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Abstract 
With tropical deforestation a major contributor to greenhouse gas emissions and 
biodiversity loss, the land-use decisions of small-scale farmers at the forest margins have 
important implications for the global environment.  Farmers’ incentives for maintaining 
forest fallow in a shifting cultivation agricultural system depend upon the market and 
non-market services it provides to them.  This study estimates the value of those services, 
including hydrological externalities that may affect other farms downstream. 

The analysis uses cross-sectional farm-level survey data from the Zona Bragantina in the 
Eastern Brazilian Amazon to assess the value of forest fallow to farmers and test whether 
it provides local externalities.  I estimate production functions for crops and forest 
products to determine the contributions of on-farm and off-farm forest fallow to income 
from these two activities.  Instrumental variables and spatial econometric approaches help 
address issues of endogeneity and variation in unobservable factors over space.  I use 
geographic information on the location of farms to obtain data on external forest fallow 
and to model the hydrological externality as an upstream-to-downstream process. 

The results indicate that fallow does contribute significantly to productivity both on-farm 
and downstream, boosting income from both crops and forest products. In addition, most 
farms appear to allocate sufficient land to fallow, accounting for both the value of 
hydrological spillovers and the opportunity cost of land left out of cultivation.  These 
results suggest that farming communities may have some self-interest in preserving forest 
cover locally—a finding that may bolster policy efforts aimed at conserving tropical 
forests. 
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Introduction 
With tropical deforestation a major contributor to greenhouse gas emissions and 

biodiversity loss, the land-use decisions of small-scale farmers at the forest margins have 

important implications for the global environment.  In some tropical forested areas, such 

as the Zona Bragantina in the Eastern Brazilian Amazon, farmers practice a shifting 

cultivation, or slash-and-burn, system that maintains large amounts of land under forest 

fallow. Farmers’ incentives for maintaining forest fallow depend upon the market and 

non-market services it provides to them.  This study estimates the value of fallow 

ecosystem services in shifting cultivation, including hydrological externalities that may 

affect other farms downstream. 

Where land is abundant and other inputs are scarce, long fallow periods can be a 

cost-effective way to restore land for future agricultural uses.  Secondary forest fallow 

provides on-site benefits to farmers, such as soil regeneration, erosion prevention, weed 

control, and harvestable products.  It also provides off-site services, supplying some of 

the same public goods as mature forests.  These services are not only global in scale but 

may also be local, such as hydrological regulation that moderates the flow of water in the 

soil. Understanding the magnitude of secondary forests’ contribution to agricultural 

productivity will be increasingly important as population and economic pressures spur 

many of the estimated 300 million1 shifting cultivators world-wide to shorten fallow 

periods, adopt new technologies, and intensify cultivation. Valuing the net benefits of 

forest cover to local populations could help justify conservation efforts with global 

importance (Chomitz and Kumari 1998).   

1 Current estimates of the number of shifting cultivators are hard to come by.  The 300-million figure was 
given by Sanchez (1996) and Brady (1996). 
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Economic studies accurately estimating the value of forest ecosystem services are 

sparse, and results from hydrologic studies have been ambiguous as to the effects of 

reforestation on water yields (Bruijnzeel 2004).  The Millennium Ecosystem Assessment 

(2005) has identified lack of information about the value of non-market ecosystem 

services—particularly regulating services such as hydrological functions—as a major 

knowledge gap hampering informed decision-making on ecosystem management.   

This paper takes up this challenge by quantifying the returns to fallowing in 

agricultural production. The analysis uses cross-sectional farm survey data from the 

Zona Bragantina to assess the value of forest fallow to farmers and test whether it 

provides economically significant local externalities that may justify forest conservation 

from a local perspective.  Private land tenure in the study region allows me to disentangle 

the on-farm and externality effects.  I estimate production functions for crops and forest 

products to determine the contributions of on-farm and off-farm forest fallow to income 

from these two activities.  Instrumental variables and spatial econometric approaches help 

address issues of endogeneity and variation in unobservable factors over space.  I use 

geographic information on the location of farms to obtain farm-level data on external 

forest fallow and to model the hydrological externality as an upstream-to-downstream 

process, allowing for identification in the presence of spatial correlation.   

Fallow as a production input in shifting cultivation 
In many contexts world-wide, fallow is a common property resource prone to 

overexploitation in the absence of community controls (López 1993, 1997).  Even under 

private land tenure, inefficiencies could arise if fallow biomass provides local positive 

externalities in addition to on-site ecosystem services.  Correcting these inefficiencies can 
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boost downstream farm income while providing incidental carbon sequestration services.  

Thus, whether fallow biomass provides economically significant local externalities is an 

empirical question with important implications for tropical forest policy. 

Fallowing restores plots for future cultivation by drawing soil nutrients and water 

to the surface, raising soil pH, minimizing surface erosion, and suppressing weeds 

(Nepstad et al. 2001; Holscher et al. 1997; Altieri 1995; Sanchez et al. 1982; de Rouw 

1995; Staver 1991).2  Root systems remain intact after manual land clearing, fostering 

rapid vegetative regeneration during initial fallow years.  Forest cover also plays an 

important role in the hydrological cycle.  Tree cover lessens peak flows and surface 

runoff due to increased soil infiltration capacity and evapotranspiration of soil water 

(Hamilton and King 1983, Bruijnzeel 2004), which may benefit agricultural activities by 

reducing floods and waterlogging. 

While few studies have estimated the value of fallow biomass and forest cover in 

agricultural production, some have found that it provides economically important 

services. López (1993, 1997) showed that village-level fallow biomass (capturing both 

on-farm soil quality and external hydrological benefits) contributed significantly to 

agricultural profitability in Ghana and Côte d’Ivoire.  Research in Ruteng National Park, 

Indonesia, found that off-farm forest cover provided beneficial hydrological services (in 

this case, drought mitigation) to small-scale agricultural production (Pattanayak and 

Kramer 2001; Pattanayak and Butry 2005).   

2 Secondary forest root systems also provide below-ground carbon storage comparable to that of mature 
forests (Sommer et al. 2000), although converting land to shifting cultivation entails a loss of above-ground 
carbon stocks.  In addition, forest stands can affect nearby farms’ productivity through crop pollination 
(Ricketts et al. 2004, Kremen et al. 2004) and tree seed availability (Tucker et al. 1998).  I do not 
concentrate on these services here. 
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Study region and data 
The Zona Bragantina offers a compelling case study as a region with over one 

hundred years of agricultural settlement where shifting cultivation persists as the 

principal means of livelihood.  Despite integration into regional markets through railways 

and roads, perennial cash-crop agro-processing, and government programs to encourage 

agricultural intensification, shifting cultivation dominates other land-use practices in the 

region. Figure 1 presents a map of the region. 

Most households in Bragantina are considered smallholders by Brazilian 

standards, with landholdings under 100 hectares.  Family labor and manual land clearing 

predominate, though hired labor and mechanized equipment are also used for labor-

intensive tasks like land preparation, weeding, and harvesting. A typical one to two year 

cropping sequence includes maize, upland rice, and cowpea, with cassava grown as the 

final crop while fallow vegetation reestablishes (Holscher et al. 1997).  These annual 

crops are used for home consumption and sale to regional markets.  Since the mid 

twentieth century, smallholders have also branched into perennials like black pepper, 

passion fruit, oranges, and coconut, as well as ranching.   

While virtually all virgin forest in Bragantina has been cleared over the decades, 

roughly 75% of the land area remains under secondary forest (Kato et al. 1999).  Soil is 

relatively homogenous in the region, though rainfall does decrease along a gradient from 

west to east (Borner 2005). The climate is humid, receiving an average rainfall of 2400­

2700 mm annually.  The region faces major challenges in improving agricultural 

productivity due to poor quality Oxisol, Spodosol, and Ultisol soils vulnerable to acidity 

and aluminum toxicity (Tucker et al. 1998; Holscher et al. 1997).  Experiments varying 
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fertilizer treatments in the Zona Bragantina identified phosphorus and nitrogen as major 

limiting factors in crop production and fallow biomass growth (Gehring et al. 1999).   

Data for the study were collected as part of the SHIFT (Studies on Human Impact 

on Forests and Floodplains in the Tropics) project, an initiative to study tropical 

livelihoods and ecosystem dynamics in Brazil.  Three municipios out of the 14 that 

comprise the Bragantina were chosen for study to capture regional variation in distance to 

commercial centers, agricultural intensification, and rainfall (Mendoza 2004).  In late 

2002, 271 households in 22 villages were randomly selected and surveyed.  The survey 

gathered farm production, land use, and demographic data for the 2001-2002 growing 

season. Table 1 presents the mean values for selected household-level characteristics.   

Comprehensive farm-level data on forest fallow for the entire Zona Bragantina 

would be ideal to estimate the off-site flow of benefits and their spatial scale, but are 

unavailable. I make use of the household survey data on land use among the sampled 

farms as one solution.  As an additional approach to address this gap, I turn to GIS 

(geographic information systems) data on forest cover, using the MODIS Vegetation 

Continuous Fields (VCF) to construct an alternative measure of external fallow.  The 

VCF data consist of 25 hectare resolution pixels created using 40 day composite satellite 

images from March 2001-March 2002 (Hansen et al. 2006).3  Each pixel represents 

percent canopy cover, defined as the amount of sunlight blocked by tree canopies over 

five meters high.  Figure 2 shows 2001-02 tree canopy cover for the Zona Bragantina.   

3 The 2001-02 VCF data provide the closest available estimates of forest cover during the 2001-2002 
cropping season.  Twenty-five hectare pixels are a sufficiently fine measure of tree cover relative to the size 
of landholdings among the surveyed farmers, as the median farm size is also 25 hectares.  The percent 
canopy cover approximates both the area and density of forest cover, since the share of land with five- 
meter tree cover is likely to be highly correlated with vegetation density. 
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I also use GIS flow direction data from the US Geological Survey to determine 

where farms lie along a gradient from upstream to downstream in relation to one another. 

According to a flow direction map for the region (Figure 3), farms cluster into 11 groups 

defined by a common drainage area and flow direction.  Each cluster includes at least one 

sampled community.  Within each group, I assume each observation affects farms 

downstream and is affected by farms upstream. The US Geological Survey also provides 

slope data for the region at 1-km resolution.   

Crop production function estimation 
My approach to valuing the services provided by on-farm and off-site forest 

fallow involves estimating production functions for two primary activities in the Zona 

Bragantina: crop production and forest product harvesting.4  The surveyed farmers 

produced a total of 50 annual and perennial crops, with cassava, maize, beans, and black 

pepper among the most common.  Collecting forest products made a modest contribution 

to income relative to cropping but was practiced by over two-thirds of the surveyed 

farms.  The production function estimations allow me to measure the contribution of on- 

and off-farm fallow to these activities and test for positive fallow externalities in each.  I 

also calculate the contribution of fallow resources to total farm income by aggregating 

the respective contributions of fallow to crops and forest products.   

The dependent variable in the crop production function is the log of crop output 

value, with different commodities aggregated using average output prices in the region.  

Although farms reserved some crops for home consumption, market prices provide 

appropriate values for these commodities since 97% of sampled farmers sold at least 

4 Ranching and livestock products make up the remainder of agricultural activities, though they are less 
common in the Zona Bragantina than either cropping or forest product collection. 

8
 



   

 

 

   

                                                 
 

   

 
  

     
  

  

 

some of their produce.  I employ a Cobb-Douglas specification for cropping technology.  

Output is modeled as a function of cultivated land area, family and hired labor, fertilizer, 

on-farm fallow area, and off-farm (upstream) fallow area.5 

The crop value equation can be represented as follows 

ln y = β + β ln f + β W ln F + β ln X + β H + εi o 1 i 2 1 3 i 4 i i 

ε = λW ε + ui 2 i 

where yi represents the ith farm’s crop value. The farm’s fallow area is represented by fi, 

while F is a vector of all farms’ fallow area.  Cultivated land area, family and hired labor, 

and fertilizer are represented by Xi, a vector of conventional inputs. 

The error term is given by εi, which includes a component that varies over space 

and a white noise term, ui. A spatial error model accounts for the fact that unobserved 

factors may influence farmers’ and their neighbors’ land use decisions in similar ways, 

allowing for efficient estimation of the parameters.  The strength of the spatial correlation 

among the disturbances is represented by λ. 

Spatial weighting matrices for off-farm fallow and the error term are represented 

by W1 and W2, respectively. W1 is a row-normalized matrix that gives equal weight to 

neighbors upstream of each farm to capture the hydrological externalities of local forest 

fallow.6 W1 ln F thus represents a weighted average of off-farm fallow area upstream of 

each observation.7  I also refer to this term as a spatial lag of the fallow variable.8 

5 Because farm products are marketed goods, valuation of the fallow ecological services using a production 
function approach is straightforward and does not depend on detailed knowledge of the ecological 
mechanisms at work (Maler 1991). 
6 Estimation results do not qualitatively differ when upstream neighbors are weighted by inverse distance. 
7 Although row normalization is not appropriate in all spatial analyses, normalizing by the number of 
sampled farms in each farm’s neighborhood is important in this case to avoid inferring that farms with 
more sampled neighbors have higher levels of nearby forest cover.
8 Following the convention used by Anselin (1988) and others, I use the term spatial lag to mean a 
weighted sum of neighboring or contiguous values of the variable of interest, somewhat analogous to the 
concept of temporally-lagged variables in time-series analysis.   
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W2 is a matrix of inverse distances between all sampled farms, reflecting 

correlation in unobserved factors expected to decline with distance, such as weather 

shocks. W2 is not row normalized, as row normalization would imply that more isolated 

farms are affected by their neighbors’ disturbances as much as farms with many 

neighbors in close proximity.  The uniqueness of the two spatial weighting matrices is 

thus justified conceptually, and it allows for identification of the spatial autoregressive 

parameters.9  However, if spatial correlation among the disturbances or other non-

stochastic factors follows the same pattern as the hypothesized hydrological externality, 

then these effects cannot be disentangled without further parameter restrictions.   

I include household and farm characteristics in the vector Hi to control for 

observable aspects of management ability and land quality.  The household head’s 

schooling years, use of extension services, and land ownership help control for farmer 

management skills.  A binary variable for perennial crop production controls for the 

higher prices perennial crops command in regional markets relative to annual crops.10 

Land quality indicators include farmer-reported dummy variables for black clay and 

charcoal-enriched soil (“massape” and “preta,” both favorable types) and poor soil 

(“arisca”) and GIS data on slope, which indicates the farm’s vulnerability to erosion.  

While soil is fairly homogenous throughout the region and land is not steeply sloped, 

these variables help account for micro-level agroecological variation.  The equation also 

9 As shown by Anselin 1988 (pp. 84-85), spatial lag and spatial error parameters are generally not identified 
without nonlinear restrictions when the two weighting matrices are the same. 
10 In a preliminary attempt to control for the potential endogeneity of producing perennial crops, I estimated 
a treatment effects model.  I could not reject they hypothesis that the crop output and perennial production 
equations are independent (p = 0.86-0.88, depending on the measure of off-farm fallow used), so I treat 
perennial production as exogenous in the regressions that follow.  Perennial crops can be grown in soil 
conditions found throughout the Zona Bragantina.  However, farmers with facing higher rainfall, better 
access to extension services, and those less averse to price risks are more likely to produce perennials.  
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includes municipality dummies.  Table 2 reports the mean values for the variables used in 

the production function estimation. 

The primary parameters of interest are the coefficients of on-farm fallow and 

external fallow.  These coefficients give the output elasticities of on-farm and external 

fallow, indicating the contribution of these fixed environmental factors to crop 

production. I tackle the hypothesis that local forest cover provides positive externalities 

to downstream farms by testing whether the coefficient of the spatially-weighted 

upstream forest fallow variable is significantly greater than zero.     

Fallow variable definitions 
I use area under fallow during the cropping season as a proxy for fallow biomass.  

While fallow area does not directly measure biomass or capture the dynamic aspects of 

fallowing, larger fallow relative to cultivated area allows for more forest recovery time 

and higher peak biomass density.11  The two alternative measures of off-farm fallow are 

1) the average area under forest fallow upstream of each farm, indicated by the household 

survey data and using the spatial weighting matrix W1 to define which farms are 

considered neighbors,12 and 2) percent canopy cover upstream of each farm, given by the 

VCF data.13  Both approaches define the externality at the farm level, allowing for more 

11 When fallow management is in steady state equilibrium, fallow area has a direct relationship with 
biomass volume, though the relationship is still positive when the system is out of equilibrium (López 
1993). The steady state assumption is plausible in the conditions of the Zona Bragantina, where agronomic 
practices have been in place and minimal migration has occurred for the past several decades, unlike much 
of the Brazilian Amazon. López (1997) also found similar output elasticities of fallow using biomass 
volume and fallow area as alternative measures in Ghana. 
12 Those farms furthest upstream within a locality are assumed to affect all downstream farms; however, 
they have no neighbors among the sampled farms and so are excluded from the final crop value equation 
testing for externalities. 
13The GIS data give upstream forest cover for all farms for which I have GIS coordinates.  GIS coordinates 
are missing for 10 farms in the sample, which are excluded from the analysis.  I cannot extract upstream 
forest cover within each drainage area individually for each farm using the GIS data, so I instead extract a 
wedge-shaped neighborhood upstream of each farm with a radius of 3 km.  As expected, the survey- and 
GIS-derived variables are positively and significantly correlated (rho = 0.36). 
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variation in the off-farm upstream forest cover variable compared to other studies that 

define the forest externality at the village or sub-watershed level (e.g., López 1993, 1997; 

Pattanayak and Kramer 2001; Pattanayak and Butry 2005).   

Figure 4 illustrates the geographic structure of the relationship.  Land use on farm 

1 affects all farms downstream, but I have no information on land use upstream of farm 1.  

Meanwhile, farm 8 is affected by land use on farms 1-7 in its position as the farthest 

observation downstream. Table 3 summarizes the fallow variables and indicates the 

proportion of farms without on-farm or upstream fallow. 

Endogeneity and identification strategy 
Potential endogeneity of the fallow variables is a concern in obtaining consistent 

parameter estimates, particularly if poor soil quality spurs farmers to allocate more land 

to fallow while depressing yields. This effect could bias the on-farm fallow coefficient 

downward. Measurement error of the fallow variables, which proxy for but do not 

exactly measure fallow biomass, may cause attenuation bias, further lowering the 

elasticity estimates (Greene 2000).  In addition, differing measurement error between the 

on-farm fallow area and off-farm GIS canopy cover variable may also be a source of bias 

due to the different data sources used to construct them.  The GIS canopy cover data 

indicates fallow biomass density as well as area, while the on-farm fallow variable only 

incorporates fallow area.  Thus, the coefficient of on-farm fallow may be biased 

downward and the coefficient of GIS canopy cover upward if external canopy cover is 

correlated with on-farm biomass density.  However, the survey-reported data on off-farm 

fallow area avoids this source of bias. The error term in the production equation thus 
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encompasses not only white noise, but also measurement error, agroecological 

conditions, farmer intentions, and other factors unaccounted for in the data.14 

With these drawbacks in mind, I employ several strategies in an effort to 

consistently estimate the parameters of interest.  As discussed above, I include several 

observed indicators of land quality and management ability.  Modeling spatial correlation 

in the error terms based on distance between farms helps control for unobserved patterns 

in agroclimatic factors and farmer knowledge over space.15  I also use an instrumental 

variables (IV) estimator to address potential omitted variables and measurement error 

issues. Finally, the likely downward bias on the on-farm fallow coefficient suggests that a 

least-squares estimate can be interpreted as a lower bound of the elasticity.  

I use the log of farm size, forest product prices, and binary variables indicating 

ownership of firewood and gas stoves to instrument for on-farm fallow.  Farm size affects 

the amount of land available for fallowing and so is likely to be a strong predictor of 

fallow area. In addition, farm size has no direct effect on crop output because cultivated 

land area, clearly a crucial factor of production, is included directly in the production 

function, making total farm area unrelated to crop value and hence a valid instrument.  I 

expect forest product prices and firewood stove ownership to be positively correlated 

with on-farm fallow since fallow land typically serves as a source of forest products for 

sale or home consumption, with firewood the most common product.  Conversely, gas 

14 In addition, the coefficients of cultivated area, labor, fertilizer, and on-farm fallow may be biased upward 
if the farmer chooses input and output levels simultaneously.  Off-farm fallow is less vulnerable to 
simultaneity problems since the farmer does not determine fallow levels on neighboring farms, though it 
may still be affected by climatic shocks experienced by all farms within a neighborhood. 
15 Mardia and Marshall (1984) show that the maximum likelihood estimator of the spatial error model is 
consistent if the domain or observation area of the data increases as the sample size increases (domain 
asymptotics).  The consistency of the maximum likelihood estimator has not been shown when the sample 
size increases under a fixed domain, causing an increase in the density of observations within the given 
region (infill asymptotics) (Cressie 1993).  Therefore, consistency of the spatial errors estimators discussed 
in this paper applies only under increasing domain asymptotics.   
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stove ownership could negatively affect on-farm fallow by decreasing the household’s 

dependence on firewood fuel. Forest product price is a good instrument because it is 

unlikely to be correlated with unobservable factors affecting crop output mix and yields 

despite its impact on the marginal returns to fallow area.  Firewood and gas stove 

ownership have similar advantages as instruments unless farmers invest in stoves based 

on their planned allocation of land to fallow.   

To instrument for off-farm fallow, I use the spatially-lagged values of the on-farm 

fallow instruments and of other household-level variables included in the crop production 

equation. Thus, the instruments include the spatial lags of the log of farm size, forest 

product prices, firewood and gas stove ownership, and other household and 

agroecological characteristics expected to affect crop production.  The spatially-lagged 

values of farm and household characteristics affect neighbors’ land allocation decisions 

and hence off-farm fallow but are uncorrelated with the residual of own-farm output 

because own-farm characteristics are controlled for directly in the production function.16 

I do not use the spatially-lagged values of conventional inputs or the perennial production 

indicator due to concerns about the potential endogeneity of these variables.  I use the 

same spatial weighting matrix to construct the instrumental variables as that used to 

construct the lagged fallow variables to ensure that neighbors’ fallow area is regressed on 

the characteristics of these same neighbors.   

First-stage regressions for the on- and off-farm fallow variables are presented in 

the appendix (table A1). The instruments are strong predictors of on- and off-farm 

16 I also tested the exogeneity of all inputs jointly, including cultivated area, labor, and fertilizer.  I added 
the log of family size and the share of males age 16-65 as instruments in this regression.  I could not reject 
exogeneity of all inputs jointly (p = 0.76-0.96, depending on the off-farm fallow variable).  Thus, I focus on 
controlling for endogeneity of the fallow variables only. 
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fallow, as indicated by R-squared statistics of 0.68-0.91.17  While the IV estimates are 

consistent, a Hausman test could not reject exogeneity of the on- and off-farm fallow 

variables, whether using the survey or GIS measures of off-farm fallow (p= 0.40-0.88).  

Thus, the least squares estimates of the elasticities of on- and off-farm fallow are both 

consistent and more efficient than the IV estimates.   

Treatment of non-essential inputs   
Use of the Cobb-Douglas specification implies that all inputs are used in positive 

quantities. However, some farmers in the sample use no fertilizer, hired labor, or fallow 

land, and a few have no survey-reported upstream fallow area (tables 2 and 3).  I do not 

employ the widely-used strategy of adding a small shifter to the inputs before taking logs 

because parameter estimates tend to be highly sensitive to the value of the shifter 

(Soloaga 2000).  Instead, I deal with non-essential inputs according to the approach 

outlined by Battese (1997), adding dummy variables to indicate non-use of each input.18 

These dummy variables function as different intercepts for the farmers who do not use 

each of the inputs (including the on- and off-farm fallow variables).  While non-use of 

fallow or conventional inputs, or location downstream of land with no fallow cover, 

might be indicative of a different production system than that used by most farmers, data 

17The Sargan test for overidentification indicates that the instrumental variables as a group are uncorrelated 
with the residuals of the output equations (p = 0.89-0.95, depending on the upstream fallow variable).  In 
addition, none of the instruments were significant at conventional levels when included one-by-one in the 
IV estimation of crop value. Although these IV validity tests have low power, they support the assertion 
that the instruments are uncorrelated with crop value. 
18 Battese represents a two-input Cobb-Douglas production technology using two equations, assuming that 
one input, x1, is used by all firms, and a second input, x2, is used by only some firms: 

ln y = b0 + b1*ln x1 + b2*ln x2 + u, for all farms with x2>0 
ln y = a0 + b1*ln x1 + u, for all farms with x2=0 

The two equations can be pooled to write 
ln y = b0 + (a0-b0)*D + b1*ln x1 + b2*ln z + u 

 where D is a dummy variable indicating non-use of x2 and z = max(D,x2).  This strategy assumes a 
constant parameter b1 and error u across both equations. 
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are insufficient to estimate separate production functions for these individuals.  In 

addition, ten farms produce no outputs during the season and are excluded from the crop 

production regression. 

Results 
Table 4 presents four sets of estimates of the crop production function.  The first 

two columns report estimates from the spatial error model (SEM) (1) and from the spatial 

error model with instrumental variables (SEM-IV) (2) using survey-reported off-farm 

fallow area to represent upstream fallow.  The last two columns show SEM (3) and SEM­

IV (4) estimates with the GIS canopy cover variable as an alternative measure of 

upstream fallow.  As stated above, the fallow variables can be considered exogenous, so 

all four sets of elasticity estimates are consistent.  All models have a satisfactory fit, as 

indicated by R-squared statistics of 0.56-0.60, and the coefficients largely have the 

expected signs across the different models.  The spatial error correlation coefficient is not 

significantly different from zero in any of the specifications, indicating that unobserved 

variables varying with distance between farms have no systematic effect on crop output 

once inputs and observed farmer and soil characteristics are controlled for. 

Comparisons among the four models reveal that on-farm and upstream fallow are 

both important factors of crop production in the Zona Bragantina.  The elasticity of on-

farm fallow is positive across all models and significantly different from zero in two of 

the four models, varying from 0.09-0.18.  These estimates suggest that own-fallow land 

makes a substantial contribution to crop output, close to that of hired labor or fertilizer.  

In addition, the non-IV coefficient estimates (0.09-0.10) from models (1) and (3) 

represent a lower bound on elasticity due to the potential for downward bias caused by 

16
 

http:0.09-0.10
http:0.09-0.18
http:0.56-0.60


 

omitted soil quality variables and measurement error, though formal tests could not reject 

exogeneity of on-farm fallow.  

The elasticity estimates are similar in magnitude to those from other econometric 

and agronomic studies.  For instance, López (1993, 1997) finds the village-level fallow 

biomass factor share to vary between 0.15 and 0.2 in Ghana and Cote d’Ivoire.  Mendoza 

(2004) uses the same data set as this study to estimate the contribution of fallow length to 

cassava profits, finding an output elasticity of 0.22.  An Altamira, Pará, field study finds 

the elasticity of maize yields with respect to fallow age to be 0.33 (Silva-Forsberg et al. 

1997). An agronomic study from Bragantina showed rice yields to improve by 10-44% 

as fallow age increased from four to ten years, corresponding to a fallow elasticity of 

0.07-0.29, with the lower elasticities found on fields to which fertilizer was applied (Kato 

et al. 1999). The wide use of fertilizer by sampled farms may help explain why the 

elasticities estimated here fall in the lower range of previous studies.    

The estimated elasticity of off-farm fallow in crop production is positive across 

three of the four estimates, providing evidence that upstream forest fallow improves 

productivity for downstream farms.  The actual elasticity estimate varies considerably 

based on the estimator used.  Models (1) and (2), which use survey-reported fallow area 

as the measure of upstream fallow, show a significant and positive elasticity of 0.37-0.38.  

In model (3), which employs the GIS canopy cover variable to measure off-site fallow, 

the elasticity jumps to 0.66.  This high coefficient could result from off-farm canopy 

cover proxying for on-farm biomass density, which is not completely reflected by the on-

farm fallow area variable.  The SEM-IV estimate of upstream canopy cover in model (4) 
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drops to 0.23, which is closer in magnitude to the elasticities from models (1) and (2), 

though not significantly different from zero.   

The large magnitude of the upstream fallow elasticity estimate, which surpasses 

the on-farm fallow elasticity, is surprising.  Potential explanations include downward bias 

of the on-farm fallow coefficient, discussed above, and the possibility that non-stochastic 

factors correlated with forest cover other than hydrological externalities affect 

downstream crop production. While the hydrological externality effect cannot be isolated 

if other factors lead to a correlation between off-farm land use and on-farm output, the 

positive and significant coefficient provides support for the hypothesis that farms benefit 

from forest cover upstream.  In addition, the magnitude of the upstream fallow effect 

estimated in models (1), (2), and (4) is similar to the results from the Ruteng National 

Park, Indonesia, study, where a 10% increase in soil moisture due to afforestation was 

associated with a 2-3% boost in farm profits (Pattanayak and Butry 2005).   

As an additional verification that forest cover provides hydrological externalities, 

I also estimate all four specifications of the crop production function including 

downstream forest cover as an additional regressor.  If forest cover provides positive 

hydrological externalities, then upstream forest cover will affect crop production but 

downstream forest cover will not.  The appendix (table A2) presents the results of these 

regressions. Across all four models, downstream forest cover has no significant effect on 

crop value, in contrast to the elasticity of upstream forest cover.  In fact, the coefficient 

on downstream forest cover is negative.  These findings support the contention that forest 

cover improves crop output by regulating floods and soil moisture, and that other 

potential non-hydrological services such as crop pollination do not drive the results.   
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Elasticity estimates for the conventional inputs are largely positive and 

significantly different from zero across all four specifications (table 4).  Cultivated area 

makes the most substantial contribution to crop output, with an elasticity of 0.41-0.44.  

Hired labor and fertilizer are also important, supplying 17-19% and 15-17% of crop 

output, respectively. Production of perennial crops raises output value considerably.  

Agroecological variables are also important—black clay and charcoal-enriched soils 

boost output, while poor soils and steeper slopes dampen it, though only the effect of 

charcoal-enriched soil is statistically significant.  The household head’s schooling, use of 

extension services, and ownership of the farm have no significant effect on output value, 

which could result if differences in management ability are reflected in input quantities 

rather than farmer characteristics.  Models (3) and (4) indicate that farms in Castanhal 

municipality garner higher crop revenues than those from Igarapé Açu or Bragança.  

Farms with no family labor, on-farm fallow, or upstream fallow area produce higher crop 

values, as indicated by the coefficients of the dummy variables for non-use of each input. 

Resampling and robustness analysis 
I carry out a number of robustness checks to ensure that the estimated elasticities 

of on- and off-farm fallow are stable across different sub-samples of farmers.  When 

farms in the lowest and highest tenth percentiles of on-farm and upstream fallow area are 

excluded from the regression, the coefficient for on-farm fallow varies between 0.08­

0.11. Upstream fallow area is less robust, though still high in magnitude, ranging from 

0.20-0.51. The elasticity of GIS canopy cover varies from 0.55-0.67 and is significantly 

different from zero in both sub-groups, indicating that the estimates are stable.   
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Coefficient estimates are similar when each observation is dropped one-by-one in 

a leave-one-out cross-validation procedure (LOOCV; see, e.g., Stone 1974, Geisser 

1975). The elasticity estimates fall within a similar range as those estimated when 

dropping the top and bottom tenth percentiles: 0.07-0.12 for on-farm fallow, 0.30-0.43 

for upstream survey-reported fallow area, and 0.60-0.70 for upstream GIS canopy cover.  

Averaging the results of the LOOCV gives elasticities of 0.10, 0.37, and 0.66 for on-farm 

fallow, upstream fallow area, and upstream canopy cover, all very close to the SEM 

estimates reported in table 4.  Finally, the bootstrap bias estimates of on- and off-farm 

fallow elasiticities from the four models calculated using 500 replications indicate that 

the finite sample biases are small relative to the sizes of the parameter estimates (table 5). 

Forest product harvesting function 
I now turn to forest product harvesting, an important use of fallow land beyond 

the ecosystem services it provides in crop production.  Sixty-nine percent of farmers in 

the sample collect products from their fallow land.  The most common products are wood 

and charcoal, used primarily for cooking fuel, though farmers also gather honey and 

forest fruits. Most of the produce is reserved for home consumption, with only one 

farmer selling the entire harvest.  Twenty-six percent of harvesters both consume and sell 

some of their products.  Forest products tend to be overshadowed by cropping, 

comprising 14% of the income from farm activities on average among sampled farmers.  

Some studies argue that forest product harvesting represents an important risk mitigation 

or “natural insurance” strategy for small-scale farmers (Pattanayak and Sills 2001, 

Hedden-Dunkhorst et al. 2003). Research from the Amazon indicates that forest product 
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harvesting can contribute substantially to shifting cultivators’ incomes, though virgin 

forest may yield more lucrative products than secondary forest (Smith et al. 1999). 

I estimate an equation to measure the value of fallow in harvested forest products. 

The dependent variable is the log of forest product value.  Although most products are 

reserved for home consumption, I aggregate over different commodities using farmer-

reported market prices in the absence of alternative weights.   

The logs of on-farm and upstream fallow land are the primary regressors of 

interest.  On-farm fallow land proxies for fallow biomass, which is the source of the 

harvested commodities.  Upstream forest fallow may facilitate easier harvesting and more 

abundant products by moderating floods and soil moisture.  I again use the two 

alternative measures of off-farm fallow biomass derived from survey and GIS data.  The 

equation can be written as 

ln q = α o +α1 ln f +α W1 ln F +α ln H i + ε ii i 2 3 

ε = λW ε + ui 2 i 

Here, qi represents the value of forest product harvests.  On- and off-farm fallow 

are again given by fi and F, respectively, while W1 represents the same row-normalized 

spatial weighting matrix as that used in the crop production function, giving all upstream 

neighbors equal importance.  Use of the same weighting matrix is appropriate if the 

externalities provided to forest products are similar to those relevant in crop production.  

Household characteristics expected to affect output value are included in the vector Hi. 

The disturbance, εi, is again comprised of a component that varies systematically over 

space with inverse distance, λW2ε, and white noise, ui. I also use Battese’s (1997) 

approach, discussed above, adding dummy variables to indicate observations with no 

fallow on their own farms and no fallow upstream.   
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I cannot estimate a structural production function due to missing input data, 

namely harvesting labor.  To proxy for collecting labor availability, I include the log of 

household size and the agricultural wage rate.  I also include black clay, charcoal-

enriched, and poor soil type indicators and slope to control for land quality.  I add 

variables indicating ownership of firewood and gas stoves, as cooking fuel is an 

important commodity for home consumption.  I also include three indicators of 

household wealth—car ownership, television ownership, and electricity use—to examine 

whether low-income households are more likely to collect forest products.  Other control 

variables include forest product prices,19 the household head’s education level, ownership 

of the farm, and municipality dummies.   

Treatment of censoring in forest product harvests 
Because only 69% of farms harvest forest products, the econometric model must 

account for censoring to consistently estimate the parameters of interest.  Factors 

affecting demand for forest products, such as market prices, opportunity cost of labor, 

and land quality, may have different impacts on the decision to harvest and the amount of 

output conditional on participation. The two-part hurdle model allows for different effects 

across the two processes.20  Because the same set of variables affects both the binary 

19 In the absence of data on market prices for the harvested commodities, I use village medians of farmer-
reported forest product prices as regressors to avoid bias due to common measurement error and quality 
effects by including farmer-reported prices directly on both sides of the equation. Use of unit value cluster 
means outperforms other proxies for market prices in estimating price elasticities in a study using 
Vietnamese data (Niimi 2005).  I use village medians to minimize the influence of outliers. 
20 I test the Tobit restriction against the two-part Cragg hurdle model, which nests the Tobit, to determine 
whether the coefficients vary across the two processes (Fin and Schmidt 1984). The explanatory variables 
do differ in magnitude, and in some cases even sign, across the probit and non-limit regression models.  
Indeed, a likelihood ratio test rejects equality of the coefficients across the two equations for all four model 
specifications (p = 0.00).  Results of these regressions are available upon request I use the hurdle model 
estimates in the remainder of my analysis.  I employ the two-part probit-least squares model rather than the 
Cragg approach to facilitate estimation using spatially-correlated errors and instrumental variables. 
However, the significance and magnitudes of the coefficients are very similar across the Cragg and probit­
least squares models, indicating that the hurdle model is robust across the two specifications. 
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choice and conditional outcome, the lack of valid exclusion restrictions makes the 

Heckman selection model infeasible to implement.  A hurdle model of forest product 

harvesting with spatially correlated error terms in both equations can be written as 

D = γ + γ ln f + γ W ln F + γ H + ξ , D = {0,1}i 0 1 i 2 1 3 i i 

ln qi = β0 + β1 ln f i + β 2W1 ln F + β3 Hi + ε i if Di = 1 
ξ = λ W ξ + ui 1 2 i 

ε i = λ2W2ε + vi 

where D denotes a dummy variable indicating participation in harvesting forest products.  

The selection equation is estimated using a probit model, while the conditional outcome 

equation can be estimated by ordinary least squares regression on the non-limit 

observations (Wooldridge 2001, p. 536).   

Identification and instrumental variables                 
Similar to the omitted variable problem raised in the crop production function, 

poor land quality could lead farmers to allocate more land to fallow but reap lower yields 

of forest products, biasing the on-farm fallow coefficient downward.  Measurement error 

may also lead to attenuation bias on the fallow coefficients since fallow biomass is 

proxied by fallow area or canopy cover. The elasticity of GIS off-farm canopy cover 

may also be overestimated and the elasticity of on-farm fallow area underestimated if 

canopy cover is correlated with on-farm fallow biomass density.  Simultaneity between 

fallow area and forest product output may bias the coefficient of on-farm fallow upwards 

as well, though it is less likely to affect the coefficient of off-farm fallow. 

I employ similar approaches as those used in the crop production estimation to 

address concerns about endogeneity. Control variables on land quality and farmer 

characteristics are included directly in both the probit and non-limit regressions models.  
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Spatially correlated errors are included in both to reflect unobserved factors that vary 

between farms with distance.   

I again use the log of farm size as an instrument for on-farm fallow.  Total farm 

size determines the land available for allocation to fallow.  However, beyond its effect on 

the size of fallow land, farm area should have no direct effect on forest product harvests.  

Forest product prices and firewood and gas stove ownership, used as instruments for 

fallow in the crop production function, are not valid exclusion restrictions and are 

included in the forest products equation. I employ spatially-lagged values of farm size 

and several other household-level exogenous variables from the forest products equation 

as instruments for off-farm fallow. 

The instruments explain much of the variation in on-farm fallow area, upstream 

fallow area, and canopy cover, as seen in first-stage equations with R-squared statistics of 

0.74, 0.90, and 0.65, respectively (table A3 of the appendix).  Overidentification tests 

confirm that the instruments are uncorrelated with forest product harvesting decisions and 

output value.21  Smith-Blundell tests indicate that on- and off-farm fallow can be 

considered exogenous to the forest product harvesting decision in model (1) but not in 

model (3). In addition, the fallow variables are not exogeneous to the value of forest 

products conditional on harvesting, according to Hausman test results (p = 0.04-0.09).  

Therefore, the SEM-IV estimates of the probit and non-limit regressions are consistent, 

while the regular SEM-probit and non-limit regression estimates are not. 

21 The instruments are also uncorrelated with the outcome variables individually, as shown by including 
each in the outcome equations. Certain lagged household characteristics, including education, farm 
ownership, electricity use, and slope were not used as instruments because they were found to be correlated 
with the forest product harvesting decision or conditional value. 
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Results 
Tables 6 and 7 show the results of the forest product harvesting participation and 

outcome equations, respectively.  Columns (1) and (2) of table 6 report SEM probit and 

SEM-IV probit coefficient estimates using survey-derived off-farm fallow area.  Columns 

(3) and (4) instead use GIS canopy cover.  Table 7 follows the same pattern, with 

columns (1) and (2) giving non-limit SEM and SEM-IV estimates using survey-reported 

upstream fallow area, and columns (3) and (4) using GIS canopy cover.  The spatial 

correlation coefficient of the probit equation error term is positive and significant across 

all four models, indicating that unobservable factors do have similar effects on neighbors’ 

harvesting decisions. The error terms are not significantly spatially correlated in the non-

limit regressions, however.    

While I use separate probit and non-limit regression models to estimate the 

parameters of the hurdle model, the combined effect or unconditional elasticity of the 

fallow variables are the main parameters of interest from the model of forest product 

harvesting.22  The non-limit regression equations estimate the conditional elasticity 

directly, since product value and fallow are expressed in log form.  I calculate the 

probability elasticities using the coefficients from the probit models, using 

d ln Pr(q > 0) ϕ(γz)
= γ 1d ln f Φ(γz) 

where γ1 is the coefficient of the log of on-farm fallow from the probit equation, and γz is 

the linear prediction. 

22 McDonald and Moffitt (1980) derive the decomposition of the effects of the participation decision and 
the value of the outcome conditional on participation in the Tobit context, showing that 
E( y | x) = Pr( y > 0 | x) ⋅ E( y | y > 0, x) . Log differentiating this expression reveals that the unconditional 
elasticity is simply the sum of the probability elasticity and the conditional elasticity.   
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Table 8 reports the probability, conditional, and unconditional elasticities of on- 

and off-farm fallow in forest product harvesting.  The unconditional output elasticity of 

on-farm fallow is positive across all four models, varying from 0.22 to 0.49.  However, it 

is higher in magnitude and significantly different from zero only in models (2) and (4), 

when the IV approach addresses the endogeneity of on- and off-farm fallow.  This 

finding indicates that omitted variables and measurement error bias the estimates of the 

probability and conditional elasticities downward.  These results confirm that on-farm 

fallow makes an important contribution to the value of forest products, as expected.  In 

fact, the elasticities derived from the SEM-IV estimates suggest that on-farm fallow 

contributes close to 50% of the value of forest products.    

The estimates of the unconditional elasticity of off-farm fallow are also all 

positive, spanning 0.76-0.89. Similar to the results from the crop production function, the 

elasticity of upstream fallow area is significantly greater than zero in models (1), (2), and 

(3). The SEM-IV estimate (model (4)) is not significantly different from zero.  These 

results suggest that farms located downstream of neighbors with higher levels of forest 

fallow garner higher incomes from forest products, even accounting for positive spatial 

correlation in omitted variables affecting neighbors’ harvesting decisions.23  The net 

effect is positive and statistically significant for three out of four estimates.  Thus, these 

findings provide some support the hypothesis that upstream forest fallow provides 

23 I also investigate whether fallow externalities only arise from upstream forest cover by estimating the 
probit and non-limit regressions including downstream fallow.  I find that downstream fallow has no 
significant effect on the probability of harvesting forest products, and the coefficient is actually negative 
across all four models.  The results from the conditional outcome equation are less conclusive—Models (2) 
and (3) show downstream fallow to have a positive, though not significant, effect on harvest value.  Thus, I 
cannot confirm whether the positive effects of off-farm fallow on forest product harvests are strictly 
hydrological, flowing from upstream to downstream, or whether insect pollinators, tree seed availability, or 
other potential forest ecosystem services may play a role. These results are available upon request.  
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positive externalities not only in crop production but also in forest product harvests, 

thought the results are less conclusive than those from the crop production function.  

Turning to the other explanatory variables in the hurdle model of forest product 

harvesting, labor availability is important in the decision to collect forest products, as 

indicated by the positive and significant coefficient of the log of household size and the 

negative and significant coefficient of the wage rate in the probit equation.  Ownership of 

a gas stove is negatively associated with harvesting forest products, as expected given 

these farms’ decreased reliance on firewood as a cooking fuel.  Farms that do not own a 

car or use electricity are more likely to collect forest products, implying that low-income 

farmers rely more heavily on forest products than do better-off households.  However, car 

and television ownership have the opposite effect on the conditional value of forest 

products, suggesting that wealthier households reap greater value from this activity when 

they choose to participate. Families with a more educated household head also earn 

higher revenues from harvesting.  Land quality affects harvests as well: favorable black 

clay soils and less steeply-sloped land increase the conditional value of harvested 

products. Farmers located in Castanhal and Igarapé Açu are more likely to collect forest 

products than those in Bragança.  In addition, households’ whose upstream neighbors 

maintain no fallow area are significantly less likely to harvest any forest products  Village 

median forest product prices, firewood stove ownership, and farm ownership do not have 

significant effects on the probability of harvesting or on conditional harvest value. 

Resampling and robustness analysis 
I carry out similar tests of robustness to those used in the crop production section 

to investigate whether the results hold across different sub-groups of farmers.  Excluding 
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farms from the top and bottom tenth percentiles of on-farm fallow from the probit and 

non-limit regressions, I find that the results are largely stable.  On-farm fallow has a 

positive and significant effect on the probability of harvesting across the different sub-

samples, though it has no significant effect on the conditional value of the harvest.  The 

effect of upstream fallow area is somewhat less robust across different groups—farms 

with more fallow upstream experience a much larger impact on the probability of 

harvesting, but find less of an effect on the conditional harvest value.  Upstream canopy 

cover has a consistent effect on the probability of harvesting across different sub-

samples, but farms with less upstream canopy cover reap greater benefits in terms of 

harvest value. 

Using the leave-one-out cross-validation procedure, the total elasticity estimates 

do vary quite a bit, ranging from 0.09-0.20 for on-farm fallow, 0.52-0.78 for upstream 

fallow area, and 0.64-0.89 for upstream canopy cover, with means of 0.13-0.16, 0.70, and 

0.77, respectively. Thus, while total elasticity estimates for forest product harvests with 

respect to on-farm and upstream fallow are positive across different sub-samples of 

farmers, they are more variable than those from the crop production function.  

Total on- and off-farm fallow elasticities 
To better understand the economic significance of forest fallow services in farm 

activities, I calculate the total farm output elasticity of on- and off-farm fallow using the 

results from all four models of the crop and forest product estimations.  The total output 

elasticities of on- and off-farm fallow account for their respective contributions to both 

crop and forest product income, which vary by farm with the share of income from each 

activity. 
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The mean elasticity of on-farm fallow ranges from 0.11-0.22, depending on the 

estimates used, but is significantly different from zero in all four specifications (table 9).  

This positive mean elasticity underscores the importance of forest fallow to farms in the 

Zona Bragantina in providing both consumable products and ecological support services.   

In addition, the mean output elasticity of upstream fallow is significantly different 

from zero in three of the four sets of estimates, spanning 0.29-0.68.  The effect of off-

farm fallow on farm revenue appears to be important both statistically and in magnitude.  

As in the results from the crop production function alone, I cannot rule out whether the 

high magnitude of the off-farm effect is in part driven by other factors that lead upstream 

land use to be correlated with downstream farm income.  However, the positive and 

significant effect of upstream but not downstream forest cover on crop value does 

provide support for the hypothesis that hydrological externalities contribute to 

agricultural income.   

These findings support the hypothesis that upstream forest fallow provides flows 

of economically significant ecological services to farms in the Zona Bragantina.  They 

suggest that off-site hydrological regulation may be important even in low and 

moderately sloped regions with porous soils.  These hydrological support services may 

justify continued allocation of significant amounts of land to forest fallow in the future, 

even if farms increasingly substitute chemical fertilizer for fallow-based soil nutrients. 

Land allocation efficiency 
While fallow provides important ecological services in shifting cultivation, it can 

be a costly investment when the opportunity costs of land and labor are considered.  Land 

must remain out of cultivation for years at a time to ensure sustainability, and land 
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clearing requires large investments of labor.  The total returns to fallowing thus depend 

on the relative contributions of fallow and cultivated land to farm income once all costs 

are considered.   

The estimated income elasticities of cultivated area, on-farm fallow, and upstream 

fallow can be used to determine whether farmers allocate land between cultivation and 

fallow efficiently. Farmers manage land efficiently from a social perspective if they 

balance the marginal contribution of cultivated area to crop income with the marginal 

value of the lost fallow services to on-farm and downstream crop production and forest 

product harvesting. Klemick (2008) derived the expression for efficient land allocation 

from an optimal control model of shifting cultivation.  This measure, termed the social 

income elasticity of cultivated land, represents the impact of a 1% increase in cultivated 

area on agricultural profits earned on the farm itself and on farms affected downstream.24 

Using this expression, Klemick calculated whether each farmer allocated the optimal 

amount of land to fallow using the estimated parameters from the crop and forest product 

equations presented in model (1). 

Efficient allocation of land between cultivation and fallow implies that the social 

income elasticity of cultivated land is equal to zero.  If the elasticity is significantly 

greater (less) than zero at the 1% level, the farm is considered to be over-(under-) 

24 The social income elasticity of cultivated land is written as 
i i i i i N
 

i rcrop ⎛ x ⎞ x ⎛ 1+ r ⎞⎛ rcrop rfor 1 j j ⎞
⎜ ⎟ ⎜ε soc = i ε x − i c ⎟ − i ⎜⎜ i i ⎟⎟ εθ i i + ξθ i i +∑ j j (εΣθ rcrop + ξΣθ rfor )⎟⎟⎜⎜π r π r + x X X − x X − x (X − x )⎝ crop ⎠ ⎝ ⎠⎝ j ⎠ 

and depends on the amount of land under cultivation (x) and fallow ( X − x ), crop and forest product 
income (rcrop, rfor), total farm profits (π),and marginal land-clearing costs (c), factors that vary across all 
farms in the sample.  It also depends on the elasticities of crop output with respect to cultivated area (εx), 
on-farm fallow (εθ), and upstream fallow (εΣθ), and on the elasticity of forest product harvests with respect 
to on-farm fallow (ξθ) and upstream fallow (ξΣθ), which can be approximated by the parameters from the 
equations estimated in this article.  The rate of interest is given by r.  The variance of this expression can be 
estimated using the variance-covariance matrices from the crop and forest product equations.   
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fallowing. I follow the same procedure here to test whether sampled farmers managed 

land efficiently, allocated too much land to fallow, or allocated too little according to 

each of the four sets of parameter estimates.    

Table 10 presents the results on land allocation efficiency, assuming that farmers 

face a 10% interest rate.25  The results suggest that most sampled farmers did indeed 

allocate land between cultivation and fallow efficiently—74-88% of them, depending on 

the elasticity estimates used.  While some farmers devoted too much (1-17%) or too little 

(2-12%) land to fallow, by and large, most farmers managed land optimally.  These 

results contrast those of López (1993, 1997), who found that farmers in Ghana and Cote 

d’Ivoire holding fallow in common property cleared excessive amounts of fallow for 

cultivation relative to the social optimum, indicating that private property ownership may 

improve the efficiency of land management.   

Summary and conclusions 
This study adds to the growing body of literature quantifying the value of forest 

resources for human livelihoods, specifically agriculture.  Such knowledge is essential for 

policy-makers involved in land-use planning and economic development in forested areas 

where poverty remains widespread.   

Fallow makes an important contribution to farm income in semi-commercial, 

smallholder agriculture in the Zona Bragantina, a region with similar agroecological 

conditions and a somewhat more developed infrastructure than other frontier regions in 

Brazil. Fallowing provides ecological services to farmers by improving land quality and 

25 As discussed in Klemick (2008) and López (1997), the interest rate is a key parameter because it 
determines how heavily farmers discount the future value of the fallow biomass stock.  In the absence of 
data on interest rates facing sampled farmers, I assume a 10% interest rate to capture a balance between the 
subsidized credit programs and market interest rates available to farmers in the region. 
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serving as a source of harvestable products.  The econometric analysis indicates that 

fallow provides valuable hydrological services to downstream farmers as well.  The 

results also suggest that farmers allocated land between cultivation and fallow efficiently, 

even accounting for the value of these downstream services.   

These findings imply that farming communities may have some self-interest in 

preserving forest cover locally, even if transition to permanent cultivation becomes more 

attractive in the future. Knowledge of the local benefits of forest fallow may bolster 

efforts aimed at conserving tropical forests as a strategy to mitigate greenhouse gas 

emissions and biodiversity loss.  Conversely, policies encouraging farmers to transition 

from slash-and-burn to permanent cultivation may have unintended consequences due to 

the loss of local hydrological services. 
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Figure 1 Municipios in the Zona Bragantina 

Source: http://pt-uf.pt-dlr.de/Shift/english/map/env101.htm, Accessed Nov. 28, 2005 

Figure 2 Tree canopy cover in the Zona Bragantina, March 2001-March 2002 
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Figure 3 Flow direction in the Zona Bragantina 
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Figure 4 Flow direction of hypothesized hydrological externalities 

Legend 
1 E 

2 SE 

4 S 

8 SW 

16 W 

32 NW 

64 N 

128 NE 

Upstream 

Downstream 

1 

3 
2 

6 

4 

7 

5 

8 

38
 



 

 

 

                                                 
  

 

Table 1 Household characteristics 
Mean Observations 
(Standard deviation) 

Farm size (ha) 

Household size (members) 

Own farmland (legal title) 

1 = yes, 0 = no 

Household head education (years) 


Use extension services 

1 = yes, 0 = no 

Own car 

1 = yes, 0 = no 

Own television 

1 = yes, 0 = no 

Use electricity 

1 = yes, 0 = no 

Own firewood stove 

1 = yes, 0 = no 

Own gas stove 

1 = yes, 0 = no 

Village-level annual price index 

($B/kg) 

Village-level perennial price index 

($B/kg) 

Forest product price ($B/kg)26
 

Agricultural wage rate ($B/day) 


40.73 
(47.97) 
6.18 
(2.78) 
0.65 
(0.48) 
3.77 
(2.91) 
0.24 
(0.43) 
0.09 
(0.28) 
0.60 
(0.49) 
0.62 
(0.49) 
0.85 
(0.36) 
0.84 
(0.37) 
0.81 
(0.23) 
3.26 
(1.81) 
6.57 
(14.76) 
8.26 
(1.38) 

271 

271 

271 

271 

271 

271 

271 

271 

271 

271 

271 

271 

187 

271 

26 I impute forest product prices for households that do not collect forest products using village averages.  
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Table 2 Production function variables 

Mean Observations 
(Standard deviation) 

Crop output value ($B) 

Cultivated area (ha) 

Family labor (person-days) 

No family labor used  
1 = yes, 0 = no 
Hired labor (person-days) 

No hired labor used 
1 = yes, 0 = no 
Fertilizer (kg NPK) 

No fertilizer used 
1 = yes, 0 = no 
Slope (degrees) 

Black clay (massape) soil 
1 = yes, 0 = no 
Charcoal enriched (preta) soil 
1 = yes, 0 = no 
Poor (arisca) soil 
1 = yes, 0 = no 

Table 3 Fallow variables 

5118.27 
(11972.62) 
3.75 
(4.64) 
112.47 
(97.42) 
0.02 
(0.15) 
52.94 
(75.36) 
0.17 
(0.37) 
389.90 
(1525.69) 
0.29 
(0.46) 
2.65 
(2.54) 
0.10 
(0.30) 
0.10 
(0.31) 
0.06 
(0.24) 

261 

270 

271 

271 

271 

271 

271 

271 

261 

271 

271 

271 

On-farm fallow area (ha) 

No on-farm fallow land 
1 = yes, 0 = no 
Off-farm (upstream) average fallow 
area – survey data (ha/upstream 
neighbor) 
No upstream fallow area 
1 = yes, 0 = no 
Off-farm (upstream) canopy cover – 
GIS data, 3km radius (% area) 
No upstream canopy cover 
1 = yes, 0 = no 

Mean 

(Standard deviation) 

22.60 

(28.97) 
0.14 
(0.35) 
24.54 
(19.62) 

0.03 
(0.16) 
24.61 
(9.08) 
0 
(0.00) 

Observations 

271 

271 

236 

236 

261 

261 
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Table 4 Crop production function estimation 

SEM27 SEM-IV SEM SEM-IV 
(1) (2) (3) (4) 

Log on-farm fallow area 0.098* 0.125 0.093 0.177** 
[0.058] [0.078] [0.058] [0.090] 

Log off-farm fallow – upstream 0.366** 0.378** 
survey fallow area [0.158] [0.184] 
Log off-farm fallow – 3 km 0.655*** 0.231 
upstream GIS canopy cover  [0.231] [0.403] 
Log cultivated area 0.414*** 0.405*** 0.438*** 0.434*** 

[0.099] [0.101] [0.094] [0.096] 
Log family labor 0.128 0.126 0.062 0.074 

[0.093] [0.094] [0.088] [0.090] 
Log hired labor 0.175*** 0.172*** 0.194*** 0.171*** 

[0.065] [0.066] [0.061] [0.063] 
Log chemical fertilizer 0.146*** 0.146*** 0.174*** 0.159*** 

[0.055] [0.056] [0.056] [0.058] 
Perennial producer (binary) 0.911*** 0.914*** 0.826*** 0.830*** 

[0.177] [0.178] [0.165] [0.167] 
Use extension services (binary) 0.262 0.27 0.205 0.206 

[0.177] [0.178] [0.164] [0.166] 
Household head schooling years -0.018 -0.018 -0.02 -0.02 

[0.025] [0.025] [0.024] [0.024] 
Farm owner (binary) 0.07 0.07 -0.045 -0.018 

[0.157] [0.158] [0.148] [0.151] 
Black clay soil (binary) 0.221 0.227 0.193 0.179 

[0.236] [0.238] [0.233] [0.236] 
Charcoal-enriched soil (binary) 0.373* 0.381* 0.363* 0.414* 

[0.215] [0.216] [0.215] [0.221] 
Poor soil (binary) -0.122 -0.125 0.213 0.106 

[0.309] [0.310] [0.283] [0.298] 
Slope -0.011 -0.013 -0.021 -0.012 

[0.027] [0.027] [0.027] [0.028] 
Castanhal municipality (binary) 0.25 0.251 0.634*** 0.456* 

[0.228] [0.229] [0.234] [0.273] 
Igarapé Açu municipality (binary) 0.281 0.277 0.304 0.244 

[0.229] [0.233] [0.214] [0.220] 
No on-farm fallow (binary) 0.429 0.495 0.515** 0.676** 

[0.285] [0.323] [0.261] [0.312] 
No upstream fallow area (binary) 1.102* 1.131* 

[0.602] [0.657] 
No family labor (binary)  1.260* 1.243* 0.898 0.901 

[0.651] [0.653] [0.641] [0.649] 
No hired labor (binary) 0.018 0.013 0.173 0.066 

27 All regressions estimated in Stata 8 unless otherwise noted 
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[0.284] [0.285] [0.269] [0.278] 
No fertilizer (binary) 0.174 0.157 0.325 0.275 

[0.308] [0.312] [0.299] [0.305] 
Constant 3.343*** 3.202*** 2.500*** 3.720*** 

[0.732] [0.758] [0.952] [1.419] 
Spatial error correlation coefficient -0.033 -0.055 -0.016 -0.021 
(λ) [0.138] [0.142] [0.156] [0.30] 
Observations 228 228 251 251 
R-squared 0.60 0.60 0.57 0.56 
Log likelihood -313.83 -314.36 -347.77 -350.80 
Standard errors in brackets 
* significant at 10%; ** significant at 5%; *** significant at 1% 

Table 5 Bootstrap bias estimates for crop production function parameters, 500 replications 

Model (1) Model (2) Model (3) Model (4) 
On-farm fallow -0.004 -0.005 -0.004 -0.008 
Upstream fallow area 0.003 0.003 
Upstream canopy cover (3km -0.005 -0.041 
radius) 
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Table 6 Forest product harvesting: participation equation 

SEM 28 SEM-IV SEM SEM-IV 
Probit (1) probit (2) Probit (3) probit (4) 

Log on-farm fallow area 0.281*** 0.370*** 0.395*** 0.473*** 
[0.110] [0.146] [0.117] [0.198] 

Log off-farm fallow – upstream 0.430 0.425 
survey fallow area [0.278] [0.302] 
Log off-farm fallow – 3 km 0.591 1.754** 
upstream GIS canopy cover [0.491] [0.980] 
Forest product price (village -0.224790 -0.181 0.164 0.185* 
median) 0.182062 [0.168] [0.143] [0.138] 
Log household size 0.965*** 0.962*** 0.834*** 0.896*** 

[0.300] [0.260] [0.310] [0.313] 
Agricultural wage rate -0.245*** -0.234*** -0.230** -0.237** 

[0.010] [0.095] [0.100] [0.104] 
Household head schooling years 0.051 0.061* 0.034 0.041 

[0.047] [0.043] [0.051] [0.052] 
Farm owner (binary) 0.303 0.274 -0.066 -0.080 

[0.294] [0.275] [0.315] [0.320] 
Own car (binary) -0.975*** -0.936*** -0.946** -0.852** 

[0.403] [0.397] [0.473] [0.480] 
Own television (binary) 0.047 -0.015 -0.064 0.022 

[0.314] [0.320] [0.362] [0.365] 
Use electricity (binary) -0.841*** -0.744*** -0.723** -0.755** 

[0.335] [0.316] [0.390] [0.377] 
Own firewood stove (binary) 0.293 0.326 0.474* 0.332 

[0.329] [0.319] [0.384] [0.428] 
Own gas stove (binary) -1.498*** -1.478*** -1.075** -0.994*** 

[0.552] [0.553] [0.508] [0.563] 
Black clay soil (binary) 0.851* 0.858* 0.799* 0.654* 

[0.534] [0.550] [0.599] [0.549] 
Charcoal-enriched soil (binary) 0.197 0.185 0.101 0.073 

[0.396] [0.394] [0.447] [0.482] 
Poor soil (binary) -0.381 -0.311 -0.343 -0.075 

[0.602] [0.609] [0.692] [0.064] 
Slope -0.008 -0.020 -0.047 -0.075 

[0.054] [0.053] [0.057] [0.0064] 
Castanhal municipality (binary) 0.742** 0.685** 0.821** 1.330** 

[0.404] [0.423] [0.503] [0.690] 
Igarapé Açu municipality 1.497*** 1.401*** 0.918** 1.023** 
(binary) [0.479] [0.509] [0.501] [0.564] 
No on-farm fallow area (binary) 0.248 0.581 0.149 0.635 

[0.483] [0.592] [0.548] [0.711] 
No upstream fallow area (binary) -2.858** -3.018** 

28 Spatial errors probit model estimated using Gibbs sampler algorithm in Matlab (LeSage 1998). 
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[1.441] [1.384] 
Constant 0.936 0.364 -1.674 -5.860** 

[1.568] [1.667] [1.911] [3.043] 
Spatial error correlation 0.535*** 0.545*** 0.345*** 0.341*** 
coefficient (λ) [0.245] [0.234] [0.239] [0.250] 
Observations 236 236 261 261 
McFadden R-squared 0.30 0.29 0.66 0.26 
Standard errors in brackets 
* significant at 10%; ** significant at 5%; *** significant at 1% 

 Table 7 Forest product harvesting: conditional outcome equation 

SEM SEM-IV SEM SEM-IV 
(1) (2) (3) (4) 

Log on-farm fallow area 0.065 0.283** 0.025 0.269* 
[0.107] [0.139] [0.111] [0.163] 

Log off-farm fallow – upstream 0.549** 0.548* 
survey fallow area [0.278] [0.322] 
Log off-farm fallow – 3 km 0.598 -0.002 
upstream GIS canopy cover [0.411] [0.781] 
Forest product price (village 0.037 0.116 0.158 0.202 
median) [0.187] [0.191] [0.175] [0.178] 
Log household size 0.087 0.113 0.209 0.234 

[0.265] [0.264] [0.260] [0.259] 
Agricultural wage rate 0.027 0.01 -0.02 -0.031 

[0.100] [0.098] [0.088] [0.088] 
Household head schooling years 0.03 0.041 0.07 0.082* 

[0.047] [0.047] [0.046] [0.046] 
Farm owner (binary) -0.191 -0.201 -0.334 -0.264 

[0.267] [0.264] [0.270] [0.270] 
Own car (binary) 1.215** 1.217** 1.130** 1.109** 

[0.525] [0.517] [0.512] [0.511] 
Own television (binary) 0.631** 0.652** 0.666** 0.664** 

[0.274] [0.271] [0.271] [0.271] 
Use electricity (binary) -1.078*** -1.102*** -1.021*** -1.090*** 

[0.270] [0.268] [0.270] [0.275] 
Own firewood stove (binary) 0.406 0.386 0.284 0.412 

[0.378] [0.373] [0.392] [0.402] 
Own gas stove (binary) -0.017 -0.088 0.119 0.023 

[0.308] [0.305] [0.304] [0.310] 
Black clay soil (binary) 0.963** 0.968** 0.753* 0.783* 

[0.413] [0.408] [0.401] [0.400] 
Charcoal-enriched soil (binary) -0.124 -0.079 -0.444 -0.355 

[0.386] [0.382] [0.393] [0.398] 
Poor soil (binary) 0.44 0.522 0.671 0.581 

[0.537] [0.534] [0.525] [0.540] 
Slope -0.064 -0.084* -0.076 -0.074 
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[0.048] [0.049] [0.047] [0.051] 
Castanhal municipality (binary) 0.647 0.625 0.672 0.408 

[0.442] [0.446] [0.467] [0.542] 
Igarapé Açu municipality 0.235 0.136 -0.072 -0.23 
(binary) [0.462] [0.481] [0.404] [0.418] 
No on-farm fallow area (binary) -0.178 0.352 -0.112 0.57 

[0.563] [0.604] [0.557] [0.616] 
No upstream fallow area (binary) 0.401 0.007 

[1.633] [1.655] 
Constant 2.942 2.116 2.177 3.388 

[1.908] [2.003] [1.976] [2.824] 
Spatial error correlation 0.153 0.176 0.075 0.087 
coefficient (λ) [0.186] [0.197] [0.198] [0.175] 
Observations 167 167 184 184 
R-squared 0.19 0.20 0.17 0.18 
Log likelihood -293.23 -291.62 -330.65 -330.17 
Standard errors in brackets 
* significant at 10%; ** significant at 5%; *** significant at 1% 



 

 

 
 
 
 
  

   

   
 
    

   

   

 

    

   
 

 

  

 

   

   

  
 

 

  

 

Table 8 Forest product harvesting elasticities  

SEM SEM-IV SEM SEM-IV 
(1) (2) (3) (4) 

Log on-farm Probability elasticity 0.14** 0.19*** 0.19*** 0.23** 
fallow area (0.06) (0.07) (0.06) (0.09) 

Conditional elasticity 0.06 0.28** 0.03 0.27* 
(0.11) (0.14) (0.11) (0.16) 

Unconditional elasticity 0.21 0.47*** 0.22 0.49** 
(0.13) (0.17) (0.13) (0.20) 

Log upstream Probability elasticity 0.22 0.22 
fallow – (0.14) (0.16) 
survey fallow Conditional elasticity 0.55* 0.55* 
area (0.28) (0.32) 

Unconditional elasticity 0.77** 0.76* 
(0.34) (0.38) 

Log upstream Probability elasticity 0.29 0.84* 
off-farm (0.24) (0.47) 
fallow – GIS Conditional elasticity 0.60 -0.002 
canopy cover (0.41) (0.78) 
(3 km radius) Unconditional elasticity 0.89* 0.84 

(0.51) (0.99) 
Standard errors of the probability elasticities were calculated using the delta method.   
* significant at 10%; ** significant at 5%; *** significant at 1% 

Table 9 Total output elasticities of on- and off-farm fallow 

SEM SEM-IV SEM SEM-IV 
(1) (2) (3) (4) 

Total output elasticity of on-farm 0.11* 0.17** 0.11* 0.22** 
fallow (sample mean) (0.06) (0.08) (0.06) (0.10) 
Total output elasticity of upstream 0.42** 0.43** 
fallow area (sample mean) (0.16) (0.19) 
Total output elasticity of upstream 0.68*** 0.29 
canopy cover (sample mean) (0.24) (0.44) 

Note: sample means of standard errors given in parentheses were calculated using the 
estimated standard errors from the previous analyses. 

Table 10 Land allocation efficiency of sampled farms, assuming 10% interest rate 
Model (1) Model (2) Model (3) Model (4) 

Optimal fallow  85% 88% 74% 88% 
Over-fallow 4% 1% 17% 10% 
Under-fallow 12% 10% 9% 2% 
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Appendix 
Table A1. First stage OLS regressions for on- and off-farm fallow used in crop 
production equations 

Model 2 Model 4 

Log of Log of Log of Log of 
fallow upstream fallow upstream 
area fallow area – area canopy cover – 

survey data GIS data, 3km 
radius 

Log cultivated area -0.038 -0.012 -0.006 -0.005 
[0.087] [0.025] [0.080] [0.023] 

Log family labor -0.175** 0.02 -0.086 -0.007 
[0.083] [0.023] [0.075] [0.022] 

Log hired labor 0.002 -0.027* 0 -0.001 
[0.056] [0.016] [0.051] [0.014] 

Log chemical fertilizer 0.023 -0.021 0.027 -0.022 
[0.052] [0.015] [0.046] [0.014] 

Perennial producer -0.053 -0.117*** -0.09 -0.024 
(binary) [0.154] [0.043] [0.143] [0.041] 
Use extension services -0.031 0.035 -0.038 0.033 
(binary) [0.156] [0.044] [0.141] [0.040] 
Household head’s -0.006 0.001 -0.004 0.006 
schooling years [0.023] [0.006] [0.021] [0.006] 
Farm owner (binary) 0.133 -0.032 0.147 0.049 

[0.134] [0.038] [0.123] [0.035] 
Black clay soil (binary) -0.246 -0.122** -0.186 0.019 

[0.217] [0.061] [0.203] [0.062] 
Charcoal-enriched soil -0.022 -0.034 -0.053 0.019 
(binary) [0.183] [0.052] [0.181] [0.053] 
Poor soil (binary) 0.061 -0.069 -0.017 -0.04 

[0.283] [0.080] [0.255] [0.073] 
Slope 0.074** 0.025** 0.039 0.006 

[0.036] [0.010] [0.035] [0.010] 
No on-farm fallow -1.884*** 0.021 -1.840*** -0.014 
(binary) [0.213] [0.060] [0.187] [0.053] 
No family labor (binary) -0.808 0.215 -0.177 0.03 

[0.571] [0.161] [0.539] [0.155] 
No hired labor (binary) -0.016 -0.152** 0.041 -0.058 

[0.242] [0.068] [0.219] [0.063] 
No fertilizer (binary) 0.106 -0.069 0.141 -0.047 

[0.280] [0.079] [0.242] [0.072] 
No upstream fallow 1.177** -1.423*** 
(binary) [0.491] [0.139] 
Log of farm size 0.856*** -0.032* 0.743*** 0.019 

[0.063] [0.018] [0.058] [0.017] 
0.005 0 0.008** -0.001 
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Forest product prices 0.005 0 0.008** -0.001 
(farm-level) [0.004] [0.001] [0.004] [0.002] 
Own firewood stove -0.133 -0.005 -0.067 0.132*** 
(binary) [0.169] [0.048] [0.160] [0.046] 
Own gas stove (binary) -0.048 -0.016 0.002 -0.041 

[0.170] [0.048] [0.160] [0.046] 
Log of farm size – -0.058 0.512*** -0.102 0.058*** 
upstream weighted ave. [0.143] [0.040] [0.078] [0.022] 
Forest product price – -0.016 0.016** -0.010*** 0.001 
upstream weighted ave. [0.025] [0.007] [0.004] [0.002] 
Own firewood stove – 0.422 0.432*** 0.325 0.452*** 
upstream weighted ave. [0.538] [0.152] [0.343] [0.097] 
Own gas stove – -0.035 -0.483*** -0.097 0.151* 
upstream weighted ave. [0.568] [0.160] [0.276] [0.078] 
Use extension service – -0.495 0.085 -0.244 -0.295*** 
upstream weighted ave. [0.381] [0.108] [0.269] [0.077] 
Household head -0.04 -0.012 -0.165 0.024 
schooling – upstream [0.079] [0.022] [0.151] [0.044] 
weighted ave. 
Farm owner – upstream 0.2 -0.119 0.036 0.149** 
weighted average [0.408] [0.115] [0.242] [0.071] 
Black clay soil – -0.536 -1.161*** -0.167 -0.111 
upstream weighted ave. [0.658]  [0.186] [0.314] [0.089] 
Charcoal-enriched soil – -0.326 -0.159 -0.336 -0.185** 
upstream weighted ave. [0.602] [0.170] [0.278] [0.081] 
Poor soil – upstream 0.132 -0.026 -0.166 -0.316*** 
weighted ave. [0.540] [0.153] [0.401] [0.115] 
Slope – upstream -0.041 -0.012 -0.032 0.017 
weighted ave. [0.043] [0.012] [0.040] [0.011] 
Castanhal municipality 0.243 -0.175* 0.096 -0.311*** 

[0.328] [0.093] [0.228] [0.065] 
Igarapé Açu municipality  0.044 -0.253** 0.222 -0.145** 

[0.365] [0.103] [0.217] [0.062] 
Constant 0.602 1.934*** 0.909 2.468*** 

[0.810] [0.229] [0.657] [0.188] 
Observations 235 235 270 260 
R-squared 0.75 0.91 0.74 0.68 
Standard errors in brackets 
* significant at 10%; ** significant at 5%; *** significant at 1% 



 

 
   
  

   
  

   
  

   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

   

 

Table A2. Crop production function estimation including downstream forest fallow 
SEM SEM-IV SEM SEM-IV 
(1) (2) (3) (4) 

Log on-farm fallow area 0.107* 0.174** 0.091 0.164* 
[0.058] [0.079] [0.059] [0.089] 

Log off-farm fallow – upstream 0.373** 0.403** 
survey fallow area [0.157] [0.178] 
Log off-farm fallow – 3 km 0.740*** 0.435 
upstream GIS canopy cover  [0.285] [0.605] 
Log off-farm fallow – downstream -0.15 -0.302** 
survey fallow area [0.098] [0.140] 
Log off-farm fallow – 3 km -0.297 -0.172 
downstream GIS canopy cover [0.592] [1.085] 
Log cultivated area 0.423*** 0.395*** 0.446*** 0.435*** 

[0.099] [0.099] [0.096] [0.101] 
Log family labor 0.132 0.136 0.06 0.069 

[0.093] [0.093] [0.088] [0.090] 
Log hired labor 0.166** 0.168*** 0.194*** 0.180*** 

[0.065] [0.065] [0.061] [0.063] 
Log chemical fertilizer 0.145*** 0.147*** 0.168*** 0.161*** 

[0.055] [0.055] [0.057] [0.059] 
Perennial producer (binary) 0.896*** 0.907*** 0.835*** 0.834*** 

[0.176] [0.176] [0.166] [0.169] 
Use extension services (binary) 0.236 0.242 0.21 0.212 

[0.177] [0.177] [0.164] [0.168] 
Household head schooling years -0.018 -0.019 -0.018 -0.019 

[0.025] [0.025] [0.024] [0.025] 
Farm owner (binary) 0.092 0.112 -0.048 -0.028 

[0.157] [0.157] [0.148] [0.152] 
Black clay soil (binary) 0.201 0.146 0.168 0.183 

[0.236] [0.237] [0.238] [0.251] 
Charcoal-enriched soil (binary) 0.342 0.316 0.35 0.393* 

[0.215] [0.216] [0.216] [0.227] 
Poor soil (binary) -0.184 -0.198 0.201 0.139 

[0.310] [0.309] [0.284] [0.294] 
Slope -0.013 -0.019 -0.022 -0.017 

[0.027] [0.027] [0.027] [0.029] 
Castanhal municipality (binary) 0.238 0.152 0.613*** 0.516** 

[0.228] [0.231] [0.237] [0.263] 
Igarapé Açu municipality (binary) 0.234 0.13 0.3 0.261 

[0.230] [0.238] [0.214] [0.219] 
No on-farm fallow (binary) 0.451 0.632* 0.507* 0.668** 

[0.284] [0.323] [0.261] [0.312] 
No upstream fallow area (binary) 1.247** 1.387** 

[0.606] [0.654] 
No family labor (binary)  1.269** 1.259* 0.894 0.89 
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[0.648] [0.645] [0.640] [0.648] 
No hired labor (binary) -0.033 -0.001 0.174 0.115 

[0.284] [0.282] [0.269] [0.279] 
No fertilizer (binary) 0.195 0.183 0.318 0.284 

[0.307] [0.308] [0.299] [0.303] 
Constant 3.787*** 3.968*** 3.285* 3.671 

[0.805] [0.851] [1.849] [2.630] 
Spatial error correlation coefficient -0.026 -0.045 -0.014 -0.018 
(λ) [0.129] [0.125] [0.138] [0.131] 
Observations 228 228 251 251 
R-squared 0.60 0.60 0.57 0.56 
Log likelihood -312.65 -311.87 -347.64 -350.48 
Standard errors in brackets 
* significant at 10%; ** significant at 5%; *** significant at 1% 

Table A3. First stage OLS regressions for on- and off-farm fallow used in forest product 

equations 


Model 2 Model 4 

Log of off- Log of Log of off-farm 

Log of farm fallow upstream 
fallow area upstream area canopy cover – 

fallow area – GIS data, 3km 
survey data radius 

Forest product price -0.083 0.042* -0.171*** 0.011 
(village median) [0.082] [0.023] [0.054] [0.016] 
Log of household size -0.099 0.043 -0.092 -0.013 

[0.122] [0.035] [0.110] [0.034] 
Wage rate -0.031 -0.021 -0.012 0.005 

[0.046] [0.013] [0.040] [0.012] 
Household head’s -0.003 0.007 -0.007 0.003 
schooling years [0.021] [0.006] [0.020] [0.006] 
Farm owner (binary) 0.116 -0.059 0.094 0.045 

[0.130] [0.037] [0.117] [0.035] 
Car owner (binary) -0.22 -0.114* -0.241 -0.113* 

[0.223] [0.063] [0.202] [0.060] 
Television owner 0.098 0.016 0.108 -0.005 
(binary) [0.145] [0.041] [0.132] [0.040] 
Use electricity (binary) -0.092 -0.022 -0.053 0.005 

[0.145] [0.041] [0.135] [0.041] 
Own firewood stove -0.218 -0.01 -0.151 0.129*** 
(binary) [0.166] [0.047] [0.155] [0.046] 
Own gas stove (binary) -0.08 -0.013 -0.068 -0.012 

[0.169] [0.048] [0.160] [0.049] 
Black clay soil (binary) -0.27 -0.075 -0.289 0.002 

[0.217] [0.061] [0.198] [0.060] 
0.025 -0.056 0.046 0.054 
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Charcoal-enriched soil 0.025 -0.056 0.046 0.054 
(binary) [0.189] [0.053] [0.180] [0.054] 
Poor soil (binary) 0.082 0.006 -0.045 -0.084 

[0.276] [0.078] [0.245] [0.073] 
Slope 0.047* 0.014** 0.038* 0.013* 

[0.025] [0.007] [0.023] [0.007] 
No on-farm fallow -1.995*** -0.004 -2.046*** -0.035 
(binary) [0.202] [0.057] [0.182] [0.054] 
No upstream fallow 0.748 -1.280*** 
(binary) [0.601] [0.170] 
Log of farm size 0.818*** -0.033** 0.745*** 0.032** 

[0.058] [0.016] [0.052] [0.016] 
Log of farm size – -0.091 0.550*** -0.042 0.088*** 
upstream weighted ave. [0.141] [0.040] [0.079] [0.024] 
Log of household size – 0.129 0.027 -0.058 -0.049* 
upstream weighted ave. [0.422] [0.119] [0.087] [0.026] 
Wage rate – upstream 0.051 0.033 0.11 -0.049 
weighted ave. [0.141] [0.040] [0.240] [0.072] 
Car owner (binary) – -0.069 -0.548** -0.29 -0.299** 
upstream weighted ave. [0.872]  [0.246] [0.414] [0.123] 
Television owner 0.159 -0.205* 0.13 -0.003 
(binary) – upstream [0.386] [0.109] [0.230] [0.069] 
weighted aver. 
Own firewood stove – 0.663 0.05 0.457 0.450*** 
upstream weighted ave. [0.613] [0.173] [0.314] [0.094] 
Own gas stove – -0.531 -0.339* -0.353 0.157** 
upstream weighted ave. [0.612] [0.173] [0.252] [0.075] 
Black clay soil – -0.284 -1.127*** -0.085 -0.155 
upstream weighted ave. [0.624] [0.176] [0.316] [0.094] 
Charcoal-enriched soil – -0.368 -0.223 -0.264 -0.07 
upstream weighted ave. [0.592] [0.167] [0.283] [0.084] 
Poor soil – upstream 0.197 0.003 0.297 -0.443*** 
weighted average [0.459] [0.129] [0.379] [0.115] 
Castanhal municipality 0.233 -0.210* 0.406* -0.313*** 

[0.387] [0.109] [0.227] [0.068] 
Igarapé Açu municipality  0.054 -0.277** 0.322 -0.107* 

[0.393] [0.111] [0.211] [0.063] 
Constant 0.304 1.594*** 1.485 2.734*** 

[1.393] [0.393] [0.957] [0.284] 
Observations 236 236 271 261 
R-squared 0.74 0.90 0.74 0.65 
Standard errors in brackets 
* significant at 10%; ** significant at 5%; *** significant at 1% 

51
 


	Forest Fallow Ecosystem Services: Evidence from the Eastern Amazon 
	 Abstract 
	 Introduction 
	Fallow as a production input in shifting cultivation 
	Study region and data  
	Crop production function estimation 
	Fallow variable definitions 
	Endogeneity and identification strategy 
	Treatment of non-essential inputs   
	Results  
	Resampling and robustness analysis 

	Forest product harvesting function 
	Treatment of censoring in forest product harvests 
	Identification and instrumental variables                 
	Results 
	Resampling and robustness analysis 

	Total on- and off-farm fallow elasticities 
	Land allocation efficiency 
	Summary and conclusions 
	 References 





Working Paper Series


U.S. Environmental Protection Agency
National Center for Environmental Economics
1200 Pennsylvania Avenue, NW (MC 1809)
Washington, DC 20460
http://www.epa.gov/economics


Forest Fallow Ecosystem Services: Evidence from the Eastern
Amazon


Heather Klemick


Working Paper # 08-05
May, 2008







Forest Fallow Ecosystem Services: Evidence from the Eastern
Amazon


Heather Klemick


NCEE Working Paper Series


Working Paper # 08-05
May, 2008


DISCLAIMER
The views expressed in this paper are those of the author(s) and do not necessarily represent
those of the U.S. Environmental Protection Agency.  In addition, although the research described
in this paper may have been funded entirely or in part by the U.S. Evironmental Protection
Agency, it has not been subjected to the Agency's required peer and policy review.  No official
Agency endorsement should be inferred.





