Camp Minden M6 and CBI Potential Technology Screening Information

(T)	T 51 1 11 1	I		1 Martin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		140 11 11 11 1
Name of Technology	Please describe how	Has your	Can your technology/	What is the Destruction	What is the nature	What is the highest
	your technology or	technology/ process	process be	Efficiency of your	and composition of	throughout you have
Vendor Contact Information	process works and	been tested or used	implemented on-site at	process? What is the	any emissions?	achieved you're your
	the equipment	with M6, CBI,	Camp Minden? How	nature of the	How are emissions	process? What is the
Website or link to additional	involved. Is this	propellants, or	long would it take to	residues/wastes that will	Monitored,	reasonable maximum
information	existing equipment or	similar materials?	mobilize, install and be	remain, and what	captured, tested,	daily capacity/
	does it need to be	What permits or	ready to treat	processes/disposal/	treated and	throughput you
	fabricated? Is a donor	approvals do you	material? Would it	recycling will be used for	ultimately	believe you could
	explosive required?	have in hand?	require any extra	this residue/ waste? What	disposed?	achieve at Camp
		Describe actual	handling or	percent volume reduction	What potential	Minden? What is the
		uses, volumes	preparation of the M6	(or addition) is achieved?	hazards to	reliability and
		treated, and results	and CBI? What are		workers, other on-	maintenance
		of tests or	the key space and		base personnel	requirements of your
		applications for M6	logistical requirements		and nearby	equipment? Is it
		like materials.	for your installation on-		residents should	subject to weather?
			site including storage		be considered and	-
			of residues/wastes?		how are they	
					managed?	

Camp Minden M6 and CBI Potential Technology Screening Information

Methods for Dissolution and Neutralization of Solid Nitrocellulose Propellants and Plasticized Military Munitions

Patent #: US 8,865,961 B2

MuniRem Environmental, LLC. 111 Riverbend Road, Ste 270, Athens, GA 30602 (706) 202 4296 vnzengung@munirem.com

MuniRem **Environmental** (MRE) developed an innovative method to dissolve the different sized propellants (single, double and composite base) followed by rapid neutralization at ambient temperature. The cellulose is transformed to alucose and mannose primarily, with smaller amounts of arabinose and xylose sugars. The nitro groups on nitrocellulose are transformed to nitrite and nitrate primarily. The solid residues consist of cellulose. The process is a wet chemistry process in which organic solvents (alcohol or ketone), water and a hvdroxide are the main reagents.

MRE developed the technology at the bench scale using commercial smokeless powder and field (pilot) tested at Indiana AAP on military grade double base propellants. Subsequently, MRE developed **Propellant Destruction Kits** (PDKs) for Army HO for use to neutralize small amounts of propellant recovered at a beach in Hawaii.

MRE's technology is easily implemented on-site at Camp Minden. It will involve constructing multiple reactors (reaction tanks) for use in dissolution and destruction of the M6. There will be a space requirement of about 2 acres for the set-up which will include a biological treatment of the produced wastewater in lined lagoons.

The M6 propellant will be degraded to form wastewater and cellulosic solid residues. The M6 mass will be reduced by >95% leaving <5% non energetic solid residue (cellulose). The solid residue may be disposed at a landfill or combusted. The wastewater will be treated by a biodegradation process similar to wastewater treatment plant. There is no time to develop a process to recover energy from the sugars that are produced as by-products of the M6 destruction.

Air scrubbers will be installed to capture and treat the gases (NOX, NH3 and VOCs) emitted from the reaction tanks. Since the approach is a wet chemistry process and is exothermic, there is a slight chance of a runaway reaction. The latter will be mitigated in the design by constructing jacketed reaction tanks for efficient heat exchange.

estimated at 34,000 lbs per day. Multiple reaction tanks will be constructed and operated in parallel simultaneously. There will be a need to shutdown and repair a reactor occasionally, while the rest of the reactors remain in operation. Weather will not limit the operations at the processing plant.

The throughput is

Additionally, air quality will be monitored in the treatment facility and workers will wear protective clothing for additional safety.