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1. Introduction 

1.1 Model Overview 

Receptor models are mathematical approaches for quantifying the contribution of sources to 

samples based on the composition or fingerprints of the sources.  The composition or speciation 

is determined using analytical methods appropriate for the media, and key species or 

combinations of species are needed to separate impacts.  A speciated data set can be viewed 

as a data matrix X of i by j dimensions, in which i number of samples and j chemical species 

were measured, with uncertainties u.  The goal of receptor models is to solve the chemical 

mass balance (CMB) between measured species concentrations and source profiles, as shown 

in Equation 1-1, with number of factors p, the species profile f of each source, and the amount 

of mass g contributed by each factor to each individual sample (see Equation 1-1): 

 




p

k

ijkjikij efgx
1

 (1-1) 

where eij is the residual for each sample/species.  The CMB equation can be solved using 

multiple models including EPA CMB, EPA Unmix, and EPA Positive Matrix Factorization (PMF).   

PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data 

into two matrices:  factor contributions (G) and factor profiles (F).  These factor profiles need to 

be interpreted by the user to identify the source types that may be contributing to the sample 

using measured source profile information, and emissions or discharge inventories.  The 

method is reviewed briefly here and described in greater detail elsewhere (Paatero and Tapper, 

1994; Paatero, 1997).  

Results are obtained using the constraint that no sample can have significantly negative source 

contributions.  PMF uses both sample concentration and user-provided uncertainty associated 

with the sample data to weight individual points.  This feature allows analysts to account for the 

confidence in the measurement.  For example, data below detection can be retained for use in 

the model, with the associated uncertainty adjusted so these data points have less influence on 

the solution than measurements above the detection limit.   

Factor contributions and profiles are derived by the PMF model minimizing the objective 

function Q (Equation 1-2): 

 

2

1

11























 

 ij

p

k

kjikijm

j

n

i u

fgx

Q  (1-2) 

Q is a critical parameter for PMF and two versions of Q are displayed for the model runs. 
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 Q(true) is the goodness-of-fit parameter calculated including all points. 

 Q(robust) is the goodness-of-fit parameter calculated excluding points not fit by the 
model, defined as samples for which the uncertainty-scaled residual is greater than 4. 

The difference between Q(true) and Q(robust) is a measure of the impact of data points with 

high scaled residuals.  These data points may be associated with peak impacts from sources 

that are not consistently present during the sampling period.  In addition, the uncertainties may 

be too high, which result in similar Q(true) and Q(robust) values because the residuals are 

scaled by the uncertainty. 

EPA PMF requires multiple iterations of the underlying Multilinear Engine (ME) to help identify 

the most optimal factor contributions and profiles.  This is due to the nature of the ME algorithm 

that starts the search for the factor profiles with a randomly generated factor profile.  This factor 

profile is systematically modified using the gradient approach to chart the optimal path to the 

best-fit solution.  In spatial terms, the model constructs a multidimensional space using the 

observations and then traverses the space using the gradient approach to reach its final 

destination of the best solution along this path.  The best solution is typically identified by the 

lowest Q(robust) value along the path (i.e., the minimum Q) and may be imagined as the bottom 

of a trough in the multidimensional space.  Due to the random nature of the starting point, which 

is determined by the seed value and the path it dictates, there is no guarantee that the gradient 

approach will always lead to the deepest point in the multidimensional space (global minimum); 

it may instead find a local minimum.  To maximize the chance of reaching the global minimum, 

the model should be run 20 times developing a solution and 100 times for a final solution, each 

time with a different starting point.   

Because Q(robust) is not influenced by points that are not fit by PMF, it is used as a critical 

parameter for choosing the optimal run from the multiple runs.  In addition, the variability of 

Q(robust) provides an indication of whether the initial base run results have significant variability 

because of the random seed used to start the gradient algorithm in different locations.  If the 

data provide a stable path to the minimum, the Q(robust) values will have little variation between 

the runs.  In other cases, the combination of the starting point and the space defined by the data 

will impact the path to the minimum, resulting in varying Q(robust) values; the lowest Q(robust) 

value is used by default since it represents the most optimal solution.  It should be noted that a 

small variation in Q-values does not necessarily indicate that the different runs have low 

variability between source compositions.   

Variability due to chemical transformations or process changes can cause significant differences 

in factor profiles among PMF runs.  Two diagnostics are provided to evaluate the differences 

between runs:  intra-run residual analysis and a factor summary of the species distribution 

compared to those of the lowest Q(robust) run.  The user must evaluate all of the error 

estimates in PMF to understand the stability of the model results; the algorithms and ME output 

are described in Paatero et al. (2014).  Variability in the PMF solution can be estimated using 

three methods: 
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1. Bootstrap (BS) analysis is used to identify whether there are a small set of observations 

that can disproportionately influence the solution.  BS error intervals include effects from 

random errors and partially include effects of rotational ambiguity.  Rotational ambiguity 

is caused by the existence of infinite solutions that are similar in many ways to the 

solution generated by PMF.  That is, for any pair of matrices, infinite variations of the pair 

can be generated by a simple rotation.  With only one constraint of non-negative source 

contributions, it is impossible to restrict this space of rotations.  BS errors are generally 

robust and are not influenced by the user-specified sample uncertainties. 

2. Displacement (DISP) is an analysis method that helps the user understand the selected 

solution in finer detail, including its sensitivity to small changes.  DISP error intervals 

include effects of rotational ambiguity but do not include effects of random errors in the 

data.  Data uncertainty can directly impact DISP error estimates.  Hence, intervals for 

downweighted species are likely to be large. 

3. BS-DISP (a hybrid approach) error intervals include effects of random errors and 

rotational ambiguity.  BS-DISP results are more robust than DISP results since the DISP 

phase of BS-DISP does not displace as strongly as DISP by itself. 

These methods are applied with three air pollution data sets in Brown et al. (2014).  The paper 

provides an interpretation of the EPA error estimates based on the applications.  Paatero et al. 

(2014) and Brown et al. (2014) are key references for EPA PMF and both provide details on the 

error estimates and their interpretation, which are only briefly covered in this guide. 

1.2 Multilinear Engine 

Two common programs solve the PMF problem as described above.  Originally, the program 

PMF2 (Paatero, 1997) was used.  In PMF2, non-negativity constraints could be imposed on 

factor elements and measurements could be weighted individually based on uncertainties when 

determining the least squares fit.  With these features, PMF2 was a significant improvement 

over previous principal component analysis (PCA) techniques for receptor modeling of 

environmental data.  PMF2 was limited, however, in that it was designed to solve a very specific 

PMF problem.  In the late 1990s, the ME, a more flexible program, was developed (Paatero, 

1999).  This program, currently in its second version and referred to as ME-2, includes many of 

the same features as PMF2 (for instance, the user is able to weight individual measurements 

and provide non-negativity constraints); however, unlike PMF2, ME-2 is structured so that it can 

be used to solve a variety of multilinear problems including bilinear, trilinear, and mixed models.   

ME-2 was designed to solve the PMF problem by combining two separate steps.  First, the user 

produces a table that defines the PMF model of interest.  Then an automated secondary 

program reads the tabulated model parameters and computes the solution.  When solving the 

PMF problem using EPA PMF, the first step is achieved via an input file that is produced by the 

EPA PMF user interface.  Once the model has been specified, data and user specifications are 

fed into the secondary ME-2 program by EPA PMF.  ME-2 solves the PMF equation iteratively, 

minimizing the sum-of-squares object function, Q, over a series of steps as shown in Figure 1.  

A stable solution has been reached when additional iterations to minimize Q provide diminishing 

returns.  The search for the solution goes from coarser to a finer scale over three levels of 

iterations.  The first level of iterations identifies the overall region of solution in space.  In this 
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level, the change in Q (dQ) is required to be less than 0.1 over 20 consecutive steps in less than 

800 steps.  The second level identifies the neighborhood of the final solution.  Here, dQ is 

required to be less than 0.005 over 50 consecutive steps in less than 2,000 total steps.  The 

third level converges to the best possible Q-values (Paatero, 2000a) where dQ should be less 

than 0.0003 over 100 consecutive steps in less than 5,000 steps.   

ME-2 typically requires a few hundred iterations for small data sets (less than 300 observations) 

and up to 2,000 for larger data sets (Paatero, 2000a).  If a solution is not found that meets the 

requirements of any of the three levels, then a solution is non-convergent (Paatero, 2000a). 

   

Figure 1.  Conjugate Gradient Method – underpinnings of PMF solution search. 

Output from ME-2 is read by EPA PMF and then formatted for the user to interpret.  In addition, 

EPA PMF has three error estimate methods that are implemented through ME-2 and EPA PMF. 

The differences between ME-2 and PMF2 model results have been examined in several studies 

through the application of each model to the same data set and comparison of the results.  

Overall, the studies showed similar results for the major components, but a greater uncertainty 

in the PMF2 solution (Ramadan et al., 2003) and better source separation using ME-2 (Kim et 

al., 2007).  In two recent publications, the application of factor profile constraints by ME-2 

resulted in a larger number of sources found (Amato et al., 2009; Amato and Hopke, 2012). 

Starting Point 

Initial Step Size 

Intermediate Step Size 

Final Step Size End Point 
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Version 5.0 of EPA PMF uses the most recent version of ME-2 and a PMF script file, which 

were developed by Pentti Paatero at the University of Helsinki and Shelly Eberly at Geometric 

Tools (March 3, 2014; me2gfP4_1345c4.exe and PMF_bs_6f8xx_sealed_GUI.ini).    

1.3 Comparison to EPA PMF 3.0 and Other Methods 

EPA PMF 5.0 has added two key components to EPA PMF 3.0:  two additional error estimation 

methods and source contribution and profile constraints.  Many other changes have been added 

to make the software easier to use, including the ability to read in multiple site data.  The run 

time for the new error estimation methods can take from an hour to half a day depending on the 

number of factors and BS runs.  The large amount of time is due to the high number of 

computations required for the robust error estimates.  The PMF Model Development Quality 

Assurance Project Plan provides the details on the QA steps used to develop EPA PMF 5.0 and 

a number of interim versions between version 3.0 and 5.0.  Version 4.2 was externally peer 

reviewed; the very useful comments were used to develop version 5.0 and improve the user 

guide.   

Other comparable source apportionment models include Unmix and CMB.  Although both 

models have aims similar to that of PMF, they have different mechanisms.  Unmix identifies the 

“edges” in the data where the factor contribution from at least one factor is present only in 

negligible amounts.  The edges are then used to determine the profile compositions and the 

number of sources in the data is provided.  Unmix does not allow individual weighting of data 

points, as allowed by PMF.  Although major factors resolved by PMF and Unmix are generally 

the same, Unmix does not always resolve as many factors as PMF (Pekney et al., 2006c; Poirot 

et al., 2001). 

With CMB, the user must provide source profiles that the model uses to apportion mass.  PMF 

and CMB have been compared in several studies.  Rizzo and Scheff (2007a) compared the 

magnitude of source contributions resolved by each model and examined correlations between 

PMF- and CMB-resolved contributions.  They found the major factors correlated well and were 

similar in magnitude; additionally, the PMF-resolved source profiles were generally similar to 

measured source profiles.  In supplementary work, Rizzo and Scheff (2007b) used information 

from CMB PM source profiles to influence PMF results and used CMB results to help control 

rotations in PMF.  Jaeckels et al. (2007) used organic molecular markers with elemental carbon 

(EC) and organic carbon (OC) in both CMB and PMF.  Good correlations were found for most 

factors, with some biases present in a few of the factors.  They also found an additional PMF 

factor that did not correspond to any CMB factors. 

The models discussed above are complementary and, whenever possible, should be used 

along with PMF to make source apportionment results more robust.  In addition, statistical 

receptor modeling methods have been developed by William F. Christensen at Brigham Young 

University and other researchers.
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2. Uses of PMF 

PMF has been applied to a wide range of data, including 24-hr speciated PM2.5, size-resolved 

aerosol, deposition, air toxics, high time resolution measurements such as those from aerosol 

mass spectrometers (AMS), and volatile organic compound (VOC) data.  The References 

section (Section 9) provides numerous references where PMF has been applied.  Additional 

discussion of uses of PMF is available in the Multivariate Receptor Modeling Workbook (Brown 

et al., 2007).  Users are encouraged to read the papers that are relevant to their data as well as 

source profile measurement papers.  The approaches used for PMF analyses have changed 

over the years as options such as constraints have been made available.  Key references are 

summarized in Table 1. 

Table 1.  Summary of key references. 

Reference Key Points 

Brinkman, G.; Vance, G.; 
Hannigan, M.P.; Milford, J.B. 
(2006). Use of synthetic data 
to evaluate positive matrix 
factorization as a source 
apportionment tool for PM2.5 
exposure data. Environ. Sci. 
Technol., 40(6):  1892-1901. 

 Uses coefficient of determination (R
2
) and normalized gross error 

(NGE) for the source contribution comparisons and the root mean 
squared error (RMSE) for source profile comparisons.  

 R
2
 measures the fraction of the variance in the actual source 

contributions. 

 The NGE and RMSE are measures of the accuracy of the source 
contribution or profile estimate.  

 The RMSE was chosen for the profile comparisons to place the 
greatest weight on compounds present in the largest fractions, which 
are most important for source apportionment purposes, where total 
mass apportionment is the goal. 

Chen, L.-W.A.; Lowenthal, 
D.H.; Watson, J.G.; Koracin, 
D.; Kumar, N.; Knipping, 
E.M.; Wheeler, N.; Craig, K.; 
Reid, S. (2010). Toward 
effective source 
apportionment using positive 
matrix factorization:  
Experiments with simulated 
PM2.5 data. J. Air Waste 
Manage. Assoc., 60(1):  43-
54. 

 Uses a metric to measure the difference between known source 
profiles and PMF provided contributions.  Uses a minimization 
technique to find the correct set of parameter values that helps 
closely match the true source profiles with predicted source profiles. 

 Not much on using the source profile uncertainties from the model 
output. 
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Reference Key Points 

Christensen, W.F.; Schauer, 
J.J. (2008). Impact of species 
uncertainty perturbation on 
the solution stability of 
positive matrix factorization 
of atmospheric particulate 
matter data. Environ. Sci. 
Technol., 42(16):  6015-
6021. 

 A perturbed uncertainty matrix is created by multiplying each original 
uncertainty value by a random multiplier generated from a log-normal 
distribution with a mean of 1 and a standard deviation (and CV) 
equal to 0.25, 0.50, or 0.75.  The average values for the measure of 
relative error for the three scenarios are 8%, 14%, and 17%, 
respectively.  

 Relative errors associated with day-today estimates of source 
contributions can be more than double the size of the relative errors 
associated with estimates of average source contributions, with 
errors for four of 10 source contributions exceeding 30% for the 
largest-perturbation scenario.  

 The stability of source profile estimates in the simulation varies 
greatly between sources, with a mean correlation between perturbed 
gasoline exhaust profiles and the true profile equal to only 59% for 
the largest-perturbation scenario. 

Hemann, J.G.; Brinkman, 
G.L.; Dutton, S.J.; Hannigan, 
M.P.; Milford, J.B.; Miller, 
S.L. (2009). Assessing 
positive matrix factorization 
model fit:  a new method to 
estimate uncertainty and bias 
in factor contributions at the 
measurement time scale. 
Atmos. Chem. Phys., 9(2):  
497-513. 

 A novel method was developed to estimate model fit uncertainty and 
bias at the daily time scale, as related to factor contributions.  A 
circular block BS is used to create replicate data sets, with the same 
receptor model then fit to the data. 

 Neural networks are trained to classify factors based upon chemical 
profiles, as opposed to correlating contribution time series, and this 
classification is used to align factor orderings across the model 
results associated with the replicate data sets. 

 The results indicate that variability in factor contribution estimates 
does not necessarily encompass model error:  contribution estimates 
can have small associated variability across results yet also be very 
biased. 

Henry, R.C.; Christensen, 
E.R. (2010). Selecting an 
appropriate multivariate 
source apportionment model 
result. Environ. Sci. Technol., 
44(7):  2474-2481. 

 Source apportionment results favor Unmix when edges in the data 
are well-defined and PMF when several zeros are present in the 
loading and score matrices.  Because both models are seen to have 
potential weaknesses, both should be applied in all cases.  

 Recommend that the EPA approved versions of PMF and Unmix 
both be applied to environmental data sets.  If the two produce very 
similar results, then one has added confidence based on the fact that 
two independent methods of analysis support each other.  If the PMF 
and Unmix results are different, then examine the estimated source 
compositions:  if these have many zeros the PMF result should be 
preferred, but only if the Unmix diagnostic edges plots show that one 
or more of the edges are not clearly defined by the data. 
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Reference Key Points 

Kim, E.; Hopke, P.K. 
(2007a). Comparison 
between sample-species 
specific uncertainties and 
estimated uncertainties for 
the source apportionment of 
the speciation trends network 
data. Atmos. Environ., 41(3):  
567-575. 

 The objective of this study is to compare the use of the estimated 
fractional uncertainties (EFU) for the source apportionment of PM2.5 
(particulate matter less than 2.5 μm in aerodynamic diameter) 
measured at the speciated trends network (STN) monitoring sites 
with the results obtained using SSU (standard STN uncertainties).  
Thus, the source apportionment of STN PM2.5 data were performed 
and their contributions were estimated through the application of 
PMF for two selected STN sites, Elizabeth, NJ and Baltimore, MD 
with both SSU and EFU for the elements measured by X-ray 
fluorescence. The PMF resolved factor profiles and contributions 
using EFU were similar to those using SSU at both monitoring sites.  
The comparisons of normalized concentrations indicated that the 
STN SSU were not well estimated. This study supports the use of 
EFU for the STN samples to provide useful error structure for the 
source apportionment studies of the STN data. 

 Implies a flaw with uncertainties associated with STN data. Promotes 
EFU over SSN. 

Latella, A.; Stani, G.; Cobelli, 
L.; Duane, M.; Junninen, H.; 
Astorga, C.; Larsen, B.R. 
(2005). Semicontinuous GC 
analysis and receptor 
modelling for source 
apportionment of ozone 
precursor hydrocarbons in 
Bresso, Milan, 2003. J. 
Chromatogr. A, 1071(1-2):  
29-39. 

 A new approach is presented, by which the input uncertainty is 
allowed to float as a function of the photochemical reactivity of the 
atmosphere and the stability of each individual compound. 
 

Lowenthal, D.H.; Rahn, K.A. 
(1988). Tests of regional 
elemental tracers of pollution 
aerosols. 2. Sensitivity of 
signatures and 
apportionments to variations 
in operating parameters. 
Atmos. Environ., 22:  420-
426. 

 Straight forward use of PMF and Unmix along with HYSPLIT to 
confirm results using synthetic data. 
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Reference Key Points 

Miller, S.L.; Anderson, M.J.; 
Daly, E.P.; Milford, J.B. 
(2002). Source 
apportionment of exposures 
to volatile organic 
compounds. I. Evaluation of 
receptor models using 
simulated exposure data. 
Atmos. Environ., 36(22):  
3629-3641. 

 Four receptor-oriented source apportionment models were evaluated 
by applying them to simulated personal exposure data for select 
VOCs that were generated by Monte Carlo sampling from known 
source contributions and profiles.  The exposure sources modeled 
are environmental tobacco smoke, paint emissions, cleaning and/or 
pesticide products, gasoline vapors, automobile exhaust, and 
wastewater treatment plant emissions.  The receptor models 
analyzed are CMB, PCA/absolute principal component scores, PMF, 
and graphical ratio analysis for composition estimates/source 
apportionment by factors with explicit restriction, incorporated in the 
UNMIX model.  

 All models identified only the major contributors to total exposure 
concentrations. PMF extracted factor profiles that most closely 
represented the major sources used to generate the simulated data.  

 None of the models were able to distinguish between sources with 
similar chemical profiles. Sources that contributed 5% to the average 
total VOC exposure were not identified. 

Reff, A.; Eberly, S.I.; Bhave, 
P.V. (2007). Receptor 
modeling of ambient 
particulate matter data using 
positive matrix factorization:  
Review of existing methods. 
J. Air Waste Manage. 
Assoc., 57(2):  146-154. 

 Guidance for the application and use of PMF. 

Shi, G.L.; Li, X.; Feng, Y.C.; 
Wang, Y.Q.; Wu, J.H.; Li, J.; 
Zhu, T. (2009). Combined 
source apportionment, using 
positive matrix factorization-
chemical mass balance and 
principal component 
analysis/multiple linear 
regression-chemical mass 
balance models. Atmos. 
Environ., 43(18):  2929-2937. 

 A straightforward application of PMF and PCA/MLR-CMB that deals 
with collinear sources and other real data issues. 

 

Yuan, B., Min Shao, M.; 
Gouw, J.; David D. Parrish, 
D.; Lu, S.; Wang, M.; Zeng, 
L.; Zhang, Q.; Song, Y.; 
Zhang, J.; Hu, M,  (2012). 
Volatile organic compounds 
(VOCs) in urban air:  How 
chemistry affects the 
interpretation of positive 
matrix factorization (PMF) 
analysis, J. Geophys. Res., 
117 

 

 Impact of VOC atmospheric reactivity on PMF results.  (VOCs) were 
measured online at an urban site in Beijing 
in August–September 2010. 
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Reference Key Points 

Zhang, Y.X.; Sheesley, R.J.; 
Bae, M.S.; Schauer, J.J. 
(2009). Sensitivity of a 
molecular marker based 
positive matrix factorization 
model to the number of 
receptor observations. 
Atmos. Environ., 43(32):  
4951-4958. 

 Impact of the number of observations on molecular marker-based 
positive matrix factorization (MM-PMF) source apportionment 
models, daily PM2.5 samples were collected in East St. Louis, IL, 
from April 2002 through May 2003. 

PMF requires a data set consisting of a suite of parameters measured across multiple samples.  

For example, PMF is often used on speciated PM2.5 data sets with 10 to 20 species over 100 

samples.  An uncertainty data set, that assigns an uncertainty value to each species and 

sample, is also needed.  The uncertainty data set is calculated using propagated uncertainties 

or other available information such as collocated sampling precision.
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3. Installing EPA PMF 5.0 

EPA PMF 5.0 can be obtained from EPA by e-mailing NERL_RM_Support@epa.gov.  To install 

the program, run EPA PMF 5.0 Setup.exe and follow the installation directions on the screen.  

The installation program creates an EPA PMF subfolder in the Program Files folder for the 

software and an EPA PMF subfolder in the Documents folder for data files.  Installation 

problems and software error messages should be reported to Gary Norris at 

RM_Support@epa.gov. 

EPA PMF 5.0 can be run on a personal computer using the Windows XP or Windows 7 

operating system or higher.  Users will need to have permission to write to the computer’s C:\ 

drive in order to install and run EPA PMF; this may not be the default setting for some users.  

After installation, EPA PMF can be started by double clicking EPA PMF 5.0 icon on the desktop.
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4. Global Features 

The user can access the following features throughout EPA PMF 5.0: 

 Sorting data.  Columns in tables can be sorted by left-clicking the mouse button on a 

column heading.  Clicking once will sort the items in ascending order and clicking twice will 

sort the items in descending order.  If a column has been sorted, an arrow will appear in the 

header indicating the direction in which it is sorted. 

 Saving graphics.  All graphical output can be saved in a variety of formats by right-clicking 

on an image.  Available formats are .gif, .bmp, .png, and .tiff.  In the same menu, the user 

can choose to copy or print a graphic.  A stacked graph option is also available to combine 

profiles or time series on one page.  When “copy” is selected, the graphic is copied to the 

clipboard.  When “print” is selected, the graphic will automatically be sent to the local 

machine’s default printer.  When saving a graphic, a dialog box appears so that the user can 

change the file path and file name of the output file.  

 Undocking graphs.  Any graph can be opened in a new window by right-clicking on the 

graph and selecting Floating Window.  The user can open as many windows as required.  

However, the graphs in the floating windows do not update when model parameters and 

output are changed. 

 Resizing sections within tabs.  Many tabs have multiple sections separated by a gray line 

(Figure 2; red arrows point to the gray bars that enable the user to adjust height and width).  

These sections can be resized by clicking on the gray line and dragging it to the desired 

location.  

 Indicating selected data points.  When the user moves the cursor over a point on a scatter 

plot or time series graph, the point is outlined with a dashed-line square, indicating the point 

to which the information in the status bar refers. 

 Using arrow keys on lists and tables.  After selecting (by clicking on or tabbing to) a list or 

table, the keyboard arrow keys can be used to change the selected row. 

 Accessing help files.  The left bottom corner of most screens has a “Help” shortcut that 

provides users access to a help file associated with the main functions in the current screen. 

 Using the status bar.  Most screens have a status bar across the bottom of the window that 

provides additional information to the user.  This information changes based on the tab 

selected.  Individual tab details are discussed in subsequent sections of this guide.  An 

example of the status bar on the Concentration Scatter Plot screen is shown at the bottom 

of Figure 2. 
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Figure 2.  Example of resizable sections and status bar. 
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5. Getting Started 

Each time the EPA PMF 5.0 program is started, a splash screen with information about the 

development of the software and various copyrights is displayed.  The user must click the OK 

button or press the spacebar or Enter key to continue. 

The first EPA PMF window is Data Files under the Model Data tab, as shown in Figure 3.  On 

this screen, the user can provide file location information and make required choices that will be 

used in running the model.  This screen has three sections:  Input Files (Figure 3, 1), Output 

Files (Figure 3, 2), and Configuration File (Figure 3, 3), each of which is described in detail 

below.  EPA PMF 5.0 can read multiple site data; time series plots of species concentrations or 

source contributions are displayed in the same order as the user provided data and PMF 

displays a vertical line separating the sites. 

The status bar at the bottom of the Data Files screen indicates which section of the program has 

been completed.  Prior to any user input on the Data Files screen, the status bar displays “NO 

Concentration Data, NO Uncertainty Data, NO Base Results, NO Bootstrap Results, NO BS-

DISP Results, and NO DISP Results” in red.  When a task is completed, “NO” is replaced with 

“Have” and the text color changes to green.  In the Figure 3 example, concentration and 

uncertainty files have been provided to the program, so the first two items on the status bar are 

green.  Base runs, BS runs, BS-DISP runs, and DISP runs have not been completed, so the last 

four items are red.  The Baltimore PM files (Dataset_Baltimore_con.txt and 

Dataset_Baltimore_unc.txt) are part of the installation package and can be found in the 

“C:\Documents\EPA PMF\Data” folder, if the user installed the model using the default 

installation settings. 

5.1 Input Files 

Two input files are required by PMF:  (1) sample species concentration values and (2) sample 

species uncertainty values or parameters for calculating uncertainty.  EPA PMF accepts tab-

delimited (.txt), comma-separated value (.csv), and Excel Workbook (.xls or .xlsx) files.  Each 

file can be loaded either by typing the path into the “data file” input boxes or browsing to the 

appropriate file.  If the file includes more than one worksheet or named range, the user will be 

asked to select the one they want to use.  The concentration file has the species as columns 

and dates or sample numbers as rows, with headers for each (Figure 4).  All standard date and 

time conventions are accepted and they are listed in the Date Format pull-down list.  Four 

possible input options are accepted:  (1) with sample ID only, (2) with Date/Time only, (3) with 

both Sample ID and Date/Time, (4) with no IDs or Date/Time.  Units can be included as a 

second heading row in the concentration file, but are not required and units are not included in 

the uncertainty file.  If units are supplied by the user, they will be used by the graphical user 

interface (GUI) for axis labels only and will not be used by the model.  Blank cells are not 

accepted; the user will be prompted to examine the data and try again; species names cannot 

contain commas.  If values less than -999 are found in the data set, the program will give a 

warning message but will continue.  If these values are not real or are missing value indicators, 

the user should modify the data file outside the program and reload the data sets.  Also, the 

names of each species must be unique.  The user must specify the Date/Time and ID/Site 
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columns if they are included in the input data sets.  The basic PMF functions are demonstrated 

using single site data and a multiple site example is shown in Section 8.1.  Multiple site data 

should be sorted by Site and Date/Time before loading it into PMF.  Lines deliminating Sample 

ID will not be displayed if a missing value is at the transition between Sample IDs and the option 

“exclude missing samples” is selected; missing transition samples should be removed or the 

option “replace missing samples with the species median” selected. 

 

Figure 3.  Example of the Input Files screen. 

Sample species uncertainties should encompass errors such as sampling and analytical errors.  

For some data sets, the analytical laboratory or reporting agency provides an uncertainty 

estimate for each value.  However, uncertainties are not always reported and, when they are not 

available, errors must be estimated by the user.  A discussion of calculating uncertainties is 

provided in Reff et al. (2007).  

EPA PMF 5.0 accepts two types of uncertainty files:  observation-based and equation-based.  

The observation-based uncertainty file provides an estimate of the uncertainty for each species 

in a sample.  It should have the same dimensions as the concentration file and the first column 

will still be a date, date time or sample number; however, the uncertainty file should not include 

units.  If the concentration file contains a row of units, the uncertainty file will have one less row 

than the concentration file.  The user will be notified if the column and row headers do not 

match, but the program will continue.  In addition, the program will check to see if the dates or 

1

2

3
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sample numbers are the same between the concentration and uncertainty files and the program 

will not allow the data to be evaluated if there is a mismatch.  If the headers are different due to 

naming conventions but actually have the same order, the user can proceed to the next step.  If 

not, the user should correct the problem outside the GUI and reload the files.  Negative values 

and zero are not permitted as uncertainties; EPA PMF will provide an error message and the 

user will have to remove these values outside EPA PMF and reload the uncertainty file.  

 

Figure 4.  Example of formatting of the Input Concentration file. 

The equation-based uncertainty file provides species-specific parameters that EPA PMF 5.0 

uses to calculate uncertainties for each sample.  This file should have one delimited row of 

species, with species names (Figure 5).  The next row should be species-specific method 

detection limit (MDL) followed by the row of uncertainty (species-specific).  Zeroes and 

negatives are not permitted for either the detection limit or the percent uncertainty.  If the 

concentration is less than or equal to the MDL provided, the uncertainty (Unc) is calculated 

using a fixed fraction of the MDL (Equation 5-1; Polissar et al., 1998). 

 

Figure 5.  Example of an equation-based uncertainty file. 

 MDLUnc 
6

5
 (5-1) 
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If the concentration is greater than the MDL provided, the calculation is based on a user 

provided fraction of the concentration and MDL (Equation 5-2). 

    22
5.0 MDLionconcentratFractionErrorUnc   (5-2) 

A sample equation-based uncertainty file (Dataset-Baltimore_unc_eqn) has been provided in 

the C:\Documents\EPA PMF\Data folder.  The equation-based uncertainty is useful if only the 

MDL and error percent are available; however, this approach will not capture errors associated 

with the specific samples.  The uncertainties calculated by the equation-based method do not 

match the Dataset_Baltimore_unc.txt due to this simplification. 

Users can specify a Missing Value Indicator (which can be any numeric value) in the Input Files 

box on the Data Files screen.  The user should not choose a numeric indicator that could 

potentially be a real concentration.  For example, if the user specifies “-999” as the missing 

value indicator, and chooses to replace the species with the median, the program will find all 

instances of “-999” in the data file and replace them with the species-specific median.  The 

program will also replace all associated uncertainty values with a high uncertainty of four times 

the species-specific median.  If all samples of a species are missing, that species is 

automatically categorized as “bad” and excluded from further analysis.  The missing value 

indicator is used in the output files. 

If a message is displayed that the dates/times do not match in the concentration and uncertainty 

files, the user needs to check the file dates/times and reload the data before being able to 

evaluate the data in PMF.  If the dates/times in both files are the same, try saving both the 

concentration and data file in a different format, such as .csv or .txt. 

5.2 Output Files 

The user can specify the output directory (“Output Folder”), choose the EPA PMF output file 

types (“Output File Type” radio buttons) and define a prefix for output files (“Output File Prefix”).  

The prefix is added to the beginning of each file; for the example in Figure 3, the profiles will be 

saved as Balt_profile.xls.  For the examples in the User Guide, the prefix is shown as an 

asterisk (*).  The “Output File Type” includes tab-delimited text (.txt), comma-separated variable 

(.csv), or Excel Workbook (.xls).  “Output File Prefix” is the prefix that will be used as the first 

part of any output file; this prefix can contain any letters and/or numbers (other characters such 

as “-“ and “_” are not allowed).  If this prefix is not changed when a new run is initiated, a 

warning will be displayed.  If Excel Workbook output is selected, two output files are 

automatically created by EPA PMF during base runs and will be saved in the My 

Documents\EPA PMF\Output folder selected by the user:  *_base.xls and *_diagnostics.xls.  

Each file has tabs with the PMF results. 

 *_base.xls – Profiles, Contributions, Residual, Run Comparison 

 *_diagnostics.xls – Summary, Input, Base Runs 
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If a delimited output is selected, the information in the Base Runs tab is provided as separate 

files and the diagnostics tab information is combined into one file.  The following list provides the 

details on the data that are saved in the Excel output files. 

Additional files are created and saved after conducting bootstrapping:  (*_profile_boot), DISP 

(*_DISPres1, *_DISPres2, *_DISPres3, *_DISPres4), BS-DISP (*_BSDISP1, *_BSDISP2, 

*_BSDISP3, *_BSDISP4), Fpeak (*_fpeak), and/or constrained model runs (*_Constrained).  

The four files output for DISP and BS-DISP are for each dQmax; the runs using the lowest 

dQmax are used in the summary graphics and in the summary output file.  The file 

*_ErrorEstimationSummary provides a summary of the base run and the error estimations that 

have been done using BS, DISP, and BS-DISP.  The file *_profile_boot contains the number of 

BS runs mapped to each base run, each BS profile that was mapped to the base profile, and all 

bootstrapping statistics generated by the GUI.  The file *_fpeak contains the profiles and 

contributions of each Fpeak run.  When multiple base model runs are completed, by default, 

only the run with the lowest Q(robust) value is saved to the output, but the user may opt to 

include all runs in the output by unselecting “Output Only Selected Run.”   

5.3 Configuration Files 

EPA PMF provides the option of saving run preferences and input parameters in a configuration 

file.  The user must provide a name for a configuration file on the Input File Screen to create a 

configuration file.  Information saved in the configuration file include specifications from the Data 

Files screen (e.g., input files, output file location, and output file type), species categorizations 

from the Concentration/Uncertainty screen, and all run specifications from the Base Model Runs 

screen, Fpeak Rotation screen, and Constrained Model Runs screen.  Model output is not 

saved as part of the configuration file; however, the model random starting point or seed 

number is saved if the Random Start button is unchecked.  To choose a configuration file, the 

user can click on “Browse” to browse to the correct path or type in a path and name.  The user 

can also press the “Load Last” button or simply press “Enter” on the keyboard to load the most 

recently used configuration file.  The “Save” and “Save As” buttons can be used to save the 

current settings to an existing or new configuration file. 

Configuration files can be used on multiple computers or shared with collaborators, thereby 

avoiding a long list of preferences to replicate the results.  Use the “Browse” button to locate 

and load the configuration file.  The location of both the concentration and uncertainty files must 

be identified next.  PMF does not store past run data; however, the results can be easily 

calculated by PMF as long as the same number of factors, runs, and a fixed seed is used 

(random start is not selected).   

5.4 Suggested Order of Operations 

The GUI is designed to give the user as much flexibility as possible when running the PMF 

model.  However, certain steps must be completed to utilize the full potential of the provided 

tools.  The order of operations is mainly based on how the tabs and functions are arranged 

(from left to right) in the program (Figure 6, Figure 7, and Figure 8); the sections in this user 

guide also follow this order.  To begin using the program, the user must provide input files via 
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the Model Data - Data Files screen before other operations are available.  The first time PMF is 

performed on the data set, the user should analyze the input data via the 

Concentration/Uncertainty, Concentration Scatter Plot, Concentration Time Series, and Data 

Exceptions screens.  This step is usually followed by Base Model Runs and Base Model Results 

under the Base Model tab; these steps should be repeated as needed until the user reaches a 

reasonable solution.  The solution is evaluated using the Error Estimation options starting with 

DISP and progressing to BS and BS-DISP; the output from the error estimation methods (DISP, 

BS, and BS-DISP) provides key information on the stability of the solution.  All three error 

estimation methods are required to understand the uncertainty associated with the solution.  

Advanced users may wish to initiate Fpeak runs or constrained model runs based on a selected 

base run; both options are available under the Rotational Tools tab.  

Input/Output 
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& Uncertainty
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Configuration 

File
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Figure 6.  Flow chart of operations within EPA PMF – Base Model. 

5.5 Analyze Input Data 

Several tools are available to help the user analyze the concentration and uncertainty data 

before running the model.  These tools help the user decide whether certain species should be 

excluded or downweighted (e.g., due to increased uncertainty or a low signal-to-noise ratio), or 
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if certain samples should be excluded (e.g., due to an outlier event).  All changes and deletions 

should be reported with the final solution.  The four screens for analyzing input data are 

described below. 
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Figure 7.  Flow chart of operations within EPA PMF – Fpeak. 

5.5.1 Concentration/Uncertainty 

Input data statistics and concentration/uncertainty scatter plots are presented in the 

Concentration/Uncertainty screen, as shown in Figure 9.  The following statistics are calculated 

for each species and displayed in a table on the left of the screen (Figure 9, 1): 

 Minimum (Min) – minimum concentration value  

 25th percentile (25th)  

 Median – 50th percentile (50th) 

 75th percentile (75th)  

 Maximum (Max) – maximum value reported 

 Signal-to-noise ratio (S/N) – indicates whether the variability in the measurements is real or 

within the noise of the data 
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Figure 8.  Flow chart of operations within EPA PMF – Constraints. 

Percentiles are calculated using a weighted average approach (Equation 5-2):  

       (   )  
(   ) 

   
     (5-2) 

 (   )      

                   

            (   )     (   ) 

where n represents the number of non-missing values of the selected variable; p is the 

percentile of interest; I is the integer part of L(n,p); F represents the fractional part of L(n,p); W1, 

W2, and W3 are weights; P is the pth percentile; and X1,X2,…,Xn represent the ordered values of 

the variable of interest.   

The S/N calculation in EPA PMF has been revised in the new version.  Previously, S/N of a 

given species was essentially the sum of the concentration values divided by the sum of 

uncertainty values.  While reasonable, this could lead to different problems in certain specific 

situations.  Artificially high S/N values would be obtained for species with a handful of high 
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concentration events, resulting in a S/N that may actually be higher than another species’ S/N 

with more consistent signal.  More seriously, artificially low S/N values could appear for species 

with a few missing values.  Missing values are usually downweighted by very large uncertainty 

values, typically (much) larger than the largest concentration values in the species in question.   

 

Figure 9.  Example of the Concentration/Uncertainty screen. 

If this process was done to the data prior to ingest into EPA PMF, such inflated uncertainty 

values will inflate the N in S/N calculations, resulting in a S/N that will be small enough to cause 

the classification of a perfectly strong variable as “weak.”  The latter problem has been 

repeatedly observed in practical work.  In addition, the presence of slightly negative 

concentration values, not uncommon in environmental data, could artificially decrease S and 

hence the S/N of a species.   

In the revised calculation, only concentration values that exceed the uncertainty contribute to 

the signal portion of the S/N calculation, because the concentration value is essentially equal to 

the sum of signal and noise, and therefore signal is the difference between concentration and 

uncertainty.   

Two calculations are performed to determine S/N, where concentrations below uncertainty are 

determined to have no signal, and for concentrations above uncertainty, the difference between 

concentration (xi) and uncertainty (si) is used as the signal (Equation 5-3): 

1 

 2 

3 

4 
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S/N is then calculated using Equation 5-4: 
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The result with this new S/N calculation is that species with concentrations always below their 

uncertainty have a S/N of 0.  Species with concentrations that are twice the uncertainty value 

have a S/N of 1.  S/N greater than 1 may often indicate a species with “good” signal, though this 

depends on how uncertainties were determined.  Negative concentration values do not 

contribute to the S/N, and species with a handful of high concentration events will not have 

artificially high S/N.  While there are many methods to determine S/N, the one selected in the 

new version of EPA PMF may be more useful in environmental data analysis compared to the 

prior version, though with the caveat that the S/N is merely one of many analyses for screening 

data. 

Based on these statistics and knowledge of analytical and sampling issues, the user can 

categorize a species as “Strong,” “Weak,” or “Bad” by selecting the species in the Input Data 

Statistics table (Figure 9, 1) and pressing the appropriate button under the table (Figure 9, 2).  

In addition, Alt+W, Alt+B, and Alt+G can be used to change a species category to Weak, Bad, 

or Good, respectively.  The default value for all species is “Strong.”  A categorization of “Weak” 

triples the provided uncertainty, and a categorization of “Bad” excludes the species from the rest 

of the analysis.  If a species is marked “Weak,” the row is highlighted orange; if a species is 

marked “Bad,” the row is highlighted pink.  When choosing the category for each species, the 

user should consider the presence of sources that could be contributing to species based on 

measured profiles, tracer species for point sources that may have infrequent impacts, the 

number of samples that are missing or below the limit of detection, known problems with the 

collection or analysis of the species, and species reactivity. 

 A discussion of these considerations is provided in Reff et al. (2007).  Detailed knowledge of 

the sources, sampling, and analytical uncertainties is the best way to decide on the species 

category.  If detailed information about the data set is unavailable, the S/N ratios may be used 

to categorize one or more species.  To conservatively use the S/N ratios to categorize species, 

categorize the species as “Bad” if the S/N ratio is less than 0.5 and “Weak” if the S/N ratio is 

greater than 0.5 but less than 1.  For the sample Baltimore data set provided with the installation 

package (Dataset-Baltimore_con.txt and Dataset-Baltimore_unc.txt), these guidelines would 

result in aluminum, arsenic, barium, chlorine, chromium, manganese, and selenium categorized 

as “Bad” and lead, nickel, titanium, and vanadium as “Weak.”  Any changes made to the 
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user-provided uncertainty by making a species category “Weak” or by adding extra modeling 

uncertainty should be documented by the user and reported with the final solution.  

For users familiar with EPA PMF, Table 2 shows a summary of the PMF input information for 

the Baltimore Example, which is used in Sections 5 and 6 to demonstrate PMF.  This summary 

information will be presented for users who would like to run the software while learning about 

the new features and structure of EPA PMF 5.0. 

A concentration/uncertainty scatter plot is displayed on the right of the screen (Figure 9, 3) and 

the plot shows the relationship between the concentration and the user provided or PMF 

calculated uncertainties.  The species to be plotted is selected in the Input Data Statistics table 

either by clicking on the species row or scrolling up and down through the species and only one 

species can be displayed at a time.  The statistics for each species are shown in the table:  S/N; 

Minimum (Min), 25th, 50th, and 75th percentile; Maximum (Max), % Modeled Samples (number of 

samples with matched non-missing selected species divided by total number of input samples), 

and % Raw Samples (number of non-missing input samples divided by total number of input 

samples).  For example, if four sites with equivalent number of data points and no missing data 

were ingested, and only one of the four sites was included for modeling, “% modeled 

samples”=25%, while “% raw samples”=100%, since there was no reduction of data directly 

upon ingest. If missing data were in the ingested data, and “exclude entire sample” for missing 

data was selected, both % modeled and % raw would be lower.  The last two values are 

important because PMF requires that all good or weak category species be non-missing for the 

sample to be included in the PMF run.  The % Modeled Samples and % Raw Samples can be 

used to identify the species that may be limiting the total number of samples used in a run. 

Table 2.  Baltimore example – summary of PMF input information. 

 

**** Data Files **** **** Base Run Summary ****

Concentration file: Dataset-Baltimore_con.txt Number of base runs: 20

Uncertainty file: Dataset-Baltimore_unc.txt Base random seed: 89

Number of factors: 7

Extra modeling uncertainty: 0

Excluded Samples

07/04/02

07/07/02

07/08/02

12/31/02

07/05/03

01/01/05

07/03/05

07/01/06

07/04/06

**** Input Data Statistics ****

Species Category S/N Species Category S/N

PM2.5 Weak 9.0 Manganese Weak 0.3

Aluminum Weak 0.1 Nickel Weak 0.5

Ammonium Ion Strong 8.9 Organic Carbon Strong 7.8

Arsenic Weak 0.1 OM Bad 7.8

Barium Weak 0.0 Potassium Ion Strong 2.1

Bromine Strong 2.0 Selenium Weak 0.2

Calcium Strong 2.1 Silicon Strong 2.0

Chlorine Weak 0.1 Sodium Ion Weak 1.0

Chromium Weak 0.0 Sulfate Strong 9.2

Copper Weak 1.0 Titanium Weak 0.7

Elemental Carbon Strong 4.4 Total Nitrate Strong 7.9

Iron Strong 5.6 Vanadium Weak 0.6

Lead Weak 0.5 Zinc Strong 5.1
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The x-axis is the concentration, the y-axis is the uncertainty, and the graph title is the name of 

the species plotted.  If users change a species categorization to “Weak,” the 

concentration/uncertainty scatter plot for that species will be updated to three times the original 

uncertainty and the data points will be changed to orange squares.  If users change a species 

categorization to “Bad,” the graph for that species will not be displayed.  A typical concentration 

and uncertainty relationship is a hockey stick shape where the MDL dominates the uncertainty 

at low concentrations and becomes linear as the percentage of the concentration dominates the 

uncertainty.  Points with uncertainties that do not follow the general trend of the data should be 

further evaluated by reading available sampling and analytical reports. 

The user can also add “Extra Modeling Uncertainty (0-100%),” which is applied to all species, by 

entering a value in the box in the lower right corner of the screen (Figure 9, 4).  This value 

encompasses various errors that are not considered measurement or analytical errors and 

which are included in the user-provided uncertainty files.  Issues that could cause modeling 

errors include variation of source profiles and chemical transformations in the atmosphere.  The 

model uses the “Extra Modeling Uncertainty” variable to calculate “sigma,” which corresponds to 

total uncertainty (modeling uncertainty plus species/sample-specific uncertainty).  If the user 

specifies extra modeling uncertainty, all concentration/uncertainty graphs will be updated to 

reflect the increase in uncertainty.  As shown in Equation 1-2, the uncertainty values are a 

critical input in the PMF model.   

On this screen, the user can also specify a “Total Variable” (Figure 9, 2) that will be used by the 

program in the post-processing of results.  For example, if the data used are PM2.5 components, 

the total variable would be PM2.5 mass.  The user specifies the total variable by selecting the 

species and pressing the “Total Variable” button beneath the Input Data Statistics table.  

Because a total variable should not have a large influence on the solution, it should be given a 

high uncertainty.  Therefore, when a species is selected as a total variable, its categorization is 

automatically set to “Weak.”  If the user has already adjusted the uncertainty of the total variable 

outside of PMF and wishes to categorize it as “Strong,” the default characterization can be 

overridden by selecting “Strong” for the variable after selecting “Total Variable.”  A species 

designated “Bad” cannot be selected as a total variable, and a total variable cannot be made 

“Bad.” 

The status bar in the Concentration/Uncertainty screen displays the number of species of each 

category as well as the percentage of samples excluded by the user.  Hot keys can be used to 

assign “Strong” (Alt-S), “Weak” (Alt-W), “Bad” (Alt-B), and “Total Variable” (Alt-T).  The user can 

also sort the input data by clicking on the column headers.  Clicking on the “Species” and “Cat” 

columns will sort the input data in alphabetical or reverse alphabetical order.  Clicking on the 

remaining columns will sort the data in ascending or descending order.  To return to the original 

species sort order (which corresponds to the order listed in the input concentration data file on 

the Data Files screen) the user can select “Unsort” (Figure 9, 2) or use a hot key (Alt-U).  

5.5.2 Concentration Scatter Plots 

Scatter plots between species are a useful pre-PMF analysis tool; a correlation between species 

indicates a similar source type or source locations.  The user should examine scatter plots to 
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look for expected relationships, as well as to look for other relationships that might indicate 

sources or source categories. 

The Concentration Scatter Plot screen shows scatter plots between two user-specified species 

(Figure 10).  The user selects the species for each axis in the appropriate “Y Axis” or “X Axis” 

list.  Only one species can be selected for each axis.  A one-to-one line (in blue) and linear 

regression line (in dashed red) are shown on the plot.  Axis labels are the species names and 

units (if provided) and the plot title is “Y Axis Species/X Axis Species.”  Some examples of linear 

relationships between species indicate source impacts:  iron and zinc for steel production and 

sulfate and ammonium ion for ammonium sulfate from coal-fired power plants. 

As the user mouses over the points, the status bar at the bottom of the window shows the date, 

y-value, x-value, and the regression equation. 

 

Figure 10.  Example of a concentration scatter plot. 

5.5.3 Concentration Time Series 

Time series of species concentrations (Figure 11) are useful to determine whether expected 

temporal patterns are present in the data and whether there are any unusual events.  By 

overlaying multiple species, the user can see if any unusual events are present across a group 
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of species that may indicate a shared source.  The user should also examine time series for 

extreme events that should be excluded from modeling (for example, elevated potassium 

concentrations on the Fourth of July from fireworks).  The firework impacts can show up both 

before and after the Fourth of July as well as on New Year’s Eve (elevated concentrations on 

the January 1 sample). 

The user can select up to 10 species in the Concentration Time Series list by checking the box 

next to each species name (Figure 11, 1).  The selected species will be displayed in varying 

colors on the plot.  To clear all species from the plot, the user should select “Clear Selections” 

below the list.  Vertical orange lines denote January 1 of each year (if appropriate) for reference.  

A legend is provided at the top of the graph with species names and units (if available).  Vertical 

lines separating points by SampleID can be toggled on the Data Files screen.  A legend is 

provided at the top of the graph with species names and units (if available).  The legend 

automatically updates with each selection.  If data are not in order by date, e.g., if there are 

multiple SampleIDs for a given date, the x-axis will display “Sample Number”, as the plot is 

simply a line plot, rather than a time series of sequential samples.  The legend automatically 

updates with each selection.  The status bar on this screen shows the selected sample 

date/time, the SampleID if provided, the number of samples included out of the total number of 

samples, and the percent of samples excluded by the user.  The arrow buttons below the plot, 

or the right and left arrow keys on the keyboard, can be used to scroll through samples.  If a 

group of samples is selected, the arrows will move the first selected sample forward/backward 

by one sample.  Samples can be removed from analysis by selecting individual data points with 

a single mouse click or dragging the mouse over a range of dates.  Pressing the “Exclude 

Samples” button below the plot will remove the samples and gray them out for all species 

(Figure 11, 2).  Excluded samples can be included again by selecting the data point/range on 

any species time series graph and pressing “Restore Samples.”  If a sample is removed from 

analysis, it will not be included in the statistics or plots generated by EPA PMF or in any model 

output, but it is not removed from the original user input files.  Hot keys can be used to exclude 

(Alt-E) or restore (Alt-R) selected samples.  A number of samples impacted by fireworks were 

excluded:  07/04/02, 07/07/02, 07/08/02, 12/31/02, 07/05/03, 01/01/05, 07/03/05, 07/01/06, and 

07/04/06.  Impacts such as fireworks represent a challenge for PMF and multivariate models 

because they are infrequent short duration events with high concentrations.   

5.5.4 Data Exceptions 

Changes made by the GUI to the input data are detailed in the Data Exceptions screen.  These 

changes include designating a species “Weak” or “Bad,” excluding a sample via the 

Concentration Time Series screen, or excluding a sample using “Missing Value Indicator” in the 

Data Files screen “Input Files” box.  Click the right mouse button to save the data exceptions 

information. 

5.6 Base Model Runs 

Base Model Run produces the primary PMF output of profiles and contributions.  The base 

model run uses a new random seed or starting point for iterations if the “Random Start” option is 

selected.  A user can test whether the solution found is a local or global minimum by using 

many random seeds and examining whether the Q(robust) values are stable.  A constant seed 
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can be set by unselecting the “Random Start” box.  A constant seed with the same number of 

factors and runs will generate the same PMF result; the seed is also saved in the configuration 

file.  The configuration file can be reloaded for additional evaluation of PMF solutions and can 

also be sent to collaborators for evaluation of a PMF solution. 

 

 

Figure 11.  Example of the Concentration Time Series screen with excluded and selected samples. 

5.6.1 Initiating a Base Run 

Base model runs are initiated on the Base Model Runs screen under the Base Model tab 

(Figure 12).  The following parameters need to be specified: 

 “Number of Runs” – the number of base runs to be performed; this number must be an 

integer between 1 and 999.  The recommended number of runs is 20, which will allow for an 

evaluation of the variation in Q. 

 “Number of Factors” – the number of factors the model should fit; this number must be an 

integer between 1 and 999.  The number of factors to be chosen will depend on the user’s 

understanding of the sources impacting samples, number of samples, sampling time 

resolution, and species characteristics. 

1 

2 
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 “Seed” – the starting point for each iteration in ME-2; the default is Random Start, which 

tells the GUI to randomly choose a starting point for each run.  The random seed number is 

displayed in the “Seed Number” box (Figure 12, 1).  To reproduce results, unselect the 

“Random Start” option, so that the seed number used will be saved as part of the .cfg file, 

and thus an identical solution can be recreated later using the same .cfg (Figure 12, 2).   

After the aforementioned parameters are specified, the user should press the “Run” button in 

Base Model Runs to initiate the base runs.  Once runs are initiated, the “Run Progress” box in 

the lower right corner of the screen activates.  Base model runs can be terminated at any time 

by pressing the “Stop” button in the “Run Progress” box.  The progress bar in this box also fills 

whenever runs are performed.  No information about the runs will be saved or displayed if the 

runs are stopped.  

The status bar on the Base Model Runs screen displays the same information as on the Data 

Files screen. 

 

Figure 12.  Example of the Base Model Runs screen showing Random Start (1) and Fixed Start (2). 

5.6.2 Base Model Run Summary 

When the base runs are completed, a summary of each run appears on the right portion of the 

Base Model Runs screen in the Base Model Run Summary table (Figure 13, red box).  The 

Q-values are goodness-of-fit parameters calculated using Equation 1-2 and are an assessment 

of how well the model fits the input data.  The run with the lowest Q(robust) is highlighted and 

only the converged solutions should be investigated.  Non-convergence implies that the model 

did not find any minima.  Several things could cause the non-convergence, including 

uncertainties that are too low or specified incorrectly, or inappropriate input parameters.  

The Q(robust) and Q(true) values provide a comparison of the fit of the runs; more detail is 

provided by comparing the residuals.  The intra-run residual calculation compares the residuals 

between base runs by adding the squared difference between the uncertainty-scaled residuals 

for each pair of base runs (Equation 5-5): 

   
i

ijlijkjkl rrd
2

 (5-5) 
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where r is the scaled residual, i is the sample, j is the variable, and k and l are two different runs.  

These results are shown in a matrix and can be used to identify runs with significantly different 

fits.  Also, the paired species values for each run can be compared by adding the d-values 

(Equation 5-6). 

 

Figure 13.  Example of the Base Model Runs screen after base runs have been completed. 

 
j

jklkl dD  (5-6) 

The D-values are reported in a matrix of base run pairs.  The user should examine this matrix 

for large variations, which indicate that two runs resulted in truly different solutions rather than 

merely being rotations of each other.  If different solutions are seen, the user can then examine 

the d-values, which will indicate the individual species that are fitted differently across the runs.   

The distribution of species concentration and percent of species sum results are also evaluated 

for each of these factors:  Lowest Q, Minimum (Min), 25th percentile, 50th percentile, 75th 

percentile, Maximum (Max), Mean, Standard Deviation (SD), Relative Standard Deviation 

(SD*100/mean), and RSD % Lowest Q.  Large variations in species distributions may indicate 

that the factor profile is changing due to process changes, reactivity, or measurement issues. 

These intra-run variability results are recorded in the *_diag file and can be viewed through the 

GUI by selecting the Diagnostics tab and scrolling to “Scaled residual analysis.”  In addition, a 

factor summary of the species distribution compared to the lowest Q(robust) run is recorded in 
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the *_run_comparison file and can be viewed through the GUI by selecting the Diagnostics tab 

and the lower window “Run Comparison Statistics.” 

5.6.3 Base Model Results 

Details of the base model run results are provided in the screens under the Base Model Results 

tab.  The results for the run with the lowest Q(robust) value are automatically displayed.  The 

user can change the run number either by highlighting it in the Base Model Run Summary table 

on the Base Model Runs screen, or by selecting the run number at the bottom of the Base 

Model Results screen.   

Residual Analysis 

The Residual Analysis screen (Figure 14) displays the uncertainty-scaled residuals in several 

formats for the selected run.  At the left of the screen (Figure 14, 1), the user can select a 

species, which will be displayed in the histogram in the center of the screen (Figure 14, 2).  The 

histogram shows the percent of all scaled residuals in a given bin (each bin is equal to 0.5).  

These plots are useful to determine how well the model fits each species.  If a species has 

many large scaled residuals or displays a non-normal curve, it may be an indication of a poor fit.   

The species in Figure 14 (sulfate) is well-modeled; all residuals are between +3 and -3 and they 

are normally distributed.  Gray lines are provided for reference at +3 and -3.  Selecting the 

“Autoscale Histogram” box will set the y-axis range maximum at +10% of the maximum bin 

count for each species.  If the box is unchecked, the y-axis maximum is fixed at 100%.  Species 

with residuals beyond +3 and -3 need to be evaluated in the Obs/Pred Scatter Plot and Time 

Series screens.  Large positive scaled residuals may indicate that PMF is not fitting the species 

or the species is present in an infrequent source.   

The screen also displays the samples with scaled residuals that are greater than a user-

specified value (Figure 14, 3).  The default value is 3.0.  The residuals can be displayed as 

“Dates by Species” or “Species by Dates” by choosing the appropriate option above the table.  

When a species is selected in the list on the left (Figure 14, 1), the table on the right (Figure 

14, 3) automatically scrolls to that species.  

Observed/Predicted Scatter Plot 

A comparison between observed (input data) values and predicted (modeled) values is useful to 

determine if the model fits the individual species well.  Species that do not have a strong 

correlation between observed and predicted values should be evaluated by the user to 

determine whether they should be down-weighted or excluded from the model. 

A table in the Obs/Pred Scatter Plot screen shows Base Run Statistics for each species (Figure 

15, 1).  These numbers are calculated using the observed and predicted concentrations to 

indicate how well each species is fit by the model.  The statistics shown are the coefficient of 

determination (r2), Intercept, Intercept SE (standard error), Slope, Slope SE, SE, and Normal 

Resid (normal residual).  The table also indicates whether the residuals are normally distributed, 

as determined by a Kolmogorov-Smirnoff test.  If the test indicates that the residuals are not 
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normally distributed, the user should visually inspect the histogram for outlying residuals.  If not 

all statistics are visible, the user can use the scroll bars at the bottom and side of the table to 

display additional statistics.  These statistics are also provided in the *_diag output file.  The 

Obs/Pred Scatter Plot (Figure 15, 2) shows the observed (x-axis) and predicted (y-axis) 

concentrations for the selected species.  A blue one-to-one line is provided on this plot for 

reference (a perfect fit would line up exactly on this line), and the regression line is shown as a 

dotted red line.  The status bar on this screen (Figure 15) displays the date, x-value, y-value, 

and regression equation between predicted and observed data as data points are moused-over 

(Figure 15, 3). 

 

Figure 14.  Example of the Residual Analysis screen. 

Observed/Predicted Time Series 

The data displayed on the Obs/Pred Scatter Plot screen are the same data displayed as a time 

series on the Obs/Pred Time Series screen (Figure 16).  When a species is selected by the 

user, the observed (user-input) data for that species are displayed in blue and the predicted 

(modeled) data are displayed in red.  The user can view this screen to determine when the 

model is fitting the observed data well.  If the peak values of a species are not reproduced by 

the model, it may be advisable to exclude the species or change the species category to weak.  

The status bar on this screen displays the date, and the observed and predicted concentrations 

for the sample closest to the black vertical dotted reference line. 

1 

2 
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Figure 15.  Example of the Obs/Pred Scatter Plot screen. 

 

Figure 16.  Example of the Obs/Pred Time Series screen. 
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Profiles/Contributions 

The factors resolved by PMF are displayed under the Profiles/Contributions screen.  Two 

graphs are shown for each factor, one displaying the factor profile and the other displaying the 

contribution per sample of each factor (Figure 17).  The profile graph, displayed on top (Figure 

17, 1), shows the concentration of each species apportioned to the factor as a pale blue bar and 

the percent of each species apportioned to the factor as a red box.  The concentration bar 

corresponds to the left y-axis, which is a logarithmic scale.  The percent of species corresponds 

to the right y-axis.  The bottom graph shows the contribution of each factor to the total mass by 

sample (Figure 17, 2).  This graph is normalized so that the average of all contributions for each 

factor is 1.  The status bar on this screen (Figure 17, red box) displays the date and 

contributions of data points as they are moused-over on the Factor Contributions plot. 

Pull-down menus at the bottom of the Profiles/Contributions screen allow the user to easily 

compare runs and factors.  Beginning in the bottom left corner, each run can be chosen by 

toggling to and clicking on the appropriate run number.  The user can quickly compare runs to 

assess the stability of the solution or determine what, if any, individual species or factors are 

varying between runs.  Users can switch between the factors resolved by PMF by using the 

pull-down menu second from the left.  Factor 1 is currently selected.  The user can create a 

stacked plot of the profiles or time series by first selecting either the factor profile plot or the 

factor concentration plot, right-clicking on the mouse to view the menu, and selecting “Stacked 

Graphs.” 

 

Figure 17.  Example of the Profiles/Contributions screen. 
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If a total variable is selected, the user can select “Concentration Units” in the bottom left corner 

of the Profiles/Contributions screen to display the contributions in the same units as the total 

mass (Figure 18).  If this option is selected, the GUI multiplies the contributions by the mass of 

the total variable in that factor.  The status bar displays the date, factor contribution, total 

variable selected, and the species factor as they are moused-over on the Factor Contributions 

plot (Figure 18, red box).  If no mass from the total variable is apportioned to the factor, the 

graph is not shown and the GUI instead displays “Total Variable mass is 0 for this run/factor.”   

 

Figure 18.  Example of the Profiles/Contributions screen with “Concentration Units” selected. 

The user can give a factor a name in the Profiles/Contributions screen by right-clicking on the 

mouse to view the menu, selecting “factor name,” typing in a unique name, and then pressing 

“Apply Factor Name.”  The new factor name(s) will appear on the Factor Fingerprints, G-Space 

Plot, Factor Contributions, and Diagnostics screens.  Factor 1 has high concentrations of sulfate 

and ammonium ions and it represents secondary sulfate formation from the combustion of coal 

in power plants.  The identification of factors from PMF requires review of measured species 

relationships.  Some sources may be easily identified; an industrial source, for example, may be 

dominated by peaks in zinc concentrations.  Other sources may be more difficult to identify. 

The species Q/Qexpected (Q/Qexp) can be displayed by selecting the “Q/Qexp” toggle on the 

Profiles/Contributions tab (Figure 19).  Qexpected is equal to (number of non-weak data values in 
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X) - (numbers of elements in G and F, taken together).  For example, for five factors, 642 

samples, and 19 strong species, this equals (642*19) – ((5*642)+(5*19)), or 8893.  For each 

species, the Q/Qexp for a species is the sum of the squares of the scaled residuals for that 

species, divided by the overall Qexpected divided by the number of strong species.  For each 

sample, the Q/Qexp is the sum of the square of the scaled residuals over all species, divided by 

the number of species.  Examining the Q/Qexp graphs is an efficient way to understand the 

residuals of the PMF solution, and in particular, what samples and/or species were not well 

modeled (i.e., have values greater than 2).  A comparison of the species results shows that EC 

and OC have elevated Q/Qexp values, which might indicate that motor vehicle contribution 

could be better explained by adding another source (Figure 19, 1).  Also, the time series of 

Q/Qexp values shows two days where the species concentrations were not fit as well compared 

to other days (Figure 19, 2).  These days might have had unique source impacts and should be 

investigated further. 

 

Figure 19.  Example of the Profiles/Contributions screen with “Q/Qexp” selected. 

Factor Fingerprints 

The concentration (in percent) of each species contributing to each factor is displayed as a 

stacked bar chart in the Factor Fingerprints screen (Figure 20).  This plot can be used to verify 

factor names and determine the distribution of the factors for individual species.  The plot only 

displays the currently selected run.  To change runs, the user can select a different run number 

1 

2 
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at the bottom left-hand corner of the Residual Analysis, Obs/Pred Scatter Plot, Obs/Pred Time 

Series, or Profiles/Contributions screens. 

 

Figure 20.  Example of the Factor Fingerpints screen. 

G-Space Plot 

The G-Space Plot screen (Figure 21) shows scatter plots of one factor versus another factor, 

which can be used to assess rotational abiguity as well as the relationship between source 

contributions.  A more stable solution will have many samples with zero contributions on both 

axes, which provide greater stability in the PMF solution to less rotational ambiguity.  A solution 

or combination of sources may also have no points on or near the axes, which results in greater 

rotational ambiguity.  The user selects one factor for the y-axis and one factor for the x- axis 

from lists on the left of the screen.  A scatter plot of these factors will be shown on the right of 

the screen.  The plot in Figure 21 is an example of a non-optimal rotation of a factor, which has 

an upper edge that is not aligned with the axis in the G-Space plot (red line added for 

reference).  In EPA PMF, the user can explore different rotations via the Fpeak option (Paatero 

et al., 2005), which is explained in detail in Section 6.1.  The G-Space plots are also useful for 

understanding the relationship between the factor source contributions and the pattern in Figure 

21 shows not relationship between regional secondary sulfate and local steel production. 
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Figure 21.  Example of the G-Space Plot screen with a red line indicating an edge. 

Factor Contributions 

The Factor Contributions screen (Figure 22) shows two graphs.  The top graph is a pie chart 

which displays the distribution of each species among the factors resolved by PMF (Figure 

22, 1).  The species of interest is selected in the table on the left of the screen; the 

categorization of that species is also displayed for reference.  If a total variable was chosen by 

the user under the Concentration/Uncertainty screen, that variable is boldfaced in the table.  

The pie chart for the selected species is on the right side of the screen.  If the user has specified 

a total variable, the distribution of this variable across the factors will be of particular importance.  

The user may also want to examine the distribution of key source tracer species across factors.  

The bottom graph shows the contribution of all the factors to the total mass by sample (Figure 

22, 2).  The dotted orange lines denote January 1 of each year.  The graph is normalized so that 

the average of all the contributions for each factor is 1, to allow for a comparison of the temporal 

pattern of source contributions. 

Diagnostics 

The Diagnostics screen displays two outputs, which are also saved in the output directory:  

*_diag and the *_run_comparison file. 
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Figure 22.  Example of the Factor Contributions screen. 

Output Files 

After the base runs are completed, the GUI creates output files that contain all of the data used 

for the on-screen display of the results.  The number of output files created depends on the type 

of output file selected:  tab-delimited (*.txt) and comma-delimited (*.csv) create five output files – 

*_diag, *_contrib, *_profile, *_resid and *_runcomparison.  Excel Workbook (*.xls) creates two 

output files – *_diag and *_base.  The output files are saved to the directory specified in the 

“Output Folder” box in the Data Files screen, using the prefix specified in the “Output File Prefix” 

box. 

 *_diag contains a record of the user inputs and model diagnostic information (identical to the 

Diagnostics screen). 

 *_contrib contains the contributions for each base run used to generate the contribution 

graphs on the Profiles/Contributions tab.  Contributions are sorted by run number.  

Normalized contributions are shown first, followed by contributions in mass units if a total 

variable is specified. 

 *_profile contains the profiles for each base run used to generate the profile graphs on the 

Profiles/Contributions tab.  Profiles are sorted by run number.  Profiles in mass units are 

written first, followed by profiles in percent of species and concentration fraction of species 

total if a total mass variable is specified. 

 *_resid contains the residuals (regular and scaled by the uncertainty) for each base run, 

used to generate the graphs and tables on the Residual Analysis screen. 

1 
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 *_run_comparison contains a summary of the species distribution for each factor over all 

PMF runs and compared to the lowest Q(robust) run. 

 *_base contains the *_contrib, *_profile, *_resid and *_run_comparison on separate 

worksheets in the same Excel Workbook.  This output file only appears if the user selects 

“Excel Workbook” as the output file type. 

5.6.4 Factor Names on Base Model Runs Screen 

The Factor Name can be entered or changed on the Profiles/Contributions screen or the Base 

Runs screen.  After the base runs are completed, the “Factor Names” box located in the lower 

left portion of the Base Model Runs screen will be populated (Figure 23, red box).  Each row in 

the matrix will be labeled by run number, in ascending order, and each column will be labeled by 

factor number, in ascending order.  The table is then populated with the factor name associated 

with each column header. 

The factor names are used to indicate specific solutions in the tools for assessing model results.  

Users can input their own factor names, which will replace the defaults in the Factor Names 

table and be saved in the configuration file.  The user can also set a unique factor name for all 

the base runs by inputting the name in one cell and then pressing the “Apply to All Runs” button; 

update factors names in the profile and contribution files by pressing the “Update Diag Files” 

button; or reload the default factor names into the Factor Names table by pressing “Reset to 

Defaults.” 

It should be noted that, if the user loads an existing configuration file with user-defined factor 

names and initiates base model runs with random seeds, the factor order in the run solutions 

may change.  In this case, the GUI will generate a pop-up warning to remind the user to verify 

that previous factor names are appropriate. 

Short descriptions of the error estimation methods available in PMF are shown in Figure 24 

along with the example base factor concentration (blue) and upper error limits for the three 

methods.  The upper error estimate for BS is the lowest for the zinc source and the estimates 

increase for the DISP and BS-DISP.  Random errors are estimated with the BS method 

described in this section.  Also, the Methods for Estimating Uncertainty in Factor Analytic 

Solutions paper (Paatero et al., 2014) provides a detailed description of the PMF error 

estimation methods. 
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Figure 23.  Example of the Base Model Runs screen with default base model run factor names. 

0 1 2 3 4 5 6

Zinc DISP

Zinc BS

Zinc BS-DISP
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random errors and partially include effects of 
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BS-DISP intervals include effects of random 
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BS-DISP results are more robust than for DISP 

since the DISP phase of BS-DISP does not 

displace as strongly at DISP by itself.

Displacement (DISP) intervals include effects of 

rotational ambiguity.  They do not include effects 

of random errors in the data.  For modeling 

errors, if the user misspecifies the data 

uncertainty, DISP intervals are directly impacted.  
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Rotational Ambiguity
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Figure 24.  Comparison of upper error estimates for zinc source. 
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5.7 Base Model Displacement Error Estimation 

The DISP explicitly explores the rotational ambiguity in a PMF solution by assessing the largest 

range of source profile values without an appreciable increase in the Q-value.  The DISP Error 

Estimation can be run without running BS or can be run after BS and BS-DISP (discussed in 

Sections 5.8 and 5.9, respectively).  For the solution chosen by the user, each value in the 

factor profile is first adjusted up and down and then all other values are computed to achieve the 

associated PMF (convergence to a Q-minimum).  It is important to note that the newly computed 

minimum Q-value (modified) may be different from the Q-value associated with the unadjusted 

solution (base).  The adjustment in factor profile values (up and down) is always the maximum 

allowable, with the constraint that the difference (dQ = base - modified) because of this 

adjustment is no greater than the dQmax (dQ <= dQmax).  The model generates results for the 

following dQMax values:  4, 8, 15, and 25.  For each dQmax value, DISP is executed and 

intervals (minimum and maximum source profile values) are summarized for each element in 

each factor profile.  For example, if 20 species are in a data set and a 7-factor model has been 

fitted, then the DISP method will estimate 20 x 7 = 140 intervals for each dQmax value. 

Simulations indicate dQmax values of 4 and 8 provide the smallest error ranges with the least 

number of base factor values outside the range.  EPA PMF provides results for all dQmax, but 

plots are only shown for dQmax of 4 because this should provide robust intervals for nearly all 

data sets.  DISP intervals may be calculated for both the base model solutions and base model 

solutions with added constraints.  Press the “Run” button in the Base Model Displacement 

Method box to start DISP.   

The DISP output is shown in Figure 25, along with guidance on interpreting the output.  When 

the DISP method is completed, two output files (*_DISPest.dat and *_DISP.txt) are saved in the 

directory specified in the Output Folder box in the Data Files screen.  The .dat file is in a concise 

format most usable by software and is not intended for users to view; there are no labels in this 

file, only numbers.  The .txt file is a very large text file with details about the models fitted and 

the resulting DISP intervals.   

Four files are output from DISP, one for each dQmax used, and the user-provided output file 

prefix is placed at the start of the file name and is denoted in this user guide as an asterisk (*) 

(dQmax=4, 8, 16, 32; * _DISPres1, *_DISPres2, * _DISPres3,  *_DISPres4).  In each file, there 

is a line with two numbers, followed by four lines of data.  In the first line, the first value is an 

error code:  0 means no error; 6 or 9 indicates that the run was aborted.  If this first value is 

non-zero, the DISP analysis results are considered invalid.  The second value is the largest 

observed drop of Q during DISP.  

Below the first line is a four-line table that contains swap counts for factors (columns) for each 

dQmax level (rows).  The first row is for dQmax = 4, the second row dQmax=8, the third 

dQmax=15 and the fourth dQmax=25.  The swap counts are a key indicator of the stability of a 

PMF solution and swaps at dQmax = 4 or the first row in the table indicate that the solution 

should not be interpreted. 
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Figure 25.  Example of the Base Model Displacement Summary screen. 

If factor swaps occur for the smallest dQmax, it indicates that there is significant rotational 

ambiguity and that the solution is not sufficiently robust to be used.  If the decrease in Q is 

greater than 1%, it likely is the case that no DISP results should be published unless DISP 

analysis is redone after finding the true global minimum of Q.  To improve the solution, the 

number of factors could be reduced, marginal species could be excluded, or unusual events in 

time series plots could be excluded.   

Below these diagnostics in the *_DISPresX data files are four blocks of data, where each 

column is a factor and each row a species:  (1) the profile matrix upper bound, in concentration 

units; (2) the profile matrix lower bound, in concentration units; (3) the profile matrix upper 

bound, in % species units; (4) the profile matrix lower bound, in % species.  The DISPPres files 

are output directly from ME and are for users who want to process the output.  The DISP results 

for a dQmax of 4 are summarized in an easy-to-use file:  *_ErrorEstimationSummary. 

5.8 Base Model BS Error Estimation 

BS is used to detect and estimate disproportionate effects of a small set of observations on the 

solution and also, to a lesser extent, effects of rotational ambiguity.  BS data sets are 

constructed by randomly sampling blocks of observations from the original data set.  The block 

length depends on the data set and is chosen so that each BS data set preserves the 

underlying serial correlation that may be present in the base data set.  Blocks of observations 

are randomly selected until the BS data set is the same size as the original input data.  
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A number of BS data sets (e.g., 100) are then processed with PMF, and for each BS run, the BS 

factors are compared with the base run factors using the following method:  the BS factor is 

mapped to the base factor with which the BS factor contribution has the highest correlation (and 

above a user-specified threshold).  If no base factors correlate above the threshold for a given 

BS factor, that factor is considered “unmapped.”  This process is repeated for as many BS runs 

as the user specifies.  There can be instances when multiple BS factors from the same run may 

be mapped to the same base factor.  

EPA PMF then summarizes all the bootstrapping runs.  The user should examine the BS results 

to determine if the base run (blue square) is within the interquartile ranges (box) around the 

profiles.  Species with their base run value outside of the interquartile range should be 

interpreted with caution because a small set of observations may have impacted the base run 

results or the species concentration in the factor could be insignificant.  The mapping of BS 

factors to base factors will ideally be one-to-one.  That is, factors from each BS run factor 

should match exactly one, and only one, base factor.  However, it is likely that the presence (or 

absence) of a few critical observations can dramatically impact the BS factor profile.  In such 

instances, the affected BS factors may closely match a particular base factor most of the times 

and some other base factor the rest of the time.  In addition, specification of too many factors in 

the base model may also create a phantom factor.  Any factor with approximately 80% or less 

mapping from the BS run should have the major contributing species in the profile investigated 

and further evaluation of the base model results should be done with the BS-DISP and DISP 

error estimation methods.  

Initiating BSRuns 

Bootstrapping captures the error associated with random errors and it is initiated under the Base 

Model tab, in the Base Model Runs screen (Figure 26, red box).  As with the base runs, the user 

must make multiple choices prior to initiating the BS runs:   

 Base Run – the base run to be used to map each BS run.  The base run with the lowest 

Q(robust) is automatically provided; the user can enter another run number.   

 Block Size – the number of samples that will be selected in each step of resampling.  For 

example, a block size of three means that each BS block will comprise three samples from 

the input data set (i.e., samples 8-10 could be one block).  The default block size is 

calculated according to Politis and White (2003), but can be overridden by the user.  If the 

default has been overridden, the user can press the “Suggest” button to restore the default 

value.  

 Number of Bootstraps – the number of BS runs to be performed.  It is recommended that 

100 BS runs be performed to ensure the robustness of the statistics; for preliminary 

analysis, 50 BS runs may be performed to quickly gauge the stability of a solution. A 

minimum of 20 BS runs are required. 

 Minimum Correlation R-Value – the minimum Pearson correlation coefficient that will be 

used in the assignment of a BS run factor to a base run factor.  The default value is 0.6.  If a 

large number of factors are unmapped, the user may want to investigate the impact of 

lowering the R-value.  This change should be reported with the final solution. 
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After all input parameters have been entered, the BS runs can be initiated by pressing the “Run” 

button inside the Base Model Bootstrap Method box.  As with the base runs, the user can 

interrupt the runs by pressing the “Stop” button in the lower right corner of the Base Model Runs 

screen.  No outputs will be saved or overwritten if the run is interrupted.  

 

Figure 26.  Example of the Base Model Runs screen highlighting the Base Model 
Bootstrap Method box. 

5.8.1 Summary of BS Runs 

A summary of base model BS runs is presented in the Base Bootstrap Summary screen under 

the Base Model Bootstrap Results tab (Figure 27), which appears only after the BS has been 

run.  The first eight lines in this screen contain all the input parameters for bootstrapping, as 

specified by the user in the Base Model Runs screen.  The summary screen also includes 

several tables that summarize the BS run results.  The first table is a matrix of how many BS 

factors were matched to each base factor.  The next table shows the minimum, maximum, 

median, and 25th and 75th percentiles of the Q(robust) values.  The rest of the summary is the 

variability in each factor profile, also given as the mean, standard deviation, 5th percentile, 25th 

percentile, median, 75th percentile, and 95th percentile, using weighted average percentiles (see 

equation 5-2).  The base run of each profile is included as the first column for reference, as is a 

column indicating if the base run profile is within the interquartile range of the BS run profiles. 

EPA PMF also calculates the Discrete Difference Percentiles (DDP) associated with the BS 

runs and reports these values in the Base Bootstrap Summary screen.  This method estimates 

the 90th and 95th percentile confidence intervals (CI) around the base run profile, reported as 

percentages.  The DDP is calculated by taking the 90th and 95th percentiles of the absolute 

differences between the base run and the BS runs for each species in each profile and 

expressing it as a percentage of the base run value.  If the DDP percent is greater than 999, a 

“+” is displayed on screen.  The original value is saved in the output files (*_diag and *_boot).  If 

the base run value for a species is zero, it is not possible to calculate the DDP; in these cases, 

an asterisk (*) is displayed.  The DDP values can be used for reporting the BS error estimates. 

For this example, the base and boot factors are matched except for three factors with three runs 

that were mapped to factor 7.  The crustal (factor 4) and motor vehicle (factor 7) contain crustal 
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elements and the steel source also was mapped to three other sources, which could be due to 

BS not creating a data set with all of the samples with high steel production impacts.  The total 

number of mapped factors may also not add up to the number of BS runs if the boot factor run 

did not converge.  Mapping over 80% of the factors indicates that the BS uncertainties can be 

interpreted and the number of factors may be appropriate.   

 

Figure 27.  Example of the Base Bootstrap Summary screen. 

5.8.2 Base Bootstrap Box Plots 

The variability in BS runs is shown graphically in the Base Bootstrap Box Plots screen (Figure 

28).  Two graphs are presented:  the variability in the percentage of each species (Figure 28, 1) 

and the variability in the concentration of each species (Figure 28, 2), which corresponds to the 

Variability in Factor Profiles table in the Base Bootstrap Summary screen.  In both box plots, the 

box (Figure 29) shows the interquartile range (25th–75th percentile) of the BS runs.  The 

horizontal green line represents the median BS run and the red crosses represent values 

outside the interquartile range.  The base run is shown as a blue box for reference.  Values 

outside of the interquartile range are shown as red crosses.  At the bottom of this screen, the 

base run numbers are grayed out and not selectable; however, the base run used for 

bootstrapping is highlighted in orange.  The user can select the factor they want to view by 

clicking on the factor number across the bottom of the screen.  The Variability in Concentration 
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of Species is shown in the bottom plot.  Species with the base run profile value (blue box) 

outside interquartile range (tan box) should be interpreted only after evaluating the two 

additional error estimation results in PMF.  These species have influential BS observations that 

biased either the base or BS runs; the DISP and BS-DISP will provide more reliable error 

estimates. 

 

Figure 28.  Example of the Base Bootstrap Box Plots screen. 

 

 

 

 

 

 

 

Figure 29.  Diagram of box plot. 
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5.9 Base Model BS-DISP Error Estimation 

BS-DISP estimates the errors associated with both random and rotational ambiguity and it is run 

from the Error Estimation section of the Base Model Runs screen.  BS-DISP may take many 

hours to run due to the number of combinations that are evaluated, so it is recommended that 

the user evaluate the BS-DISP results first with less than 100 BS runs (50 is recommended); for 

final BS-DISP results, use 100 BS runs. 

BS-DISP is a combination of BS and the DISP method.  The BS Error Estimation must be run 

before BS-DISP because each BS resample undergoes a DISP analysis so that error limits are 

found for all F (profile) factor elements.  This process may be viewed as follows:  each DISP 

defines the span of rotationally accessible space.  Each BS resample moves this space around, 

randomly in different directions.  Taken together, all the replications of the rotationally 

accessible space, in random locations, represent both the random uncertainty and the rotational 

uncertainty.  

The limits obtained by displacing a factor element include both rotational ambiguity and 

variability due to input data uncertainty.  To speed up computation of BS-DISP, it is suggested 

that only a small subset of all F factor elements are adjusted.  Downweighted variables create a 

special problem in DISP computations.  If such variables are adjusted, the error intervals can be 

very large (based on simulated data evaluations).  The error estimates for downweighted 

species are best estimated from the results obtained from adjusting non-downweighted species. 

BS-DISP provides the change in Q associated with the displacement.  Occasionally, it is seen 

that displacements cause a significant decrease of Q, typically by tens or by hundreds of units.  

If such a decrease occurs in DISP or BS-DISP, it means that the base case solution was in fact 

not a global minimum, although it was assumed to be such.  The value associated with a 

significant change in Q is still being evaluated, but the initial guidance is that a change in Q 

greater than 1% is significant.  If the change in Q is greater than 0.5%, it is recommended to 

increase the number of Base Model runs to 40 to find a global minima. 

A key output from DISP and BS-DISP analyses is the extent of factor swapping, usually 

resulting from a “not-well-defined” solution (i.e., a solution where factor identities are fluid).  A 

sample BS-DISP output is shown in Figure 30 along with guidance on interpreting the output.  

Starting from the most plausible solution, it is possible to transform the solution gradually, 

without significant increase of Q, so that factor identities change.  In the extreme case, factors 

may change so much that they exchange identities.  This is called factor swap.  Physically, a 

solution with swapped factors represents the same physical model as the original solution.  

However, the presence of factor swaps means that all those intermediate solutions also exist 

and must be considered as alternative solutions. 

For a higher dQmax, a larger uncertainty interval or CI is usually obtained.  The larger the 

interval, the higher the chance that it contains the true unknown value.  CI is displayed along 

with the profile values in the BS-DISP Box Plots tab.  The dQmax values are still being 

evaluated and a dQmax of 4 for DISP and 0.5 for BS-DISP provide lower bounds for the true 

uncertainty estimates if the input data uncertainties are reasonable.  Smaller dQmax values are 

used in BS-DISP versus DISP because the combination of bootstrapping and DISP should 
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capture nearly all the uncertainty within the solution.  All dQmax values should be evaluated to 

determine whether the solution is well-defined.   

 

Figure 30.  Example of the Base Model BS-DISP Summary screen. 

Sample results from the BS-DISP Summary tab are shown in Figure 30 after using key species 

from each of the sources (sulfate, potassium ion, total nitrate, silicon, zinc, iron, and EC). 

The BS-DISP results in Figure 30 show that the solution does not have significant rotational 

ambiguity and the base model and error estimates can be interpreted.  Having no swaps at all, 

dQmax provides confidence that the solution is well constrained and the BS-DISP results can 

be reported.  

If factor swaps are produced at dQmax = 0.5, then the number of factors in the solution and BS 

and DISP results need to be evaluated before reporting the BS-DISP results.  Because the 

BS-DISP is a combination of BS and DISP, it is suggested that the results of each component 

be evaluated to understand what might be causing the swaps.  Steps to reduce the number of 

swaps include reducing the number of factors and adding constraints.   

Four files are output from BS-DISP, one for each dQmax used; the user-provided output file 

prefix is placed at the start of the file name and is denoted in this user guide as an asterisk (*) 

(dQmax=0.5, 1, 2, 4; * _BSDISPres1, *_BSDISPres2, * _BSDISPres3,  *_BSDISPres4).  These 

contain the same summary diagnostics that are provided in the BS-DISP Summary tab.  The 

five values in the first line of diagnostics that are displayed within the EPA PMF program are: 
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1. k, the number of cases in the file.  This includes both the full-data case and the accepted 

(not rejected) resamples; if all bootstrap cases were accepted, this value would be equal 

to one plus the number of bootstraps (the extra one run is an initialization run).  If no 

cases were excluded, k should be equal to the number of bootstraps times the number 

of factors times the number of species selected for BS-DISP.   

2. Largest decrease of Q.  A large value is not necessarily alarming, but it indicates that 

there was at least one resample where a deeper minimum appeared.  A large value for a 

decrease in Q is approximately 1% or more of Q(robust); more testing is required to 

provide better guidance on this value. 

3. Number of cases with drop of Q.  

4. Number of cases with swap in best fit.  

5. Number of cases with swap in DISP. 

Below the first line of diagnostics in the BS-DISP summary is a four-line table that contains 

swap counts for factors (columns) for each dQmax level (rows), which are in ascending order 

(dQmax=0.5, 1, 2, 4).  In the best case, all of the swaps are zero; however, the probability of 

creating a BS data set that results in a swap is based on the data characteristics (i.e. peaks), 

the number of BS runs, and the number of factors.  The profiles and DISP results should be 

evaluated to determine whether there is a reason for the swaps.  A result with swaps between 

two factors is more reliable than swaps occurring across many factors.  For this example, the 

swaps are occurring between the crustal (factor 4) and steel production (factor 6), which have 

many common elements.  Also, the number of swaps is one for two factors, which indicates 

some ambiguity between the factors.   

The output files from BS-DISP contain many blocks of data following the diagnostics shown in 

Figure 30.  The first two blocks of data are the initial run data, with each row representing a 

species and each column a factor.  The last line of each block is always a series of “1”s as a 

placeholder.  There are four blocks of data for each BS resample:  (1) profile matrix for BS 

resample #1 after displacing down, in concentration units; (2) profile matrix for BS resample #1 

after displacing up, in concentration units; (3) profile matrix for BS resample #1 after displacing 

down, in % species; (4) profile matrix for BS resample #1 after displacing up, in % species.  

These four blocks are then repeated for each BS resample.  The BSDISPPres files are output 

directly from ME and are for users who want to process the output.  The BS-DISP results for a 

dQmax of 0.5 are summarized in an easy to use file:  *_BaseErrorEstimationSummary. 

5.10 Interpreting Error Estimate Results 

A comprehensive set of error estimates are available and the results are added to the summary 

files for easy use after running each error estimation method (*_BaseErrorEstimationSummary, 

*_FpeakErrorEstimationSummary, *_ConstrainedErrorEstimationSummary).  The summary files 

contain the species and diagnostics as well as the error estimates by factor for concentrations, 

percent of species sum, and percent of total variable if one is selected.   

The error estimation information is summarized in the *_BaseErrorEstimationSummary file and 

the following figure after each error estimation method is run.  The 
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*_BaseErrorEstimationSummary file has a useful summary of the factor error estimates:  Base 

Value, BS 5th, BS Median, BS 95th,  BS-DISP 5th, BS-DISP Average, BS-DISP 95th, DISP Min, 

DISP Average, and DISP Max.  Figure 31 shows the error estimation summary plot for the three 

error estimates.   

 

Figure 31.  Error estimation summary plot. 
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6. Rotational Tools 

In general, the non-negativity constraint alone is not sufficient to produce a unique solution.  An 

infinite number of plausible solutions may be generated and cannot be simply disqualified using 

mathematical algorithms.  Rotating a given solution and evaluating how the rotated results fill 

the solution space is one approach to reduce the number of solutions.  Additional information, 

such as known source contributions and/or source compositions, can also be used to reduce 

the number of solutions and to determine whether one solution is more physically realistic than 

other solutions.   

Mathematically, a pair of factor matrices (G and F) that can be transformed to another pair of 

matrices (G* and F*) with the same Q-value is said to be “rotated.”  The transformation takes 

place as shown in Equation 6-1: 

 GTG *  and FTF 1*   (6-1) 

The T-matrix is a p x p, non-singular matrix, where p is the number of factors.  In PMF, this is 

not strictly a rotation but rather a linear transformation of the G and F matrices.  Due to the 

non-negativity constraints in PMF, a pure rotation (i.e., a specific T-matrix) is only possible if 

none of the elements of the new matrices are less than zero.  If no rotation is possible, the 

solution is unique.  Therefore, approximate rotations that allow some increase in the Q-value 

and prevent any elements in the solution from becoming negative are useful in PMF.   

For some solutions, the non-negativity constraint is enough to ensure that there is little rotational 

ambiguity in a solution.  If there are a sufficient number of zero values in the profiles (F-matrix) 

and contributions (G-matrix) of a solution, the solution will not rotate away from the “real” 

solution.  However, in many cases, the non-negativity constraint is not sufficient to prevent 

rotation away from the “real” solution.  To help determine whether an optimal solution has been 

found, the user should inspect the G-space plots for selected pairs of factors in the original 

solution.  The current guidance is to select a regional source type such as coal-fired power 

plants (sulfate) and plot it against local industrial sources such as steel production (Fe).   

6.1 Fpeak Model Run Specification 

After evaluating the base run BS error estimates, the rotations should be explored.  Fpeak runs 

are initiated by selecting “Rotational Tools,” “Fpeak Rotation & Notes,” and “Fpeak Model 

Runs.”  The base run with the lowest Q(robust) is automatically selected by the program as the 

run for Fpeak runs; this can be overridden by the user in the “Selected Base Run” box.  The 

user can perform up to five Fpeak runs by checking the appropriate number of boxes and 

entering the desired strength of each Fpeak run.  While there are no limits on the values that 

can be entered as Fpeak strengths (under “Selected Fpeak Runs"), generally values between -5 

and 5 should be explored first.  Positive Fpeak values sharpen the F-matrix and smear the 

G-matrix; negative Fpeak values smear the F-matrix and sharpen the G-matrix.  More details on 

positive and negative Fpeak values can be found in Paatero (2000).  The Fpeak strengths in 

ME-2 are not the same as those in PMF2; values of around five times the PMF2 values are 
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needed to produce comparable results in ME-2.  Additionally, an Fpeak value of 0 is not 

allowed; EPA PMF will give the user an error message if 0 is entered in any Fpeak strength box.   

Fpeak runs begin when the user presses the “Run” button on the Fpeak Model Runs screen.  

Base run and BS run results will not be lost when Fpeak is run.  After the Fpeak runs are 

completed, a summary of the Fpeak results, with the same information contained in the Base 

Model Run Summary table, is shown in the Fpeak Model Run Summary table (Figure 32, red 

box).  Additional results are displayed in:  Fpeak Profiles/Contributions, Fpeak Factor 

Fingerprints, Fpeak G-Space Plot, Fpeak Factor Contributions, and Fpeak Diagnostics; these 

results should be used as a reference when evaluating the Fpeak runs.  Fpeak is useful for 

examining the span of possible rotations, with an end result of more values at or near 0 in either 

the contributions or profiles, depending on whether a positive or negative Fpeak is used.  Thus 

DISP and BS-DISP with Fpeak forcing will yield shorter EE intervals, potentially leading to 

incorrect interpretation of a solution.   

 

Figure 32.  Example of the Fpeak Model Run Summary in the Fpeak Model Runs screen. 

6.1.1 Fpeak Results 

The Fpeak Profiles/Contributions screen presents profile (Figure 33, 1) and contribution (Figure 

33, 2) plots for Fpeak runs (by Fpeak strength value and factor) and for the selected base run.  

In the profile graph, the concentration of species (left y-axis) is a green bar and the percent of 

species (right y-axis) is an orange box.  For comparison, the original base run results are also 

displayed on the profile graph.  The mass of the species (left y-axis) is a light gray bar and the 

percent of species (right y-axis) is a dark gray box.  The contribution graph presents the time 
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series of factor contributions.  Factor contributions for the base model results are also displayed 

(gray line).  The Fpeak values are in the same order as entered on the Fpeak Model Runs 

screen; the factors are in the same order as those in Base Model Results.  In these graphs, 

users should look for deviations (i.e., increases or decreases in a particular species in a factor) 

among Fpeak values and with the corresponding base run results.  Users can select an Fpeak 

value and factor number by clicking on the desired number at the bottom of the screen.  The 

status bar (Figure 33, red box) in the Fpeak Profiles/Contributions screen displays the date and 

contribution of data points closest to the mouse position on the contribution graph.  The status 

bar displays the date, concentration, total variable selected, and the species factor as they are 

moused over on the Factor Contributions plot.  If no mass from the total variable is apportioned 

to the factor, the graph is not shown and the GUI instead displays, “Total Variable mass is 0 for 

this run/factor.” 

 

Figure 33.  Example of the Fpeak Profiles/Contributions screen. 

Fpeak Factor Fingerprints 

The Fpeak Factor Fingerprints screen shows the concentration (in percent) of each species 

contributing to each factor as a stacked bar chart (Figure 34).  This plot can be used to verify 

unique factor names and determine the distribution of the factors for individual species.  Users 

should look for deviations (i.e., increases or decreases in a particular species in a factor) among 

1 
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Fpeak values and the corresponding base run results.  The user can select an Fpeak value by 

clicking on the desired number at the bottom of the screen.   

 

Figure 34.  Example of the Fpeak Factor Fingerprints screen. 

Fpeak G-Space Plot 

As in the Base Model Results screen, the Fpeak G-Space Plot screen shows a scatter plot of 

factors.  The user assigns a factor to the x- and y-axes by selecting the desired factor from the 

lists on the left of the screen (Figure 35, 1).  The Fpeak value to display, the base run G-space 

plot (“Show Base”), and the delta in G-space plots between the base run and an Fpeak run 

(“Show Delta”) are selected at the bottom of the screen (Figure 35, 2).  When an Fpeak value is 

selected in either the Fpeak Profiles/Contributions screen or the Fpeak G-Space Plot screen, it 

is automatically selected in the other screen.  The user can also select a point in any Fpeak 

G-space plot by clicking on that point.  The selected point will turn orange and the date and x-y 

values will be stored to the *_Fpeak_diag file.  This feature helps the user identify and track 

rotations.  For example, if a G-Space plot appears rotated, the user can mark the edge points.  

Using information such as meteorological conditions or emissions information, the user can 

determine whether these edge points are expected to have low contributions from the source. 
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Figure 35.  Example of the Fpeak G-Space Plot screen. 

Fpeak Factor Contributions 

The Fpeak Factor Contributions screen (Figure 36) shows two graphs.  The top graph is a pie 

chart which displays the distribution of each species among the factors resolved by PMF (Figure 

36, 1).  The species of interest are selected from the table on the left of the screen; the 

categorization of that species is also displayed for reference.  If a total variable was chosen by 

the user under the Concentration/Uncertainty screen, that variable is boldfaced in the table.  

The pie chart for the selected species appears on the right side of the screen.  If the user has 

specified a total variable, the distribution of this variable across the factors will be of particular 

importance.  The user may also want to examine the distribution of certain key species, such as 

toxic species, across factors.  The bottom graph shows the contribution of all the factors to the 

total mass by sample (Figure 36, 2).  The dotted orange reference lines denote January 1 of 

each year.  The graph is normalized so that the average of all the contributions for each factor 

is 1.   

Fpeak Diagnostics 

The Fpeak Diagnostics screen summarizes the Fpeak input parameters and output for 

reference (e.g., Fpeak run summary, factor profiles and contributions, and samples that are 

marked on the Fpeak G-space plot).  All of the information on this screen is saved in *_Fpeak. 

1 
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Figure 36.  Example of the Fpeak Factor Contributions screen. 

6.1.2 Evaluating Fpeak Results 

Fpeak runs should be viewed by the user as a means of exploring the full space of the chosen 

PMF solution.  Several aspects of the solution should be evaluated to understand how Fpeak 

changes the PMF solution.  Users should first examine the Q-values of the Fpeak runs 

(available in the Fpeak Model Run Summary on the Fpeak Rotation & Notes  Fpeak Model 

Runs screen) to evaluate their increase from the base run Q-value.  In a pure rotation, the 

Q-value would not change because the rotation is simply a linear transformation of the original 

solution.  However, because of the non-negativity constraints of PMF, pure rotations are not 

usually possible and the rotations induced by Fpeak are approximate rotations, which change 

the Q-value.  In general, an increase of the Q-value due to the Fpeak rotation with a dQ of less 

than 5% of the Base Run Q(robust) value is acceptable.  Corresponding G-space plots of Fpeak 

solution factors should be examined to see if points move toward the axis or lower/zero 

contributions (Figure 37).  Additionally, profiles and contributions should be examined to 

determine the impact of the rotation.  

1 
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Figure 37.  G-Space plot and delta between the base run contribution and Fpeak 
run contribution for each contribution point. 

6.2 Constrained Model Operation 

Source composition and contribution knowledge can be used to constrain a model run.  For 

example, if a source is known to be inactive for a certain period, there should be no 

contributions from the factor that represents that source during the inactive time period.  The 

contributions can be set to zero or pulled to zero and the penalty in Q is provided for moving the 

contribution from the optimal solution to one based on external knowledge.  Another example is 

if a source profile from a nearby facility has been quantified, the user could constrain the profile 

in a factor that represents that facility type to match the measured profile.  The amount of Q 

allowed for a constraint depends on the data set; however, 5% of Q(robust) is the current 

maximum that is recommended and PMF automatically calculates the amount of Q associated 

with a percent by entering a % dQ.  Applications of using constraints are discussed in greater 

detail elsewhere (Norris et al., 2009; Paatero et al., 2002; Paatero and Hopke, 2008; Rizzo and 

Scheff, 2007). 

6.2.1 Constrained Model Run Specification 

The Constrained Model Runs screen is used to specify constraints associated with a variety of 

types of a priori information including:  (a) creating constraints using the Expression Builder and 
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(b) specifying constraint points from the base model results and the constraints table.  Starting 

with a selected base run, two types of constraints can be performed:  (1) “hard pulling,” which is 

imposed without regard to the change in the Q-value (e.g., a specific factor element in either the 

profile or the contribution matrix is set to zero, given a lower and upper limit, or fixed to its 

original value), or (2) “soft pulling,” which has a limit of change allowed in the Q-value (e.g., an 

element or expression of elements is pulled up maximally, pulled down maximally, or pulled to a 

target value). 

The Expression Builder has three radio buttons that users can select to define constraints as 

constant ratio (Figure 38), mass balance (Figure 39), or customized expression (Figure 40). 

 Ratio (Figure 38) – Select a factor and two different species from the lists, and input the 

ratio in the “Value” text box.   

 Mass Balance (Figure 39) – Select and add one or multiple factor-species into the text 

boxes on both sides of the equal sign under “Mass Balance” to set the balance equation.  If 

needed, a number can be input into the “Coefficient” text box, which will be used as a 

coefficient for the species selected.  Click the “Clear” buttons to remove the current 

specifications of the balance equation. 

 Custom (Figure 40) – Specify a constraint by creating a customized equation.  The 

customized equation can be based on either profiles (with species as element) or 

contributions (with sample as element).  The custom equation must follow the same 

structure as the equations developed by the Expression Builder. 

For each of the three Expression Builder functions, after the user defines a constraint and 

presses the “Add to Expressions” button, the corresponding equation in a standardized format 

will appear in the Expressions table (Figure 41, red box).  Since the constraints defined using 

Expression Builder are “soft pulling,” a limit of change in the Q-value must be specified.  A 

default value (% dQ = 0.5) is provided in the Expressions table, which can be updated by users 

if needed.  Users are also allowed to delete the selected constraints or all constraints by 

pressing the “Remove Selected Expressions” or “Remove All Expressions” buttons at the 

bottom of the Expressions table. 

Source contributions can be constrained; the user can identify the points to be constrained in 

three graphs: 

 On the Base Model  Base Model Results  Profiles/Contributions screen, left-click on the 

top graph to highlight a bar for the species to be constrained, then right-click the bar and 

select “Toggle Constraints” (Figure 42, 1). 

 From the Base Model  Base Model Results  Profiles/Contributions screen, left-click on 

the bottom figure to select one data point or drag a square to select multiple data points, 

then right-click the data point and select “Toggle Constraints” (Figure 42, 2). 

 From the Base Model  Base Model Results  Base G-Space Plot screen, left-click to 

select one data point or drag a square to select multiple data points, then right-click the data 

point(s) and select “Pull to X-Axis” or “Pull to Y-Axis” (Figure 43).  The user can also select 

multiple data points pressing the CTRL button. 
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Figure 38.  Expression Builder – Ratio. 

 

Figure 39.  Expression Builder – Mass Balance. 
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Figure 40.  Expression Builder – Custom. 

 

Figure 41.  Example of expressions on the Constrained Model Runs screen. 
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Figure 42.  Selecting constrained species and observations. 

As discussed in Section 6.1.2, G-space plots in PMF solutions are evaluated to find edges that 

indicate rotational ambiguity and to determine if there are rotations in the solution.  If users 

identify an edge in a G-space plot, constraints can be specified to pull the data points along the 

edge toward the axis (i.e., toward zero).  The user should examine the points along the edge; if 

there is any a priori information that would indicate that a value should be zero (e.g., the source 

that the factor represents was inactive during a given time), the point should be pulled using the 

associated constraints.  The strength of each pull is controlled by specifying a limit on the 

change in the Q-value.  If the user wishes to perform a weak pull, a small limit on the change in 

the Q-value should be allowed.  Conversely, if the user wishes to perform a strong pull, a large 

limit on the change in Q-value should be allowed.  The strength of the pull should be based on a 

priori information about the pollutant sources that indicate that the contribution for the given 

sample should be zero.  The user can select as many points in as many factors to pull as they 

wish. 
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Figure 43.  Example of selecting points to pull to the y-axis in the G-space plot. 

After the Constraint Points are defined in the previous three graphs, the Constraints table will 

appear on the Rotational Tools, Constraints screen, showing a constraint in each row (Figure 

44, yellow box).  Users then need to select one of the six constraint types included in the pull-

down list (column “Type”): 

 Pull Down Maximally – A factor element is pulled down maximally given a limit of change in 

the Q-value; users can update the default dQ-value. 

 Pull Up Maximally – A factor element is pulled up maximally given a limit of change in the 

Q-value; users can update the default dQ-value. 

 Pull to Value – A factor element is pulled to a target value given a limit of change in the 

Q-value (default % dQ = 0.5); users need to input the target value into the “Value” column. 

 Set to Zero – A factor element is forced to equal zero, with no limit of change in the 

Q-value. 

 Set to Original Value – A factor element is fixed to its original value, with no limit of change 

in the Q-value. 

 Define Limits – A factor element is given a lower and upper limit; users need to input the 

“low/high” limit in the column “Value.” 

 

Constrain and move to  

y-axis 
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Figure 44.  Example of the Constrained Model Run summary table. 

It should be noted that the constraints defined through the Expression Builder or “Constrain 

Points” are specific for a selected base run.  If users input another run number as the “Selected 

Base Run” under Constrained Model Run, all constraints associated with the previous base run 

will be removed from the Expressions and Constraints tables. 

After the specification of all constrained model parameters, the user should press the “Run” 

button in the Constrained Model Run box to initiate the run for a constrained model.  Once the 

run is initiated, the “Run Progress” box in the lower right corner of the screen activates and the 

constrained model run can be terminated at any time by pressing the “Stop” button.  No 

information about the constrained model runs will be saved or displayed if the runs are stopped.  

When the constrained model run is completed, the summary table shows dQ, Q(robust), % 

dQ(robust), Q(Aux), Q(true), as well as whether the run converged (Figure 44, red box).  Five 

new tabs with constrained model run results will appear, including Constrained 

Profiles/Contributions, Constrained Factor Fingerprints, Constrained G-Space Plot, Constrained 

Factor Contributions, and Constrained Diagnostics. 

The % dQ (robust) value needs to be evaluated based on the amount of dQ that was used in 

the constraint(s).  The % dQ(robust) shows the increase in Q due to the constraint(s).  An 

increase of dQ of up to 1% for all of the constraints may be acceptable; however, the 
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interpretation of the factor profiles, contribution time series, and error estimation results are also 

critical.  The Profiles/Contributions tab provides both the base and constrained factor profiles 

and well as the base and constrained factor time series.  Evaluate all of the plots for all factors 

to understand the impact of the constraints and determine whether the constraint has provided a 

more interpretable solution.   

Typically, species contributions to factors fall into two categories:  (1) stiff, in that they will not 

significantly change or if they are constrained, unreasonable profiles are created; and (2) weak, 

in that they move easily and are typically not well modeled by PMF.  The understanding of the 

stiff and weak key tracer species for sources allows for optimization of the solution using 

measured profile or other information.  Weak species should be interpreted as easily moved 

between sources while stiff species are strongly associated with the factor and should be used 

in the interpretation of its source.  

6.2.2 Constrained Profiles/Contribution Results 

The Constrained Profiles/Contributions screen (Figure 45) shows factor profile and contributions 

graphs in the same format as those on the Fpeak Profiles/Contributions screen.  The mass and 

percentage of species and the time series of factor contributions are presented for both the 

constrained model run and the selected base run.  The user should look at the deviations in the 

results between the two model runs and examine the impact of constraints. 

 

Figure 45.  Example of the Constrained Profiles/Contributions screen. 
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Constrained Factor Fingerprints 

The Constrained Factor Fingerprints screen shows the concentration (in percent) of each 

species contribution to each factor as a stacked bar chart (Figure 46).  This plot can be used to 

verify unique factor names and determine the distribution of the factors for individual species.  

Users should look for deviations (i.e., increases or decreases in a particular species in a factor) 

with the specified constraint(s) and corresponding base run results.   

 

Figure 46.  Example of the Constrained Factor Fingerprints screen. 

Constrained G-Space Plot 

The Constrained G-Space Plot (Figure 47) presents the scatter plot of factor contributions for 

the constrained model run.  Similar to the Fpeak G-Space Plot screen, the user can select 

“Show Base” to display the base run G-space plot and select “Show Delta” to display the 

difference in G-space plots between the constrained model run and the base run.   

Constrained Factor Contributions 

The Constrained Factor Contributions screen (Figure 48) shows two graphs.  The top graph is a 

pie chart, which displays the distribution of each species among the factors resolved by PMF 

(Figure 48, 1).  The species of interest is selected from the table on the left of the screen; the 
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categorization of that species is also displayed for reference.  If a total variable was chosen by 

the user under the Concentration/Uncertainty screen, that variable is boldfaced in the table.  

The pie chart for the selected species appears on the right side of the screen.  If the user has 

specified a total variable, the distribution of this variable across the factors will be of particular 

importance.  The bottom graph shows the contribution of all the factors to the total mass by 

sample (Figure 48, 2).  The dotted orange reference lines denote January 1 of each year.  The 

graph is normalized so that the average of all the contributions for each factor is 1.   

 

Figure 47.  Example of the Constrained G-Space Plot screen. 

Constrained Diagnostics 

The Constrained Diagnostics screen (Figure 49) includes a summary of the constrained model 

parameters and output for reference (e.g., constraint types, constrained model run summary 

table, factor profiles, and factor contributions).  All of the information on this screen is saved in 

*_Constrained files. 

Constrained BS-DISP and DISP Runs 

The BS-DISP and DISP error estimation for the constrained model can be performed in the 

same manner as the error estimations for the base run.  DISP run output files will be saved in 
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the directory specified in the Output Folder box in the Data Files screen.  The DISP and BS-

DISP files are saved as *_ConstraintedBSDISPres# and *ConstrainedDISPresd#.  

 

Figure 48.  Example of the Constrained Factor Contributions screen. 

Constrained BS Runs and Results 

A constrained model run can be bootstrapped in the same manner as base model runs.  After a 

constrained model run is completed, the user can initiate a BS run for the constrained model in 

Constrained Model Bootstrapping.  The constrained bootstrapping results are displayed in 

Constrained Bootstrap Box Plots and Constrained Bootstrap Summary in the same format as 

the Base Run bootstrapping output screens for easy comparison.  The BS files are saved as 

*_Gcon_profile_boot. 

6.2.3 Evaluating Constraints Results 

Constraints can be used to reduce rotational ambiguity, to refine a solution, and to understand 

both stiff and weak factor species.  All factors and source contribution time series must be 

evaluated to understand the impact of the constraint(s).  In addition, the error estimation results 

need to be evaluated to determine if the constraint has changed the species factor contribution 

significantly.  The guidance on constraints will continue to be developed as PMF is applied to 
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more data sets and the Training Exercises in Section 8 provide more examples on how to 

interpret the results. 

 

Figure 49.  Example of the Constrained Diagnostics screen. 
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7. Troubleshooting 

Common problems in EPA PMF 5.0, including the error messages generated by the GUI and 

the action the user should take to correct the problem, are detailed in Table 3.  If a problem 

cannot be resolved using the following information, send an email to 

NERL_RM_Support@epa.gov. 

Table 3.  Common problems in EPA PMF 5.0. 

Problem Error Message Action 

Cannot run base 
runs 

Access to the path 'C:\Program Files\EPA 
PMF 5.0\PMFData.txt' is denied.  Please 
close all output files. 

Turn off User Access Controls in 
Microsoft Vista 

Column headers 
of concentration 
and uncertainty 
files do not match 

Species names in uncertainty file do not 
match those in concentration file.  Do you 
wish to continue? 

If the names are correct, continue.  If 
the columns are in a different order, 
correct and retry. 

Number of 
columns in 
concentration file 
is not the same as 
in uncertainty file 

Number of species in uncertainty file does 
not match the number of species in 
concentration file. 

Select "OK” and examine input files.  
The same number of columns, in the 
same order, should be included in 
the concentration and uncertainty 
files.  If named ranges are used, 
check that the ranges are defined 
correctly. 

Number of rows in 
concentration file 
is not the same as 
in uncertainty file 

Dates/times in uncertainty file do not 
match those in concentration file. 

Select "OK" and examine input files.  
The same number of rows, sorted by 
the date/time, should be included in 
the concentration and uncertainty 
files.  If named ranges are used, 
check that the ranges are defined 
correctly. 

Blank cells are 
included in 
concentration file 

Empty cells are not permitted in the 
concentration input file.  Please check 
your data file. 

Select "OK" and remove blank cells 
from input file before trying again. 

Blank cells, zero 
values, or 
negative values 
are included in 
uncertainty file 

Null, zero, and negative uncertainty 
values are not permitted.  Please check 
your data file. 

Select "OK" and remove 
inappropriate cells from input file 
before trying again. 

Cannot save 
output files 
because one is 
open 

The process cannot access the file 'file 
path and name' because it is being used 
by another process.  Please close all 
output files. 

Close file and select "Retry" or select 
"Cancel" to change the file path and 
name. 
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8. Training Exercises 

The following sections offer examples of PMF analyses of three types of data:  (1) water 

samples collected at multiple locations during rainfall events; (2) hourly aerosol metals data 

from St Louis, Missouri; and (3) speciated VOC data from a Photochemical Assessment 

Monitoring Stations (PAMS) site in Baton Rouge, Louisiana.  The data sets are installed in the 

EPA PMF/Data folder and are provided as examples for analyses.  Users can follow the steps 

outlined in each example to better understand the PMF process and the interaction of the 

components described in this User Guide. 

The examples all follow the flow shown in Figure 50, recommended for all PMF analyses.  For 

some users, the Base Model may be sufficient.  However, Fpeak can be used to optimize the 

solution and Constraints can be used to incorporate information on the source such as 

composition or emissions.  Evaluating the error estimates is a critical component of a PMF 

analysis. 

Base Model
Fpeak 

Rotation
Constraints

Profiles/
Contributions

Factor 
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Figure 50.  PMF results evaluation process. 
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8.1 Milwaukee Water Data 

This exercise focuses on the data set provided in Mil_water_samples.xls.  This exercise is 

intended to demonstrate the thought process as well as steps involved in evaluating a small 

data set with event sampling from multiple sites; it is not intended to be a complete source 

apportionment analysis.  The PMF input parameters are summarized in Table 4 and all sites 

were used in the analysis. 

Table 4.  Milwaukee Example – Summary of PMF Input Information. 

 

8.1.1 Data Set Development 

Soonthornnonda and Christensen (2008) conducted a source apportionment of pollutants 

contributing to combined sewer overflows (waste water + storm water) from the 19.5-mile 

(31.4 km) inline storage system in Milwaukee.  A diagram of the deep tunnel system is shown in 

Figure 51 and more information can be found at http://v3.mmsd.com/DeepTunnel.aspx.  

Samples were collected from multiple sites on one day and the Mil_water_samples.xls file has 

three tabs:  conc (concentration), unc (uncertainty), and site information.  The paper reference is 

also included on the site tab. 

Both CMB and a version of PMF that was developed by Bzdusek et al. (2006) were used for the 

data analysis and the data used for the PMF modeling was posted as supplemental information 

on the Environmental Science and Technology website1.  In addition, the authors assumed 20% 

relative error of the elements of the data matrix.  All of the species were initially used in the base 

model run, 3 factors, and 20 runs.  A random seed was initially used to evaluate the variability in 

runs and the following results are based on a seed number of 12. 

 

                                                 
1
 http://www.researchgate.net/journal/0013-936X_Environmental_Science_and_Technology 

***Data Files*** **** Base Run Summary ****

Concentration file: Mil_water_samples.xlsx ("Conc" worksheet) Number of base runs: 20

Uncertainty file: Mil_water_samples.xlsx ("Unc" worksheet) Base random seed: 12

Number of factors: 3

Excluded Samples Extra modeling uncertainty (%): 0

none

**** Input Data Statistics ****

Species Category S/N Species Category S/N

BOD5 Strong 4 Cr Strong 4

TSS Strong 4 Cu Strong 4

NH3 Strong 4 Pb Strong 4

TP Strong 4 Ni Strong 4

Cd Bad 4 Zn Strong 4

http://v3.mmsd.com/DeepTunnel.aspx
http://www.researchgate.net/journal/0013-936X_Environmental_Science_and_Technology
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Figure 51.  Deep tunnel system. 

8.1.2 Analyze Input Data  

The species relationships were evaluated using the concentration scatter plots.  The biological 

oxygen demand (BOD5) was not related to the total suspended solids (TSS) (Figure 52), 

indicating that they had separate sources.  Also, the cadmium concentrations were only at two 

levels (Figure 53), potentially indicating an issue with using the species. 

8.1.3 Base Model Runs 

The obs/pred scatter plot was used to evaluate the base model results because the data were 

collected from multiple sites on the same date.  All of the species have a linear relationship 

except for cadmium, as shown in Figure 53.  Based on these results, cadmium was set to “bad” 

and the base model was re-run. 

The stacked graph plot shown in Figure 54, which shows results similar to Bzdusek et al. 

(2006a), is created by selecting the top figure in the Profiles/Contributions screen, right-clicking, 

and selecting Stack Graphs.  Select the new window and right-click for file saving options or use 

“Copy to Clipboard” to paste the figure into a document. 

This data set poses some challenges for plotting since the samples were collected from multiple 

sites on the same day when it is was raining.  Rather than on a fixed schedule, the sampling 

was event-based.  The time-series plots have horizontal lines between the sites (Figure 55).  

Information on the site name and sampling time is displayed on the bottom bar after a point is 

selected on the figure.  The user needs to evaluate whether combining the data in a PMF 

analysis is justified.  The key receptor modeling assumption is the composition of the sources 

impacting the sites does not change between sites.   



U.S. Environmental Protection Agency EPA PMF 5.0 User Guide 

 

74 

 

Figure 52.  Scatter plot of BOD5 and TSS. 

 

Figure 53.  Example of observed/predicted results for cadmium. 
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Figure 54.  Stacked Graph plot. 

The time series of source contributions and observed vs. predicted concentrations provide 

useful information.  The time series of source contributions should show variability between 

sites and having one site that is impacted and the others with a negligible impact may indicate 

that the sources compositions are not uniform.  The observed vs. predicted plot provide the 

most important information and sites that have large differences between the observed and 

predicted (residual) most likely are impacted by more unique sources and could be removed 

from the analysis.  In both cases, a site or sites with significant differences in contributions or 

residuals need to be evaluated in more detail before keeping them in a multiple site PMF 

analysis.  Time-series plots from the Milwaukee water data are used to demonstrate combining 
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multiple sites in PMF (Figure 55, Figure 56) and the user is encouraged to run each site 

separately using the check box on the Data File screen and the combined analysis. 

 

Figure 55.  Profiles/Contributions Plot for mulitiple site data. 

The relative magnitude of the source impacts varies across the sampling sites, however, the 

impacts are variable and multiple sites have both high and low source contributions.  Combining 

the sites seems justified based on the variability between sites.  The observed vs. predicted 

concentration time series also has lines between the sites (Figure 56).  The time series shows 

that observed and predicted concentrations are large for a few sampling sites and low for 

others.  The data from the sites with large differences should be evaluated in more detail to 

determine whether the samples should be combined in the PMF analysis.    

The Q/Qexp plots should also be evaluated because it provides a complimentary time-series 

plot to the obs/pred species plots.  Time series plots in the Rotational Tools also display the 

lines between the sites. 
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Figure 56.  Observed/Predicted Time Series Plot for multiple site data. 

8.1.4 Error Estimation 

The BS, DISP, and BS-DISP results show some instability in the solution, which is due to the 

small size of the data set and limited number of factors.  The error estimation results are shown 

in Figure 57. 

 DISP results (Figure 57, 1) show that the solution is stable because no swaps are 

present. 

 BS results (Figure 57, 2) for the metals source show that the source was mapped to the 

sanitary sewage and stormwater sources 6 and 8 times, respectively.  This may be due 

to PMF not fitting this highly variable source and the BS data sets also might not have 

captured the variability in the metals. 

 BS-DISP results (Figure 57, 3) highlight that the solution may not be reliable due to 

swaps across two factors.  The number of swaps is low and the results may reflect the 

relatively small data set with variability introduced by many sampling sites. 



U.S. Environmental Protection Agency EPA PMF 5.0 User Guide 

 

78 

 

 

 

Figure 57.  Comparison of error estimation results. 

It is recommended that all of the results be reported and explained, and that the 

*_ErrorEstimationSummary file should be provided as supplemental information for publications.  

The error estimation summary plot provides a summary of the error estimates.  For this 

analysis, the BS-DISP errors, which capture both random errors and rotational ambiguity, have 

the largest range (Figure 58). 

8.2 St. Louis Supersite PM2.5 Data Set 

This exercise focuses on the data set provided in Dataset-StLouis-con.csv and Dataset-StLouis-

unc.csv.  The exercise is intended to demonstrate the evaluation of base model results and 

addition of constraints using EPA PMF.  A number of papers have been published on St. Louis 

particulate matter (PM) apportionment and Amato and Hopke (2012) have recently published an 

analysis of St. Louis data.  The example given here is not a complete analysis; it illustrates how 

to analyze the data with PMF and the importance of evaluating the model results.  The PMF 

input parameters are summarized in Table 5. 

8.2.1 Data Set Development 

The St. Louis PM data set includes 13 species and 420 hourly samples, taken during June 

2001, November 2001, and March 2002 at the East St. Louis Supersite (Figure 59).  The data 

were formatted in .csv files with each row representing one sample and each column one 

species.  Uncertainty estimates by species and sample were provided by the analytical lab.  

1 

3 

2 
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Samples below the detection limit were given an uncertainty of 5/6 the detection limit, missing 

samples were given an uncertainty of 4 times the median concentration, and samples above the 

detection limit were given an uncertainty of 1/3 the detection limit plus a sample-specific 

laboratory uncertainty.  In particular, this data set was chosen to illustrate adding constraints to 

the PMF model based on known source profiles. 

 

Figure 58.  Error estimation summary plot of range of concentration by species in each factor. 
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Table 5.  St. Louis Example – Summary of PMF input information. 

 

 

Figure 59.  Satellite image of St. Louis Supersite and major emissions sources. 

***Data Files*** **** Base Run Summary ****

Concentration file: Dataset-StLouis-con.csv Number of base runs: 20

Uncertainty file: Dataset-StLouis-unc.csv Base random seed: 30

Number of factors: 7

Excluded Samples Extra modeling uncertainty (%): 0

none

**** Input Data Statistics ****

Species Category S/N Species Category S/N

Cd Bad 0.80 Zn Strong 5.05

Cu Strong 5.35 SO4 Strong 6.73

Fe Strong 2.30 NO3 Bad 5.31

Mn Strong 8.80 OC Strong 3.59

Ni Weak 0.52 EC Weak 0.67

Pb Strong 8.43 Mass Weak 0.92

Se Weak 0.55

 

Source of lead 

emissions 

Major steel facility 

Supersite 
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8.2.2 Analyze Input Data 

Characterizing Species (Concentration/Uncertainty and Concentration Time Series) 

The species categories were set based on the guidance in Section 5.5.1.  The user should first 

examine the input data to determine whether the species concentrations from expected sources 

are temporally related.  For example, do iron and zinc concentrations vary together, indicating 

the presence of steel production or other sources?  The time series of iron and zinc are shown 

in Figure 60.  A zoomed-in graph of the time series is generated by both holding the “Alt” key, 

and the left mouse button while drawing a box around the period of interest.  Select “Alt” and 

click the left mouse button to return to the original figure.   

 

Figure 60.  Concentration Time Series screen and zoomed-in diagram for the St. Louis data set. 

The plot in Figure 60 shows a complex picture, because high zinc concentrations do not 

correspond to iron concentrations.  This discrepancy may indicate a local source of zinc that 

does not include iron.  In the case of this example in St. Louis, a zinc smelter was located near 

the monitoring site. 
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Relationships Between Species (Concentration Scatter Plot) 

Scatter plots between species should be examined for relationships that indicate that a common 

source emitted both species (e.g., OC and EC are both emitted by mobile sources).  In the St. 

Louis data set, lead and zinc are not related, which indicates two potential sources (Figure 61). 

 

Figure 61.  Concentration scatter plots for steel elements. 

Excluding Samples (Concentration Time Series) 

The user should examine the concentration time-series plots to verify that the species selected 

for PMF have expected seasonal patterns (e.g., high sulfate during the summer), as well as to 

identify unusual events (e.g., fireworks on the Fourth of July, which contribute to high levels of 

potassium, strontium, and other trace metals).  Often, these events are easily identified.  The 

samples taken during these identified events should be excluded because the overall profiles 

may not capture the unique composition of the source, or the profiles of non-event sources may 

be distorted.  Exclude a sample by highlighting it and clicking “Exclude Samples” at the bottom 

right of the screen.  All data exclusions must be well-justified and documented.   
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8.2.3 Base Model Runs  

Initial Model Parameters (Base Model Runs) 

The model was run 20 times with 8 factors and a seed of 30.  A constant seed was used to 

replicate results for training purposes and the runs converged and the Q values were very 

stable.  The Q(robust) was about 10% lower than the Q(true), indicating some, but not heavy, 

impact of outliers on the Q-value.   

Based on the observed-versus-predicted scatter plots and time series, some species, such as 

lead, were modeled well, and others, such as cadmium, were not well-modeled (Figure 62).  

This could be the result of incorrect uncertainties, improper categorization (e.g., as strong 

species), too few factors being modeled, not enough impacts from the source, or PMF 

incorrectly modeling the species variability.  This lack of fitting trace species has been noticed 

for high-time-resolution sampling (one-hour frequency or less).  A cadmium source such as an 

incinerator is most likely present near the monitoring site.  However, the data does not have 

enough information for PMF to resolve it.  The poorly modeled species (cadmium) should be 

categorized as “Bad.” 

 

Figure 62.  Example of output graphs for cadmium (poorly modeled) and lead (well-modeled). 

In addition, NO3 (shown in the graphs in Figure 63) has many fixed values for the first intensive 

during the summer of 2001 that may be set at the MDL.  This issue is not present for the next 

two time periods as shown in Figure 63 and NO3 should be set as “Bad” if the entire data set is 

used and “Strong” if only the last two intensives are used. 
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Figure 63.  Example of inconsistencies in input data.  The multiple points shown in 
blue in the lower left graphic are fixed values. 

Rotations (G-Space Plots) 

G-space plots of the solution should be examined to determine whether the contributions fill the 

solution space and there are edges or points with low or zero contributions.  Selection of the 

species for these plots is important and species should be plotted against regional source 

indicators, such as coal-fired power plants.  Figure 64 shows two examples, one with points 

near both axes and the other with points only on one axis.  Fpeak should be evaluated to 

determine whether a more optimal solution can be found.  If a point is selected in one figure, the 

same point will be highlighted in the other figures. 

Factor Identification (Profiles/Contributions, Aggregate Contributions) 

Factors may be identified using dominant species and temporal patterns.  Nitrate was removed 

from the analysis and the number of factors was reduced to seven (since nitrate was one 

factor).  The seven factors identified in the St. Louis data set represent a realistic solution based 

on known sources in the area, which are crustal (Mn), copper smelter (Cu), coal combustion 

(SO4, Se), zinc smelter (Zn),  iron and coal (Fe and EC), lead smelter (Pb), and motor vehicle 

(OC, EC).  The iron and coal factor seems to be a mix of species and the factor is evaluated 

using the constraints later in this example.  The factor profiles are shown in Figure 65. 
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Figure 64.  Example of G-space plots for independent (left) and weakly dependent factors (right). 

Mass Distribution (Factor Contributions) 

Figure 66 shows the factor contributions as a pie chart for the total mass variable (PM2.5).  

Evaluate the distribution of contributions to determine whether they are within the expected 

range for the samples.  The major sources for this example are motor vehicles and coal 

combustion, with minor contributions from the crustal, zinc smelter, lead smelter, and copper 

smelter sources. 

8.2.4 Error Estimation 

A summary of the error estimate results from the *_ErrorEstimationSummary file are shown in 

Table 6 along with comments.  The results are stable and no swaps were present.  The 

*_ErrorEstimationSummary file should be reported with any publication and report. 

This example demonstrates the iterative approach for evaluating a PMF solution:  evaluate input 

data, calculate and evaluate base results, and evaluate error estimates.  The Error Estimation 

Concentration Summary plot is shown in Figure 67.   

8.2.5 Constrained Model Runs 

Define Constrain Expressions (Expression Builder) 

For the St. Louis data set, source profiles of local steel facilities were used to determine 

appropriate ratios of iron and manganese in the steel factor.  Samples were analyzed as 

described in Pancras et al. (2005).  This method provides total inorganic concentrations, which 

are comparable to the total inorganic concentrations from Energy Dispersive X-ray fluorescence 

(EDXRF).  The profile of the Granite City Steelworks basic oxygen furnace was used as a 

representative sample, because it is believed to be impacting the site; the ratio of EDXRF iron to 
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manganese in the source profile was 60.  The average ratio of iron to manganese in the St. 

Louis ambient air data was 10.8.  However, the base model run results from PMF showed that 

the iron–to-manganese ratio of 51 was a little low based on the steel factor profiles.  The ratio 

constraint was defined using the Expression Builder, which was interpreted as an autopull 

equation of iron minus 60 times the manganese in the steel factor, pulled to zero with a given 

dQ limit ([Steel|Fe] – 60 * [Steel|Mn] = 0).  In addition, EC was selected in the iron and coal 

factor and the right mouse button was used to toggle EC as a constraint.  This might allow EC to 

be better separated from the steel source.  The % dQ was set at 5% for each constraint and the 

converged results used 2.1% dQ. 

 

Figure 65.  St. Louis stacked base factor profiles. 
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Figure 66.  Distribution of mass for St. Louis PM2.5. 

Constrained Model Run Results (Constrained Profiles/Contributions and Diagnostics) 

In the resulting constrained run, the ratio moved to 60 and the EC was also significantly reduced 

to around 40%, shown in Figure 68.  It is important to remember that EC will be shifted to 

another factor.  The largest change in profile was found for motor vehicles.  This indicates that 

the constraints provide an improved result compared to the base run. 

These changes did not have a large impact on the overall factor contributions to the mass (the 

iron and coal factor was reduced by 2.3% and the motor vehicle factor increased by 1.1%); 

however, it demonstrates the benefit of bringing in external information.  After adding 

constraints, run all three error estimates and compare them to the base model results.  The 

error estimate summary (Figure 69) does not show a significant change.  In other data sets, the 

addition of constraints may reduce the size of error estimates by reducing rotational ambiguity. 

8.3 Baton Rouge PAMS VOC Data Set 

The following sections detail a PMF analysis of a Photochemical Air Monitoring Station (PAMS) 

VOC data set from Baton Rouge, Louisiana.  The user should run EPA PMF 5.0 with the data 

sets provided in Dataset-BatonRouge-con.csv and Dataset-BatonRouge-unc.csv to follow the 

analyses described below.  This exercise is intended to demonstrate the thought process and 

steps involved in reaching a solution using EPA PMF 5.0; it is not intended to be a complete 

source apportionment analysis.  The PMF input parameters are summarized in Figure 69. 
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Figure 67.  Summary of base run and error estimates. 

 

Figure 68.  Comparison of base model and constrained model run profiles for the steel factor. 
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Table 6.  Error Estimaton Summary results. 

BS-DISP Diagnostics 

# of Cases: 101 
      Largest Decrease in 

Q: 
-

0.382999986 
      

% dQ: 
-

0.370098358 
      

# of Decreases in Q: 0 
      # of Swaps in Best 

Fit: 0 
      

# of Swaps in DISP: 0 
      

Swaps by Factor: 0 0 0 0 0 0 0 

        
DISP Diagnostics 

Error Code: 0 
      Largest Decrease in 

Q: 
-

0.035999998 
      

% dQ: 
-

0.034787313 
      

Swaps by Factor: 0 0 0 0 0 0 0 

        
BS Mapping 

 
Base Factor 1 Base Factor 2 Base Factor 3 Base Factor 4 Base Factor 5 Base Factor 6 Base Factor 7 Unmapped 

Boot Factor 1 100 0 0 0 0 0 0 0 

Boot Factor 2 0 100 0 0 0 0 0 0 

Boot Factor 3 0 0 100 0 0 0 0 0 

Boot Factor 4 0 0 0 100 0 0 0 0 

Boot Factor 5 0 0 0 0 100 0 0 0 

Boot Factor 6 0 0 0 0 0 100 0 0 

Boot Factor 7 0 0 0 0 0 0 100 0 
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Figure 69.  Summary of constrained run and error estimates. 

8.3.1 Data Set Development 

The concentration data for this analysis were downloaded from the EPA Air Quality System.  

Speciated volatile organic compound (VOC) data from 3-hr samples collected at the Baton 

Rouge PAMS site during June–August 2005 and June–September 2006 (307 samples) were 

downloaded for potential inclusion in PMF.  Uncertainties are not regularly reported for PAMS 

VOC data.  For this analysis, initial uncertainties were set for each species and sample at 15% 

of the concentration, unless the value was below detection, where the concentration was MDL/2 

and uncertainty was (5/6)*MDL (Table 7). 
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Table 7.  Baton Rouge Example – Summary of PMF input information. 

 

8.3.2 Analyze Input Data 

Characterizing Species (Concentration/Uncertainty and Concentration Time Series) 

S/N ratios are not as useful in this analysis because all species were given a set uncertainty; 

therefore, species categorizations will be evaluated based on residuals and observed/predicted 

statistics after the initial base runs.  Species with greater relative uncertainties were categorized 

as “Bad” and excluded from the analysis.  For the initial run, all included species were 

categorized as “Strong” and all 21 species, including total non-methane organic compounds 

(TNMOC), were used.   

Relationships Between Species (Concentration Scatter Plot) 

Scatter plots between species are examined to evaluate relationships between the species that 

may indicate a common source.  In the Baton Rouge data set, expected relationships between 

gasoline mobile source species, such as toluene and o-xylene (Figure 70, 1) and heavy-duty 

vehicle mobile source species, such as n-decane and n-undecane (Figure 70, 2) are indicated.  

***Data Files*** **** Base Run Summary ****

Concentration file: Dataset-BatonRouge-con.csv Number of base runs: 20

Uncertainty file: Dataset-BatonRouge-unc.csv Base random seed: 25

Number of factors: 4

Excluded Samples Extra modeling uncertainty (%): 0

none

**** Input Data Statistics ****

Species Category S/N Species Category S/N

124-TrimethylbenzeneBad 5.46 M-Ethyltoluene Bad 5.53

224-TrimethylpentaneStrong 5.67 N-Butane Strong 5.67

234-TrimethylpentaneBad 5.55 N-Decane Weak 5.20

23-Dimethylbutane Bad 5.51 N-Heptane Strong 5.67

23-DimethylpentaneBad 5.48 N-Hexane Weak 5.62

2-Methylheptane Weak 5.08 N-Nonane Weak 5.43

3-Methylhexane Bad 5.65 N-Octane Weak 5.58

3-Methylpentane Bad 5.62 N-Pentane Weak 5.67

Acetylene Strong 5.67 N-Propylbenzene Bad 3.76

Benzene Strong 5.67 N-Undecane Bad 5.03

Cis-2-Butene Bad 3.28 O-Ethyltoluene Weak 5.00

Cis-2-Pentene Bad 5.10 O-Xylene Strong 5.67

Ethane Bad 5.67 Propane Strong 5.67

Ethylbenzene Strong 5.67 Propylene Weak 5.67

Ethylene Weak 5.67 Styrene Bad 4.95

Isobutane Weak 5.67 Toluene Strong 5.67

Isopentane Weak 5.67 Trans-2-Butene Bad 3.16

Isoprene Bad 5.56 Trans-2-Pentene Bad 5.43

Isopropylbenzene Bad 2.32 Unidentified Bad 1.00

M_P Xylene Bad 5.67 TNMOC Weak 0.75

M-Diethylbenzene Bad 2.66
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Ethane and propane (Figure 70, 3) show some evidence of two source influences that have 

different ethane and propane ratios, potentially indicating a mix of fresh sources from 

petrochemical processing/natural gas use and aged carryover from other areas.  Benzene and 

styrene (Figure 70, 4), often mobile source-dominated species, were not well-correlated with 

other mobile source species; this lack of correlation is likely due to emissions of these species 

from the several large petrochemical sources in the area. 

  

  

Figure 70.  Relationships between ambient concentrations of various species. 

Excluding Samples and Species (Concentration Time Series) 

Time series of each pollutant were examined for extreme events and/or noticeable step 

changes in concentrations that should be removed from the analysis.  Step changes (e.g., 

differences due to changes in laboratory analytical technique) may be mistakenly identified as 

separate sources of the species.  If samples are removed due to unusual events in various 

3 4 

1 2 
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species, further data analysis outside EPA PMF could be used to confirm whether the data are 

real and informative. 

8.3.3 Base Model Runs 

Initial Model Parameters (Model Execution) 

Initially, 20 base runs with 4 factors and a seed of 25 were explored.  In this iteration, the 

Q-values varied by several hundred units, indicating the solution may not be stable.  The 

species and categories are shown in Table 8.  A number of the species categories were 

changed to “Weak” after the residuals and plots were evaluated as described below.  

Strong/Weak is shown in the Category column of Table 8 for species that were changed. 

Table 8.  VOC species categories. 

Species Category 

1,2,4-Trimethylbenzene Bad 

2,2,4-Trimethylpentane Strong 

2,3,4-Trimethylpentane Bad 

2,3-Dimethylbutane Bad 

2,3-Dimethylpentane Bad 

2-Methylheptane Strong/Weak 

3-Methylhexane Bad 

3-Methylpentane Bad 

Acetylene Strong 

Benzene Strong 

Cis-2-Butene Bad 

Cis-2-Pentene Bad 

Ethane Bad 

Ethylbenzene Strong 

Ethylene Strong/Weak 

Isobutane Strong/Weak 

Isopentane Strong/Weak 

Isoprene Bad 

Isopropylbenzene Bad 

M_P Xylene Bad 

M-Diethylbenzene Bad 

M-Ethyltoluene Bad 

N-Butane Strong 

N-Decane Strong/Weak 

N-Heptane Strong 

N-Hexane Strong/Weak 

N-Nonane Strong/Weak 
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Species Category 

N-Octane Strong/Weak 

N-Pentane Strong/Weak 

N-Propylbenzene Bad 

N-Undecane Bad 

O-Ethyltoluene Strong/Weak 

O-Xylene Strong 

Propane Strong 

Propylene Strong/Weak 

Styrene Bad 

Toluene Strong 

Trans-2-Butene Bad 

Trans-2-Pentene Bad 

Unidentified Bad 

TNMOC Weak 

8.3.4 Base Model Run Results 

Model Reconstruction (Obs/Pred Scatter Plots, Obs/Pred Time Series) 

Residuals of the species were analyzed and the histograms of scaled residuals (after selecting 

autoscale) are shown for benzene, which had a good fit, and poorly fit ethylene in Figure 71.  In 

addition, the observed vs. predicted scatter plots and time series are shown in Figure 72 and 

Figure 73, respectively.  Since PAMS data are only collected during the summer, the time-series 

plots have a missing time period during fall through spring.  The scatter plots and the time series 

also show the difference between the observed and predicted concentrations.  The poorly fit 

species have scaled residuals greater than 3.0 and the peak observations are not fit in the 

scatter or time-series plots.  Species with a number of scaled residuals above 4 have peak 

concentrations that were not fit by PMF:  2-methylheptane, ethylene, isobutane, isopentane, 

n-decane, n-hexane, n-nonane, n-octane, n-pentane, o-ethyltoluene, and propylene.  The 

category for these species was set to “Weak.” 

Factor Identification (Profiles/Contributions, Aggregate Contributions) 

The base run was re-run and profiles and contributions were examined to identify factors.  

Measured profiles were used to support the identification of the factors and the factor names 

have been added to Figure 74 by right-clicking in Profiles/Contributions and naming the factors 

via the “Factor Name” option.   
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Figure 71.  Histogram of scaled residuals for benzene (1) and ethylene (2). 

1 

2 



U.S. Environmental Protection Agency EPA PMF 5.0 User Guide 

 

96 

 

 

Figure 72.  Observed/predicted plots for benzene. 
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Figure 73.  Observed/predicted plots for ethylene. 
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Figure 74.  VOC factor profiles. 

The PMF results were compared to measured profiles using the first and second columns from 

Fujita (2001), shown in Figure 75.  The n-decane levels in the diesel exhaust profile 

(Tu_MchHD) are high compared to the vehicle emissions (Exh_J) and Figure 76 shows the 

factor fingerprint plot for which n-decane is predominately associated with the diesel factor.  The 

acetylene contributions to sources will be discussed in later in this example.  Acetylene is 
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predominately associated with vehicle emissions and has a small contribution to gasoline vapor.  

It is also present in the industrial source and diesel.   

 

 

Figure 75.  Measured VOC profile information.  Source:  Fujita (2001). 
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Figure 76.  Factor fingerprint plot for VOCs. 

Rotations (G-Space Plots) 

The G-space plot of the motor vehicle and the diesel exhaust source contributions had a weak 

linear relationship (Figure 77).  This may indicate that the diesel motor vehicle source may be 

mixed with the motor vehicle source, or another source of diesel combustion may be present.  

The other G-space plot pairings showed the points were distributed across the solution space 

between the axes.  Fpeak should be investigated to determine whether a rotation moves points 

to the axes. 

Species Distribution (Factor Pie Chart) 

The total variable (TNMOC) was mainly contributed to by motor vehicle exhaust and gasoline 

vapor.  The industrial component was also a major contributor, as shown in Figure 78. 

8.3.5 Fpeak  

Examination of the Fpeak G-space plots of motor vehicle exhaust vs. gasoline vapor showed 

that some optimization might be gained using an Fpeak of -1.0.  The focus of this example is to 

demonstrate source profile constraints, so the Fpeak result will not be discussed further.  The 

base, Fpeak, and constrained model results should be compared to determine whether the 

rotational tools and constraints provide a different interpretation of the factors and contributions. 
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Figure 77.  G-Space plot of motor vehicle and diesel exhaust. 

 

Figure 78.  Apportionment of TNMOC to factors resolved in the initial 4-factor base run. 
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Error Estimate Summary 

As shown in Table 9, not all of the base factors were mapped to the boot factors and the 

number of factors that were not correctly mapped is approximately 80%, which is relatively 

stable.  The unmapped factors are due to the combination of the high variability in the data and 

PMF not fitting all of the spikes in the data (Figure 79).  All of the “Strong” species were selected 

for the BS-DISP error estimation.  The number of DISP swaps is zero and the BS-DISP swaps 

are distributed across three factors.  The number of swaps in BS-DISP is relatively high and the 

BS results and model fit statistics need to be evaluated before reporting results. 

Table 9.  Base run boostrap mapping. 

BS-DISP Diagnostics 

# of Cases: 87 
   Largest Decrease in 

Q: -6.846000195 
   

% dQ: -0.138746462 
   

# of Decreases in Q: 0 
   # of Swaps in Best 

Fit: 1 
   

# of Swaps in DISP: 13 
   

Swaps by Factor: 1 3 4 0 

     
DISP Diagnostics 

Error Code: 0 
   Largest Decrease in 

Q: 0 
   

% dQ: 0 
   

Swaps by Factor: 0 0 0 0 

     
BS Mapping 

 
Base Factor 1 Base Factor 2 Base Factor 3 Base Factor 4 Unmapped 

Boot Factor 1 80 8 8 4 0 

Boot Factor 2 0 92 6 2 0 

Boot Factor 3 0 0 100 0 0 

Boot Factor 4 0 0 13 87 0 
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Figure 79.  Observed vs. Predicted Time Series for refinery species. 

8.3.6 Constrained Model Runs 

Constraints were used to determine if the acetylene is strongly associated with the industrial 

source because acetylene is a key tracer for motor vehicle exhaust.  In the base run, 84 and 14 

percent of the acetylene was associated with the gasoline exhaust and refinery factors, 

respectively.  Acetylene was selected in the refinery factor using toggle constraints and it was 

constrained using “Pull Down Maximally” with a 1% dQ and acetylene was also constrained in 

the gasoline exhaust factor using “Pull Up Maximally” with a 1% dQ. 

The base run and constrained run results are shown in Figure 80.  The constraint used 0.84% 

dQ and acetylene was pulled to zero in the refinery factor (Figure 80, 1) and increased to almost 

100% in the gasoline exhaust factor (Figure 80, 2).  The low amount of dQ needed to move 

acetylene indicates that it is not a firm feature of the refinery factor and that acetylene can be 

used as a tracer for gasoline motor vehicle exhaust. 
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Figure 80.  Percent of species associated with a source (1) and Toggle Species Constraint (2).
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