Cover Sheet for # ENVIRONMENTAL CHEMISTRY METHOD Pestcide Name: Dichloropropene *MRID* #: 445365-05 *Matrix:* Water Analysis: GC/MS This method is provided to you by the Environmental Protection Agency's (EPA) Environmental Chemistry Laboratory (ECL). This method is not an EPA method but one which was submitted to EPA by the pesticide manufacturer to support product registration. EPA recognizes that the methods may be of some utility to state, tribal, and local authorities, but makes no claim of validity by posting these methods. Although the Agency reviews all Environmental Chemistry Methods submitted in support of pesticide registration, the ECL evaluates only about 30% of the currently available methods. Most methods perform satisfactorily but some, particularly the older methods, have deficiencies. Moreover, the print quality of the methods varies considerably because the methods originate from different sources. Therefore, the methods offered represent the best available copies. If you have difficulties in downloading the method, or further questions concerning the methods, you may contact Elizabeth Flynt at 228-688-2410 or via e-mail at flynt.elizabeth@epa.gov. GRM.: 94.15 EFFECTIVE: March 23, 1995 SUPERSEDES: New Determination of Residues of cis- and trans-3-Chloroallyl Alcohol in Water by Capillary Gas Chromatography with Mass Selective Detection D. O. Duebelbeis and A. D. Thomas North American Environmental Chemistry Laboratory DowElanco Indianapolis, Indiana 46268-1053 ## A. Scope This method is applicable for the quantitation of residues of the 1,3-dichloropropene metabolites, cis- and trans-3-chloroallyl alcohol (CAAL) in water. The method was validated over the concentration range 0.10 to 5.2 ng/mL with a limit of quantitation of 0.10 ng/mL. CI OH CI— OH cis-3-Chloroallyl Alcohol CAS 4643-05-4 trans-3-Chloroallyl Alcohol CAS 4643-06-5 ## B. Principle CAAL residues in water are extracted with methyl-t-butyl ether (MTBE). The MTBE is dried and purified by passing over anhydrous magnesium sulfate and a silica gel solid phase extraction (SPE) column. Hexane is added and the sample is concentrated using a Snyder distillation column. The sample is further concentrated by evaporation and brought to a final volume of 1 mL with hexane. CAAL residues in hexane are derivatized with isobutyl chloroformate in the presence of pyridine to their corresponding cis- and trans-3-chloroallyl isobutyl carbonates (CAIBC) and analyzed by capillary gas chromatography with mass selective detection (GC/MSD). GRM 94.15 ## C. Safety Precautions - Each analyst must be acquainted with the potential hazards of the reagents, products, and solvents used in this method before commencing laboratory work. SOURCES OF INFORMATION INCLUDE: MATERIAL SAFETY DATA SHEETS, LITERATURE, AND OTHER RELATED DATA. Safety information on non-DowElanco products should be obtained from the container label or from the supplier. Disposal of reagents, reactants, and solvents must be in compliance with local, state, and federal laws and regulations. - Acetone, hexane, MTBE and 1-propanol are flammable and should be used in wellventilated areas away from ignition sources. - 3. cis- and trans-3-Chloroallyl alcohol are corrosive and lachrymators. It is imperative that proper eye and personal protection equipment be used when handling these compounds. Handling of neat material should be carried out in a fume hood. - 4. Isobutyl chloroformate is highly toxic, irritating to eyes, respiratory system and skin. It is imperative that proper eye and personal protection equipment be used when handling this reagent. Handling of neat material should be carried out in a fume hood. ## D. Equipment (Note L.1.) - 1. Automatic sampler, Model 7673, Hewlett-Packard, Wilmington, DE 19808. - Balance, analytical, Model AE200, Mettler Instrument Corporation, Hightstown, NJ 08520. - 3. Centrifuge, with rotor to accommodate 8-mL vials, Model Centra-8, International Equipment Company, Needham Heights, MA 02194. - 4. Centrifuge, with rotor to accomodate 2-oz bottles, Model CU-5000, International Equipment Company. - Evaporator, N-Evap, Model 111, Organomation Associates, Inc., South Berlin, MA 01549. - 6. Gas chromatograph, Model 5890 Series II, Hewlett-Packard. - 7. Heater, dry bath incubator, catalog number 11-718-2, Fisher Scientific, Pittsburgh, PA 15219. - 8. Heater, dry bath incubator (aluminum) heating block, catalog number 11-718-16, Fisher Scientific. - Hot plate, Thermolyne extra-capacity hotplate, catalog number 11-496-5A, Fisher Scientific. - Mass selective detector, Model 5971A, Hewlett-Packard, Palo Alto, CA 94304. - 11. Mass selective detector data system, Model G1034B, Hewlett-Packard. - Shaker, variable speed reciprocating with box carrier, Model 6000, Eberbach Corporation, Ann Arbor, MI 48106. **GRM 94.15** - Ultrasonic bath, Model 1200, Branson Cleaning Equipment Company, Shelton, CT 06484. - 14. Vacuum manifold box, Model SPE-21, J.T. Baker, Inc., Phillipsburg, NJ 08865. - Vial crimper, catalog number 8710-0979, Hewlett-Packard, Wilmington, DE 19808. - 16. Vortex mixer, Model G-560, Scientific Industries, Inc., Bohemia, NY 11716. - Water purification system, Model Milli-Q UV Plus, Millipore Corporation, Milford, MA 01757. ## E. Glassware and Materials (Note L.1.) - 1. Bottle, 2 ounce, round, wide-mouth, clear, with PTFE-lined screw caps, catalog number 03-320-11C, Fisher Scientific, Pittsburgh, PA 15219. - Column, capillary gas chromatography, Durabond-17 liquid phase, 20 m x 0.18 mm i.d., 0.3 μm film thickness, catalog number 121-1723, J&W Scientific, Folsom, CA 95630. - 3. Column, silica gel SPE, catalog number 7086-07, J.T. Baker, Inc. - 4. Column adapter, PTFE, catalog number 120-1100, Jones Chromatography, Inc., Lakewood, CO 80228. - 5. Column inlet liner, deactivated, catalog number 5181-3315, Hewlett-Packard. - 6. Column reservoir, 25 mL, catalog number 71213-1011, Varian Sample Preparation Products, Harbor City, CA 90710. - Erlenmeyer flask, 50 mL, 19/22 joint, catalog number 296510-0050, Kontes, Vincland, NJ 08360. - 8. Filter, charcoal, catalog number 7972, Chrompack, Inc., Raritan, NJ 08869. (Note L.2.) - 9. Filter, moisture, catalog number 7971, Chrompack, Inc. (Note L.2.) - 10. Filter, oxygen, catalog number 7970, Chrompack, Inc. (Note L.2.) - 11. Gas, helium, 99.995% purity, Airco, Murray Hill, NJ 07974. - 12. Gas, nitrogen, 99.99% purity. Airco. - Microdispenser, 10 μL and 25 μL, Drummond Dialamatic Microdispenser, catalog numbers 300210 and 300225, Drummond Scientific Company, Broomall, PA 19008. - Microdispenser replacement bore, 10 μL and 25 μL, catalog numbers 300210G and 300225G, Drummond Scientific Company. - 15. Micro Snyder distilling column, 19/22 joint, catalog number 569001-0319, Kontes. Effective Date: March 23, 1995 GRM 94.15 - Syringe, 100 and 500 μL capacity, catalog numbers 80600 and 80800, Hamilton Co., Reno, NV 89520. - 17. Vial, 8 mL, with PTFE-lined screw cap, catalog number B7800-3, National Scientific Company, Lawrenceville, GA 30243. - 18. Vial, 45 mL, with PTFE-lined screw cap, catalog number 60958A-11, Kimble Glass, Vineland, NJ 08360.. - 19. Vial, autosampler, 2 mL, catalog number C4011-1, National Scientific Company. - 20. Vial seal, catalog number C4011-1A, National Scientific Company. ## F. Reagents and Chemicals (Note L.1.) ## 1. Reagents - a. Acetone, Optima grade, catalog number A929-4, Fisher Scientific. - b. Hexane, Optima grade, catalog number H303-4, Fisher Scientific. - Hydrochloric acid, 0.1 N, ACS reagent grade, certified concentration, catalog number SA54-4, Fisher Scientific. - d. Isobutyi Chloroformate, 98%, catalog number 17798-9, Aldrich Chemical Company, Milwaukee, WI 53233. - e. Magnesium sulfate (anhydrous), certified, catalog number M65-500, Fisher Scientific. - f. Methyl-t-butyl ether, HPLC grade, catalog number E127-4, Fisher Scientific. - g. 1-Propanol, 99.5+ %, HPLC grade, catalog number 29,328-8, Aldrich Chemical Company. - h. Pyridine, HPLC grade, catalog number 27040-7, Aldrich Chemical Company. - i. Sodium chloride, ACS reagent grade, catalog number S271-1, Fisher Scientific. - j. Sodium sulfate (anhydrous), certified ACS grade, catalog number S421-500, Fisher Scientific. #### k. Standards - (1) cis-3-Chloroallyl alcohol - The cis-CAAL standard, AGR164303, Lot Number GHC 0083-27, with a purity of 95.1% was used in this study (1). - (2) trans-3-Chloroallyl alcohol - The trans-CAAL standard, AGR159855, Lot Number GHC-2-12-119, with a purity of 94.8% was used in this study (2). Effective Date: March 23, 1995 **GRM 94.15** Obtain from Test Substance Coordinator, DowElanco, Indianapolis, IN 46268-1053 ## G. Preparation of Standards All solutions prepared in Section G should be stored in amber bottles and sealed with PTFE-lined caps. #### 1. Preparation of cis- and trans-CAAL Stock Solutions cis- and trans-CAAL are volatile liquids, and pose some difficulty in weighing to a specific value. The following procedure is meant as a guideline to stress that the analyte be accurately weighed and recorded to four significant figures. Based upon an average density of 1.17 g/mL (3), a 100- μ L syringe was used to deliver 86 μ L of cis- or trans-CAAL in the preparation of stock solutions. - a. Tare a 100-mL volumetric flask and sintered glass stopper. Deliver 86 μL of cis-CAAL to the flask and stopper the flask. Weigh and record the amount of cis-CAAL in the flask. Dilute to volume with acetone to obtain a 1000 μg/mL stock solution. - b. Tare a 100-mL volumetric flask and sintered glass stopper. Deliver 86 μL of trans-CAAL to the flask and stopper the flask. Weigh and record the amount of trans-CAAL in the flask. Dilute to volume with acetone to obtain a 1000 μg/mL stock solution. ## Preparation of cis- and trans-CAAL Spiking Solutions - a. Transfer 1.0 mL each of the stock solutions in Sections G.1.a. and G.1.b. to a 100-mL volumetric flask and bring to volume with acetone to obtain an initial solution of 10.0 µg/mL for each cis- and trans-CAAL. This solution is used for preparation of spiking solutions. - b. Solutions for spiking water samples are prepared by diluting the initial solution from Section G.2.a. with acetone as follows: | Aliquot of
10.0 µg/mL Soln.
mL | Final Soln.
Volume
mL | Spiking Soln.
Final Conc.
ng/mL | Equivalent Sample Conc.a ng/mL | |--------------------------------------|-----------------------------|---------------------------------------|--------------------------------| | 0.100 | 250 | 4.00 | 0.100 | | 0.100 | 100 | 10.0 | 0.250 | | 0.500 | 250 | 20.0 | 0.500 | | 1.00 | 250 | 40.0 | 1.00 | | 1.00 | 100 | 100. | 2.50 | | 2.00 | 100 | 200. | 5.00 | ^a The equivalent sample concentration is based on fortifying a 40-mL water sample with 1.0 mL of spiking solution. #### 3. Preparation of cis- and trans-CAAL Calibration Solutions a. Transfer 1.0 mL each of the stock solutions in Sections G.1.a. and G.1.b. to a 100-mL volumetric flask and bring to volume with hexane to obtain an initial Effective Date: March 23, 1995 **GRM 94.15** solution of 10.0 μ g/mL for each cis- and trans-CAAL. This solution is used for preparation of calibration solutions. b. Solutions for calibration are prepared by diluting the initial solution from Section G.3.a. with hexane as follows: | Aliquot of
10.0 µg/mL Soln. | Final Soln.
Volume | Soln. Final
Conc. | Equivalent
Sample Conc.a | |--------------------------------|-----------------------|----------------------|-----------------------------| | mL | mL | ng/mL_ | ng/mL | | 0.050 | 250 | 2.00 | 0.050 | | 0.100 | 250 | , 4.00 | 0.100 | | 0.500 | 250 | 20.0 | . 0.500 | | 1.00 | 100 | 100. | 2.50 | | 2.00 | 100 | 200. | 5.00 | | 4.00 | 100 | 400. | 10.0 | The equivalent sample concentration is based on the concentration of a 40-mL water extract to a final volume of 1.0 mL. c. Calibration standards are prepared for capillary gas chromatography/mass spectrometry as described in Steps I.1.r. through I.1.x. ## H. Gas Chromatography/Mass Spectrometry ## 1. Column Install the splitless column inlet liner (Section E.5.) and the capillary column (Section E.2.) in the split/splitless injection port of the GC/MSD following the manufacturer's recommended procedure. ## 2. Typical Operating Conditions Instrumentation: Hewlett-Packard Model 5890 (II) Gas Chromatograph Hewlett-Packard Model 5971A Mass Selective Detector Hewlett-Packard Model G1034B Data System Software Column: J&W Scientific fused silica capillary Durabond-17 liquid phase 20 m x 0.18 mm i.d. 0.3 µm film thickness Temperatures: Column 65 °C for 1.0 min 65 °C to 150 °C at 5 °C/min, 0 min hold at 150 °C 150 °C to 260 °C at 20 °C/min, 0 min hold at 260 °C Injector Interface 230 °C 280 °C Carrier Gas: helium Head Pressure Linear Velocity approximately 100 kPa approximately 40 cm/sec at an oven temperature of 130 °C DowElanco Study ID: RES94133 Page 23 Effective Date: March 23, 1995 GRM 94.15 Injection Mode: splitless Purge Delay Splitter Flow Septum Purge 0.7 min 50 mL/min 1.0 mL/min Injection Volume: 2 μL Detector: electron impact ionization with selected ion monitoring Calibration Program Electron Multiplier maximum sensitivity autotune (Note L.3.) 1412 volts (tune voltage plus 200) Ions Monitored: cis-CAIBC m/z 136 (quantitation) and m/z 75 (confirmation) trans-CAIBC m/z 136 (quantitation) and m/z 75 (confirmation) **Dwell Time** 100 msec Mass spectra of cis- and trans-CAIBC are shown in Figures 1 and 2, respectively. The nominal m/z 136 quantitation ion results from loss of 2-methyl-2-propene (mass 56). Both the quantitation and the nominal m/z 75 confirmation ions retain the chlorine functionality of CAAL. #### 3. Calibration Curves Typical calibration curves for the determination of cis- and trans-CAAL in water are shown in Figures 3 and 4, respectively. #### 4 Typical Chromatograms Typical chromatograms of a standard, control sample, and a 0.10 ng/mL recovery sample for cis- and trans-CAAL in water are shown in Figures 5-10. # I. Determination of Recovery of cis- and trans-CAAL from Water ## 1. Preparation of Recovery Samples - a. Pipet 40.0 mL of control water samples into a series of 2-oz bottles. - b. For preparing fortified samples, use some of the samples as controls and fortify the remaining samples by adding 1.0-mL aliquots of the appropriate spiking solutions (Section G.2.b.) in acetone to obtain concentrations ranging from 0.10 to 5.0 ng/mL. A reagent blank, containing no water sample, should be carried through the method with the samples. - c. Add 10 µL of 1-propanol, 15 g of sodium chloride, 15 mL of MTBE and seal the bottle with a PTFE-lined cap. (The addition of 1-propanol is critical to reduce evaporative losses of CAAL.) - d. Shake the sample for 15 minutes on a reciprocating shaker at approximately 180 excursions/minute. - e. Centrifuge the bottle for 3 minutes at 1000 rpm. - f. The samples are then dried and purified using the following silica gel SPE procedure (Note L.4.): - (1) Place a silica gel SPE column (Section E.3.) on the vacuum manifold box. - (2) Add approximately 2 g of magnesium sulfate (anhydrous) to the SPE column. - (3) Attach a 25-mL reservoir to the top of the column using an SPE column adapter. - (4) Wash the SPE column by adding approximately 10 mL of MTBE to the reservoir and, with the aid of vacuum, pull the MTBE through the column. Discard the column wash. - (5) Transfer the MTBE layer (top layer) of the sample solution from Step I.1.e. to the reservoir and, with the aid of vacuum, pull the sample through the column at a flow rate of approximately 2 mL/min. Collect the MTBE in a 45-mL vial. - (6) Add 15 mL of MTBE to the sample jar, shake for 5 minutes and repeat Steps I.1.e and I.1.f.(5). - (7) After the two MTBE extracts have passed through the column, add approximately 5 mL of MTBE to the reservoir and, with the aid of vacuum, pull the MTBE through the column at a flow rate of approximately 2 mL/min. Collect and combine with the MTBE in the vial from Step I.1.f.(5). - g. Quantitatively transfer the MTBE in the 45-mL vial to a 50-mL Erlenmeyer flask (Section E.7.). Rinse the vial with approximately 2 mL of MTBE and add to the flask. - h. Add approximately 3 mL of hexane and approximately 0.1 g of anhydrous sodium sulfate to the flask. - i. Attach a Snyder column (Section E.15.) to the flask. - j. In a fume hood, heat the flask on a hot plate to a steady boil. - k. Allow the sample to concentrate to near dryness. Significant loss of CAAL will occur if the flask goes to dryness. - Remove the flask from the hot plate, add I mL of hexane to the flask through the top of the Snyder column and allow the flask to equilibrate to ambient temperature. - m. Remove the Snyder column from the flask and quantitatively transfer the sample to an 8-mL vial. Rinse the flask twice with approximately 1 mL MTBE, transferring each rinse to the 8-mL vial. - n. Concentrate the sample at ambient temperature, on an N-Evap evaporator under a gentle flow of nitrogen to a volume of approximately 0.5 mL. Do not allow the volume to go significantly below 0.5 mL or loss of CAAL will occur. GRM 94.15 - o. Adjust the volume to 1.0 mL with hexane by visual comparison to two 8-mL vials containing a measured volume of 1.0 mL hexane. - p. Add approximately 0.1 g of anhydrous sodium sulfate. - q. Add 25 μL of pyridine and 25 μL of isobutyl chloroformate, seal the vial with a PTFE-lined cap and vortex and sonicate the samples for 5 seconds. - r. Transfer 1.0 mL of each of the calibration standards in Section G.3.b. to 8-mL vials. Derivatize following Step I.1.q. - s. Heat the samples and calibration standards in an aluminum block heater (Section D.7. and D.8.) at 70 °C for 15 minutes. - t. Remove the vial from the aluminum block and allow the derivatized samples and standards to cool to ambient temperature. - and approximately 1 mL of 0.1 N hydrochloric acid and vortex each vial for approximately 5 seconds. - v. Centrifuge the vial for 5 minutes at 2500 rpm. - w. Transfer the top hexane layer to a 2-mL autosampler vial and seal the vial with a cap and crimper. - x. Analyze the samples and calibration standards by capillary gas chromatography/mass spectrometry as described in Section H. #### 2. Calculation of Percent Recovery - a. Determine the *m/z* 75 and 136 response areas for both *cis* and *trans*-CAIBC in the calibration standards. - b. For each standard, calculate the *cis* and *trans*-CAAL confirmation ratios. The average confirmation ratio for all calibration standards will be used to confirm the presence of the respective CAAL in the water samples. For example, using the data for cis-CAIBC from Figure 5: Confirmation Ratio = peak area of quantitation ion peak area of confirmation ion .Confirmation Ratio = $\frac{\text{peak area at } m/z \ 136}{\text{peak area at } m/z \ 75}$ Confirmation Ratio = $\frac{981}{3133}$ Confirmation Ratio = 0.3131 **GRM 94.15** Positive confirmation of the presence of cis- or trans-CAAL is indicated when the confirmation ratio for the samples is in the range of $\pm 20\%$ of the average found for the standards. c. Prepare cis- and trans-CAAL standard curves by plotting the equivalent sample concentration (ng/mL) on the abscissa (x-axis) and the cis- and trans-CAIBC m/z 136 peak area on the ordinate (y-axis) as shown in Figures 3 and 4, respectively. Using regression analysis, determine the equation for the curve with respect to the abscissa. For example, using power regression (4) with the trans-CAAL data from Figure 4: $$Y = constant \times X \text{ (exponent)}$$ $$X = \left(\frac{Y}{constant}\right)^{1/exponent}$$ $$trans\text{-CAAL Conc.} = \left(\frac{trans\text{-CAIBC peak area}}{constant}\right)^{1/exponent}$$ $$trans\text{-CAAL Conc.} = \left(\frac{trans\text{-CAIBC peak area}}{11180}\right)^{1/1.0326}$$ d. Determine the net concentration in each recovery sample by first subtracting the average cis- and trans-CAIBC m/z 136 peak area in the control sample from that of the recovery sample. Substitute the peak area obtained into the above equation and solve for the concentration. For example, using the trans-CAAL data from Figures 9 and 10: trans-CAAL Conc. = $$\left(\frac{\text{net trans-CAIBC peak area}}{11180} \right)^{1/1.0326}$$ trans-CAAL Conc. = $$\left(\frac{911 - 0}{11180} \right)^{1/1.0326}$$ trans-CAAL Conc. = $$0.0882 \text{ ng/mL}$$ Determine the percent recovery by dividing the net concentration of each recovery sample by the theoretical concentration added. Recovery = $$\frac{\text{Concentration Found}}{\text{Concentration Added}} \times 100\%$$ GRM 94.15 Recovery = $$\frac{0.0882 \text{ ng/mL}}{0.1039 \text{ ng/mL}} \times 100\%$$ Recovery = $$85\%$$ The average recovery of all the recovery samples in a given sample set can be used to correct individual sample results for method efficiency. # J. Determination of cis- and trans-CAAL in Water - Prepare reagent blank, control, recovery, and treated samples as described in Section I.1. - 2. Prepare standard calibration curves for cis- and trans-CAAL and determine the percentage recoveries as described in Section I.2. - 3. Determine the concentration of cis- and trans-CAAL in each treated sample by substituting the cis- and trans-CABC m/z 136 peak area obtained into the respective equations for the standard calibration curve, and calculate the uncorrected residue result. For example, using the cis-CAAL data from Figures 3 and 7, the uncorrected concentration is calculated as follows: $$cis\text{-CAAL Conc.} = \left(\frac{cis\text{-CAIBC peak area}}{10884}\right)^{1/1.0453}$$ $$cis\text{-CAAL Conc.} = \left(\frac{740}{10884}\right)^{1/1.0453}$$ $$cis\text{-CAAL Conc.} = 0.0764 \text{ ng/mL}$$ - 4. To correct for method recovery, the following procedure is used: - a. Determine the cis-CAAL concentrations in the water samples as described in Section J.3. Calculate the average percent recovery from recovery samples in the set (Table I.). - b. Determine the corrected analyte concentration in the water samples as follows: **GRM 94.15** #### K. Results and Discussion #### 1. Method Validation ## a. Recovery Levels and Precision A method validation study was conducted to determine the recovery levels and the precision of the method for *cis*- and *trans*-CAAL in surface water. The results are summarized in Tables I and II. Recovery values of cis-CAAL from surface water samples fortified over the concentration range 0.10 to 5.2 ng/mL averaged 83% with one standard deviation equal to 6% (Table I). Recovery values of trans-CAAL from surface water samples fortified over the concentration range 0.10 to 5.2 ng/mL averaged 84% with one standard deviation equal to 6% (Table II). #### b. Standard Curve Fit The average correlation coefficient (r²) for the power regression equations describing the detector response as a function of the standard calibration curve concentration was greater than 0.999 for both cis- and trans-CAAL. ## c. Calculated Limits of Quantitation and Detection Following established guidelines (5), the limits of quantitation (LOQ) and detection (LOD) were calculated using the standard deviation from the 0.10 ng/mL recovery results. The LOQ was calculated as ten times the standard deviation (10s), and the LOD was calculated as three times the standard deviation (3s) of the results for the analysis of eight samples. The results are summarized in Tables III and IV. For cis- and trans-CAAL, calculated statistics support an LOQ of 0.079 and 0.075 ng/mL, respectively. Results should not be quantified, however, at levels below which no recovery samples have been analyzed. For cis- and trans-CAAL, calculated statistics support an LOD of 0.024 and 0.023 ng/mL, respectively. #### 2. Confirmation of Residue Identity Confirmation of the presence of residues is described in Section I.2.b. For cis- and trans-CAAL, confirmation is by comparison of the retention time as well as the peak area ratios resulting from selected ion monitoring. Positive confirmation of the presence of cis- and trans-CAAL is indicated when the confirmation ratio for the sample is in the range of ±20% of the average found for the standards. If additional confirmation is required beyond that discussed in this method, the nominal m/z 101 ion may be monitored. High levels of naphthalene, assumed to come from use of a spray cleanser, was found to interfere with the m/z 75 confirmation ion for cis-CAIBC. No interference was observed when use of the cleanser was discontinued. GRM 94.15 #### 3. Assay Time A typical analytical run would consist of a minimum of four standards encompassing the expected range of sample concentrations, a reagent blank, a control (a non-fortified sample), a minimum of two fortified controls (one of which must be at the LOQ), and ten samples. This typical analytical run could be prepared in approximately 10 hours, and the chromatographic analysis take place the same evening. There are two acceptable "stopping points" in the method, where sample preparation (Section I) may be suspended without deleterious effects on the sample analysis. These are indicated below: - a. Step I.1.f.(7) If the samples are to be stored overnight, the vials should be capped with PTFE-lined caps. - b. Step I.1.m. If the samples are to be stored overnight, the vials should be capped with PTFE-lined caps. #### L. Notes - 1. Equipment, glassware, materials, reagents, and chemicals considered to be equivalent to those specified may be substituted with the understanding that their performance must be confirmed by appropriate tests. Common laboratory supplies are assumed to be readily available and are, therefore, not listed. - The filters are used in the carrier gas supply lines to purify the helium entering the gas chromatograph. - Several tuning or calibration options are available for the Model 597X series of MSDs. The "Maximum Sensitivity Autotune" feature was found to consistently yield approximately 5-10 times the sensitivity compared to that of the "Standard Autotune". - 4. Depending on the number of samples being prepared, one may elute CAAL from the SPE column individually, using either gravity-feed or pressurized elution, or as a group, using the vacuum manifold box. **GRM 94.15** ## M. References - 1. Stolz, W. L., DowElanco Laboratory Notebook, B065, p 39, March 25, 1993, unpublished data of DowElanco. - 2. Stolz, W. L., DowElanco Laboratory Notebook, B065, p 39, April 8, 1993, unpublished data of DowElanco. - 3. CRC Handbook of Chemistry and Physics, 72nd Edition, Lide, D. R., Ed.; CRC: Boca Raton, 1991-1992. - 4. HP-41C/41CV Standard Applications Handbook, Hewlett-Packard Publication No. 00041-90402, 1982, pp 42-48. - 5. Keith, L. H.; Crummett, W. B.; Deegan, J.; Libby, R. A.; Taylor, J. T.; Wentler, G., "Principles of Environmental Analysis", Anal. Chem., 1983, 55, 2210-2218. The information herein is presented in good faith, but no warranty, expressed or implied, is given nor is freedom from any patent owned by DowElanco or by others to be inferred. In the hands of qualified personnel, the procedures are expected to yield results of sufficient accuracy for their intended purposes, but recipients are cautioned to confirm the reliability of their techniques, equipment, and standards by appropriate tests. Anyone wishing to reproduce or publish the material in whole or in part should request written permission from DowElanco. Table I. Recovery of cis-CAAL from Surface Water | | Sample | Date of | | L, ng/mL | Percent | |-----|----------------------|----------------------------|--------|-----------------------|----------| | 4. | Number | Analysis | Added | Found | Recovery | | , | DEC04122 | 07-Oct-1994 | 0.000 | 0.0000 | | | | RES94133
RES94133 | 07-0ct-1994
07-Oct-1994 | 0.000 | 0.0000 | · — | | | RES94133 | 11-Oct-1994 | 0.000 | 0.0000 | | | | RES94133 | 11-Oct-1994 | 0.000 | 0.0000 | | | | RES94133 | 12-Oct-1994 | 0.000 | 0.0000 | | | | RES94133 | 01-Nov-1994 | 0.000 | 0.0000 | | | | RES94133 | 01-Nov-1994 | 0.000 | 0.0000 | | | 1 | RES94133 | 01-Nov-1994 | 0.0209 | 0.01987 | NAª | | | RES94133 | 01-Nov-1994 | 0.0209 | 0.01927 | NA | | ı | RES94133 | 07-Oct-1994 | 0.1043 | 0.07640 | 73 | | | RES94133 | 07-Oct-1994 | 0.1043 | 0.09438 | 90 | | 3 | RES94133 | 07-Oct-1994 | 0.1043 | 0.09536 | 91 | | I | RES94133 | 07-Oct-1994 | 0.1043 | 0.08929 | 86 | | I | RES94133 | 11-Oct-1994 | 0.1043 | 0.08871 | 85 | | F | RES94133 | 11-Oct-1994 | 0.1043 | 0.07927 | 76 · | | I | RES94133 | 11-Oct-1994 | 0.1043 | 0.07807 | 75 | | F | RES94133 | 11-Oct-1994 | 0.1043 | 0.09404 | 90 | | F | RES94133 | 07-Oct-1994 | 0.2608 | 0.2111 | 81 | | F | RES94133 | 07-Oct-1994 | 0.2608 | 0.2250 | 86 | | | RES94133 | 12-Oct-1994 | 0.5215 | 0.4378 | 84 | | | RES94133 | 12-Oct-1994 | 0.5215 | 0.4656 | 89 | | · F | RES94133 | 12-Oct-1994 | 0.5215 | 0.4511 | 87 | | | RES94133 | 07-Oct-1994 | 1.043 | 0.8280 | 79 | | F | RES94133 | 07-Oct-1994 | 1.043 | 0.8648 | 83 | | | RES94133 | 11-Oct-1994 | 2.608 | 2.406 | 92 | | F | RES94133 | 11-Oct-1994 | 2.608 | 2.300 | 88 | | | RES94133 | 07-Oct-1994 | 5.215 | 3.916 | 75 | | F | ES94133 | 11-Oct-1994 | 5.215 | 3.942 _ | 76 | | - | | | | $\frac{\dot{x}}{x} =$ | . 83 | | | | • | | s = | 6 | | | | | | n = | 19 | a NA = not applicable. The residue was below the 0.10 ng/mL limit of quantitation. Table II. Recovery of trans-CAAL from Surface Water | Sample | Date of | trans-CAAL, ng/mL | | Percent | |----------|-------------|-------------------|---------------------------|-----------| | Number | Analysis | Added | Found | Recovery | | | | | | | | RES94133 | 07-Oct-1994 | 0.000 | 0.0000 | | | RES94133 | 07-Oct-1994 | 0.000 | 0.0000 | | | RES94133 | 11-Oct-1994 | 0.000 | 0.0000 | | | RES94133 | 11-Oct-1994 | 0.000 | 0.0000 | | | RES94133 | 12-Oct-1994 | 0.000 | 0.0000 | | | RES94133 | 01-Nov-1994 | 0.000 | 0.0000 | | | RES94133 | 01-Nov-1994 | 0.000 | 0.0000 | ** | | RES94133 | 01-Nov-1994 | 0.0209 | 0.01928 | NAª | | RES94133 | 01-Nov-1994 | 0.0209 | 0.01722 | NA | | RES94133 | 07-Oct-1994 | 0.1039 | 0.07278 | 70 | | RES94133 | 07-Oct-1994 | 0.1039 | 0.08821 | 85 | | RES94133 | 07-Oct-1994 | 0.1039 | 0.09111 | 88 | | RES94133 | 07-Oct-1994 | 0.1039 | 0.08961 | 86 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.08471 | 82 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.07756 | 75 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.08569 | 82 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.09631 | 93 | | RES94133 | 07-Oct-1994 | 0.2598 | 0.2141 | 82 | | RES94133 | 07-Oct-1994 | 0.2598 | 0.2251 | 87 | | RES94133 | 12-Oct-1994 | 0.5195 | 0.4378 | 84 | | RES94133 | 12-Oct-1994 | 0.5195 | 0.4656 | 90 | | RES94133 | 12-Oct-1994 | 0.5195 | 0.4511 | 87 | | RES94133 | 07-Oct-1994 | 1.039 | 0.8487 | 82 | | RES94133 | 07-Oct-1994 | 1.039 | 0.8943 | 86 | | RES94133 | 11-Oct-1994 | 2.598 | 2.488 | 96 | | RES94133 | 11-Oct-1994 | 2.598 | 2.353 | 91 | | RES94133 | 07-Oct-1994 | 5.195 | 4.161 | 80 | | RES94133 | 11-Oct-1994 | 5.195 | 4.088 | <u>79</u> | | | | | $\overline{\mathbf{x}} =$ | 84 | | | | | s = | 6 | a NA = not applicable. The residue was below the 0.10 ng/mL limit of quantitation. Table III. Calculated Limits of Detection and Quantitation for the Determination of cis-CAAL in Surface Water | Sampl | e Date of | cis-CAAL | cis-CAAL, ng/mL | | |--------|----------------|-----------------|-----------------|--| | Numb | | Added | Found | | | | | 0.1040 | 0.07640 | | | RES941 | 33 07-Oct-1994 | 0.1043 | 0.07640 | | | RES941 | 33 07-Oct-1994 | 0.1043 | 0.09438 | | | RES941 | 33 07-Oct-1994 | 0.1043 | 0.09536 | | | RES941 | | 0.1043 | 0.08929 | | | RES941 | | 0.1043 | 0.08871 | | | RES941 | | 0.1043 | 0.07927 | | | RES941 | | 0.1043 | 0.07807 | | | RES941 | 33 11-Oct-1994 | 0.1043 | 0.09404 | | | | | $\vec{x} =$ | 0.087 | | | | | x =
s = | 0.0079 | | | | • | $LOD^{2}(3s) =$ | 0.024 | | | | | | | | | | | LOQb(10s) = | 0.079 | | LOD = Limit of Detection. LOQ = Limit of Quantitation. Table IV. Calculated Limits of Detection and Quantitation for the Determination of trans-CAAL in Surface Water | Sample | Date of | trans-CAAI | _, ng/mL | |----------|-------------|-----------------|----------| | Number | Analysis | Added | Found | | RES94133 | 07-Oct-1994 | 0.1039 | 0.07278 | | RES94133 | 07-Oct-1994 | 0.1039 | 0.08821 | | RES94133 | 07-Oct-1994 | 0.1039 | 0.09111 | | RES94133 | 07-Oct-1994 | 0.1039 | 0.08961 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.08471 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.07756 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.08569 | | RES94133 | 11-Oct-1994 | 0.1039 | 0.09631 | | • | • | x = | 0.086 | | | | s = | 0.0075 | | | | $LOD^{a}(3s) =$ | 0.023 | | | | $LOQ^b(10s) =$ | 0.075 | LOD = Limit of Detection. LOQ = Limit of Quantitation. cis-3-Chloroallyl Isobutyl Carbonate Formula: C₈H₁₃ClO₃ Molecular Weight: 192 Figure 1. Mass Spectrum of cis-3-Chloroallyl Isobutyl Carbonate (cis-CAIBC) Effective Date: March 23, 1995 trans-3-Chloroallyl Isobutyl Carbonate Formula: C₈H₁₃ClO₃ Molecular Weight: 192 Figure 2. Mass Spectrum of trans-3-Chloroallyl Isobutyl Carbonate (trans-CAIBC) **GRM 94.15** | Equivalent
cis-CAAL Conc.
ng/mL | cis-CAAL m/z 136
Peak Area | | | |---------------------------------------|-------------------------------|--|--| | 0.05215 | 503 | | | | 0.1043 | 981 | | | | 0.5215 | 5769 | | | | 2.608 | 29588 | | | | 5.215 | 60869 | | | | 10.43 | 125197 | | | Power Regression Equation: $X = \left[\frac{Y}{10884}\right]^{1/1.0455}$ Coefficient of Determination (r²): 0.9998 Figure 3. Typical Calibration Curve for the Determination of cis-CAAL in Surface Water Effective Date: March 23, 1995 GRM 94.15 Equivalent trans-CAAL Conc trans-CAAL' m/z 136 ng/mL Peak Area 543 0.05195 1018 0.1039 5892 0.5195 2.598 30083 5.195 61244 10.39 124091 Power Regression Equation: $X = \left[\frac{Y}{11180}\right]^{1/1.0326}$ Coefficient of Determination (r²): 0.9998 Figure 4. Typical Calibration Curve for the Determination of trans-CAAL in Surface Water Effective Date: March 23, 1995 **GRM 94.15** Data File : 0201022.D ALS Bottle : 2 Date : 8 Oct 94 1:33 am Data Path : C:\CHEMPC\DATA\T100794A\ Instrument : GC/MSD - GC serial#3126A36485 Sample Name: Sample Info: Operator : ADT 4.0 ng/ml cis- and trans-CAAL Std 13.43 3-Chloroallyl alcohol Retention Time: PEAK AREA (M/Z 136) : 981 PEAK AREA (M/Z 136) : PEAK AREA (M/Z 75) : 3133 3-Chloroallyl alcohol: RATIO OF M/Z 136/75: 0.3131 Equivalent cis-CAAL Concentration: 0.1043 ng/mL Figure 5. Typical Chromatogram of a 4.172 ng/mL Standard, Equivalent to 0.1043 ng/mL cis-CAAL in Surface Water **GRM 94.15** Data File : 1001030.D ALS Bottle : 10 Date : 8 Oct 94 5:09 am Data Path : C:\CHEMPC\DATA\T100794A\ Instrument : GC/MSD - GC serial#3126A36485 Sample Name: Control 1 Sample Info: Operator : ADT No 3-Chloroallyl alcohol Found cis-CAAL Concentration: 0.0000 ng/mL Figure 6. Typical Chromatogram of a Control Surface Water Sample for the Determination of cis-CAAL **GRM 94.15** Data File : 1201032.D ALS Bottle : 12 6:04 am 8 Oct 94 Date Data Path : C:\CHEMPC\DATA\T100794A\ Instrument : GC/MSD - GC serial#3126A36485 Sample Name: Operator : ADT Sample Info: 3-Chloroallyl alcohol Retention Time: 13.44 PEAK AREA (M/Z 136) : PEAK AREA (M/Z 75) : 740 2433 0.10 Spike A 3-Chloroallyl alcohol: RATIO OF M/Z 136/75: 0.3042 cis-CAAL Concentration: 0.0764 ng/mL Recovery: 73% Figure 7. Typical Chromatogram of a Control Surface Water Sample Fortified with 0.1043 ng/mL cis-CAAL **GRM 94.15** Data File : 0201022.D ALS Bottle : 2 Date 6 Oct 94 1:33 am Data Path : C:\CHEMPC\DATA\T100794A\ Instrument : GC/MSD - GC serial#3126A36485 Sample Name: 4.0 ng/ml cis- and trans-CAAL Std Sample Info: Operator : ADT 3-Chloroallyl alcohol Retention Time: PEAK AREA (M/Z 136): PEAK AREA (M/Z 75): 13.29 1018 3484 3-Chloroallyl alcohol: RATIO OF M/Z 136/75: 0.2922 Equivalent trans-CAAL Concentration: 0.1039 ng/mL Figure 8. Typical Chromatogram of a 4.156 ng/mL Standard, Equivalent to 0.1039 ng/mL trans-CAAL in Surface Water Effective Date: March 23, 1995 **GRM 94.15** Data File : 1101031.D • ALS Bottle : 11 Date : 8 Oct 94 5:37 am Data Path : C:\CHEMPC\DATA\T100794A\ Instrument : GC/MSD - GC serial#3126A36485 Sample Name: Control 2 Sample Info: Operator : ADT No 3-Chloroallyl alcohol Found trans-CAAL Concentration: 0.0000 ng/mL Figure 9. Typical Chromatogram of a Control Surface Water Sample for the Determination of trans-CAAL GRM 94.15 Data File : 1301033.D ALS Bottle : 13 Date : 8 Oct 94 6:31 am Data Path : C:\CHEMPC\DATA\T100794A\ Instrument : GC/MSD - GC serial#3126A36485 Sample Name: 0.10 Spike B Sample Info: Operator : ADT 3-Chloroallyl alcohol Retention Time: PEAK AREA (M/Z 136): PEAK AREA (M/Z 75): 13.29 911 2914 3-Chloroallyl alcohol: RATIO OF M/Z 136/75: 0.3126 trans-CAAL Concentration: 0.0882 ng/mL Recovery: 85% Average Standard Confirmation Ratio: 0.3029 Figure 10. Typical Chromatogram of a Control Surface Water Sample Fortified with