The New ToxCast Analysis

```
Dayne Lewis Filer filer.dayne@epa.gov (919) 541-2439
```

Outline

- 1. Challenges
- 2. Project goals
- 3. Detailed overview of pipeline/new levels
- 4. Downloading the data
- 5. R package demo

Challenges

- Heterogeneous data formats
- Heterogeneous experimental design
- How to appropriately make a hit-call
- Identifying (systematically) falsepositives (FP) and false negatives (FN)

Project Goals

- Efficiency
- Usability
- Generalized (vendor-independent)
- Centralization
- Transparency
- Reproducibility

New Pipeline Overview

Intro information

- All data stored in invitrodb
- Pipeline interacts directly with db
- All processing done by assay component, or assay endpoint
- Independent of chemical information
- Does not store assay names

• NOTE: All table fields bolded, table names italicized

LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

LVL 1

LVL 2

LVL 3

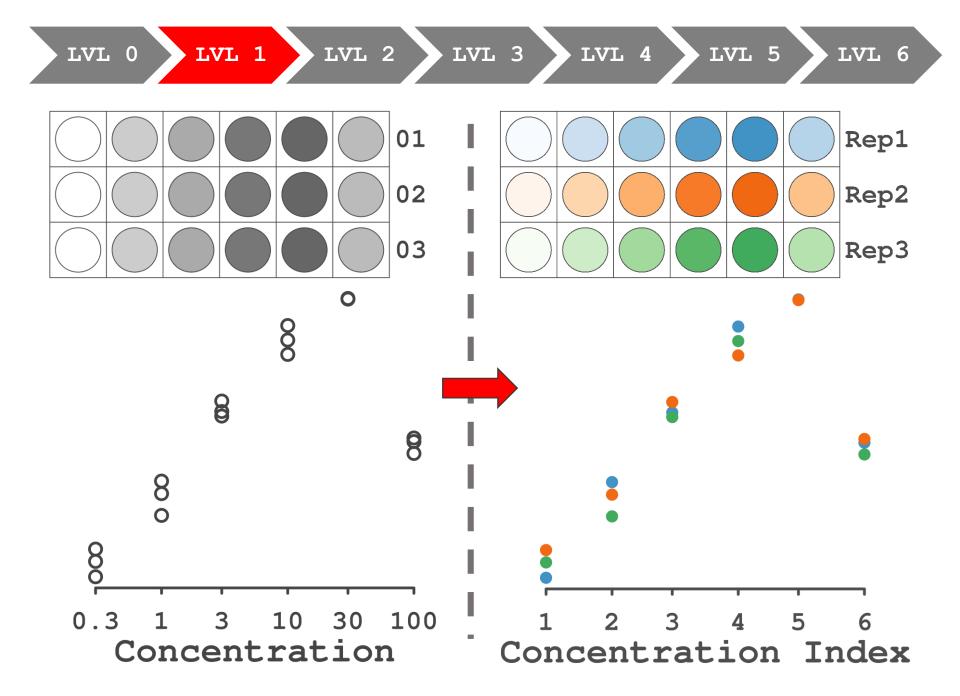
LVL 4

LVL 5

LVL 6

Unified Format (level0)

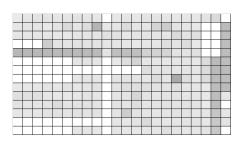
Multiple vendor-specific R scripts



- ALL vendor-specific processing
- Each vendor script will act as "laboratory notebook" for that dataset
- Define well type (wllt) and well quality (wllq)
- Map the assay component source name (acsn) to the assay component id (acid)
- Store the raw value from the vendor (rval)

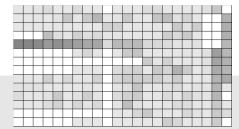
LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

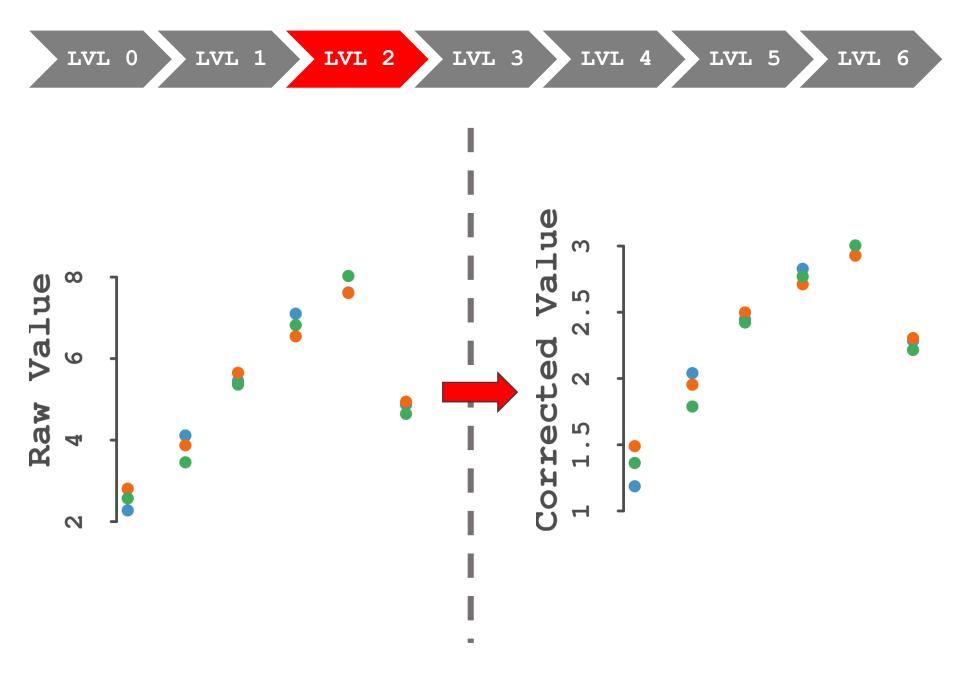
- Create concentration index (cndx) field
- Create replicate index (repi) field


```
# Order by the following columns
setkeyv(dat, c('acid', 'srcf', 'apid', 'coli', 'rowi', 'spid', 'conc'))
# Define rpid column for test compound wells
nconc <- dat[wllt == "t",</pre>
             list(n = lu(conc)),
             by = list(acid, apid, spid)][ , list(nconc = min(n)), by = acid]
dat[wllt == "t" & acid %in% nconc[nconc > 1, acid],
    rpid := paste(acid, spid, wllt, srcf, apid, cpid,
                  "rep1", conc, sep = " ")]
dat[wllt == "t" & acid %in% nconc[nconc == 1, acid],
    rpid := paste(acid, spid, wllt, srcf, cpid,
                  "rep1", conc, sep = " ")]
# Define concentration index
indexfunc <- function(x) as.integer(rank(unique(x))[match(x, unique(x))])</pre>
dat[ , cndx := indexfunc(conc), by = list(rpid)]
```


LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

- Remove bad data ($\mathbf{wllq} = 0$)
- Uses modular list of methods to generate the corrected value (cval) from rval
- Call methods by listing the method id (12_mthd_id) and the execute order (exec ordr) in 12 acid
- Methods are written as expressions to prevent making copies of the data


```
log2 = function (acids) {
  ## This method takes the log base 2 of the data
  e1 <- bquote(dat[.(acids), cval := log2(cval)])
  list(e1)
}</pre>
```



Correction methods from 12 methods table

LVL 0 LVL 1 LVL 2 LVL 3 LVL 4 LVL 5 LVL 6

l2_mthd_id	I2_mthd	desc
1	none	apply no level 2 method
2	log2	log2 all raw data
3	rmneg	remove negative values prior to logging values
4	rmzero	remove 0 values prior to logging values
5	mult25	multiply values by 25
7	mult100	multiply values by 100
10	log10	log10 the raw data

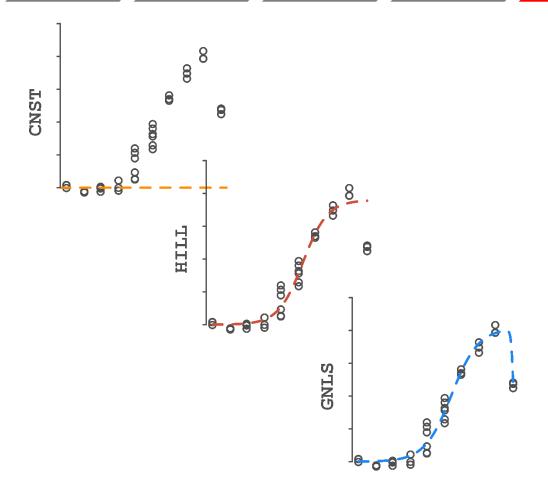
LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

- Similar to level 2, except based on assay endpoint
- Create response values (resp) using cval
- Define baseline value (bval), pos ctrl value
 (pval) if necessary, and log₁₀ concentration (logc)
- Define methods for assay endpoints in 13 aeid
- ALL fold-change values must be logged

I3_mthd_id	l3_mthd	desc
1	none	apply no level 2 method
2	bval.apid.1owconc.med	plate-wise baseline based on low conc median value
3	pval.apid.medpcbyconc.max	plate-wise median response of positive control (max)
4	pval.apid.medpcbyconc.min	plate-wise median response of positive control (min)
5	resp.pc	response percent activity
6	resp.multneg1	multiply the response by -1
7	resp.log2	take the log base 2 of the response
8	resp.mult25	multiply the response by 25
9	resp.fc	calculate response as fold-change
11	bval.apid.nwlls.med	plate-wise baseline based on neutral ctrl median value
12	bval.spid.lowconc.med	sample-wise baseline based on low conc median value
13	pval.apid.pwlls.med	plate-wise meidan based on positive control, single dose
14	pval.apid.mwlls.med	plate-wise meidan based on negative control, single dose
15	pval.apid.medncbyconc.min	plate-wise meidan based on negative control, (min)
16	bval.apid.twlls.med	Take the median cval of the t wells, by apid
17	bval.apid.nwllslowconc.med	Take the median cval of the n wells and the first two concentrations, by apid
18	resp.shiftneg.3bmad	Make values below baseline zero.
19	resp.blineshift.3bmad.repi	Do baseline correction by repi, with a window of 3*bmad
20	resp.blineshift.50.repi	Do baseline correction by repi, with a window of 50
21	resp.blineshift.50.spid	Do baseline correction by repi, with a window of 50
23	resp.blineshift.3bmad.spid	Do baseline correction by repi, with a window of 3*bmad
24	bval.apid.tn.med	Take the median cval of the t and n wells, by apid
25	pval.apid.pmv.min	Calculate the median p, m, and v values by concentration, then take the minimum by apid.
26	pval.apid.pmv.max	Calculate the median p, m, and v values by concentration, then take the maximum by apid.
27	pval.apid.f.max	Calculate the median of f values by concentration, then take the maximum by apid
28	pval.apid.f.min	Calculate the median of f values by concentration, then take the minimum by apid
29	pval.apid.p.min	Calculate the median of p values by concentration, then take the minimum by apid
30	pval.apid.p.max	Calculate the median of p values by concentration, then take the maximum by apid
31	pval.apid.v.min	Calculate the median of v values by concentration, then take the minimum by apid
32	pval.zero	Set pval to 0.
33	resp.shiftneg.6bmad	Shift response values falling below -6 * bmad to 0.
34	resp.shiftneg.10bmad	Shift response values falling below -10 * bmad to 0.

LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

- cnst constant model (slope and intercept equal 0)
- **hill** three parameter hill model with bottom equal to 0
- gnls gain-loss model (product of two threeparameter hill models with bottoms equal to 0)
- Use maximal likelihood to model the data, each model has an additional error term (er)
- Calculate the baseline MAD (bmad)
- Calculate model and data summary values, such as AIC (aic), RMSE (rmse), parameter sds (sd), and the max median response by concentration (max med)


Let t(z, v) be the Studen's t-distribution with v degrees of freedom and y_i be the log response at the i^{th} observation. We calculate z_i as:

$$z_i = \frac{y_i - \mu_i}{e^{\sigma}}$$

Where σ is the scale term. Then the log-likelyhood is:

$$\sum_{i=1}^{n} \ln(t(z_i, 4)) - \sigma$$

Where n is the number of observations.

$$\mu_i = 0$$

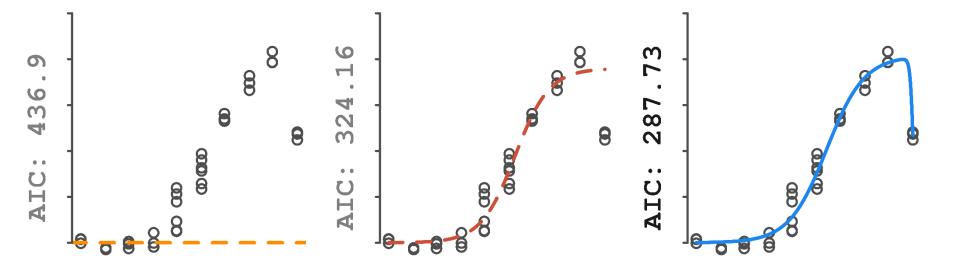
$$\mu_i = \frac{1}{1 + 10^{(ga - x_i)gw}}$$

$$g_i = \frac{1}{1 + 10^{(ga - x_i)gw}}$$

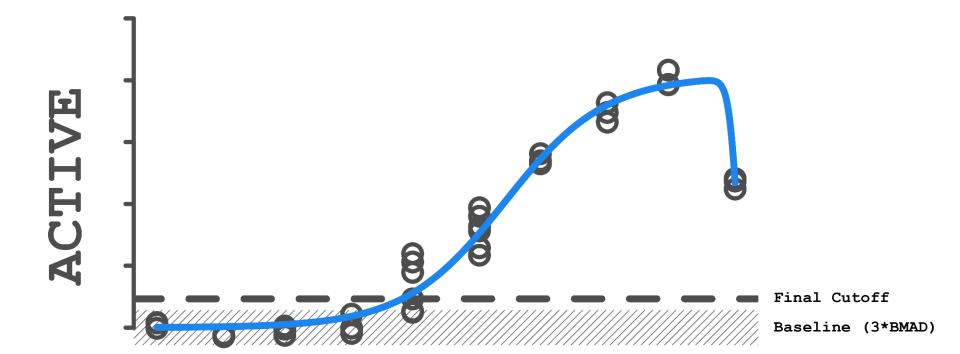
$$l_i = \frac{1}{1 + 10^{(x_i - la)lw}}$$

$$\mu_i = tp * g_i * l_i$$

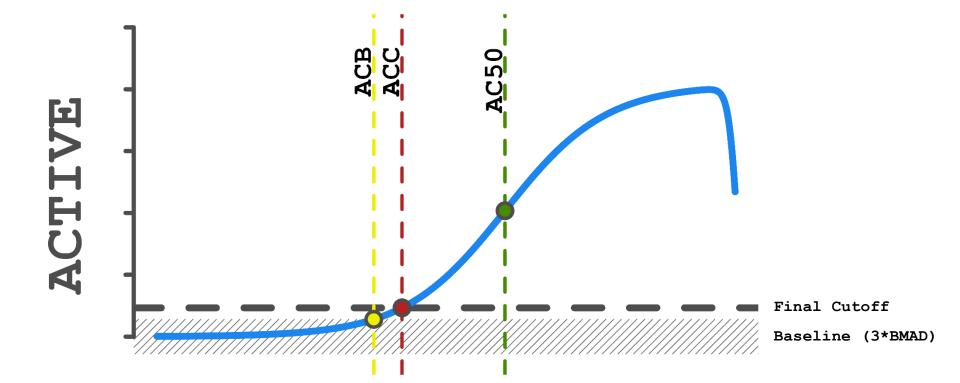
Where u_i and x_i are the modeled response and log concentration at the i^{th} observation, respectively, ga is the gain log(AC50), gw is the gain Hill coefficient, la is the loss log(AC50), and la is the loss Hill coefficient.


LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

- Select the winning model (modl), bin the fits (fitc), and make a hit-call (hitc)
- Define activity cutoff (coff)
 - Always at least 3*bmad or 20% change
 - Can be increased with an additional cutoff method from $15\ methods$


```
## Determine winning model
dat[ , maic := pmin(cnst_aic, hill_aic, gnls_aic, na.rm = TRUE)]
# Order matters here, because in the case of a tie the simpler model will
# overwrite the more complex model as the winner.
dat[gnls_aic == maic, modl := "gnls"]
dat[hill_aic == maic, modl := "hill"]
dat[cnst_aic == maic, modl := "cnst"]

## Make the hitcall
dat[ , hitc := FALSE]
dat[modl == "hill" & hill_tp >= coff & max_med >= coff, hitc := TRUE]
dat[modl == "gnls" & gnls_tp >= coff & max_med >= coff, hitc := TRUE]
```


Select the winning model (lowest AIC):

Make activity call (hit-call):

Point of departure estimates:

l5_mthd_id	l5_mthd	desc
1	none	Add no additional cutoff. Will default to 3*bmad
2	bmad5	Use 5*bmad
3	bmad10	Use 10*bmad
4	bmad6	Use 6 * bmad

LVL 0	Raw file processing (vendor-specific)
LVL 1	Define replicate & concentration indices
LVL 2	Assay component-specific value corrections
LVL 3	Assay endpoint-specific normalization
LVL 4	Model fitting (constant, hill, gain-loss)
LVL 5	Model selection and hit-calling
LVL 6	Flagging (detect potential FP & FN)

- Flag fits as potential false positive/negative
- Call methods from 16 methods
 - Additional field, **nddr**, indicates whether the method needs the dose-response data loaded
- level6 is long, with one fit-flag combination per line. Each fit can have multiple flags. Fits without any flags are not listed in the table.

LVL 0 LVL 1 LVL 2 LVL 3 LVL 4 LVL 5 LVL 6

l6_mthd_id	l6_mthd	desc	nddr
1	row.dev.up	Look for row-wise plate effects, increase	1
2	row.dev.dn	Look for row-wise plate effects, decrease	1
3	col.dev.dn	Look for column-wise plate effects, decrease	1
4	col.dev.up	Look for column-wise plate effects, increase	1
5	plate.flare	Look for plate flare effects	1
6	singlept.high.hit	Look for single point hits with activity only at the highest conc tested	0
7	singlept.mid.hit	Look for signle point hits with activity not at highest conc tested	0
8	multipoint.neg	Look for inactives with multiple medians above baseline	0
9	pintool	Look for pintool carryover issues	0
10	noise	Look for noisy curves, relative to the assay	0
11	border.hit	Look for actives with borderline activity	0
12	border.miss	Look for inactives with borderline activity	0
13	plate.interlace	Look for interlaced chemical-plate effects	1
14	rep.mismatch	Look for mismatched techinal replicates	1
15	gnls.lowconc	Look for low concentration gnls winners	0
16	overfit.hit	Flag hit-calls that would get changed after doing the small N correction to the aic values.	0
17	efficacy.50	Flag hit-calls with efficacy values less than 50% intended for biochemical assays.	0

Project Goals

- ✓ Efficiency ~120x faster
- ✓ Usability completely functionalized
- ✓ Generalized vendor-independent
- ✓ Centralization all in relational database
- ✓ Transparency well commented R package
- ✓ Reproducibility processing based on database parameters

Downloading the Data

LVL 0 LVL 1

What Will Be Available?

- R package (tcpl)
- MySQL database dump -- including all ToxCast PhI and PhII data from level 0 to level 6
- Summary matrix files
- Level 5 table
- Level 6 table
- http://epa.gov/ncct/toxcast/data.html

Summary Matrices

- All parameters for the winning model
 - modl ga gain log(AC50)
 - modl tp top
 - modl gw gain Hill coefficient
 - ...
 - modl acc activity concentration at cutoff
 - modl acb activity concentration at baseline
 - modl ac10 activity concentration at 10%
 - DOES NOT INDICATE HIT-CALL
- Hit-call matrix
- Tested/not-tested matrix
- CHEMICALS NOT TESTED IN DOSE-RESPONSE WILL BE NA IN ALL FILES EXCEPT THE TESTED/NOT TESTED MATRIX

Acknowledgements

- Parth Kothiya
- Matt Martin
- Richard Judson
- Woody Setzer
- Jeff Edwards
- John Wambaugh
- Jimmy Phuong

Demo

Questions?

Field/Variable Index

10id = level 0 id

LVL 0

- spid = sample id
- cpid = chemical plate id
- apid = assay plate id
- rowi = row index
- coli = column index
- wllq = well quality (bool)
- **wllt** = well type
 - **t** = test compound
 - c = pos ctrl (dose-resp)
 - p = pos ctrl (1 conc)
 - n = neutral control
 - m = neg ctrl (1 conc)
 - **o** = neg ctrl (dose-resp)
 - b = blank
 - \mathbf{v} = viab ctrl (1 conc)
- conc = concentration

- rval = raw value
- vendor

- **l1id** = level 1 id
- **10id** = level 0 id
- acid = assay component id
- repi = replicate index
- **cndx** = concentration index

- **12id** = level 2 id
- **l1id** = level 1 id
- **10id** = level 0 id
- acid = assay component id
- cval = corrected value

- **13id** = level 3 id
- **12id** = level 2 id
- **llid** = level 1 id
- **10id** = level 0 id
- acid = assay component id
- aeid = assay endpoint id
- **bval** = baseline value
- **pval** = positive control value
- $logc = log_{10}$ concentration
- resp = normalized response value

```
• 14id = level 3 id
```

- aeid = assay endpoint id
- **spid** = sample id
- **bmad** = baseline median absolute deviation
- resp max = max resp value
- resp_min = min resp value
- max mean = max mean value, by concentration
- max mean conc = concentration of the max mean
- max_med = max median value, by concentration
- max_med_conc = concentration of the max med
- $logc_max$ = $max log_{10}$ concentration
- **logc min** = min log_{10} concentration
- nconc = number of concentrations
- **npts** = number of values
- **nrep** = number of technical replicates
- **nmed gtbl** = number of median values > 3*bmad

= TRUE/FALSE did cnst fit cnst hill = TRUE/FALSE did hill fit = TRUE/FALSE did hill hessian matrix invert hcov gnls = TRUE/FALSE did gnls fit gcov = TRUE/FALSE did gnls hessian matrix invert = model error term er = model top tp = model gain AC50 ga = model gain hill coefficient (slope) qw la = model loss AC50 1w= model loss hill coefficient (slope) = model parameter standard deviation sd aic = model Akaike information criterion prob = model probability (derived from all aics) = model root mean square error rmse

NOTE: The fields for the model values are concatenated, for example cnst_er, gnls_lw_sd, hill_prob

```
15id
          = level 5 id
14id
          = level 3 id
aeid
          = assay endpoint id
modl
          = winning model
fitc
          = fit category
          = final cutoff
coff
          = activity probability
actp
modl er
          = error of winning model
          = top of winning model
modl tp
modl ga
          = gain AC50 of winning model
modl gw
          = gain hill coefficient of winning model
modl la
          = loss AC50 of winning model
modl lw
          = loss hill coefficient of winning model
modl prob = probability of winning model
modl rmse = root mean square error of winning model
modl acc = activity concentration at cutoff
```

= activity concentration at baseline

modl acb

```
• 15id = level 5 id
```

- **14id** = level 3 id
- aeid = assay endpoint id
- 16 mthd id = error of winning model
- **flag** = flag text
- **fval** = flag value
- fval unit = flag value unit