

Fecal Waste Contaminates our Waterways: Molecular technologies offer new solutions

Orin C. Shanks

Presentation Overview

- 1. Microbial Source Tracking
- 2. Identification of Host-Associated Indicators
- 3. Method Standardization
- 4. Field Demonstrations
- 5. Outreach and Resources

Fecal Pollution is a Nationwide Problem

- Fecal microbes are the most common biological contaminants in U.S. waters
- Public and ecological health risks
- Current National Ambient Water Quality Criteria
 - Based on general fecal indicators
 - Represent overall fecal pollution amount
 - Does not discriminate between sources
- Different animal sources have different risks

Fecal Pollution is a Nationwide Problem

- Estimated 1x10⁹ tons of fecal material produced in U.S. each year
 - Human (0.01%)
 - Poultry
 - Cattle
 - Swine
 - Contributions from other agricultural animals and wildlife not included
- Fecal pollution source information can improve water quality management

Fecal Pollution in Surface Waters: EPA Responsibilities

Protect and Restore Waters for Recreational Use

Clean Water Act 1972

Risk Assessment of Beach Contaminants

- BEACH Act (2000)
- Development of new or revised ambient water quality criteria (AWQC)

Management of Point and Non-Point Pollution Sources

- Total Maximum Daily Load (TMDL) programs
- National Pollutant Discharge Elimination System (NPDES) programs
- National Estuary Program (NEP)

Microbial Source Tracking: Concept Review

SOLUTION... Method designed to collect, isolate, identify, and measure a host-associated indicator from an environmental sample.

Microbial Source Tracking:

Scientific Premise

Host-associated indicators are expected to exist in different animal groups due to:

- Temperature
- Diet
- Digestive physiology

- Space
- Nutrients

Microbial Source Tracking:

Some Potential Applications

- Total Maximum Daily Load program
 - -Identification of non-point pollution sources
 - -Pollution source surveys
 - -Wet and dry weather risk assessments
- National Ambient Water Quality Criteria
 - -Beach eligibility for alternative criteria
- National Estuary Program
 - -Pollution impact assessments
- Impaired site prioritization for remediation
- Evaluation of a best management practice

Microbial Source Tracking:

Ideal Method Wish List

Attribute	Description
Host Specificity	Indicator closely associated with target host species
Host Distribution	Frequency and concentration of indicator in target and non- target species populations
Quantitative Technology	Measurements of indicator concentrations are accurate and reproducible
Expert Consensus	Agreement among majority of professional researchers on method choice
Standardization	Standard operating procedure with benchmark performance criteria available
Validation	Multiple laboratory confirmation that the method adequately meets application needs
Field Demonstrations	Comprehensive real-world example of application

Overview

- Goal to find a single DNA sequence in a fecal microbial community associated with a particular animal group
- Multiple step process
 - Comparison of fecal microbial communities
 - Adaption to a quantitative technology
 - Host distribution with reference sample collections
- Successful host-associated indicator identification for several fecal pollution sources:
 - Human
 - Cattle
 - Dog

Comparison of fecal microbial communities

- Compare all microbial DNA from two different pollution sources with a DNA sorting technology
- DNA targets unique to one pollution source become candidate host-associated indicators
- Example: HumM2 human-associated indicator

Adaption to a Quantitative Technology

- Ability to measure concentration of hostassociated indicator
- Must be highly sensitive and specific
- Proven performance track record
- Quantitative real-time polymerase chain reaction (qPCR)

Figure 1. Relative fluorescence vs. cycle number. Amplification plots are created when the fluorescent signal from each sample is plotted against cycle number; therefore, amplification plots represent the accumulation of product over the duration of the real-time PCR experiment. The samples used to create the plots in this figure are a dilution series of the target DNA sequence.

Host distribution with reference samples: target pollution source

- Evaluation on national scale
- Sewage reference collection
 - 54 Facilities
 - 39 States
 - 1,150 MGD
 - ~6.4 Million Individuals
- Tested 15 human-associated indicators
- All present at measurable levels in all samples

Host distribution with reference samples: NON-target pollution sources

- Non-target reference collection
 - 22 animal species
 - 174 individual samples

Host distribution with reference samples: NON-target pollution source

Table 1: False positive <u>detections</u> in NON-target fecal reference samples

Reference Sample	HumM2	qHS
Antelope		
Moose		
Mule Deer		
Whitetail Deer		
Canadian Goose		
Duck		
Pelican		
Racoon		
Gull		
Elk		
Beef Cattle		
Dairy Cattle		
Goat		
Pig		
Turkey		
Sheep		
Chicken		
Dog		
Cat		
Dolphin		
Sea Lion		
Elephant Seal		

Test quantity = 1 ng total DNA/reaction

Table 2: Host-associated indicator average concentrations in target and NON-target hosts

Indicator	Concentration Target Host*	Concentration NON-Target Host*
HumM2	3.42	0.18
qHS	5.07	1.83

^{*} Estimated log₁₀ mean DNA target copy number; Test quantity = 1 ng total DNA/reaction

- Tested 15 human-associated indicators
- None perfect; range of false positives; some more suitable than others
- Host-associated indicator still useful if concentration is low in NON-target hosts

Definition and Rationale

Anatomy of a Method Review

- -Series of protocols linked together
- -Alterations in single step may change performance

Method Standardization

- -Formal development of method protocol
- -Establish uniform performance benchmarks
- -Necessary for widespread adoption

Sample Collection

Sample Preparation

Host-Associated Indicator Measurement

Data Analysis and Interpretation

Development Plan

- Which pollution source?
- What detection technology?
- · Which host-associated indicator?

• Establish Standard Operating Procedure (SOP)

Establish quality assurance metrics

Conduct multiple lab study

Detection Technologies

- Microarray
- Deep sequencing
- End-point PCR
- Real-time quantitative PCR
- Digital PCR
- Immuno-magnetic separation
- Terminal restriction fragment length polymorphism
- Selective bacterial culturing
- Antibiotic resistance profiling
- Chemical detection
- Canine scent detection

Selection by Expert Consensus

Source Identification Protocol Project (SIPP)

5 organizations formed technical lead team Public challenge via blinded study 27 expert laboratories 41 methods Special Issue of Water Research

Majority of experts (>90%) favor a PCR-based technology

Boehm, A. B. *et al.* (2013) Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. *Water Research* 47: 6812-6828.

Ebentier, D. L. et al. (2013) Evaluation of the repeatibility and reproducibility of a suite of PCR-based microbial source tracking methods. *Water Research* 47: 6839-6848.

Boehm, A. B. *et al.* (2013) Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. *Water Research* 47: 6812-6828.

Technical Evaluation

- Administered by team of experts
 - -Government sector
 - -Academic sector

- Rigorous assessment subject to peer-review
- Protocol adherence to Minimum Information for Publication of qPCR Experiments (MIQE)

Bustin, S. A. et al. (2009). The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clinical Chemistry*. 55: 611-622.

 Optimization to reagents custom designed for environmental samples

Multiple Laboratory Validation Study

- Formal study conducted by EPA
 - -Office of Water
 - -Office of Research and Development
- Human-associated qPCR method(s)
- 14 Laboratory Participants
- Anticipated Completion Date: FY15

Multiple Laboratory Validation Study

Phase I: Lab Proficiency

Phase II: Water Matrix Spike Testing

Phase III: Blinded Filter Testing

Phase IV: Data Analysis

Description:

 Confirm each lab is properly implementing the method

- Blinded filter set
- Data used to evaluate specificity, sensitivity, performance at different concentrations, and reliability of controls
- Establish uniform benchmark performance criteria
- Finalize standard operating procedure (SOP)

Status:

In Progress

Rationale and Significance

- Many potential applications
- Applications may require additions to SOP
 - -Water sampling strategy
 - -Experimental set-up
 - -Data analysis
 - -Supporting data needs
- Demonstration studies provide a comprehensive, real-world guide for implementation for each application

Identification of Non-Point Pollution Sources

Question: Does human fecal pollution originate from leaky

sewer lines or failing septic systems in my

watershed?

East Fork Little Miami Watershed

- 1,295 km² Southeastern Ohio watershed
- Range of septic/sewer use intensity
- 9 catchment areas
- Small stream sampling
- 24-month sampling period
- 3 human-associated qPCR methods
- Unsafe levels of fecal pollution > 40% of time
 (E. coli and enterococci MPN cell counts)

Identification of Non-Point Pollution Sources

- GIS mapping to estimate sewer and septic densities
- Densities normalized by catchment area

Identification of Non-Point Pollution Sources

- Catchments represent gradient of sewer and septic use
- Negative correlation between septic and sewer densities (R² = -0.69)
- Does human pollution trend with sewage, septic, or neither?

Identification of Non-Point Pollution Sources

- Human fecal pollution increases with septic density (wet weather events only)
- Trend supported by all 3 human-associated qPCR methods

Pollution Source Survey

Question: What fecal pollution sources are present in my chronically impaired watershed?

- Tillamook Basin, Oregon
- Chronic water quality impairment at multiple sampling sites (E. coli MPN)
- Urban, residential, agricultural, and wildlife pollution sources
- 30 sites
- Sampled bimonthly for 12-months
- Collaborators
 - EPA Region 10 Laboratory
 - Oregon Department of Agriculture
 - Oregon Department of Environmental Quality
 - Tillamook Estuaries Partnership

Outreach and Resources

- Regional and State Workshops
- The California Microbial Source Identification Manual: A Tiered Approach to Identifying Fecal Pollution to Beaches. Technical Report 804 (December 2013)
- Using Microbial Source Tracking to Support TMDL Development and Implementation. (April 2011)

http://www.epa.gov/region10/pdf/tmdl/mst for tmdls guide 04 22 11.pdf

 Microbial Source Tracking Guide Document. EPA/600/R-05/064 (June 2005)

Using MST to Support TMDL Development and Implementation

Using Microbial Source Tracking to Support TMDL Development and Implementation

April 201

Prepared

U.S. Environmental Protection Agency, Region 1 Watersheds Unit 1200 6th Ave, Suite 900

Acknowledgements

U.S. EPA Team:

Cathy Kelty
Mano Sivaganesan
Robin Oshiro
Richard Haugland
Chris Nietch
Manju Varma
Jorge Santo Domingo
Bevin Horn
Stephanie Bailey
Jay Reichmann
Mark Meckes
Water Cluster

Demonstration Team:

Lindsay Peed (Kimberly-Clark)
York Johnson (ODEQ and TEP)
Wym Matthews (ODA)
Thomas Mooney (University of Cincinnati)

SIPP Team:

Steve Weisberg (SCCWRP)
John Griffith (SCCWRP)
Ali Boehm (Stanford)
Jenny Jay (University of California)
Patricia Holden (University of California)

HF183 Assessment Team:

Hyatt Green (SUNY-ESF)
Katherine Field (Oregon State University)
Mark Borchardt (USDA)
Rob Knight (University of Colorado)
Hana Millen (USDA)
William Walters (University of Colorado)

GFE Team:

Jim Graham (University of Louisville) Hyatt Green (SUNY-ESF)

QUESTIONS