Mouse Lung Carcinogens, Reactive Metabolites and Toxicity

David A. Eastmond Environmental Toxicology Graduate Program University of California, Riverside

Mouse Lung Carcinogens – Selected NTP Results

Chemical	NTP Lung tumors	NTP conclusion	NTP non-cancer lung pathology
Benzene (gavage)	Significant increases in alveolar/bronchiolar adenoma or carcinoma seen in both male and female mice	Clear evidence (included all tumor sites)	Increases in hyperplasia seen in male and female mice
Ethylbenzene (inhalation)	A significant increase in alveolar/bronchiolar adenoma or carcinoma was seen at the high dose in male mice; increase within historical control range	Some evidence	Increased alveolar epithelial metaplasia seen in 2 yr study; no effects reported in 13 week study
Naphthalene (inhalation)	A significant increase in alveolar/bronchiolar adenoma (and 1 carcinoma) was seen in female mice	Some evidence	Increases in chronic inflammation were seen in both the male and female mice
Styrene (gavage)	A significant increase in lung adenomas and carcinomas combined was seen in male mice	Suggestive evidence; not convincing evidence	No significant changes reported.

Mouse Carcinogen Toxicity & Metabolism

Chemical	Other non-NTP studies	Lung metabolism
Benzene	Slight lung toxicity reported in one study.	Metabolism by Cyp2F2 predominates in mouse lung
Ethylbenzene	Increases in DNA synthesis and decreases in metabolic enzymes reported in lungs in short-term studies	Metabolism by both Cyp2E1 and Cyp2F2 in lungs. Enhanced formation of ring hydroxylation products in vitro (at very low levels); no substantial evidence for their formation in vivo
Naphthalene	Naphthalene has been seen to damage the mouse lung in multiple studies; Selective damage to the Clara cells seen, particularly in the distal bronchioles.	 Higher rate of metabolism in mouse. Metabolism by Cyp2F predominates in mouse lung (distal bronchioles), results in a toxic 1R,2S-epoxide, and correlates with Clara cell toxicity.
Styrene	Lung tumors and hyperplasia seen in mice in other studies and by inhalation. Cytotoxicity and cell proliferation in the lung (esp. Clara cells) seen in short-term studies.	Metabolism by Cyp2F2 predominates in mouse lung. Metabolites of 4- vinylphenol implicated in lung toxicity.

Benzene

- Important industrial chemical
 and environmental contaminant
- Bone marrow toxicant and leukemia-inducing agent
- Lung carcinogen in mice. There are several reports of it being associated with lung cancer in humans
- Multiple metabolic pathways, and most likely, multiple mechanisms of action. The critical ones remain elusive.

ADH = alcohol dehydrogenase; ALDH = aldehyde dehydrogenase; CYP2E1 = cytochrome P-450 2E1; DHDD = dihydrodiol dehydrogenase; EH = epoxide hydrolase; GSH = glutathione; MPO = myeloperoxidase; NQ01 = NAD(P)H:quinone oxidoreductase

Source: adapted from Nebert et al. 2002; Ross 2000

ATSDR, 2007

Figure 3-3. Metabolic Pathways for Benzene

Others

Hydroxybenzoquinone Benzoquinone epoxide GSH conjugated BQ Biphenols and their oxidation products Diol epoxides Semiquinones and other radicals Reactive oxygen and nitrogen species Nitro-derivatives

ADH = alcohol dehydrogenase; ALDH = aldehyde dehydrogenase; CYP2E1 = cytochrome P-450 2E1; DHDD = dihydrodiol dehydrogenase; EH = epoxide hydrolase; GSH = glutathione; MPO = myeloperoxidase; NQ01 = NAD(P)H:quinone oxidoreductase

ATSDR, 2007

Source: adapted from Nebert et al. 2002; Ross 2000

ATSDR, 2005

ATSDR, 2010

Postulated Styrene Metabolism and MOA

Cruzan et al. (2012)

ATSDR, 2010

Saghir et al. 2009

Examples of Hard and Soft Electrophiles and Nucleophiles

Electrophiles

- Quinones, aldehydes, polarized double bonds
- Epoxides, strained ring lactones, alkyl sulfates, alkyl halides
- Arylcarbonium ions
- Benzylic carbonium ions, nitrenium ions
- Hard

Soft

Alkyl carbonium ions

Nucleophiles

- Thiol groups of cysteine residues
- Sulfur of methionine
 - 1° and 2° amino groups of proteins
- Amino groups in purine nucleobases
- Oxygen atoms of nucleotides
- Phosphate oxygens of DNA & RNA

Note: The preferred target can be influenced by the tissue microenvironment. Modified from Coles (1984-85)

NTP, 2008

Examples of DNA Adducts to Guanine and the Phosphate Backbone

Singh and Farmer (2006) Carcinogenesis 27:178-196

Mouse Lung Carcinogens

Epoxides or Bioactivated to Epoxides

- Ethylene oxide
- Glycidol
- Acrylamide
- Butadiene
- Chloroprene
- Urethane
- Vinyl chloride

Bioactivation Involving Quinones and/or Epoxides

- Benzene
- Benzofuran
- Cumene
- Ethyl benzene
- Naphthalene
- Styrene

Cytotoxicity and Genotoxicity

- There are multiple reports of DNA strand breakage and fragmentation induced by naphthalene. Similar results can be seen for other agents and endpoints.
- It is important to to consider the occurrence and impact of cytotoxicity in the interpretation of genotoxicity test data for risk assessment.
- The frequency of positive results considered to be irrelevant for predicting cancer risks is believed to increase significantly when high levels of cytotoxicity are seen. Maximum acceptable levels of toxicity have been established for the most common assays.

Cytotoxicity (cont.)

- Adherence to cytotoxicity guidelines which were largely developed for screening chemicals, may be less useful in evaluating the risks of identified carcinogens. For example at a given dose, cytotoxicity frequently occurs at the site where a tumor may later develop. In this case, it would seem unwise to discount genotoxic effects that are also observed at that target site.
- The relevance of genotoxicity results, as influenced by cytotoxicity, exists along a continuum, and using a single cut-off point would seem to be overly simplistic.

Apoptosis, Necrosis and DNA Breakage

Samejima and Earnshaw (2005) Nature Reviews Molecular Cell Biology 6: 677-688

Interrelationship between Cytotoxicity and Genotoxicity

Cell death w/o detectable genetic damage , Genotoxicity

Bioactive agent

Mutation

Cytotoxicity

Interrelationship between Cytotoxicity and Genotoxicity

Cell death w/o detectable genetic damage Genotoxicity

Bioactive agent

Mutation

Cytotoxicity

Interrelationship between Cytotoxicity and Genotoxicity

Cell death w/o detectable genetic damage Genotoxicity

Bioactive agent

Mutation

Cytotoxicity

Relevance of Chromosomal Damage

Thank you for your attention.

Questions?