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Climate Change and Space Heating Energy Demand:   

A Review of the Literature 

 

Matthew Ranson, Lauren Morris, and Alex Kats-Rubin, Abt Associates 

 

 

Abstract 

 

This paper reviews recent evidence on the potential impacts of climate change on energy demand for 

space heating in residential and commercial buildings.  We cover two main topics.  First, we review 

empirical studies of the historical relationship between temperature and energy use for heating and 

cooling.  These studies show consistent evidence of a U-shaped relationship between temperature and 

energy demand, in which energy use for heating is greatest at very low temperatures, and energy use 

for cooling is greatest at very high temperatures.  The temperature at which energy use is minimized 

varies across geography and time periods, but in most studies is between 53°F and 72°F (12°C and 

22°C).  Second, we review studies that estimate how climate change will affect future energy use for 

space heating and cooling. Most studies predict that climate change will result in reductions in 

demand for heating and increases in demand for cooling.  Although the sign of the net global effect 

depends on the time frame and climate change scenario, a very robust conclusion is that there is 

considerable variation across geographies, with the largest magnitude effects predicted for countries 

that currently have either very low or very high average temperatures.  Overall, the results 

summarized in this paper will be useful for understanding the potential magnitude of the benefits of 

climate-related reductions in space heating, and for improving the damage functions used in 

integrated assessment models of climate change. 

 

Key words:  Climate change, space heating, space cooling, energy use, integrated assessment models 

JEL Codes:  (Q54) Climate/Natural Disasters and Their Management/Global Warming, (Q41) Energy 

Demand and Supply/Prices 
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1 Introduction 

 

One of the simplest ways that households and firms will respond to climate change is by adjusting their 

expenditures on heating and cooling.  Because the cost of heating interior building space makes up a 

substantial part of many households’ budgets, the reduction in heating requirements due to climate change 

could provide a substantial social benefit.  Of course, this benefit could be offset by increased 

expenditures on space cooling (or alternatively, the welfare costs of enduring higher ambient 

temperatures) during the warmer months. 

To understand the potential magnitude of the benefits from climate-related reductions in space heating, 

and to collect information useful for improving the damage functions used in integrated assessment 

models (IAMs), this paper reviews economic literature relevant to the relationship between climate 

change and demand for space heating.1  We cover two main areas.   

We begin by reviewing empirical studies of the relationship between temperature and energy use for 

heating (and energy use more broadly).  These studies use daily, monthly, or yearly variation in 

temperatures, possibly across different locations, to identify the effect that changes in temperature have 

on energy use.  The results from these studies show consistent evidence of a U-shaped relationship 

between temperature and energy demand, in which energy use for heating is greatest at very low 

temperatures, and energy use for cooling is greatest at very high temperatures.  For example, the studies 

we have reviewed suggest that in cold weather (below 50°F/10°C), a one degree Celsius increase in 

temperature decreases electricity use by 1% to 5%.  In warm weather (above 68°F/20°C), the opposite is 

true:  one degree of additional warming increases electricity use by 0% to 8%.  The temperature at which 

energy use is minimized varies across geography and time periods, but in most studies is between 53°F 

and 72°F (12°C and 22°C).   

Second, we review studies that estimate how climate change will affect future energy use for space 

heating and cooling.  Most studies predict that climate change will result in reductions in demand for 

heating, and increases in demand for cooling.  In aggregate, these two effects will partially cancel each 

other out.  Although the sign of the net global effect depends on the time frame and climate change 

scenario, a very robust conclusion is that there is considerable variation across geographies, with the 

largest magnitude effects predicted for countries that currently have either very low or very high average 

temperatures. 

The remainder of this paper is organized as follows.  To motivate the review, Section 2 presents a simple 

model of how consumer demand for space heating is affected by changes in climate.  Section 3 then 

summarizes the existing literature on the effect of temperature on space heating energy use.  This section 

considers two main sources of evidence:  panel data on how heating expenditures in a given location 

respond to weather shocks, and cross-sectional data on how average heating expenditures vary across 

geographic regions with different climates.  Next, Section 4 reviews literature on how climate change 

could affect future space heating demand, and discusses challenges and issues related to making these 

predictions.  Finally, Section 5 concludes. 

                                                      
1 This review does not cover studies that focus specifically on space cooling, which are discussed elsewhere (see, 

e.g., Auffhammer and Mansur, 2012).  This review also does not cover every study in the large literature on space 

heating.  Instead, we have conducted a high-level survey. 
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2 Modeling the Welfare Impacts of Changes in Cold Exposure Caused by Climate Change 

In order to understand how climate change could affect social welfare via changes in exposure to cold 

weather, it is useful to consider a representative consumer’s space heating choice problem.  Suppose that 

a consumer maximizes a one-period utility function 𝑈(𝐶, 𝑋), where 𝐶 is a measure of comfort (e.g., the 

indoor temperature during a winter month), and 𝑋 is a composite good (with price normalized to one) that 

captures all other sources of utility (e.g., food, housing, clothing).  The consumer’s production function 

for comfort is given by 𝐶 = 𝑓(𝑇, 𝐸), where 𝑇 is the outdoor temperature and 𝐸 represents expenditures 

on space heating.  Given a budget constraint, the consumer chooses 𝐸 and 𝑋 so that marginal utility from 

expenditures on space heating and the composite good are equal, conditional on 𝑇: 

𝜕𝑈

𝜕𝐶
⋅

𝜕𝐶

𝜕𝐸
=

𝜕𝑈

𝜕𝑋
 

Now consider the problem of modeling the effects of climate change on consumer welfare.  Suppose that 

global temperatures warm by 1 degree because of climate change.  If the consumer’s utility function is 

locally linear, her willingness to pay for this one-degree increase would be approximately equal to the 

ratio: 

𝑊𝑇𝑃 ≡

𝜕𝑈
𝜕𝑇
𝜕𝑈
𝜕𝑋

 

However, based on the results from the utility maximization problem, at the optimum this ratio is equal 

to: 

𝑊𝑇𝑃 ≡

𝜕𝑈
𝜕𝑇
𝜕𝑈
𝜕𝑋

=

𝜕𝑈
𝜕𝐶

⋅
𝜕𝐶
𝜕𝑇

𝜕𝑈
𝜕𝑋

=

𝜕𝐶
𝜕𝑇
𝜕𝐶
𝜕𝐸

=
𝜕𝐸

𝜕𝑇
 

This equality shows that the consumer’s willingness to pay for climate-change-related reductions in cold 

exposure can be estimated by observing her marginal change in expenditures on space heating when the 

outdoor temperature increases by a small amount.  This fact is useful because it motivates an empirical 

approach to estimating what would otherwise be a difficult-to-observe welfare change. For example, if the 

consumer spends an additional $20 on space heating when outdoor temperatures cool by one degree, then 

the consumer’s willingness to pay for one degree of climate change would be $20. 

Of course, this simple model neglects several important features of the climate change problem.  First, the 

marginal utility of changes in comfort is not likely to be linear in temperature, particularly for large 

changes.  Second, in the medium term, consumers have the option of switching between different heating 

technologies and fuels.  Third, in the long term, the production function for comfort is not fixed, due to 

innovation in heating and insulation technology and changes in average interior space per house.  Finally, 

households have the option of migrating to locations with more desirable weather.  Nonetheless, despite 

these and other limitations, the model shows that in order to model the impacts of climate change on 

space heating demand, an IAM must have an estimate of how consumers’ consumption of space heating 

changes when temperatures increase.  The following section of this document reviews literature on this 

topic. 
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3 The Impact of Temperature on Space Heating Demand 

This section reviews literature on how changes in temperature affect demand for space heating.  We begin 

in Section 3.1 by describing the methodologies used in these studies.  Then, in Section 3.2, we summarize 

the range of empirical results.  Finally, in Section 3.3, we discuss some areas of remaining uncertainty in 

the literature.   

3.1 Methodological Approaches 

To identify relevant studies, we have relied on a variety of sources, including several existing 

bibliographies and literature reviews (Baer et al, 2013; Auffhammer and Mansur, 2012; Mideksa and 

Kallbekken, 2010).  As Auffhammer and Mansur (2012) point out, most studies can be grouped into one 

of two methodological categories.   

The first category is studies that use panel data to estimate how space heating energy use in a particular 

location responds to short-run variation in weather over time (e.g., Eskeland and Mideksa, 2009; De Cian, 

Lanzi, and Roson, 2013; Auffhammer et al, 2011; Deschenes and Greenstone, 2011; Lee and Chiu, 2011).  

The basic premise of the panel methodology is that because weather shocks are random, a regression of 

energy demand on weather will produce unbiased estimates of the causal effect of weather on energy 

demand.  However, the drawback of this approach is that it only estimates the short-run demand response 

to changes in weather, and does not consider longer-run adaptation possibilities.2  Thus, the empirical 

results from studies that use this methodology are likely to be an upper envelope to the long-run 

responsiveness of demand to changes in climate.  The research frontier is currently working to address 

this challenge:  for example, Sue Wing (draft, 2013) uses a dynamic panel data approach to estimate the 

cumulative long-term lagged effects of weather shocks on space heating demand.  However, given that 

most parts of the world have not yet experienced large secular shifts in climate, it is not yet clear whether 

a dynamic approach can measure the full potential for long-term adaptation. 

The second category is studies that use cross-sectional data to estimate how average space heating energy 

use depends on geographic variation in climate (e.g., Mansur, Mendelsohn, and Morrison, 2008; 

Mendelsohn, 2003).  These studies run regressions that measure how energy expenditures depend on 

long-term average temperatures, controlling for other determinants of energy demand that also vary 

across geographies.  The key insight of the cross-sectional approach is that people and businesses adapt to 

the environmental conditions in the area in which they live (Mendelsohn, Nordhaus, and Shaw, 1994).  

As a result, the cross-sectional relationship between space heating use and climate takes into account the 

long-term adaptation possibilities for responding to climate change, given current technologies (Mansur, 

Mendelsohn, and Morrison, 2008).  However, the primary disadvantage of this approach is that it is 

vulnerable to omitted variable bias.  For example, climate might be correlated with some other variable—

such as average population age—that also determines demand for space heating.   

3.1.1 Methodological Approaches Based on Panel Variation in Weather 

We first review the methodologies from studies that use time-series or panel data to measure how space 

heating energy consumption is affected by weather shocks.  These studies typically run regressions that 

measure how day-to-day, month-to-month, or year-to-year variation in weather affects space heating 

energy demand.  As discussed above, although the use of panel data means that the empirical 

                                                      
2 In principle, a panel approach could measure long-term adaptation possibilities, but only if the panel dataset 

included at least some locations where permanent changes in temperature had been observed.  In practice, most 

locations in the United States and elsewhere have probably not yet experienced climatic changes large and salient 

enough to induce adaptation-related behavior.    
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relationships estimated by these studies are likely to be unbiased, their results do not capture the full 

spectrum of long-run adaptation possibilities that could be available for responding to climate change. 

The studies we have reviewed use a range of econometric techniques to measure the effects of weather on 

space heating energy use.  At the simplest end of the spectrum, Giannikopolous and Psiloglou (2006) plot 

daily aggregate residential and commercial electricity consumption against daily temperature, for Athens, 

Greece, from 1993 to 2001.  Although their paper does not provide complete details about their 

methodology, they appear to have estimated an equation of the general form: 

𝐸𝑛𝑒𝑟𝑔𝑦𝑡 = 𝛽0 + 𝑓(𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑡) + 𝜖𝑡      (1) 

where the time variable 𝑡 represents days, the function 𝑓(⋅) is a flexible spline, and 𝜖𝑡 is a zero-mean 

error term.  Using this approach, the authors find a highly-significant U-shaped relationship:  electricity 

consumption is highest at cold and hot temperatures, and lowest at approximately 72°F (22°C).   

Although this approach is straightforward to implement, it neglects seasonal or longer-term influences on 

energy demand—such as school calendars—that could potentially bias the results.   

Other studies use econometric approaches that also control for observable covariates and for time or unit 

fixed effects (e.g., Auffhammer and Aroonruengsawat, 2012; Petrick et al, 2012; Deschenes and 

Greenstone, 2011).  For example, using a panel of European countries, Eskeland and Mideksa (2009) 

estimate the effect of annual heating degree days (HDD)3 and cooling degree days (CDD) on annual 

national household electricity consumption, controlling for electricity prices, per capita income, and year 

and country fixed effects.  In generic form, their specification can be written as: 

 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑡 = 𝑓(𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑖𝑡) + 𝛽1𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑡 + 𝜃𝑖 + 𝜏𝑡 + 𝜖𝑖𝑡   (2) 

where 𝑖 indexes countries, 𝑡 indexes years, and the coefficients 𝜃𝑖 and 𝜏𝑡 represent the effects of 

individual country and year dummy variables, respectively.  They find that one extra CDD per year 

increases annual electricity demand by between 0.12% and 0.04%, and that that one extra HDD per year 

increases electricity demand by between 0.02% and 0.01%.  Of course, their approach ignores the fact 

that electricity prices are not independent of electricity demand.  To address this endogeneity, some other 

studies draw on statistical techniques from the broader literature on energy demand estimation.  For 

example, in a 22-year panel dataset of energy use in OECD countries, Bigano et al (2006) estimate a 

version of Equation (2) using the Arellano and Bond estimator and lagged energy demand variables.  

They find that a 1% increase in annual temperature results in a 2.8% increase in annual coal consumption, 

a 0.6% decrease in electricity consumption, a 1.8% decrease in natural gas consumption, and 3.1% 

decrease in oil products consumption. 

Finally, some studies use a dynamic econometric framework, in which space heating demand depends not 

only on current-period weather, but on weather in previous periods (e.g., Jorgensen and Joutz, 2012; Paul, 

Myers, and Palmer, 2009).  For example, using a panel of monthly state-level data, Sue Wing (draft, 

2013) estimates the long-term response of U.S. electricity demand to temperature shocks based on an 

autoregressive distributed lag model.  A simplified version of his model can be written as: 

                                                      
3 A “degree day” indicates that the daily average outdoor temperature was one degree higher or lower than some 

comfortable baseline temperature (in the United States, usually 65 degrees F) on a particular day.  For example, if 

the average temperature on a particular day was 78 F, then that day contributed 13 cooling degree days and 0 heating 

degree days.  If the average outdoor temperature was 34 degrees F, then that day contributed 0 cooling degree days 

and 31 heating degree days.  As a reference, Minneapolis, MN, has about 8,000 HDDs and 700 CDDs per year, and 

Miami, FL, has 170 HDDs per year and 4,900 CDDs per year. 
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 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑡 = ∑ 𝑓(𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑖,𝑡−𝑢)𝑈
𝑢=0 + 𝛽1𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑡−1 + 𝜃𝑖 + 𝜏𝑡 + 𝜖𝑖𝑡   (3) 

The key feature of the model is that it accounts not only for the contemporaneous effects of weather 

shocks on space heating use, but also their cumulative lagged effects.  The purpose of including these 

lagged variables is to capture medium-term adaptation possibilities, such as installing new thermostats or 

switching heating and cooling technologies.  Based on the draft results from the paper, the lags appear to 

be important:  the medium-run semi-elasticities are three to four times as large as the single-period semi-

elasticities. 

As a reference, the first two panels of Table 1 present information about a broader set of studies that use 

time-series or panel approaches.  For each study, the table describes characteristics of the study’s dataset, 

including geography, time period covered, and unit of observation.  The table also describes each study’s 

estimation approach, including the dependent energy variable, the independent weather or climate 

variable, important control variables, specific details of the estimation procedure, and main results.   

Note that only a few studies in the table (e.g., Amato et al, 2005; Fung et al, 2006) estimate the effect of 

temperature on heating as a distinct item, and only by focusing on fuels (e.g., heating oil) that are not used 

for cooling. The remaining studies consider how temperature affects energy demand more broadly, 

combining the effects of heating and cooling.  As discussed in greater detail below in Section 3.2, many 

of these studies interpret the left-hand side of the U-shaped relationship between average daily 

temperature and total daily energy use as representing the effect of temperature on space heating, and the 

right-hand side as representing the effect of temperature on space cooling.  However, since temperatures 

vary within the course of a day, the same house could potentially be cooled during the day and heated at 

night.  Thus, using even daily data to distinguish the effects of temperature on energy use via the heating 

and cooling pathways is a challenging econometric exercise. 

Due to space limitations, Table 1 provides limited detail about each study.  Thus, to supplement the 

information in the table, Appendix A of this document provides extended descriptions of the 

methodologies and results from selected studies. 

3.1.2 Methodological Approaches Based on Cross-Sectional Variation in Climate 

We next review the methodologies from studies that measure how space heating energy consumption is 

affected by cross-sectional variation in climate.  The key insight of the cross-sectional approach is that 

people and businesses adapt to the environmental conditions in the area in which they live (Mendelsohn, 

Nordhaus, and Shaw, 1994; Mansur, Mendelsohn, and Morrison, 2008).  As a result, the cross-sectional 

relationship between space heating use and climate takes into account the long-term adaptation 

possibilities for responding to climate change, conditional on current heating and cooling technologies.  

Although the theoretical grounds for this approach are compelling, its primary weakness is that long-term 

climate is likely to be correlated with other determinants of space heating use.  For example, if older 

Americans who prefer warm temperatures are more likely to retire to Florida, then the cross-sectional 

relationship between space heating use and climate would be biased by the endogenous migration 

decision. 

We have identified only a few studies that use this approach.  The most recent is Mansur, Mendelsohn, 

and Morrison (2008).  Using data from representative surveys of households and commercial buildings 

across the United States, this study estimates a two-stage choice model.  In the first stage, households and 

commercial buildings make a discrete choice of heating fuel type, based on climate and other control 

variables.  Then, conditional on their first-stage decision, they make a second-stage continuous choice of 

fuel quantity.  In the first stage, the authors find that warmer annual temperatures make residential 
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customers less likely to choose oil or gas heat, and more likely to choose electricity only.  In the second 

stage, the authors’ estimates imply that households with natural gas or oil heat who live in climates that 

are 1°C warmer, on average, consume 6% to 15% more electricity annually and 1.5% less natural gas 

annually (the difference in oil consumption is a statistically-insignificant decrease of 7.1%).  However, 

for customers with electric heat only, a 1°C increase in average annual temperature has no effect on 

annual electricity use, due to the changes in winter and summer electricity use cancelling out.   

As a reference, the third panel of Table 1 presents detailed information about the studies we have found 

that use a cross-sectional approach.  For each study, the table describes characteristics of the study’s 

dataset, including geography, time period covered, and unit of observation.  The table also describes 

characteristics of each study’s estimation approach, including the dependent energy variable, the 

independent weather or climate variable, important control variables, and specific details of the estimation 

procedure. 
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Table 1:  Studies of Energy Demand and Weather 

Study 

Geography 

and Time 

Period 

Unit of 

Obs. 

Dependent 

Variable 

Weather/ 

Climate 

Variables 

Other Key 

Variables Methodology Main Empirical Results 

Panel Studies Based on Country-Level Data  

Bigano et al 

(2006) 

3 to 29 OECD 

and other 

countries, 

1978-2000 

Country by 

year 

Residential, 

commercial, and 

industrial use of 

coal, gas, 

electricity, oil, 

and oil 

products (Ktoe)* 

Yearly average 

temperature 

GDP, price Panel regression using 

Arellano and Bond 

estimator, with lagged 

demand and country 

fixed effects 

Elasticities with respect to 

temperature (in °F) are 2.8 for coal, -

0.6 for electricity, -1.8 for natural 

gas, and -3.1 for oil products. 

Bessec and 

Fouquau 

(2008) 

15 European 

countries, 

1985-2000 

Country by 

month 

Combined 

residential, 

commercial, and 

industrial 

electricity use 

(gW/hr) 

Monthly 

average 

temperature 

Population, 

production in 

total 

manufacturing, 

cubic 

polynomial of 

time 

Panel regression with 

threshold function 

approach that allows 

different functional 

forms depending on 

the absolute value of 

the temperature 

variable 

In the authors’ preferred 

specification, semi-elasticities of 

electricity use with respect to 

temperature (in °C) are 

approximately -2.0 at 0°C, 0 at 

15°C, and 0.7 at 25°C. 

Eskeland and 

Mideksa 

(2009) 

31 European 

countries, 

1994-2005 

Country by 

year 

Annual 

household 

electricity 

consumption 

(kWh) 

Annual HDD 

and CDD [base 

temp is 18°C 

for HDD and 

22°C for CDD] 

Electricity 

prices, per 

capita income 

Panel regression with 

year and country fixed 

effects 

The semi-elasticity of annual 

electricity demand with respect to 

CDDs is between 0.12 and 0.04; the 

semi-elasticity of annual electricity 

demand with respect to HDDs is 

between 0.02 and 0.01. 

Lee and Chiu 

(2011) 

24 OECD 

countries, 

1978-2004 

Country by 

year 

Electricity 

consumption per 

capita (kWh) 

Annual 

average 

temperature 

Income, 

electricity 

price 

Panel regression 

allowing non-linear 

threshold effects of 

price, income, and 

temperature, with 

country fixed effects 

and lagged 

explanatory variables 

For the specification with 

temperature as the threshold 

variable:  for countries with yearly 

average temperatures below 53°F, 

the elasticity of electricity demand 

with respect to temperature (in °F) is 

-0.6 (although not significant), while 

above 53°F, it is 0.2 and 

significantly higher. 
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Table 1:  Studies of Energy Demand and Weather 

Study 

Geography 

and Time 

Period 

Unit of 

Obs. 

Dependent 

Variable 

Weather/ 

Climate 

Variables 

Other Key 

Variables Methodology Main Empirical Results 

De Cian, 

Lanzi, and 

Roson (2013) 

31 countries 

from around 

the world, 

1978-2000 

Country by 

year 

Residential gas, 

electricity, oil 

products, and 

coal use (Ktoe) 

Temperature 

(spring, 

summer, fall, 

winter) 

GDP per  

capita, fuel 

price 

Panel regression with 

autoregressive term 

and country fixed 

effects, estimated as 

error correction model, 

with separate 

coefficients for hot, 

mild, and cold 

countries. 

In winter, Fahrenheit temperature 

semi-elasticities of annual energy 

use are negative in for every fuel 

type (-0.9 to -3.5).  However, in the 

spring and summer, some 

temperature semi-elasticities for 

electricity are negative and some are 

positive (-3.3 to 5.4), depending on 

geography. 

Petrick et al 

(2014) 

20 countries 

(coal), 56 

countries 

(electricity), 36 

countries 

(natural gas), 

32 countries 

(oil), 1970-

2002 

Country by 

year, 

unbalanced 

Residential coal, 

electricity, natural 

gas, and oil use 

(per capita toe) 

Annual heating 

degree months 

(HDM), 

cooling degree 

months 

(CDM)** [base 

temperature for 

both HDM and 

CDM is 

18.3°C] 

Income, fuel 

prices 

Panel regression with 

country fixed effects 

and lagged dependent 

variables, and 

quadratic in HDM 

The HDM coefficients are positive 

and generally significant, indicating 

that fuel use decreases as 

temperatures rise (for temperatures 

below the HDM threshold of 

18°C/65°F).  The elasticity with 

respect to HDM is 0.45 for coal, 

0.03 for electricity, 0.41 for natural 

gas, and 0.17 for oil.  The authors 

state that none of the CDM 

coefficients are significantly 

different from zero, but do not report 

CDM regression results. 

Panel or Time-Series Studies Based on Data from Single Countries or Regions within Single Countries 

Henley and 

Peirson 

(1997) 

75 U.K. 

households, 

1989-1990 

Household 

by time of 

day 

(morning, 

afternoon, 

evening, 

night) 

Household 

electricity 

demand (kWh) 

Hourly 

temperature 

Illumination, 

weekend, 

holidays 

“Fractional 

polynomial approach” 

with household fixed 

effects  

Declining non-linear relationship 

between electricity consumption and 

temperature, with consumption flat 

above approximately 22°C.  (See 

Figure 1 in this literature review for 

a graphical depiction of the results.) 
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Table 1:  Studies of Energy Demand and Weather 

Study 

Geography 

and Time 

Period 

Unit of 

Obs. 

Dependent 

Variable 

Weather/ 

Climate 

Variables 

Other Key 

Variables Methodology Main Empirical Results 

Sailor and 

Munoz 

(1997) 

California, 

Washington, 

Texas, 

Louisiana, 

Illinois, 

Ohio, New 

York, and 

Florida, 1982-

1994 

State by 

month 

Combined 

residential and 

commercial 

electricity and 

natural gas 

consumption 

Model 1:  

Temperature, 

humidity, and 

windspeed;  

Model 2: 

HDD, CDD, 

enthalpy latent 

days, and 

windspeed 

[base 

temperature for 

HDD and CDD 

is 18.3°C, 

except is 21°C 

in Florida] 

Population Linear time-series 

models, estimated 

separately for each 

state, with dependent 

variable normalized by 

population 

Model 1:  In the summer, a 

temperature increase of +1°C 

increases per capita electricity 

demand by 6 to 32 kWh/month, 

depending on the state.  In the 

winter, a temperature increase of 

+1°C decreases per capita electricity 

demand by 4 to 16 kWh/month. 

Model 2:  One HDD increases per 

capita electricity consumption by 

0.12 to 0.95 kWh/month.  One CDD 

increases per capita electricity 

consumption by .44 to 1.5 

kWh/month. 

Considine 

(2000) 

USA USA by 

month 

Residential, 

commercial, 

industrial, electric 

utility, and 

“propane” energy 

use 

Monthly HDD 

and CDD 

deviation from 

30-year 

average [base 

temperature for 

HDD and CDD 

is 65°F] 

Price, income, 

output, 

employment 

Linear logit model 

used to estimate 

demand systems 

simultaneously for 

each sector, with 

month fixed effects 

Residential:  the semi-elasticities of 

monthly energy use with respect to 

HDDs and CDDs per month are 

0.016 and 0.027, respectively.  

Commercial:  the same semi-

elasticities are 0.011 and 0.016, 

respectively. 

Valor et al 

(2001) 

Spain, 1983-

1999 

Spain by 

day 

Combined all-

sector electricity 

consumption 

Daily 

temperature, 

HDD, CDD 

[base 

temperature for 

HDD and CDD 

is 18°C] 

Seasonality 

and weekday/ 

holiday 

Spline of daily 

electricity use as a 

function of each 

variable 

U-shaped relationship between 

energy use and temperature, with 

minima at approximately 64°F 

(18°C).  The effect of hot weather 

becomes more prominent over time.  

On average, one additional daily 

HDD increases daily electricity 

demand by approximately 1.2%; one 

additional daily CDD increases daily 

electricity demand by approximately 

1.3%.  (See Figure 1 in this literature 

review for a graphical depiction of 

the results.) 
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Table 1:  Studies of Energy Demand and Weather 

Study 

Geography 

and Time 

Period 

Unit of 

Obs. 

Dependent 

Variable 

Weather/ 

Climate 

Variables 

Other Key 

Variables Methodology Main Empirical Results 

Bhattacharya 

et al (2003) 

United States, 

1980-1998 

Houshold 

by month 

(rotating 

panel) 

Expenditures on 

heating oil, 

electricity, natural 

gas, coal, 

kerosene, and 

firewood 

Monthly 

temperature 

Household 

income 

Log-linear panel 

regression with year, 

state, and month fixed 

effects 

A 10°F decrease in average monthly 

temperature results in a $53 increase 

in energy expenditures for rich 

families and a $37 increase in energy 

expenditures for poor families.  

(Baseline expenditures are not given 

in the study.) 

Amato et al 

(2005) 

Massachusetts, 

1977-2001 

State by 

month 

Residential and 

commercial 

electricity, natural 

gas, and heating 

oil sales 

(kWh/month) 

Monthly HDD 

and CDD [base 

temperatures 

for HDD and 

CDD are 55°F 

for commercial 

electric sector, 

60°F for 

residential 

electric and 

commerical 

fuel sectors, 

and 65°F for 

residential fuel 

sector.] 

 

Population, 

employment, 

day length 

Linear regression, with 

dependent energy 

variable normalized 

per capita (residential) 

or per employee 

(commercial)  

Residential:  the semi-elasticities of 

monthly energy use with respect to 

monthly HDDs and CDDs are 0.047 

and 0.038 for electricity use 

(kWh/person/month).  The semi-

elasticities with respect to month 

HDDs are 0.17 for natural gas use 

(cubic ft/person/month) and 0.13 for 

heating oil use 

(gallons/person/month). 

Assadoorian 

et al (2006) 

21(?) Chinese 

provinces, 

1995-2000 

Province 

by year 

Urban and rural 

residential and 

non-residential 

electricity 

demand; AC, 

refrigerator, and 

TV purchases 

Annual, 

seasonal, and 

monthly 

temperature 

Electricity 

price, income 

Two-stage choice 

model, with appliance 

choice as first stage 

and electricity 

consumption as second 

stage 

Residential urban electricity use:  

elasticities with respect to 

temperature (in °F) are 2.1 in the 

summer, -1.9 in the fall, and not 

significantly different from zero in 

the winter and spring.  Residential 

rural and non-residential electricity 

use: almost all of the elasticities are 

not significant. 

Franco and 

Sanstad 

(2006) 

California, 

2004-2005 

State by 

day 

Electricity 

demand (MWh) 

Daily average 

temperature 

None Model electricity 

demand as cubic 

function of daily 

temperature 

Strong U-shaped relationship 

between energy use and temperature, 

with minimum at 54°F (12°C).  (See 

Figure 1 in this literature review for 

a graphical depiction of the results). 
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Table 1:  Studies of Energy Demand and Weather 

Study 

Geography 

and Time 

Period 

Unit of 

Obs. 

Dependent 

Variable 

Weather/ 

Climate 

Variables 

Other Key 

Variables Methodology Main Empirical Results 

Giannikopolo

us and 

Psiloglou 

(2006) 

Athens, 

Greece, 1993-

2001 

Athens by 

day and 

hour 

Residential and 

commercial 

electricity use 

(kWh) 

Daily and 

hourly air 

temperature, 

daily HDD, 

daily CDD 

None Spline of raw daily 

electricity use as a 

function of each 

weather variable 

Strong U-shaped relationship 

between energy use and temperature, 

with minimum at 72°F (22°C).  

Based on data from 2001, one extra 

HDD (°C) increases electricity in 

Athens by 1.14 GWh, and one extra 

CDD (°C) increases electricity 

demand by 0.59 GWh.  (See Figure 

1 in this literature review for a 

graphical depiction of the results). 

Fung et al 

(2006) 

Hong Kong, 

China, 1990-

2004 

Hong Kong 

by month 

Residential, 

commercial, and 

industrial 

electricity, natural 

gas, and oil 

products 

Mean monthly 

temperature 

None Regress average 

monthly energy use on 

quadratic function of 

average monthly 

temperature 

Residential:  Temperature has a U-

shaped positive effect on electricity 

use (with a minimum between 18°C 

and 20°C), a strictly-declining 

negative effect on natural gas use, 

and no effect on oil products use.  

Commercial and industrial:  

Electricity use increases linearly 

with temperature, but natural gas and 

oil use are not affected by 

temperature.  (See Figure 1 in this 

literature review for a graphical 

depiction of the results). 

Deschenes 

and 

Greenstone 

(2011) 

United States, 

1968-2002 

State by 

year 

Residential 

energy use (all 

fuels, BTU) 

Binned daily 

mean 

temperature, 

binned 

precipitation 

Population, 

GDP 

Panel regression with 

Census division-by-

year and state fixed 

effects 

Strong U-shaped relationship 

between energy use and temperature, 

with minimum at 55-60°F.  (See 

Figure 1 in this literature review for 

a graphical depiction of the results). 

Auffhammer 

and 

Aroonruengs

awat (2011) 

California 

(80% of 

households), 

2003-2006 

Household 

by month 

(billing 

cycle) 

Residential 

household 

electricity 

consumption 

(kWh), electricity 

expenditures  

Binned daily 

temperature, 

quadratic 

precipitation 

Electricity 

price 

Panel regression with 

household, month, and 

year fixed effects, 

estimated separately 

by climate zone 

Strong U-shaped relationship 

between energy use and temperature, 

with a minimum at 65°F in most of 

California’s climate zones. (See 

Figure 1 in this literature review for 

a graphical depiction of the results). 
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Table 1:  Studies of Energy Demand and Weather 

Study 

Geography 

and Time 

Period 

Unit of 

Obs. 

Dependent 

Variable 

Weather/ 

Climate 

Variables 

Other Key 

Variables Methodology Main Empirical Results 

Gupta (2012) Delhi, India, 

2000-2009 

Delhi by 

day 

Total electricity 

demand (MkWh) 

Daily mean 

apparent 

temperature 

(accounts for 

humidity and 

wind), rainfall 

Fixed effects 

for holidays, 

weekdays, 

year,  

Spline of daily 

electricity use as a 

function of 

temperature 

Strong U-shaped relationship that 

becomes steeper over time (2009 vs 

2000).  The temperature that 

minimizes energy use falls from 

approximately 21°C in 2000 to 19°C 

in 2009.  (See Figure 1 in this 

literature review for a graphical 

depiction of the results). 

Chikobvu 

and Sigauke 

(2013) 

South Africa, 

2000-2010 

Nation by 

day 

Total electricity 

use for all sectors 

(MWh) 

Daily average 

temperature, 

daily HDD and 

CDD 

None Piecewise linear 

regression above 22°C 

and below 18°C 

Above 22°C, a 1°C increase causes a 

0.55% increase in electricity use.  

Below 18°C, a 1°C decrease causes 

a 1.03% increase in electricity use. 

Sue Wing 

(2013) 

United States, 

1990-2010 

State by 

month 

Residential, 

commercial, and 

industrial use of 

electricity (MWh) 

Binned daily 

temperature 

Electricity 

price, natural 

gas price, 

income, 

population, 

compensation, 

employment 

Autoregressive 

distributed lag 

dynamic panel, with 

state and month fixed 

effects 

Residential: there is a U-shaped 

relationship between energy use and 

temperature, with a minimum at 55-

60°F.  Industrial and commercial:  

electricity consumption is highest at 

high temperatures, but levels off 

below about 45°F.  (See Figure 1 in 

this literature review for a graphical 

depiction of the results). 

Hou et al 

(2014) 

Shanghai, 

China, 2003-

2007 

Shanghai 

by day 

Total electricity 

use for all sectors 

(million kWh) 

Daily average 

temperature, 

monthly HDD 

and CDD 

None Piecewise linear 

regression 

U-shaped relationship between 

temperature and electricity use, with 

minimum between 13°C and 20°C.  

One additional CDD per month 

increases electricity use by 402,000 

kWh (approximately 0.16%).  HDDs 

have no statistically significant 

effect. 

Cross-Sectional Studies of Space Heating Demand and Climate  

Vaage (2000) 2,289 

Norwegian 

households, 

sampled in 

1980 

Household Electricity, oil, 

and wood 

expenditures 

Dummy 

variable for 

five warmest 

counties 

Demographics, 

building 

characteristics, 

fuel prices 

Discrete-continuous 

model of fuel choice 

and quantity 

First stage:  households in warmer 

counties are less likely to use oil or 

wood (compared to electricity).  

Second stage:  households in warmer 

counties use 29% less energy. 
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Table 1:  Studies of Energy Demand and Weather 

Study 

Geography 

and Time 

Period 

Unit of 

Obs. 

Dependent 

Variable 

Weather/ 

Climate 

Variables 

Other Key 

Variables Methodology Main Empirical Results 

Mendelsohn 

(2003) 

Representative 

survey of 5,000 

households and 

5,600 

commercial 

buildings, 

sampled in 

clusters from 

U.S., 1989-

1990 

Household 

or building 

Energy 

expenditures 

January and 

July 

temperature 

and 

precipitation 

Demographics, 

building 

characteristics, 

fuel prices 

Logit choice model of 

AC use, followed by 

OLS continuous model 

of energy expenditures 

Residential first stage:  higher 

summer temperatures increase the 

probability of AC use.  Residential 

second stage:  higher winter 

temperatures reduce energy 

expenditures; summer energy 

expenditures are minimized at a 

temperature of 20°C. 

Mansur, 

Mendelsohn, 

and Morrison 

(2008) 

Representative 

survey of 5,000 

households and 

5,600 

commercial 

buildings, 

sampled in 

clusters from 

U.S., 1989-

1990 

Household 

or building 

Residential:  

electricity, natural 

gas, fuel oil, 

liquid petroleum 

gas, and 

kerosene;  

Commercial: 

electricity, natural 

gas, fuel oil, and 

district heat 

Temperature 

and 

precipitation  

Demographics, 

building 

characteristics, 

fuel prices, 

Multinomial discrete-

continuous fuel choice 

model, with fuel type 

as first stage 

regression and fuel 

quantity as second 

stage, and  with 

regional fixed effects 

First stage:  warmer winter 

temperatures make consumers less 

likely to choose oil heat, and warmer 

summer temperatures make 

consumers more likely to choose oil 

or electricity only.  Second stage:  

consumers who live in areas that are 

1°C warmer in both winter and 

summer consume 1% more 

electricity (for households with only 

electricity; coefficient not 

significant), 6% more electricity (for 

households with natural gas heat), 

and 15% more energy (for 

households with oil heat). 

Note: To supplement the information in this table, Appendix A of this document provides extended descriptions of the methodologies and results from selected studies. 

Footnotes:  * The abbreviation “toe” refers to tons of oil equivalent.  ** Heating and cooling degree months are defined analogously to heating and cooling degree days, 

but based on whether monthly (not daily) average temperature exceeds some threshold.   
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3.2 Summary of Empirical Results 

This subsection summarizes the empirical findings from the studies listed in Table 1.   

3.2.1 Spatial, Temporal, and Energy Type Coverage 

The studies in Table 1 cover a range of geographic areas and time periods.  For example, Deschenes and 

Greenstone (2011) use annual data for U.S. states from the period 1968 to 2002; De Cian, Lanzi, and 

Roson (2013) use annual data for 31 countries from around the world from the period 1978-2000; and 

Petrick et al (2014) use annual data for 62 countries from the period from 1970 to 2002.  Others cover 

shorter periods of time and more limited geographies.  For example, Auffhammer and Aroonruengsawat 

(2011) use monthly household level data for almost 80% of households in California, but covering only 

the period from 2003 to 2006.  Most studies focus on the developed world, although a few consider 

developing countries such as China (Fung et al, 2006; Hou et al, 2014), South Africa (Chikobvu and 

Sigauke, 2013), and India (Gupta, 2012).  It is worth noting that in some areas of the Global South, the 

climate does not require space heating (Al-Sayer and Al-Ibrahim, 2006; Segal et al, 1992). 

Table 1 also highlights the fact that the unit of observation varies considerably across studies.  Most of 

studies use aggregate data, often at the city, state, or national level (e.g., Lee and Chiu, 2011; Bigano et al, 

2006).  Others, such as Mansur, Mendelsohn, and Morrison (2008) and Auffhammer and 

Aroonruengsawat (2011), use detailed data on household-level choices. 

Finally, the type of energy variables included as dependent variables also varies considerably.  One 

challenge for this literature review is that most studies do not break out impacts on space heating 

separately, but instead consider combined heating and cooling demand, or energy use more generally.  

This problem is particularly acute for electricity use, due to the fact that it is difficult to separate electric 

space heating from other components of electricity demand.  Nonetheless, the studies collectively cover 

demand for a wide variety of space heating energy sources, including coal, electricity, natural gas, and oil, 

sometimes including a number of fuels within individual studies (e.g., Petrick et al, 2012; De Cian, Lanzi, 

and Roson, 2013).  Some studies also have information on different users or sectors, such as residential 

and commercial/industrial energy use (e.g., Bigano et al, 2006). 

3.2.2 Summary of Empirical Results 

The broad finding that emerges from the studies in Table 1 is that weather and climate have a strong 

effect on space heating use—and more broadly, on energy use.  In particular, the empirical evidence 

strongly suggests that there is a U-shaped relationship between temperature and total energy demand 

(e.g., Valor et al, 2001; Deschenes and Greenstone, 2011).   

To provide some visual intuition for this relationship, Figure 1 presents a selected set of estimates of the 

relationship between energy use and temperature, drawn from a wide variety of studies.  Although the 

units vary from study to study, all of the plots have temperature on the x-axis and a measure of change in 

energy consumption on the y-axis.  For example, Panel (e) graphs daily electricity consumption and 

temperature for Athens, Greece, based on Giannikopolous and Psiloglou (2006).  The panel shows that 

electricity use is initially decreasing in temperature, achieves a minimum at approximately 22°C, and then 

increases sharply.  This U-shaped pattern is typical of most of the studies reviewed here, although the 

location of the minimum and the degree of curvature do vary across studies.  

However, as the figure shows, there are at least three cases in which studies do not find a U-shaped 

relationship between energy use and temperature.  First, for fuels that are typically used only for heating, 

fuel use has a declining relationship with temperature.  For example, Panel (d) shows that monthly natural 
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gas sales in Massachusetts are a strictly decreasing function of monthly average temperature, based on 

Amato et al (2005).  Although not shown here, the study finds a similar declining relationship for heating 

oil, and a U-shape relationship for electricity.  Of course, this is completely consistent with an overall U-

shaped relationship between total energy demand and temperature, since most space cooling uses 

electricity, not heating fuel. 

Second, there is suggestive evidence that energy consumption in some regions, such as Europe and India, 

has become more sensitive to high temperatures in more recent years.   For example, the Henley and 

Peirson (1997) results in Panel (a) give no indication that U.K. electricity demand increases when 

temperatures go above a comfortable temperature, based on data from 1989.  Similarly, the Valor et al 

(2001) results in Panel (c) show only a very modest uptick in Spanish electricity demand on hot days, 

based on data from 1983.  However, Valor et al (2001) find that fifteen years later, using data from 1998, 

the curvature of the relationship above 17°C is much more pronounced.  In disaggregated results not 

shown here, Bessec and Fouquau (2008) also find that electricity consumption is more sensitive to high 

temperatures in the 1995-2000 period than in the 1985-1990 period.  Furthermore, Panel (e), which shows 

daily Greek electricity demand based on Giannikopolous and Psiloglou (2006), does suggest that energy 

consumption increases at high temperatures, based on data covering 1993 through 2001.  Finally, in a 

study of Delhi, India, Gupta (2012) finds that electricity use became more sensitive to temperature 

between 2000 and 2009. 

Third, commercial and industrial energy demand may respond somewhat differently to temperature, 

compared to residential energy demand.  For example, Panel (l) shows results from Sue Wing (2013, 

draft) for the relationship between commercial electricity use and temperature.  The panel shows that this 

relationship is essentially flat up to 40 or 50°F, and then begins to increase. 

To complement these figures, Table 2 summarizes information from selected studies that have estimated 

the temperature at which energy demand is minimized.  The table shows that most estimates indicate that 

energy use is lowest when daily (or monthly) temperatures are between 50°F and 75°F, with some 

variation across geographies and studies.  The lowest estimates are from Sue Wing (draft, 2013), who 

finds that electricity use is minimized at average daily temperatures of 25-50°F in the U.S. commercial 

sector and 35-40°F in the U.S. industrial sector.  Even within locations, there may be some variation over 

time.  For example, Gupta (2012) finds that the energy-minimizing temperature declined in Dehli, India, 

between 2000-2005 and 2006-2009, possibly reflecting increasing air conditioner adoption over that time 

period.  In a survey of available literature on energy demand responses to climate change, Mideksa and 

Kallbekken (2010) conclude that differences in energy demand responses to temperature across studies 

reflect, in large part, regional variation. Some factors that determine regional variation include urban 

structure, technology, household size, wealth, energy efficiency, latitude, variation in regional energy 

prices due to differing natural resource endowments, and local preferences.  And of course, although 

overall energy demand is U-shaped, demand for space heating is strictly decreasing in temperature.  For 

example, Amato et al (2005) find that the use of natural gas and heating oil—which are primarily used for 

heating, not cooling—declines as temperatures increase. 
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Figure 1:  Graphical Results from Selected Studies 

 (a) Henley and Peirson (1997):  

U.K. 

(b) Sailor and Munoz (1997):  

Ohio, U.S.A. 

  

(c) Valor et al (2001):  

Spain 

(d) Amato et al (2005):  

Massachusetts, U.S.A. 

 

 

(e) Giannikopolous and Psiloglou (2006):  

Athens, Greece 

(f) Franco and Sanstad (2006): 

CalISO Area, California, U.S.A. 

 
 



19 

 

Figure 1:  Graphical Results from Selected Studies 

(g) Fung et al (2006): 

Hong Kong, China 

(h) Bessec and Fouquau (2008): 

15 E.U. countries 

  

(i) Auffhammer and Aroonruengsawat (2011): 

Fresno, California, U.S.A.  

(j) Deschenes and Greenstone (2011): 

U.S.A. 

 

 

(k) Gupta (2012): 

Delhi, India  

(l) Sue Wing (2013, draft): 

U.S.A. 

  
Sources:  Panel (a):  Figure 3 in Henley and Peirson (1997).  It shows hourly electricity use from 4pm and 7pm. Panel (b):  

Figure 2 in Sailor and Munoz (1997).  Panel (c):  Figure 6 in Valor et al (2001).  It shows weekday electricity demand in Spain. 

Panel (d): Figure 8 in Amato et al (2005).  Panel (e):  Figure 7 in Giannikopolous and Psiloglou (2006).  It shows weekday 

electricity consumption.  Panel (f): Figure 4 in Franco and Sanstad (2006).  Panel (g): Figure 2 in Fung et al (2006).  It shows 

residential electricity demand.  Panel (h): Bessec and Fouquau (2008). It shows residuals from a regression of country-by-

month electricity consumption on controls.  Panel (i): Auffhammer and Aroonruengsawat (2011).  It shows the impact of an 

extra day of weather on log electricity use per billing cycle.  Panel (j): Figure 3 of Deschenes and Greenstone (2011).  It shows 

the effect of an extra day of weather per year on log annual state-level residential energy consumption. Panel (k): Figure 5a of 

Gupta (2012).  It reflects electricity demand in Delhi in 2009.  Panel (l): Sue Wing (2013, draft).  It shows the impact of an 

extra day of weather on log of state-level monthly commercial electricity use.  Gray and black lines are static and lagged 

dynamic model estimates. 
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Table 2:  The Temperature at which Energy Use Is Minimized 

Study Geography 

Temperature that 

Minimizes Energy Use 

Temperature 

Definition 

Sue Wing (draft, 2013) United States: 

Commercial electricity users 

Industrial electricity users 

Residential electricity users 

 

25-50°F  

35-40°F 

55-60°F 

Daily mean 

temperature 

Lee and Chiu (2011) 24 OECD countries 53°F Annual mean 

temperature 

Franco and Sanstad (2006) California 54°F (12°C) Daily mean 

temperature  

Deschenes and Greenstone 

(2011) 

United States 55-60°F Daily mean 

temperature  

Amato et al (2005) Massachusetts: 

Commercial electricity users 

Residential electricity users 

Natural gas users: 

Heating oil users: 

 

55°F 

60°F 

n/a (downward sloping) 

n/a (downward sloping) 

Monthly mean 

temperature 

Bessec and Fouquau 

(2008) 

European Union 

4 coldest countries 

All 15 countries 

4 warmest countries 

 

58°F (14.7°C) 

60°F (16.1°C) 

72°F (22.4°C) 

Monthly mean 

temperature 

Valor et al (2001) Spain 64°F (18°C) Daily mean 

temperature 

Hart and deDear (2004) Sidney, Australia 64°F (18°C) Daily mean 

temperature 

Auffhammer and 

Aroonruengsawat (2011) 

California, 16 climate zones 

1 of 16 climate zones  

15 of 16 climate zones 

 

60°F (16°C) 

65°F (18.3°C) 

Daily mean 

temperature 

Hou et al (2014) Shanghai, China 56°F-68°F (13°C-20°C) Daily mean 

temperature 

Psiloglou et al (2009) London, UK  

Athens, Greece 

60°F (16°C) 

68°F (20°C) 

Daily mean 

temperature 

Fung et al (2006) Hong Kong, China 64°F-68°F (18°C-20°C) 

 

Monthly mean 

temperature 

Sailor and Munoz (1997) United States, 5 states 

Ohio 

California 

Louisiana 

Washington 

Florida 

 

57°F (14°C) 

63°F (17°C) 

64°F (18°C) 

68°F (20°C) 

70°F (21°C) 

Monthly mean 

temperature 

Gupta (2012) Dehli, India: 

2000 

2009 

 

70°F (21°C) 

66°F (19°C)  

Daily mean 

temperature 

Chikobvu and Sigauke 

(2013) 

South Africa 72°F (22°C) Daily mean 

temperature 

Giannikopolous and 

Psiloglou (2006) 

Athens, Greece 72°F (22°C) Daily mean 

temperature  

Henley and Peirson (1997) UK 

 

n/a (downward sloping)  Daily mean 

temperature 
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In addition to comparing how the energy-minimizing temperature differs across studies, it is also of 

interest to compare the slope of the temperature-energy relationship.  To make this comparison, Figure 2 

presents standardized results from a selected set of studies of the relationship between temperature and 

residential electricity use.  In the figure, the results from each study have been normalized so that total 

electricity use is set equal to 100 at the energy-minimizing temperature for that study.  Panel (a) of the 

figure presents results similar to those from Figure 1, with estimates from multiple studies superimposed.  

The panel shows that after normalization, the general U-shaped pattern is quite consistent across studies, 

although both the energy-minimizing temperature and the energy-temperature slope do vary.   

Panel (b) of Figure 2 then uses the same set of studies to calculate the marginal effect of a one degree C 

change in temperature on residential electricity use, expressed in percentage terms.  If temperatures in a 

particular country were constant across locations and seasons, these results would have a direct 

interpretation as the predicted effect of climate change on electricity use.  For example, at an ambient 

temperature of 10°C (50°F), one degree of warming causes a decrease in electricity use of between about 

one and five percent, depending on the study.  At 20°C (68°F), the opposite is true:  one degree of 

warming leads to an increase in electricity use of between zero and eight percent.  The overall pattern is 

similar across studies, although again there are differences in the magnitude of the estimated changes.   

Of course, temperatures do vary across locations and seasons, and so predicting the effects of climate 

change for a particular country would require using Panel (b) to estimate the marginal change in 

electricity use at the average temperature for each month of the year at grid points covering the country.  

The sum of these marginal effects (across all grid points and months, weighted by baseline electricity use) 

would represent the average effect of one degree of warming on electricity use for that country.   

While we do not attempt this calculation for any specific countries, we do consider what Panel (b) implies 

about how climate change could affect countries with hot and cold climates.  For example, Panel (b) 

suggests that for a very hot country in which temperatures are usually above 20°C, one degree of climate 

change would produce an unequivocal increase in electricity use, most likely in the range of two to six 

percent.  For a very cold country in which temperatures are usually below 20°C, Panel (b) suggests that 

one degree of climate change would probably cause a decrease in electricity use, although the magnitude 

of the decrease would likely be less than five percent and could be close to zero.  In general, because most 

countries experience a range of warm and cool temperatures, country-level aggregate effects of climate 

change on electricity use are likely to be bounded by these two extreme cases. 

To put these estimates in context, it is helpful to compare them to results from studies that estimate 

temperature-energy use relationships based on country-by-year panel datasets.  For comparison, based on 

a panel of 31 countries for the period from 1978 to 2000, De Cian, Lanzi, and Roson (2013) estimate that 

a one-degree C increase in summer temperatures would lead to a 5.9% decrease in annual electricity use 

in cold countries, a 3.8% increase in electricity use in moderate countries, and a 3.2% increase in 

electricity use in hot countries (-3.3%, +2.1%, and +1.8%, per degree F, respectively).  In the winter, the 

authors estimate that a one degree C increase in temperate reduces annual electricity consumption by 

1.6% (+0.9% per degree F) in all countries.  Since these semi-elasticities represent the effect of seasonal 

temperature on annual electricity use, they imply changes in electricity use that are substantially higher 

than the predictions summarized in Panel (b) of Figure 2. 

In a different study using annual panel data for 15 European countries between 1985 and 2000, Bessec 

and Fouquau (2008) estimate that semi-elasticities of annual electricity use with respect to temperature (in 

°C) are approximately -2.0 at 0°C, 0 at 15°C, and 0.7 at 25°C.  These estimates are generally consistent 

with the patterns shown in Panel (b) of Figure 2. 
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Figure 2:  The Relationship between Temperature and Residential Electricity Use  

 (a) Temperature and                                     

Normalized Electricity Use 

(b) Marginal Effect of Temperature on 

Electricity Use 

  
Notes:  The figure summarizes results from selected studies of the relationship between temperature 

and residential electricity use (Sailor and Munoz, 1997; Valor et al, 2001; Franco and Sanstad, 2006; 

Giannikopolous et al, 2006; Bessec and Fouquau, 2008; Auffhammer et al, 2011; Sue Wing, 2013; 

Hou et al, 2014).  Panel (a) presents a separate line for each set of estimates from each study, where 

each set of results have been scaled so that they take the value 100 at their energy-minimizing 

temperature.  Panel (b) shows the marginal effect of temperature on electricity use, based on each 

study from Panel (a). 

 

3.3  Areas of Uncertainty in the Literature 

Our review of the studies in the previous section and in Table 1 suggests several areas of remaining 

uncertainty in the literature. 

One issue is how to parameterize temperature (Sailor and Munoz, 1997).  Studies take several approaches, 

which can be divided into roughly four groups.  Some studies use parametric functions of temperature 

(e.g., Mendelsohn, 2003).  For example, Franco and Sanstad (2006) model electricity demand in 

California as a cubic function of daily average temperature.  While simple to implement, the potential 

disadvantage of this approach is that it imposes assumptions on the functional form of the temperature-

heating demand relationship (Henley and Peirson, 1997).  At the other extreme, a few studies use non-

parametric approaches (e.g., Valor et al, 2001; Giannikopolous and Psiloglou, 2006).  These studies 

typically plot raw data on temperature versus energy use, possibly with a flexible spline superimposed on 

top.  The disadvantage of this approach is that it does not control for other potential determinants of space 

heating demand.  A third, intermediate approach is to use semi-parametric weather bins that allow for 

non-linearities (e.g., Auffhammer and Aroonruengsawat, 2011).  For example, Deschenes and Greenstone 

(2011) use a set of variables that represent the number of days per year in which the temperature fell into 

ten-degree weather bins (<10°F, 10-19°F, …, >90°F).  This approach has the strength of avoiding 

imposing a functional form while still controlling for other covariates.  Finally, many studies use 

parametric functions of HDD and CDD (e.g., Eskeland and Mideksa, 2009).  For example, Petrick et al 

(2014) represent temperature using a nonlinear function of HDM (heating-degree-months).  The key issue 

with this approach is that it relies on the very strong assumption that the true energy-minimizing 

temperature is equal to the base temperature against which HDD and CDD are defined (Hekkenberg et al, 
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2009; Giannakopoulous et al., 2009).4 As Table 2 shows, the energy minimizing temperature can vary 

substantially across studies and geographies. 

A second major area of methodological uncertainty is the time period over which to aggregate weather 

and heating demand data (e.g., a day, a month, a year).  When the unit of observation covers a longer time 

period, the study will be able to account for any lagged effects that temperatures may have on space 

heating demand.  However, in panel-data studies, aggregating over longer time periods can result in a 

substantial loss of degrees of freedom.  In practice, some studies use daily data (e.g., Valor et al, 2001; 

Giannikopolous and Psiloglou, 2006; Henley and Peirson, 1997), while others use monthly or yearly data.  

One study, Sue Wing (draft, 2013), uses a large set of lags of temperature variables that extend the 

potential effects of weather beyond one year. 

A third open question is the extent to which the U-shaped relationship between temperature and space 

heating varies across geographies.  Many studies pool together micro-data from locations with different 

climates (e.g., Deschenes and Greenstone, 2011; Considine, 2000).  These studies implicitly assume that 

people who live in warm climates respond similarly to people who live in cold climates, when exposed to 

the same temperature.  However, other studies find heterogeneity even within similar locations.  For 

example, Auffhammer and Aroonruengsawat (2011) find considerable differences in the form of the U-

shaped relationship within different climate zones in California.  Differences between studies are even 

more pronounced, with the energy-minimizing temperature varying considerably across geographies.  

These differences could be due to differences in preferences, wealth, heating and cooling technologies, or 

building design. 

A fourth question is how to interpret the average elasticities generated by panel studies based on annual, 

country-level data.  In principle, because of their scale, these parameter estimates could very compatible 

with an IAM framework.  However, the studies in this group suffer from a shared problem:  they assume 

that the elasticity of energy demand is constant across different countries.  Given the robust finding from 

micro-data that the temperature-energy demand relationship is U-shaped, there is no reason to expect that 

a marginal increase in temperature would have the same effect on two locations with different average 

temperatures.  There is not even any reason to expect that the sign of the effect should be similar across 

different countries.  Thus, while the coefficient from a population-weighted panel regression specification 

does have a loose interpretation as an approximation of a global response function, it will provide biased 

results for any specific country.  Although a few studies (e.g., De Cian et al, 2014) have begun to try to 

estimate heterogeneous effects for cold, mild, and hot countries, most studies estimate pooled regressions.  

Thus, one productive direction for future research would be to estimate country-specific response 

functions that can address this issue of heterogeneity in responsiveness to marginal temperature changes. 

 

4 Climate Change and Space Heating Demand 

The previous section describes the broad literature on how observed space heating demand varies with 

weather and climate variables.  In this section, we discuss how to model how climate change is likely to 

affect human welfare through changes in future space heating demand.  We begin in Section 4.1 by 

                                                      

4  The base temperature used to calculate heating degree days varies widely.  A base temperature of 18°C is 

commonly used, but numerous other values have been chosen, including 15.5°C in Jordan, 15°C in Turkey, 16.5°C 

in Europe, 25-28°C in Athens, and 18-21°C in Saudi Arabia (e.g., Jiang et al., 2009; Giannakopoulos and Psiloglou, 

2006; Aebischer et al., 2007).  
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briefly reviewing recent research on climate change and future space heating.  Then, in Section 4.2, we 

discuss methodological considerations and challenges related to predicting future impacts. 

4.1 Studies of Climate Change and Space Heating 

There are a large number of recent studies that estimate the effects of climate change on space heating 

demand or energy demand more broadly (e.g., De Cian, Lanzi, and Roson, 2013; Mima, Criqui, and 

Watkiss, 2011; Dowling, 2013; Isaac and van Vuuren, 2009; Mansur, Mendelsohn, and Morrison, 2005; 

Aebischer et al, 2007; Hadley et al, 2006; Hamlet et al, 2009).  These studies can be divided, roughly, 

into:  (i) those that use behavioral models that predict space heating use under future climatic conditions 

by extrapolating observed responses of energy use to changes in weather or climate; and (ii) those that use 

engineering models that calculate the change in energy needed to maintain comfortable indoor 

temperatures under future climatic conditions, taking into account building structural characteristics.  

The first group of studies makes predictions about how climate change will affect space heating energy 

use based on behavioral models (e.g., Franco and Sanstad, 2006; Giannikopolous and Psiloglou, 2006).  

These studies rely on econometric estimates of how changes in temperature or climate actually affect 

space heating use (i.e., results from either the panel or cross-sectional studies discussed in Section 3 of 

this document).  Some studies use simple extrapolation, in which they use their regression equations to 

predict future heating expenditures under higher values of the temperature variable, with all or most other 

economic variables ceteris paribus (e.g., Deschenes and Greenstone, 2011).  Others use the regression 

results as input parameters for IAMs, and then evaluate much more complicated sets of climatic and 

economic scenarios (e.g., Sue Wing, draft 2013; Hadley et al, 2006). 

The second group of studies are those that use engineering models to consider how climate change is 

likely to affect temperatures, and what those changes imply for cooling and heating use (e.g., Cline, 1992; 

Baxter and Calandri, 1992; Rosenthal et al, 1995; Christenson, Manz, and Gyalistras, 2006; Aebischer et 

al, 2007; Giannakopoulous et al, 2009; Hamlet et al, 2009).  These studies typically assume that energy 

demand has a fixed relationship with HDD and CDD (Diaz and Quayle, 1980), so that if temperatures 

change, energy demand will respond by the exact amount needed to maintain the same comfortable 

indoor temperature.  For example, Olonschek et al (2011) collect data on the characteristics of the current 

stock of buildings in Germany, and then calculate how predicted changes in HDD and CDD will affect 

energy demand for heating and cooling those buildings.  Their calculations use engineering equations that 

model changes in heating energy demand as a function of HDD, transmission loss factors, solar gains, and 

thermostat setbacks.  They also take into consideration predicted growth of the housing stock, renovation 

of existing buildings, and installation of heating and cooling systems. 

Table 3 summarizes the characteristics of selected studies that predict how climate change is likely to 

affect space heating demand.  For each study, the table summarizes the geographic areas analyzed, the 

climate change scenario and time period modeled, the specific impact pathways considered, the other 

control variables included in the simulation, and the study’s main empirical results.  Most studies predict 

that climate change will lead to higher net expenditures on energy, but there is considerable variation 

across geographies and studies.  For example, Giannikopolous and Psiloglou (2006) predict that under the 

IPCC’s A2 scenario, winter electricity use in Athens, Greece, will decrease by 7.9%, while summer 

electricity use will increase by 4.1%.  Since baseline consumption in the two seasons is similar, the net 

effect is likely to be a benefit.  In contrast, many other studies predict increasing losses.  For example, 

Mansur, Mendelsohn, and Morrison (2008) predict that U.S. residential energy use will increase by 10.3% 

(under +2.5°C) to 22.4% (under +5.0°C); Deschenes and Greenstone (2011) predict that U.S. residential 
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energy use will increase by 31.9% (under A1FI); and Sue Wing (draft, 2013) predicts that U.S. residential 

energy consumption will increase by 7.6% (under A2). 

Because of differences in the geographies, scenarios, and fuel types covered, it is difficult to compare the 

results from the behavioral studies and engineering studies.  One engineering study that stands out for its 

broad coverage is Isaac and van Vuuren (2009), which estimates how climate change is likely to affect 

worldwide energy demand for heating and cooling under a +3.7°C temperature change by 2100.  The 

study predicts that climate change will cause a 34% decrease in energy use for space heating, and 70% 

increase in energy use for space cooling.  The net effect is a small net increase in global energy demand.  

At the regional level, however, the study predicts very heterogeneous effects.  For example, considering 

both heating and cooling together, the United States will experience a 28% decrease (-4,000 PJ) relative 

to baseline heating and cooling energy use (the predicted no-climate change baseline is 14,000 PJ in 

2100).  In contrast, India will experience a substantial increase in energy use, due largely to future air 

conditioner adoption.  Appendix B provides more information about this study and its methodology. 

Although many of the studies in Table 3 report only changes in energy use, some do report changes in 

energy expenditures.  As discussed above in Section 2, these changes in expenditures can be interpreted 

as direct welfare losses.  Of course, this interpretation is valid only for small changes in expenditures, to 

which partial and general equilibrium adjustments do not apply.  Nonetheless, regardless of whether the 

changes are in fact “small”, the intuition for the welfare interpretation is still valuable.  Because climate 

change will change the amount of money that households spend on cooling and heating, it will also 

impact the amount of money that they have available to spend on other welfare-enhancing goods and 

services. 
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Table 3:  Selected Studies of Climate Change and Space Heating Energy Demand 

Study Geography 

Climate 

Scenarios 

and Time 

Periods 

Impact 

Pathways 

Other 

Variables 

Included in 

Simulation 

Range of Predicted 

Change in Energy 

Expenditures or 

Consumption* 

Studies Based on Behavioral Models 

Mendelsohn 

(2003) 

California +1.5°C & 

+9%P, +3°C 

& +18%P, 

+5°C & 

+30%P 

(2100) 

Hadley, PCM 

(2020, 2060, 

2100) 

Residential & 

commercial 

energy 

expenditures 

Population, 

income, 

building 

technology, 

and energy 

prices 

Residential 2100:   

+3.5% (under +1.5°C) to 

+18.3% (under +5°C) 

[2100 baseline energy 

expenditure is $37 to $62 

billion, depending on 

scenario] 

Commercial 2100:  

+2.1% (under +1.5°C) to 

+36.4% (under +5°C) 

[2100 baseline energy 

expenditure is $16 to $24 

billion, depending on 

scenario] 

Franco and 

Sanstad (2006) 

California A2, B1, A1FI 

(2005-2034, 

2035-2064, 

2070-2099) 

Electricity 

use 

None 2070-2099:  +2.9% 

(under B1) to +17.8 

(under A1Fi) [2003 

baseline electricity 

expenditures were $26 

billion] 

Giannikopolous 

and Psiloglou 

(2006) 

Athens A2, B2 

(2070-2099) 

Residential 

and 

commercial 

electricity use 

None 2070-2099 Winter: -5.8% 

(under B2) to -7.9% 

(under A2) [the 1961-

1990 baseline is 1,667 

MWh/day] 

2070-2099 Summer: +2.6 

(under B2) to +4.1 (under 

A2)  [the 1961-1990 

baseline is 1,254 

MWh/day] 

Deschenes and 

Greenstone 

(2011) 

United States A1b, A1FI 

(2100) 

Residential 

energy 

consumption  

and 

expenditures 

Income, 

energy prices 

2100:  +31.9% (under 

A1Fi) [1968-2002 

baseline was 16.6 

quadrillion BTU] 

Mansur, 

Mendelsohn, 

and Morrison 

(2008) 

United States +2.5°C, +5°C 

(2100) 

Residential & 

commercial 

heating and 

cooling 

energy use 

Population, 

income, 

building 

technology, 

and energy 

prices 

2100:  +10.3% (under 

+2.5°C) to +22.4% (under 

+5°C) [2100 baseline 

expenditures on energy 

are $56.7 billion/year] 

De Cian, Lanzi, 

and Roson 

(2013) 

31 OECD and 

non-OECD 

countries 

B2 (2085) Residential 

electricity, 

gas, and oil 

product use 

Population, 

income 

2085:  Absolute change 

of +1.8 million Ktoe 

(under B2) [baseline 

energy consumption is 

not reported in study] 



27 

 

Table 3:  Selected Studies of Climate Change and Space Heating Energy Demand 

Study Geography 

Climate 

Scenarios 

and Time 

Periods 

Impact 

Pathways 

Other 

Variables 

Included in 

Simulation 

Range of Predicted 

Change in Energy 

Expenditures or 

Consumption* 

Sue Wing 

(draft, 2013) 

United States A2 (2050) Residential, 

commercial, 

and industrial 

electricity use 

Multi-sector 

inter-regional 

computable 

general 

equilibrium 

model, with 

many variables 

2050:  +7.6% (under A2) 

[2050 baseline electricity 

consumption is 6,579 

TWh per year] 

Studies Based on Engineering Models 

Hadley et al. 

(2006) 

United States 

(9 regions)

  

Low (+1.2°C) 

and high 

(+3.4°C) 

climate 

sensitivity 

(2003-2025) 

Energy use  Housing stock, 

energy prices, 

etc (based on 

National 

Energy 

Modeling 

System) 

2003-2025:  +$6.1 billion 

(under (+1.2°C) to +$14.8 

billion (under +3.4°C) 

[baseline expenditures are 

not reported in study] 

Aebischer et al 

(2007) 

Switzerland, 

Florida, 

Athens, 

Murcia, 

Milan, 

London, 

Berlin, 

Zurich, 

Copenhagen, 

Stockholm 

+1°C Sept-

May and 

+2°C June-

Aug and +5% 

solar 

radiation 

(2030) 

Cooling and 

heating 

energy use 

for service 

sector 

Economic 

growth, energy 

prices, 

technological 

development 

2030 Berlin:  -8% 

(+1°C/+2°C) in space 

heating; +45% 

(+1°C/+2°C) in space 

cooling [2030 baselines 

are 150 and 25 kWh per 

sq meter of heated and 

cooled floor area, 

respectively] 

Isaac and van 

Vuuren (2009) 

World (26 

regions) 

+3.7°C 

(2100) 

Residential 

cooling and 

heating 

energy use 

Population, 

floor space, 

efficiency, air 

conditioning 

penetration, 

income 

2100:  -34% in space 

heating (+3.7°C); +70% 

in space cooling (+3.7°C) 

[2100 baseline with no 

climate change is 47,000 

PJ for heating and 29,000 

PJ for cooling.  For 

reference, 2000 values 

26,000 PJ for heating and 

1,000 PJ for cooling] 
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Table 3:  Selected Studies of Climate Change and Space Heating Energy Demand 

Study Geography 

Climate 

Scenarios 

and Time 

Periods 

Impact 

Pathways 

Other 

Variables 

Included in 

Simulation 

Range of Predicted 

Change in Energy 

Expenditures or 

Consumption* 

Hamlet et al 

(2009) 

Washington 

State 

A1B and B1 

(2010-2039, 

2030-2059, 

2070-2099) 

Energy 

demand 

Population, air 

conditioning 

market 

penetration 

2080s:  -24% (under B1) 

to -32% (under A1B) in 

energy demand for 

heating relative to 

baseline heating demand; 

+370 (under B1) to 

+745% (under A1B) in 

energy demand for 

cooling relative to 

baseline cooling demand.  

[2085 baseline heating 

demand is 7.15 million 

person-HDD; 2085 

baseline cooling demand 

is 0.077 million person-

CDD.] 

Olonschek et al 

(2011) 

Germany +1°C, +2°C, 

+3°C (2010-

2060) 

 

Heating and 

cooling 

energy use 

for all 

building 

types 

Housing stock 

growth, 

renovation of 

existing 

buildings, and 

installation of 

heating and 

cooling 

systems 

2031-2060:  -44% (under 

+1°C and low 

assumptions) to -78% 

(under +3°C and high 

assumptions) in energy 

demand for heating; 

+25% (under +1°C and 

low assumptions) to 

+59% (under +3°C and 

high assumptions) in 

energy demand for 

cooling. [2000 baseline 

heating use was 850 TWh 

and baseline cooling use 

was 0.1 TWh] 

Note:  * This column presents the predicted percent change in total energy expenditures or consumption.  When 

these measures are not available, it presents the predicted percent change in heating or cooling expenditures or 

consumption.  Each cell in the column also lists the value and units of the baseline against which the percent 

changes are calculated. 

 

4.2 Considerations for Predicting Future Impacts 

The studies in Table 3 shows that there are a variety of methodological approaches that can be used 

predict how climate change is likely to affect future space heating demand.  In this subsection, we discuss 

several issues and challenges related to this process. 

4.2.1 Price and Income Elasticities of Space Heating Demand 

Developing a credible damage function requires understanding not only how space heating demand 

responds to changes in climate, but also how it responds to other economic factors, such as changes in 

income and energy prices.  Summarizing the empirical literature on each of these topics (e.g., Considine, 

2000; Eskeland and Mideksa, 2009; De Cian, Lanzi, and Roson, 2013; Espey and Espey, 2006; Petrick et 

al, 2012) is a large task that we have not attempted for this literature review. 
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4.2.2 Sectoral Realism 

As the climate warms, households and businesses will re-optimize their heating technology choices—for 

example, switching from oil to gas heat, or changing their investments in the energy efficiency of new 

buildings.  Capturing these kinds of technology-switching decisions in a damage function is certainly 

possible, and we have identified several studies—discussed in Section 3.2—that explicitly model the fuel 

choice decision (e.g., Mansur, Mendelsohn, and Morrison, 2008; Vaage, 2000).  However, an open 

question is whether the greater level of detail—and associated complexity of representation in a damage 

function—would be justified by improved accuracy in predicting future impacts. 

4.2.3 Technological Change in Space Heating and Insulation Technologies 

Because the energy efficiency of new and renovated buildings strongly affects heating energy needs 

(Olonschek et al., 2011), space heating damage functions need to account for technological change in 

heating and insulation technologies.  For example, in Europe, heating energy demand has been declining 

by about 0.2% per year, resulting in a predicted reduction by 2035 of 6% compared to a 2005 baseline 

(Aebischer et al, 2007).  In California, stricter building codes and rising electricity prices caused a 16% 

decrease in residential electricity use from 1960 to 2006, relative to what electricity use would have been 

otherwise (Costa and Kahn, 2010).  One potential source of useful information on this topic is IEA 

(2011), which provides data and projections on the evolution of space heating and cooling technologies 

over time for a variety of regions. 

4.2.4 Relationship to Space Cooling 

Many of the studies covered in this review analyze the relationship between space cooling and climate 

(e.g., Al-Zayer and Al-Ibrahim, 1996; Christenson, Manz, and Gyalistras, 2006; Eskeland and Mideksa, 

2009).  While space cooling is not the primary focus of this review, from the standpoint of predicting 

future impacts of climate change, it is worth making three points. 

First, changes in demand for space heating and space cooling may have different side effects on the power 

grid and on combustion-related pollution.  For example, heating and cooling have different patterns of use 

over the course of a day, implying that they may make different contributions to peak electricity loads 

(Giannakopoulos and Psiloglou, 2006; Aebischer et al, 2007).   

Second, cooling is a less efficient physical process than heating (Hadley et al, 2006).  As a result, setting 

aside behavioral responses, the a priori expectation would be that one additional CDD would increase 

energy demand by much more than one additional HDD.  Empirical studies seem consistent with this 

finding.  For example, in a panel of 31 OECD and non-OECD countries, Eskeland and Mideksa (2009) 

find that one extra CDD per year raises annual electricity consumption by four times as much as one extra 

HDD.  

Third, as a practical matter, most studies do not separately estimate space heating and cooling curves 

(e.g., Deschenes and Greenstone, 2011; Lee and Chiu, 2011).  Those that do are studies that estimate 

demand for fuels that clearly are only used for heating (e.g., heating oil). 

4.2.5 Other Issues 

In addition to the topics discussed above, there are numerous other issues that could affect how to model 

the effects of climate change on space heating.  For example, the distribution of welfare impacts may be 

mediated by housing markets.  In an efficient housing market, regional variation in the quality of life will 

be reflected in housing prices and wages (Roback, 1982).  In the context of climate change, this implies 

that decreases in space heating expenditures could eventually lead to compensating changes via higher 
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housing prices and rents (Albouy et al, 2010).  For homeowners, the distributional consequences would 

be relatively minor, but for renters and landlords, there could be a non-negligible welfare transfer.  

Another potential issue is the possibility of feedback to the climate system.  Space heating is a source of 

greenhouse gases.  Thus, if climate change reduces the need for space heating, then overall greenhouse 

gas emissions will fall, leading to a reduction in climate change, etc.  However, this negative feedback 

loop is likely to be limited in scope, and we have not tried to identify and review studies that consider 

feedback effects of the reduced energy demand for space heating. 

 

5 Conclusions 

There is now a substantial empirical literature on the relationship between temperature and energy 

expenditures for space heating and cooling.  Although the literature is still grappling with several areas of 

uncertainty, a key stylized result that is consistent across studies is that the energy-temperature 

relationship is U-shaped.   

The modeling literature on how climate change is likely to affect space heating and cooling has also 

grown substantially in recent years.  Due to differences in scope, the results of these studies are difficult 

to compare.  However, the general conclusion that emerges is that the effects of climate change will be 

heterogeneous, with some cold countries likely to benefit, and some hot countries likely to incur 

substantial costs. 
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Appendix A:  Detailed Descriptions of Country-Level Panel Studies 

Because IAMs typically require very aggregate data, space heating studies that use national-level data at 

the yearly-level could be very useful for updating IAM damage functions.  Of course, as discussed in 

Section 3.3, these studies often adopt the very strong assumption that the elasticity of energy demand with 

respect to temperature is constant across different countries.   

In any case, in order to provide the reader with a more detailed sense of their methodologies and results, 

this appendix describes four of these studies (Eskeland and Mideska, 2009; Lee and Chiu, 2011; Petrick 

et al, 2012; and De Cian, Lanzi, and Roson, 2013) in extensive detail.  Although it is not a country-level 

study, we also describe Assadorian et al (2007) here, due to its focus on China.  The studies are presented 

by year of publication in the following subsections. 

 

A.1 Asadoorian et al (2007) 

This study estimates the impact of changes in temperature on electricity consumption in China.  The 

authors estimate separate specifications for three different types of consumption:  urban residential 

electricity use, rural residential electricity use, and non-residential electricity use (urban and rural 

combined).  Their sample consists of data for approximately twenty-one Chinese provinces, covering 

1995 to 2000.  Their economic data is taken primarily from the China Energy Databook and the China 

Statistical Yearbook. 

To model how temperature affects residential electricity demand, the authors use a two-stage estimation 

approach.  In the first stage, they model demand for three major types of appliances—AC units, TVs, and 

refrigerators—as a function of appliance prices, electricity prices, per capita income, a coastal/non-coastal 

province dummy variable, and temperatures.  These regressions use a log-log specification, for example: 

𝐿𝑜𝑔(𝐴𝐶 𝑈𝑛𝑖𝑡 𝑆𝑡𝑜𝑐𝑘)𝑖𝑡

= 𝛼0 + 𝛼1𝐿𝑜𝑔𝐴𝐶𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛼2𝐿𝑜𝑔𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛼3𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑡

+ 𝛼4𝐶𝑜𝑎𝑠𝑡𝑎𝑙𝑖𝑡 + 𝛼5𝐿𝑜𝑔𝑊𝑖𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛼6𝐿𝑜𝑔𝑆𝑝𝑟𝑖𝑛𝑔𝑇𝑒𝑚𝑝𝑖𝑡

+ 𝛼7𝐿𝑜𝑔𝑆𝑢𝑚𝑚𝑒𝑟𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛼8𝐿𝑜𝑔𝐹𝑎𝑙𝑙𝑇𝑒𝑚𝑝𝑖𝑡 + 𝜖𝑖𝑡 

where 𝑖 represents provinces and 𝑡 represents years.  This equation is estimated using the Prais–Winsten 

panel corrected standard error estimator (an approach for generating standard errors that are robust to 

autocorrelation).  The regression is estimated separately for urban and rural residential consumers.   

Next, in a second stage, the authors estimate how temperatures affect demand for electricity use, 

conditional on the predicted stock of appliances from the first stage.  The variables included in the 

second-stage log-log regression are similar to those included in the first stage, but exclude appliance 

prices and include the log of living space, the log of the average number of hours of darkness per month 

for each of the four seasons, and the predicted stock of appliances.  For example: 

𝐿𝑜𝑔(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑈𝑠𝑒)𝑖𝑡

= 𝛽0 + 𝛽1𝐿𝑜𝑔𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛽2𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑡 + 𝛽3𝐶𝑜𝑎𝑠𝑡𝑎𝑙𝑖𝑡

+ 𝛽4𝐿𝑜𝑔𝐿𝑖𝑣𝑖𝑛𝑔𝑆𝑝𝑎𝑐𝑒𝑖𝑡 + 𝛽5𝐿𝑜𝑔𝑊𝑖𝑛𝑡𝑒𝑟𝐷𝑎𝑟𝑘𝑛𝑒𝑠𝑠𝐻𝑜𝑢𝑟𝑠𝑖𝑡

+ 𝛽6𝐿𝑜𝑔𝑆𝑝𝑟𝑖𝑛𝑔𝐷𝑎𝑟𝑘𝑛𝑒𝑠𝑠𝐻𝑜𝑢𝑟𝑠𝑖𝑡 + 𝛽7𝐿𝑜𝑔𝑆𝑢𝑚𝑚𝑒𝑟𝐷𝑎𝑟𝑘𝑛𝑒𝑠𝑠𝐻𝑜𝑢𝑟𝑠𝑖𝑡

+ 𝛽8𝐿𝑜𝑔𝐹𝑎𝑙𝑙𝐷𝑎𝑟𝑘𝑛𝑒𝑠𝑠𝐻𝑜𝑢𝑟𝑠𝑖𝑡 + 𝛽9𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐴𝐶𝑆𝑡𝑜𝑐𝑘𝑖𝑡 + 𝛽10𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑇𝑉𝑆𝑡𝑜𝑐𝑘𝑖𝑡

+ 𝛽11𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐹𝑟𝑖𝑑𝑔𝑒𝑆𝑡𝑜𝑐𝑘𝑖𝑡 + 𝛽12𝐿𝑜𝑔𝑊𝑖𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽13𝐿𝑜𝑔𝑆𝑝𝑟𝑖𝑛𝑔𝑇𝑒𝑚𝑝𝑖𝑡

+ 𝛽14𝐿𝑜𝑔𝑆𝑢𝑚𝑚𝑒𝑟𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽15𝐿𝑜𝑔𝐹𝑎𝑙𝑙𝑇𝑒𝑚𝑝𝑖𝑡 + 𝜖𝑖𝑡 
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Again, this equation is estimated using panel-corrected standard errors, and is estimated separately for 

urban and rural residential consumers.  In both stages, the authors experiment with different functional 

forms for temperature, breaking it into twelve monthly average temperature variables, four seasonal 

average temperature variables, and one annual average temperature variable. 

Finally, for non-residential electricity consumption, the authors use a single-stage approach, with a 

regression specification that is similar to their residential second-stage equation, but without the predicted 

appliance demand variables.  They do not have sufficient data to estimate separate rural and urban non-

residential demand functions. 

Overall, the authors’ regressions produce several findings.  In the first stage, they find negative own-price 

elasticities for appliances and positive elasticities of appliance demand with respect to income.  However, 

their results for temperature are mixed.  For example, in both the urban and rural residential models, 

higher winter temperatures increase demand for all types of appliances, but higher fall temperatures cause 

lower demand.  The coefficients in spring and summer and mixed and mostly not significant.   

In the second stage, the authors find that electricity has a positive own-price elasticity and a negative 

elasticity with respect to income.  For urban residential demand, the coefficients on predicted AC stock 

are positive and significant, and the coefficients on the predicted refrigerator and predicted TV stocks are 

negative and significant. Table 4 summarizes their estimates of the effect of temperature on electricity 

demand.  The table shows that temperature has a large and significant positive effect on urban residential 

electricity demand in the summer, a significant negative effect in the fall, and insignificant effects in the 

winter and spring.  In rural residential areas, the temperature coefficients are not significant in any season.  

Finally, in the single-stage non-residential regression, temperature has a significant (and positive) effect 

on electricity demand only in the winter. 

 

Table 4:  Elasticity of Electricity Use with Respect to Temperature, by Season and Location 

 Winter Spring Summer Fall Annual 

Residential, Urban 0.215 -0.323 2.054* -1.928* 0.59* 

Residential, Rural -0.082 -1.688 1.03 0.904 0.758 

Non-residential, All 0.243* -0.212 -0.04 -0.441 0.09 

Note:  These numbers are reproduced from the tables on pages 8-9 and 13.  The seasonal coefficients are 

from one set of regressions; the annual coefficients are from another set.   * denotes t-statistic greater 

than 2. 

 

A.2 Lee and Chiu (2011) 

This study estimates the effect of changes in temperature on per capita electricity consumption in a panel 

of 24 OECD countries, based on yearly country-level data covering the period from 1978 to 2004.  The 

countries included in the dataset are:  Australia, Austria, Belgium, Canada, Denmark, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Japan, South Korea, Luxembourg, New Zealand, Norway, 

Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. 

To estimate how temperatures, income, and electricity prices affect electricity demand, the study uses a 

“panel smooth transition regression” (PSTR) model.  This model allows the relationship between 

electricity consumption and each of the three independent variables (annual average temperature, income, 

and electricity price) to be mediated by a threshold variable.  In other words, the model allows the effect 
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of temperature on electricity consumption to take different functional forms, depending on the value of 

the threshold variable. 

The study explores three different candidates for the threshold variable (these are same three independent 

variables, logged and lagged by one period).  The regression specification can be written as follows: 

𝐿𝑜𝑔(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑈𝑠𝑒)𝑖𝑡

= 𝜙𝑖 + 𝛽1𝐿𝑜𝑔𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛽2𝐿𝑜𝑔𝐺𝐷𝑃𝑖𝑡 + 𝛽3𝑇𝑒𝑚𝑝𝑖𝑡

+ [𝛼1𝐿𝑜𝑔𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛼2𝐿𝑜𝑔𝐺𝐷𝑃𝑖𝑡 + 𝛼3𝑇𝑒𝑚𝑝𝑖𝑡] ⋅ 𝑔(𝑧𝑖,𝑡−1; 𝜃, 𝛾) + 𝜖𝑖𝑡 

where 𝑖 represents countries, 𝑡 represents years, 𝜙𝑖 are country fixed effects, 𝑧𝑖,𝑡−1 is the threshold 

variable, 𝜃 is a location parameter, and 𝛾 is a curvature parameter.  Depending on the values of the 

threshold variable and the parameters, the function 𝑔(⋅) varies between 0 and 1.  When it equals 0, the 

model is completely in regime 1, and the values of the 𝛽 terms determine the relationship between 

electricity consumption and the independent variables.  When the function is equal to 0, the model is 

completely in regime 2, and the values of the 𝛼 terms (added to the 𝛽 terms) determine the relationship 

between electricity consumption and the independent variables.  When the function is between 0 and 1, 

the model is a blend of the two regimes. 

The study tests two candidates for the function 𝑔(⋅).  The first is a logistic transition function; the second 

is an exponential transition function.   Figure 3 shows examples of both functions, for various values of 

the curvature parameter 𝛾.  The logistic transition function has a low zone that corresponds to regime 1, 

and a high zone that corresponds to regime 2.  Under some values of the curvature parameter, the 

transition function approaches an indicator function.  Under other parameter values, it allows for a 

smoother transition that blends the two regimes.  The exponential transition function has three zones—

low, middle, and high—that correspond to regimes 2, 1, and 2, respectively. 

 

Figure 3:  Examples of Transition Functions 

 

Notes:  The figure is reproduced from Figure 2 of Lee and Chiu (2011).  

 

The authors note the potential for endogeneity bias, since electricity consumption, prices, and GDP are 

jointly determined.  To address this problem, they use lagged values of each variable as instruments. 
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Table 5 presents the estimated relationship between electricity demand and temperature.  The table shows 

results for the logistic transition function, in which either log GDP per capita or log temperature is used as 

the threshold variable.  In the specification with temperature as the threshold variable, the results are 

consistent with a U-shaped relationship between electricity use and temperature.  Below 53°F, the 

elasticity of electricity demand with respect to temperature is negative (although not significant), while 

above 53°F, it is positive and significantly different from the below-53°F elasticity. 

 

Table 5:  Temperature Elasticities of Electricity Demand, by Regime and Threshold Variable 

Threshold Variable 

Threshold 

Value 

Elasticity of Electricity Demand with respect to 

Temperature 

Regime 1 (for low values 

of threshold variable) 

Regime 2 (for high value 

of threshold variable) 

Log GDP per capita $2,497 -3.94* 0.92* 

Log Temperature 53°F -0.61 0.20* 

Note:  These results are taken from Table 4 of Lee and Chiu (2011).  Note that the Regime 2 

elasticities are calculated as the sum of the regime 1 and 2 coefficients.  * denotes t-statistic 

greater than 2. 

 

A.3 Eskeland and Mideska (2009) 

This study estimates the impact of changes in temperature on the residential use of electricity, for 31 

European countries.  The study uses yearly country-level panel data covering the period from 1994 to 

2004.   

 

The regression that the authors estimate is as follows: 

𝐿𝑜𝑔(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑈𝑠𝑒𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎)𝑖𝑡

= 𝜙𝑖 + 𝜏𝑡 + 𝛼1𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝑖𝑡 + 𝛼2𝐿𝑜𝑔𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛼3𝐻𝐷𝐷𝑖𝑡

+ 𝛼4𝐶𝐷𝐷𝑖𝑡 + 𝜖𝑖𝑡 

where 𝑖 represents countries, 𝑡 represents years, 𝜙𝑖 are country fixed effects, and 𝜏𝑡 are year fixed effects.  

Electricity use is measured as annual household electricity consumption (kWh), and HDD and CDD 

represent the average of the annual degree day totals for the three largest cities in each country. 

To address the issues related to the fact that electricity use and price are jointly determined, the paper uses 

value added tax per kWh as an instrumental variable for electricity price.  Additionally, the paper states 

that in order to address the possibility that income and electricity consumption exhibit reverse causality, 

the regressions use the “economy’s total revenue from value added tax” as an instrumental variable for 

per capita income.    

 

Table 6 summarizes the estimated coefficients on HDD and CDD, under several alternative 

specifications.  The table shows the coefficients on CDD and HDD are positive and significant in all 

specifications.  Based on the main panel results from column (2), annual household electricity 

consumption increases 0.038% per each additional CDD per year, and 0.009% per each additional HDD 

per year.   
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Table 6:  CDD and HDD Coefficients 

 Variable 

Specification 

(1) OLS (2) Panel 

(3) Panel 

with Price 

IV 

(4) Panel 

with Income 

IV 

(5) Panel 

with Price 

and Income 

IV 

Annual CDD 0.00115 

(0.00019) 

0.00038 

(0.00011) 

0.00036 

(0.00015) 

0.00048  

(0.00013) 

0.00040 

(0.00015) 

Annual HDD 0.00020 

(0.00003) 

0.00009 

(0.00002) 

0.00007 

(0.00003) 

0.00010 

(0.00002) 

0.00009 

(0.00003) 

Note:  These regression results are reproduced from Table 3 in Eskeland and Mideska (2009).  

The dependent variable in each regression is the log of annual household electricity 

consumption (in kWh).  The table shows coefficients, with standard errors in parentheses. 

 

By combining these regression results with projections of how annual HDDs and CDDs are likely to be 

influenced by climate change in Europe, the authors predict future electricity consumption under the 

IPCC’s A1B scenario.  They estimate that due to climate change, average per capita electricity use in 

Europe will decrease from 6,100 kWh in 2000 to 5,950 kWh in 2100.  They explain that this small 

predicted decrease in overall energy use is due to the fact that the benefits of reduced heating outweigh 

the costs of increased cooling. 

 

A.4 De Cian et al (2013) 

This study estimates the impact of changes in temperature on the residential use of gas, electricity, and oil 

products, for 31 countries from around the world.  The study relies on yearly country-level panel data 

covering the period from 1978 to 2000 (with fewer years for some types of fuel).  One of the key features 

of the study is that it estimates separate electricity results for groups of countries with cold, mild, and 

warm climates.   

The study begins by using a clustering algorithm to separate the 31 countries into three groups, based on 

their climate characteristics (annual average, maximum, and minimum temperature).  The resulting 

groups are: 

 Cold countries:  Canada, Finland, Norway, Sweden. 

 Mild countries:  Austria, Belgium, Denmark, France, Germany, Ireland, Luxembourg, 

Netherlands, New Zealand, Switzerland, Greece, Hungary, Italy, Japan, South Korea, Portugal, 

South Africa, Spain, Turkey, United Kingdom, United States 

 Hot countries:  Australia, India, Indonesia, Mexico, Thailand, Venezuela 

 

To understand how temperatures influence energy demand, the study then estimates an error correction 

model in which the log of energy use (for each type of fuel) is modeled as an autoregressive process.  The 

model takes the following functional form: 
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Δ𝐿𝑜𝑔𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒𝑖𝑡

= 𝛽0 + 𝛽1Δ𝐿𝑜𝑔𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒𝑖,𝑡−1 + 𝛽2Δ𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛽3Δ𝐺𝐷𝑃𝑝𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝑖𝑡

+ 𝛽4Δ𝑊𝑖𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽5Δ𝑆𝑝𝑟𝑖𝑛𝑔𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽6Δ𝑆𝑢𝑚𝑚𝑒𝑟𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽7Δ𝐹𝑎𝑙𝑙𝑇𝑒𝑚𝑝𝑖𝑡

+ 𝜆[𝛼1𝐿𝑜𝑔𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒𝑖,𝑡−1 − 𝛼2𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑟𝑖𝑐𝑒𝑖,𝑡−1 − 𝛼3𝐺𝐷𝑃𝑝𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝑖,𝑡−1

− 𝛼4𝑊𝑖𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝𝑖,𝑡−1 − 𝛼5𝑆𝑝𝑟𝑖𝑛𝑔𝑇𝑒𝑚𝑝𝑖,𝑡−1 − 𝛼6𝑆𝑢𝑚𝑚𝑒𝑟𝑇𝑒𝑚𝑝𝑖,𝑡−1

− 𝛼7𝐹𝑎𝑙𝑙𝑇𝑒𝑚𝑝𝑖,𝑡−1] + 𝜖𝑖𝑡 

where 𝑖 represents countries and 𝑡 represents years.  Conceptually, the error correction model has two 

components:  the Δ terms, which capture the short-run response of energy use to changes in the 

independent variables (including temperature), and the lagged terms in brackets, which capture the long-

run equilibrium relationship between energy use and the independent variables.  The error correction 

coefficient 𝜆 captures the speed of adjustment towards the long-run equilibrium.  

The authors run the regression separately for each type of fuel.  For electricity, the study estimates 

separate coefficients for each of the three groups of countries.  Additionally, for electricity, the authors 

run the regression, drop any temperature variables that don’t have significant coefficients, and then run 

the regressions a second time on the remaining variables. 

Table 7 summarizes the study’s estimates of the long-term semi-elasticity of energy demand with respect 

to temperature, for different fuels, seasons of the year, and groups of countries.  The results are somewhat 

mixed.  Consistent with intuition, semi-elasticities are negative in the winter, for every fuel type.  

However, in the spring and summer, some electricity semi-elasticities are negative and some are positive, 

depending on geography.  

 

Table 7:  Long-Run Temperature Semi-Elasticities, by Fuel, Season, and Country Group 

  Winter Spring Summer Fall 

Electricity  

Cold Countries  5.42 -3.33  

Mild Countries  −0.79 2.08  

Hot Countries  5.42 1.8  

All Countries -.88    

Gas  

All Countries -2.60    

Oil  

All Countries -3.45   -3.36 

Note:  These semi-elasticities of annual energy use are reproduced from Table 5 in De Cian et 

al (2013).  Because the authors chose not to report results that are not significantly different 

from zero, many of the cells in the table are missing. 

 

 

Based on these semi-elasticities, the authors project the absolute change in energy demand in the year 

2085 in each country in their sample.  For these calculations, they first project energy demand in 2085 

without climate change, taking into account growth in population and per capita income.  They then use 

seasonal temperature projections to estimate how climate change would affect future energy demand.  

Unfortunately, although the study reports the absolute change in future energy demand, it does not 
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include the baseline future energy demand (without climate change), and so it is not possible to normalize 

the results in terms of a percent impact.  

 

A.5 Petrick et al (2014) 

This study estimates the effect of changes in temperature on per capita residential coal, electricity, natural 

gas, and oil use, for an unbalanced panel of yearly data for 62 countries covering the period from 1970 

through 2002.  Because fuel prices are available for only a subset of countries, the number of countries 

actually used in the regressions is much smaller:  20 countries for coal, 56 countries for electricity, 36 

countries for natural gas, and 32 countries for oil. 

In contrast to other studies in the literature, this study represents temperature using heating degree months 

(HDM) and cooling degree months (CDM).  To calculate these variables, which are defined analogously 

to HDDs and CDDs, the authors obtain gridded historical monthly average temperature data, for 0.5° 

degree grid cells.  They then calculate the amount by which the average temperature in each grid cell and 

month exceeds (for CDMs) or falls below (for HDMs) the threshold value of 18.3°C (65°F).  They then 

sum the total over the months within each year to generate CDMs and HDMs for each grid cell in each 

year, and then calculate the average HDM and CDM across all grid cells in each country, for each year. 

The regression that they estimate takes the following functional form: 

𝐿𝑜𝑔(𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒)𝑖𝑡

= 𝜙𝑖 + 𝛼1𝐿𝑜𝑔𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒𝑖,𝑡−1 + 𝛼2𝐿𝑜𝑔𝐺𝐷𝑃𝑝𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝑖𝑡 + 𝛼3𝐿𝑜𝑔𝐹𝑢𝑒𝑙𝑃𝑟𝑖𝑐𝑒𝑖𝑡

+ 𝛼4𝐿𝑜𝑔𝐻𝐷𝑀𝑖𝑡 + 𝛼5𝐿𝑜𝑔𝐻𝐷𝑀𝑖𝑡
2 + 𝜖𝑖𝑡 

where 𝑖 represents countries, 𝑡 represents years, and 𝜙𝑖 are country fixed effects.  To address the 

econometric problems created by including both country fixed effects and a lagged dependent variable, 

the authors use a “corrected least square dummy variable” (LSDVC) estimator. 

Table 8 shows the results from the study, for the regressions that use HDM.  The coefficients on the log 

of HDM and the square of the log of HDM are generally positive and significant, indicating that fuel use 

decreases as temperatures rise (for temperatures below the HDM threshold of 65°F).   

Table 8:  Temperature Coefficients, by Fuel 

  Coal Electricity Gas Oil 

Log(HDM) 0.21 0.02* 0.31* 0.12 

[Log(HDM)]2 0.05* 0.002 0.02* 0.01* 

Note:  These regression results are reproduced from Table 2 in Petrick et al (2014).  The 

dependent variable in each regression is logged.  Note that the study does not report any of the 

CDM specifications, but states that none of the CDM coefficients are significantly different from 

zero.  * denotes significant at p<.05.   

 

At the average values of the explanatory variables (including HDM), the coefficients imply that the short-

run elasticities of fuel use with respect to HDM are 0.45 for coal, 0.03 for electricity, 0.41 for natural gas, 

and 0.17 for oil.   

The authors do not report tables of regressions results from any of the CDM specifications, but do state 

that none of the CDM coefficients are significantly different from zero.  Even in subsamples that include 

only OECD countries, only warm OECD countries, and only the European Mediterranean, they state that 

higher temperatures do not lead to additional energy expenditures for any fuel.  The only specification in 

which the CDM coefficients are significantly positive is for a subsample that includes only the United 
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States.  In this specification, the short-run elasticity (presumably of electricity) with respect to CDM is 

0.13.  The authors conclude that for their sample (which includes 1970 to 2002), air conditioner use was 

not prevalent enough in most countries to generate a cooling effect. 

 

Appendix B:  Detailed Descriptions of Engineering Studies 

As a reference, this appendix describes the methodology and results from Isaac and van Vuuren et al 

(2009).  This study uses an engineering-based approach to model how climate change is likely to affect 

future space heating and cooling.  We present this study here as a good example of the many other studies 

that use engineering-based approaches (see Table 3 for additional examples). 

 

B.1 Isaac and van Vuuren et al (2009) 

This study models the effect of climate change on global residential heating and cooling demand, using an 

engineering-based approach.  For each country, the authors draw on parameter estimates from the 

literature (and from the TIMER and IMAGE 2 models) to predict future changes in temperature, 

population, living space, income, and heating and cooling technological efficiency.  They then use these 

parameters to predict how energy demand for heating and cooling are likely to change in 26 modeling 

regions that cover the entire globe, as follows. 

First, the authors predict the effects of changes in temperature on annual heating demand for each region, 

using the following model: 

𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ⋅ 𝑀𝑒𝑡𝑒𝑟2𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎 ⋅ 𝐻𝐷𝐷 ⋅
𝑈𝑠𝑒𝑓𝑢𝑙𝐻𝑒𝑎𝑡𝑝𝑒𝑟𝑀𝑒𝑡𝑒𝑟2𝑝𝑒𝑟𝐻𝐷𝐷

𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑂𝑓𝐹𝑢𝑒𝑙
 

In this model, 𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 is the total amount of heating energy used per year, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is the 

total population, 𝑀𝑒𝑡𝑒𝑟2𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎 is the average heated floor space per person (in meters squared), 

𝐻𝐷𝐷 is the annual number of population-weighted heating degree days, 

𝑈𝑠𝑒𝑓𝑢𝑙𝐻𝑒𝑎𝑡𝑝𝑒𝑟𝑀𝑒𝑡𝑒𝑟2𝑝𝑒𝑟𝐻𝐷𝐷 is a measure of the “useful heat energy” needed to warm one square 

meter of floor space enough to offset the effects of one HDD, and 𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑂𝑓𝐹𝑢𝑒𝑙 is a 

measure of the useful heat energy provided per unit of total potential energy contained in the fuel. 

Next, to predict the effects of changes in temperature on annual cooling demand for each region, the 

authors use a different model: 

𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ⋅ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ 𝑀𝑎𝑥𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ⋅ 𝐶𝐷𝐷 ⋅
𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑒𝑟𝐻𝐻𝑝𝑒𝑟𝐶𝐷𝐷

𝐴𝐶𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
 

where 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 is the total amount of cooling energy used per year, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is the total 

population, 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the proportion of households that can afford AC units, 𝑀𝑎𝑥𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the 

proportion of households that would own AC units if income were unlimited, 𝐶𝐷𝐷 is annual population-

weighted cooling degree days, 𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑒𝑟𝐻𝐻𝑝𝑒𝑟𝐶𝐷𝐷 is the amount of energy used for cooling per 

CDD per household (conditional on income), and 𝐴𝐶𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 is a parameter that takes into 

account changes in the energy efficiency of air conditioning technology over time.  

The results of the study suggest that under baseline conditions, with socioeconomic growth and 

technological progress, but no climate change, global energy use for heating will increase from 26,000 PJ 

in 2000 to 47,000 PJ in 2100.  Taking into account climate change (an increase of 3.7°C by 2100), space 
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heating energy use would be approximately 31,000 PJ in 2100 (a 34% decrease relative to baseline 2100 

heating energy use).  

Over that same period, global baseline energy use for cooling will increase from 1,000 PJ to 29,000 PJ.  

However, with climate change, cooling energy demand would be substantially higher by the end of the 

century:  49,000 PJ (a 70% increase relative to baseline 2100 cooling energy use).  

The disaggregated results from the model suggest that most regions of the world will experience a net 

benefit from climate change, due to reductions in space heating energy that outweigh resulting increases 

from space cooling.  However, India, Southeast Asia, and Central and South America are all projected to 

experience net losses, due to the greater use of energy for air conditioning. 
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