

# **Benchmarking Industrial Plant Energy Efficiency**

### How EPA's ENERGY STAR<sup>®</sup> Program **Helps Industry Improve Energy** Efficiency

Elizabeth Dutrow

**US Environmental Protection Agency ENERGY STAR Industrial Partnership** May 26, 2010

Learn more at energystar.gov



# **ENERGY STAR**



- Voluntary government partnership
  - Goal: reduce carbon dioxide emissions
  - Introduced by EPA in 1992 to enable companies to improve in energy efficiency
- The national symbol of energy efficiency and environmental protection
  - Awareness exceeds 70% of U.S. households
  - A brand owned and managed solely by the government
- Focused on improving energy efficiency of:
  - Products
  - Homes
  - Plants & buildings



• For industrial businesses, EPA helps manufacturers improve strategic energy management.

## **ENERGY STAR & Industry**



### • EPA's goals:

- "Shift the curve" of energy performance for manufacturing industries
- Identify the transformative practices to achieve top energy performance
- Help companies succeed in achieving top performance



# Barriers to energy efficiency prevent progress



### - Lack of objective measurement methods

### - Scarce information on how to improve

### - Lack of corporate commitment



# ENERGY STAR provides business a clear pathway to succeed



1. Evaluate risks, prepare energy strategy with senior management

- 2. Build company-wide energy program, using ENERGY STAR guidelines for energy management
- 3. Look to suppliers and customers



## Step 1 - energy strategy





# Energy Strategy for the Road Ahead

- helps companies prepare a strong energy strategy
- developed with 20 leading companies and their senior managers

•Report at:

www.energystar.gov/energystrategy

# Step 2 - guidance for managing energy

#### ENERGY STAR Guidelines for Energy Management

 help to put in place a strong energy management program

- help to benchmark energy use
  & practices
- consulted by thousands of organizations
- based on the successful practices of ENERGY STAR's partners
- <u>www.energystar.gov/guidelines</u>





# Step 3 - help in managing energy across the value chain





Supplier

Internal Implementation Strategies Customer Engagement Strategies

## **ENERGY STAR designed to address the barriers**



### <u>Barrier</u>

 Lack of a bearing on efficiency



#### **Solution**

 Benchmarking is an objective measurement method







- Benchmarking
  - The process of comparing to something similar or the best
- *Energy* benchmarking

 The process of comparing the energy performance of facilities, processes or equipment to something similar or the best



# **Types of benchmarking**



#### Internal

compares performance against internal baseline or benchmark

#### External

- compares performance against a metric "outside" of the organization
- identifies "Best in Class" performance

#### Quantitative

- data-driven; compares actual numbers

#### Qualitative

based on best practices; compares actions



# Benchmarking's place in energy management



- Fundamental practice
- Energy reductions and project measurement are nice but only benchmarking proves improvements have had an effect
- Can be based on comparison of management practices or energy data
  - practice benchmarking gives an idea of where to improve by identifying best energy management practices
  - energy data benchmarking informs how well an entity might perform and improve and the position of that entity in terms of energy performance

#### SEPA<sup>™</sup>

#### ENERGY STAR Guidelines for Energy Management



# Variety of benchmarking in energy management

€E



| Energy                                              | Scope                                                  |                                                                                                                                                                                                      |                                                                                                                                                       |  |
|-----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Management<br>Objective                             | Scale                                                  | Focus                                                                                                                                                                                                | Time Frame                                                                                                                                            |  |
| Assess<br>equipment<br>efficiency                   | Equipment or process                                   | Internal – comparison against other owned<br>equipment or process<br>External – comparison to industry standard<br>or cooperative study with other<br>organizations                                  | <ul> <li>Peak demand period</li> <li>Three month sample</li> <li>Weekly</li> <li>Monthly</li> <li>Annual</li> <li>Continuous from baseline</li> </ul> |  |
| Assess<br>facility<br>performance                   | Whole facility or sub-metered portion                  | Internal – comparison of single facility over<br>time.<br>Comparison of similar facilities within<br>single organization<br>External – comparison of facility against<br>national performance rating | <ul> <li>Continuous from baseline</li> <li>Monthly</li> <li>Quarterly</li> <li>Annual</li> </ul>                                                      |  |
| Assess<br>department or<br>divisional<br>energy use | Facilities or<br>sub-metered portions<br>of facilities | Internal – comparison against internal sub-<br>divisions                                                                                                                                             | <ul> <li>Continuous from baseline</li> <li>Weekly</li> <li>Monthly</li> <li>Quarterly</li> <li>Annual</li> </ul>                                      |  |
| Assess<br>organizational<br>performance             | All facilities                                         | <u>Internal</u> – comparison over time or towards<br>goal.<br><u>External</u> –<br>Comparison of portfolio average against a<br>national performance rating                                          | <ul> <li>Continuous from baseline</li> <li>Monthly</li> <li>Quarterly</li> <li>Annual</li> </ul>                                                      |  |

# **ENERGY STAR benchmarks**



- External
- Define "best in class" for an industry or building type
- Industry sector-specific at 6 digit NAICS code (or more refined)
- Energy data at the whole facility level
- Source energy intensity
- Normalized for key variables



## ENERGY STAR Industrial Focuses

Delivering energy management to specific industries through ENERGY STAR



## **ENERGY STAR's industrial** sector-specific focuses



Collaborative process to develop:

- Energy Performance Indicator (EPI) to benchmark/rate plant energy performance
- Energy Guide

Facilitates:

- Sharing of best practices
- Networking
- Development of stronger company energy programs

Results in:

- Sophisticated plant benchmarking tool
- Recognition for energy-efficient plants with the ENERGY STAR
- Increased momentum for continued improvement
- Improved efficiency within an industry sector
- Prevention of carbon emissions



## **Benchmarking plant energy use:** Facility energy performance ratings







#### **Benchmarking drives performance**

**Answers:** "If all plants in the industry use energy as this one, what percent of plants in the country would be better, and what percent would be worse?"

# Standardized measurement: the plant EPI



- Plant energy performance indicators (EPI)
  - Enable a higher level of energy management
    - Compare how efficiently a plant uses energy relative to those of its industry
    - Enable goal setting
    - Empower management to require greater energy performance from plants
    - Score plants on a percentile basis (0-100), normalized to a plant's unique configuration
      - ENERGY STAR defines score of 75 or above to be energy-efficient; 50 is average
  - <u>www.energystar.gov/epis</u>
  - <u>www.energystar.gov/industrybenchmarkingtools</u>



### What EPA's national level plant energy benchmarking accomplishes



- Empowers industry to shift the curve of energy performance
  - For most companies, the ENERGY STAR EPI is the first time they are able to see how their plants' energy performance compares to that of their industry
- Enables companies in the benchmarked industry to set competitive goals for plant improvement
- Enables EPA to gauge improvement of an industry's energy performance over time



# Enabling companies to make informed energy investment decisions





# More help to improve: Energy Guides



Practices and technologies available now to improve energy efficiency in an industry

- Identify existing & promising emerging technologies
  - provide brief overview of technology or practice
    - review its limitations
    - quantify potential energy and cost savings
    - estimate payback periods
    - provide case study from application
    - highlight industry success stories



Septemb er 2005



### Example: Cement Industry Energy Guide



Over 40 efficiency measures for cement plants

| No Capital Cost            | \$hort Payback                                         | Capital Projects         |
|----------------------------|--------------------------------------------------------|--------------------------|
| Preventative maintenance   | Energy & Process Controls:<br>- Kiln                   | Efficient Grinding Mills |
| Seal Replacement (kiln)    | <ul><li>Raw material</li><li>Finish Grinding</li></ul> | Roller Mill              |
| Shell heat loss reduction  | High-efficiency Classifier                             | Grate Cooler             |
| Optimization of compressed |                                                        | Low-Pressure Drop        |
| air systems                | Improve Combustion<br>System                           | Preheaters               |
| Low-Carbon Fuels           | ·                                                      | Multi-Stage Preheaters   |
| Intergrinding Limestone    | Indirect Firing                                        | Precalciner              |
|                            | Optimize Grate Cooler                                  |                          |
| Reduced fineness cement    | High efficiency Motors                                 |                          |
| Increased Alkali Content   | Adjustable Speed Drive                                 |                          |
|                            | Blended Cement                                         |                          |
|                            | Slags in Clinkermaking                                 |                          |
|                            |                                                        |                          |

## **Case study**



- Example: U.S. cement plant
- Initial cement plant ENERGY STAR EPI score: 61
- Upgraded in 2002, EPI verified energy reductions of 40%
  - Energy efficiency improved by 2.5 mmBtu/short ton of clinker
- Commercially available technologies employed (described in Energy Guide) :
  - Improved grinding mills
  - Roller mills
  - Improved preheaters
  - Indirect firing
- New ENERGY STAR EPI score: <u>98</u>
  - national energy efficiency scoring system demonstrated this plant is now one of the most efficient cement plants in the U.S.



# Results – EPA experience with US auto assembly plants



- Based on ENERGY STAR benchmarking of auto assembly plants, EPA has seen fuel usage in the industry improve by 12 percent over a five year period.
- The level of inefficiency has also dropped by 1.0 mmBtu/vehicle.
- The range of performance has also narrowed.
  - This means that while the best auto assembly plants have improved, the others have more than "kept up" with this improvement.



# ENERGY STAR benchmarking resources



- Plants use ENERGY STAR's Energy Performance Indicators (EPIs)
- **Commercial Buildings** use ENERGY STAR's **Portfolio Manager**

| Industrial EPIs                                |  |  |
|------------------------------------------------|--|--|
| Motor Vehicle Assembly                         |  |  |
| Wet Corn Milling                               |  |  |
| Cement Manufacturing                           |  |  |
| Petroleum Refining (private system recognized) |  |  |
| Pharmaceuticals                                |  |  |
| Food Processing (variety)                      |  |  |
| Glass Manufacturing (variety)                  |  |  |
| Petrochemicals (draft)                         |  |  |
| Pulp and Paper (drafts)                        |  |  |

Steel (draft)

| Portfolio Manager        |  |
|--------------------------|--|
| Office Buildings         |  |
| Hospitals                |  |
| K-12 Schools             |  |
| Hotels                   |  |
| Supermarkets             |  |
| Retail Stores            |  |
| Warehouses               |  |
| Bank Branches            |  |
| Residence Halls          |  |
| Waste Water Treatment    |  |
| Court houses             |  |
| Medical Office Buildings |  |

## ENERGY STAR Benchmarking: Auto Assembly 2000-2005





**Sepa**

EPA, Duke University





- It is possible to benchmark plants and help industry improve
- Benchmarking takes data (lots of it) and time
- Benchmarked entity should be homogeneous.



## **Energy Management Systems**



- Growing interest in the role of management systems to promote and ensure energy efficiency.
  - EPA's ENERGY STAR program has been promoting a systems approach since 2003.
- Energy Management Systems (EnMS) can help organizations achieve greater savings.
- EnMS can help organizations build capacity and focus on continuous improvement
- EnMS provide a <u>means</u> (not an end) towards increasing efficiency
- EnMS do not measure or guarantee energy savings or CO<sub>2</sub> reductions on their own.



### **Management Systems Approaches**



Management systems promote continuous improvement through:

- Organizational practices
- Organizational policies
- Team development
- Planning & evaluation
- Tracking & Measurements
- Communication & employee
   engagement

#### ENERGY STAR Guidelines for Energy Management



### Standardization of Energy Management



Current efforts to create standards for energy management:

- ISO 50001 Draft Energy Management Systems underdevelopment
- EN 16001 European Energy Management Standards
- ANSI MSE 2001:2008 Energy Management Standard
- DS 2403:2001 Danish Energy Management Standard
- NSAI IS 393 Irish Energy Management Standard
- KATS KSA 4000:2007 Korean Energy Management Standards
- ASTM standards being developed for:
  - Compressed systems, motors, steam systems, etc.



## Considerations



- Elements of an EnMS can be applied without achieving certification
  - E.g: ENERGY STAR Guidelines & Partners
- EnMS Standards (ISO, EN, etc) are designed to be flexible
  - Scope, boundaries, etc. are defined by the user
  - A single processes / production lines can be certified within a plant to meet the standard
  - Determination of applicability of standard is done by paid Auditor
- Certification is not based on efficiency or savings
  - ISO 50001, etc. do not establish performance standards
  - Achieving a target or maintaining a level of performance is required for certification or re-certification
- Certification is expensive
  - Internal personnel costs
  - Auditor and registry expenses
  - Few companies have pursued certification to date



# Summary



- A systems approach to energy management is good to promote:
  - Organizational & facility-wide EnMS are the most effective
  - Shifts thinking from "projects" to "programs" to achieve greatest benefit
- There are multiple pathways for promoting & implementing an EnMS.
- The effectiveness of an EnMS is tied to its scope, goals, and the benchmarks are used.
- Energy performance (efficiency, reductions etc.) <u>ultimately</u> reflects the effectiveness of an EnMS and corporate energy program.



### Contact



Elizabeth Dutrow Director, Industrial Sector Partnerships ENERGY STAR Program US EPA (202) 343-9061 dutrow.elizabeth@epa.gov

All resources found at:

www.energystar.gov/industry

