Advanced Coal Technology Work Group

Update for CAAAC September 20, 2007

Purpose of briefing

- Review Work Group background
- Discuss Interim Report and Subcommittee feedback
- Update on Work Group progress
- Discussion

ACT Work Group

- CAAAC agreed to establish Work Group in September 2006 (under Subcommittee on Economic Incentives and Regulatory Innovation)
- First WG meeting: Jan. 2007
- Original charge:
 - Discuss and identify the potential barriers and opportunities to create incentives under the Clean Air Act for the development and deployment of ACTs, including technology to capture and store CO2.
- Based on discussion, Work Group determined it appropriate and useful to examine opportunities <u>outside</u> the Clean Air Act.

ACT Work Group

- If additional 145GW of coal-fired capacity added by 2030, resulting CO2 emissions would equal 42% of emissions from all existing coalfired plants in U.S.
- A fast-changing environment
 - Coal-fired power plants in OK, FL
 - Legal developments
 - Studies
 - Legislation
- A uniquely positioned group

ACT Work Group

- Wide spectrum of participants in a collaborative process
- Development of a set of recommendations and complementary actions to be undertaken by different stakeholders will provide greatest potential to accelerate the use of ACTs
- ACTs: suite of innovative processes and technologies designed to substantially reduce or eliminate the environmental footprint of coal-based energy production processes

Interim Report

Adv. Coal Technology Work Group

Interim Report

- Finalized and distributed to Subcommittee members in late June
- Interim Report Process:
 - Small teams prepared one-pagers on recommendation areas
 - Co-chairs assembled first draft of complete report
 - Multiple conference calls to discuss drafts
 - Finalized at June 5th WG meeting
- Substantial consensus

Interim Report: Recommendations (1)

- Mechanisms to enhance, expand, develop and coordinate existing and new incentives to encourage early commercial use of ACTs should be implemented.
- Legislative and regulatory drivers should be utilized to accelerate the near- and long-term deployment of ACTs.
- Risk characterization, risk management, and liability mechanisms should be developed to enable the accelerated deployment of CCS technologies.

Interim Report: Recommendations (2)

- Research, development, and demonstration (RD&D) programs focusing on ACTs should be expanded and strengthened to accelerate commercial deployment at new and existing facilities.
- Mechanisms to address the uncertainty and delay associated with **permitting** should be developed for ACT projects.
- The importance of, and basic information about, ACTs should be effectively communicated to the public, policymakers and other key stakeholders.

Feedback: July 30 Subcommittee call (1)

- Impressed by scope of report, done on time
- Make recommendations more useful
 - What would be top 5 things Senator, PUC, etc. would need to do? Where should they start?
 - Prioritize issues

Feedback: July 30 Subcommittee call (2)

Fundamental definitional issue exists

- Environmental group representative stated that ACT must include CCS; EE and general perf. improvements inadequate
- Need for candor in final report concerning areas of disagreement, esp. re: definition

Feedback: July 30 Subcommittee call (3)

Lifecycle analysis

- Recommendations focus on new power plants; more attention needed re: retrofits
- Potential for offsets
- Issue of scalability

Work Group progress

Current progress

- August and September meetings: developed and reaffirmed direction and methods for a successful work product
- Areas of focus
 - CCS issues
 - Financial incentives
 - Regulatory drivers
 - Education/outreach
- Roadmap
 - Way to integrate information
 - Introduce relative time sequence and dependencies

Next three months

- In-depth focus on options
- Example: CCS Issues
 - Rapid deployment model
 - Early action accounting and credit methods for state or federal use
 - Specifications for commodity-quality CO2
 - Criteria/considerations for developing model CCS provisions

Observations and discussion

Observations from first six months (1)

- Strong, consistent recognition of critical importance of developing and deploying carbon capture and storage (CCS) technologies
- CCS readiness: while technologies have been successful at some scale, yet to see full-scale, fully integrated systems
- Technical and cost-related concerns exist
- CCS deployment could be accelerated by development of policy/regulatory frameworks

Observations from first six months (2)

- Range of perspectives on which advanced coal technologies should be given incentives, over what time frame
 - Broad agreement that CCS for all technologies should be prioritized in near term
- States and PUCs are heavily involved in direction and development of ACTs
- Desire for certainty: need some type of sustained signal (e.g., market price of carbon) to spur technological transformation

Some interesting ideas

- New Mexico requires modeling of CO2 costs of \$8, \$20 and \$40 in all resource planning efforts
- NM Advanced Energy Tax Credit: 6% up to \$60 million over up to 5 years
- Panel on coal-to-liquids creates debate: CO2 emissions versus national security
- Funding ideas
- Lifecycle analysis

Environmental Impact Profile* Mt. Shasta Biomass Power Station

Impact Levels Per 1000 Gwh

Nutrition	Facts
-----------	-------

Serving Size 1 cup (236ml) Servings Per Container 1

t O –			
alue*			
0%			
0%			
0%			
5%			
4%			
0%			
17%			
4.04			
4%			
Calciun(30)%• Iron 0%•Vitamin D 25%			
*Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs:			

Depletion of Natural Resources	s Impac	t Levels		
Non-Renewable Energy	12,000	barrels of oil		
Water				
Strategic Metals				
Terrestrial Habitats	14,000	hectares		
Wetland Habitats		hectares		
Lake Habitats				
River Habitats				
Key Species	50 %	o loss		
Impacts from Emission Loading	S			
Cumulative Greenhouse Gases	12,000,000	tons CO2		
Oceanic Acidification	149,000	tons CO2		
Acid Rain	96	tons SO2		
Smog	33,000	exposures		
Soot (PM 2.5)	87,000	exposures		
Neurotoxicity				
Systemic Chemical Toxicity				
Eco-Toxicity	106	kg TCDD		
Risks from Hazardous Wastes				
Radioactive Wastes				
* Based Upon Life-Cycle Impact Assessment				

Environmental Impact Profile* Altamont Wind Power Station/Natural Gas LVRT Impact Levels Per 1000 Gwh					
Depletion of Natural Resource	s Impact Levels	Compared to Regior	nal Grid		
Non-Renewable Energy	6,800,000 eq. GJ oil				
Water					
Strategic Metals					
Terrestrial Habitats	200 hectares				
Wetland Habitats					
Lake Habitats					
River Habitats					
Key Species	60%				
Impacts from Emission Loadings					
Cumulative Greenhouse Gases	17,960,000 tons CO2				
Oceanic Acidification	29,000 tons CO2				
Acid Rain	29 tons SO_x				
Smog	5,000 annual exposure				
Soot (PM 2.5)	3,000 annual exposures				
Neurotoxicity					
Systemic Chemical Toxicity					
Eco-Toxicity					
Risks from Hazardous Wastes					
Radioactive Wastes		Lower Impact Level	Higher Impact Level		
* Based Upon Life-Cycle Impact Assessment		Average Im of Region			

CAAAC Discussion

- Questions on the issues raised
- Questions on the technologies we've discussed
- Questions on the process used to create interim report
- Advice from CAAAC to Work Group:
 - Things missed
 - Areas recommended for more focus
 - How to make final report more "useful"
 - Who is our most important audience

Next steps

Advanced Coal Technology Work Group