Cover Sheet for

ENVIRONMENTAL CHEMISTRY METHOD

Pestcide Name: Quintozene (PCNB)

MRID #: 430615-01

Matrix: Soil

Analysis: GC/ECD

This method is provided to you by the Environmental Protection Agency's (EPA) Environmental Chemistry Laboratory (ECL). This method is not an EPA method but one which was submitted to EPA by the pesticide manufacturer to support product registration. EPA recognizes that the methods may be of some utility to state, tribal, and local authorities, but makes no claim of validity by posting these methods. Although the Agency reviews all Environmental Chemistry Methods submitted in support of pesticide registration, the ECL evaluates only about 30% of the currently available methods. Most methods perform satisfactorily but some, particularly the older methods, have deficiencies. Moreover, the print quality of the methods varies considerably because the methods originate from different sources. Therefore, the methods offered represent the best available copies.

If you have difficulties in downloading the method, or further questions concerning the methods, you may contact Elizabeth Flynt at 228-688-2410 or via e-mail at flynt.elizabeth@epa.gov.

March of Protection

و الما يوان يوسط الهويوسية بها مراد الراد وهو الم المجاوعة العراضية المحادة الموادية المراد والانجام المحادث ا المراد المراد المراد المحادث المراد المحادث المحادث

是2000年底的数别。如此飞机为26

H. E. State of the second

ACCOUNT OF THE SECOND

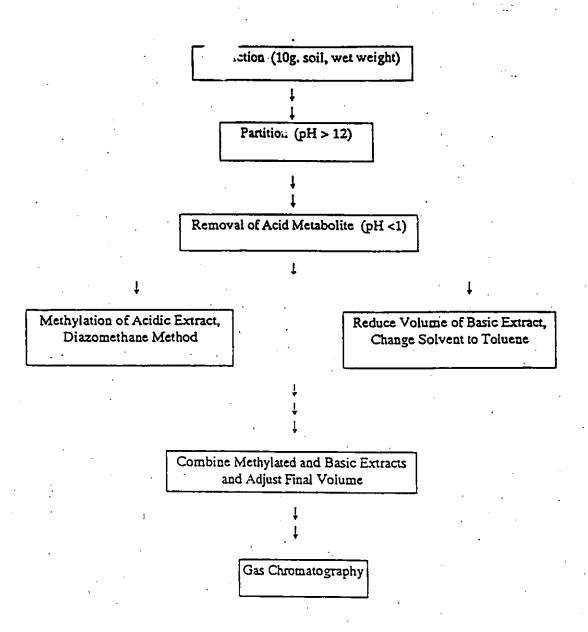
If the appears of the appearance of the content of

this encense attribute on the elemental man selver if the element of the infilt element profit.

In filter a bit to the R-B-B-B of the all of the elementary contents of the elementary of the element of the element of the elementary of the element

Figures

Pentachlorophenol (PCP)


Pentachlorothioanisole (PCTA)

Pentachlorothioanisole sulfoxide (PCTASO)

2,3,4,5-tetrachlorothioanisole sulfone (TCTASOO)

Figure 1: Molecular structure of PCNB, PCB, PCA, HCB, PCP, PCTA, PCTASO, and TCTASOO

Figure 2: PCNB and Metabolites Analysis Method
Flowchart

TITLE

Residue Analytical Method for Terraclor

Authors

Dr. M. Michael Arjmand and E. K. Gounaris

Deliga in Company march

The Confident of

J. 1910 1. 1

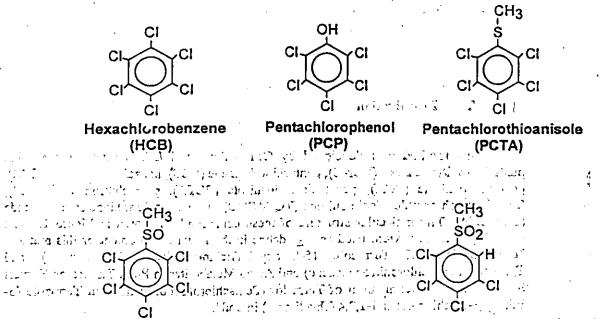
Performing Laboratory

Centre Analytical Laboratories, Inc.
3048 Research Drive
State College, PA 16801

TABLE OF CONTENTS

Title		1
TAB	LE OF CONTENTS	<u>:2</u>
TAB	LE OF FIGURES	ن ــــــــــــــــــــــــــــــــــــ
I.	Summary	4
II.	Introduction	4
m.	MethodA. Chemicals/Supplies	6
	B. Equipment	
	C. Instrumentation	
	D. Preparation of Standard and Spiking Solutions	
	E. Analytical Procedure	
	Sample Processing Analysis	و
IV.	Method of Calculation	13
V.	Results and Discussion	14
VI.	References	19

Table of Figures


Figure 1: Molecular Structure of PCNB and Metabolites					
The state of the s	Spiked at 10 µg and Diluted 20 fold17				
Figure 6: A Typical Calibration Curve	18				
	general control of the second control of the				
in an annual de la constant de la co	ndÖta (ab) .√				
The second of th	#2+47 24 - 1.7				

I. Summary

Soil samples were extracted with acetone/hexane. Water (pH > 12) was added to the acetone/hexane extract and the mixture was re-extracted in hexane. The water was then acidified (pH < 1) and once again extracted with hexane. The extract of the acidified water was methylated with diazomethane and combined with the remainder of the sample. The solvent was changed to toluene and the volume of the combined extracts was adjusted. The samples were analyzed for PCNB and metabolites and impurities using GC/ECD.

II. Introduction

This method was developed by Centre Analytical Laboratories to determine pentachloronitrobenzene (PCNB), pentachlorobenzene (PCB), hexachlorobenzene (HCB), pentachloroaniline (PCA), pentachlorothioanisole (PCTA), pentachlorothioanisole sulfone (TCTASOO) and pentachlorothioanisole sulfoxide (PCTASO). The molecular structure of these compounds is shown in Figure 1. The following references were used as a guideline in the initial development of this method: "Determination of Terrazole (5-Ethoxy-3-Trichloromethyl-1,2,4-Thiadiazole) and Terraclor (Pentachloronitrobenzene) and Allied Metabolites in Plant Tissues or Harvest Samples" and "Determination of Terraclor (Pentachloronitrobenzene) and Terrazole (5-Ethoxy-3-Trichloromethyl-1,2,4-Thiadiazole) in Soil".

Pentachlorothioanisole sulfoxide (PCTASO)

2,3,4,5-tetrachlorothioanisole sulfone (TCTASOO)

Figure 1: Molecular structure of PCNB, PCB, PCA, HCB, PCP, PCTA, PCTASO, and TCTASOO

III. Method

A. Chemicals/Supplies

Acetone, residue grade 1-Decanol Diazomethane in diethyl ether solution Diethyl ether, residue grade Dry Ice n-Hexane, residue grade HCB Analytical Standard AC-1194-38C Nitrogen PCA Analytical Standard AC-1234-4 PCB Analytical Standard AC-1166-14 PCNB Analytical Standard AC-1261-133 PCP Analytical Standard AC-1261-84 PCTA Analytical Standard AC-1166-16 PCTASO Analytical Standard AGD-1384-005 Sodium Hydroxide Sulfuric Acid TCTASOO Analytical Standard AGD-1384-024 Toluene, residue grade

Baker Baker Aldrich Baker Penn State University Baker Uniroyal Chemical Co. MG Gases Uniroyal Chemical Co. Uniroyal Chemical Co. Unitoyal Chemica! Co. Uniroyal Chemical Co. Uniroyal Chemical Co. Uniroyal Chemical Co. Baker Baker Uniroyal Chemical Co. Baker

B. Equipment

Balance
Centrifuge
Centrifuge bottle, teflon 250 ml
Hobart Food Chopper
Erlenmeyer Flask, 250 ml
pH meter
Rotary evaporator, Buchi Rotovap
Round bottom flasks, 500 ml
Separatory funnel, 250 ml
Standard laboratory equipment:
beakers, pipets, test tubes etc.
Turbo Vap LV evaporator

Mettler PE 3000
Damon/IEC
Nalgene
Hobart Mfg. Co.
Pyrex, Kimax
Beckman
Brinkman
Pyrex, Kimax
Nalgene

Pyrex, Kimex Zymark

C. Instrumentation

The gas chromatogragh and integrator inodels, column type and operating conditions were as follows:

The state of the state of

Instrument Hewlett Packard model 5890 series gas chromatograph Column Restek RTX-35, 30 m, 0.53 mm ID, 0.25 um df initial temp.100°C, initial time 2 min Oven rate A: 5°C/min to 200°C, final time 0 min rate B: 20°C/min to 270°C, final time 5 min Detector Electron Capture Detector (ECD) ...np. 300°C Injector Direct Injection temp, 270°C Carrier Gas Flow - Hydrogen, 10 ml/min Make-up Flow Nitrogen, 35 ml/min Shimadzu C-4RA Chromatopac Integrator

D. Preparation of Standard and Spiking Solutions

· 大学のないは、1200年の人では、一般の大学の大学の大学の人

Analytical standards received from the sponsor were used to prepare individual compound stock solutions from which working standard and method day spiking solutions were prepared. Stock solutions of each compound, at a concentration of 1.0 mg/ml, were made by weighing out 10 mg of the analytical standard on an analytical balance, and dissolving it in 10 ml of toluene. The amount of toluene added was corrected considering the percent purity of the standard. For example, if HCB was 99.8% pure then 10 mg would be weighed out and dissolved in 9.98 ml of toluene (10.0 \times 9.998). The PCP stock solution was prepared using methanol.

A solution of the combined seven compounds in toluene, at a concentration of 100 μ g/ml, was made by adding 2 ml of each of the individual compound stock solutions at 1.0 μ g/ml of PCB, HCB, PCNB, PCA, PCTA, TCTASOO and PCTASO, to 6 ml of toluene, so that the final volume was 20 ml. A solution of PCP at 100 μ g/ml was made by diluting the 1.0 mg/ml stock solution of PCP ten-fold with methanol.

A Method day spiking solution of the combined seven compounds at a concentration of 10 µg/ml was made by a ten-fold dilution of the 100 µg/ml seven compound solution with toluene. Likewise, PCP day spiking solution at 10 µg/ml was made by a ten-fold dilution with methanol of the 100 µg/ml PCP solution. Fortification of the method day spike samples at a 1 µg level was accomplished by adding 100 µl of the 10 µg/ml spiking solutions to a control sample. Fortification of the method day spike samples at a 10 µg level was done by adding 100 µl of the 100 µg/ml spiking solutions to a control sample.

A 10 µg/ml standard stock sciution was made by adding 200 µl of each individual compound stock solutions of PCB. HCB, PCP, PCNB, PCA, PCTA, TCTASOO and PCTASO at 1 mg/ml, and bringing the final volume to 20 ml with toluene. A 1 µg/ml standard stock solution of the combined eight compounds was prepared by diluting the 11 µg/ml standard stock solution ten-fold with toluene. Dilutions of the 10 µg/ml and 1 µg/ml standard stock solutions were made to prepare working 0.100 µg/ml, 0.050 µg/ml, 0.010 µg/ml and 0.003 µg/ml standards.

D. Analytical Procedures

1. Sample Processing

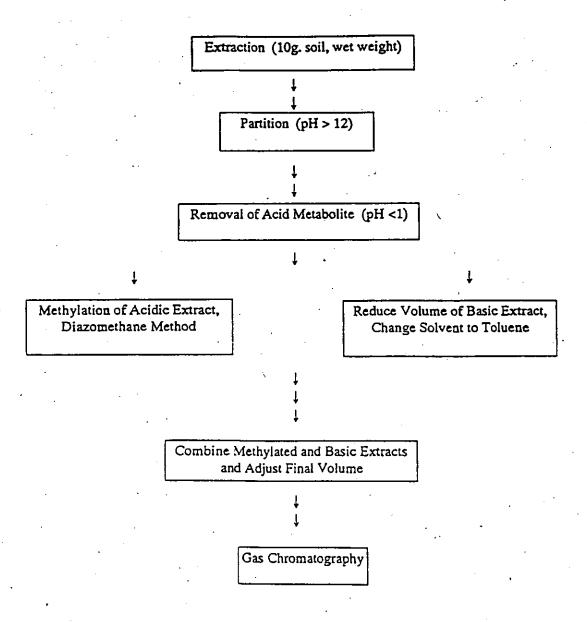
The frozen soil core samples were received in the laboratory. The frozen cores were divided into smaller pieces with a cleaver and rubber mallet, or by other appropriate means. The stones and debris were removed. A Hobart Food Chopper was pre-chilled with dry ice and the frozen soil pieces were put inside. The soil was chopped and homogenized with dry ice. The soil was then placed in sample containers and stored in the freezer where the dry ice was allowed to sublime. The soil samples were kept under freezer conditions $(-24^{\circ}C \pm 7^{\circ}C)$ until analysis.

I'm Gerra whether en hamelels emanding 50% b

The control of 2. Analysis of the model of the role of the forest of the second of the

ស្ត្រា ស្រុក គឺ១០ស្គ្រា និង វិ**ធ ស**រើជាដែល

A flow diagram of the analysis procedure is shown in Figure 2. Detailed explanations of each step are as follows:


Step 1 Extraction (10 g soil, wet weight)

and a national production to a training of the second of the second of the second of the second of the second

The control of the same of

Weigh 10 g of soil in a 250 ml teflon centrifuge bottle. Fortify the two spike samples used to determine extraction method recoveries for the set of samples. Add 100 ml 50:50 v/v acetone:hexane and shake vigorously for 2 min. Centrifuge at 1500 RPM for 5 min. Pour the supernatant into separatory funnel leaving the soil in the bottle. Add another 50 ml of 50:50 v/v acetone:hexane to soil, shake 1 min and centrifuge. Add supernatant to separatory funnel.

Figure 2: PCNB and Metabolites Analysis Method Flowchart

Step 2 Partition

Add 50 ml distilled/deionized water (pH >12, adjusted with 25% NaOH) to separatory funnel and shake 20 sec. Drain the water/acetone layer into a 250 ml beaker and collect the hexane layer in a 250 ml Erlenmeyer flask. Re-extract the water/acetone layer with 50 ml hexane, shaking for 1 min. Drain the water/acetone layer into the 250 ml beaker and add the remaining hexane layer to the flask. The basic extract in the Erlenmeyer flask contains compounds PCB, HCB, PCNB, PCA, PCTA, TCTASOO, and PCTASO.

Step 3 (Removal of Acidic Metabolite

Pour the water/acetone portion back into the separatory funnel and add 10 ml 10 N H₂SO₄ to lower the pH < 1. Add 50 ml hexane, shake vigorously for 1 min and drain the water/acetone layer into the beaker. Pour the hexane layer into a 500 ml round bottom flask. Re-extract the water/acetone with another 50 ml hexane, by shaking for 1 min. Drain the water/acetone layer into the beaker and add the remaining hexane layer to the round bottom flask. The acidic extract in the round bottom flask contains compound PCP.

Step 4 Methylation, Diazomethane Method

Add 10 drops of decanol to the acidic extract to prevent the sample from going to dryness during evaporation and reduce the volume to about 5 ml using a rotary evaporator. Transfer this portion of the sample into a methylation vial, rinsing the round bottom flask with hexane. Further reduce the volume of the sample to 0.5 ml using a TurboVap LV evaporator under nitrogen. Add 0.5 ml diazomethane, or enough to turn the sample yeilow, let it stand under a hood for 10 minutes. Evaporate off the diazomethane using the TurboVap, reducing the volume again to 0.5 ml.

Step 5 Combine the Extracts and Adjust the Volume

Rinse a round bottom flask with acetone and transfer the basic extract, prepared in step 2, from the Erlenmeyer flask to the round bottom flask. Reduce the volume to about 5 ml using the rotary evaporator, then add 10 ml toluene. Pour the methylated portion of the sample into the round bottom rinsing the vial with 15 ml toluene. Reduce the volume of the combined extracts to about 5 ml with the rotary evaporator, then and bring the final volume up to 10 ml with toluene. The sample is now ready for GC analysis.

Step 6 Gas Chromatography

Inject a 1 μ l aliquot of each eight-component standard in the range of 0.003 μ g/ml to 0.100 μ g/ml into the gas chromatograph. Record the resulting peak areas, or peak heights, and plot this data versus concentration (μ g/ml) of the corresponding standard to obtain standard calibration curves. Prepare standard curves for each analysis day.

Inject a 1 µl aliquot of the sample into the gas chromatograph. If necessary, dilute the sample with toluene so that the signal response is within the standard curve range. Record peak areas, or peak heights, and determine the concentration of each component compound relative to the standard curves generated for that day.

IV. Method of Calculation

· 安藤 東京 日本 いっと はない とり きいよう といない

The peak areas corresponding to the eight compounds (PCB, HCB, PCP, PCNB, PCA, PCTA, TCTASOO, and PCTASO) in the standards were obtained from the chromatograms and regressed versus the concentration of the compounds in the standards. Statistics were generated on a Swan Corporation 386/33 computer using Axum program capable of performing quadratic regression (second order polynomial regression) on the peak areas versus their corresponding concentrations to generate standard curves. The following quadratic equation was used:

$$y = b_0 + b_1 \times + b_2 \times 2 + b_1 + b_2 \times 2 + b_2 \times 2 + b_3 + b_4 \times 2 + b_4$$

A corrected peak area value, if required, was determined using the following formula:

Peak area in sample corrected = Peak area in sample - Peak area in control

The corrected peak area of each sample was used to calculate the amount in ug/ml of each compound found in the samples analyzed relative to the generated standard curves. The square of the correlation coefficient (R²) was used to evaluate the fit of the curve. The µg/ml compound found value was then multiplied by the final volume of the sample to yield the µg compound found.

 μ g compound found = [μ g/ml compound found] x [final volume (ml)]

The µg compound found values were converted to ppm compound found value by dividing by the sample weight. The ppm compound found value was then divided by ppm compound added to obtain the percent recovery in fortified method spikes.

If the average percent recovery for the two spiked samples of the set was below 100%, the amount of compound found in the sample was divided by the average recovery of the spikes to give the corrected value. No correction was made for average recoveries above 100%.

μg compound found corrected = μg compound found / average spike recovery

The ppm compound found in the samples was calculated using the μg compound found corrected for percent recoveries divided by sample weight.

V. Results and Discussion

An eight day Validation (CAL 004-05) was conducted by Centre Analytical Laboratories on the determination of PCNB, PCB, HCB, PCP, PCA and PCTA in soil using the method described herein. The validation consisted of five spiking levels in duplicate for each of the compounds, a total of 60 fortified samples. The spiking levels were 0.005ppm, 0.250ppm, 1.00ppm, 3.00ppm and 10.0ppm. The limit of detection (LOD) was 0.003ppm; at this level the signal to background ratio was greater than or equal to 5. The limit of quantitation (LOQ) was 0.005ppm; this level is set above the LOD so that the method was not pushed to its limits. The average recoveries for the eight day study were as follows:

COMPOUND	8 DAY AVERAGE RECOVERY		STD-DEVIATION
PCNB	100%		4 %
PCB	88%	14	2 %
HCB	97%		3 %
PCA	101%		3 %
PCTA	101%		3 %
PCP (as PCP-OMe)	90%		5 %

This data indicates the analytical method is suitable for these compounds.

A one day validation was conducted on the determination of TCTASOO and PCTASO in soil using this same analytical method. It consisted of three spiking levels in duplicate, a total of six fortified samples. The spiking levels were 0.005ppm, 0.100ppm and 1.00ppm. As in the previous validation, the limit of detection (LOD) was 0.003ppm; at this level the signal to background ratio was greater than or equal to 5. The limit of quantitation (LOQ) was 0.005ppm; this level is set above the LOD so that the method was not pushed to its limits. The average percent recoveries were as follows:

COMPOUND	AVERAGE RECOVERY	STD-DEVIATION
TCTASOO	102%	15 %
PCTASO	103%	6 %

This data indicates the analytical method is also suitable for these compounds.

Examples of representative chromatograms of a standard, control sample and a spiked control, in addition to a typical standard calibration curve are shown in Figures 3-6.

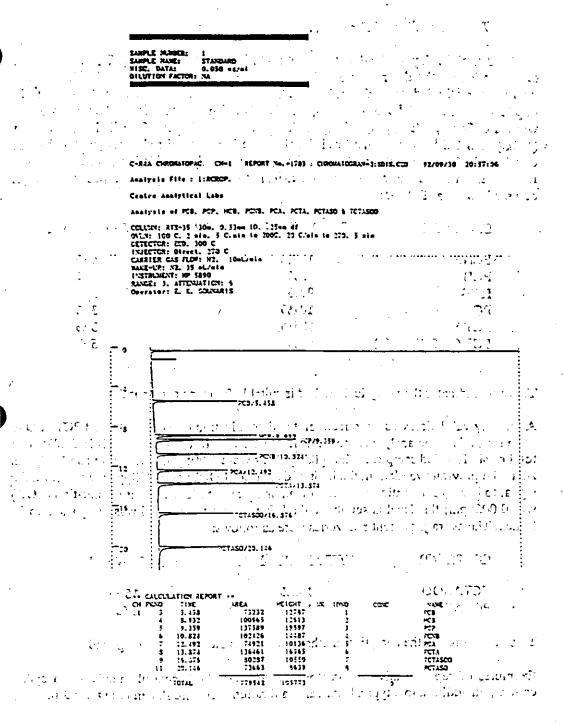


Figure 3: Chromatogram of a 0.050 µg/ml Standard Solution

BEST AVAILABLE COPY

```
IN OF PCS, PCP, HCS. PCSS, PCS, PCSS, PCSS, PCSSSO & TETAMO
COLUMN STR-13 JON, 8,51-0 10. .210m 16
ONLY 100 C. 2 on, 5 Colo to 2005, 23 Colo
CTICTOR: ECD, 100 C
STRETCH: ECD, 100 C
CAMBIE CAS *LCC* 120 C
CAMBIE CAS *LCC* 12, 100-1 on
MACCAP* 22, 15 doi.on
INTERMEDIATE NO 5300
ENGISE A TECNATION 6
Decrator: C. E. COLUMNS
                                                     7.6.317
2.7.284 7.314 7.667
                                                        $120-750-91-127 | 0,737
$120-751 | 90-8110-751
$120-750 | 120-136 | 90-120-162
                                                               5. 13. 461 <del>201</del>4/13. 534 (11. 116
                                                                                 12, 440 | 15, 251
                                                               19,269 19,229
                                                                              21.745 21.437 21.474
  ** CARTALIST *** PP *** CARTALIST *** PP *** CARTALIST *** PP *** CARTALIST *** PP *** CARTALIST ***
                                                                                                                                                                                                                                                                                                                         TOTAL
                                                                                                                                                                                                                                                    3996
```

Figure 4: Chromatogram of a Control Sample

BEST AVAILABLE COPY

SAMPLE MANBER: 1 SAMPLE MANE: SPIEE MISC. CATA: 9118886 10 48 DILUTIC: FACTOR: 20

C-R4A CHROMATOPAC CH-1 REPORT No.=1784 CHROMATOGRUM=2:SDIS.C23 92/09/30 22:32:58

Analysis File: 1:RCROP.

Centre Analytical Labs

Analysis of PCB. PCP, HCB. PCNB. PCA. PCTA. PCTASO & TCTASOO

COLUMN: RTX=33 30m. 0.33em ID. .25m df

CNEN: 100 C. 2 min. 5 Comin to 200C. 20 Comin to 270. 5 min

RETECTOR: ECD. 30m C

INJECTOR: Direct. 270 C

CARRIER GAS FLOW: H2. 10mL/min

MAKE-UP: N2. 33 mL/min comin (1) MAKE-UP: N2. 35 mL/min comin (2) MAKE: 3. ATTENNATION: 6

Operator: F. K. GOLNARIS

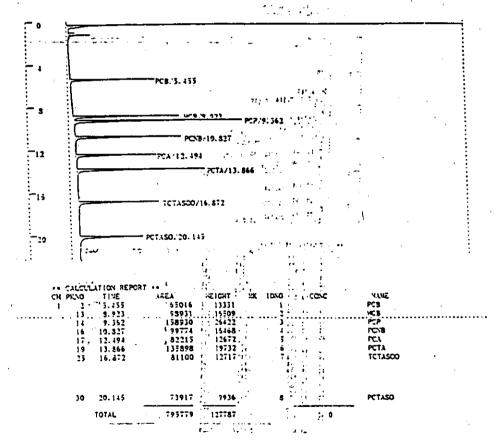


Figure 5: Chromatogram of a Control Spiked at 10 µg and Diluted 20 fold

Electronical open in the last

Epi (21)

BEST AVAILABLE COP

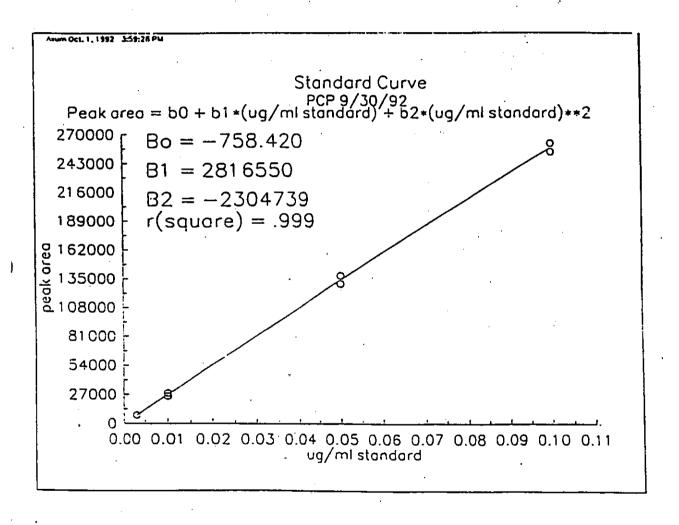


Figure 6: A Typical Calibration Curve

BEST AVAILABLE COPT

VI. References

1. "Determination of Terrazole (5-Ethoxy-3-Trichloromethyl-1,2,4-Thiadiazole) and Terraclor (Pentachloronitrobenezene) and Allied Metabolites in Plant Tissues or Harvest Samples", Uniroyal Method CAM-24-73, July 3,1973.

2. "Determination of Terrachlor (Pentachloronitrobenzene) and Terrazole (5-Ethoxy-3-Trichloromethyl-1,2,4-Thiadiazole) in Soil", W.P. Griffith, April 28,1970.

61 = 28183330

C. 2 -- 230 - 71.6 r(c more) = .0.0

6.00, 6.00 0.02 0.03 0.03 0.03 0.07 0 % 0.00 0.01

15

gyming gyrig han titland an a'r di di dig thaib an a