Status of EPA's New Generation Mobile Source Emission Model

Presentation for

Mobile Source Technical Review Subcommittee

October 24, 2001

John Koupal EPA Office of Transportation & Air Quality

New Generation Model Charge

- Establish comprehensive mobile source modeling system which:
 - → Includes all mobile sources
 - →Addresses all pollutants and emission processes we care about
 - →Allows emission estimation for legislative, regulatory and research
 - → Is based on sound scientific principles
 - → Is flexible enough to update and improve for many years to come

Why Undertake A New Approach?

- Current questions exceed current tools
 - →Analyses at finer scales
 - → Cross-pollutant and cross-source impacts
 - → Toxics, PM, Greenhouse Gases
- Improve the science
- Improve the software
- Respond to external review
 - → National Research Council, "Modeling Mobile Source Emissions", May 2000

Progress Thus Far...

- Charter signed by OTAQ, OAQPS, ORD, R4
- Issue Paper published May 2001
- Conceptual design developed
- Top-level software design contract initiated
- On-board emission data pilot study initiated
- Project plan developed

Use Cases

- National inventory development
 - → Regulatory support
 - → Trends
 - → Greenhouse Gases Sources & Sinks
- Legislative analyses
 - \rightarrow SIPs
 - → Conformity
- International use
- Microscale analysis
 - → PM/CO Conformity
 - → Toxics "hot spots"

Use Cases

- Policy Evaluation
 - → New standards/technology
 - → New fuels
 - → Reducing VMT
 - → Reducing in-use emissions
- Model Integration
 - → Transportation: TRANSIMS, TDMs
 - → Emission Processors & AQ: EMS, SMOKE (MODELS3)
 - → Dispersion Models: CAL3QHC
- Validation, Uncertainty, Sensitivity
- Model expansion and updates

Macroscale

Microscale

NGM Analysis Scales

Mesoscale

Conceptual Design

- One design supports all scales, pollutants, sources, emission modes
- Calculates inventories, not just emission factors
- Easy to update with new data or new pollutants
- Designed for validation
- Can implement in phases
- Integrates with other models
 - → Transportation: TRANSIMS, TDMs
 - → Emission Processors & AQ: EMS, SMOKE (MODELS3)
 - → Dispersion Models: CAL3QHC

Conceptual Design

- "Core" model
 - → Generic
 - → Can be applied at any scale
- "Implementations"
 - → EPA will develop national inventory implementation
 - → Mesoscale and microscale implementations would be developed by users
 - Could rely on many of the defaults from national inventory implementation

Design Concepts

- What is important for estimating emissions:
 - → How many emission sources?
 - →What type are they?
 - →What are they doing?
 - →What are the emissions associated with what they are doing?
- These questions apply regardless of source, scale, or pollutant
- Conceptual design focused on these questions

Design Processes

Fleet characterization

→ Determine number and type of emission source

Activity characterization

- → Determine fraction of time spent in operating modes
- → emission "process": exhaust, evap, wear, leakage...
- → emission "mechanism": start, A/C, enrichment...

Emission calculation

- → Determine emission rate for vehicle, operating mode, emission process, emission mechanism
- → Calculate total emissions for area/time according to fleet population, activity distributions

Software Concepts

- Conceptual design fits well in object-oriented design approach
- Benefits of Object-Oriented design:
 - → modularity
 - →easier updates
 - →expandability to new sources, pollutants, processes
- New language would be required
 - →Java or C++

EPA Multi-Media Integrated Modeling System (MIMS)

- Under development by ORD
- Framework for linking models together
- Best example for need is MODELS-3:
 - → Current Situation:
 - Integration of MOBILE6 and MODELS-3 is troublesome, time consuming, and expensive
 - → With MIMS:
 - Initial MODELS-3 implementation Fall 2001
 - NGM in MIMS would allow easy linkage and updates
- We've contracted MCNC (MODELS-3 developers) to produce NGM MIMS design

On-Board Emission Measurement

- Considerable development over last decade
- Off-the-shelf units currently available
 - → HC, CO, NOx, CO₂, vehicle/engine parameters, GPS
- EPA's Portable Emission Measurement Strategy (PEMS)
 - → Will include emissions, vehicle/engine parameters, GPS
 - \rightarrow Phase I: NOx, CO₂
 - Initial testing on non-road diesel equipment this summer
 - → Phase 2: HC, CO, PM, Toxics in works

On-Board Emission Pros & Cons

Pros

- → Measures in-use emissions as they are
- →Accounts for all emissions synergies
- → Relative inexpensive to deploy
- →Can deploy remotely
 - Huge benefit for heavy-duty and off-road sources
 - Hope to work with State/Local/Regional POs

Cons

- → Could be difficult to isolate factors affecting emissions
- → Starting from scratch in terms of modeling dataset
- → Mass deployment in general public unproven

On-Board Data Analysis Pilot Study

- How can on-board data be used in NGM?
- Pilot test program collecting on-road data for LDVs, transit buses, nonroad equipment
- Analysis "shootout" contract:
 - → Develop conceptual methodology
 - → Demonstrate on pilot dataset
 - → Recommend sampling plan and role of alternate data
- Competitive process
 - → 7 bids, 3 awards: Ga Tech, NC State, UC Riverside
- Complete work January 2002

Proposed Project Plan - Implementation Phases

- Fuel Consumption Model
 - →On-road and off-road sources
 - →Allows validation step
 - → Foundation for all other pollutants
- Greenhouse Gas Model
 - →On-road and off-road sources
 - → Includes HFCs
- All Other Pollutants
 - → MOBILE and NONROAD replacements
- Integration with MODELS-3 & TRANSIMS

Proposed Project Plan - Steps Critical for Good Science

- Addressing model accuracy
 - → Defining and determining acceptable accuracy
 - → Estimating model uncertainty
 - → Frequent model validation and feedback
- Taking time for meaningful review
 - → Results must be reflected in final product
- Lots of documentation

Doing It Right Takes Time

Process repeated for every pollutant in the model!

Project Schedule

<u>Milestone</u>	Projected Date
Comprehensive Plan Drafted	Jun 02
Fuel Consumption Model	Aug 03
Greenhouse Gas Model	Jun 04
All Other Pollutants	Nov 05

Stakeholder Engagement

- Now is the time to get engaged
- FACA modeling workgroup
 - →Next steps: workgroup provides input to MSTRS on basic model concepts
 - → Is your group represented?
- Website
 - →http://www.epa.gov/otaq/ngm.htm
- Group mailbox: newgen@epa.gov