Cover Sheet for

ENVIRONMENTAL CHEMISTRY METHOD

Pestcide Name: Fomesafen

MRID #: 447547-05

Matrix: Water

Analysis: HPLC/UV

This method is provided to you by the Environmental Protection Agency's (EPA) Environmental Chemistry Laboratory (ECL). This method is not an EPA method but one which was submitted to EPA by the pesticide manufacturer to support product registration. EPA recognizes that the methods may be of some utility to state, tribal, and local authorities, but makes no claim of validity by posting these methods. Although the Agency reviews all Environmental Chemistry Methods submitted in support of pesticide registration, the ECL evaluates only about 30% of the currently available methods. Most methods perform satisfactorily but some, particularly the older methods, have deficiencies. Moreover, the print quality of the methods varies considerably because the methods originate from different sources. Therefore, the methods offered represent the best available copies.

If you have difficulties in downloading the method, or further questions concerning the methods, you may contact Elizabeth Flynt at 228-688-2410 or via e-mail at flynt.elizabeth@epa.gov.

ZENECA Ag Products 1800 Concord Pike Wilmington, DE 19850

Volume 5

Study Title

FOMESAFEN: DETERMINATION OF FOMESAFEN IN SOIL OR WATER

Data Requirement

GUIDELINE REFERENCE SERIES 161

Author

S. C. Leung

Study Completed On

November 24, 1997

Performing Laboratory

Zeneca Ag Products
(a business unit of Zeneca Inc.)
1200 South 47th Street
Richmond, CA

Laboratory Project ID

TMR0741B

Report Title:

Fomesafen: Determination of Fomesafen in Soil or Water

Author

Sabrina C. Leung

1 Scope

This method is intended for the determination of residues of fomesafen at concentrations of 10 to 1240 μ g/kg (ppb) in soil and 1 to 100 μ g/L (ppb) in water. The Chemical Abstracts Name and Registry Number for fomesafen is 5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-methylsulfonyl)-2-nitrobenzamide (9CI) [72178-02-0]. The chemical structure is given below.

2 Summary

A known weight of soil is extracted with a mixture of methylene chloride and acidified water, or a known volume of water is acidified and extracted with methylene chloride. In each case, a measured portion of the methylene chloride extract is evaporated to dryness and dissolved in mobile phase for final determination by high performance liquid chromatography (HPLC) with detection at 290 nm.

3 Materials/Methods

The equipment and reagents described below were used to generate the data and chromatograms presented in this report. Equipment capable of providing equivalent sensitivity and selectivity, and reagents of comparable purity can be used.

3.1 Apparatus

1. Liquid Chromatograph

Hewlett-Packard (HP) Model 1090II equipped with diode array detector, an automatic injector and a HPLC^{3D} ChemStati on DOS Series data acquisition system. Instrument with the above specifications is available from Hewlett-Packard Company, Wilmington, DE.

2. Analytical Column

Spherisorb ODS-2, 5 μm particle size, 100A pore, 150 mm long x 4.6 mm i.d., Alltech Associates, Inc. Cat No. 8545, S/N 94021359.

3. Analytical Balance

Sartorius Analytic Model A200S, or equivalent.

4. Solvent Filtering Unit

Millipore All-Glass Filter Holder for 47 mm diameter filters, catalogue No. XX15 047 00, equipped with Millipore 0.45 μ m pore size HV filter for vacuum filtering of HPLC solvents.

5. Ultrasonic Cleaner

Branson Model No. B-22-4, stainless-steel tank 2.8 liter capacity.

6. Laboratory Shaker

Eberbach 6010 two-speed reciprocating shaker with utility box carrier (VWR catalogue No. 57007-101).

7. Vortex Mixer

Thermolyne Maxi-Mix[™] vortex mixer with push-button on/off switch, VWR catalogue No. 58810-163.

8. Nylon Filter

Disposable Nylon Acrodisc 13 HPLC syringe filter, 0.45 μm pore, 13 mm diameter, Gelman Catalogue No. 4426.

9. Disposable Syringe

B-D Plastipak disposable syringe with Luer-Lok end, 3-mL capacity, B-D Catalogue No. 9585.

10. Disposable Centrifuge Tube

Polypropylene, sterile, clear Corning brand, disposable conical centrifuge tube, 15 mL-capacity, Corning No. 430766.

11. Glass Bottles

8-oz clear wide-mouth, with polytetrafluoroethylene(PTFE)-lined caps for soil samples; 16-oz clear narrow-mouth, with PTFE-lined caps for water samples; 1-oz narrow-mouth with Polyseal-lined caps.

12. Bottle-Top Dispenser

Brinkman Dispensette bottle-top dispenser, adjustable 10-50 mL volume, VWR Catalogue No. 53519-825.

13. Pasteur disposable glass transfer pipettes.

14. Solid Phase Extraction (SPE) Columns

J&W Accubond® Silica SPE cartridges for extract cleanup, 3 mL size, 500 mg silica, J&W Part No. 188-0150.

15. Vacuum Manifold

J&W vacuum manifold, 12-place glass basin system with lid, vacuum gauge and bleed valve, J&W Scientific No. 600-4000.

3.2 Reagents and Standards

1. Water

HPLC grade, Fisher Scientific Catalogue No. W5-4.

2. Methylene Chloride

Optima grade, Fisher Scientific Catalogue No. D151-4.

- Ethyl Acetate
 Optima grade, Fisher Scientific Catalogue No. E196-4.
- Glacial Acetic Acid
 Certified ACS grade, Fisher Scientific Catalogue No. A38C-212.
- Acetonitrile
 HPLC grade, Burdick & Jackson Brand from Baxter, Catalogue No.015 4.
- Potassium Nitrate
 Analytical Reagent grade, Mallinckrodt Catalogue No. 7028.
- 7. Phosphoric Acid
 Reagent grade, 85%.
- Sodium Sulfate
 Anhydrous, Certified ACS grade
- 9. Fomesafen Analytical Reference Standard

 Zeneca Analytical Standard ASJ10035-01S, 98.3% w/w purity or
 equivalent, available from Zeneca Ag Products, 1200 South 47th Street,
 Richmond, CA 94804-4610.

3.2.1 Preparation of Mobile Phase Solutions

1. Mobile Phase Solution A (acetonitrile:water, 10:90)

Dissolve 1.01 g of potassium nitrate in 900 mL of HPLC grade water.

Adjust to pH 3 with phosphoric acid as indicated by pH sticks. Add 100 mL of HPLC grade acetonitrile. Mix well and vacuum filter through a Millipore 0.45 µm pore size HV filter prior to use.

2. Mobile Phase Solution B (acetonitrile:water, 90:10)

Dissolve 1.01 g of potassium nitrate in 100 mL of HPLC grade water. Adjust to pH 3 with phosphoric acid as indicated by pH sticks. Add 900 mL of HPLC grade acetonitrile. Mix well and vacuum filter through a Millipore 0.45 µm pore size HV filter prior to use.

3. Mobile Phase Solution C (acetonitrile:water, 30:70)

Dissolve 0.700 g of potassium nitrate in 700 mL of HPLC grade water. Adjust to pH 3 with phosphoric acid as indicated by pH sticks. Add 300 mL of HPLC grade acetonitrile. Mix well and vacuum filter through a Millipore 0.45 μ m pore size HV filter prior to use.

3.2.2 Preparation of Calibration Standard Solutions

To prepare a stock calibration solution at a concentration of 1.0 mg/mL, weigh accurately a known quantity (50 mg \pm 2 mg) of primary standard formesafen of known purity into a clean beaker. Add a sufficient volume of acetonitrile to the beaker to dissolve the formesafen. Quantitatively transfer the formesafen solution to a clean 50-mL volumetric flask, and dilute to volume. Stopper the volumetric flask and mix the contents thoroughly. Calculate the concentration of the stock solution as follows:

$$C = \frac{W \times P}{50}$$

Where

C = the concentration of fomesafen in final solution (mg/mL)

W = the weight of primary standard taken (mg)

P = the purity of the primary standard

50 = the volume of solvent (mL)

Transfer the contents into a glass bottle. Cap the bottle with a Polyseal-lined cap, and keep refrigerated when not in use.

To prepare working standard solutions for calibration purposes, dilute the stock calibration solution with Mobile Phase Solution C (acetonitrile:water 30:70) to give 10, 5, 2, 1, 0.5, 0.2 and 0.05 µg/mL solutions. Transfer working standard solutions to glass bottles with Polyseal-lined caps and keep refrigerated when not in use.

3.2.3 Preparation of Fortification Standard Solutions

To prepare a stock fortification standard solution at a concentration of 1250 μ g/mL, weigh accurately a known quantity (127 mg \pm 2 mg) of primary standard fomesafen of known purity into a clean beaker. Add 50 mL of acetonitrile to the beaker to dissolve the fomesafen. Quantitatively transfer the fomesafen solution to a clean 100-mL volumetric flask, and dilute to volume with water to volume. Stopper the volumetric flask, and mix the contents thoroughly. Prepare diluted fortification solutions (125 μ g/mL) by diluting appropriate portions of the stock fortification solution with acetonitrile:water 1:1 solvent mixture. Transfer solutions to glass bottles with Polyseal-lined caps and keep refrigerated when not in use.

3.3 Analytical Procedure

3.3.1 Preparation of Fortified Samples

Fortified and unfortified control samples are analyzed with each sample set to demonstrate method recovery and performance. Fortify 50-g portions of soil samples or 400-mL aliquot of water samples by adding known volumes of the fortification standard solution of fomesafen (as prepared in Section 3.2.3) to the control samples before extraction. Extract the fortified samples as detailed below.

3.3.2 Extraction of Samples

For soil samples, transfer a 50-g portion of well mixed soil into an 8-oz widemouth bottle. Add 50 ± 1 mL of water, and add minimum 0.5 ± 0.1 mL of glacial acetic acid. Use a bottle-top dispenser to add 50 ± 0.1 mL methylene chloride. Cap the bottle securely with a PTFE-lined cap and shake to mix. Use a pH stick to measure the resulting pH of the mixture. Add additional glacial acetic acid, if necessary, to ensure that the resulting pH is ~4.5 or lower. Shake the bottle and its content on a reciprocating shaker for 60 minutes. Centrifuge for 20 minutes to separate the phases. Remove 12-15 mL of the middle layer of methylene chloride extract using a disposable pipette and transfer into a 1-oz bottle. Add sodium sulfate (~1 g or more) to dry the extract. Close the bottle with a Polyseal-lined cap and swirl to mix the contents.

For water samples, transfer a 400-mL aliquot of water into a 16-oz narrow-mouth bottle. Add 1.0 ± 0.1 mL of glacial acetic acid. Use a bottle-top dispenser to add 25 ± 0.1 mL methylene chloride. Cap the bottle securely with a PTFE-lined cap and shake to mix. Use a pH stick to measure the resulting pH of the aqueous portion of the mixture. Add additional glacial acetic acid, if necessary, to ensure that the resulting pH is ~4.5 or lower. Shake the bottle and its content on a reciprocating shaker for 60 minutes. Place the bottle in its upright position for phase separation or if necessary, centrifuge. Use a disposable pipette to transfer 12-15 mL of the bottom layer of methylene chloride extract into a 1-oz bottle. Add sodium sulfate (~1 g or more) to remove water. Close the bottle with a Polyseal-lined cap and swirl to mix the contents.

3.3.3 Concentration of Extracts

Pipette a 10.0 mL aliquot of the dried methylene chloride extract from Section 3.3.2 into a 15-mL polypropylene centrifuge tube. Evaporate to dryness under a stream of dry air at room temperature (~25°C) and dissolve the residuum in 1.0 mL of Mobile Phase Solution C. Cap the tube and vortex mix for 1 minute, followed by 15 minutes of sonication in an ultrasonic cleaner. Repeat this vortex mix / sonication step for a total of 2 times. Filter the final extract through a 0.45 µm filter attached to a 3-mL disposable syringe into an autosampler for HPLC analysis. Final sample-to-solvent ratio is 10 g/mL for soil and 160 mL/mL for water.

3.3.4 Cleanup of Extracts

The methylene chloride extracts from soil or water samples generally do not require column cleanup. However, if peak detection and identification are prevented due to interferences, the methylene chloride extract may need to undergo silica cleanup as described in the following procedure.

Connect an SPE cartridge (J&W Accubond) packed with silica to a vacuum manifold. Pre-wash the Silica cartridge with 2.5 mL of methylene chloride and discard the methylene chloride. Transfer a 10.0 mL aliquot of the dried methylene extract from Section 3.3.2 and allow the extract to pass through the cartridge. Use the vacuum manifold to aid the process. Discard the eluate. Wash the cartridge with 2 mL of methylene chloride and discard the washing. Elute the cartridge with 9 mL of ethyl acetate; collect the eluate in a 15-mL centrifuge tube. Evaporate the ethyl acetate to dryness under a stream of dry air and

dissolve the residuum in 1.0 mL of Mobile Phase Solution C. Cap the tube and vortex mix for 1 minute, followed by 15 minutes of sonication in a ultrasonic cleaner. Repeat this vortex mix/sonication step for a total of 2 times. Filter the final extract through a 0.45 µm filter attached to a 3-mL disposable syringe into an autosampler for HPLC analysis.

3.3.5 High Performance Liquid Chromatographic Conditions

Instrument: Hewlett-Packard (HP) Model 1090II equipped with

diode array detector and an automatic injector

Column: Spherisorb ODS-2, 5 µm, 100A pore, 150 mm long x

4.6 mm i.d., from Alltech Associates, Inc., Cat. No.

8545, S/N 94021359

Mobile Phases: A Acetonitrile: Water, 10:90, 0.01N KNO₃ to pH 3

B Acetonitrile: Water, 90:10, 0.01N KNO₃ to pH 3

Data Acquisition: HP HPLC^{3D} ChemStation DOS Series

Flow Rate: 0.75 mL/min

65% Mobile Phase A 35% Mobile Phase B

Time Table: Time (min) %B
0.00 35
7.00 100
7.50 100
8.00 35
11.00 35

Column Temperature: 60 °C

Detector Wavelength: 290 nm

Injection Volume: 75 μL

Sampling Interval: 0.640 sec

Run Time: 11 min

Using the above conditions, the elution time for fomesafen was 6.6 minutes. See Figures 1 to 5 for typical chromatograms.

3.3.6 Calibration

Calibrate the liquid chromatograph with the daily-use calibration standards. Inject the entire range of solutions, from $0.05 \,\mu\text{g/mL}$ to $10 \,\mu\text{g/mL}$, at the beginning and at the end of each run. After every 6 to 8 samples, inject one or more of the calibration standards to assure that the formesafen response is stable.

3.3.7 Analysis of Sample Extracts

Analyze the final mobile phase extract from each soil/water sample on the same day of calibration. Inject the sample extracts using the same conditions and injection volumes as those used for the calibration standards. The identity of the fomesafen peak in the sample chromatogram is assigned based upon the coincidence of the retention time (± 0.10 minute) with that of the fomesafen peak in the calibration standard chromatogram. Dilute the extract with Mobile Phase Solution C, if necessary, to keep the fomesafen response within the calibration range.

3.4 Calculations

The concentration of fomesafen in the original sample is calculated by using the external standard method; that is, the response obtained for fomesafen in the sample extract is compared to the response obtained from a separate injection of fomesafen calibration solution. To use the linear response calculation method shown below, the injection volumes for all calibration solutions and sample extracts must be fixed at the same volume.

3.4.1 Calibration Response Factor

Calculate the response factor, RF, for injection of a calibration solution as follows:

$$RF = \frac{C_{std}}{R_{std}}$$

Where

C_{std} = concentration in µg/mL of the calibration solution

R_{std} = response units (for example, peak height, peak area, or electronic units) from detector for the calibration solution

3.4.2 Fomesafen in Sample

Determine the concentration of fomesafen in the original sample, C_s (in $\mu g/kg$ or $\mu g/L$), from the average response factor, RF_{avg} , and the sample response, R_{sample} , as follows:

$$C_s (\mu g/kg \text{ or } \mu g/L) = \frac{R_{sample} \times RF_{avg} \times D \times 10^3}{C}$$

Where

 R_{sample} = response unit from detector for the sample final extract

RF_{avg} = average response factor over the entire range of calibration

C = concentration of sample in final extract (sample-tosolvent ratio, in g/mL or mL/mL) = 10 g/mL for soil or 160 mL/mL for water

D = dilution factor required if final extract is diluted to keep in calibration range

4 Results/Discussion

4.1 Precision and Accuracy

Recoveries from 14 soil samples fortified at levels of 10 μ g/kg to 1240 μ g/kg are shown in Table 1. Recoveries ranged from 77 to 119 %, with a mean recovery of 89% and coefficient of variation (CV) of 12%.

Recoveries from 6 water samples fortified at levels of 0.93 μ g/L and 93 μ g/L are shown in Table 2. Recoveries ranged from 105 to 127 %, with a mean recovery of 118% and a CV of 6%.

4.2 Interferences/Matrix Effects

Control soil and water samples were extracted and taken through the entire analytical procedure. No interferences/matrix effects have been observed.

4.3 Limit of Determination

The limit of determination, or the limit of quantitation (LOQ), was assessed by carrying out recovery experiments at low fortification levels. In this laboratory, the LOQ has been established at 10 µg/kg for soil and 1 µg/L for water.

4.4 Time Required for Analysis

The analysis can be completed by one person in one 8-hour work day. The procedures within this method can be stopped at any point. The extracts can be retained at room temperature overnight.

4.5 Quality Assurance

Method blanks of soil or water should be extracted and analyzed along with each set of samples to demonstrate freedom from interferences. Where true control samples are unavailable, use soil collected from a neighboring area believed to be free of fomesafen residues, or use deionized water. Fortified samples should be prepared as described in Section 3.3.1 and analyzed at a rate of 1 per 10 samples.

4.6 Safety Considerations

Personnel untrained in the routine safe handling of chemicals must not attempt to use this procedure. Information on any first aid procedures can be found in the Material Safety Data Sheets accompanying the chemical or available from the chemical supplier. In general, always wear safety glasses with side shields. Work in well ventilated areas. Avoid inhaling particulates, aerosols and/or vapors; and avoid contact of the chemicals with skin and clothing. Keep flammable solvents away from potential sources of ignition.

5

Tables and Figures

Table 1. Recoveries of Fomesafen from Soil

Sample No.	Fomesafen Added (µg/kg)	Fomesafen Found (µg/kg)	Fomesafen Recovery (%)	Analytical Ref.
15636-4-1 A	10.0	9.7	97	15636-05
16085-29-9	12.4	14.8	119	16120-11
16085-31-5	12.4	10.0	81	16120-13
16085-34-4	12.4	12.4	100	16120-15
16163-37-4	12.4	11.0	89	16225-40
16163-40-2	12.4	11.0	89	16225-44
16163-46-2	13.8	12.8	93	16225-50
15964-24-3 ^A	20	17	85	15964-26
16085-27-8	124	105	85	16120-07
16085-30-8	124	116	94	16120-12
16085-31-14	124	98	79	16120-13
16163-30-2	124	96	77	16225-36
16163-36-6	124	98	79	16225-39
16085-26-8	1240	1026	83	16120-06
Mean Recovery ± CV:			89 ± 12%	

A indicates silica cleanup step was used in the test sample.

Table 2. Recoveries of Fomesafen from Water

Sample No.	Fomesafen Added (µg/kg)	Fomesafen Found (µg/kg)	Fomesafen Recovery (%)	Analytical Ref.
16528-4-1	0.93	1.13	121	16528-5
16528-4-2	0.93	1.11	119	16528-5
16528-4-3	0.93	0.98	105	16528-5
16528-4-4	93	118.2	127 ·	16528-5
16528-4-5	93	106.2	114	16528-5
16528-4-6	93	113.4	122	16528-5
Mean Recovery ± CV:			118 ± 6%	

Figure 1. Typical liquid chromatogram for fomesafen analysis (1 µg/mL calibration standard solution)

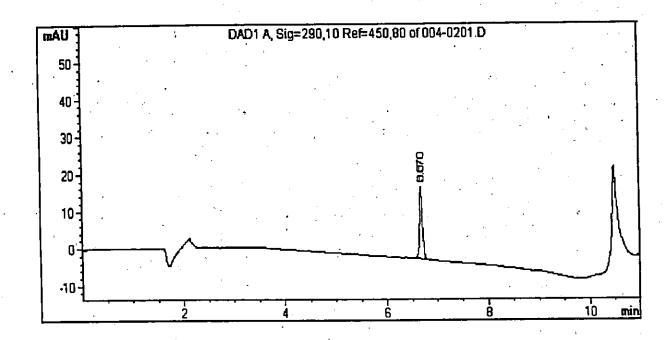


Figure 2. Typical liquid chromatogram for fomesafen analysis (control soil)

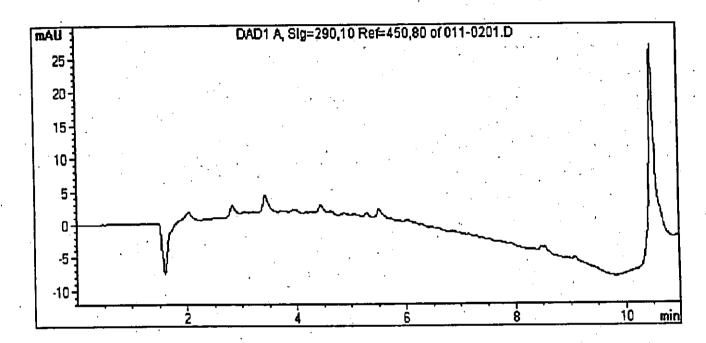


Figure 3. Typical liquid chromatogram for fomesafen analysis (soil sample fortified at 12.4 µg/kg)

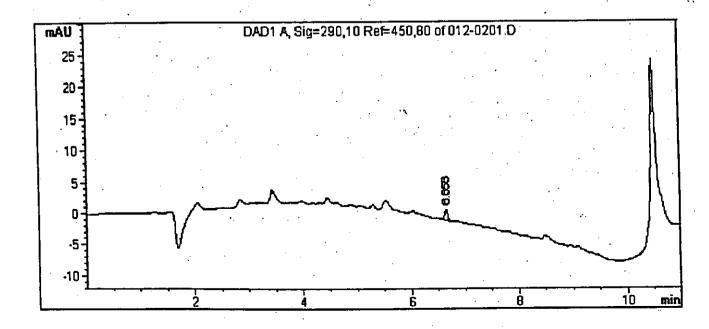


Figure 4. Typical liquid chromatogram for fomesafen analysis (control water)

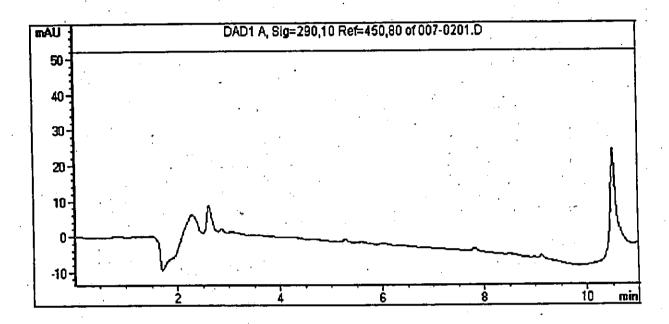
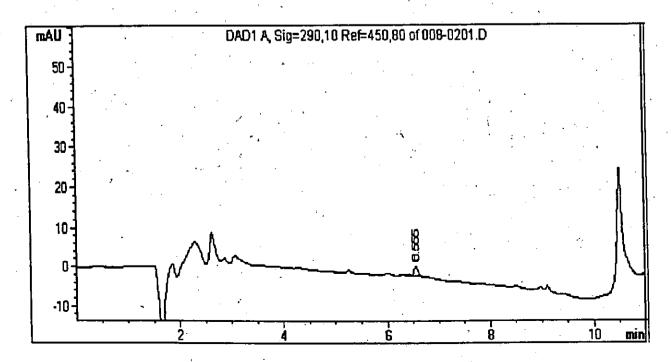



Figure 5. Typical liquid chromatogram for fomesafen analysis (water sample fortified at 0.93 µg/L)

Page 22 of 23 TMR0741B

TMRÖ741B

6 References

WRC Laboratory Notebooks: 15636-4, 15964-24, 16085-24 to-31, 16163-30 to-46 and 16528-1 to -5.

[dje: '97 TMRs: tmr0741b.scl.doc: 25-Nov-97]