions	in	assessing	risks.	

1.2. The Role of Probabilistic Risk Analysis in Characterizing 
Uncertainty and Variability 

Probabilistic	analyses	include	techniques	that	can	be	applied	formally	to	address	both	uncertainty	
and	variability,	typically	arising	from	limitations	of	data,	models	or	adequately	formulating	the	
scenarios	used	in	assessing	risks.	Probability	is	used	in	science,	business,	economics	and	other	
fields	to	examine	existing	data	and	estimate	the	chance	of	an	event,	from	health	effects	to	rain	to	
mental	fatigue.	One	can	use	probability	(chance)	to	quantify	the	frequency	of	occurrence	or	the	
degree	of	belief	in	information.	For	variability,	probability	distributions	are	interpreted	as	
representing	the	relative	frequency	of	a	given	state	of	the	system	(e.g.,	that	the	data	are	distributed	
in	a	certain	way);	for	uncertainty,	they	represent	the	degree	of	belief	or	confidence	that	a	given	
state	of	the	system	exists	(e.g.,	that	we	have	the	appropriate	data;	Cullen	and	Frey	1999).	PRA	often	
is	defined	narrowly	to	indicate	a	statistical	or	thought	process	used	to	analyze	and	evaluate	the	
variability	of	available	data	or	to	look	at	uncertainty	across	data	sets.	

For	the	purposes	of	this	document,	PRA	is	a	term	used	to	describe	a	process	that	employs	
probability	to	incorporate	variability	in	data	sets	and/or	the	uncertainty	in	information	(such	as	
data	or	models)	into	analyses	that	support	environmental	risk‐based	decision	making.	PRA	is	used	
here	broadly	to	include	both	quantitative	and	qualitative	methods	for	dealing	with	scenario,	model	
and	input	uncertainty.	Probabilistic	techniques	can	be	used	with	other	types	of	analysis,	such	as	
benefit‐cost	analysis,	regulatory	impact	analysis	and	engineering	performance	standards;	thus,	they	
can	be	used	for	a	variety	of	applications	and	by	experts	in	many	disciplines.	
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1.3. Goals and Intended Audience 
The	primary	goals	of	this	white	paper	are	to	introduce	PRA,	describe	how	it	can	be	used	to	better	
inform	and	improve	the	decision‐making	process,	and	provide	case	studies	where	it	has	been	used	
in	human	health	and	ecological	analyses	at	EPA	(see	the	Appendix	for	the	case	studies).	A	secondary	
goal	of	this	paper	is	to	bridge	communication	gaps	regarding	PRA	among	analysts	of	various	
disciplines,	between	these	analysts	and	Agency	decision	makers,	and	among	affected	stakeholders.	
This	white	paper	also	is	intended	to	serve	as	a	communication	tool	to	introduce	key	concepts	and	
background	information	on	approaches	to	risk	analysis	that	incorporate	uncertainty	and	provide	a	
more	comprehensive	treatment	of	variability.	Risk	analysts,	decision	makers	and	affected	
stakeholders	can	benefit	from	understanding	the	potential	uses	of	PRA.	PRA	and	related	
approaches	can	be	used	to	identify	additional	research	that	may	reduce	uncertainty	and	more	
thoroughly	characterize	variability	in	a	risk	assessment.	This	white	paper	explains	how	PRA	can	
enhance	the	decision‐making	processes	faced	by	managers	at	EPA	by	better	characterizing	data,	
model,	scenario	and	decision	uncertainties.	

1.4. Overview of This Document 
This	white	paper	provides	an	overview	of	EPA’s	interest	and	experience	in	addressing	uncertainty	
and	variability	using	probabilistic	methods	in	risk	assessment;	identifies	key	questions	asked	or	
faced	by	Agency	decision	makers;	demonstrates	how	conventional	deterministic	approaches	to	risk	
analysis	may	not	answer	these	questions	fully;	provides	examples	of	applications;	and	shows	how	
and	why	“probabilistic	risk	analysis”	(broadly	defined)	could	provide	added	value,	compared	to	
traditional	methods,	with	regard	to	regulatory	decision	making	by	more	fully	characterizing	risk	
estimates	and	exploring	decision	uncertainties.	For	the	purposes	of	this	white	paper,	PRA	and	
related	tools	for	both	human	health	and	ecological	assessments	include	a	range	of	approaches,	from	
statistical	tools,	such	as	sensitivity	analysis,	to	multi‐dimensional	Monte	Carlo	models,	geospatial	
approaches	and	expert	elicitation.	Key	points	addressed	by	this	document	include	definitions	and	
key	concepts	pertaining	to	PRA,	benefits	and	challenges	of	PRA,	a	general	conceptual	framework	for	
PRA,	conclusions	regarding	products	and	insights	obtained	from	PRA,	and	examples	where	EPA	has	
used	PRA	in	human	health	and	ecological	analyses.	A	Glossary	and	a	Bibliography	also	are	provided.	

1.5. What Are Common Challenges Facing EPA Risk Decision 
Makers? 

EPA	operates	under	statutory	and	regulatory	constraints	that	often	limit	the	types	of	criteria	that	
can	be	considered	(including	whether	the	use	of	PRA	is	appropriate)	and	impose	strict	timeframes	
in	which	decisions	must	be	made.	Typically,	the	decision	begins	with	understanding	(1)	who	or	
what	will	be	protected;	(2)	the	relationship	between	the	data	and	decision	alternatives;	and	(3)	the	
impact	of	data,	model	and	decision	uncertainties	related	to	each	decision	alternative.	These	are	
among	the	considerations	of	the	planning	and	scoping	and	problem	formulation	phases	of	risk	
assessment	(US	EPA	2014).		EPA	decision	makers	need	to	consider	multiple	decision	criteria,	which	
are	informed	by	varying	degrees	of	confidence	in	the	underlying	information.	Decision	makers	need	
to	balance	the	regulatory/	statutory	requirements	and	timeframes,	resources	(i.e.,	expertise,	costs	
of	the	analysis,	review	times,	etc.)	to	conduct	the	assessment,	management	options,	and	
stakeholders	while	at	the	same	time	keeping	risk	assessment	and	decision	making	separate.		

Uncertainty	can	be	introduced	into	any	assessment	at	any	step	in	the	process,	even	when	using	
highly	accurate	data	with	the	most	sophisticated	models. Uncertainty	can	be	reduced	or	better	
characterized	through	knowledge.	Variability	or	natural	heterogeneity	is	inherent	in	natural	
systems	and	therefore	cannot	be	reduced,	but	can	be	examined	and	described.	Uncertainty	in	
decisions	is	unavoidable	because	real‐world	situations	cannot	be	perfectly	measured,	modeled	or	
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predicted.	As	a	result,	EPA	decision	makers	face	scientifically	complex	problems	that	are	
compounded	by	varying	levels	of	uncertainty	and	variability.	If	uncertainty	and	variability	have	not	
been	well	characterized	or	acknowledged,	potential	complications	arise	in	the	process	of	decision	
making.	Increased	uncertainty	can	make	it	more	difficult	to	determine,	with	reasonable	confidence,	
the	balance	point	between	the	costs	of	regulation	and	the	implications	for	avoiding	damages	and	
producing	benefits.	Characterization	facilitated	by	probabilistic	analyses	can	provide	insight	into	
weighing	the	relative	costs	and	benefits	of	varying	levels	of	regulation	and	also	can	assist	in	risk	
communication	activities.	

Decision	makers	often	want	to	know	who	is	at	risk	and	by	how	much,	the	tradeoffs	between	
alternative	actions	and	the	likely	or	possible	consequences	of	decisions.	To	this	end,	it	is	
particularly	useful	for	decision	makers	to	understand	the	distribution	of	risk	across	potentially	
impacted	populations	and	ecological	systems.	It	can	be	important	to	know	the	number	of	
individuals	experiencing	different	magnitudes	of	risk,	the	differences	in	risk	magnitude	experienced	
by	individuals	in	different	lifestages	or	populations	or	the	probability	of	an	event	that	may	lead	to	
unacceptable	levels	of	risk.	Given	the	limitations	of	data,	traditional	methods	of	risk	analyses	are	
not	well	suited	to	produce	such	estimates.	Probabilistic	analytical	methods	are	capable	of	
addressing	these	shortcomings	and	can	contribute	to	a	more	thorough	recognition	of	the	impact	of	
data	gaps	on	the	projected	risk	estimates.	Although	PRA	can	be	used	to	characterize	the	uncertainty	
and	variability	in	situations	with	limited	data,	currently	there	is	not	extensive	experience	using	PRA	
to	characterize	the	range	of	effects	or	dose‐response	relationships	for	populations,	including	
sensitive	populations	and	lifestages.	

Other	challenges	facing	EPA	decision	makers	include	the	need	to	consider	multiple	decision	criteria,	
which	are	informed	by	varying	degrees	of	confidence	in	the	underlying	information,	understanding	
the	relationship	between	and	among	those	decision	criteria	(including	multi‐pollutant	and	multi‐
media	effects)	and	the	decision	alternatives,	and	the	timeliness	of	the	decision	making.	
Furthermore,	even	when	PRA	is	used,	EPA	decision	makers	must	be	mindful	of	potential	misuses	
and	obfuscations	when	conducting	or	presenting	PRA	results.	Decision	makers	also	need	to	
consider	the	evolving	science	behind	PRA.	As	the	use	of	PRA	increases	decision	makers	will	become	
more	familiar	with	the	techniques	and	their	application.		

A	risk	assessment	process	needs	to	consider	uncertainties,	variability	and	the	rationale	or	factors	
influencing	how	they	may	be	addressed	by	a	decision	maker.	Decision	makers	need	a	foundation	for	
estimating	the	value	of	collecting	additional	information	to	allow	for	better	informed	decisions.	
There	are	costs	associated	with	ignoring	uncertainty	(McConnell	1997	and	Toll	1999),	and	a	focus	
by	decision	makers	on	the	information	provided	by	uncertainty	analysis	can	strengthen	their	
choices.	

1.6. What Are Key Uncertainty and Variability Questions Often Asked 
by Decision Makers? 

As	described	above,	determining	the	decision‐making	context	and	specific	concerns	is	a	critical	first	
step	toward	developing	a	useful	and	responsive	risk	assessment	that	will	support	the	decision.	For	
example,	the	appropriate	focus	and	level	of	detail	of	the	analysis	should	be	commensurate	with	the	
needs	of	the	decision	maker	and	stakeholders,	as	well	as	the	appropriate	use	of	science.	Analyses	
often	are	conducted	at	a	level	of	detail	dictated	by	the	issue	being	addressed,	the	breadth	and	
quality	of	the	available	information	upon	which	to	base	an	analysis,	and	the	significance	
surrounding	a	decision.	The	analytical	process	tends	to	be	iterative.	Although	a	guiding	set	of	
questions	may	frame	the	initial	analyses,	additional	questions	can	arise	that	further	direct	or	even	
reframe	the	analyses.	
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Based	on	a	series	of	discussions	with	Agency	decision	makers	and	risk	assessors,	some	typical	
questions	about	uncertainty	and	variability	relevant	to	risk	analyses	including:	

 Factors	influencing	decision	uncertainty:	

 Would	my	decision	be	different	if	the	data	were	different,	improved	or	expanded?	
Would	additional	data	collection	and	research	likely	lead	to	a	different	decision?	
How	long	will	it	take	to	collect	the	information,	how	much	would	it	cost,	and	would	
the	resulting	decision	be	significantly	altered?	

 What	are	the	liabilities	and	consequences	of	making	a	decision	under	the	current	
level	of	knowledge	and	uncertainty?	

 How	do	the	alternatives	and	their	associated	uncertainty	and	variability	affect	the	
target	population	or	lifestage?	

 Considerations	for	evaluating	data	or	method	uncertainty:	

 How	representative	or	conservative	is	the	estimate	due	to	data	or	method	
uncertainty	(also	incorporating	variability)?	

 What	are	the	major	gaps	in	knowledge,	and	what	are	the	major	assumptions	used	in	
the	assessment?	How	reasonable	are	the	assumptions?	

 Issues	arising	when	addressing	variability:	

 Can	a	probabilistic	approach	(e.g.,	to	better	characterize	uncertainties	and	
variability)	be	accomplished	in	a	timely	manner?	

 What	is	the	desired	percentile	of	the	population	to	be	protected?	By	choosing	this	
percentile,	who	may	not	be	protected?	

The	questions	that	arise	concerning	uncertainty	and	variability	change	depending	on	the	stage	and	
nature	of	the	decision‐making	process	and	analysis.	General	phases	of	the	risk	assessment	process	
are	illustrated	in	Figure	1.	For	further	information	on	the	process	of	decision	making,	we	suggest	
referring	to	the	description	provided	by	EPA	Region	3	on	the	Multi‐Criteria	Integrated	Resource		
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Figure 1. General Phases of the Risk Assessment Process. Risk assessment is an iterative process 
comprised of planning, scoping and problem formulation; analysis (e.g., hazard identification, dose‐
response assessment and exposure assessment); interpretation and risk characterization; and risk 
communication. The highlighted boxes explain how PRA fits into the overall process. 

Assessment	Internet	page	at	http://www.epa.gov/reg3esd1/data/mira.htm.	The	utility	of	various	
levels	of	analysis	and	sophistication	in	answering	these	questions	is	illustrated	in	the	case	studies	
described	in	Section	1.10	and	presented	in	the	Appendix	of	this	white	paper.	References	to	
examples	beyond	these	EPA	case	studies	can	be	found	in	the	Bibliography.	Additionally,	Lester	et	al.	
(2007)	identified	more	than	20	PRA	application	case	studies	(including	EPA	examples)	performed	
since	2000;	these	case	study	examples	are	categorized	as	site‐specific	applications	and	regional	risk	
assessments.	
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1.7. Why Is the Implementation of Probabilistic Risk Analysis 
Important? 

The	principal	reason	for	the	inclusion	of	PRA	as	an	option	in	the	risk	assessor’s	toolbox	is	PRA’s	
ability	to	support	refinement	and	improvement	of	the	information	leading	to	decision	making	by	
incorporating	known	uncertainties.	Beginning	as	early	as	the	1980s,	expert	scientific	advisory	
groups,	such	as	the	National	Research	Council	(NRC),	recommended	that	risk	analyses	include	a	
clear	discussion	of	the	uncertainties	in	risk	estimation	(NRC	1983).	The	NRC	stated	the	need	to	
describe	uncertainty	and	to	capture	variability	in	risk	estimates	(NRC	1994).	The	Presidential/	
Congressional	Commission	on	Risk	Assessment	and	Risk	Management	(PCCRARM)	recommended	
against	a	requirement	or	need	for	a	“bright	line”	or	single‐number	level	of	risk	(PCCRARM	1997).	
See	Section	2.4	for	more	information	regarding	the	scientific	community’s	opinion	on	the	use	of	
PRA.		

Regulatory	science	often	requires	selection	of	a	limit	for	a	contaminant,	yet	that	limit	always	
contains	uncertainty	as	to	how	protective	it	is.	PRA	and	related	tools	quantitatively	describe	the	
very	real	variations	in	natural	systems	and	living	organisms,	how	they	respond	to	stressors,	and	the	
uncertainty	in	estimating	those	responses.		

Risk	characterization	became	EPA	policy	in	1995	(USEPA	1995b),	and	the	principles	of	
transparency,	clarity,	consistency	and	reasonableness	are	explicated	in	the	2000	Risk	
Characterization	Handbook	(USEPA	2000a).	Transparency,	clarity,	consistency	and	reasonableness	
criteria	require	decision	makers	to	describe	and	explain	the	uncertainties,	variability	and	known	
data	gaps	in	the	risk	analysis	and	how	they	affect	the	resulting	decision‐making	processes	(USEPA	
1992,	1995a,	2000a).	

The	use	of	probabilistic	methods	also	has	received	support	from	some	decision	makers	within	the	
Agency,	and	these	methods	have	been	incorporated	into	a	number	of	EPA	decisions	to	date.	
Program	offices,	such	as	the	Office	of	Pesticide	Programs	(OPP),	Office	of	Solid	Waste	and	
Emergency	Response	(OSWER),	Office	of	Air	and	Radiation	(OAR),	and	Office	of	Water	(OW),	as	well	
as	the	Office	of	Research	and	Development	(ORD),	have	utilized	probabilistic	approaches	in	
different	ways	and	to	varying	extents,	for	both	human	exposure	and	ecological	risk	analyses.	In	
addition,	OSWER	has	provided	explicit	guidance	on	the	use	of	probabilistic	approaches	for	
exposure	analysis	(USEPA	2001).	Some	program	offices	have	held	training	sessions	on	Monte	Carlo	
simulation	(MCS)	software	that	is	used	frequently	in	probabilistic	analyses.	

The	NRC	recommended	that	EPA	should	adopt	a	tiered	approach	for	selecting	the	level	of	detail	
used	in	uncertainty	and	variability	assessment	(NRC	2009).	Furthermore,	NRC	recommended	that	a	
discussion	about	the	level	of	detail	used	for	uncertainty	analysis	and	variability	assessment	should	
be	an	explicit	part	of	the	planning,	scoping	and	problem	formulation	step	in	the	risk	assessment	
process.	The	way	that	PRA	fits	into	a	graduated	hierarchical	(tiered)	approach	is	more	fully	
described	in	Section	2.10	and	illustrated	in	Figure	2.	

When	it	is	beneficial	to	refine	risk	estimates,	the	use	of	PRA	can	help	in	the	characterization	and	
communication	of	uncertainty,	variability	and	the	impact	of	data	gaps	in	risk	analyses	for	assessors,	
decision	makers	and	stakeholders	(including	the	target	population	or	lifestage).	
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Figure 2. Tiered Approach for Risk Assessment. The applicability of a probabilistic approach depends on 
the needs of decision makers and stakeholders. Assessments that are high in complexity and regulatory 
significance benefit from the application of probabilistic techniques.  
Source: Adapted from USEPA 2004a and WHO 2008. 

1.8. How Does EPA Typically Address Scientific Uncertainty and 
Variability? 

Environmental	assessments	can	be	complex,	such	as	covering	exposure	to	multiple	chemicals	in	
multiple	media	for	a	wide‐ranging	population.	The	Agency	has	developed	simplified	approaches	to	
characterize	risks	associated	with	such	complex	assessments	through	the	use	of	point	estimates	for	
model	variables	or	parameters.	Such	an	approach	typically	produces	point	estimates	of	risks	(e.g.,	
10‐5	or	a	lifetime	probability	of	cancer	risk	of	one	individual	in	100,000).	These	often	are	called	
“deterministic”	assessments.	As	a	result	of	the	use	of	point	estimates	for	variables	in	model	
algorithms,	deterministic	risk	results	usually	are	reported	as	what	are	assumed	to	be	either	average	
or	worst‐case	estimates.	They	do	not	contain	any	quantitative	estimate	of	the	uncertainty	in	that	
estimate,	nor	report	what	percentile	of	the	exposed	population	the	estimate	applies.	The	methods	
typically	used	in	EPA	risk	assessments	rely	on	a	combination	of	point	values	with	potentially	
varying	levels	of	conservatism	and	certainty,	yielding	a	point	estimate	of	exposure	at	some	point	in	
the	range	of	possible	risks.	

Because	uncertainty	is	inherent	in	all	risk	assessments,	it	is	important	that	the	risk	assessment	
process	enable	handling	uncertainties	in	a	logical	way	that	is	transparent	and	scientifically	
defensible,	consistent	with	the	Agency’s	statutory	mission	and	responsive	to	the	needs	of	decision	
makers	(NRC	1994).	Uncertainty	is	a	factor	in	both	ecological	and	human	health	risk	assessments.	
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For	human	health	risk	assessments,	uncertainties	arise	for	both	noncancer	and	cancer	endpoints.	
Thus,	when	data	are	missing,	EPA	often	uses	several	options	to	provide	boundaries	on	uncertainty	
and	variability	in	an	attempt	to	avoid	risk	underestimation;	attempting	to	give	a	single	
quantification	of	how	much	confidence	there	is	in	the	risk	estimate	may	not	be	informative	or	
feasible.	

In	exposure	assessment,	for	example,	the	practice	at	EPA	is	to	collect	new	data	where	they	are	
needed	and	where	time	and	resources	allow.	Alternative	approaches	to	address	uncertainty	include	
narrowing	the	scope	of	the	assessment;	using	screening‐level	default	assumptions	that	include	
upper‐end	values	and/or	central	tendency	values	that	are	generally	combined	to	generate	risk	
estimates	that	fall	within	the	higher	end	of	the	population	risk	range	(USEPA	2004b);	applying	
models	to	estimate	missing	values;	using	surrogate	data	(e.g.,	data	on	a	parameter	that	come	from	a	
different	region	of	the	country	than	the	region	being	assessed);	or	applying	professional	judgment.	
The	use	of	individual	assumptions	can	range	from	qualitative	(e.g.,	assuming	that	one	is	secured	to	
the	residence	location	and	does	not	move	through	time	or	space)	to	more	quantitative	(e.g.,	using	
the	95th	percentile	of	a	sample	distribution	for	an	ingestion	rate).	This	approach	also	can	be	
applied	to	the	practice	of	hazard	identification	and	dose‐response	assessment	when	data	are	
missing.	Identifying	the	sensitivity	of	exposure	or	risk	estimates	to	key	inputs	can	help	focus	efforts	
to	reduce	uncertainty	by	collecting	additional	data.	

Current	EPA	practices	to	address	uncertainty	and	variability	are	focused	on	the	evaluation	of	data,	
model,	and	scenario	uncertainty	and	variability.	In	addition,	decision	makers	are	faced	with	
combining	many	different	decision	criteria	that	may	be	informed	by	science	and	PRA	as	well	as	by	
expert	judgment	or	the	weighting	of	values	to	choose	a	decision	alternative.	Data,	model,	and	
scenario	uncertainties	and	variability	(including	their	probability	distributions),	as	well	as	expert	
judgment,	can	be	important	considerations	in	the	selection	of	one	alternative	over	another	
(Costanza	et	al.	1997;	Morgan	et	al.	2009;	Stahl	and	Cimorelli	2005;	Wright	et	al.	2002).	

1.9. What Are the Limitations of Relying on Default-Based 
Deterministic Approaches? 

Default‐based	deterministic	approaches	are	applied	to	data,	model	and	scenario	uncertainties.	
Deterministic	risk	assessment	(DRA)	often	is	considered	a	traditional	approach	to	risk	analysis	
because	of	the	existence	of	established	guidance	and	procedures	regarding	its	use,	the	ease	with	
which	it	can	be	performed,	and	its	limited	data	and	resource	needs.	The	use	of	defaults	supporting	
DRA	provides	a	procedural	consistency	that	allows	for	risk	assessments	to	be	feasible	and	tractable.	
Decision	makers	and	members	of	the	public	tend	to	be	relatively	familiar	with	DRA,	and	the	use	of	
such	an	approach	addresses	assessment‐related	uncertainties	primarily	through	the	incorporation	
of	predetermined	default	values	and	conservative	assumptions.	It	addresses	variability	by	
combining	input	parameters	intended	to	be	representative	of	typical	or	higher	end	exposure	(i.e.,	
considered	to	be	conservative	assumptions).	The	intention	often	is	to	implicitly	provide	a	margin	of	
safety	(i.e.,	more	likely	to	overestimate	risk	than	underestimate	risk)	or	construct	a	screening‐level	
estimate	of	high‐end	exposure	and	risk	(i.e.,	an	estimate	representative	of	more	highly	exposed	and	
susceptible	individuals).	

DRA	provides	an	estimation	of	the	exposures	and	resulting	risks	that	addresses	uncertainties	and	
variabilities	in	a	qualitative	manner.	The	methods	typically	used	in	EPA	DRA	rely	on	a	combination	
of	point	valuessome	conservative	and	some	typicalyielding	a	point	estimate	of	exposure	that	is	
at	some	unknown	point	in	the	range	of	possible	risks.	Although	this	conservative	bias	aligns	with	
the	public	health	mission	of	EPA	(USEPA	2004b),	the	degree	of	conservatism	in	these	risk	estimates	
(and	in	any	concomitant	decision)	cannot	be	estimated	well	or	communicated	(Hattis	and	
Burmaster	1994).	Typically,	this	results	in	unquantified	uncertainty	in	risk	statements.	
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Quantitative	information	regarding	the	precision	or	potential	systematic	error	and	the	distribution	
of	exposures,	effects	and	resulting	risks	across	different	members	of	an	exposed	population	are	
usually	not	provided	with	estimates	generated	using	default	approaches.	Although	DRA	may	
present	qualitative	information	regarding	the	robustness	of	the	estimates,	the	impact	of	data	and	
model	limitations	on	the	quality	of	the	results	cannot	be	quantified.	Reliance	on	deterministically	
derived	estimations	of	risk	can	result	in	decision	making	based	solely	on	point	estimates	with	an	
unknown	degree	of	conservatism,	which	can	complicate	the	comparison	of	risks	or	management	
options.	

In	risk	assessments	of	noncancer	endpoints,	metrics	such	as	an	oral	reference	dose	(RfD)	and	an	
inhalation	reference	concentration	(RfC)	are	typically	used.	The	use	of	conservative	defaults	long	
has	been	the	target	of	criticism	(Finkel	1989)	and	has	led	to	the	presumption	by	critics	that	EPA	
assessments	are	overly	conservative	and	unrealistic.	The	use	of	PRA	would	be	advantageous	in	
eliminating	a	single	value	and	might	be	less	likely	to	imply	undue	precision	and	lessen	the	need	for	
conservative	assumptions,	thereby	reducing	bias	in	the	estimate.	In	the	probabilistic	framework,	a	
probability	distribution	would	be	used	to	express	the	belief	that	any	particular	value	represents	the	
dose	or	exposure	concentration	that	would	pose	no	appreciable	risk	of	adverse	effects	(NRC	2009).	
EPA	is	investigating	the	use	of	PRA	to	derive	risk	values	for	RfD	and	RfC	in	EPA’s	Integrated	Risk	
Information	System	(IRIS)	Database	(www.epa.gov/IRIS/).		

EPA	commissioned	a	white	paper	(Hattis	and	Lynch	2010)	presented	at	the	Hazardous	Air	Pollutant	
Workshop,	2009,	illustrating	the	implementation	of	probabilistic	methods	in	defining	RfDs	and	
assessing	the	benefits	for	reducing	exposure	to	toxicants	that	act	in	part	through	traditional	
individual	threshold	processes.	The	use	of	PRA,	among	other	things,	makes	provision	for	
interactions	with	background	pathological	processes,	as	recommended	by	the	NRC	(2009),	and	
shows	how	the	system	can	inform	assessments	for	“data‐poor”	toxicants.	

PRA	may	be	more	suitable	than	DRA	for	complex	assessments,	including	those	of	aggregate	and	
cumulative	exposures	and	time‐dependent	individual	exposure,	dose	and	effects	analyses.	
Identification	and	prioritization	of	contributory	sources	of	uncertainty	can	be	difficult	and	time	
consuming	when	using	deterministic	methods,	leading	to	difficulties	in	model	evaluation	and	the	
subsequent	appraisal	of	risk	estimates	(Cullen	and	Frey	1999).	Quantitative	analyses	of	model	
sensitivities	are	essential	for	the	prioritization	of	key	uncertaintiesa	critical	process	in	identifying	
steps	for	data	collection	or	research	to	improve	exposure	or	risk	estimates.	

1.10. What Is EPA’s Experience with the Use of Probabilistic Risk 
Analysis? 

EPA’s	experience	with	PRA	has,	to	date,	primarily	been	limited	to	the	evaluation	of	data,	model	and	
scenario	uncertainties.	To	assist	with	the	growing	number	of	probabilistic	analyses	of	exposure	
data	in	these	uncertainty	areas,	EPA	issued	Guiding	Principles	for	Monte	Carlo	Analysis	(USEPA	
1997b).	Given	adequate	supporting	data	and	credible	assumptions,	probabilistic	analysis	
techniques,	such	as	Monte	Carlo	analysis,	can	be	viable	statistical	tools	for	analyzing	uncertainty	
and	variability	in	risk	assessments.	EPA’s	policy	for	the	use	of	probabilistic	analysis	in	risk	
assessment,	released	in	1997,	is	inclusive	of	human	exposure	and	ecological	risk	assessments	and	
does	not	rule	out	probabilistic	health	effects	analyses	(USEPA	1997a).	Subsequently,	EPA’s	SAB	and	
Scientific	Advisory	Panel	(SAP)	have	reviewed	PRA	approaches	to	risks	used	by	EPA	offices	such	as	
OAR,	OPP	and	others.	Several	programs	have	developed	specific	guidance	on	the	use	of	PRA,	
including	OPP	and	OSWER	(USEPA	1998a,	2001).	

To	illustrate	the	practical	application	of	PRA	to	problems	relevant	to	the	Agency,	several	example	
case	studies	are	briefly	described	here.	The	Appendix	titled	Case	Study	Examples	of	Application	of	
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Probabilistic	Risk	Analysis	in	U.S.	Environmental	Protection	Agency	Regulatory	Decision	Making,	
discusses	these	and	other	case	studies	in	greater	detail,	including	the	procedures	and	outcomes.	
The	Appendix	includes	16	case	studies—11	HHRA	and	5	ERA	examples—that	are	intended	to	
illustrate	how	some	of	EPA’s	programs	and	offices	currently	utilize	PRA.	To	aid	in	describing	how	
probabilistic	analyses	were	used,	the	16	case	studies	are	subdivided	among	3	categories	of	PRA	
tools:	Group	1—point	estimate,	including	sensitivity	analysis;	Group	2—probabilistic	risk	analysis,	
including	one‐dimensional	Monte	Carlo	analysis	(1‐D	MCA)	and	probabilistic	sensitivity	analysis;	
and	Group	3—advanced	probabilistic	risk	analysis,	including	two‐dimensional	Monte	Carlo	analysis	
(2‐D	MCA)	with	microexposure	(microenvironments)	modeling,	Bayesian	statistics,	geostatistics	
and	expert	elicitation	.	

It	is	useful	to	note	that	the	NRC	(2009)	recommended	a	tiered	approach	to	risk	assessment	using	
both	qualitative	and	quantitative	(deterministic	and	probabilistic)	tools,	with	the	complexity	of	the	
analysis	increasing	as	progress	is	made	through	the	tiers.	The	use	of	PRA	tools	to	address	issues	of	
uncertainty	and	variability	in	a	tiered	approach	is	described	more	completely	in	Section	2.10	and	
was	illustrated	in	Figure	2.	The	three	tiers	illustrated	in	that	figure	approximately	correspond	to	the	
three	groups	of	EPA	case	studies	described	in	the	Appendix	that	provide	examples	of	the	use	of	
various	PRA	tools.	

Table	A‐1	in	the	Appendix	offers	a	summary	of	the	16	case	studies	based	on	the	type	of	risk	
assessment,	the	PRA	tools	used	in	the	assessment,	and	the	EPA	program	or	regional	office	
responsible	for	the	assessment.	Some	of	the	approaches	that	are	profiled	in	these	case	studies	can	
be	used	in	the	planning	and	scoping	phases	of	risk	assessments	and	risk	management.	Other,	more	
complex	PRA	approaches	are	used	to	answer	more	specific	questions	and	provide	a	richer	
description	of	the	risks.	Most	studies	show	that	PRA	can	improve	or	expand	on	information	
generated	by	deterministic	methods.	In	some	of	the	case	studies,	the	use	of	multiple	PRA	tools	is	
illustrated.	For	example,	Case	Study	1	describes	the	use	of	a	point	estimate	sensitivity	analysis	to	
identify	exposure	variables	critical	to	the	analysis	summarized	in	Case	Study	9.	Both	of	these	case	
studies	focus	on	children’s	exposure	to	chromated	copper	arsenate	(CCA)‐treated	wood.	In	Case	
Study	9,	an	MCA	was	used	as	an	example	of	a	two‐dimensional	(i.e.,	addressing	both	variability	and	
uncertainty)	probabilistic	exposure	assessment.	

Overall,	the	case	studies	illustrate	that	the	Agency	already	has	applied	the	science	of	PRA	to	
ecological	risk	and	human	exposure	estimation	and	has	begun	using	PRA	to	describe	health	effects.	
Some	of	the	applications	have	used	existing	“off‐the‐shelf”	software,	whereas	others	have	required	
significant	effort	and	resources.	Once	developed,	however,	some	of	the	more	complex	models	have	
been	used	many	times	for	different	assessments.	All	of	the	assessments	have	been	validated	by	
internal	and	external	peer	review.	Table	1	gives	some	highlights	the	case	studies	from	deterministic	
to	more	complex	assessments,	which	are	described	in	more	detail	in	the	Appendix.	
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Table 1. Selected Examples of EPA Applications of Probabilistic Risk Assessment Techniques 
	

Case 
Study No. Description Group Type of Risk 

Assessment Office/Region 

2 

Atmospheric Deposition to Watershed 
Contamination: The Office of Research and 
Development (ORD) developed an analysis of 
nitrogen, mercury and polycyclic aromatic 
hydrocarbons (PAHs) depositions toward 
watershed contamination in the Casco Bay 
Estuary in southwestern Maine. 

Group 1: Point 
Estimate 

Ecological ORD 

5 

Hudson River Polychlorinated Biphenyl 
(PCB)-Contaminated Sediment Site: Region 
2 evaluated the variability in risks to anglers 
who consume recreationally caught fish 
contaminated with PCBs from sediment 
contamination in the Hudson River. 

Group 2: 
1-D Monte Carlo 
Analysis 

Human Health 
Superfund/ 
Region 2 

(New York) 

7 

Environmental Monitoring and Assessment 
Program (EMAP): ORD developed and the 
Office of Water (OW) applied probabilistic 
sampling techniques to evaluate the Nation’s 
aquatic resources under the Clean Water Act 
(CWA) Section 305(b). 

Group 2: 
Probabilistic 
Sensitivity 
Analysis 

Ecological ORD/OW 

9 

Chromated Copper Arsenate (CCA) Risk 
Assessment: ORD and the Office of Pesticide 
Programs (OPP) conducted a probabilistic 
assessment of children’s exposure 
(addressing both variability and uncertainty) to 
arsenic and chromium from contact with CCA-
treated wood play sets and decks. 

Group 3: 
2-D Monte Carlo 
Analysis 

Human Health ORD/OPP 

13 

Evaluating Ecological Effects of Pesticide 
Uses: OPP developed a probabilistic model, 
which evaluates acute mortality levels in 
generic and specific ecological species for 
user-defined pesticide uses and exposures. 

Group 3: 
Probabilistic 
Analysis 

Ecological OPP 

14 

Fine Particulate Matter Health Impacts: 
ORD and the Office of Air and Radiation 
(OAR) used expert elicitation to more 
completely characterize, both qualitatively and 
quantitatively, the uncertainties associated 
with the relationship between reduction in fine 
particulate matter (PM2.5) and benefits of 
reduced PM2.5-related mortality. 

Group 3: Expert 
Elicitation 

Human Health ORD/OAR 
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2. PROBABILISTIC RISK ANALYSIS 
2.1. What Are Uncertainty and Variability, and How Are They Relevant 

to Decision Making? 
The	concepts	of	uncertainty	and	variability	are	introduced	here,	and	the	relevance	of	these	
concepts	to	decision	making	is	discussed.	

2.1.1. Variability 
Variability	refers	to	real	differences	over	time,	space	or	members	of	a	population	and	is	a	property	
of	the	system	being	studied	(e.g.,	drinking	water	consumption	rates	for	each	of	the	many	individual	
adult	residents	living	in	a	specific	location	or	differences	in	body	lengths	or	weights	for	humans	or	
ecological	species)	(Cullen	and	Frey	1999;	USEPA	2011c).	Variability	can	arise	from	inherently	
random	processes,	such	as	variations	in	wind	speed	over	time	at	a	given	location	or	from	true	
variation	across	members	of	a	population	that,	in	principle,	could	be	explained,	but	which,	in	
practice,	may	not	be	explainable	using	currently	available	models	or	data	(e.g.,	the	range	of	lead	
levels	in	the	blood	of	children	6	years	old	or	younger	following	a	specific	degree	of	lead	exposure).	
Of	particular	interest	in	both	HHRA	and	ERA	is	inter‐individual	variability,	which	typically	refers	to	
differences	between	members	of	the	same	population	in	either	behavior	related	to	exposure	(e.g.,	
dietary	consumption	rates	for	specific	food	items),	or	biokinetics	related	to	chemical	uptake	(e.g.,	
gastrointestinal	uptake	rates	for	lead	following	intake)	or	toxic	response	(e.g.,	differences	among	
individuals	or	species	in	the	internal	dose	needed	to	produce	a	specific	amount	of	neurological	
impairment).	

Inter‐individual	variability	is	illustrated	in	Case	Study	5	in	the	Appendix,	which	assesses	a	PCB‐
contaminated	sediment	site	in	the	Hudson	River.	In	this	case	study,	the	quantification	of	variability	
is	illustrated	through	the	use	of	a	PRA	tool—1‐D	MCA—to	describe	the	variability	of	exposure	as	a	
function	of	individual	exposure	factors	(i.e.,	young	children’s	fish	ingestion).	

2.1.2. Uncertainty 
Uncertainty	is	the	lack	of	knowledge	of	the	true	value	of	a	quantity	or	relationships	among	
quantities	(USEPA	2011c).	For	example,	there	may	be	a	lack	of	information	regarding	the	true	
distribution	of	variability	between	individuals	for	consumption	of	certain	food	items.	There	are	a	
number	of	types	of	uncertainties	for	both	risk	analysis.	The	following	descriptions	of	the	types	of	
uncertainty	(adapted	from	Cullen	and	Frey	1999)	addresses	uncertainties	that	arise	during	risk	
analyses.	These	uncertainties	can	be	separated	broadly	into	three	categories:	(1)	scenario	
uncertainty;	(2)	model	uncertainty;	and	(3)	input	or	parameter	uncertainty.	Each	of	these	is	
explained	in	the	paragraphs	that	follow.	

Scenario	uncertainty	refers	to	errors,	typically	of	omission,	resulting	from	incorrect	or	incomplete	
specification	of	the	risk	scenario	to	be	evaluated.	The	risk	scenario	refers	to	a	set	of	assumptions	
regarding	the	situation	to	be	evaluated,	such	as:	(1)	the	specific	sources	of	chemical	emissions	or	
exposure	to	be	evaluated	(e.g.,	one	industrial	facility	or	a	cluster	of	varied	facilities	impacting	the	
same	study	area);	(2)	the	specific	receptor	populations	and	associated	exposure	pathways	to	be	
modeled	(e.g.,	indoor	inhalation	exposure,	track‐in	dust	or	consumption	of	home‐produced	dietary	
items);	and	(3)	activities	by	different	lifestages	to	be	considered	(e.g.,	exposure	only	at	home,	or	
consideration	of	workplace	or	commuting	exposure).	Mis‐specification	of	the	risk	scenario	can	
result	in	underestimation,	overestimation	or	other	mischaracterization	of	risks.	Underestimation	
may	occur	because	of	the	exclusion	of	relevant	situations	or	the	inclusion	of	irrelevant	situations	
with	respect	to	a	particular	analysis.	Overestimation	may	occur	because	of	the	inclusion	of	
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unrealistic	or	irrelevant	situations	(e.g.,	assuming	continuous	exposure	to	an	intermittent	airborne	
contaminant	source	rather	than	accounting	for	mobility	throughout	the	day).	

Model	uncertainty	refers	to	limitations	in	the	mathematical	models	or	techniques	that	are	
developed	to	represent	the	system	of	interest	and	often	stems	from:	(1)	simplifying	assumptions;	
(2)	exclusion	of	relevant	processes;	(3)	mis‐specification	of	model	boundary	conditions	(e.g.,	the	
range	of	input	parameters);	or	(4)	misapplication	of	a	model	developed	for	other	purposes.	Model	
uncertainty	typically	arises	when	the	risk	model	relies	on	missing	or	improperly	formulated	
processes,	structures	or	equations.	Sources	of	model	uncertainty	are	defined	in	the	Glossary.	

Input	or	parameter	uncertainty	typically	refers	to	errors	in	characterizing	the	empirical	values	used	
as	inputs	to	the	model	(e.g.,	engineering,	physical,	chemical,	biological	or	behavioral	variables).	
Input	uncertainty	can	originate	from	random	or	systematic	errors	involved	in	measuring	a	specific	
phenomenon	(e.g.,	biomarker	measurements,	such	as	the	concentration	of	mercury	in	human	hair);	
statistical	sampling	errors	associated	with	small	sample	sizes	(e.g.,	if	the	data	are	based	on	samples	
selected	with	a	random,	representative	sampling	design);	the	use	of	surrogate	data	instead	of	
directly	measured	data;	the	absence	of	an	empirical	basis	for	characterizing	an	input	(e.g.,	the	
absence	of	measurements	for	fugitive	emissions	from	an	industrial	facility);	or	the	use	of	summary	
measures	of	central	tendency	rather	than	individual	observations.	Nonlinear	random	processes	can	
exhibit	a	behavior	that,	for	small	changes	in	input	values,	produces	a	large	variation	in	results.	

Input	or	parameter	uncertainty	is	illustrated	in	Case	Study	3	in	the	Appendix	titled	“Probabilistic	
Assessment	of	Angling	Duration	Used	in	the	Assessment	of	Exposure	to	Hudson	River	Sediments	via	
Consumption	of	Contaminated	Fish.”	In	this	case	study,	a	probabilistic	analysis	of	one	parameter	in	
an	exposure	assessment—the	time	an	individual	spends	fishing	in	a	large	river	system—was	
assessed	using	sensitivity	analysis.	This	analysis	was	conducted	because	there	was	uncertainty	that	
the	individual	exposure	duration	based	on	residence	duration	may	underestimate	the	time	spent	
fishing	(i.e.,	angling	duration).	The	full	distribution	of	the	calculated	values	was	used	in	conducting	
the	1‐D	MCA	for	the	fish	consumption	pathway,	which	is	presented	in	Case	Study	5.		

Decision	uncertainty	refers	to	a	decision	analysis	that	would	include	not	only	the	impact	of	scenario,	
model	and	input	uncertainties	on	the	relative	attractiveness	of	potential	decision	alternatives,	but	
also	would	include	the	degree	to	which	specific	choices	(such	as	selecting	input	data,	models,	and	
scenarios,	and	even	how	the	problem	or	decision	analysis	is	framed)	impact	the	relative	
attractiveness	of	potential	decision	alternatives.	In	decision	making,	analysts	use	data	to	represent	
decision	criteria	that	decision	makers	and	other	stakeholders	believe	will	help	them	to	answer	their	
decision	question(s).	These	questions	might	include	which	policy	alternative	best	meets	Agency	
goals	(that	must	be	articulated)	or	which	risk	assessment	scenario	best	describes	the	observed	
effects.	Data,	model	and	scenario	uncertainties	will	influence	the	risk	assessment	results	and	those,	
in	turn,	will	influence	the	risk	management	options.	Decision	makers	who	understand	the	
uncertainty	associated	with	their	specific	choices	can	be	more	confident	that	the	decision	will	
produce	the	results	that	they	seek.	In	addition,	these	decision	makers	will	be	able	to	defend	their	
decisions	better	and	explain	how	the	decision	meets	Agency	and	stakeholder	goals.		

While	this	is	beyond	the	scope	of	this	document,	Stahl	and	Cimorelli	(2005	and	2012)	illustrate	how	
uncertainty	throughout	the	decision	making	process	can	be	assessed.	These	case	studies	explored	
the	assessment	of	ozone	monitoring	networks	and	air	quality	management	policies	that	seek	to	
minimize	the	adverse	impacts	from	ozone,	fine	particulate	matter	and	air	toxics	simultaneously.	
These	case	studies	demonstrate	the	importance	and	feasibility	of	better	understanding	the	
uncertainty	introduced	by	specific	choices	(e.g.,	selecting	input	data,	models,	and	scenarios)	when	
making	public	policy	decisions.		
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2.2. When Is Probabilistic Risk Analysis Applicable or Useful? 
PRA	may	be	particularly	useful,	for	example,	in	the	following	(Cooke	1991;	Cullen	and	Frey	1999;	
NRC	2009;	USEPA	2001):	

 When	a	screening‐level	DRA	indicates	that	risks	are	possibly	higher	than	a	level	of	concern	
and	a	more	refined	assessment	is	needed.	

 When	the	consequences	of	using	point	estimates	of	risk	are	unacceptably	high.	

 When	significant	equity	or	environmental	justice	issues	are	raised	by	inter‐individual	
variability.	

 To	estimate	the	value	of	collecting	additional	information	to	reduce	uncertainty.	

 To	identify	promising	critical	control	points	and	levels	when	evaluating	management	
options.	

 To	rank	exposure	pathways,	sites,	contaminants	and	so	on	for	the	purposes	of	prioritizing	
model	development	or	further	research.	

 When	combining	expert	judgments	on	the	significance	of	the	data.	

 When	exploring	the	impact	of	the	probability	distributions	of	stakeholder	and	decision‐
maker	values	on	the	attractiveness	of	potential	decision	alternatives	(Fischhoff	1995;	Illing	
1999;	Kunreuther	and	Slovic	1996;	USEPA	2000b).	

 When	exploring	the	impact	of	the	probability	distributions	of	the	data,	model	and	scenario	
uncertainties,	and	variability	together	to	compare	potential	decision	alternatives.	

PRA	may	add	minimal	value	to	the	assessment	in	the	following	types	of	situations	(Cullen	and	Frey	
1999;	USEPA	1997a):	

 When	a	screening‐level	deterministic	risk	assessment	indicates	that	risks	are	negligible,	
presuming	that	the	assessment	is	known	to	be	conservative	enough	to	produce	
overestimates	of	risk.	

 When	the	cost	of	averting	the	exposure	and	risk	is	smaller	than	the	cost	of	a	probabilistic	
analysis.	

 When	there	is	little	uncertainty	or	variability	in	the	analysis	(this	is	a	rare	situation).	

2.3. How Can Probabilistic Risk Analysis Be Incorporated Into 
Assessments? 

As	illustrated	in	the	accompanying	case	studies	in	the	Appendix,	probabilistic	approaches	can	be	
incorporated	into	any	stage	of	a	risk	assessment,	from	problem	formulation	or	planning	and	
scoping	to	the	analysis	of	alternative	decisions.	In	some	situations,	PRA	can	be	used	selectively	for	
certain	components	of	an	assessment.	It	is	common	in	assessments	that	some	model	inputs	are	
known	with	high	confidence	(i.e.,	based	on	site‐specific	measurements),	whereas	values	for	other	
inputs	are	less	certain	(i.e.,	based	on	surrogate	data	collected	for	a	different	purpose).	For	example,	
an	exposure	modeler	may	determine	that	relevant	air	quality	monitoring	data	exists,	but	there	is	a	
lack	of	detailed	information	on	human	activity	patterns	in	different	microenvironments.	Thus,	an	
assessment	of	the	variability	in	exposure	to	airborne	pollutants	might	be	based	on	direct	use	of	the	
monitoring	data,	whereas	assessment	of	uncertainty	and	variability	in	the	inhalation	exposure	
component	might	be	based	on	statistical	analysis	of	surrogate	data	or	use	of	expert	judgment.	The	
uncertainties	are	likely	to	be	larger	for	the	latter	than	the	former	component	of	the	assessment;	
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efforts	to	characterize	uncertainties	associated	with	pollutant	exposures	would	focus	on	the	latter.	
PRA	also	deals	with	dependency	issues;	a	description	of	these	issues	is	available	in	Section	3.3.2.	

2.4. What Are the Scientific Community’s Views on Probabilistic Risk 
Analysis, and What Is the Institutional Support for Its Use in 
Performing Assessments? 

The	NRC	and	IOM	recently	emphasized	their	long‐standing	advocacy	for	PRA	(NRC	2007a	and	b;	
IOM	2013).	Dating	from	its	1983	Risk	Assessment	in	the	Federal	Government:	Managing	the	Process	
(NRC	1983)—which	first	formalized	the	risk	assessment	paradigm—through	reports	released	from	
the	late	1980s	through	the	early	2000s,	various	NRC	panels	have	maintained	consistently	that	
because	risk	analysis	involves	substantial	uncertainties,	these	uncertainties	should	be	evaluated	
within	a	risk	assessment.	These	panels	noted	that:	

1. When	evaluating	the	total	population	risk,	EPA	should	consider	the	distribution	of	exposure	
and	sensitivity	of	response	in	the	population	(NRC	1989).	

2. When	assessing	human	exposure	to	air	pollutants,	EPA	should	present	model	results	along	
with	estimated	uncertainties	(NRC	1991).	

3. When	conducting	ERA,	EPA	should	discuss	thoroughly	uncertainty	and	variability	within	
the	assessment	(NRC	1993).	

4. “Uncertainty	analysis	is	the	only	way	to	combat	the	‘false	sense	of	certainty,’	which	is	caused	
by	a	refusal	to	acknowledge	and	[attempt	to]	quantify	the	uncertainty	in	risk	predictions,”	
as	stated	in	the	NRC	report,	Science	and	Judgment	in	Risk	Assessment	(NRC	1994).	

5. EPA’s	estimation	of	health	benefits	was	not	wholly	credible	because	EPA	failed	to	deal	
formally	with	uncertainties	in	its	analyses	(NRC	2002).	

6. EPA	should	adopt	a	“tiered”	approach	for	selecting	the	level	of	detail	used	in	uncertainty	
and	variability	assessment.	Furthermore,	the	NRC	recommended	that	a	discussion	of	the	
level	of	detail	used	for	uncertainty	analysis	and	variability	assessment	should	be	an	explicit	
part	of	the	planning,	scoping	and	problem	formulation	phase	of	the	risk	assessment	process	
(NRC	2009).	

7. EPA	should	develop	methods	to	systematically	describe	and	account	for	uncertainties	in	
decision‐relevant	factors	in	addition	to	estimates	of	health	risk	in	its	decision‐making	
process	(IOM	2013).	

Asked	to	recommend	improvements	to	the	Agency’s	HHRA	practices,	EPA’s	SAB	echoed	the	NRC’s	
sentiments	and	urged	the	Agency	to	characterize	uncertainty	and	variability	more	fully	and	
systematically	and	to	replace	single‐point	uncertainty	factors	with	a	set	of	distributions	using	
probabilistic	methods	(Parkin	and	Morgan	2007).	The	key	principles	of	risk	assessment	cited	by	the	
Office	of	Science	and	Technology	Policy	(OSTP)	and	the	Office	of	Management	and	Budget	(OMB)	
include	“explicit”	characterization	of	the	uncertainties	in	risk	judgments;	they	proceed	to	cite	the	
National	Academy	of	Science’s	(NAS)	2007	recommendation	to	address	the	“variability	of	effects	
across	potentially	affected	populations”	(OSTP/OMB	2007).	
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2.5. Additional Advantages of Using Probabilistic Risk Analysis and 
How It Can Provide More Comprehensive, Rigorous Scientific 
Information in Support of Regulatory Decisions. 

External	stakeholders	previously	have	used	the	Administrative	Procedure	Act	and	the	Data	Quality	
Act	to	challenge	the	Agency	for	a	lack	of	transparency	and	consistency	or	for	not	fully	analyzing	and	
characterizing	the	uncertainties	in	risk	assessments	or	decisions	(Fisher	et	al.	2006).	The	more	
complete	implementation	of	PRA	and	related	approaches	to	deal	with	uncertainties	in	decision	
making	would	address	stakeholder	concerns	in	regard	to	characterizing	uncertainties.	

The	results	of	any	assessment,	including	PRA,	are	dependent	on	the	underlying	methods	and	
assumptions.	Accompanied	by	the	appropriate	documentation,	PRA	may	communicate	a	more	
robust	representation	of	risks	and	corresponding	uncertainties.	This	characterization	may	be	in	the	
form	of	a	range	of	possible	estimates	as	opposed	to	the	more	traditionally	presented	single‐point	
values.	Depending	on	the	use	of	the	assessment,	ranges	can	be	derived	for	variability	and	
uncertainty	(or	a	combination	of	the	two)	in	both	model	inputs	and	resulting	estimations	of	risk.	

PRA	quantifies	how	exposures,	effects	and	risks	differ	among	human	populations	or	lifestages	or	
target	ecological	organisms.	PRA	also	provides	an	estimation	of	the	degree	of	confidence	with	
which	these	estimates	may	be	made,	given	the	current	uncertainty	in	scientific	knowledge	and	
available	data.	A	2007	NRC	panel	stated	that	the	objective	of	PRAs	is	not	to	decide	“how	much	
evidence	is	sufficient”	to	adopt	an	alternative	but,	rather,	to	describe	the	scientific	bases	of	
proposed	alternatives	so	that	scientific	and	policy	considerations	may	be	more	fully	evaluated	(NRC	
2007a).	EPA’s	SAB	similarly	noted	that	PRAs	provide	more	“value	of	information”	through	a	
quantitative	assessment	of	uncertainty	and	clarify	the	science	underlying	Agency	decisions	(USEPA	
2007b).	

The	SAB	articulated	a	number	of	advantages	for	EPA	decision	makers	from	the	utilization	of	
probabilistic	methods	(Parkin	and	Morgan	2007):	

 A	probabilistic	reference	dose	could	help	reduce	the	potentially	inaccurate	implication	of	
zero	risk	below	the	RfD.	

 By	understanding	and	explicitly	accounting	for	uncertainties	underlying	a	decision,	EPA	can	
estimate	formally	the	value	of	gathering	more	information.	By	doing	so,	the	Agency	can	
better	prioritize	its	information	needs	by	investing	in	areas	that	yield	the	greatest	
information	value.	

 Strategic	use	of	PRA	would	allow	EPA	to	send	the	appropriate	signal	to	the	intellectual	
marketplace,	thereby	encouraging	analysts	to	gather	data	and	develop	methodologies	
necessary	for	assessing	uncertainties.	

2.6. What Are the Challenges to Implementation of Probabilistic 
Analyses? 

Currently,	EPA	is	using	PRA	in	a	variety	of	programs	to	support	decisions,	but	challenges	remain	
regarding	the	expanded	use	of	these	tools	within	the	Agency.	The	challenges	include:	

 A	lack	of	understanding	of	the	value	of	PRA	for	decision	making.	PRA	helps	to	improve	the	
rigor	of	the	decision‐making	process	by	allowing	decision	makers	to	explore	the	impacts	of	
uncertainty	and	variability	on	the	decision	choices.		

 A	clear	institutional	understanding	of	how	to	incorporate	the	results	of	probabilistic	
analyses	into	decision	making	is	lacking.	
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 PRA	typically	requires	a	different	skill	set	than	used	in	current	evaluations,	and	limited	
resources	(staff,	time,	training	or	methods)	to	conduct	PRA	are	available.	

 Communicating	probabilistic	analysis	results	and	the	impact	of	those	results	on	the	
decision/policy	options	can	be	complex.		

 Communication	with	stakeholders	is	often	difficult	and	results	in	the	appearance	of	
regulatory	delays	due	the	necessity	of	analyzing	numerous	scenarios	using	various	models.	

 PRA	complicates	decision	making	and	risk	communication	in	instances	where	a	more	
comprehensive	characterization	of	the	uncertainties	leads	to	a	decrease	in	clarity	regarding	
how	to	estimate	risk	for	the	scenario	under	consideration.	These	challenges	are	discussed	in	
more	detail	in	Sections	2.7	through	2.13.	

2.7. How Can Probabilistic Risk Analysis Support Specific Regulatory 
Decision Making? 

Decision	makers	sometimes	perceive	that	the	binary	nature	of	regulatory	decisions	(e.g.,	Does	an	
exposure	exceed	a	reference	dose	or	not?	Do	emissions	comply	with	Agency	standards	or	not?)	
precludes	the	use	of	a	risk	range	developed	through	PRA.	Generally,	it	is	necessary	to	explain	the	
rationale	underlying	a	particular	decision.	PRA’s	primary	purpose	is	to	provide	information	to	
enhance	the	ability	to	make	transparent	decisions	based	on	the	best	available	science.	By	
conducting	a	sensitivity	analysis	of	the	influence	of	the	uncertainty	on	the	decision‐making	process,	
it	can	be	determined	how	or	if	PRA	can	help	to	improve	the	process.	

PRA	can	provide	information	to	decision	makers	on	specific	questions	related	to	uncertainty	and	
variability.	For	questions	of	uncertainty	and	to	minimize	the	likelihood	of	unintended	
consequences,	PRA	can	help	to	provide	the	following	types	of	information:	

 Characterization	of	the	uncertainty	in	estimates	(i.e.,	What	is	the	degree	of	confidence	in	the	
estimate?).	Could	the	prediction	be	off	by	a	factor	of	2,	a	factor	of	10	or	a	factor	of	1,000?	

 Critical	parameters	and	assumptions	that	most	affect	or	influence	a	decision	and	the	risk	
assessment.	

 “Tipping	points”	where	the	decision	would	be	altered	if	the	risk	estimates	were	different,	or	
if	a	different	assumption	was	valid.	

 Estimate	the	likelihood	that	values	for	critical	parameters	will	occur	or	test	the	validity	of	
assumptions.	

 Estimate	the	degree	of	confidence	in	a	particular	decision	and/or	the	likelihood	of	specific	
decision	errors.	

 The	possibility	of	alternative	outcomes	with	additional	information,	or	estimate	tradeoffs	
related	to	different	risks	or	risk‐management	decisions.	

 The	impact	of	additional	information	on	decision	making,	considering	the	cost	and	time	to	
obtain	the	information	and	the	resulting	change	in	decision	(i.e.,	the	value	of	the	
information).	

For	the	consideration	of	variability,	PRA	can	help	to	provide	the	following	types	of	information	for	
exposures:	

 Explicitly	defined	exposures	for	various	populations	or	lifestages	(i.e.,	Who	are	we	trying	to	
protect?).	That	is,	will	the	regulatory	action	keep	50	percent,	90	percent,	99.9	percent	or	
some	other	fraction	of	the	population	below	a	specified	exposure,	dose	or	risk	target?	
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 Variability	in	the	exposures,	among	various	populations	or	lifestages,	and	information	on	
the	percentile	of	the	population	that	is	being	evaluated	in	the	risk	assessment	(e.g.,	
variations	in	the	number	of	liters	of	water	per	kilogram	[kg]	body	weight	per	day	consumed	
by	the	population).	This	information	is	helpful	in	addressing	comments:	

 On	the	conservatism	of	EPA’s	risk	assessments;	

 Concerns	about	whether	their	particular	exposures	were	evaluated	in	the	risk	
assessment;	

 Whom	or	what	is	being	protected	by	implementing	a	decision;	and	

 Whether	and	what	additional	research	may	be	needed	to	reduce	uncertainty.	

PRA	helps	to	inform	decisions	by	characterizing	the	alternatives	available	to	the	decision	maker	
and	the	uncertainty	he	or	she	faces,	and	by	providing	evaluation	measures	of	outcomes.	
Uncertainties	often	are	represented	as	probabilities	or	probability	distributions	numerically	or	in	
graphs.	As	part	of	a	decision	analysis,	stakeholders	can	more	fully	examine	how	uncertainties	
influence	the	preference	among	alternatives.		

2.8. Does Probabilistic Risk Analysis Require More Resources Than 
Default-Based Deterministic Approaches? 

PRA	generally	can	be	expected	to	require	more	resources	than	standard	Agency	default‐based	
deterministic	approaches.	There	is	extensive	experience	within	EPA	in	conducting	and	reviewing	
DRA.	These	assessments	tend	to	follow	standardized	methods	that	minimize	the	effort	required	to	
conduct	them	and	to	communicate	the	results.	Probabilistic	assessments	often	entail	a	more	
detailed	analysis,	and	as	a	result,	these	assessments	require	substantially	more	resources,	including	
time	and	effort,	than	do	deterministic	approaches.	

Appropriately	trained	staff	and	the	availability	of	adequate	tools,	methods	and	guidance	are	
essential	for	the	application	of	PRA.	Proper	application	of	probabilistic	methods	requires	not	only	
software	and	data,	but	also	guidance	and	training	for	analysts	using	the	tools	and	for	managers	and	
decision	makers	tasked	with	interpreting	and	communicating	the	results.		

An	upfront	increase	in	resources	needed	to	conduct	a	probabilistic	assessment	can	be	expected,	but	
development	of	standardized	approaches	and/or	methods	can	lead	to	the	routine	incorporation	of	
PRA	in	Agency	approaches	(e.g.,	OPP’s	use	of	the	Dietary	Exposure	Evaluation	Model	[DEEM;	
http://www.epa.gov/pesticides/science/deem/],	a	probabilistic	dietary	exposure	model).	The	
initial	and,	in	some	cases,	ongoing	resource	cost	(e.g.,	for	development	of	site‐specific	models	for	
site	assessments)	may	be	offset	by	a	more	informed	decision	than	a	comparable	deterministic	
analysis.	Probabilistic	methods	are	useful	for	identifying	effective	management	options	and	
prioritizing	additional	data	collection	or	research	aimed	at	improving	risk	estimation,	ultimately	
resulting	in	decisions	that	enable	improved	environmental	protection	while	simultaneously	
conserving	more	resources.	

2.9. Does Probabilistic Risk Analysis Require More Data Than 
Conventional Approaches? 

There	are	differences	of	opinion	within	the	technical	community	as	to	whether	PRA	requires	more	
data	than	other	types	of	analyses.	Although	some	emphatically	believe	that	PRA	requires	more	data,	
others	argue	that	probabilistic	assessments	make	better	use	of	all	of	the	available	data	and	
information.	Stahl	and	Cimorelli	(2005)	discuss	when	and	how	much	data	are	necessary	for	a	
decision.	PRA	can	benefit	from	more	data	than	might	be	used	in	a	DRA.	For	example,	where	DRA	
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might	employ	selected	point	estimates	(e.g.,	the	mean	or	95th	percentile	values)	from	available	data	
sets	for	use	in	model	inputs,	PRA	facilitates	the	use	of	frequency‐weighted	data	distributions,	
allowing	for	a	more	comprehensive	consideration	of	the	available	data.	In	many	cases,	the	data	that	
were	used	to	develop	the	presumptive	95th	percentile	can	be	employed	in	the	development	of	
probabilistic	distributions.	

Restriction	of	PRA	to	principally	data‐rich	situations	may	prevent	its	broader	application	where	it	is	
most	useful.	Because	PRA	incorporates	information	on	data	quality,	variability	and	uncertainty	into	
risk	models,	the	influence	of	these	factors	on	the	characterization	of	risk	can	become	a	greater	focus	
of	discussion	and	debate.	

A	key	benefit	of	using	PRA	is	its	ability	to	reveal	the	limitations	as	well	as	the	strengths	of	data	that	
often	are	masked	by	a	deterministic	approach.	In	doing	so,	PRA	can	help	to	inform	research	
agendas,	as	well	as	support	regulatory	decision	making,	based	on	the	state	of	the	best	available	
science.	In	summary,	PRA	typically	requires	more	time	for	developing	input	assumptions	than	a	
DRA,	but	when	incorporated	into	the	relevant	steps	of	the	risk	assessment	process,	PRA	can	
demonstrate	added	benefits.	In	some	cases,	PRA	can	provide	additional	interpretations	that	
compensate	for	the	extra	effort	required	to	conduct	a	PRA.	

2.10. Can Probabilistic Risk Analysis Be Used to Screen Risks or Only 
in Complex or Refined Assessments? 

Probabilistic	methods	typically	are	not	necessary	where	traditional	default‐based	deterministic	
methods	are	adequate	for	screening	risks.	Such	methods	are	relatively	low	cost,	intended	to	
produce	conservatively	biased	estimates,	and	useful	for	identifying	situations	in	which	risks	are	so	
low	that	no	further	action	is	needed.	The	application	of	probabilistic	methods	can	be	targeted	to	
situations	in	which	a	screening	approach	indicates	that	a	risk	may	be	of	concern	or	when	the	cost	of	
managing	the	risk	is	high,	creating	a	need	for	information	to	help	inform	decision	making.	PRA	fits	
directly	into	a	graduated	hierarchical	approach	to	risk	analysis.	This	tiered	approach,	depicted	in	
Figure	2,	is	a	process	for	a	systematic	informed	progression	to	increasingly	more	complex	risk	
assessment	methods,	depending	on	the	decision‐making	context	and	need.	Higher	tiers	reflect	
increasing	complexity	and	often	will	require	more	time	and	resources.	An	analysis	might	typically	
start	at	a	lower	tier	and	only	progress	to	a	higher	tier	if	there	is	a	need	for	a	more	sophisticated	
assessment	commensurate	with	the	importance	of	the	problem.	Higher	tiers	also	reflect	increasing	
characterization	of	variability	and/or	uncertainty	in	the	risk	estimate,	which	may	be	important	for	
risk‐management	decisions.	The	case	studies	described	in	the	Appendix	are	presented	in	three	
groups	that	generally	correspond	to	the	tiers	identified	in	Figure	2.	Group	1	case	studies	are	point	
estimate	(sensitivity	analysis)	examples	(Tier	1);	Group	2	case	studies	include	most	moderate‐
complexity	PRA	examples	(Tier	2);	and	Group	3	case	studies	are	advanced	(high	complexity)	PRA	
examples	(Tier	3).	

The	tiered	approach	in	Figure	2	depicts	a	continuum	from	screening	level	point	estimate	that	is	
done	with	little	data	and	conservative	assumptions	to	PRA	that	requires	an	extensive	data	set	and	
more	realistic	(less	conservative)	assumptions.	In	between,	there	can	be	a	wide	variety	of	tiers	of	
increasing	complexity,	or	there	may	be	only	a	few	reasonable	choices	between	screening	methods	
and	highly	refined	analyses	(USEPA	2004a).	A	similar	four‐tiered	approach	for	characterizing	the	
variability	and/or	uncertainty	in	the	estimated	exposure	or	risk	analysis	(WHO	2008)	has	been	
adapted	by	EPA	in	the	risk	and	exposure	assessments	conducted	for	the	National	Ambient	Air	
Quality	Standards	(NAAQS).	

PRA	also	could	be	used	to	examine	more	fully	the	existing	default‐based	methods	based	on	the	
current	state	of	information	and	knowledge	to	determine	if	such	methods	are	truly	conservative	
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and	adequate	for	screening	(e.g.,	in	dose‐response	analyses	dealing	with	hazard	characterization)	
(Swartout	et	al.	1998;	Hattis	et	al.	2002).		

The	use	of	a	spectrum	of	data	should	be	employed	both	in	determining	screening	risks	and	in	more	
complex	assessments.	For	HHRA,	data	from	human,	animal,	mechanistic	and	other	studies	should	
be	used	to	develop	a	probabilistic	characterization	of	cancer	and	noncancer	risks	and	to	identify	
uncertainties.	The	NRC	recommended	that	EPA	facilitate	this	approach	by	redefining	RfD	and	RfC	
within	the	probabilistic	framework	to	take	into	account	the	probability	of	harm	(NRC	2009).	It	is	
likely	that	both	DRA	and	PRA	will	be	part	of	this	framework.	

2.11. Does Probabilistic Risk Analysis Present Unique Challenges to 
Model Evaluation? 

The	concept	of	“validation”	of	models	used	for	regulatory	decision	making	has	been	a	topic	of	
intense	discussion.	In	a	recent	report	on	the	use	of	models	in	environmental	regulatory	decision	
making,	the	NRC	recommended	using	the	notion	of	model	“evaluation”	rather	than	“validation,”	
suggesting	that	use	of	a	process	that	encompasses	the	entire	life	cycle	of	the	model	and	
incorporates	the	spectrum	of	interested	parties	in	the	application	of	the	model	often	extends	
beyond	the	model	builder	and	decision	maker.	Such	a	process	can	be	designed	to	ensure	that	
judgment	of	the	model	application	is	based	not	only	on	its	predictive	value	determined	from	
comparison	with	historical	data,	but	also	on	its	comprehensiveness,	rigor	in	development,	
transparency	and	interpretability	(NRC	2007b).	

Model	evaluation	is	important	in	all	risk	assessments.	In	the	case	of	PRA,	there	is	an	additional	
question	as	to	the	validity	of	the	assumptions	regarding	probability	and	frequency	distributions	for	
model	inputs	and	their	dependencies.	Probabilistic	information	can	be	accounted	for	during	
evaluation	analyses	by	considering	the	range	of	uncertainty	in	the	model	prediction	and	whether	
such	a	range	overlaps	with	the	“true”	value	based	on	independent	data.	Thus,	probabilistic	
information	can	aid	in	characterizing	the	precision	of	the	model	predictions	and	whether	a	
prediction	is	significantly	different	from	a	benchmark	of	interest.	For	example,	comparisons	of	
probabilistic	model	results	and	monitoring	data	were	performed	for	multiple	models	in	developing	
the	cumulative	pesticide	exposure	model.	Concurrent	PRA	model	evaluations	using	a	Bayesian	
analysis	also	have	been	published	(Clyde	2000).	

When	risk	assessors	develop	models	of	risk,	they	rely	on	two	predominant	statistical	methods.	Both	
methods	arise	from	axioms	of	probability,	but	each	applies	these	axioms	differently.	Under	the	
frequentist	approach,	one	develops	and	evaluates	a	model	by	testing	whether	the	model—as	
applied	to	the	observations—conforms	to	idealized	distributions.	Under	the	Bayesian	approach,	
one	develops	and	evaluates	a	model	by	testing	which—among	alternative	models—best	yields	the	
underlying	distribution	describing	the	data.	The	practical	differences	between	these	two	
approaches	can	perhaps	best	be	appreciated	when	considering	the	structural	uncertainty	in	models	
(Section	3.3.3).	Because	Bayesians	estimate	model	parameters	with	the	expectation	that	these	
parameters—or	even	model	structures—will	be	updated	as	new	data	become	available,	they	have	
developed	formal	techniques	to	provide	uncertainty	bounds	around	these	parameter	estimates,	
select	models	that	best	explain	the	given	data,	or	combine	the	results	of	alternative	models.	

2.12. How Do You Communicate the Results of Probabilistic Risk 
Analysis? 

Effective	communication	makes	it	easier	for	regulators	and	stakeholders	to	understand	the	decision	
criteria	driving	the	decision‐making	process.	In	other	words,	communication	of	PRA	results	within	
the	decision‐making	context	facilitates	understanding.	The	specific	approaches	for	reporting	results	
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from	PRA	vary	depending	on	the	assessment	objective	and	the	intended	audience.	Beyond	the	basic	
1997	principles	and	the	policy	from	the	same	year	(USEPA	1997a	and	b),	the	Risk	Assessment	
Guidance	for	Superfund:	Volume	III—Part	A,	Process	for	Conducting	Probabilistic	Risk	Assessment	also	
provides	some	guidance	on	the	quality	and	criteria	for	acceptance	as	well	as	communication	basics	
(USEPA	2001).	There	have	been	limited	studies	of	how	information	from	PRA	regarding	uncertainty	
and	variability	can	or	should	be	communicated	to	key	audiences,	such	as	decision	makers	and	
stakeholders	(e.g.,	Morgan	and	Henrion	1990;	Bloom	et	al.	1993;	Krupnick	et	al.	2006).	Among	the	
analyst	community,	there	often	is	an	interest	in	visualization	of	the	structure	of	a	scenario	and	
model	using	influence	diagrams	and	depiction	of	the	uncertainty	and	variability	in	model	inputs	
and	outputs	using	probability	distributions	in	the	form	of	cumulative	density	functions	or	
probability	distribution	functions	(Figure	3).	Sensitivity	of	the	model	output	to	uncertainty	and	
variability	in	model	inputs	can	be	depicted	using	graphical	tools.	

In	some	cases,	these	graphical	methods	can	be	useful	for	those	less	familiar	with	PRA,	but	in	many	
cases	there	is	a	need	to	translate	the	quantitative	results	into	a	message	that	extracts	the	key	
insights	without	burdening	the	decision	maker	with	obscure	technical	details.	In	this	regard,	the	
use	of	ranges	of	values	for	a	particular	metric	of	decision‐making	relevance	(e.g.,	the	range	of	
uncertainty	associated	with	a	particular	estimate	of	risk)	may	be	adequate.	The	presentation	of	PRA	
results	to	a	decision	maker	may	be	conducted	best	as	an	interactive	discussion,	in	which	a	principal	
message	is	conveyed,	followed	by	exploration	of	issues	such	as	the	source,	quality	and	degree	of	
confidence	associated	with	the	information.	There	is	a	need	for	the	development	of	
recommendations	and	a	communication	plan	regarding	how	to	communicate	the	results	of	PRA	to	
decision	makers	and	stakeholders,	building	on	the	experience	of	various	programs	and	regions.	

2.13. Are the Results of Probabilistic Risk Analysis Difficult to 
Communicate to Decision Makers and Stakeholders? 

Research	has	shown	that	the	ability	of	decision	makers	to	deal	with	concepts	of	probability	and	
uncertainty	varies.	Bloom	et	al.	(1993)	surveyed	a	group	of	senior	managers	at	EPA	and	found	that	
many	could	interpret	information	about	uncertainty	if	it	was	communicated	in	a	manner	
responsive	to	decision‐maker	interests,	capabilities	and	needs.	In	a	more	recent	survey	of	ex‐EPA	
officials,	Krupnick	et	al.	(2006)	concluded	that	most	had	difficulty	understanding	information	on	
uncertainty	with	conventional	scientific	presentation	approaches.	The	findings	of	these	studies	
highlight	the	need	for	practical	strategies	for	the	communication	of	results	of	PRA	and	uncertainty	
information	between	risk	analysts	and	decision	makers,	as	well	as	between	decision	makers	and	
other	stakeholders.	The	Office	of	Emergency	and	Remedial	Response	(OERR)	has	compiled	
guidance	to	assist	analysts	and	managers	in	understanding	and	communicating	the	results	of	PRA	
(USEPA	2001).	

Risk	analysts	need	to	focus	on	how	to	use	uncertainty	analysis	to	characterize	how	confident	
decision	makers	should	be	in	their	choices.	As	Wilson	(2000)	explained,	“…	uncertainty	is	the	bane	
of	any	decision	maker’s	existence.	Thus,	anyone	who	wants	to	inform	decisions	using	scientific	
information	needs	to	assure	that	their	analyses	transform	uncertainty	into	confidence	in	
conclusions.”	Hence,	although	environmental	risk	assessments	are	complicated	and	it	is	easy	to	get	
lost	in	the	details,	presenting	and	discussing	these	results	within	the	context	of	the	decision	
facilitates	understanding.	The	translation	of	uncertainty	into	confidence	statements	forces	a	“top‐
down”	perspective	that	promotes	accounting	for	whether	and	how	uncertainties	affect	choices	(Toll	
et	al.	1997).	
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Figure 3. Graphical Description of the Likelihood (Probability) of Risk. Hypothetical fitted data 
distribution with upper and lower confidence intervals are depicted for the output of a 2‐D MCA 
model. 
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3. AN OVERVIEW OF SOME OF THE TECHNIQUES USED IN 
PROBABILISTIC RISK ANALYSIS 

3.1. What Is the General Conceptual Approach in Probabilistic Risk 
Analysis? 

PRA	includes	several	major	steps,	which	parallel	the	accepted	environmental	health	risk	
assessment	process.	These	include:	(1)	problem	and/or	decision	criteria	identification;	
(2)	gathering	information;	(3)	interpreting	the	information;	(4)	selecting	and	applying	models	and	
methods	for	quantifying	variability	and/or	uncertainty;	(5)	quantifying	inter‐individual	or	
population	uncertainty	and	variability	in	metrics	relevant	to	decision	making;	(6)	sensitivity	
analysis	to	identify	key	sources	of	variability	and	uncertainty;	and	(7)	interpreting	and	reporting	
results.	

Problem	formulation	entails	identifying	the	assessment	endpoints	or	issues	that	are	relevant	to	the	
decision‐making	process	and	stakeholders,	and	that	can	be	addressed	in	a	scientific	assessment	
process.	Following	problem	formulation,	information	is	needed	from	stakeholders	and	experts	
regarding	the	scenarios	to	evaluate.	Based	on	the	scenarios	and	assessment	endpoints,	the	analysts	
select	or	develop	models,	which	in	turn	leads	to	identification	of	model	input	data	requirements	
and	acquisition	of	data	or	other	information	(e.g.,	expert	judgment	encoded	as	the	result	of	a	formal	
elicitation	process)	that	can	be	used	to	quantify	inputs	to	the	models.	The	data	or	other	information	
for	model	inputs	is	interpreted	in	the	process	of	developing	probability	distributions	to	represent	
variability,	uncertainty	or	both	for	a	particular	input.	Thus,	steps	(1)	through	(4)	listed	above	are	
highly	interactive	and	iterative	in	that	the	data	input	requirements	and	how	information	is	to	be	
interpreted	depend	on	the	model	formulation,	which	depends	on	the	scenario	and	that	in	turn	
depends	on	the	assessment	objective.	The	assessment	objective	may	have	to	be	refined	depending	
on	the	availability	of	information.	

Once	a	scenario,	model	and	inputs	are	specified,	the	model	output	is	estimated.	A	common	
approach	is	to	use	Monte	Carlo	Analysis	(MCA)	or	other	probabilistic	methods	to	generate	samples	
from	the	probability	distributions	of	each	model	input,	run	the	model	based	on	one	random	value	
from	each	probabilistic	input,	and	produce	one	corresponding	estimate	of	the	model	outputs.	This	
process	is	repeated	typically	hundreds	or	thousands	of	times	to	create	a	synthetic	statistical	sample	
of	model	outputs.	These	output	data	are	interpreted	as	a	probability	distribution	of	the	output	of	
interest.	Sensitivity	analysis	can	be	performed	to	determine	which	model	input	distributions	are	
most	highly	associated	with	the	range	of	variation	in	the	model	outputs.	The	results	may	be	
reported	in	a	wide	variety	of	forms	depending	on	the	intended	audience,	ranging	from	qualitative	
summaries	to	tables,	graphs	and	diagrams.	

Detailed	introductions	to	PRA	methodology	are	available	elsewhere,	such	as	Ang	and	Tang	(1984),	
Cullen	and	Frey	(1999),	EPA	(2001),	and	Morgan	and	Henrion	(1990).	A	few	key	aspects	of	PRA	
methodology	are	briefly	mentioned	here.	Readers	who	seek	more	detail	should	consult	these	
references	and	see	the	Bibliography	for	additional	references.	

3.2. What Levels and Types of Probabilistic Risk Analyses Are There 
and How Are They Used? 

There	are	multiple	levels	and	types	of	analysis	used	to	conduct	risk	assessments	(illustrated	in	
Figure	2	and	Table	1,	respectively).	Graduated	approaches	to	analysis	are	widely	recognized	(e.g.,	
USEPA	1997a,	2001;	WHO	2008).	The	idea	of	a	graduated	approach	is	to	choose	a	level	of	detail	and	
refinement	for	an	analysis	that	is	appropriate	to	the	assessment	objective,	data	quality,	information	
available	and	importance	of	the	decision	(e.g.,	resource	implications).	
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As	discussed	in	section	1.8,	there	is	a	variety	of	approaches	to	risk	assessment	that	differ	in	their	
complexity	and	the	manner	in	which	they	address	uncertainty	and	variability.	In	DRA	one	does	not	
formally	characterize	uncertainty	or	variability	but	rather	typically	relies	on	using	default‐based	
assumptions	and	factors	to	generate	a	single	estimate	of	risk.	In	PRA	there	is	a	variety	of	
approaches	to	explicitly	address	or	characterize	uncertainty	or	variability	in	risk	estimates	and	
these	differ	in	terms	of	how	they	accomplish	this,	the	data	used,	and	the	overall	complexity.		Some	
examples	are:		

 Sensitivity	analysis	

 Monte	Carlo	analysis	of	variability	in	exposure	data	

 Human	health	or	ecological	effects	data	

 Monte	Carlo	analysis	of	uncertainty		

 “Cumulative”	PRAmulti‐pathway	or	multi‐chemical	

 Two‐dimensional	PRA	of	uncertainty	and	variability	

 Decision	uncertainty	analysis	

 Geospatial	analysis	

 Expert	elicitation	

The	DRA	approaches	described	in	Section	1.8	are	examples	of	lower	levels	in	a	graduated	approach	
to	analysis.	Risk	at	the	lower	levels	of	analysis	is	assessed	by	conservative,	bounding	assumptions.	
If	the	risk	estimate	is	found	to	be	very	low	despite	the	use	of	conservative	assumptions,	then	there	
exists	a	great	deal	of	certainty	that	the	actual	risks	to	the	population	of	interest	for	the	given	
scenario	are	below	the	level	of	concern	and	no	further	intervention	is	required,	assuming	that	the	
scenario	and	model	specifications	are	correct.	When	a	conservative	DRA	indicates	that	a	risk	may	
be	high,	it	is	possible	that	the	risk	estimate	is	biased	and	the	actual	risk	may	be	lower.	In	such	a	
situation,	depending	on	the	resource	implications	of	the	decision,	it	may	be	appropriate	to	proceed	
with	a	more	refined	or	higher	level	of	analysis.	The	relative	costs	of	intervention	versus	further	
analysis	should	be	considered	when	deciding	whether	to	proceed	with	a	decision	based	on	a	lower	
level	analysis	or	to	escalate	to	a	higher	level	of	analysis.	In	some	deterministic	assessments	(e.g.,	
ecological	risks),	the	assumptions	are	not	well	assured	of	conservatism,	and	the	estimated	risks	
might	be	biased	to	appear	lower	than	the	unseen	actual	risk.	

A	more	refined	analysis	could	involve	the	application	of	DRA	methods,	but	with	alternative	sets	of	
assumptions	intended	to	characterize	central	tendency	and	reasonable	upper	bounds	of	exposure,	
effects	and	risk	estimates,	such	that	the	estimates	could	be	for	an	actual	individual	in	the	population	
of	interest	rather	than	a	hypothetical	maximally	exposed	individual.	Such	analyses	are	not	likely	to	
provide	quantification	regarding	the	proportion	of	the	population	at	or	below	a	particular	exposure	
or	risk	level	of	concern,	uncertainties	for	any	given	percentile	of	the	exposed	population,	or	
priorities	among	input	assumptions	with	respect	to	their	contributions	to	uncertainty	and	
variability	in	the	estimates.	

To	more	fully	answer	the	questions	often	asked	by	decision	makers,	the	analysis	can	be	further	
refined	by	incorporating	quantitative	comparisons	of	alternative	modeling	strategies	(to	represent	
structural	uncertainties	associated	with	scenarios	or	models),	quantifying	ranges	of	uncertainty	
and	variability	in	model	outputs,	and	providing	the	corresponding	ranges	for	model	outputs	of	
interest.	When	performing	probabilistic	analyses,	choices	are	made	regarding	whether	to	focus	on	
the	quantification	of	variability	only,	uncertainty	only,	both	variability	and	uncertainty	together	
(representing	a	randomly	selected	individual),	or	variability	and	uncertainty	independently	(e.g.,	in	
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a	two‐dimensional	depiction	of	probability	bands	for	estimates	of	inter‐individual	variability;	see	
Figure	4).	The	simultaneous	but	distinct	propagation	of	uncertainty	and	variability	in	a	two‐
dimensional	framework	enables	quantification	of	uncertainty	in	the	risk	for	any	percentile	of	the	
population.	For	example,	one	could	estimate	the	range	of	uncertainty	in	the	risk	faced	by	the	
median	member	of	the	population	or	the	95th	percentile	member	of	the	population.	Such	
information	can	be	used	by	a	decision	maker	to	gauge	the	confidence	that	should	be	placed	in	any	
particular	estimate	of	risk,	as	well	as	to	determine	whether	additional	data	collection	or	
information	might	be	useful	to	reduce	the	uncertainty	in	the	estimates.	The	OPP	assessment	of	
Chromated	Copper	Arsenate‐treated	wood	used	such	an	approach.	(See	Case	Study	9	in	the	
Appendix.)	

	
	

Figure 4. Diagrammatic Comparison of Three Alternative Probabilistic Approaches for the Same 
Exposure Assessment. In Option 1 (one dimensional Monte Carlo analysis), only variability is quantified. 
In Option 2 (one dimensional Monte Carlo analysis), both uncertainty and variability are combined. In 
Option 3 (two dimensional Monte Carlo analysis), variability and uncertainty are analyzed separately. 
Source: WHO 2008. 

When	conducting	an	analysis	for	the	first	time,	it	may	not	be	known	or	clear,	prior	to	analysis,	
which	components	of	the	model	or	which	model	inputs	contribute	the	most	to	the	estimated	risk	or	
its	uncertainty	and	variability.	As	a	result	of	completing	an	analysis,	however,	the	analyst	often	
gains	insight	into	the	strengths	and	weaknesses	of	the	models	and	input	information.	Probabilistic	
analysis	and	sensitivity	analysis	can	be	used	together	to	identify	the	key	sources	of	quantified	
uncertainty	in	the	model	outputs	to	inform	decisions	regarding	priorities	for	additional	data	
collection.	Ideally,	time	should	be	allowed	for	collecting	such	information	and	refining	the	analysis	
to	arrive	at	a	more	representative	and	robust	estimate	of	uncertainty	and	variability	in	risk.	Thus,	
the	notion	of	iteration	in	developing	and	improving	an	analysis	is	widely	recommended.	
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The	notion	of	iteration	can	be	applied	broadly	to	the	risk	assessment	framework.	For	example,	a	
first	effort	to	perform	an	analysis	may	lead	to	insight	that	the	assessment	questions	might	be	
impossible	to	address,	or	that	there	are	additional	assessment	questions	that	may	be	equally	or	
more	important.	Thus,	iteration	can	include	reconsideration	of	the	initial	assessment	questions	and	
the	corresponding	implications	for	definition	of	scenarios,	selection	of	models	and	priorities	for	
obtaining	data	for	model	inputs.	Alternatively,	in	a	time‐limited	decision	environment,	probabilistic	
and	sensitivity	analyses	may	offer	insight	into	the	effect	of	management	options	on	risk	estimates.	

3.3. What Are Some Specific Aspects of and Issues Related to 
Methodology for Probabilistic Risk Analysis? 

This	section	briefly	describes	a	few	key	aspects	of	PRA,	model	development	and	associated	
uncertainties.	Detailed	introductions	to	PRA	methodology	are	available	elsewhere,	such	as	Ang	and	
Tang	(1984),	Morgan	and	Henrion	(1990),	Cullen	and	Frey	(1999)	and	EPA	(2001).	For	more	
detailed	information,	consult	these	references	and	see	the	Bibliography	for	additional	sources.	

3.3.1. Developing a Probabilistic Risk Analysis Model 
There	are	two	key	issues	that	should	be	considered	in	developing	a	PRA	model;	as	discussed	below.	

Structural	Uncertainty	in	Scenarios	

A	potentially	key	source	of	uncertainty	in	an	analysis	is	the	scenario,	which	includes	specification	of	
pollutant	sources,	transport	pathways,	exposure	routes,	timing	and	locations,	geographic	extent	
and	related	issues.	There	is	no	formalized	methodology	for	dealing	quantitatively	with	uncertainty	
and	variability	in	scenarios.	Decisions	regarding	what	to	include	or	exclude	from	a	scenario	could	
be	recast	as	hypotheses	regarding	which	agents,	pathways,	microenvironments,	etc.,	contribute	
significantly	to	the	overall	exposure	and	risk	of	interest.	In	practice,	however,	the	use	of	qualitative	
methods	to	frame	an	assessment	tends	to	be	more	common,	given	the	absence	of	a	formal	
quantitative	methodology.	

Coupled	Models	

For	source‐to‐outcome	risk	assessments,	it	often	is	necessary	to	work	with	multiple	models,	each	of	
which	represents	a	different	component	of	a	scenario.	For	example,	there	may	be	separate	models	
for	emissions,	air	quality,	exposure,	dose	and	effects.	Such	models	may	have	different	spatial	and	
temporal	scales.	When	conducting	an	integrated	assessment,	there	may	be	significant	challenges	
and	barriers	to	coupling	such	models	into	one	coherent	framework.	Sometimes,	the	coupling	is	
done	dynamically	in	a	software	environment.	In	other	cases,	the	output	of	one	model	might	be	
processed	manually	to	prepare	the	information	for	input	to	the	next	model.	Furthermore,	there	may	
be	feedback	between	components	of	the	scenario	(e.g.,	poor	air	quality	might	affect	human	activity,	
which,	in	turn,	could	affect	both	emissions	and	exposures)	that	are	incompletely	captured	or	not	
included.	Thus,	the	coupling	of	multiple	models	can	be	a	potentially	significant	source	of	structural	
uncertainty	(Özkaynak	2009).	

3.3.2. Dealing With Dependencies Among Probabilistic Inputs 
When	representing	two	or	more	inputs	to	a	model	as	probability	distributions,	the	question	arises	
as	to	whether	it	is	reasonable	to	assume	that	the	distributions	are	statistically	independent.	If	there	
is	a	dependence,	it	could	be	as	simple	as	a	linear	correlation	between	two	inputs,	or	it	could	be	
more	complicated,	such	as	nonlinear	or	nonmonotonic	relationships.	Dependencies	typically	are	
not	important	if	the	risk	estimate	or	other	model	output	is	sensitive	to	one	or	none	of	the	
probabilistic	inputs	that	might	have	interdependence.	Furthermore,	dependencies	typically	are	not	
of	practical	importance	if	they	are	weak.	When	dependencies	exist	and	might	significantly	influence	
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the	risk	estimate,	they	can	be	taken	into	account	using	a	variety	of	statistical	simulation	methods	or,	
perhaps	more	appropriately,	by	modeling	the	dependence	analytically	where	possible.	Details	on	
methods	for	assessing	the	importance	of	possible	dependencies	and	of	quantifying	them	when	
needed	are	described	in	Ferson	et	al.	(2004	and	2009).	

For	some	types	of	models,	such	as	air	quality	models,	it	is	not	possible	to	introduce	a	probability	
distribution	to	one	input	(e.g.,	ambient	temperature	at	a	particular	location)	without	affecting	
variables	at	other	locations	or	times	(e.g.,	temperatures	in	other	locations	at	the	same	times	or	
temporal	trends	in	temperature).	In	such	cases,	it	is	better	to	produce	an	“ensemble”	of	alternative	
temperature	fields,	each	of	which	is	internally	consistent.	Individual	members	of	an	ensemble	
usually	are	not	interpreted	as	representing	a	probability	sample;	however,	comparison	of	multiple	
ensembles	of	meteorological	conditions,	for	example,	can	provide	insight	into	natural	sources	of	
variability	in	ambient	concentrations.	

3.3.3. Conducting the Probabilistic Analysis 

Quantifying	Uncertainty	and	Variability	in	Model	Inputs	and	Parameters	

After	the	models	are	selected	or	developed	to	simulate	a	scenario	of	interest,	attention	typically	
turns	to	the	development	of	input	data	for	the	model.	There	is	a	substantial	amount	of	literature	
regarding	the	application	of	statistical	methods	for	quantifying	uncertainty	and	variability	in	model	
inputs	and	parameters	based	on	empirical	data	(e.g.,	Ang	and	Tang	1984;	Cullen	and	Frey	1999;	
Morgan	and	Henrion	1990;	USEPA	2001).	For	example,	a	commonly	used	method	for	quantifying	
variability	in	a	model	input	is	to	obtain	a	sample	of	data,	select	a	type	of	parametric	probability	
distribution	model	to	fit	to	the	data	(e.g.,	normal,	lognormal	or	other	form),	estimate	the	
parameters	of	the	distribution	based	on	the	data,	critique	the	goodness‐of‐fit	using	graphical	(e.g.,	
probability	plot)	and	statistical	(e.g.,	Anderson‐Darling,	Chi‐Square	or	Kolmogorov‐Smirnov	tests)	
methods	and	choose	a	preferred	fitted	distribution.	This	methodology	can	be	adjusted	to	
accommodate	various	types	of	data,	such	as	data	that	are	samples	from	mixtures	of	distributions	or	
that	contain	non‐detected	(censored)	values.	Uncertainties	can	be	estimated	based	on	confidence	
intervals	for	statistics	of	interest,	such	as	mean	values,	or	the	parameters	of	frequency	distributions	
for	variability.	Various	texts	and	guidance	documents,	both	Agency	and	programmatic,	describe	
these	approaches,	including	the	Guiding	Principles	for	Monte	Carlo	Analysis	(USEPA	1997b).	

The	most	common	method	for	estimating	a	probability	distribution	in	the	output	of	a	model,	based	
on	probability	distributions	specified	for	model	inputs,	is	MCS	(Cullen	and	Frey	1999;	Morgan	and	
Henrion	1990).	MCS	is	popular	because	it	is	very	flexible.	MCS	can	be	used	with	a	wide	variety	of	
probability	distributions	as	well	as	different	types	of	models.	The	main	challenge	for	MCS	is	that	it	
requires	repetitive	model	calculations	to	construct	a	set	of	pseudo‐random	numbers	for	model	
inputs	and	the	corresponding	estimates	for	model	outputs	of	interest.	There	are	alternatives	to	MCS	
that	are	similar	but	more	computationally	efficient,	such	as	Latin	Hypercube	Sampling	(LHS).	
Techniques	are	available	for	simulating	correlations	between	inputs	in	both	MCS	and	LHS.	For	
models	with	very	simple	functional	forms,	it	may	be	possible	to	use	exact	or	approximate	analytical	
calculations,	but	such	situations	are	encountered	infrequently	in	practice.	There	may	be	situations	
in	which	the	data	do	not	conform	to	a	well‐defined	probability	distribution.	In	such	cases,	
algorithms	(such	as	Markov	Chain	Monte	Carlo)	can	estimate	a	probability	distribution	by	
calculating	a	mathematical	form	describing	the	pattern	of	observed	data.	This	form,	called	the	
likelihood	function,	is	a	key	component	of	Bayesian	inference	and,	therefore,	serves	as	the	basis	for	
some	of	the	analytical	approaches	to	uncertainty	and	variability	described	below.	

The	use	of	empirical	data	presumes	that	the	data	comprise	a	representative,	random	sample.	If	
known	biases	or	other	data	quality	problems	exist,	or	if	there	is	a	scarcity	or	absence	of	relevant	
data,	then	naïve	reliance	on	available	empirical	data	is	likely	to	result	in	misleading	inferences	in	
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the	analysis.	Alternatively,	estimates	of	uncertainty	and	variability	can	be	encoded,	using	formal	
protocols,	based	on	elicitation	of	expert	judgment	(e.g.,	Morgan	and	Henrion	1990,	USEPA	2011a).	
Elicitation	of	expert	judgment	for	subjective	probability	distributions	is	used	in	situations	where	
there	are	insufficient	data	to	support	a	statistical	analysis	of	uncertainty,	but	in	which	there	is	
sufficient	knowledge	on	the	part	of	experts	to	make	an	inference	regarding	uncertainty.	For	
example,	EPA	conducted	an	expert	elicitation	study	on	the	concentration‐response	relationship	
between	the	annual	average	ambient	less	than	2.5	micrometer	(µm)	diameter	particulate	matter	
(PM2.5)	exposure	and	annual	mortality	(IEC	2006;	see	also	Case	Studies	6	and	14	in	the	Appendix).	
Subjective	probability	distributions	that	are	based	on	expert	judgment	can	be	“updated”	with	new	
data	as	they	become	available	using	Bayesian	statistical	methods.	

Structural	Uncertainty	in	Models	

There	may	be	situations	in	which	it	proves	useful	to	evaluate	not	just	the	uncertainties	in	inputs	
and	parameter	values,	but	also	uncertainties	regarding	whether	a	model	adequately	captures—in	a	
hypothesized,	mathematical,	structured	form—the	relationship	under	investigation.	A	qualitative	
approach	to	evaluating	the	structural	uncertainty	in	a	model	includes	describing	the	critical	
assumptions	within	a	model,	the	documentation	of	a	model	or	the	model	quality,	and	how	the	
model	fits	the	purpose	of	the	assessment.	Quantitative	approaches	to	evaluating	structural	
uncertainty	in	models	are	manifold.	These	include	parameterization	of	a	general	model	that	can	be	
reduced	to	alternative	functional	forms	(e.g.,	Morgan	and	Henrion	1990),	enumeration	of	
alternative	models	in	a	probability	tree	(e.g.,	Evans	et	al.	1994),	comparing	alternative	models	by	
evaluating	likelihood	functions	(e.g.,	Royall	1997;	Burnham	and	Anderson	2002),	pooling	results	of	
model	alternatives	using	Bayesian	model	averaging	(e.g.,	Hoeting	et	al.	1999)	or	testing	the	causal	
relationships	within	alternative	models	using	Bayesian	Networks	(Pearl	2009).	

Sensitivity	Analysis:	Identifying	the	Most	Important	Model	Inputs	

Probabilistic	methods	typically	focus	on	how	uncertainty	or	variability	in	a	model	input	affect	[or	
result	in]	with	respect	to	uncertainty	or	variability	in	a	model	output.	After	a	probabilistic	analysis	
is	completed,	sensitivity	analysis	typically	takes	the	perspective	of	looking	back	to	evaluate	how	
much	of	the	variation	in	the	model	output	is	attributable	to	individual	model	inputs	(e.g.,	Frey	and	
Patil	2002;	Mokhtari	et	al.	2006;	Saltelli	et	al.	2004).	

There	are	many	types	of	sensitivity	analysis	methods,	including	simple	techniques	that	involve	
changing	the	value	of	one	input	at	a	time	and	assessing	the	effect	on	an	output,	and	statistical	
methods	that	evaluate	which	of	many	simultaneously	varying	inputs	contribute	the	most	to	the	
variance	of	the	model	output.	Sensitivity	analysis	can	answer	the	following	key	questions:	

 What	is	the	impact	of	changes	in	input	values	on	model	output?	

 How	can	variation	in	output	values	be	apportioned	among	model	inputs?	

 What	are	the	ranges	of	inputs	associated	with	best	or	worst	outcomes?	

 What	are	the	key	controllable	sources	of	variability?	

 What	are	the	critical	limits	(e.g.,	the	emission	reduction	target)?	

 What	are	the	key	contributors	to	the	output	uncertainty?	

Thus,	sensitivity	analysis	can	be	used	to	inform	decision	making.	

Iteration	

There	are	two	major	types	of	iteration	in	risk	assessment	modeling.	One	is	iterative	refinement	of	
the	type	of	analysis,	perhaps	starting	with	a	relatively	simple	DRA	as	a	screening	step	in	an	initial	
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level	of	analysis	and	proceeding	to	more	refined	types	of	assessments	as	needed	in	subsequent	
levels	of	analysis.	Examples	of	more	refined	levels	of	assessment	include	application	of	sensitivity	
analysis	to	DRA;	the	use	of	probabilistic	methods	to	quantify	variability	only,	uncertainty	only,	or	
combined	variability	and	uncertainty	(to	represent	a	randomly	selected	individual);	or	the	use	of	
two‐dimensional	probabilistic	methods	for	distinguishing	and	simultaneously	characterizing	both	
uncertainty	and	variability.	

The	other	type	of	iteration	occurs	within	a	particular	level	and	includes	iterative	efforts	to	
formulate	a	model,	obtain	data	and	evaluate	the	model	to	prioritize	data	needs.	For	example,	a	
model	may	require	a	large	number	of	input	assumptions.	To	prioritize	efforts	of	specifying	
distributions	for	uncertainty	and	variability	for	model	inputs,	it	is	useful	to	determine	which	model	
inputs	are	the	most	influential	with	respect	to	the	assessment	endpoint.	Therefore,	sensitivity	can	
be	used	based	on	preliminary	assessments	of	ranges	or	distributions	for	each	model	input	to	
determine	which	inputs	are	the	most	important	to	the	assessment.	Refined	efforts	to	characterize	
distributions	then	can	be	prioritized	to	the	most	important	inputs.	
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4. SUMMARY AND RECOMMENDATIONS 
4.1. Probabilistic Risk Analysis and Related Analyses Can Improve 

the Decision-Making Process at EPA 
PRA	can	provide	useful	(even	critical)	information	about	the	uncertainties	and	variability	in	the	
data,	models,	scenario,	expert	judgments	and	values	incorporated	in	risk	assessments	to	support	
decision	making	across	the	Agency.	As	discussed	in	this	paper	PRA	is	an	analytical	methodology	
capable	of	incorporating	information	regarding	uncertainty	and/or	variability	in	risk	analyses	to	
provide	insight	on	the	degree	of	certainty	of	a	risk	estimate	and	how	the	risk	estimate	varies	within	
the	exposed	population.	Traditional	approaches	such	as	DRA,	often	report	risks	using	descriptors	
such	as	“central	tendency,”	“high	end”	(e.g.,	90th	percentile	or	above)	or	“maximum	anticipated	
exposure”.		By	contrast	PRA	can	be	used	to	describe	more	completely	the	uncertainty	surrounding	
such	estimates,	as	well	as	to	identify	the	key	contributors	to	uncertainty	and	variability	in	predicted	
exposures	or	risk	estimates.	This	information	then	can	be	used	by	decision	makers	to	weigh	
alternatives,	or	to	make	decisions	on	whether	to	collect	additional	data,	or	to	conduct	additional	
research	in	order	to	reduce	the	uncertainty	and	further	characterize	variability	within	the	exposed	
population.	Information	on	uncertainties	and	variability	in	exposure	and	response	can	ultimately	
improve	the	risk	estimates.	

PRA	can	be	used	to	obtain	insight	on	whether	one	management	alternative	is	more	likely	to	reduce	
risks	compared	to	another.	In	addition,	PRA	can	facilitate	the	development	of	modeling	scenarios	
and	the	simultaneous	consideration	of	multiple	model	alternatives.	Probabilistic	methods	offer	a	
number	of	tools	designed	to	increase	confidence	in	decision	making	through	the	incorporation	of	
input	uncertainty	and	variability	characterization	and	prioritization	in	risk	analyses.	For	example,	
one	PRA	tool,	sensitivity	analyses	can	be	used	to	identify	influential	knowledge	gaps	in	the	
estimation	of	risk;	this		improves	transparency	in	the	presentation	of	these	uncertainties	and	
improves	the	ability	to	communicate	the	most	relevant	information	more	clearly	to	decision	makers	
and	stakeholders.	PRA	allows	one	to	investigate	potential	changes	in	decisions	that	could	result	
from	the	collection	of	additional	information.		However,	the	additional	resources	(e.g.,	time,	costs,	
or	expertise)	to	undertake	need	to	be	weighed	against	the	potential	improvements	in	the	decision	
making	process.	Ultimately,	PRA	may	enhance	the	scientific	foundation	of	the	EPA’s	approach	to	
decision	making.	

The	various	tools	and	methods	discussed	in	this	white	paper	can	be	utilized	at	all	stages	of	risk	
analysis	and	also	can	aid	the	decision‐making	process	by,	for	example,	characterizing	inter‐
individual	variability	and	uncertainties.		

PRA	and	related	methods	are	employed	in	varying	degrees	across	the	Agency.	Basic	guidance	exists	
at	EPA	on	the	use	and	acceptability	of	PRA	for	risk	estimation,	but	implementation	varies	greatly	
within	programs,	offices	and	regions	.The	use	of	Monte	Carlo	or	other	probability‐based	techniques	
to	derive	a	range	of	possible	outputs	from	uncertain	inputs	is	a	fairly	well‐developed	approach	
within	EPA.	Although	highly	sophisticated	human	exposure	assessment	and	ecological	risk	
applications	have	been	developed,	the	use	of	PRA	models	to	assess	human	health	effects	and	dose‐
response	relationships	has	been	more	limited	at	the	Agency.	

The	evaluation	of	the	application	of	PRA	techniques	under	specific	laws	and	regulations	varies	by	
program,	office	and	region.	Moving	forward,	it	is	important	to	broaden	discussions	between	risk	
assessors	and	risk	managers	regarding	how	PRA	tools	can	be	used	to	support	specific	decisions	and	
how	they	can	be	used	within	the	regulatory	framework	used	by	programs,	offices,	and	regions	to	
make	decisions.	This	can	be	accomplished	by	expanding	the	dialogue	between	assessors	and	
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manages	at	all	levels	regarding	how	the	PRA	tools	have	been	used	and	how	they	have	enhanced	
decision	making.		

Increased	use	of	PRA	and	consistent	application	of	PRA	tools	in	support	of	EPA	decision	making	
requires	enhanced	internal	capacity	for	conducting	these	assessments,	as	well	as	improved	
interpretation	and	communication	of	such	information	in	the	context	of	decisions.	Improvements	of	
Agency	capacity	could	be	accomplished	through	sharing	of	experiences,	knowledge	and	training	
and	increased	availability	of	tools	and	methods.		

4.2. Major Challenges to Using Probabilistic Risk Analysis to Support 
Decisions 

The	challenges	for	EPA	are	two‐fold.	As	an	Agency	responsible	for	protecting	human	health	and	the	
environment,	EPA	makes	regulatory	and	policy	decisions,	even	in	the	presence	of	conflicting	
stakeholder	positions	and	the	inevitable	uncertainties	in	the	science.	The	first	challenge	for	EPA	is	
to	determine	how	to	conduct	its	decision‐making	responsibilities,	weighing	determinations	of	what	
constitutes	too	much	uncertainty	to	make	a	decision,	against	potential	adverse	consequences	of	
postponing	decisions.		

The	second	challenge,	is	that	although	current	PRA	techniques	are	available	that	would	help	to	
inform	EPA	decision‐making	processes,	research	and	guidance	are	needed	to	improve	these	
methods	for	a	more	complete	implementation	of	PRA	in	HHRA	and	ERA.	In	particular,	additional	
guidance	is	needed	to	help	analysts	and	decision	makers	better	understand	how	to	incorporate	PRA	
approaches	into	the	decision‐making	process.	This	includes,	guidance	on	which	statistical	tools	to	
use	and	when	to	use	them,	and	how	probabilistic	information	can	help	to	inform	the	scientific	basis	
of	decisions.	Both	DRA	and	PRA	as	well	as	appropriate	statistical	methods	may	be	useful	at	any	
stage	of	the	risk	analysis	and	decision‐making	process,	from	planning	and	scoping	to	characterizing	
and	communicating	uncertainty.		

 As	noted	in	Section	3.3,	there	are	significant	challenges	in	properly	accounting	for	
uncertainty	and	variability	when	multiple	models	are	coupled	together	to	represent	the	
source‐to‐outcome	continuum.	Moreover,	the	coupling	of	multiple	models	might	need	to	
involve	inputs	and	corresponding	uncertainties	that	are	incorporated	into	more	than	one	
model,	potentially	resulting	in	complex	dependencies.	Integrative	research	on	coupled	
model	uncertainties	will	be	quite	valuable.		

 There	may	be	mismatches	in	the	temporal	and	spatial	resolution	of	each	model	that	
confound	the	ability	to	propagate	uncertainty	and	variability	from	one	model	to	another.	
For	some	models,	the	key	uncertainties	may	be	associated	with	inputs,	whereas	for	other	
models,	the	key	uncertainties	may	be	associated	with	structure	or	parameterization	
alternatives.	Model	integration	and	harmonization	activities	will	be	important	to	addressing	
these	technical	issues.		

4.3. Recommendations for Enhanced Utilization of Probabilistic Risk 
Analysis at EPA 

Some	examples	of	areas	where	new	or	updated	guidance	would	be	helpful	are	these:	

 Identification	of	different	types	of	information	required	for	the	various	Agency	decision‐
making	processes,	such	as	data	analysis,	tools,	models,	and	use	of	experts.	

 Use	of	probabilistic	approaches	to	evaluate	health	effects	data.	

 Use	of	probabilistic	approaches	for	ERA.	
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 Integrating	probabilistic	exposure	and	risk	estimates	and	communicating	uncertainty	and	
variability.	

In	order	to	support	the	development	of	guidance	on	these	or	related	topics,	following	studies	or	
research	are	recommended:	

 The	use	of	PRA	models	to	evaluate	toxicity	data	has	been	very	limited.	Scientific,	technical	
and	policy‐based	discussions	are	needed	in	this	area.	

 Additional	research	on	formal	methods	for	treating	model	uncertainties	will	be	valuable.	

Some	steps	to	improve	implementation	include	these:	

 Informing	decision	makers	about	the	advantages	and	disadvantages	of	using	PRA	
techniques	in	their	decision‐making	processes	through	lectures,	webinars	and	
communications	regarding	the	techniques	and	their	use	in	EPA.	

 Incorporating	a	discussion	of	PRA	tools	during	Planning	and	Scoping	for	HHRAs	and	ERAs.	

 Continuing	the	dialogue	between	assessors	and	managers	on	how	to	use	PRA	within	the	
regulatory	decision	making	process.	

 Conducting	meetings	and	discussions	of	PRA	techniques	and	their	application	with	both	
managers	and	assessors	to	aid	in	providing	greater	consistency	and	transparency	in	EPA’s	
risk	assessment	and	risk	management	process	and	in	developing	EPA’s	internal	capacity.	

 Developing	a	“Community	of	Practice”	for	further	discussion	regarding	the	application	of	
PRA	techniques	and	the	use	of	these	tools	in	decision	making.	

Risk	assessors	and	risk	managers	need	information	and	training	so	that	they	can	better	utilize	these	
tools.	Education	and	experience	will	generate	familiarity	with	these	tools,	which	will	help	analysts	
and	decision	makers	better	understand	and	consider	more	fully	utilizing	these	techniques	within	
their	regulatory	programs.	Increased	training	is	needed	to	facilitate	understanding	on	all	levels	and	
may	include	the	following:	

 Providing	introductory	as	well	as	advanced	training	to	all	EPA	offices.	

 Training	risk	assessors	and	risk	managers	in	the	PRA	techniques	so	that	they	can	learn	
about	the	various	tools	available,	their	applications,	software	and	review	considerations,	
and	resources	for	additional	information	(e.g.,	experts	and	support	services	within	the	
Agency).	

 Providing	easily	available,	flexible,	modular	training	for	all	levels	of	experience	to	
familiarize	EPA	employees	with	the	menu	of	tools	and	their	capacities.	

 Providing	live	and	recorded	seminars	and	webinars	for	introductory	and	supplemental	
education,	as	well	as	periodic,	centralized	hands‐on	training	sessions	demonstrating	how	to	
utilize	software	programs.	

Training	is	critical	both	for	an	improved	understanding	but	also	to	build	increased	capacity	in	the	
Agency	and	explicit	steps	could	include	these:		

 Demonstrating,	through	informational	opportunities	and	resource	libraries,	the	various	
tools	and	methods	that	can	be	used	at	all	stages	of	risk	analysis	to	aid	the	decision‐making	
process	by	characterizing	inter‐individual	variability	and	uncertainties.	

 Promoting	the	sharing	of	experience,	knowledge,	models	and	best	practices	via	meetings	of	
risk	assessors	and	managers;	electronic	exchanges,	such	as	the	EPA	Portal	Environmental	
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Science	Connector	(https://ssoprod.epa.gov/sso/jsp/obloginESCNew.jsp);	and	more	
detailed	discussions	of	the	case	studies.	

As	EPA	works	toward	the	more	integrated	evaluation	of	environmental	problems,	this	will	include	
not	just	the	improved	understanding	of	single	pollutants/single	media,	but	multi‐pollutant,	multi‐
media	and	multi‐receptor	analysis	within	a	decision	analytic	framework.	EPA	is	beginning	to	build	
such	integrated	capability	into	analytical	tools	like	PRA	(Babendreier	and	Castleton	2005;	Stahl	et	
al.	2011).		

The	RAF	will	be	taking	a	leadership	role	through	the	Uncertainty	and	Variability	Workgroup	to	
more	fully	evaluate	the	application	and	use	of	PRA	tools	and	broadening	the	dialogue	between	
assessors	and	managers.	Updates	on	the	progress	of	this	Technical	Panel	will	be	provided	on	the	
RAF	webpage	at:	www.epa.gov/raf.	
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GLOSSARY 
Analysis.	Examination	of	anything	complex	to	understand	its	nature	or	to	determine	its	essential	
features	(WHO	2004).	

Assessment.	A	determination	or	appraisal	of	possible	consequences	resulting	from	an	analysis	of	
data	(2011b).	

Assessment	endpoint.	An	explicit	expression	of	the	environmental	value	that	is	to	be	protected,	
operationally	defined	by	an	ecological	entity	and	its	attributes.	For	example,	salmon	are	valued	
ecological	entities;	reproduction	and	age	class	structure	are	some	of	their	important	attributes.	
Together,	salmon	“reproduction	and	age	class	structure”	form	an	assessment	endpoint	(USEPA	
1998b).	

Bayesian	probability.	An	approach	to	probability,	representing	a	personal	degree	of	belief	that	a	
value	of	random	variable	will	be	observed.	Alternatively,	the	use	of	probability	measures	to	
characterize	the	degree	of	uncertainty	(Gelman	et	al.	2004).	

Bayesian	Analysis.	Bayesian	analysis	is	a	method	of	statistical	inference	in	which	the	knowledge	of	
prior	events	is	used	to	predict	future	events	(USEPA	2011b).	

Correlation.	An	estimate	of	the	degree	to	which	two	sets	of	variables	vary	together,	with	no	
distinction	between	dependent	and	independent	variables.	Correlation	refers	to	a	broad	class	of	
statistical	relationships	involving	dependence	(USEPA	2012).	

Critical	control	point.	A	controllable	variable	that	can	be	adjusted	to	reduce	exposure	and	risk.	For	
example,	a	critical	control	point	might	be	the	emission	rate	from	a	particular	emission	source.	The	
concept	of	critical	control	point	is	from	the	hazard	assessment	and	critical	control	point	concept	for	
risk	management	that	is	used	in	space	and	food	safety	applications,	among	others	(USEPA	2006c).		

Critical	limit.	A	numerical	value	of	a	critical	control	point	at	or	below	which	risk	is	considered	to	be	
acceptable.	A	criterion	that	separates	acceptability	from	unacceptability	(USEPA	2006c).	

Deterministic.	A	methodology	relying	on	point	(i.e.,	exact)	values	as	inputs	to	estimate	risk;	this	
obviates	quantitative	estimates	of	uncertainty	and	variability.	Results	also	are	presented	as	point	
values.	Uncertainty	and	variability	may	be	discussed	qualitatively	or	semi‐quantitatively	by	
multiple	deterministic	risk	estimates	(USEPA	2006b).	

Deterministic	risk	assessment	(DRA).	Risk	evaluation	involving	the	calculation	and	expression	of	
risk	as	a	single	numerical	value	or	“single	point”	estimate	of	risk,	with	uncertainty	and	variability	
discussed	qualitatively	(USEPA	2012).	

Ecological	risk	assessment.	The	process	that	evaluates	the	likelihood	that	adverse	ecological	
effects	may	occur	or	are	occurring	as	a	result	of	exposure	to	one	or	more	stressors	(USEPA	1998b).		

Ecosystem.	The	biotic	community	and	abiotic	environment	within	a	specified	location	in	space	and	
time	(USEPA	1998b).	

Ensemble.	A	method	for	predictive	modeling	based	on	multiple	measures	of	the	same	event	over	
time	(e.g.,	the	amount	of	carbon	dioxide	present	in	the	atmosphere	at	selected	time	points).	The	
collection	of	data	input	is	known	as	an	ensemble	and	can	be	used	to	develop	a	quantification	of	
prediction	variability	within	the	model.	Ensemble	modeling	is	used	most	commonly	in	atmospheric	
prediction	in	forecasting,	although	ensemble	modeling	has	been	applied	to	biological	systems	to	
better	quantify	risks	of	events	or	perturbations	within	biological	systems	(Fuentes	and	Foley	2012).	

Environment.	The	sum	of	all	external	conditions	affecting	the	life,	development	and	survival	of	an	
organism	(USEPA	2010a).	
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Expert	elicitation.	A	systematic	process	of	formalizing	and	quantifying,	typically	in	probabilistic	
terms,	expert	judgments	about	uncertain	quantities	(USEPA	2011a).	

Frequentist	(or	frequency)	probability.	A	view	of	probability	that	concerns	itself	with	the	
frequency	with which an event occurs given	a	long	sequence	of	identical	and	independent	trials	
(USEPA	1997b). 

Hazard	identification.	The	risk	assessment	process	of	determining	whether	exposure	to	a	stressor	
can	cause	an	increase	in	the	incidence	or	severity	of	a	particular	adverse	effect,	and	whether	an	
adverse	effect	is	likely	to	occur	(USEPA	2012).	

Human	health	risk	assessment.	1.	The	process	to	estimate	the	nature	and	probability	of	adverse	
health	effects	in	humans	who	may	be	exposed	to	chemicals	in	contaminated	environmental	media,	
now	or	in	the	future	(USEPA	2010b).	2.	The	evaluation	of	scientific	information	on	the	hazardous	
properties	of	environmental	agents	(hazard	characterization),	the	dose‐response	relationship	
(dose‐response	assessment),	and	the	extent	of	human	exposure	to	those	agents	(exposure	
assessment).	The	product	of	the	risk	assessment	is	a	statement	regarding	the	probability	that	
populations	or	individuals	so	exposed	will	be	harmed	and	to	what	degree	(risk	characterization)	
(USEPA	2006a).		

Inputs.	Quantities	that	are	applied	to	a	model	(WHO	2008).		

Likelihood	Function.	An	approach	to	modeling	exposure	in	which	long‐term	exposure	of	an	
individual	is	simulated	as	the	sum	of	separate	short‐term	exposure	events	(USEPA	2001).	

Microenvironment.	Well‐defined	surroundings	such	as	the	home,	office,	automobile,	kitchen,	store,	
etc.,	that	can	be	treated	as	homogenous	(or	well	characterized)	in	the	concentrations	of	a	chemical	
or	other	agent	(USEPA	1992).	

Microexposure	event	(MEE)	analysis.	An	approach	to	modeling	exposure	in	which	long‐term	
exposure	of	an	individual	is	simulated	as	the	sum	of	separate	short‐term	exposure	events	(USEPA	
2001).	

Model.	A	mathematical	representation	of	a	natural	system	intended	to	mimic	the	behavior	of	the	
real	system,	allowing	description	of	empirical	data,	and	predictions	about	untested	states	of	the	
system	(USEPA	2006b).	

Model	boundaries.	1.	Decisions	regarding	the	time,	space,	number	of	chemicals,	etc.,	used	in	
guiding	modeling	of	the	system.	Risks	can	be	understated	or	overstated	if	the	model	boundary	is	
mis‐specified.	For	example,	if	a	study	area	is	defined	to	be	too	large	and	includes	a	significant	
number	of	low‐exposure	areas,	then	a	population‐level	risk	distribution	can	be	diluted	by	including	
less	exposed	individuals,	which	can,	in	turn,	result	in	a	risk‐based	decision	that	does	not	protect	
sufficiently	the	most	exposed	individuals	in	the	study	area.	2.	Designated	areas	of	competence	of	
the	model,	including	time,	space,	pathogens,	pathways,	exposed	populations,	and	acceptable	ranges	
of	values	for	each	input	and	jointly	among	all	inputs	for	which	the	model	meets	data	quality	
objectives	(WHO	2008).	

Modeling.	Development	of	a	mathematical	or	physical	representation	of	a	system	or	theory	that	
accounts	for	all	or	some	of	its	known	properties.	Models	often	are	used	to	test	the	effect	of	changes	
of	components	on	the	overall	performance	of	the	system	(USEPA	2010a).		

Model	uncertainty	(sources	of):	

 Model	structure.	A	set	of	assumptions	and	inference	options	upon	which	a	model	is	based,	
including	underlying	theory	as	well	as	specific	functional	relationships	(WHO	2008).	
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 Model	detail.	Level	of	simplicity	or	detail	associated	with	the	functional	relationships	
assumed	in	the	model	compared	to	the	actual	but	unknown	relationships	in	the	system	being	
modeled	(WHO	2008).	

 Extrapolation.	Use	of	models	outside	of	the	parameter	space	used	in	their	derivation	may	
result	in	erroneous	predictions.	For	example,	a	threshold	for	health	effects	may	exist	at	
exposure	levels	below	those	covered	by	a	particular	epidemiological	study.	If	that	study	is	
used	in	modeling	health	effects	at	those	lower	levels	(and	it	is	assumed	that	the	level	of	
response	seen	in	the	study	holds	for	lower	levels	of	exposure),	then	disease	incidence	may	be	
overestimated	(USEPA	2007a).	

Monte	Carlo	analysis	(MCA)	or	simulation	(MCS).	A	repeated	random	sampling	from	the	
distribution	of	values	for	each	of	the	parameters	in	a	generic	exposure	or	risk	equation	to	derive	an	
estimate	of	the	distribution	of	exposures	or	risks	in	the	population	(USEPA	2006b).	

One‐dimensional	Monte	Carlo	analysis	(1‐D	MCA).	A	numerical	method	of	simulating	a	
distribution	for	an	endpoint	of	concern	as	a	function	of	probability	distributions	that	characterize	
variability	or	uncertainty.	Distributions	used	to	characterize	variability	are	distinguished	from	
distributions	used	to	characterize	uncertainty	(WHO	2008).	

Parameter.	A	quantity	used	to	calibrate	or	specify	a	model,	such	as	‘parameters’	of	a	probability	
model	(e.g.,	mean	and	standard	deviation	for	a	normal	distribution).	Parameter	values	often	are	
selected	by	fitting	a	model	to	a	calibration	data	set	(WHO	2008).	

Probability.	A	frequentist	approach	considers	the	frequency	with	which	samples	are	obtained	
within	a	specified	range	or	for	a	specified	category	(e.g.,	the	probability	that	an	average	individual	
with	a	particular	mean	dose	will	develop	an	illness)	(WHO	2008).		

Probabilistic	risk	analysis	(PRA).	Calculation	and	expression	of	health	risks	using	multiple	risk	
descriptors	to	provide	the	likelihood	of	various	risk	levels.	Probabilistic	risk	results	approximate	a	
full	range	of	possible	outcomes	and	the	likelihood	of	each,	which	often	is	presented	as	a	frequency	
distribution	graph,	thus	allowing	uncertainty	or	variability	to	be	expressed	quantitatively	(USEPA	
2012).	

Problem	formulation.	The	initial	stage	of	a	risk	assessment	where	the	purpose	of	the	assessment	is	
articulated,	exposure	and	risk	scenarios	are	considered,	a	conceptual	model	is	developed,	and	a	
plan	for	analyzing	and	characterizing	risk	is	determined	(USEPA	2004a).	

Reference	concentration	(RfC).	An	estimate	(with	uncertainty	spanning	approximately	an	order	of	
magnitude)	of	a	continuous	inhalation	exposure	to	the	human	population	(including	sensitive	
subgroups)	that	is	likely	to	be	without	an	appreciable	risk	of	deleterious	effects	during	a	lifetime.	It	
can	be	derived	from	a	No‐Observed‐Adverse‐Effect	Level	(NOAEL),	Lowest‐Observed‐Adverse‐
Effect	Level	(LOAEL),	or	benchmark	concentration,	with	uncertainty	factors	generally	applied	to	
reflect	limitations	of	the	data	used.	It	is	generally	used	in	EPA’s	noncancer	health	assessments	
(USEPA	2007a).	

Reference	dose	(RfD).	An	estimate	(with	uncertainty	spanning	approximately	an	order	of	
magnitude)	of	a	daily	oral	exposure	to	the	human	population	(including	sensitive	subgroups)	that	is	
likely	to	be	without	an	appreciable	risk	of	deleterious	effects	during	a	lifetime.	It	can	be	derived	
from	a	NOAEL,	LOAEL	or	benchmark	dose,	with	uncertainty	factors	generally	applied	to	reflect	
limitations	of	the	data	used.	It	is	typically	used	in	EPA’s	noncancer	health	assessments	(USEPA	
2011c).	

Risk.	1.	Risk	includes	consideration	of	exposure	to	the	possibility	of	an	adverse	outcome,	the	
frequency	with	which	one	or	more	types	of	adverse	outcomes	may	occur,	and	the	severity	or	
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consequences	of	the	adverse	outcomes	if	such	occur.	2.	The	potential	for	realization	of	unwanted,	
adverse	consequences	to	human	life,	health,	property	or	the	environment.	3.	The	probability	of	
adverse	effects	resulting	from	exposure	to	an	environmental	agent	or	mixture	of	agents.	4.	The	
combined	answers	to:	What	can	go	wrong?	How	likely	is	it?	What	are	the	consequences?	(USEPA	
2011c).	

Risk	analysis.	A	process	for	identifying,	characterizing,	controlling	and	communicating	risks	in	
situations	where	an	organism,	system,	subpopulation	or	population	could	be	exposed	to	a	hazard.	
Risk	analysis	is	a	process	that	includes	risk	assessment,	risk	management	and	risk	communication	
(WHO	2008).		

Risk	assessment.	1.	A	process	intended	to	calculate	or	estimate	the	risk	to	a	given	target	organism,	
system,	subpopulation	or	population,	including	the	identification	of	attendant	uncertainties	
following	exposure	to	a	particular	agent,	taking	into	account	the	inherent	characteristics	of	the	
agent	of	concern,	as	well	as	the	characteristics	of	the	specific	target	system	(WHO	2008).	2.	The	
evaluation	of	scientific	information	on	the	hazardous	properties	of	environmental	agents	(hazard	
characterization),	the	dose‐response	relationship	(dose‐response	assessment),	and	the	extent	of	
human	exposure	to	those	agents	(exposure	assessment)	(NRC	1983).	The	product	of	the	risk	
assessment	is	a	statement	regarding	the	probability	that	populations	or	individuals	so	exposed	will	
be	harmed	and	to	what	degree	(risk	characterization;	USEPA	2000a).	3.	Qualitative	and	quantitative	
evaluation	of	the	risk	posed	to	human	health	or	the	environment	by	the	actual	or	potential	presence	
or	use	of	specific	pollutants	(USEPA	2012).	

Risk‐based	decision	making.	A	process	through	which	decisions	are	made	according	to	the	risk	
each	posed	to	human	health	and	the	environment	(USEPA	2012).	

Risk	management.	A	decision‐making	process	that	takes	into	account	environmental	laws;	
regulations;	and	political,	social,	economic,	engineering	and	scientific	information,	including	a	risk	
assessment,	to	weigh	policy	alternatives	associated	with	a	hazard	(USEPA	2011c).	

Scenario.	A	set	of	facts,	assumptions	and	inferences	about	how	exposure	takes	place	that	aids	the	
exposure	assessor	in	evaluating,	estimating	or	quantifying	exposures	(USEPA	1992).	Scenarios	
might	include	identification	of	pollutants,	pathways,	exposure	routes	and	modes	of	action,	among	
others.		

Sensitivity	analysis.	The	process	of	changing	one	variable	while	leaving	the	others	constant	to	
determine	its	effect	on	the	output.	This	procedure	fixes	each	uncertain	quantity	at	its	credible	lower	
and	upper	bounds	(holding	all	others	at	their	nominal	values,	such	as	medians)	and	computes	the	
results	of	each	combination	of	values.	The	results	help	to	identify	the	variables	that	have	the	
greatest	effect	on	exposure	estimates	and	help	focus	further	information‐gathering	efforts	(USEPA	
2011b).		

Tiered	approach.	Refers	to	various	hierarchical	tiers	(levels)	of	complexity	and	refinement	for	
different	types	of	modeling	approaches	that	can	be	used	in	risk	assessment.	A	deterministic	risk	
assessment	with	conservative	assumptions	is	an	example	of	a	lower	level	type	of	analysis	(Tier	0)	
that	can	be	used	to	determine	whether	exposures	and	risks	are	below	levels	of	concern.	Examples	
of	progressively	higher	levels	include	the	use	of	deterministic	risk	assessment	coupled	with	
sensitivity	analysis	(Tier	1),	the	use	of	probabilistic	techniques	to	characterize	either	variability	or	
uncertainty	only	(Tier	2),	and	the	use	of	two‐dimensional	probabilistic	techniques	to	distinguish	
between	but	simultaneously	characterize	both	variability	and	uncertainty	(Tier	3)	(USEPA	2004a	
and	WHO	2008).	

Two‐dimensional	Monte	Carlo	analysis	(2‐D	MCA).	An	advanced	numerical	modeling	technique	
that	uses	two	stages	of	random	sampling,	also	called	nested	loops,	to	distinguish	between	
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variability	and	uncertainty	in	exposure	and	toxicity	variables.	The	first	stage,	often	called	the	inner	
loop,	involves	a	complete	1‐D	MCA	simulation	of	variability	in	risk.	In	the	second	stage,	often	called	
the	outer	loop,	parameters	of	the	probability	distributions	are	redefined	to	reflect	uncertainty.	
These	loops	are	repeated	many	times	resulting	in	multiple	risk	distributions,	from	which	
confidence	intervals	are	calculated	to	represent	uncertainty	in	the	population	distribution	of	risk	
(WHO	2008).	

Uncertainty.	Uncertainty	occurs	because	of	a	lack	of	knowledge.	It	is	not	the	same	as	variability.	
For	example,	a	risk	assessor	may	be	very	certain	that	different	people	drink	different	amounts	of	
water	but	may	be	uncertain	about	how	much	variability	there	is	in	water	intakes	within	the	
population.	Uncertainty	often	can	be	reduced	by	collecting	more	and	better	data,	whereas	
variability	is	an	inherent	property	of	the	population	being	evaluated.	Variability	can	be	better	
characterized	with	more	data	but	it	cannot	be	reduced	or	eliminated.	Efforts	to	clearly	distinguish	
between	variability	and	uncertainty	are	important	for	both	risk	assessment	and	risk	
characterization,	although	they	both	may	be	incorporated	into	an	assessment	(USEPA	2011c).	

Uncertainty	analysis.	A	detailed	examination	of	the	systematic	and	random	errors	of	a	
measurement	or	estimate;	an	analytical	process	to	provide	information	regarding	uncertainty	
(USEPA	2006b).	

Value	of	information.	An	analysis	that	involves	estimating	the	value	that	new	information	can	have	
to	a	risk	manager	before	the	information	is	actually	obtained.	It	is	a	measure	of	the	importance	of	
uncertainty	in	terms	of	the	expected	improvement	in	a	risk	management	decision	that	might	come	
from	better	information	(USEPA	2001).		

Variability.	Refers	to	true	heterogeneity	or	diversity,	as	exemplified	in	natural	variation.	For	
example,	among	a	population	that	drinks	water	from	the	same	source	and	with	the	same	
contaminant	concentration,	the	risks	from	consuming	the	water	may	vary.	This	may	result	from	
differences	in	exposure	(e.g.,	different	people	drinking	different	amounts	of	water	and	having	
different	body	weights,	exposure	frequencies	and	exposure	durations),	as	well	as	differences	in	
response	(e.g.,	genetic	differences	in	resistance	to	a	chemical	dose).	Those	inherent	differences	are	
referred	to	as	variability.	Differences	among	individuals	in	a	population	are	referred	to	as	inter‐
individual	variability,	and	differences	for	one	individual	over	time	are	referred	to	as	intra‐
individual	variability	(USEPA	2011c).	
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A. OVERVIEW 
This	Appendix	focuses	on	examples	of	how	probabilistic	risk	analysis	(PRA)	approaches	have	been	
used	at	EPA	to	inform	regulatory	decisions.	The	Appendix	was	prepared	by	representatives	from	
various	EPA	program	offices	and	regions	currently	involved	in	the	development	and	application	of	
PRA	techniques.	The	Technical	Panel	selected	the	case	study	examples	based	on	the	members’	
knowledge	of	the	specific	PRA	procedures,	the	types	of	techniques	demonstrated,	the	availability	to	
the	reader	through	the	Internet	and	the	condition	of	having	been	peer	reviewed;	they	also	were	
selected	to	be	illustrative	of	a	spectrum	of	PRA	used	at	EPA.	The	case	studies	are	not	designed	to	
provide	an	exhaustive	discussion	of	the	wide	variety	of	applications	of	PRA	used	within	the	Agency,	
but	to	highlight	specific	examples	reflecting	the	range	of	approaches	currently	applied	within	EPA.	

This	Appendix	is	intended	to	serve	as	a	resource	for	managers	faced	with	decisions	regarding	when	
to	apply	PRA	techniques	to	inform	environmental	decisions,	and	for	exposure	and	risk	assessors	
who	may	not	be	familiar	with	the	wide	variety	of	available	PRA	approaches.	The	document	outlines	
categories	of	PRAs	classified	by	the	complexity	of	analysis	to	aid	the	decision‐making	process.	This	
approach	identifies	various	PRA	tools,	which	include	techniques	ranging	from	a	simple	sensitivity	
analysis	(e.g.,	identification	of	key	exposure	parameters	or	data	visualization)	requiring	limited	
time,	resources	and	expertise	to	develop	(Group	1);	to	probabilistic	approaches,	including	Monte	
Carlo	analysis,	that	provide	tools	for	evaluating	variability	and	uncertainty	separately	and	that	
require	more	resources	and	specialized	expertise	(Group	2);	to	sophisticated	techniques	of	expert	
elicitation	that	generally	require	significant	investment	of	employee	time,	additional	expertise	and	
external	peer	review	(Group	3).	

The	case	studies	in	this	Appendix	used	PRA	techniques	within	this	ranked	framework	to	provide	
additional	information	for	managers.	The	case	study	summaries	are	provided	in	a	format	designed	
to	highlight	how	the	results	of	the	PRAs	were	considered	in	decision	making.	These	summaries	
include	specific	information	on	the	conduct	of	the	analyses	as	an	aid	in	determining	what	tools	
might	be	appropriate	to	develop	specific	exposure	or	risk	assessments	for	other	sites.	

The	case	studies	range	from	examples	of	less	resource‐intensive	analyses,	which	might	assist	in	
identifying	key	exposure	parameters	or	the	need	for	more	data,	to	more	detailed	and	resource‐
intensive	approaches.	Examples	of	applications	in	human	health	and	ecological	risk	assessment	
include	the	exposure	of	children	to	chromated	copper	arsenate	(CCA)‐treated	wood,	the	relation	
between	particulates	in	air	and	health,	dietary	exposures	to	pesticides,	modeling	sea	level	change,	
sampling	watersheds,	and	modeling	bird	and	animal	exposures.	

B. INTRODUCTION 
Historically,	EPA	has	used	deterministic	risk	assessments,	or	point	estimates	of	risk,	to	evaluate	
cancer	risks	and	noncancer	health	hazards	to	high‐end	exposed	individuals	(90th	percentile	or	
higher)	and	the	average	exposed	individual	(50th	percentile)	and,	where	appropriate,	risks	and	
hazards	to	populations,	as	required	by	specific	environmental	laws	(USEPA	1992a).	The	use	of	
default	values	for	exposure	parameters	in	risk	assessments	provides	a	procedural	consistency	that	
allows	risk	assessments	to	be	feasible	and	tractable	(USEPA	2004).	The	methods	typically	used	in	
EPA	deterministic	risk	assessments	(DRA)	rely	on	a	combination	of	point	values―some	
conservative	and	some	typical―yielding	a	point	estimate	of	exposure	that	is	at	some	unknown	point	
in	the	range	of	possible	risks	(USEPA	2004).	

This	Appendix	presents	case	studies	of	PRA	conducted	by	EPA	over	the	past	10	to	15	years.	
Table	A‐1	summarizes	the	case	studies	by	title,	technique	demonstrated,	classification	as	a	human	
health	risk	assessment	(HHRA)	or	ecological	risk	assessment	(ERA),	and	the	program	or	regional	
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office	responsible	for	developing	the	case	studies.	This	Appendix,	provides	a	“snapshot”	of	the	
utilization	of	PRA	across	various	programs	in	EPA.	

C. OVERALL APPROACH TO PROBABILISTIC RISK 
ANALYSIS AT THE U.S. ENVIRONMENTAL PROTECTION 
AGENCY 

C.1. U.S. Environmental Protection Agency Guidance and Policies on 
Probabilistic Risk Analysis 

The	case	studies	presented	here	build	on	the	principles	of	PRA	outlined	in	EPA’s	1997	Policy	for	Use	
of	Probabilistic	Analysis	in	Risk	Assessment	at	the	U.S.	Environmental	Protection	Agency	(USEPA	
1997a)	and	Guiding	Principles	for	Monte	Carlo	Analysis	(USEPA	1997b),	as	well	as	subsequent	
guidance	documents	on	developing	and	using	PRA.	Guidance	has	been	developed	for	the	Agency	
and	individual	programs.	Specific	documents	that	refer	to	the	use	of	PRA	include	the	Risk	
Assessment	Guidance	for	Superfund:	Volume	III	(USEPA	2001);	Risk	Assessment	Forum	(RAF)	
Framework	for	Ecological	Risk	Assessment	(USEPA	1992b);	Guidelines	for	Ecological	Risk	Assessment	
(USEPA	1998);	Guidance	for	Risk	Characterization	(USEPA	1995a);	Policy	on	Evaluating	Health	Risks	
to	Children	(USEPA	1995b);	Policy	for	Use	of	Probabilistic	Analysis	in	Risk	Assessment	(USEPA	
1997a);	Guidance	on	Cumulative	Risk	Assessment,	Part	1:	Planning	and	Scoping	(USEPA	1997c);	and	
Risk	Characterization	Handbook	(USEPA	2000a);	and	Framework	for	Human	Health	Risk	Assessment	
to	Inform	Decision	Making	(USEPA	2014).	

As	shown	in	the	individual	case	studies,	the	range	and	scope	of	the	PRA	will	depend	on	the	overall	
objectives	of	the	decision	that	the	analysis	will	inform.	The	Guiding	Principles	for	Monte	Carlo	
Analysis	(USEPA	1997b)	lay	out	the	general	approach	that	should	be	taken	in	all	cases,	beginning	
with	defining	the	problem	and	scope	of	the	assessment	to	selecting	the	best	tools	and	approach.	
The	Guiding	Principles	also	describe	the	process	of	estimating	and	characterizing	variability	and	
uncertainty	around	risk	estimates.	Stahl	and	Cimorelli	(2005)	and	the	Risk	Assessment	Guidance	for	
Superfund:	Volume	III	(USEPA	2001)	highlight	the	importance	of	communication	between	the	risk	
assessor	and	manager.	Stahl	and	Cimorelli	(2005)	and	Jamieson	(1996)	indicate	that	it	is	important	
to	determine	whether	a	particular	level	of	uncertainty	is	acceptable	or	not.	The	authors	also	suggest	
that	this	decision	depends	on	context,	values	and	regulatory	policy.	The	Risk	Assessment	Guidance	
for	Superfund:	Volume	III	(Chapter	2	and	Appendix	F	in	USEPA	2001)	describes	a	process	for	
determining	the	appropriate	level	of	PRA	using	a	ranked	approach	from	the	less	resource‐	and	
time‐intensive	approaches	to	more	sophisticated	analyses.	Furthermore,	the	Risk	Assessment	
Guidance	for	Superfund:	Volume	III	outlines	a	process	for	developing	a	PRA	work	plan	and	a	
checklist	for	PRA	reviewers	(Chapter	2	and	Appendix	F	in	USEPA	2001).	This	guidance	also	
provides	information	regarding	how	to	communicate	PRA	results	to	decision	makers	and	
stakeholders	(Chapter	6	in	USEPA	2001).	

C.2. Categorizing Case Studies 

The	ranked	approach	used	for	categorization	is	a	process	for	a	systematic,	informed	progression	to	
increasingly	complex	risk	assessment	methods	of	PRA,	which	is	outlined	in	the	Risk	Assessment	
Guidance	for	Superfund	(USEPA	2001).	The	use	of	categories	provides	a	framework	for	evaluating	
the	various	techniques	of	PRA.	Higher	categories	reflect	increasing	complexity	and	often	will	
require	more	time	and	resources.	Higher	categories	also	reflect	increasing	characterization	of	
variability	and	uncertainty	in	the	risk	estimate,	which	may	be	important	for	making	specific	risk	
management	decisions.	Central	to	the	approach	is	a	systematic,	informed	progression	using	an	
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iterative	process	of	evaluation,	deliberation,	data	collection,	planning	and	scoping,	development,	
and	updates	to	the	work	plan	and	communication.	All	of	these	steps	focus	on	deciding:	

1. Whether	or	not	the	risk	assessment,	in	its	current	state	(e.g.,	DRA)	is	sufficient	to	support	
decisions	(i.e.,	a	clear	path	to	exiting	the	process	is	available	at	each	step).	

2. If	the	assessment	is	determined	to	be	insufficient,	whether	or	not	progression	to	a	higher	
level	of	complexity	(or	refinement	of	the	current	analyses)	would	provide	a	sufficient	
benefit	to	warrant	the	additional	effort	of	performing	a	PRA.	

This	Appendix	groups	case	studies	according	to	level	of	effort	and	complexity	of	the	analysis	and	
the	increasing	sophistication	of	the	methods	used	(Table	A‐1).	Although	each	group	generally	
represents	increasing	effort	and	cost,	this	may	not	always	be	true.	The	groups	also	are	intended	to	
reflect	the	progression	from	simple	to	complex	analysis	that	is	determined	by	the	interactive	
planning	and	scoping	efforts	of	the	risk	assessors	and	managers.	The	use	of	particular	terms	to	
describe	the	groups,	including	“tiers,”	was	avoided	due	to	specific	programmatic	and	regulatory	
connotations.	

Group 1 Case Studies 
Assessments	within	this	group	typically	involve	a	sensitivity	analysis	and	serve	as	an	initial	
screening	step	in	the	risk	assessment.	Sensitivity	analyses	identify	important	parameters	in	the	
assessment	where	additional	investigation	may	be	helpful	(Kurowicka	and	Cooke	2006).	Sensitivity	
analysis	can	be	simple	or	involve	more	complex	mathematical	and	statistical	techniques,	such	as	
correlation	and	regression	analysis,	to	determine	which	factors	in	a	risk	model	contribute	most	to	
the	variance	in	the	risk	estimate.	

Within	the	sensitivity	analyses,	a	range	of	techniques	is	available:	simple,	“back‐of‐the‐envelope”	
calculations,	where	the	risk	parameters	are	evaluated	using	a	range	of	exposure	parameters	to	
determine	the	parameter	that	contributes	most	significantly	to	the	risk	(Case	Study	1);	analyses	to	
rank	the	relative	contributions	of	variables	to	the	overall	risk	(Case	Study	2);	and	data	visualization	
using	graphical	techniques	to	array	the	data	or	Monte	Carlo	simulations	(e.g.,	scatter	plots).	

More	sophisticated	analyses	may	include	sensitivity	ratios	(e.g.,	elasticity);	sensitivity	scores	(e.g.,	
weighted	sensitivity	ratios);	correlation	coefficient	or	coefficient	of	determination;	r2	(e.g.,	Pearson	
product	moment,	Spearman	rank);	normalized	multiple	regression	coefficients;	and	goodness‐of‐fit	
tests	for	subsets	of	the	risk	distribution	(USEPA	2001).	

The	sensitivity	analyses	typically	require	minimal	resources	and	time.	Results	of	the	sensitivity	
analyses	are	useful	in	identifying	key	parameters	where	additional	Group	2	or	Group	3	analyses	
may	be	appropriate.	Sensitivity	analyses	also	are	helpful	in	identifying	key	parameters	where	
additional	research	will	have	the	highest	impact	on	the	risk	assessment.	

Group 2 Case Studies 
Case	studies	within	this	group	include	a	more	sophisticated	application	of	probabilistic	tools,	
including	PRA	of	specific	exposure	parameters	(Case	Studies	3	and	4),	one‐dimensional	analyses	
(Case	Study	5)	and	probabilistic	sensitivity	analysis	(Case	Studies	6	and	7).	

The	Group	2	case	studies	require	larger	time	commitments	for	development,	specialized	expertise	
and	additional	analysis	of	exposure	parameter	data	sources.	Depending	on	the	nature	of	the	
analysis,	peer	involvement	or	peer	review	may	be	appropriate	to	evaluate	the	products	of	the	
analysis.	



	

	 58	 	

Group 3 Case Studies 
Assessments	within	this	group	are	the	most	resource‐	and	time‐intensive	analyses	of	the	three	
categories.	Risk	analyses	include	two‐dimensional	Monte	Carlo	analysis	(2‐D	MCA)	that	evaluates	
model	variability	and	uncertainty	(Case	Studies	8,	9	and	10);	microexposure	event	analysis	(MEE),	
in	which	long‐term	exposure	of	an	individual	is	simulated	as	the	sum	of	separate	short‐term	
exposure	events	(Case	Study	11);	and	probabilistic	analysis	(Case	Studies	12	and	13).	

Other	types	of	analyses	within	this	group	include	the	expert	elicitation	method	that	is	a	systematic	
process	of	formalizing	and	quantifying,	in	terms	of	probabilities,	experts’	judgments	about	
uncertain	quantities	(Case	Studies	14	and	15);	Bayesian	statistics,	which	is	a	specialized	branch	of	
statistics	that	views	the	probability	of	an	event	occurring	as	the	degree	of	belief	or	confidence	in	
that	occurrence	(Case	Study	16);	and	geostatistical	analysis,	which	is	another	specialized	branch	of	
statistics	that	explicitly	takes	into	account	the	geo‐referenced	context	of	the	data	and	the	
information	(e.g.,	attributes)	attached	to	the	data.	

The	Group	3	analyses	require	additional	time	and	expertise	in	the	planning	and	analysis	of	the	
assessment.	Within	this	group,	the	level	of	expertise	and	resource	commitments	may	vary	with	the	
techniques.	Expert	elicitation,	for	example,	requires	significantly	more	time	for	planning,	
identification	of	experts	and	meetings,	when	compared	with	the	other	techniques.	
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Table A‐1. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk 
Assessment Techniques  

Case Study 
Number 

Title and Case Study Description 
Type of Risk 
Assessment 

Office/Region 

Group 1: Point Estimate—Sensitivity Analysis 

1 

Sensitivity Analysis of Key Variables in Probabilistic 
Assessment of Children’s Exposure to Arsenic in 
Chromated Copper Arsenate (CCA) Pressure-Treated 
Wood. This case study demonstrates use of a point estimate 
sensitivity analysis to identify exposure variables critical to 
the analysis summarized in Case Study 9. The sensitivity 
analysis identified critical areas for future research and data 
collection and better characterized the amount of 
dislodgeable residue that exists on the wood surface. 

Human Health 

Office of 
Research and 
Development 
(ORD) and 
Office of 
Pesticide 
Programs 
(OPP) 

2 

Assessment of the Relative Contribution of Atmospheric 
Deposition to Watershed Contamination. An example of a 
workbook that demonstrates how “back-of-the-envelope” 
analysis of potential exposure rates can be used to target 
resources to identify other inputs before further analysis of air 
inputs in watershed contamination. Identification of key 
variables aided in identifying uncertainties and data gaps to 
target resource expenditures for further analysis. A case 
study example of the application of this technique also is 
identified. 

Ecological ORD 

Group 2: Probabilistic Risk Analysis, One-Dimensional Monte Carlo Analysis (1-D MCA) and 
Probabilistic Sensitivity Analysis 

Group 2: Probabilistic Risk Analysis 

3 

Probabilistic Assessment of Angling Duration Used in 
the Assessment of Exposure to Hudson River Sediments 
via Consumption of Contaminated Fish. A probabilistic 
analysis of one parameter in an exposure assessment―the 
time an individual fishes in a large river system. Development 
of site-specific information regarding exposure, with an 
existing data set for this geographic area, was needed to 
represent this exposed population. This information was used 
in the one-dimensional PRA described in Case Study 5. 

Human Health 

Superfund/ 
Region 2 
(New York) 
 

4 

Probabilistic Analysis of Dietary Exposure to Pesticides 
for Use in Setting Tolerance Levels. The probabilistic 
Dietary Exposure Evaluation Model (DEEM) provides more 
accurate information on the range and probability of possible 
exposures. 

Human Health OPP 
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Table A‐1. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk 
Assessment Techniques  

Case Study 
Number 

Title and Case Study Description 
Type of Risk 
Assessment 

Office/Region 

Group 2: One-Dimensional Monte Carlo Analysis (1-D MCA) 

5 

One-Dimensional Probabilistic Risk Analysis of 
Exposures to Polychlorinated Biphenyls (PCBs) via 
Consumption of Fish From a Contaminated Sediment 
Site. An example of a one-dimensional PRA (1-D MCA) of 
the variability of exposure as a function of the variability of 
individual exposure factors to evaluate the risks to anglers 
who consume recreationally caught fish from a PCB-
contaminated river. 

Human Health 

Superfund/ 
Region 2  

(New York) 
 

Group 2: Probabilistic Sensitivity Analysis 

6 

Probabilistic Sensitivity Analysis of Knowledge 
Elicitation of the Concentration-Response Relationship 
Between PM2.5 Exposure and Mortality. An example of how 
the probabilistic analysis tools can be used to conduct a 
probabilistic sensitivity analysis following an expert elicitation 
(Group 3) presented in Case Study 14. 

Human Health 
Office of Air 

and Radiation 
(OAR) 

7 

Environmental Monitoring and Assessment Program 
(EMAP): Using Probabilistic Sampling Techniques to 
Evaluate the Nation’s Ecological Resources. A probability-
based sampling program designed to provide unbiased 
estimates of the condition of an aquatic resource over a large 
geographic area based on a small number of samples. 

Ecological ORD 

Group 3: Advanced Probabilistic Risk Analysis―Two-Dimensional Monte Carlo Analysis (2-D MCA) 
Including Microexposure Modeling, Bayesian Statistics, Geostatistics and Expert Elicitation 

Group 3: Two-Dimensional Probabilistic Risk Analysis 

8 

Two-Dimensional Probabilistic Risk Analysis of 
Cryptosporidium in Public Water Supplies, With 
Bayesian Approaches to Uncertainty Analysis. An 
analysis of the variability in the occurrence of 
Cryptosporidium in raw water supplies and in the treatment 
efficiency, as well as the uncertainty in these inputs. This 
case study includes an analysis of the dose-response 
relationship for Cryptosporidium infection. 

Human Health 
Office of 

Water (OW) 

9 

Two-Dimensional Probabilistic Model of Children’s 
Exposure to Arsenic in Chromated Copper Arsenate 
(CCA) Pressure-Treated Wood. A two-dimensional model 
that addresses both variability and uncertainty in the 
exposures of children to CCA pressure-treated wood. The 
analysis was built on the sensitivity analysis described in 
Case Study 2. 

Human Health OPP/ORD 
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Table A‐1. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk 
Assessment Techniques  

Case Study 
Number 

Title and Case Study Description 
Type of Risk 
Assessment 

Office/Region 

10 

Two-Dimensional Probabilistic Exposure Assessment of 
Ozone. A probabilistic exposure assessment that addresses 
short-term exposures to ozone. Population exposure to 
ambient ozone levels was evaluated using EPA’s Air 
Pollutants Exposure (APEX) model, also referred to as the 
Total Risk Integrated Methodology/Exposure (TRIM.Expo) 
model. 

Human Health OAR 

Group 3: Microexposure Event Analysis 

11 

Analysis of Microenvironmental Exposures to Fine 
Particulate Matter (PM2.5) for a Population Living in 
Philadelphia, Pennsylvania. A microexposure event 
analysis to simulate individual exposures to PM2.5 in specific 
microenvironments, including the outdoors, indoor 
residences, offices, schools, stores and a vehicle. 

Human Health 
Region 3 

(Philadelphia) 
and ORD 

Group 3: Probabilistic Analysis 

12 

Probabilistic Analysis in Cumulative Risk Assessment of 
Organophosphorus Pesticides. A probabilistic computer 
software program used to integrate various pathways, while 
simultaneously incorporating the time dimensions of the input 
data to calculate margins of exposure. 

Human Health OPP 

13 

Probabilistic Ecological Effects Risk Assessment Models 
for Evaluating Pesticide Uses. A multimedia exposure/ 
effects model that evaluates acute mortality levels in generic 
or specific avian species over a user-defined exposure 
window. 

Ecological OPP 

Group 3: Expert Elicitation and Bayesian Belief Network 

14 

Expert Elicitation of Concentration-Response 
Relationship Between Fine Particulate Matter (PM2.5) 
Exposure and Mortality. A knowledge elicitation used to 
derive probabilistic estimates of the uncertainty in one 
element of a cost-benefit analysis used to support the PM2.5 
regulations. 

Human Health 
ORD/ 
OAR 

15 

Expert Elicitation of Sea-Level Change Resulting From 
Global Climate Change. An example of a PRA that 
describes the probability of sea level rise and parameters 
that predict sea level change. 

Ecological 

Office of 
Policy, 

Planning, and 
Evaluation 
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Table A‐1. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk 
Assessment Techniques  

Case Study 
Number 

Title and Case Study Description 
Type of Risk 
Assessment 

Office/Region 

16 

Knowledge Elicitation for Bayesian Belief Network Model 
of Stream Ecology. An example of a Bayesian belief 
network model of the effect of increased fine-sediment load 
in a stream on macroinvertebrate populations. 

Ecological ORD 
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D. CASE STUDY SUMMARIES 
D.1. Group 1 Case Studies 

Case Study 1: Sensitivity Analysis of Key Variables in Probabilistic 
Assessment of Children’s Exposure to Arsenic in Chromated Copper 
Arsenate Pressure-Treated Wood 
This	case	study	provides	an	example	of	the	application	of	sensitivity	analysis	to	identify	important	
variables	for	population	exposure	variability	for	a	Group	2	assessment	(Case	Study	9)	and	to	
indicate	areas	for	further	research.	Specifically,	EPA’s	Office	of	Research	and	Development	(ORD),	in	
collaboration	with	the	Office	of	Pesticide	Programs	(OPP),	used	sensitivity	analyses	to	identify	the	
key	variables	in	children’s	exposure	to	CCA‐treated	wood.	

Approach.	The	sensitivity	analyses	used	two	approaches.	The	first	approach	estimated	baseline	
exposure	by	running	the	exposure	model	with	each	input	variable	set	to	its	median	(50th	
percentile)	value.	Next,	alternative	exposure	estimates	were	made	by	setting	each	input	to	its	25th	
or	75th	percentile	value	while	holding	all	other	inputs	at	their	median	values.	The	ratio	of	the	
exposure	estimate	calculated	when	an	input	was	estimated	at	its	25th	or	75th	percentile	to	the	
exposure	estimate	calculated	when	the	input	was	at	its	median	value	provided	a	measure	of	that	
input’s	importance	to	the	overall	exposure	assessment.	The	second	approach	applied	a	multiple	
stepwise	regression	analysis	to	the	data	points	generated	from	the	first	approach.	The	correlation	
between	the	input	variables	and	the	exposure	estimates	provided	an	alternative	measure	of	the	
input	variable’s	relative	importance	in	the	exposure	assessment.	These	two	approaches	were	used	
in	tandem	to	identify	the	critical	inputs	to	the	exposure	assessment	model.	

Results	of	Analysis.	The	two	sensitivity	analyses	together	identified	six	critical	input	variables	that	
most	influenced	the	exposure	assessment.	The	critical	input	variables	were:	wood	surface	residue‐
to‐skin	transfer	efficiency,	wood	surface	residue	levels,	fraction	of	hand	surface	area	mouthed	per	
mouthing	event,	average	fraction	of	nonresidential	outdoor	time	spent	playing	on	a	CCA‐treated	
playset,	frequency	of	hand	washing	and	frequency	of	hand‐to‐mouth	activity.	

Management	Considerations.	The	results	of	the	sensitivity	analyses	were	used	to	identify	the	
most	important	input	parameters	in	the	treated	wood	risk	assessments.	The	process	also	identified	
critical	areas	for	future	research.	In	particular,	the	assessment	pointed	to	a	need	to	collect	data	on	
the	amount	of	dislodgeable	residue	that	is	transferred	from	the	wood	surface	to	a	child’s	hand	upon	
contact,	and	to	better	characterize	the	amount	of	dislodgeable	residue	that	exists	on	the	wood	
surface.	

Selected	References.	The	final	report	on	the	probabilistic	exposure	assessment	of	CCA‐treated	
wood:		

Zartarian,	V.	G.,	J.	Xue,	H.	A.	Özkaynak,	W.	Dang,	G.	Glen,	L.	Smith,	and	C.	Stallings.	A	Probabilistic	
Exposure	Assessment	for	Children	Who	Contact	CCA‐Treated	Playsets	and	Decks	Using	the	Stochastic	
Human	Exposure	and	Dose	Simulation	Model	for	the	Wood	Preservative	Scenario	(SHEDS‐WOOD),	
Final	Report.	EPA/600/X‐05/009.	Washington,	D.C.:	USEPA.		

See	also:	Xue,	J.,	V.	G.	Zartarian,	H.	Özkaynak,	W.	Dang,	G.	Glen,	L.	Smith,	and	C.	Stallings.	2006.	“A	
Probabilistic	Exposure	Assessment	for	Children	Who	Contact	Chromated	Copper	Arsenate	(CCA)‐
Treated	Playsets	and	Decks,	Part	2:	Sensitivity	and	Uncertainty	Analyses.”	Risk	Analysis	26:533–41.	
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Case Study 2: Assessment of the Relative Contribution of 
Atmospheric Deposition to Watershed Contamination 
Watershed	contamination	can	result	from	several	different	sources,	including	the	direct	release	of	
pollution	into	a	water	body,	input	from	upstream	water	bodies	and	deposition	from	airborne	
sources.	Efforts	to	control	water	body	contamination	begin	with	an	analysis	of	the	environmental	
sources	to	identify	the	parameters	that	provide	the	greatest	contribution	and	determine	where	
mitigation	and/or	analysis	resources	should	be	directed.	

Approach.	This	case	study	provides	an	example	of	a	“back‐of‐the‐envelope”	deterministic	analysis	
of	the	contribution	of	air	deposition	to	overall	watershed	nitrogen?	Nutrient?	contamination	to	
identify	uncertainties	and/or	data	gaps,	as	well	as	to	target	resource	expenditures.	Nitrogen	inputs	
have	been	studied	in	several	east	and	Gulf	Coast	estuaries	due	to	concerns	about	eutrophication.	
Nitrogen	from	atmospheric	deposition	is	estimated	to	be	as	high	as	10	to	40	percent	of	the	total	
input	of	nitrogen	to	many	of	these	estuaries,	and	perhaps	higher	in	a	few	cases.	For	a	watershed	
that	has	not	been	studied	yet,	a	back‐of‐the‐envelope	calculation	could	be	prepared	based	on	
information	about	the	nitrogen	deposition	rates	measured	in	a	similar	area.	To	estimate	the	
deposition	load	directly	to	the	water	body,	one	would	multiply	the	nitrogen	deposition	rate	by	the	
area	of	the	water	body.	The	analyst	then	could	estimate	the	nitrogen	load	from	other	sources	(e.g.,	
point	source	discharges	and	runoff)	to	estimate	a	total	nitrogen	load	for	the	water	body.	The	
estimate	of	loading	due	to	atmospheric	deposition	then	could	be	divided	by	the	total	nitrogen	load	
for	the	water	body	to	estimate	the	percent	of	contribution	directly	to	the	water	body	from	
atmospheric	deposition.	

The	May	2003	report	by	the	Casco	Bay	Air	Deposition	Study	Team	titled	Estimating	Pollutant	
Loading	From	Atmospheric	Deposition	Using	Casco	Bay,	Maine	as	a	Case	Study	is	an	analysis	using	the	
methodology	described	above.	The	Casco	Bay	Estuary,	located	in	southwestern	Maine,	is	used	as	a	
case	study.	The	paper	also	includes	the	results	of	a	field	air	deposition	monitoring	program	
conducted	in	Casco	Bay	from	1998	to	2000	and	favorably	compares	the	estimates	developed	for	the	
rate	of	deposition	of	nitrogen,	mercury	and	polycyclic	aromatic	hydrocarbons	(PAHs)	to	the	field	
monitoring	results.	The	estimation	approach	is	a	useful	starting	point	for	understanding	the	
sources	of	pollutants	entering	water	bodies	that	cannot	be	accounted	for	through	runoff	or	point	
source	discharges.	

Results	of	Analysis.	The	approach	outlined	above	was	applied	to	the	Casco	Bay	Estuary	in	Maine.	
Resources,	tools	and	strategies	for	pollution	abatement	can	be	effectively	targeted	at	priority	
sources	if	estuaries	are	to	be	protected.	Understanding	the	sources	and	annual	loading	of	
contaminants	to	an	estuary	facilitates	good	water	quality	management	by	defining	the	range	of	
controls	of	both	air	and	water	pollution	needed	to	achieve	a	desired	result.	The	cost	of	conducting	
monitoring	to	determine	atmospheric	loading	to	a	water	body	can	be	prohibitively	high.	Also,	
collection	of	monitoring	data	is	a	long‐term	undertaking	because	a	minimum	of	3	years	of	data	is	
advisable	to	“smooth	out”	inter‐annual	variability.	The	estimation	techniques	described	in	this	
paper	can	serve	as	a	useful	and	inexpensive	“first‐cut”	at	understanding	the	importance	of	the	
atmosphere	as	a	pollution	source	and	can	help	to	identify	areas	where	field	measurements	are	
needed	to	guide	future	management	decisions.	

Management	Considerations.	If	a	review	of	information	on	air	deposition	available	for	the	
analysis	indicates	a	wide	range	of	potential	deposition	rates,	further	study	of	this	input	would	lead	
to	better	characterization	of	the	air	contribution	to	overall	contamination.	If	the	back‐of‐the	
envelope	analysis	suggests	that	air	deposition	is	very	small	relative	to	other	inputs,	then	resources	
should	be	targeted	at	studying	or	reducing	other	inputs	before	proceeding	with	further	analysis	of	
the	air	inputs.	
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Selected	References.	The	back‐of‐the‐envelope	calculation	is	outlined	in	Frequently	Asked	
Questions	about	Atmospheric	Deposition:	A	Handbook	for	Watershed	Managers.	
http://www.epa.gov/air/oaqps/gr8water/handbook/airdep_sept.pdf.		

Further	analysis	is	available	in	Deposition	of	Air	Pollutants	to	the	Great	Waters—Third	Report	to	
Congress.	http://www.epa.gov/air/oaqps/gr8water/3rdrpt/index.html.	

The	Casco	Bay	Estuary	example	is	available	at	http://epa.gov/owow/airdeposition/cascobay.pdf.	

D.2. Group 2 Case Studies 

Case Study 3: Probabilistic Assessment of Angling Duration Used in 
the Assessment of Exposure to Hudson River Sediments via 
Consumption of Contaminated Fish 
In	assessing	the	health	impact	of	contaminated	Superfund	sites,	exposure	duration	typically	is	
assumed	to	be	the	same	as	the	length	of	time	that	an	individual	lives	in	a	specific	area	
(i.e.,	residence	duration).	In	conducting	the	HHRA	for	the	Hudson	River	Polychlorinated	Biphenyl	
(PCB)	Superfund	Site,	however,	there	was	concern	that	exposure	duration	based	on	residence	
duration	may	underestimate	the	time	spent	fishing	(i.e.,	angling	duration).	

Risk	Analysis.	An	individual	may	move	from	one	residence	to	another	and	continue	to	fish	in	the	
same	location,	or	an	individual	may	choose	to	stop	fishing	irrespective	of	the	location	of	his	or	her	
home.	EPA	Region	2	developed	a	site‐specific	distribution	of	angling	duration	using	the	fishing	
patterns	reported	in	a	New	York	State‐wide	angling	survey	(Connelly	et	al.	1990)	and	migration	
data	for	the	five	counties	surrounding	more	than	40	miles	of	the	Upper	Hudson	River	collected	as	
part	of	the	U.S.	Census.	

Results	of	Analysis.	The	50th	and	95th	percentile	values	from	the	distribution	of	angling	durations	
were	higher	than	the	default	values	based	on	residence	duration	using	standard	default	exposure	
assumptions	for	residential	scenarios.	These	values	were	used	as	a	base	for	the	central	tendency	
and	reasonable	maximum	exposure	point	estimates,	respectively,	in	the	deterministic	assessment.	

Management	Considerations.	The	information	provided	in	this	analysis	was	used	in	the	point	
estimate	analysis.	The	full	distribution	was	used	in	conducting	a	Group	2	PRA	for	the	fish	
consumption	pathway,	which	is	presented	as	Case	Study	5.	

Selected	References.	The	final	risk	assessment	was	released	in	November	2000	and	is	available	at	
http://www.epa.gov/hudson/reports.htm.	

Further	information,	including	EPA’s	January	2002	response	to	comments	on	the	risk	assessment,	
is	available	at	http://www.epa.gov/hudson/ResponsivenessSummary.pdf.	

Case Study 4: Probabilistic Analysis of Dietary Exposure to 
Pesticides for Use in Setting Tolerance Levels 
Under	the	Federal	Food,	Drug,	and	Cosmetic	Act	(FFDCA),	EPA	may	authorize	a	tolerance	or	
exemption	from	the	requirement	of	a	tolerance	to	allow	a	pesticide	residue	in	food,	only	if	the	
Agency	determines	that	such	residues	would	be	“safe.”	This	determination	is	made	by	estimating	
exposure	to	the	pesticide	and	comparing	the	estimated	exposure	to	a	toxicological	benchmark	dose.	
Until	1998,	the	OPP	used	a	software	program	called	the	Dietary	Risk	Evaluation	System	(DRES)	to	
conduct	its	acute	dietary	risk	assessments	for	pesticide	residues	in	foods.	Acute	assessments	
conducted	with	DRES	assumed	that	100	percent	of	a	given	crop	with	registered	use	of	a	pesticide	
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was	treated	with	that	pesticide	and	all	such	treated	crop	items	contained	pesticide	residues	at	the	
maximum	legal	(tolerance)	level,	matching	this	to	a	reasonably	high	consumption	value	(around	the	
95th	percentile).	The	resulting	DRES	acute	risk	estimates	were	considered	“high‐end”	or	
“bounding”	estimates.	It	was	not	possible,	however,	to	know	where	the	pesticide	exposure	
estimates	from	the	DRES	software	fit	in	the	overall	distribution	of	exposures	due	to	the	limits	of	the	
tools	being	used.	

To	address	these	deficiencies,	OPP	developed	an	acute	probabilistic	dietary	exposure	guidance	to	
use	a	model	that	would	estimate	the	exposure	to	pesticides	in	the	food	supply.	Rather	than	the	
crude	“high‐end,”	single‐point	estimates	provided	by	deterministic	assessments,	the	probabilistic	
Dietary	Exposure	Evaluation	Model	(DEEM)	provides	specific	information	about	the	range	and	
probability	of	possible	exposures.	Depending	on	the	characterization	of	the	input,	this	could	include	
the	95th	percentile	regulation—generally	for	lower	tiers	that	do	not	include	the	percent	of	crop	
treated—to	the	99.9th	percentile	for	the	more	refined	assessments,	which	would	include	the	
percent	of	crop	treated	information.	

Probabilistic	Analysis.	This	case	study	provides	an	example	of	a	one‐dimensional	PRA	of	dietary	
exposure	to	pesticides	(Group	2).	The	DEEM	generates	acute,	probabilistic	dietary	exposure	
assessments	using	data	on:	(1)	the	distribution	of	daily	consumption	of	specific	commodities	(e.g.,	
wheat,	corn	and	apples)	by	specific	individuals;	and	(2)	the	distribution	of	concentrations	of	a	
specific	pesticide	in	those	food	commodities.	Data	on	commodity	consumption	are	collected	by	the	
U.S.	Department	of	Agriculture	(USDA)	in	its	Continuing	Survey	of	Food	Intake	by	Individuals	
(CSFII).	Pesticide	residue	concentrations	on	food	commodities	are	generally	obtained	from	crop	
field	trials,	USDA’s	Pesticide	Data	Program	(PDP),	U.S.	Food	and	Drug	Administration	(FDA)	
monitoring	data,	or	market	basket	surveys.	Using	these	data,	DEEM	is	able	to	calculate	an	estimate	
of	the	risk	to	the	general	U.S.	population,	in	addition	to	26	population	subgroups,	including	5	
subgroups	for	infants	and	children	(infants	less	than	1,	children	1	to	2,	children	3	to	5,	youths	6	to	
12	and	teens	13	to	19	years	of	age).	

Results	of	Analysis.	DEEM	has	been	used	in	risk	assessments	to	support	tolerance	levels	for	
several	pesticides	(e.g.,	phosalone)	and	as	part	of	cumulative	risk	assessments	for	
organophosphorus	compounds	(see	Case	Study	12)	and	other	pesticides.	

Management	Considerations.	Using	the	DRES,	decisions	were	being	made	without	a	complete	
representation	of	the	distribution	of	risk	among	the	population	and	without	full	knowledge	of	
where	in	the	distribution	of	risk	the	DRES	risk	estimate	lay.	This	was	of	concern	not	only	for	
regulators	interested	in	public	health	protection,	but	also	for	the	pesticide	registrants	who	could	
argue	that	the	Agency	was	arbitrarily	selecting	the	level	at	which	to	regulate.	For	most	cases	
reviewed	by	OPP	to	date,	estimated	exposure	at	the	99.9th	percentile	calculated	by	DEEM	
probabilistic	techniques	is	significantly	lower	than	exposure	calculated	using	DRES‐type	
deterministic	assumptions	at	the	unknown	percentile.	

Selected	References.	A	link	to	the	DEEM	model	is	available	at	
http://www.epa.gov/pesticides/science/deem/index.html.	

Case Study 5: One-Dimensional Probabilistic Risk Analysis of 
Exposure to Polychlorinated Biphenyls via Consumption of Fish From 
a Contaminated Sediment Site 
EPA	Region	2	conducted	a	preliminary	deterministic	HHRA	at	the	Hudson	River	PCBs	Superfund	
site.	The	DRA	demonstrated	that	consumption	of	recreationally	caught	fish	provided	the	highest	
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exposure	among	relevant	exposure	pathways,	which	resulted	in	cancer	risks	and	noncancer	health	
hazards	that	exceeded	regulatory	benchmarks.	

Probabilistic	Analysis.	Because	of	the	size,	complexity	and	high	level	of	public	interest	in	this	site,	
EPA	Region	2	implemented	a	Group	2	probabilistic	assessment	to	characterize	the	variability	in	
risks	associated	with	the	fish	consumption	exposure	pathway.	The	analysis	was	a	one‐dimensional	
Monte	Carlo	analysis	(1‐D	MCA)	of	the	variability	of	exposure	as	a	function	of	the	variability	of	
individual	exposure	factors.	Uncertainty	was	assessed	using	sensitivity	analysis	of	the	input	
variables.	Data	to	characterize	the	distributions	of	exposure	parameters	were	drawn	from	the	
published	literature	(e.g.,	fish	consumption	rate)	or	from	existing	databases,	such	as	the	U.S.	Census	
data	(e.g.,	angling	duration,	see	Case	Study	3).	Mathematical	models	of	the	environmental	fate,	
transport	and	bioaccumulation	of	PCBs	in	the	Hudson	River	previously	developed	were	used	to	
forecast	changes	in	PCB	concentration	over	time.	

Results	of	Analysis.	The	results	of	the	PRA	were	consistent	with	the	deterministic	results.	For	the	
central	tendency	individual,	point	estimates	were	near	the	median	(50th	percentile).	For	the	
reasonable	maximum	exposure	(RME)	individual,	point	estimate	values	were	at	or	above	the	95th	
percentile	of	the	probabilistic	analysis.	The	DRA	and	PRA	were	the	subject	of	a	formal	peer	review	
by	a	panel	of	independent	experts.	

The	Monte	Carlo‐based	case	scenario	is	the	one	from	which	point	estimate	exposure	factors	for	fish	
ingestion	were	drawn;	thus,	the	point	estimate	RMEs	and	the	Monte	Carlo‐based	case	estimates	can	
be	compared.	Similarly,	the	point	estimate	central	tendency	(average)	and	the	Monte	Carlo‐based	
case	midpoint	(50th	percentile)	are	comparable.	For	cancer	risk,	the	point	estimate	RME	for	fish	
ingestion	(1	x	10‐3)	falls	approximately	at	the	95th	percentile	from	the	Monte	Carlo‐based	case	
analysis.	The	point	estimate	central	tendency	value	(3	x	10‐5)	and	the	Monte	Carlo‐based	case	50th	
percentile	value	(6	x	10‐5)	are	similar.	For	noncancer	health	hazards,	the	point	estimate	RME	for	
fish	ingestion	(104	for	a	young	child	1	to	6	years	of	age)	falls	between	the	95th	and	99th	percentiles	
of	the	Monte	Carlo‐based	case.	The	point	estimate	central	tendency	hazard	index	(HI;	12	for	a	
young	child)	is	approximately	equal	to	the	50th	percentile	of	the	Monte	Carlo‐based	case	HI	of	11.	

Figures	A‐1	and	A‐2	provide	a	comparison	of	results	from	the	probabilistic	analysis	with	that	of	the	
DRA	for	cancer	risks	and	noncancer	health	hazards.	Figures	A‐1	and	A‐2	plot	percentiles	for	72	
combinations	of	exposure	variables	(e.g.,	distributions	from	creel	angler	surveys’	residence	
duration,	fishing	locations	and	cooking	losses)	of	the	noncancer	HI	values	and	the	cancer	risks,	
respectively.	In	each	of	these	figures,	the	variability	of	cancer	risk	or	noncancer	HIs	for	anglers	
within	the	exposed	population	is	plotted	on	the	y‐axis	for	particular	percentiles	within	the	
population.	This	variability	is	a	function	of	the	variations	in	fish	consumption	rates,	fishing	
duration,	differences	in	fish	species	ingested	and	so	forth.	The	uncertainty	in	the	estimates	is	
indicated	by	the	range	of	either	cancer	risk	or	noncancer	HI	values	plotted	on	the	x‐axis.	This	
uncertainty	is	a	function	of	the	72	combinations	of	the	exposure	factor	inputs	examined	in	the	
sensitivity	analysis.	This	analysis	provides	a	semi‐quantitative	confidence	interval	for	the	cancer	
risks	and	HI	values	at	any	particulate	percentile.	As	these	figures	show,	the	intervals	span	
somewhat	less	than	two	orders	of	magnitude	(e.g.,	<	100‐fold).	The	vertical	lines	indicate	the	
deterministic	endpoints.	

Management	Considerations.	Early	and	continued	involvement	of	the	community	improved	
public	acceptance	of	the	results.	In	addition,	careful	consideration	of	the	methods	used	to	present	
the	probabilistic	results	to	the	public	lead	to	greater	understanding	of	the	findings.	

Selected	References.	The	final	risk	assessment	was	released	in	November	2000	and	is	available	at	
http://www.epa.gov/hudson/reports.htm.	
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Further	information,	including	EPA’s	January	2002	response	to	comments	on	the	risk	assessment,	
is	available	at	http://www.epa.gov/hudson/ResponsivenessSummary.pdf.	

	

 
Figure A‐1. Monte Carlo Cancer Summary Based on a One‐Dimensional Probabilistic Risk Analysis of 
Exposure to Polychlorinated Biphenyls. The estimated cancer rate was calculated based on the 
consumption of fish from a contaminated sediment site. Source: USEPA 2000b. 
	

 
 
Figure A‐2. Monte Carlo Noncancer Hazard Index Summary Based on a One‐Dimensional Probabilistic 
Risk Analysis of Exposure to Polychlorinated Biphenyls. The incremental individual hazard index (HI) 
was calculated based on the consumption of fish from a contaminated sediment site. Source: USEPA 
2000b. 
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Case Study 6: Probabilistic Sensitivity Analysis of Expert Elicitation 
of Concentration-Response Relationship Between Fine Particulate 
Matter Exposure and Mortality 
In	2002,	the	National	Research	Council	(NRC)	recommended	that	EPA	improve	its	characterization	
of	uncertainty	in	the	benefits	assessment	for	proposed	regulations	of	air	pollutants.	NRC	
recommended	that	probability	distributions	for	key	sources	of	uncertainty	be	developed	using	
available	empirical	data	or	through	formal	elicitation	of	expert	judgments.	In	response	to	this	
recommendation,	EPA	conducted	an	expert	elicitation	evaluation	of	the	concentration‐response	
relationship	between	fine	particulate	matter	(PM2.5)	exposure	and	mortality,	a	key	component	of	
the	benefits	assessment	of	the	PM2.5	regulation.	Further	information	on	the	expert	elicitation	
procedure	and	results	is	provided	in	Case	Study	14.	To	evaluate	the	degree	to	which	the	results	of	
the	assessment	depended	on	the	judgments	of	individual	experts	or	on	the	methods	of	expert	
elicitation,	a	probabilistic	sensitivity	analysis	was	performed	on	the	results.	

Probabilistic	Analysis.	The	expert	elicitation	procedure	used	carefully	constructed	interviews	to	
elicit	from	each	of	12	experts	an	estimate	of	the	probabilistic	distribution	for	the	average	expected	
decrease	in	U.S.	annual,	adult,	all‐cause	mortality	associated	with	a	1	microgram	per	cubic	meter	
(μg/m3)	decrease	in	annual	average	PM2.5	levels.	This	case	study	provides	an	example	of	the	use	of	
probabilistic	sensitivity	analysis	(Group	2)	as	one	element	of	the	overall	assessment.	For	the	
sensitivity	analysis,	a	simplified	health	benefits	analysis	was	conducted	to	assess	the	sensitivity	of	
the	results	to	the	responses	of	individual	experts	and	to	three	factors	in	the	study	design:	(1)	the	
use	of	parametric	or	nonparametric	approaches	by	experts	to	characterize	their	uncertainty	in	the	
PM2.5	mortality	coefficient;	(2)	participation	in	the	Pre‐Elicitation	Workshop;	and	(3)	allowing	
experts	to	change	their	judgments	after	the	Post‐Elicitation	Workshop.	The	individual	quantitative	
expert	judgments	were	used	to	estimate	a	distribution	of	benefits,	in	the	form	of	the	number	of	
deaths	avoided,	associated	with	a	reduction	in	ambient,	annual	average	PM2.5	concentrations	from	
12	to	11	μg/m3.	The	12	individual	distributions	of	estimated	avoided	deaths	were	pooled	using	
equal	weights	to	create	a	single	overall	distribution	reflecting	input	from	each	expert.	This	
distribution	served	as	the	baseline	for	the	sensitivity	analysis,	which	compared	the	means	and	
standard	deviations	of	the	baseline	distribution	with	several	variants.	

Results	of	Analysis.	The	first	analysis	examined	the	sensitivity	of	the	mean	and	standard	deviation	
of	the	overall	mortality	distribution	to	the	removal	of	individual	experts’	distributions.	In	general,	
the	results	suggested	a	fairly	equal	division	between	those	experts	whose	removal	shifted	the	
distribution	mean	up	and	those	who	shifted	it	down.	There	were	relatively	modest	impacts	of	
individual	experts.	The	standard	deviation	of	the	combined	distribution	also	was	not	affected	
strongly	by	the	removal	of	individual	experts.	The	second	analysis	evaluated	whether	the	use	of	
parametric	or	nonparametric	approaches	affected	the	overall	results.	The	results	suggested	that	the	
use	of	parametric	distributions	led	to	distributions	with	similar	or	slightly	increased	uncertainty	
compared	with	distributions	provided	by	experts	who	offered	percentiles	of	a	nonparametric	
distribution.	The	last	analysis	evaluated	whether	participation	in	the	Pre‐	or	Post‐Elicitation	
Workshops	affected	the	results.	Participation	in	either	workshop	did	not	appear	to	have	a	
significant	effect	on	experts’	judgments	based	on	measures	of	change	in	the	baseline	distribution.	
Overall,	the	sensitivity	analyses	demonstrated	that	the	assessment	was	robust,	with	little	
dependence	on	individual	experts’	judgments	or	on	the	specific	elicitation	methods	evaluated.	

Management	Considerations.	The	sensitivity	analysis	demonstrated	the	robustness	of	the	PM2.5	
expert	elicitation‐based	assessment	by	showing	that	the	panel	of	experts	was	generally	well	
balanced	and	that	alternative	elicitation	methods	would	not	have	markedly	altered	the	overall	
results.	
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Selected	References.	The	details	of	this	analysis	are	provided	in	the	Industrial	Economics,	Inc.,	
document	titled:	Expanded	Expert	Judgment	Assessment	of	the	Concentration‐Response	Relationship	
Between	PM2.5	Exposure	and	Mortality,	Final	Report,	September	21,	2006.	This	document	is	available	
at	http://www.epa.gov/ttn/ecas/regdata/Uncertainty/pm_ee_report.pdf.	

The	expert	elicitation	assessment,	along	with	the	Regulatory	Impact	Analysis	(RIA)	of	the	PM2.5	
standard,	is	available	at	http://www.epa.gov/ttn/ecas/ria.html.	

Case Study 7: Environmental Monitoring and Assessment Program: 
Using Probabilistic Sampling to Evaluate the Condition of the Nation’s 
Aquatic Resources 
Monitoring	is	a	key	tool	used	to	identify	the	locations	where	the	environment	is	in	a	healthy	
biological	condition	and	requires	protection,	and	where	environmental	problems	are	occurring	and	
need	remediation.	Most	monitoring,	however,	is	not	performed	in	a	way	that	allows	for	statistically	
valid	assessments	of	water	quality	conditions	in	unmonitored	waters	(USGAO	2000).	States	thus	
cannot	adequately	measure	the	status	and	trends	in	water	quality	as	required	by	the	Clean	Water	
Act	(CWA)	Section	305(b).	

The	Environmental	Monitoring	and	Assessment	Program’s	(EMAP)	focus	has	been	to	develop	
unbiased	statistical	survey	design	frameworks	and	sensitive	indicators	that	allow	the	condition	of	
aquatic	ecosystems	to	be	assessed	at	state,	regional	and	national	scales.	A	cornerstone	of	EMAP	has	
been	the	use	of	probabilistic	sampling	to	allow	representative,	unbiased,	cost‐effective	condition	
assessments	for	aquatic	resources	covering	large	areas.	EMAP’s	statistical	survey	methods	are	very	
efficient,	requiring	relatively	few	sample	locations	to	make	valid	scientific	statements	about	the	
condition	of	aquatic	resources	over	large	areas	(e.g.,	the	condition	of	all	of	the	wadeable	streams	in	
the	western	United	States).	

Probabilistic	Analysis.	This	research	program	provides	multiple	case	studies	using	probabilistic	
sampling	designs	for	different	aquatic	resources	(estuaries,	streams	and	rivers).	An	EMAP	
probability‐based	sampling	program	delivers	an	unbiased	estimate	of	the	condition	of	an	aquatic	
resource	over	a	large	geographic	area	from	a	small	number	of	samples.	The	principal	
characteristics	of	a	probabilistic	sampling	design	are:	the	population	being	sampled	is	
unambiguously	described;	every	element	in	the	population	has	the	opportunity	to	be	sampled	with	
a	known	probability;	and	sample	selection	is	conducted	by	a	random	process.	This	approach	allows	
statistical	confidence	levels	to	be	placed	on	the	estimates	and	provides	the	potential	to	detect	
statistically	significant	changes	and	trends	in	condition	with	repeated	sampling.	In	addition,	this	
approach	permits	the	aggregation	of	data	collected	from	smaller	areas	to	predict	the	condition	of	a	
large	geographic	area.	

The	EMAP	design	framework	allows	the	selection	of	unbiased,	representative	sampling	sites	and	
specifies	the	information	to	be	collected	at	these	sites.	The	validity	of	the	overall	inference	rests	on	
the	design	and	subsequent	analysis	to	produce	regionally	representative	information.	The	EMAP	
uses	the	approach	outlined	in	the	EPA’s	Generalized	Random	Tessellation	Stratified	Spatially‐
Balanced	Survey	Designs	for	Aquatic	Resources	(Olsen	2012).	The	spatially	balanced	aspect	spreads	
out	the	sampling	locations	geographically,	but	still	ensures	that	each	element	has	an	equal	chance	
of	being	selected.	

Results	of	Analysis.	Data	collected	using	the	EMAP	approach	has	allowed	the	Agency	to	make	
scientifically	defensible	assessments	of	the	ecological	condition	of	large	geographic	areas	for	
reporting	to	Congress	under	CWA	305(b).	The	EMAP	approach	has	been	used	to	provide	the	first	
reports	on	the	condition	of	the	nation’s	estuaries,	streams,	rivers	and	lakes,	and	it	is	scheduled	to	be	
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used	for	wetlands.	EMAP	findings	have	been	included	in	EPA’s	Report	on	the	Environment	and	the	
Heinz	Center’s	The	State	of	the	Nation’s	Ecosystems.	Data	collected	through	an	EMAP	approach	
improve	the	ability	to	assess	ecological	progress	in	environmental	protection	and	restoration,	and	
provide	valuable	information	for	decision	makers	and	the	public.	The	use	of	probabilistic	analysis	
methods	allows	meaningful	assessment	and	regional	comparisons	of	aquatic	ecosystem	conditions	
across	the	United	States.	Finally,	the	probabilistic	approach	provides	scientific	credibility	for	the	
monitoring	network	and	aids	in	identifying	data	gaps.	

Management	Considerations.	Use	of	an	EMAP	approach	addresses	criticisms	from	the	
Government	Accountability	Office	(GAO),	the	National	Academy	of	Sciences	(NAS),	the	Heinz	Center	
(a	nonprofit	environmental	policy	institution),	and	others	that	noted	the	nation	lacked	the	data	to	
make	scientifically	valid	characterizations	of	water	quality	regionally	and	across	the	United	States.	
The	program	provides	cost‐effective,	scientifically	defensible	and	representative	data,	to	permit	the	
evaluation	of	quantifiable	trends	in	ecosystem	condition,	to	support	performance‐based	
management	and	facilitate	better	public	decisions	regarding	ecosystem	management.	EMAP’s	
approach	now	has	been	adopted	by	EPA’s	Office	of	Water	(OW)	to	collect	data	on	the	condition	of	
all	the	nation’s	aquatic	resources.	OW,	Office	of	Air	and	Radiation	(OAR)	and	Office	of	Chemical	
Safety	and	Pollution	Prevention	(OCSPP;	formerly	the	Office	of	Prevention,	Pesticides,	and	Toxic	
Substances)	now	have	environmental	accountability	endpoints	using	EMAP	approaches	in	their	
Agency	performance	goals.	

Selected	References.	General	information	concerning	EMAP	is	available	at	
http://www.epa.gov/emap/index.html.	

Information	on	EMAP	monitoring	designs	is	available	at	
http://www.epa.gov/nheerl/arm/designpages/monitdesign/monitoring_design_info.htm.	

EPA’s	Generalized	Random	Tessellation	Stratified	Spatially‐Balanced	Survey	Designs	for	Aquatic	
Resources	document	is	available	at	
http://www.epa.gov/nheerl/arm/documents/presents/grts_ss.pdf.	

USGAO	(U.S.	Government	Accountability	Office).	2000.	Water	Quality:	Key	EPA	and	State	Decisions	
Limited	by	Inconsistent	and	Incomplete	Data.	GAO/RCED‐00‐54.	Washington,	D.C.:	USGAO.	
http://www.environmental‐auditing.org/Portals/0/AuditFiles/useng00ar_ft_key_epa.pdf.	

USEPA	(U.S.	Environmental	Protection	Agency).	2002.	EMAP	Research	Strategy.	Research	Triangle	
Park,	NC:	Environmental	Monitoring	and	Assessment	Program,	National	Health	and	Environmental	
Effects	Research	Laboratory	(NHEERL),	USEPA.	
http://www.epa.gov/nheerl/emap/files/emap_research_strategy.pdf.	

D.3. Group 3 Case Studies 

Case Study 8: Two-Dimensional Probabilistic Risk Analysis of 
Cryptosporidium in Public Water Supplies, With Bayesian 
Approaches to Uncertainty Analysis 
Probabilistic	assessment	of	the	occurrence	and	health	effects	associated	with	Cryptosporidium	
bacteria	in	public	drinking	water	supplies	was	used	to	support	the	economic	analysis	of	the	final	
Long‐Term	2	Enhanced	Surface	Water	Treatment	Rule	(LT2).	EPA’s	Office	of	Ground	Water	and	
Drinking	Water	(OGWDW)	conducted	this	analysis	and	established	a	baseline	disease	burden	
attributable	to	Cryptosporidium	in	public	water	supplies	that	use	surface	water	sources.	Next,	it	
modeled	source	water	monitoring	and	finished	water	improvements	that	will	be	realized	as	a	result	
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of	the	LT2.	Post‐Rule	risk	is	estimated	and	the	LT2’s	health	benefit	is	the	result	of	subtracting	this	
from	the	baseline	disease	burden.	

Probabilistic	Analysis.	Probabilistic	assessment	was	used	for	this	analysis	as	a	means	of	
addressing	the	variability	in	the	occurrence	of	Cryptosporidium	in	raw	water	supplies,	the	
variability	in	the	treatment	efficiency,	and	the	uncertainty	in	these	inputs	and	in	the	dose‐response	
relationship	for	Cryptosporidium	infection.	This	case	study	provides	an	example	of	a	PRA	that	
evaluates	both	variability	and	uncertainty	at	the	same	time	and	is	referred	to	as	a	two‐dimensional	
PRA.	The	analysis	also	included	probabilistic	treatments	of	uncertain	dose‐response	and	
occurrence	parameters.	Markov	Chain	Monte	Carlo	samples	of	parameter	sets	filled	this	function.	
This	Bayesian	approach	(treating	the	unknown	parameters	as	random	variables)	differs	from	
classical	treatments,	which	would	regard	the	parameters	as	unknown,	but	fixed	(Group	3:	
Advanced	PRA).	The	risk	analysis	used	existing	datasets	(e.g.,	the	occurrence	of	Cryptosporidium	
and	treatment	efficacy)	to	inform	the	variability	of	these	inputs.	Uncertainty	distributions	were	
characterized	based	on	professional	judgment	or	by	analyzing	data	using	Bayesian	statistical	
techniques.	

Results	of	Analysis.	The	risk	analysis	identified	the	Cryptosporidium	dose‐response	relationship	as	
the	most	critical	model	parameters	in	the	assessment,	followed	by	the	occurrence	of	the	pathogen	
and	treatment	efficiency.	By	simulating	implementation	of	the	Rule	using	imprecise,	biased	
measurement	methods,	the	assessment	provided	estimates	of	the	number	of	public	water	supply	
systems	that	would	require	corrective	action	and	the	nature	of	the	actions	likely	to	be	implemented.	
This	information	afforded	a	realistic	measure	of	the	benefits	(in	reduced	disease	burden)	expected	
with	the	LT2.	In	response	to	Science	Advisory	Board	(SAB)	comments,	additional	Cryptosporidium	
dose‐response	models	were	added	to	more	fully	reflect	uncertainty	in	this	element	of	the	
assessment.	

Management	Considerations.	The	LT2	underwent	external	peer	review,	review	by	EPA’s	SAB	and	
intense	review	by	the	Office	of	Management	and	Budget	(OMB).	Occurrence	and	dose‐response	
components	of	the	risk	analysis	model	were	communicated	to	stakeholders	during	the	Rule’s	
Federal	Advisory	Committee	Act	(FACA)	process.	Due	to	the	rigor	of	the	analysis	and	the	signed	
FACA	“Agreement	in	Principle,”	the	OMB	review	was	straightforward.	

Selected	References.	The	final	assessment	of	occurrence	and	exposure	to	Cryptosporidium	was	
released	in	December	2005	and	is	available	at	
http://www.epa.gov/safewater/disinfection/lt2/regulations.html.	

Case Study 9: Two-Dimensional Probabilistic Model of Children’s 
Exposure to Arsenic in Chromated Copper Arsenate Pressure-Treated 
Wood 
Probabilistic	models	were	developed	in	response	to	EPA’s	October	2001	Federal	Insecticide,	
Fungicide,	and	Rodenticide	Act	(FIFRA)	Scientific	Advisory	Panel	(SAP)	recommendations	to	use	
probabilistic	modeling	to	estimate	children’s	exposures	to	arsenic	in	CCA‐treated	playsets	and	
home	decks.	

Probabilistic	Analysis.	EPA’s	ORD,	in	collaboration	with	the	Office	of	Pesticide	Programs	(OPP),	
developed	and	applied	a	probabilistic	exposure	assessment	of	children’s	exposure	to	arsenic	and	
chromium	from	contact	with	CCA‐treated	wood	playsets	and	decks.	This	case	study	provides	an	
example	of	the	use	of	two‐dimensional	(i.e.,	addressing	both	variability	and	uncertainty)	
probabilistic	exposure	assessment	(Group	3:	Advanced	PRA).	The	two‐dimensional	assessment	
employed	a	modification	of	ORD’s	Stochastic	Human	Exposure	and	Dose	Simulation	(SHEDS)	model	
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to	simulate	children’s	exposure	to	arsenic	and	chromium	from	CCA‐treated	wood	playsets	and	
decks,	as	well	as	the	surrounding	soil.	Staff	from	both	ORD	and	OPP	collaborated	in	the	
development	of	the	SHEDS‐Wood	model.	

Results	of	Analysis.	A	draft	of	the	probabilistic	exposure	assessment	received	SAP	review	in	
December	2003;	the	final	report	was	released	in	2005.	The	results	of	the	probabilistic	exposure	
assessment	were	consistent	with	or	in	the	range	of	the	results	of	deterministic	exposure	
assessments	conducted	by	several	other	organizations.	The	model	results	were	used	to	compare	
exposures	under	a	variety	of	scenarios,	including	cold	versus	warm	weather	activity	patterns,	use	
of	wood	sealants	to	reduce	the	availability	of	contaminants	on	the	surface	of	the	wood,	and	different	
hand‐washing	frequencies.	The	modeling	of	alternative	mitigation	scenarios	indicated	that	the	use	
of	sealants	could	result	in	the	greatest	exposure	reduction,	while	increased	frequency	of	hand	
washing	also	could	reduce	exposure.	

OPP	used	the	SHEDS‐Wood	model	exposure	results	in	its	probabilistic	children’s	risk	assessment	
for	CCA	(USEPA	2008).	This	included	recommendations	for	risk	reduction	(use	of	sealants	and	
careful	attention	to	children’s	hand	washing)	to	homeowners	with	existing	CCA	wood	structures.	In	
addition,	the	exposure	assessment	was	used	to	identify	areas	for	further	research,	including:	the	
efficacy	of	wood	sealants	in	reducing	dislodgeable	contaminant	residues,	the	frequency	with	which	
children	play	on	or	around	CCA	wood,	and	transfer	efficiency	and	residue	concentrations.	To	better	
characterize	the	efficacy	of	sealants	in	reducing	exposure,	EPA	and	the	Consumer	Product	Safety	
Commission	(CPSC)	conducted	a	2‐year	study	of	how	dislodgeable	contaminant	residue	levels	
changed	with	the	use	of	various	types	of	commercially	available	wood	sealants.	

Management	Considerations.	The	OPP	used	SHEDS	results	directly	in	its	final	risk	assessment	for	
children	playing	on	CCA‐treated	playground	equipment	and	decks.	The	model	enhanced	risk	
assessment	and	management	decisions	and	prioritized	data	needs	related	to	wood	preservatives.	
The	modeling	product	was	pivotal	in	the	risk	management	and	re‐registration	eligibility	decisions	
for	CCA,	and	in	advising	the	public	how	to	minimize	health	risks	from	existing	treated	wood	
structures.	Industry	also	is	using	SHEDS	to	estimate	exposures	to	CCA	and	other	wood	
preservatives.	Some	states	are	using	the	risk	assessment	as	guidance	in	setting	their	regulations	for	
CCA‐related	playground	equipment.	

Selected	References.	The	final	probabilistic	risk	assessment	based	on	the	SHEDS‐Wood	exposure	
assessment	is	available	at	
http://www.epa.gov/oppad001/reregistration/cca/final_cca_factsheet.htm.	

The	model	results	were	included	in	the	final	report	on	the	probabilistic	exposure	assessment	of	
CCA‐treated	wood	surfaces:	Zartarian,	V.G.,	J.	Xue,	H.	A.	Özkaynak,	W.	Dang,	G.	Glen,	L.	Smith,	and	C.	
Stallings.	2006.	A	Probabilistic	Exposure	Assessment	for	Children	Who	Contact	CCA‐Treated	Playsets	
and	Decks	Using	the	Stochastic	Human	Exposure	and	Dose	Simulation	Model	for	the	Wood	
Preservative	Scenario	(SHEDS‐Wood),	Final	Report.	EPA/600/X‐05/009.	Washington,	D.C.:	USEPA.		

Results	of	the	sealant	studies	were	released	in	January	2007	and	are	available	at	
http://www.epa.gov/oppad001/reregistration/cca/index.htm#reviews.	

The	results	of	the	analysis	were	published	as:	Zartarian,	V.G.,	J.	Xue,	H.	Özkaynak,	W.	Dang,	G.	Glen,	
L.	Smith,	and	C.	Stallings.	2006.	“A	Probabilistic	Arsenic	Exposure	Assessment	for	Children	who	
Contact	CAA‐Treated	Playsets	and	Decks,	Part	1:	Model	Methodology,	Variability	Results,	and	Model	
Evaluation.”	Risk	Analysis	26:	515–31.	

More	information	on	the	analysis	can	be	found	by	consulting	the	following	resource:	
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USEPA	(U.S.	Environmental	Protection	Agency).	2008.	Case	Study	Examples	of	the	Application	of	
Probabilistic	Risk	Analysis	in	U.S.	Environmental	Protection	Agency	Regulatory	Decision‐Making	(In	
Review).	Washington,	D.C.:	Risk	Assessment	Forum,	USEPA	

Case Study 10: Two-Dimensional Probabilistic Exposure Assessment 
of Ozone 
As	part	of	EPA’s	recent	review	of	the	ozone	National	Ambient	Air	Quality	Standards	(NAAQS),	the	
Office	of	Air	Quality	Planning	and	Standards	(OAQPS)	conducted	detailed	probabilistic	exposure	
and	risk	assessments	to	evaluate	potential	alternative	standards	for	ozone.	At	different	stages	of	
this	review,	the	Clean	Air	Scientific	Advisory	Committee	(CASAC)	Ozone	Panel	(an	independent	
scientific	review	committee	of	EPA’s	SAB)	and	the	public	reviewed	and	provided	comments	on	
analyses	and	documents	prepared	by	EPA.	A	scope	and	methods	plan	for	the	exposure	and	risk	
assessments	was	developed	in	2005	(USEPA	2005).	This	plan	was	intended	to	facilitate	
consultation	with	the	CASAC,	as	well	as	public	review,	and	to	obtain	advice	on	the	overall	scope,	
approaches	and	key	issues	in	advance	of	the	completion	of	the	analyses.	This	case	study	describes	
the	probabilistic	exposure	assessment,	which	addresses	short‐term	exposures	to	ozone.	The	
exposure	estimates	were	used	as	an	input	to	the	HHRA	for	lung	function	decrements	in	all	children	
and	asthmatic	school‐aged	children	based	on	exposure‐response	relationships	derived	from	
controlled	human	exposure	studies.	

Probabilistic	Analysis.	Population	exposure	to	ambient	ozone	levels	was	evaluated	using	EPA’s	
Air	Pollutants	Exposure	(APEX)	model,	also	referred	to	as	the	Total	Risk	Integrated	
Methodology/Exposure	(TRIM.Expo)	model.	Exposure	estimates	were	developed	for	recent	ozone	
levels,	based	on	2002	to	2004	air	quality	data,	and	for	ozone	levels	simulated	to	just	meet	the	
existing	0.08	ppm,	8‐hour	ozone	NAAQS	and	several	alternative	ozone	standards,	based	on	
adjusting	the	2002	to	2004	air	quality	data.	Exposure	estimates	were	modeled	for	12	urban	areas	
located	throughout	the	United	States	for	the	general	population,	all	school‐age	children	and	
asthmatic	school‐age	children.	This	exposure	assessment	is	described	in	a	technical	report	
(USEPA	2007b).	The	exposure	model	APEX	is	documented	in	a	user’s	guide	and	technical	document	
(USEPA	2006).	A	Monte	Carlo	approach	was	used	to	produce	quantitative	estimates	of	the	
uncertainty	in	the	APEX	model	results,	based	on	estimates	of	the	uncertainties	for	the	most	
important	model	inputs.	The	quantification	of	model	input	uncertainties,	a	discussion	of	model	
structure	uncertainties,	and	the	results	of	the	uncertainty	analysis	are	documented	in	
Langstaff	(2007).	

Results	of	Analysis.	Uncertainty	in	the	APEX	model	predictions	results	from	uncertainties	in	the	
spatial	interpolation	of	measured	concentrations,	the	microenvironment	models	and	parameters,	
people’s	activity	patterns,	and	to	a	lesser	extent,	model	structure.	The	predominant	sources	of	
uncertainty	appear	to	be	the	human	activity	pattern	information	and	the	spatial	interpolation	of	
ambient	concentrations	from	monitoring	sites	to	other	locations.	The	primary	policy‐relevant	
finding	was	that	the	uncertainty	in	the	exposure	assessment	is	small	enough	to	lend	confidence	to	
the	use	of	the	model	results	for	the	purpose	of	informing	the	Administrator’s	decision	on	the	ozone	
standard.	

Figure	A‐3	illustrates	the	uncertainty	distribution	for	one	model	result,	the	percent	of	children	with	
exposures	above	0.08	ppm,	8‐hour	while	at	moderate	exertion.	The	point	estimate	of	20	percent	is	
the	result	from	the	APEX	simulation	using	the	best	estimates	of	the	model	inputs.	The	
corresponding	result	from	the	Monte	Carlo	simulations	ranges	from	17	to	26	percent,	with	a	
95	percent	uncertainty	interval	(UI)	of	19	to	24	percent.	Note	that	the	UIs	are	not	symmetric	
because	the	distributions	are	skewed.	
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Management	Considerations.	The	exposure	analysis	also	provided	information	on	the	frequency	
with	which	population	exposures	exceeded	several	potential	health	effect	benchmark	levels	that	
were	identified	based	on	the	evaluation	of	health	effects	in	clinical	studies.	

The	exposure	and	risk	assessments	are	summarized	in	Chapters	4	and	5,	respectively,	of	the	Ozone	
Staff	Paper	(USEPA	2007a).	The	exposure	estimates	over	these	potential	health	effect	benchmarks	
were	part	of	the	basis	for	the	Administrator’s	March	27,	2008,	decision	to	revise	the	ozone	NAAQS	
from	0.08	to	0.075	ppm,	8‐hour	average	(see	the	final	rule	for	the	ozone	NAAQS1).	

 
Figure A‐3. Uncertainty Distribution Model Results. The estimated percentage of children with 8‐hour 
exposures above 0.08 ppm at moderate exertion (the point estimate is 20%). 

Selected	References.	More	information	on	the	analysis	can	be	found	by	consulting	the	following	
resources:	

Langstaff,	J.	E.	2007.	Analysis	of	Uncertainty	in	Ozone	Population	Exposure	Modeling.	Office	of	Air	
Quality	Planning	and	Standards	Staff	Memorandum	to	Ozone	NAAQS	Review	Docket.	OAR‐2005‐
0172.	http://www.epa.gov/ttn/naaqs/standards/ozone/s_ozone_cr_td.html	

USEPA	(U.S.	Environmental	Protection	Agency).	2005.	Ozone	Health	Assessment	Plan:	Scope	and	
Methods	for	Exposure	Analysis	and	Risk	Assessment.	Research	Triangle	Park,	NC:	Office	of	Air	Quality	
Planning	and	Standards,	USEPA.	http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_cr_pd.html	

USEPA.	2006.	Total	Risk	Integrated	Methodology	(TRIM)—Air	Pollutants	Exposure	Model	
Documentation	(TRIM.Expo/APEX,	Version	4)	Volume	I:	User’s	Guide;	Volume	II:	Technical	Support	
Document.	Research	Triangle	Park,	NC:	Office	of	Air	Quality	Planning	and	Standards,	USEPA.	June	
2006.	http://www.epa.gov/ttn/fera/human_apex.html	

USEPA.	2007a.	Review	of	National	Ambient	Air	Quality	Standards	for	Ozone:	Policy	Assessment	of	
Scientific	and	Technical	Information—OAQPS	Staff	Paper.	Research	Triangle	Park,	NC:	Office	of	Air	
Quality	Planning	and	Standards,	USEPA.	
http://www.epa.gov/ttn/naaqs/standards/ozone/s_ozone_cr_sp.html	

																																																													
1	National	Ambient	Air	Quality	Standards	for	Ozone,	Final	Rule.	73	Fed.	Reg.	16436	(Mar.	27,	2008).	
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USEPA.	2007b.	Ozone	Population	Exposure	Analysis	for	Selected	Urban	Areas.	Research	Triangle	
Park,	NC:	Office	of	Air	Quality	Planning	and	Standards,	USEPA.	
http://www.epa.gov/ttn/naaqs/standards/ozone/s_ozone_cr_td.html	

Case Study 11: Analysis of Microenvironmental Exposures to Fine 
Particulate Matter for a Population Living in Philadelphia, 
Pennsylvania 
This	case	study	used	the	Stochastic	Human	Exposure	and	Dose	Simulation	model	for	Particulate	
Matter	(SHEDS‐PM)	developed	by	EPA’s	National	Exposure	Research	Laboratory	(NERL)	to	prepare	
a	probabilistic	assessment	of	population	exposure	to	PM2.5	in	Philadelphia,	Pennsylvania.	This	case	
study	simulation	was	prepared	to	accomplish	three	goals:	(1)	estimate	the	contribution	of	PM2.5	of	
ambient	(outdoor)	origin	to	total	PM2.5	exposure;	(2)	determine	the	major	factors	that	influence	
personal	exposure	to	PM2.5;	and	(3)	identify	factors	that	contribute	the	greatest	uncertainty	to	
model	predictions.		

Probabilistic	Analysis.	The	two‐dimensional	probabilistic	assessment	used	a	microexposure	event	
technique	to	simulate	individual	exposures	to	PM2.5	in	specific	microenvironments	(outdoors,	
indoor	residence,	office,	school,	store,	restaurant	or	bar,	and	in	a	vehicle).	The	population	for	the	
simulation	was	generated	using	demographic	data	at	the	census‐tract	level	from	the	U.S.	Census.	
Characteristics	of	the	simulated	individuals	were	selected	randomly	to	match	the	demographic	
proportions	within	the	census	tract	for	gender,	age,	employment	status	and	housing	type.	The	
assessment	used	spatially	and	temporally	interpolated	ambient	PM2.5	measurements	from	1992	to	
1993	and	1990	U.S.	Census	data	for	each	census	tract	in	Philadelphia.	This	case	study	provides	an	
example	of	both	two‐dimensional	(variability	and	uncertainty)	probabilistic	assessment	and	
microexposure	event	assessment	(Group	3:	Advanced	PRA).	

Results	of	Analysis.	Results	of	the	analysis	showed	that	human	activity	patterns	did	not	have	as	
strong	an	influence	on	ambient	PM2.5	exposures	as	was	observed	for	exposure	to	indoor	PM2.5	

sources.	Exposure	to	PM2.5	of	ambient	origin	contributed	a	significant	percent	of	the	daily	total	PM2.5	

exposures,	especially	for	the	segment	of	the	population	without	exposure	to	environmental	tobacco	
smoke	in	the	residence.	Development	of	the	SHEDS‐PM	model	using	the	Philadelphia	PM2.5	case	
study	also	provided	useful	insights	into	data	needs	for	improving	inputs	into	the	SHEDS‐PM	model,	
reducing	uncertainty	and	further	refinement	of	the	model	structure.	Some	of	the	important	data	
needs	identified	from	the	application	of	the	model	include:	daily	PM2.5	measurements	over	multiple	
seasons	and	across	multiple	sites	within	an	urban	area,	improved	capability	of	dispersion	models	to	
predict	ambient	PM2.5	concentrations	at	greater	spatial	resolution	and	over	a	1‐year	time	period,	
measurement	studies	to	better	characterize	the	physical	factors	governing	infiltration	of	ambient	
PM2.5	into	residential	microenvironments,	further	information	on	particle‐generating	sources	
within	the	residence,	and	data	for	the	other	indoor	microenvironments	not	specified	in	the	model.	

Management	Considerations.	The	application	of	the	SHEDS‐PM	model	to	the	Philadelphia	
population	gave	insights	into	data	needs	and	areas	for	model	refinement.	The	continued	
development	and	evaluation	of	the	SHEDS‐PM	population	exposure	model	are	being	conducted	as	
part	of	ORD’s	effort	to	develop	a	source‐to‐dose	modeling	system	for	PM	and	air	toxics.	This	type	of	
exposure	and	dose	modeling	system	is	considered	to	be	important	for	the	scientific	and	policy	
evaluation	of	the	critical	pathways,	as	well	as	the	exposure	factors	and	source	types	influencing	
human	exposures	to	a	variety	of	environmental	pollutants,	including	PM.	
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Selected	References.	The	results	of	the	analysis	were	published	in:		

Burke,	J.,	M.	Zufall,	and	H.	Özkaynak.	2001.	“A	Population	Exposure	Model	for	Particulate	Matter:	
Case	Study	Results	for	PM2.5	in	Philadelphia,	PA.”	Journal	of	Exposure	Analysis	and	Environmental	
Epidemiology	11	(6):	470–89.	

Georgepoulos,	P.	G.,	S.	W.	Wang,	V.	M.	Vyas,	Q.	Sun,	J.	Burke,	R.	Vedantham,	T.	McCurdy,	and	H.	
Özkaynak.	2005.	“A	Source‐to‐Dose	Assessment	of	Population	Exposure	to	Fine	PM	and	Ozone	in	
Philadelphia,	PA,	During	a	Summer	1999	Episode.”	Journal	of	Exposure	Analysis	and	Environmental	
Epidemiology	15	(5):	439–57.	

Case Study 12: Probabilistic Analysis in Cumulative Risk Assessment 
of Organophosphorus Pesticides 
In	1996,	Congress	enacted	the	Food	Quality	Protection	Act	(FQPA),	which	requires	EPA	to	consider	
“available	evidence	concerning	the	cumulative	effects	on	infants	and	children	of	such	residues	and	
other	substances	that	have	a	common	mechanism	of	toxicity”	when	setting	pesticide	tolerances	(i.e.,	
the	maximum	amount	of	pesticide	residue	legally	allowed	to	remain	on	food	products).	FQPA	also	
mandated	that	EPA	completely	reassess	the	safety	of	all	existing	pesticide	tolerances	(those	in	effect	
since	August	1996)	to	ensure	that	they	are	supported	by	current	scientific	data	and	meet	current	
safety	standards.	Because	organophosphorus	pesticides	(OPs)	were	assigned	priority	for	tolerance	
reassessment,	these	pesticides	were	the	first	“common	mechanism”	group	identified	by	EPA’s	OPP.	
The	ultimate	goal	associated	with	this	cumulative	risk	assessment	(CRA)	was	to	provide	a	basis	for	
the	decision	maker	to	establish	safe	tolerance	levels	for	this	group	of	pesticides,	while	meeting	the	
FQPA	standard	for	protecting	infants	and	children.	

Probabilistic	Analysis.	This	case	study	provides	an	example	of	an	advanced	probabilistic	
assessment	(Group	3).	In	2006,	EPA	analyzed	exposures	to	30	OPs	through	food	consumption,	
drinking	water	intake,	and	exposure	via	pesticide	application.	Distributions	of	human	exposure	
factors,	such	as	breathing	rates,	body	weight	and	surface	areas	used	in	the	assessment,	came	from	
the	Agency’s	Exposure	Factors	Handbook	(USEPA	1997d).	EPA	used	Calendex,	a	probabilistic	
computer	software	program	(available	at	http://www.epa.gov/pesticides/science/deem/)	to	
integrate	various	pathways,	while	simultaneously	incorporating	the	time	dimensions	of	the	input	
data.	Based	on	the	results	of	the	exposure	assessment,	EPA	calculated	margins	of	exposure	(MOEs)	
for	the	total	cumulative	risk	from	all	pathways	for	each	age	group	(infant	less	than	1;	children	1–2,	
3–5,	6–12;	youth	13–19;	and	adults	20–49	and	50+	years	of	age).	

The	food	component	of	the	OPs	CRA	was	highly	refined,	as	it	was	based	on	residue	monitoring	data	
from	the	USDA’s	PDP	and	supplemented	with	information	from	the	FDA’s	Surveillance	Monitoring	
Programs	and	Total	Diet	Study.	The	residue	data	were	combined	with	actual	consumption	data	
from	USDA’s	Continuing	Survey	of	Food	Intakes	by	Individuals	(CSFII)	using	probabilistic	
techniques.	The	CRA	evaluated	drinking	water	exposures	on	a	regional	basis.	The	assessment	
focused	on	areas	where	combined	OP	exposure	is	likely	to	be	highest	within	each	region.	Primarily,	
the	analysis	used	probabilistic	modeling	to	estimate	the	co‐occurrence	of	OP	residues	in	water.	
Monitoring	data	were	not	available	with	enough	consistency	to	be	the	sole	basis	for	the	assessment;	
however,	they	were	used	to	corroborate	the	modeling	results.	Data	sources	for	the	water	
component	of	the	assessment	included	USDA	Agricultural	Usage	Reports	for	Field	Crops,	Fruits	and	
Vegetables;	USDA	Typical	Planting	and	Harvesting	Dates	for	Field	Crops	and	Fresh	Market	and	
Processing	Vegetables;	local	sources	for	refinements;	and	monitoring	studies	from	the	U.S.	
Geological	Survey	(USGS)	and	other	sources.	Finally,	exposure	via	the	oral,	dermal	and	inhalation	
routes	resulting	from	applications	of	OPs	in	and	around	homes,	schools,	offices	and	other	public	
areas	were	assessed	probabilistically	for	each	of	the	seven	regions.	The	data	sources	for	this	part	of	
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the	assessment	included	information	from	surveys	and	task	forces,	special	studies	and	reports	from	
published	scientific	literature,	EPA’s	Exposure	Factors	Handbook	(USEPA	1997d),	and	other	sources.	

Results	of	Analysis.	The	OPs	CRA	presented	potential	risk	from	single‐day	(acute)	exposures	
across	1	year	and	from	a	series	of	21‐day	rolling	averages	across	the	year.	MOEs	at	the	99.9th	
percentile	were	approximately	100	or	greater	for	all	populations	for	the	21‐day	average	results.	
The	only	exception	is	a	brief	period	(roughly	2	weeks)	in	which	drinking	water	exposures	
(identified	from	the	Exposure	Factors	Handbook,	USEPA	1997d)	attributed	to	phorate	use	on	
sugarcane	resulted	in	MOEs	near	80	for	children	ages	1	to	2	years.	Generally,	exposures	through	the	
food	pathway	dominated	total	MOEs,	and	exposures	through	drinking	water	were	substantially	
lower	throughout	most	of	the	year.	Residential	exposures	were	substantially	smaller	than	
exposures	through	both	food	and	drinking	water.	

The	OPs	CRA	was	very	resource	intensive.	Work	began	in	1997	with	the	preparation	of	guidance	
documents	and	the	development	of	a	CRA	methodology.	Over	2	to	3	years,	more	than	25	people	
spent	50	to	100	percent	of	their	time	working	on	the	assessment,	with	up	to	50	people	working	on	
the	CRA	at	critical	periods.	EPA	has	spent	approximately	$1	million	on	this	assessment	(e.g.,	for	
computers,	models	and	contractor	support).	

Management	Considerations.	The	OPs	CRA	was	a	landmark	demonstration	of	the	feasibility	of	a	
regulatory‐level	assessment	of	the	risk	from	multiple	chemicals.	Upon	completion,	EPA	presented	
the	CRA	at	numerous	public	technical	briefings	and	FIFRA	SAP	meetings,	and	made	all	of	the	data	
inputs	available	to	the	public.	The	OPP’s	substantial	effort	to	communicate	methodologies,	
approaches	and	results	to	the	stakeholders	aided	in	the	success	of	the	OPs	CRA.	The	stakeholders	
expressed	appreciation	for	the	transparent	nature	of	the	OPs	CRA	and	recognized	the	innovation	
and	hard	work	that	went	into	developing	the	assessments.	

Selected	References.	The	2006	assessment	and	related	documents	are	available	at	
http://www.epa.gov/pesticides/cumulative/common_mech_groups.htm#op.	

USEPA	(U.S.	Environmental	Protection	Agency).	1997d.	Exposure	Factors	Handbook.	Washington,	
D.C.:	National	Center	for	Environmental	Assessment,	USEPA.	
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=12464.	

Case Study 13: Probabilistic Ecological Effects Risk Assessment 
Models for Evaluating Pesticide Use 
As	part	of	the	process	of	developing	and	implementing	a	probabilistic	approach	for	ERA,	an	
illustrative	case	was	completed	in	1996.	This	case	involved	both	DRA	and	PRA	for	the	effects	of	a	
hypothetical	chemical	X	(ChemX)	on	birds	and	aquatic	species.	Following	the	recommendations	of	
the	SAP	and	in	response	to	issues	raised	by	OPP	risk	managers,	the	Agency	began	an	initiative	to	
refine	the	ERA	process	for	evaluating	the	effects	of	pesticides	to	terrestrial	and	aquatic	species	
within	the	context	of	FIFRA,	the	main	statutory	authority	for	regulating	pesticides	at	the	federal	
level.	The	key	goals	and	objectives	of	EPA’s	initiative	were	to:	

 Incorporate	probabilistic	tools	and	methods	to	provide	an	estimate	on	the	magnitude	and	
probability	of	effects.	

 Build	on	existing	data	requirements	for	registration.	

 Utilize,	wherever	possible,	existing	databases	and	create	new	ones	from	existing	data	
sources	to	minimize	the	need	to	generate	additional	data.	

 Focus	additional	data	requirements	on	reducing	uncertainty	in	key	areas.	
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After	proposing	a	four‐level	risk	assessment	scheme,	with	higher	levels	reflecting	more	refined	risk	
assessment	techniques,	the	Agency	developed	pilot	models	for	both	terrestrial	and	aquatic	species.	
Refined	risk	assessment	models	(Level	II)	then	were	developed	and	used	in	a	generic	chemical	case	
study	that	was	presented	to	the	SAP	in	2001.	

Probabilistic	Analysis.	This	case	study	describes	an	advanced	probabilistic	model	for	the	
ecological	effects	of	pesticides	(Group	3).	The	terrestrial	Level	II	model	(version	2.0)	is	a	
multimedia	exposure/effects	model	that	evaluates	acute	mortality	levels	in	generic	or	specific	avian	
species	over	a	user‐defined	exposure	window.	The	spatial	scale	is	at	the	field	level,	which	includes	
the	field	and	surrounding	area.	Both	areas	are	assumed	to	meet	the	habitat	requirements	for	each	
species,	and	contamination	of	edge	or	adjacent	habitat	from	drift	is	assumed	to	be	zero.	For	each	
individual	bird	considered	in	a	run	of	the	Level	II	model,	a	random	selection	of	values	is	made	for	
the	major	exposure	input	parameters	to	estimate	an	external	oral	dose	equivalent	for	that	
individual.	The	estimated	dose	equivalent	is	compared	to	a	randomly	assigned	tolerance	for	the	
individual	preselected	from	the	dose‐response	distribution.	If	the	dose	is	greater	than	the	tolerance,	
the	individual	is	scored	“dead,”	if	not,	the	individual	is	scored	“not	dead.”	After	multiple	iterations	of	
individuals,	a	probability	density	function	of	percent	mortality	is	generated.	

From	May	29	to	31,	1996,	the	Agency	presented	two	ERA	case	studies	to	the	SAP	for	review	and	
comment.	Although	recognizing	and	generally	reaffirming	the	utility	of	EPA’s	current	deterministic	
assessment	process,	the	SAP	offered	a	number	of	suggestions	for	improvement.	Foremost	among	
their	suggestions	was	a	recommendation	to	move	beyond	the	existing	deterministic	assessment	
approach	by	developing	the	tools	and	methodologies	necessary	to	conduct	a	probabilistic	
assessment	of	effects.	Such	an	assessment	would	estimate	the	magnitude	and	probability	of	the	
expected	impact	and	define	the	level	of	certainty	and	variation	involved	in	the	estimate;	risk	
managers	within	EPA’s	OPP	also	had	requested	this	information	in	the	past.	

The	aquatic	Level	II	model	is	a	two‐dimensional	Monte	Carlo	risk	model	consisting	of	three	main	
components:	(1)	exposure,	(2)	effects	and	(3)	risk.	The	exposure	scenarios	used	at	Level	II	are	
intended	to	provide	estimates	for	vulnerable	aquatic	habitats	across	a	wide	range	of	geographical	
conditions	under	which	a	pesticide	product	is	used.	The	Level	II	risk	evaluation	process	yields	
estimates	of	likelihood	and	magnitude	of	effects	for	acute	exposures.	For	the	estimate	of	acute	risks,	
a	distribution	of	estimated	exposure	and	a	distribution	of	lethal	effects	are	combined	through	a	2‐D	
MCA	to	obtain	a	distribution	of	joint	probability	functions.	For	the	estimate	of	chronic	risks,	a	
distribution	of	exposure	concentrations	is	compared	to	a	chronic	measurement	endpoint.	The	risk	
analysis	for	chronic	effects	provides	information	only	on	the	probability	that	the	chronic	endpoint	
assessed	will	be	exceeded,	not	on	the	magnitude	of	the	chronic	effect	expected.	

Results	of	Analysis.	As	part	of	the	process	of	developing	and	implementing	a	probabilistic	
approach	for	ERA,	a	case	study	was	completed.	The	case	study	involved	both	DRAs	and	PRAs	for	
effects	of	ChemX	on	birds	and	aquatic	species.	The	deterministic	screen	conducted	on	ChemX	
concluded	qualitatively	that	it	could	pose	a	high	risk	to	both	freshwater	fish	and	invertebrates	and	
showed	that	PRA	was	warranted.	Based	on	the	probabilistic	analysis,	it	was	concluded	that	the	use	
of	ChemX	was	expected	to	infrequently	result	in	significant	freshwater	fish	mortalities	but	routinely	
result	in	reduced	growth	and	other	chronic	effects	in	exposed	fish.	Substantial	mortalities	and	
chronic	effects	to	sensitive	aquatic	invertebrates	were	predicted	to	occur	routinely	after	peak	
exposures.	

Management	Considerations.	In	its	review	of	the	case	study,	the	FIFRA	SAP	congratulated	the	
Agency	on	the	effort	made	to	conduct	PRA	of	pesticide	effects	in	ecosystems.	The	panel	commented	
that	the	approach	had	progressed	greatly	from	earlier	efforts,	and	that	the	intricacy	of	the	models	
was	surprisingly	good,	given	the	time	interval	in	which	the	Agency	had	to	complete	the	task.	
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Following	the	case	study,	EPA	refined	the	models	based	on	the	SAP	comments.	In	addition,	the	
terrestrial	Level	II	model	was	refined	to	include	dermal	and	inhalation	exposure.	

Selected	References.	An	overview	of	the	models	is	available	at	
http://www.epa.gov/oppefed1/ecorisk/fifrasap/rra_exec_sum.htm#Terrestrial.	

Case Study 14: Expert Elicitation of Concentration-Response 
Relationship Between Fine Particulate Matter Exposure and Mortality 
In	2002,	the	NRC	recommended	that	EPA	improve	its	characterization	of	uncertainty	in	the	benefits	
assessment	for	proposed	regulations	of	air	pollutants.	NRC	recommended	that	probability	
distributions	for	key	sources	of	uncertainty	be	developed	using	available	empirical	data	or	through	
formal	elicitation	of	expert	judgments.	A	key	component	of	EPA’s	approach	for	assessing	potential	
health	benefits	associated	with	air	quality	regulations	targeting	emissions	of	PM2.5	and	its	
precursors	is	the	effect	of	changes	in	ambient	PM2.5	levels	on	mortality.	Avoided	premature	deaths	
constitute,	on	a	monetary	basis,	between	85	and	95	percent	of	the	monetized	benefits	reported	in	
EPA’s	retrospective	and	prospective	Section	812A	benefit‐cost	analyses	of	the	Clean	Air	Act	(CAA;	
USEPA	1997e	and	1999)	and	in	Regulatory	Impact	Analysis	(RIA)	for	rules	such	as	the	Heavy	Duty	
Diesel	Engine/Fuel	Rule	(USEPA	2000c)	and	the	Non‐Road	Diesel	Engine	Rule	(USEPA	2004).	In	
response	to	the	NRC	recommendation,	EPA	conducted	an	expert	elicitation	evaluation	of	the	
concentration‐response	relationship	between	PM2.5	exposure	and	mortality.	

Probabilistic	Analysis.	This	case	study	provides	an	example	of	the	use	of	expert	elicitation	(Group	
3)	to	derive	probabilistic	estimates	of	the	uncertainty	in	one	element	of	a	cost‐benefit	analysis.	
Expert	elicitation	uses	carefully	structured	interviews	to	elicit	from	each	expert	a	best	estimate	of	
the	true	value	for	an	outcome	or	variable	of	interest,	as	well	as	their	uncertainty	about	the	true	
value.	This	uncertainty	is	expressed	as	a	subjective	probabilistic	distribution	of	values	and	reflects	
each	expert’s	interpretation	of	theory	and	empirical	evidence	from	relevant	disciplines,	as	well	as	
their	beliefs	about	what	is	known	and	not	known	about	the	subject	of	the	study.	For	the	PM2.5	
expert	elicitation,	the	process	consisted	of	development	of	an	elicitation	protocol,	selection	of	
experts,	development	of	a	briefing	book,	conduct	of	elicitation	interviews,	the	use	of	expert	input	
prior	to	and	following	individual	elicitation	of	judgments	and	the	expert	judgments	themselves.	The	
elicitation	involved	personal	interviews	with	12	health	experts	who	had	conducted	research	on	the	
relationship	between	PM2.5	exposures	and	mortality.	

The	main	quantitative	question	asked	each	expert	to	provide	a	probabilistic	distribution	for	the	
average	expected	decrease	in	U.S.	annual,	adult	and	all‐cause	mortality	associated	with	a	1	μg/m3	
decrease	in	annual	average	PM2.5	levels.	When	answering	the	main	quantitative	question,	each	
expert	was	instructed	to	consider	that	the	total	mortality	effect	of	a	1	μg/m3	decrease	in	ambient	
annual	average	PM2.5	may	reflect	reductions	in	both	short‐term	peak	and	long‐term	average	
exposures	to	PM2.5.	Each	expert	was	asked	to	aggregate	the	effects	of	both	types	of	changes	in	their	
answers.	The	experts	were	given	the	option	to	integrate	their	judgments	about	the	likelihood	of	a	
causal	relationship	or	threshold	in	the	concentration‐response	function	into	their	own	distributions	
or	to	provide	a	distribution	“conditional	on”	one	or	both	of	these	factors.	

Results	of	Analysis.	The	project	team	developed	the	interview	protocol	between	October	2004	and	
January	2006.	Development	of	the	protocol	was	informed	by	an	April	2005	symposium	held	by	the	
project	team,	where	numerous	health	scientists	and	analysts	provided	feedback;	detailed	pretesting	
with	independent	EPA	scientists	in	November	2005;	and	discussion	with	the	participating	experts	
at	a	pre‐elicitation	workshop	in	January	2006.	The	elicitation	interviews	were	conducted	between	
January	and	April	2006.	Following	the	interviews,	the	experts	reconvened	for	a	post‐elicitation	
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workshop	in	June	2006,	in	which	the	project	team	anonymously	shared	the	results	of	all	experts	
with	the	group.	

The	median	estimates	for	the	PM2.5	mortality	relationship	were	generally	similar	to	estimates	
derived	from	the	two	epidemiological	studies	most	often	used	in	benefits	assessment.	However,	in	
almost	all	cases,	the	spread	of	the	uncertainty	distributions	elicited	from	the	experts	exceeded	the	
statistical	uncertainty	bounds	reported	by	the	most	influential	epidemiologic	studies,	suggesting	
that	the	expert	elicitation	process	was	successful	in	developing	more	comprehensive	estimates	of	
uncertainty	for	the	PM2.5	mortality	relationship.	The	uncertainty	distributions	for	PM2.5	

concentration‐response	resulting	from	the	expert	elicitation	process	were	used	in	the	RIA	for	the	
revised	NAAQS	standard	for	PM2.5	(promulgated	on	September	21,	2006).	Because	the	NAAQS	are	
exclusively	health‐based	standards,	this	RIA	played	no	part	in	EPA’s	determination	to	revise	the	
PM2.5	NAAQS.	Benefits	estimates	in	the	RIA	were	presented	as	ranges	and	included	additional	
information	on	the	quantified	uncertainty	distributions	surrounding	the	points	on	the	ranges,	
derived	from	both	epidemiological	studies	and	the	expert	elicitation	results.	OMB’s	review	of	the	
RIA	was	completed	in	March	2007.	

Management	Considerations.	The	NAAQS	are	exclusively	health‐based	standards,	so	these	
analyses	were	not	used	in	any	manner	by	EPA	in	determining	whether	to	revise	the	NAAQS	for	
PM2.5.	Moreover,	the	request	to	engage	in	the	expert	elicitation	did	not	come	from	the	CASAC,	the	
official	peer	review	body	for	the	NAAQS;	a	decision	to	conduct	the	analyses	does	not	reflect	CASAC	
advice	that	such	analyses	inform	NAAQS	determinations.	The	analyses	addressed	comments	from	
the	NRC	that	recommended	that	probability	distributions	for	key	sources	of	uncertainty	be	
addressed.	The	analyses	were	used	in	EPA’s	retrospective	and	prospective	Section	812A	benefit‐
cost	analyses	of	the	CAA	(USEPA	1997e	and	1999)	and	in	RIAs	for	rules	such	as	the	Heavy	Duty	
Diesel	Engine/Fuel	Rule	(USEPA	2000c)	and	the	Non‐Road	Diesel	Engine	Rule	(USEPA	2004).	In	
response	to	the	NRC	recommendation,	EPA	conducted	an	expert	elicitation	evaluation	of	the	
concentration‐response	relationship	between	PM2.5	exposure	and	mortality.	

Selected	Reference.	The	assessment	is	available	at	http://www.epa.gov/ttn/ecas/ria.html. 

Case Study 15: Expert Elicitation of Sea-Level Rise Resulting From 
Global Climate Change 
The	United	Nations	Framework	Convention	on	Climate	Change	requires	nations	to	implement	
measures	for	adapting	to	rising	sea	level	and	other	effects	of	changing	climate.	To	decide	on	an	
appropriate	response,	coastal	planners	and	engineers	weigh	the	cost	of	these	measures	against	the	
likely	cost	of	failing	to	prepare,	which	depends	on	the	probability	of	the	sea	rising	a	particular	
amount.	The	U.S.	National	Academy	of	Engineering	recommended	that	assessments	of	sea	level	rise	
should	provide	probability	estimates.	Coastal	engineers	regularly	employ	probability	information	
when	designing	structures	for	floods,	and	courts	use	probabilities	to	determine	the	value	of	land	
expropriated	by	regulations.	This	1995	case	study	describes	the	development	of	a	probability	
distribution	for	sea	level	rise,	using	models	employed	by	previous	assessments,	as	well	as	the	
expert	opinions	of	20	climate	and	glaciology	reviewers	about	the	probability	distributions	for	
particular	model	coefficients.	

Probabilistic	Analysis.	This	case	study	provides	an	example	both	of	an	analysis	describing	the	
probability	of	sea	level	rise,	as	well	as	an	expert	elicitation	of	the	likelihood	of	particular	models	
and	probability	distributions	of	the	coefficients	used	by	those	models	to	predict	future	sea	level	rise	
(Group	3).	The	assessment	of	the	probability	of	sea	level	rise	used	existing	models	describing	the	
change	in	five	components	of	sea	level	rise	associated	with	greenhouse	gas‐related	climate	change	
(thermal	expansion,	small	glaciers,	polar	precipitation,	melting	and	ice	discharge	from	Greenland	
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and	ice	discharge	from	Antarctica).	To	provide	a	starting	point	for	the	expert	elicitation,	initial	
probability	distributions	were	assigned	to	each	model	coefficient	based	on	the	published	literature.	

After	the	initial	probabilistic	assessment	was	completed,	the	draft	report	was	circulated	to	expert	
reviewers	considered	most	qualified	to	render	judgments	on	particular	processes	for	revised	
estimates	of	the	likelihood	of	particular	models	and	the	model	coefficients’	probability	
distributions.	Experts	representing	both	extremes	of	climate	change	science	(those	who	predicted	
trivial	consequences	and	those	who	predicted	catastrophic	effects;	individuals	whose	thoughts	had	
been	excluded	from	previous	assessments)	were	included.	The	experts	were	asked	to	provide	
subjective	assessments	of	the	probabilities	of	various	models	and	model	coefficients.	These	
subjective	probability	estimates	were	used	in	place	of	the	initial	probabilities	in	the	final	model	
simulations.	Different	reviewer	opinions	were	not	combined	to	produce	a	single	probability	
distribution	for	each	parameter;	instead,	each	reviewer’s	opinions	were	used	in	independent	
iterations	of	the	simulation.	The	group	of	simulations	resulted	in	the	probability	distribution	of	sea	
level	rise.	

Results	of	Analysis.	The	analysis,	completed	with	a	budget	of	$100,000,	provided	a	probabilistic	
estimate	of	sea	level	rise	for	use	by	coastal	engineers	and	regulators.	The	results	suggested	that	
there	is	a	65	percent	chance	that	the	sea	level	will	rise	1	millimeter	(mm)	per	year	more	rapidly	in	
the	next	30	years	than	it	has	been	rising	in	the	last	century.	Under	the	assumption	that	nonclimatic	
factors	do	not	change,	the	projections	suggested	that	there	is	a	50	percent	chance	that	the	global	
sea	level	will	rise	45	centimeters	(cm),	and	a	1	percent	chance	of	a	112	cm	rise	by	the	year	2100.	
The	median	prediction	of	sea	level	rise	was	similar	to	the	midpoint	estimate	of	48	cm	published	by	
the	Intergovernmental	Panel	on	Climate	Change	(IPCC)	shortly	thereafter	(IPCC	1996).	The	report	
also	found	a	1	percent	chance	of	a	4	to	5	meter	rise	over	the	next	2	centuries.	

Management	Considerations.	There	are	two	reports	(USEPA	1995c;	Titus	and	Narayanan	1996)	
that	discuss	several	uses	of	the	results	of	this	study.	By	providing	a	probabilistic	representation	of	
sea	level	rise,	the	assessment	allows	coastal	residents	to	make	decisions	with	recognition	of	the	
uncertainty	associated	with	predicted	change.	Rolling	easements	that	vest	when	the	sea	rises	to	a	
particular	level	can	be	properly	valued	in	both	“arms‐length”	transaction	sales	or	when	calculating	
the	allowable	deduction	for	a	charitable	contribution	of	the	easement	to	a	conservancy.	Cost‐benefit	
assessments	of	alternative	infrastructure	designs—which	already	consider	flood	probabilities—
also	can	consider	sea	level	rise	uncertainty.	Assessments	of	the	benefits	of	preventing	an	
acceleration	of	sea	level	rise	can	include	more	readily	low‐probability	outcomes,	which	can	provide	
a	better	assessment	of	the	true	risk	when	the	damage	function	is	nonlinear,	which	often	is	the	case.	
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Case Study 16: Knowledge Elicitation for a Bayesian Belief Network 
Model of Stream Ecology 
The	identification	of	the	causal	pathways	leading	to	stream	impairment	is	a	central	challenge	to	
understanding	ecological	relationships.	Bayesian	belief	networks	(BBNs)	are	a	promising	tool	for	
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modeling	presumed	causal	relationships,	providing	a	modeling	structure	within	which	different	
factors	describing	the	ecosystem	can	be	causally	linked	and	calculating	uncertainties	expressed	for	
each	linkage.	

BBNs	can	be	used	to	model	complex	systems	that	involve	several	interdependent	or	interrelated	
variables.	In	general,	a	BBN	is	a	model	that	evaluates	situations	where	some	information	already	is	
known,	and	incoming	data	are	uncertain	or	partially	unavailable.	The	information	is	depicted	with	
influence	diagrams	that	present	a	simple	visual	representation	of	a	decision	problem,	for	which	
quantitative	estimates	of	effect	probabilities	are	assigned.	As	such,	BBNs	have	the	potential	for	
representing	ecological	knowledge	and	uncertainty	in	a	format	that	is	useful	for	predicting	
outcomes	from	management	actions	or	for	diagnosing	the	causes	of	observed	conditions.	Generally,	
specification	of	a	BBN	can	be	performed	using	available	experimental	data,	literature	review	
information	(secondary	data)	and	expert	elicitation.	Attempts	to	specify	a	BBN	for	the	linkage	
between	fine	sediment	load	and	macroinvertebrate	populations	using	data	from	literature	reviews	
have	failed	because	of	the	absence	of	consistent	conceptual	models	and	the	lack	of	quantitative	data	
or	summary	statistics	needed	for	the	model.	In	light	of	these	deficiencies,	an	effort	was	made	to	use	
expert	elicitation	to	specify	a	BBN	for	the	relationship	between	fine	sediment	load	resulting	from	
human	activity	and	populations	of	macroinvertebrates.	The	goals	of	this	effort	were	to	examine	
whether	BBNs	might	be	useful	for	modeling	stream	impairment	and	to	assess	whether	expert	
opinion	could	be	elicited	to	make	the	BBN	approach	useful	as	a	management	tool.	

Probabilistic	Analysis.	This	case	study	provides	an	example	of	expert	elicitation	in	the	
development	of	a	BBN	model	of	the	effect	of	increased	fine	sediment	load	in	a	stream	on	
macroinvertebrate	populations	(Group	3).	For	the	purpose	of	this	study,	a	stream	setting	
(a	Midwestern,	low‐gradient	stream)	and	a	scenario	of	impairment	(introduction	of	excess	fine	
sediment)	were	used.	Five	stream	ecologists	with	experience	in	the	specified	geographic	setting	
were	invited	to	participate	in	an	elicitation	workshop.	An	initial	model	was	depicted	using	influence	
diagrams,	with	the	goals	of	structuring	and	specifying	the	model	using	expert	elicitation.	The	
ecologists	were	guided	through	a	knowledge	elicitation	session	in	which	they	defined	factors	that	
described	relevant	chemical,	physical	and	biological	aspects	of	the	ecosystem.	The	ecologists	then	
described	how	these	factors	were	connected	and	were	asked	to	provide	subjective,	quantitative	
estimates	of	how	different	attributes	of	the	macroinvertebrate	assemblage	would	change	in	
response	to	increased	levels	of	fine	sediment.	Elicited	input	was	used	to	restructure	the	model	
diagram	and	to	develop	probabilistic	estimates	of	the	relationships	among	the	variables.	

Results	of	Analysis.	The	elicited	input	was	compiled	and	presented	in	terms	of	the	model	as	
structured	by	the	stream	ecologists	and	their	model	specifications.	The	results	were	presented	both	
as	revised	influence	diagrams	and	with	Bayesian	probabilistic	terms	representing	the	elicited	input.	
The	study	yielded	several	important	lessons.	Among	these	were	that	the	elicitation	process	takes	
time	(including	an	initial	session	by	teleconference	as	well	as	a	3‐day	workshop),	defining	a	
scenario	with	an	appropriate	degree	of	detail	is	critical	and	elicitation	of	complex	ecological	
relationships	is	feasible.	

Management	Considerations.	The	study	was	considered	successful	for	several	reasons.	First,	the	
feasibility	of	the	elicitation	approach	to	building	stream	ecosystem	models	was	demonstrated.	The	
study	also	resulted	in	the	development	of	new	graphical	techniques	to	perform	the	elicitation.	The	
elicited	input	was	interpreted	in	terms	of	predictive	distributions	to	support	fitting	a	complete	
Bayesian	model.	Furthermore,	the	study	was	successful	in	bringing	together	a	group	of	experts	in	a	
particular	subject	area	for	the	purpose	of	sharing	information	and	learning	about	expert	elicitation	
in	support	of	model	building.	The	exercise	provided	insights	into	how	best	to	adapt	knowledge	
elicitation	methods	to	ecological	questions	and	informed	the	assembled	stream	ecologists	on	the	
elicitation	process	and	on	the	potential	benefits	of	this	modeling	approach.	The	explicit	
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quantification	of	uncertainty	in	the	model	not	only	enhances	the	utility	of	the	model	predictions,	
but	also	can	help	guide	future	research.	
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