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EXA 408: Interpreting Biomonitoring Data and Using Pharmacokinetic Modeling in 
Exposure Assessment 

Widespread acceptance and use of the CDC's National Health and Nutritional Examination Survey 
(NHANES) database, which, among other things, reports measured concentrations of environmental 
contaminants in blood and urine, has led to an expanded understanding of general population 
exposures in the United States.  These biomonitoring data incorporate exposures from multiple 
pathways and sources and can help researchers characterize exposure and internal dose.  This module 
will introduce the concept of biomonitoring and discuss the use of biomonitoring data with 
pharmacokinetic models to estimate dose. 
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1. INTRODUCTION 

This course covers the main elements of biomonitoring and how it can be used in exposure assessments.  These 
elements include: 

• Body burdens and biomarkers 

• The National Health and Nutritional Examination Survey (NHANES) database 

• Pharmacokinetic (PK) models, how they are related to biomonitoring, and how they can be used for 
both forward and backward exposure analysis 

• Biomonitoring equivalents 

As outlined throughout the EXA course 
series, exposure assessments evaluate the 
movement of a chemical from its source 
to a receptor as shown in Figure 1.  
Traditional risk assessment has used a 
single-stressor approach because data are 
typically inadequate to quantify risks from 
multiple stressors, or the methodologies 
available for considering possible impacts 
from multiple exposures are limited.  
Traditional exposure assessments rely on 
modeled or measured concentrations in 
external media.  For example, the 
concentration of a chemical in an 
environmental medium (e.g., soil) and 
exposure factors like ingestion rate, body 
weight, and exposure frequency/duration can be used to predict or reconstruct dose for potential receptors.  

Some of the limitations to the methods used in traditional exposure assessment include the following. 

• Monitoring at all possible exposure locations is difficult, costly, and might not accurately reflect the 
dose to the target population of the assessment.   

• Modeling fate and transport of the chemical in the environment and in the human body can be difficult 
and subject to errors due to assumptions.   

• Exposure factor data rely on activity diaries, questionnaires, and the recollection of participants about 
what they have done and where they have been, which is subjective and sometimes unreliable.   

Given its limitations, traditional exposure assessment is subject to some uncertainties that can possibly result in 
a misrepresentation of exposure.  Using biomonitoring data in exposure assessment is an alternative to the 
traditional approach.  Biomonitoring data can be used to estimate the total internal dose of a chemical by 
measuring the actual levels of the chemical, its metabolites, or its byproducts in the body.  These biomonitoring 
data can also be used in conjunction with PK models to estimate intake dose.  Using biomonitoring data can 
potentially reduce the uncertainty associated with basing estimated dose on exposure factors and monitoring 
data, which might be unreliable and result in an overestimate or underestimate of exposure.  It is difficult, 

Figure 1.  Source-to-Effect Continuum 
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however, to parse out the source or pathways of exposure from biomonitoring data, and using biomonitoring 
data can increase the uncertainty in this respect (Hays et al., 2007).  Biomonitoring data can help reconstruct the 
dose of chemical a person received in a specific exposure scenario, thereby providing a biologically relevant 
measure of dose (Sexton, 2004). 

http://hero.epa.gov/index.cfm?action=search.view&reference_id=714493
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2. BIOMARKERS, BODY BURDENS, AND BIOMONITORING  

This section provides some basic definitions related to biomonitoring, presents an overview of the National 
Health and Nutrition Examination Survey and describes how data included in this data set can be used in 
exposure assessment, and lists other sources of biomonitoring data.   

2.1 Definitions 

Biomarker: A general term for any biologic indicator of exposure to a chemical.  These can 
be the measured levels of chemicals, their metabolites, or byproducts produced 
through interaction between the chemical and the target tissue or cell (NRC, 2006).  

Biomarkers are collected using biomonitoring methods and measure one of the following: 

• The amount of a compound in the body;  

• The biological interaction of the compound with the body; or  

• The changes in the physiology of the organism as a result of interaction with the compound.   

Examples of biomarkers include protein and DNA adducts, changes in enzyme synthesis or activity, and 
chemical concentrations in urine.  Depending on the contaminant and other factors, biomarkers can be useful in 
identifying source and timeframe of exposure.  For instance, measuring the bioaccumulation of a substance or 
its metabolite can tell us how long the chemical has been in the body, and where the chemical is found in the 
body can tell us about the route of exposure.  Biomarkers reflect internal 
dose and confirm that exposure to a chemical has occurred; however, the 
presence of a biomarker alone does not indicate that an effect has 
occurred or that a person is at risk for adverse effects (U.S. EPA, 1992a). 

NHANES is one source of biomarker data; this data source is covered in 
more detail in Section 2.2.  Other sources of biomarker data include 
research studies conducted on smaller scales in the context of a specific 
research objective.  An example would be a biomonitoring study conducted by a city health department to 
evaluate blood-lead levels in children. 

If the chemical being measured in the 
body is the parent compound, that 
measurement is considered a body 
burden, a specific type of biomarker. 

 

Body burden: A specific type of biomarker that describes the total amount of the parent 
chemical—not its metabolites or byproducts—in the body as measured 
through biomonitoring (ATSDR, 2004; U.S. EPA, 1992b). 

 
Biomonitoring: The act of measuring the concentration of chemicals, their metabolites, or 

their byproducts in tissues or fluids such as blood, urine, breast milk, hair 
and other samples (CDC, 2009; Hays et al., 2007; ATSDR, 2004; U.S. EPA, 
1992b).  . 

 

http://hero.epa.gov/index.cfm?action=search.view&reference_id=787735
http://hero.epa.gov/index.cfm?action=search.view&reference_id=90324
http://hero.epa.gov/index.cfm?action=search.view&reference_id=644526
http://hero.epa.gov/index.cfm?action=search.view&reference_id=90324
http://hero.epa.gov/index.cfm?action=search.view&reference_id=664488
http://hero.epa.gov/index.cfm?action=search.view&reference_id=714493
http://hero.epa.gov/index.cfm?action=search.view&reference_id=644526
http://hero.epa.gov/index.cfm?action=search.view&reference_id=90324
http://hero.epa.gov/index.cfm?action=search.view&reference_id=90324
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Biomonitoring can capture exposure from multiple pathways and sources, as is illustrated in the conceptual 
example presented in Figure 2.  Biomonitoring data will provide measures of internal dose for particular 
chemicals of interest that also reflect effects from external factors, such as the following: 

• Various environmental 
pollutants, like those 
emitted from the factory, 
automobiles, fireplace, 
and other sources 
depicted in the figure;  

• Dietary habits—for 
example, if someone eats 
a lot of grilled meats or 
drinks water from a 
public or private source 
of drinking water; 

• Access to health care and 
other social factors; 

• Other daily activities, 
including smoking or 
exercise habits. 

Stressor

Community, Population, 
or Population Segment

Chemical

Stressor Chemical

 

Figure 2.  Biomonitoring Can Measure Various Exposures 

A variety of external factors could influence the extent of exposure of individuals or a population as well as 
their response to exposure (NRC, 2006; Sexton, 2004).   

There are advantages and limitations associated with biomonitoring, as summarized in the text box below.  One 
advantage of biomonitoring is the ability to measure aggregate exposure to a given compound from all 
pathways; body burden data include total exposure to a single compound through multiple exposure sources and 
routes.  Biomonitoring also reflects internal dose, which accounts for uptake of a compound into the body 
(biouptake) and the accumulation of the compound in the body (bioaccumulation).  Biomonitoring can be used 
in epidemiology studies to analyze relationships between internal dose and health outcomes. 

Biomonitoring data also have limitations.  
Using biomonitoring data might not help 
identify the particular source(s) or 
pathway(s) that are responsible for the 
bulk of the internal dose.  Also, 
biomonitoring might involve the 
collection of human specimens such as 
blood, urine, breath, hair, or fat.  Such 
collections can be particularly 

burdensome with regard to information collection requirements and permissions, and can also be cost 
prohibitive due to requirements of specialized equipment, training, preparation, testing, and storage.  Finally, 
data from routine toxicity tests are not typically linked to an internal dose, so the interpretation of potential 
health risks from biomonitoring may be difficult in the absence of epidemiological studies (Sexton, 2004). 

Biomonitoring Advantages Biomonitoring Limitations 
Measures all aggregate exposure 
(all sources, routes) 

Not source- or pathway-specific 

Reflects uptake and accumulation Requires permission for collection 
of human specimens 

May be able to correlate internal 
dose with health effects 

Can be costly 

 Difficult to interpret potential health 
risks 

http://hero.epa.gov/index.cfm?action=search.view&reference_id=787735
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2.2 NHANES Biomonitoring Data 

The National Health and Nutrition Examination Survey, or NHANES, is a program of studies conducted by the 
U.S. Centers for Disease Control and Prevention “designed to assess the health and nutritional status of adults 
and children in the United States” (http://www.cdc.gov/nchs/nhanes.htm).  NHANES data are collected using a 
combination of interviews and physical examinations, and the program is designed to gather information and 
data on the health of the nation as a whole.  NHANES findings are also the basis for national averages and 
distributions for measurements like height, weight, and blood pressure. 

Biomonitoring data from NHANES have been used to identify: 

• Chemicals to which the general population has been exposed  

• Body burdens of chemicals  

• Differences in body burdens according to demographics (such as age or race)  

• Potential trends in body burdens over time   

Health status information has also been used along with the biomonitoring data to investigate potential 
relationships between chemical exposure and diseases. 

NHANES began in the 1960s as a series of surveys of different 
population groups and health topics.  In 1999, the survey was 
modified to periodically examine a nationally representative 
sample of about 5,000 people in states across the United States.  
Surveys are conducted every two years, asking new questions 
and collecting new data during each cycle (CDC, 2009).  The data included in NHANES are not collected using 
a simple random sample.  Instead, survey participants are selected using a probability sampling design to ensure 
the data are representative of the noninstitutionalized, civilian U.S. population.  People aged 60 and older, 
African Americans, and Hispanic people are oversampled to increase the reliability and precision of estimates 
for these groups.  Each sampled individual is assigned a numerical sample weight that measures the number of 
people in the population represented by that particular sampled individual.  These weights adjust for unequal 
selection probabilities or certain types of nonresponse to the surveys and must be used to obtain more accurate 
national estimates from the NHANES data. 

Biomonitoring data are collected through blood, urine, and sometimes hair or oral samples from a population 
ranging in age from 1 to over 60.  These samples are analyzed for markers of disease (like elevated blood sugar 
levels); the presence of various compounds, including a variety of environmental chemicals of concern; and 
biomarkers of chemical exposure (CDC, 2009).  The full suite of lab tests is not performed on every age group; 
for example, urine samples are only collected from children over the age of 6.   

In 2000, the CDC compiled and published the National Report on Human Exposure to Environmental 
Chemicals based on the 1999-2000 NHANES data.  In 2009, the fourth edition of this report was published, 
presenting data for 212 environmental chemicals and their metabolites, including disinfection byproducts, 
volatile organic compounds, and perfluorinated compounds.  Because NHANES is a dynamic survey conducted 
every two years, the list of monitored chemicals is continually updated to reflect emerging contaminants of 
concern (Scott and Nguyen, 2011; CDC, 2009). 

NHANES is the largest database of 
biomarker data available for the 

 population of the United States. 

http://www.cdc.gov/nchs/nhanes.htm
http://hero.epa.gov/index.cfm?action=search.view&reference_id=664488
http://hero.epa.gov/index.cfm?action=search.view&reference_id=664488
http://hero.epa.gov/index.cfm?action=search.view&reference_id=787733
http://hero.epa.gov/index.cfm?action=search.view&reference_id=664488
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NHANES surveys can be used to:  

• Determine which chemicals of concern are present in U.S populations and at what concentrations the 
compounds are found 

• Determine what proportion of the population has measured contaminant levels above the levels 
associated with adverse health effects 

• Determine whether exposure is higher among minorities, children, women of childbearing age, or other 
populations of concern 

• Establish reference or background values that can then be used by researchers and physicians to 
determine whether a person or group has an unusually high exposure to a particular chemical 

• Track levels of chemicals in the body over time using historical data 

• Prioritize research topics on human health effects due to exposure 

In general, survey data on health status, family history, and behaviors like smoking and physical activity can be 
combined with data from blood and urine samples to draw conclusions about the connections between 
exposure, external factors, and resulting body burdens.  Researchers can also use health and behavior data to 
determine which exposure pathways are most relevant for specific chemicals based on the types and amounts of 
chemicals that appear in biomonitoring samples (CDC, 2009).   

To illustrate how NHANES data can be used to better understand exposures, two examples are provided as part 
of this course. 

Example:  Using NHANES Data to Understand Exposure to Phthalates in Women 

Phthalates are a class of chemicals added to plastics to increase their flexibility and durability.  When plastics 
break down, phthalates are released into the environment.  Exposure to phthalates has been shown to cause 
health problems, such as asthma, cancer, endocrine disruption, and obesity.  The table below shows information 
from a study that analyzed NHANES 2003-2004 data for 163 chemicals, including phthalates, found in samples 
of blood, serum, and urine collected from pregnant women (Woodruff et al., 2011).  

Metabolites of phthalates were measured 
instead of phthalates themselves because 
phthalates break down very rapidly in the 
body and little, if any, of the parent 
product is expected to remain in the body 
after exposure.  Additionally, laboratory 
equipment is likely to contain phthalates, 
which can contaminate the samples.  In 
this case, 13 different chemical 
metabolites of phthalates were measured 
in urine.   

Researchers calculated various statistics 
for urinary phthalate metabolite concentrations, including the geometric mean, geometric standard error, and 
median (or 50th percentile), as shown in the table below (Woodruff et al., 2011).  Urinary measurements are 

CHEMICAL CLASSES MEASURED IN BIOLOGICAL TISSUE OF 
PREGNANT WOMEN, NHANES 2003–2004

No. of metabolites measured
Chemical class Blood Serum Urine Total
Cotinine 1 1
Environmental phenols 4 4
Metals 4 4
Organochloridepesticides 13 13
Organophosphate insecticides 6 6
Perchlorate 1 1
Phthalates 13 13
PBDEs and other brominated flame retardants 11 11
PCBs and dioxin-like chemicals 55 55
PAHs 10 10
PCFs 12 12
VOCs 33 33

http://hero.epa.gov/index.cfm?action=search.view&reference_id=664488
http://hero.epa.gov/index.cfm?action=search.view&reference_id=755656
http://hero.epa.gov/index.cfm?action=search.view&reference_id=755656
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useful because phthalates are often rapidly metabolized, with half lives on the order of hours, and therefore they 
are primarily eliminated via the urine.  As seen in the percent greater than level of detection, or LOD, column in 
the table below, phthalate metabolites were present in nearly all of the samples for both pregnant and 
nonpregnant women.  Because phthalates are rapidly metabolized and eliminated from the body within hours of 
exposure, the fact that almost 100% of women tested show phthalate metabolites in their urine indicates that 
women were exposed nearly every day that measurements were taken.  This determination is based entirely on 
biomonitoring data and exemplifies how exposure assessors can draw conclusions about exposure (including 
timing) based on body burden measurements. 

In general, however, body 
burden data alone cannot 
be used to draw 
conclusions about 
exposure beyond the fact 
that an individual was 
exposed.  These data must 
be combined with other 
information, such as 
epidemiological data or 
questionnaire responses, 
to elucidate potential 
exposure sources and 
pathways and potential 
effects of exposure. 

Parent 
Compound Metabolite n

Reproductive 
Status LOD

Percent 
>LOD

GM 
(GSE)

50th 
Percentile

95th 
Percentile

Benzylbutyl 
phthalate
(BzBP) 

Monobenzyl 
phthalate
(MBzP)

91 Pregnant 0.1 100
15.12 
(3.79)

17.8 86.8

497 Nonpregnant 100
14.77
(0.79)

15.5 99.9

Dibutyl 
phthalate

(DBP) 

Monoisobutyl 
phthalate

(MiBP)

91 Pregnant 0.3 99
3.47 

(0.84)
4.4 19.5

497 Nonpregnant 98
4.21 

(0.27)
4.5 21.1

Mono-n-butyl
phthalate
(MnBP)

91 Pregnant 0.4 99
18.83 
(4.11)

17.1 143.8

497 Nonpregnant 99
24.64 
(1.16)

25.7 132.2

Diethyl 
phthalate

(DEP) 

Monoethyl 
phthalate

(MEP)

91 Pregnant 0.4 100
226.53 
(79.03)

265.7 2263.0

497 Nonpregnant 100
246.06 
(29.56)

234.5 2992.6

STATISTICS FOR URINARY PHTHALATE METABOLITE CONCENTRATIONS 
IN PREGNANT AND NONPREGNANT WOMEN, NHANES 2003–2004 

 

  
Example:  Using NHANES Data to Understand Exposure to Dioxins 

Another example of how NHANES data can be used to provide information on exposure involves dioxins.  
Since 1991, U.S. EPA has been assessing the health risks of exposure to 2,3,7,8-TCDD and dioxin-like 
compounds, which are highly toxic byproducts of various industrial processes and are considered persistent 
organic pollutants.  EPA originally produced background daily exposures and body burden estimates for dioxins 
using data collected in the 1990s.  EPA has since updated the exposure assessment using new data collected 
from 2000 to 2004 and continues to update the assessment as needed. 

The background daily exposure estimated in 1990 was based on measured concentrations of dioxins in air, soil, 
water, and food.  Because more than 90% of exposures were determined to come from ingestion of animal 
products, EPA used only newer food survey information to update the daily exposure estimates in 2009.  To 
reevaluate the body burden of dioxins, EPA used blood concentration data collected from NHANES during 
2000–2001 (Lorber et al., 2009).  The table below shows some of these dioxin data from NHANES.   

 

http://hero.epa.gov/index.cfm?action=search.view&reference_id=543766
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AVERAGE CONCENTRATIONS (PG/G LIPID) OF INDIVIDUAL CONGENERS AND 
TEQS IN HUMAN BLOOD FROM THE DIOXIN REASSESSMENT (MID-1990S DATA) 

COMPARED TO NHANES 2001/2002 DATA

Congener

Mid-1990s, 
Mean concentrations 

ND = ½ LOD

NHANES 2001/2002
Mean concentrations Percent 

detectedND = LOD/√(2) ND = 0
2378-TCDD 2.1 2.5 0.7 13
12378-PCDD 5.2 4.6 3.7 35
123479-HxCDD 6.2 5.1 2.9 34
123678-HxCDD 73.1 47.1 46.9 93
123789-HxCDD 7.1 6.0 4.0 42
1234678-HpCDD 79.2 53.8 53.7 99
OCDD 664.0 452.1 419.2 82
1234789-HpCDF 1.2 2.4 ND 0
OCDF 2.1 7.4 ND 0
Total TEQ 
(PCDD/PCDF/cop PCB)

22.9 21.7 17.2

ND = non-detect

Dioxin was measured in 
blood instead of in the urine 
because dioxin is persistent 
in the body, and therefore 
blood measurements provide 
a more accurate 
representation of dioxin 
body burden.  Dioxin has a 
long half life, and, because it 
is lipophilic, it accumulates 
in reservoirs like blood, 
serum, and lipids.  
Therefore, high levels of 

dioxins can persist in the body even if exposure does not occur on a daily or regular basis.  NHANES data have 
been useful in tracking trends in dioxin exposure.  Survey results have shown a consistent decline in dioxin 
exposure from a peak in the late 1960s to present day (Lorber et al., 2009).   

Other Uses of NHANES 

The NHANES program gathers data on other compounds of concern as well, such as blood measurements of 
methyl mercury.  Methyl mercury is the form of mercury found in the body after dietary exposure through 
eating foods containing mercury, such as fish and shellfish.  It is a chemical of concern because there is 
evidence that ingestion of methyl mercury can lead to impaired neurological development and function, 
especially in children and developing fetuses.   

Because NHANES collects data on both mercury levels in the blood and information on daily habits of 
individuals (or exposure factors) related to fish consumption, scientists are able to explore potential 
relationships between mercury levels in blood and behaviors related to fish consumption.  For example, 
scientists have used NHANES data to determine that blood mercury levels in women are associated with 
income, ethnicity, census region, and proximity to the coast.  Groups that more commonly have elevated blood 
mercury levels include Asian women, women with higher incomes, women living in the northeast, and women 
living in coastal areas (CDC, 2009). 

Using data collected from NHANES monitoring, researchers have also examined the statistical correlation 
between metabolites of organophosphate pesticides measured in urine samples and the diagnosis of attention-
deficit hyperactivity disorder (ADHD).  Researchers are concerned about this relationship in part because 
organophosphate pesticides are used widely in farming and residential landscaping.  Previous studies have 
linked high organophosphate exposure to neurodevelopmental disorders in children.  In addition, the dose of 
organophosphate pesticide is likely higher on a per kilogram body weight basis for children compared to adults 
(Bouchard, 2010).   

2.3 Other Sources of Biomonitoring Data 

In addition to NHANES, there are other sources of biomonitoring data that can be useful for exposure 
assessment.  Some of these sources are listed in the table below.  Two of the programs listed here, the National 
Children’s Study and the Canadian Health Measures Survey, are currently ongoing.  In addition to these 

http://hero.epa.gov/index.cfm?action=search.view&reference_id=543766
http://hero.epa.gov/index.cfm?action=search.view&reference_id=664488
http://hero.epa.gov/index.cfm?action=search.view&reference_id=787733
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sources, individual research studies are conducted regularly to collect biomonitoring data on a much smaller 
scale for specific populations or pollutants.   

Figure 3.  Sources of Biomonitoring Data Other than NHANES 

Program Name Acronym Supporting 
Organization Description 

National Human Adipose 
Tissue Survey 

NHATS U.S. EPA Annual survey conducted from 1970 to 1989 to collect 
and chemically analyze human adipose tissue 
specimens for the presence of toxic chemicals 
(http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid
=55204) 

National Human Exposure 
Assessment Survey 

NHEXAS U.S. EPA Developed in the 1990s to provide critical information 
about multipathway, multimedia population exposure 
distribution to chemical classes, and included the 
collection of blood and urine from survey participants 

Total Exposure 
Assessment Methodology 

TEAM U.S. EPA Measured exposures to volatile organic compounds in 
the air, drinking water, and exhaled breath of 
participants in the late 1980s 
(http://exposurescience.org/pub/reports/TEAM_Study_
book_1987.pdf) 

The National Children’s 
Study 

NCS NIH, NIEHS, 
CDC, U.S. EPA, 
and others 

Examines the effects of the environment on the 
growth, development, and health of children across 
the United States; follows them from before birth until 
age 21 years; conducted since 2000; studies 
conducted as part of the NCS include biomonitoring 
data 
(http://www.nationalchildrensstudy.gov/Pages/default.
aspx) 

Canadian Health Measures 
Survey 

CHMS Statistics Canada, 
Health Canada, 
PHAC, and others 

Begun in 2007, comprehensive set of data (including 
biomonitoring data) on the exposure of the Canadian 
population to environmental chemicals.  
(http://www.statcan.gc.ca/imdb-
bmdi/document/5071_D2_T1_V1-eng.htm) 

German Environmental 
Survey 

GerES Robert Koch 
Institute 

Representative population study to determine the 
exposure of Germany's general population to 
environmental contaminants; collecting biomonitoring 
data since the mid 1980s 
(http://www.umweltbundesamt.de/gesundheit-
e/survey/index.htm) 

http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=55204
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=55204
http://exposurescience.org/pub/reports/TEAM_Study_book_1987.pdf
http://exposurescience.org/pub/reports/TEAM_Study_book_1987.pdf
http://www.nationalchildrensstudy.gov/Pages/default.aspx
http://www.nationalchildrensstudy.gov/Pages/default.aspx
http://www.statcan.gc.ca/imdb-bmdi/document/5071_D2_T1_V1-eng.htm
http://www.statcan.gc.ca/imdb-bmdi/document/5071_D2_T1_V1-eng.htm
http://www.umweltbundesamt.de/gesundheit-e/survey/index.htm
http://www.umweltbundesamt.de/gesundheit-e/survey/index.htm
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3. PHARMACOKINETIC MODELS 

Once data have been gathered, how can they be used to characterize exposure?  One way is through use of 
pharmacokinetic (PK) models.  Pharmacokinetics is the study of the fate of foreign substances in living 
organisms.  It characterizes the absorption, distribution, metabolism, and excretion (ADME) of a substance 
in an organism’s body.  Figure 4 is a conceptual overview of the processes encompassed by pharmacokinetics.  
Pollutants can enter the body through a variety of pathways; for example, chemicals can be absorbed through 
the lungs via inhalation, the gut via ingestion, or the skin via dermal exposure. 

Once a chemical is 
absorbed into the body, it 
is distributed throughout 
the body primarily via the 
blood.  It can sometimes 
be sequestered in bone or 
other tissues.  For many 
chemicals, the body 
begins to metabolize the 
pollutant in order to 
facilitate elimination.  
Excretion of a chemical 
can occur via the skin, 
feces, breath, urine, or 
other bodily fluids such 
as breast milk (US EPA, 
2011). 

For exposure analysis, PK models use data and mathematical equations to evaluate the fate of pollutants in the 
body after exposure has occurred.  PK models vary in complexity.  The simplest PK model is a one-
compartment, first order model that assumes immediate distribution within a single “compartment” such as 
blood or body lipids.  More complex PK models account for an organism’s physiology in their equations and 
are called physiologically-based pharmacokinetic (PBPK) models. 

In order to link the body burden of a chemical to the exposures that led to these levels, PK or PBPK models 
require various model parameters that reflect how much of the chemical is cleared over time, including volume 
of distribution, metabolic rates, and clearance rates.  Most of the model parameters for PK models are derived 
from clinical or laboratory exposure studies on humans or animals.  

In exposure assessment, PK models can be used to characterize the internal dose by identifying and evaluating 
the relationship between an applied dose and biomonitoring data.  These models can be used to enable route-to-
route extrapolation of the internal dose.  That is, if the exposure route to a compound was ingestion, PK models 
could be used to extrapolate that to an internal dose for an inhalation exposure.  PK models can also be used to 
reconstruct exposure when used in combination with data from epidemiological studies (U.S. EPA, 2006, pg 2-
11–2-12). 

Figure 4.  Overview of Pharmacokinetics 
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The remainder of this section focuses on how PK models correlate internal doses with exposure.  For reference, 
course HSR 306 reviews PK modeling in more detail. 

3.1 One-Compartment Models 

 At its most basic, a simple one-
compartment, first-order PK 
model estimates the change in 
concentration in one compartment 
over time given a specified exposure 
regime.  It takes what comes in, or 
dose; subtracts what goes out via an 
elimination rate constant, k; and 
calculates the change in 
concentration of a chemical over 
time.  This is shown conceptually by 
the figure and equation in Figure 5, 
accompanied by a hypothetical plot 
of chemical concentration versus time that illustrates the increase and subsequent elimination or degradation of 
chemical mass. 

Assuming steady state conditions, the 
differential equation in Figure 5 for a 
constant dose and elimination rate—
meaning no net change of concentration 
of the chemical compound—can be 
solved as shown in Figure 6. 

In this steady-state model, the average 
daily dose, or ADD, of a chemical is 
assumed to be constant.  The chemical is 
assumed to dissipate from the volume of 
distribution (or the compartment) by a 
first-order process, defined by the 

elimination constant k.  The half life (t1/2) of elimination, which is the time it takes to reduce the concentration 
of the pollutant by 50 percent, is related to k according to the equation depicted in the middle of Figure 6.  
(Lorber, 2008).  This figure shows two versions of the same equation for estimating the concentration at steady 
state—one with the first order elimination constant, k, and the other where the components of k are shown. 

Actual exposures and human body physiology are more complicated than what is captured in this one-
compartment, first-order steady-state model.  Adding a level of complexity, the relationship presented in Figure 
7 shows how the one-compartment, first-order model can be adapted to a temporal (unsteady-state) framework.  
The dose, rate constant, and even the volume through which the chemical is distributed can change over time.  
Like the previous model, this equation models the chemical in only one compartment of the body and assumes 
first-order kinetics, but it also assumes that the concentration of the chemical changes over time.   

Figure 5.  One-Compartment Model 
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Figure 6.  One-Compartment Steady-State Model 

 

Where:
• Css is the steady-state pollutant concentration (mg/L, ng/g-lipid weight)
• ADD is the average daily dose (mg/day, ng/day)
• k is the first-order elimination constant (day-1, sec-1)
• V is the volume of distribution (L)
• t1/2 is the half life for elimination (day, sec)

Css  =
ADD
k × V

Css  =
ADD × t1/2

V × ln(2)
k =  ln(2)

t1/2

http://hero.epa.gov/index.cfm?action=search.view&reference_id=714494
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Figure 7.  One-Compartment Unsteady-State Model 

Where:
• C(t) is the pollutant concentration at time, t (mg/L, ng/g-lipid weight)
• C(0) is the initial pollutant concentration at time, 0 (mg/L, ng/g-lipid weight)
• ADD is the average daily dose (mg/day, ng/day)
• k is the first-order elimination constant
• V is the volume of distribution (L)

C(t) = C(0)e-kt + 
ADDt

Vt

1 – e-kt

k
×

 An unsteady-state PK model such as 
this can be used to show the effects of 
different dosing regimes.  It can be 
useful when analyzing past exposure 
events or unusual dosing patterns.  
This type of model can also be 
modified to reflect changes in the 
volume of distribution and metabolic 
rates caused by changing human 
physiology as an individual ages 
(Lorber, 2008). 

3.2 Multi-Compartment Models 

Multiple-compartment models are more complex and typically include the organs and tissues relevant for the 
specific chemical distribution, metabolism, or toxicity.  These models might specify venous movement of blood 
(away from organs and back to the heart and lungs) and arterial movement of blood (away from the heart and 
lungs to the rest of the body).  More complex models can also describe the formation and transport of 
metabolites.  Creating these mathematical models requires specific physiological data, such as blood flow rate 
to individual compartments, rate of metabolism, knowledge of whether processes are saturable, and partition 
coefficients (which describe how chemicals distribute in various tissues).  For many chemicals, such data might 
not be available to build these more complex models. 

The diagram in Figure 8 shows a PBPK model for a chemical that is inhaled.  The chemical enters the body via 
inhalation through the lungs, and then moves through tissues and organs that are both richly perfused with 
blood (e.g., heart, lungs, liver) and 
poorly perfused with blood (e.g., 
muscle, skin).  The fat tissue 
compartment is also explicitly 
defined, suggesting that the 
chemical may be sequestered in the 
fat.  The parent compound might be 
exhaled or metabolized in the liver.  
This PBPK model also describes 
the distribution of the metabolite 
formed in the liver.  Both the 
parent compound and metabolite 
are excreted in the urine (Hays et 
al., 2007). 

  

 

Figure 8.  Example of a Multi-Compartment PBPK Model 
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3.3 Using Pharmacokinetic Models 

There are advantages and limitations to using PK models.  After studying what happens to a chemical once it 
is absorbed, a PK model can be used to back-calculate the level of exposure based on biomonitoring data.  
Using PK models in this way for exposure reconstruction is potentially a very powerful application; however, 
detailed input parameters for the PK model must be known in order for the model to be reliable.  Most 
importantly, the relationship between exposure and dose, including bioavailability, needs to be well understood, 
which is not always the case. 

The framework for use of PK models 
in exposure assessment is shown in 
Figure 9.  PK models relate intake 
dose of a compound with the body 
burden of that compound and can be 
run either forward or backward. 

Compile data on exposure 
media concentration

Develop representative 
profile in the media

Combine media 
concentrations with 
exposure factors to 

estimate intake dose

Use PK models to convert:
•intake dose to body burden
•body burden to intake dose

Develop representative 
body burden profile

Compile data on body 
burdens

B
A
C
K
W
A
R
D

F
O
R
W
A
R
D

Figure 9.  Using PK Models in Exposure Assessment:   
Forward and Backward Assessment 

• Forward analysis using a 
PK model can be thought of 
as “predictive” because it 
uses measured or modeled 
intake doses to predict body 
burdens. 

• Backward analysis using a 
PK model can be thought of 
as “reconstructive” because 
it uses measured body 
burdens to reconstruct past 
exposures by calculating intake doses. 

Forward Analysis 

Forward analysis uses exposure concentration and duration of exposure to calculate biologically meaningful 
measures, such as body burdens or internal dose.  The analysis begins with a known exposure scenario and 
determines fate of the chemical in the body. 

Consider the example of inhalation exposure to a lipophilic volatile compound such as toluene (created for this 
module).  Using predictive PK analysis, the toxicokinetics and internal dose related to an exposure to 400 ppm 
of the compound for 2 hours can be examined.  For many chemicals, a one-compartment, first-order model and 
the assumption of constant exposure rates do not accurately capture what happens after chemical exposure.  
Instead, a more complex model like the one shown in Figure 10 is needed.  This figure depicts a model that is 
an unsteady-state, multicompartment PBPK model and models chemical distribution to multiple organs. 
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Figure 10.  Forward Analysis Example: 
Inhalation of Toluene 
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In this example, exposure to toluene occurs via inhalation, as 
shown at the top of Figure 10 by the arrow labeled “inhaled 
air” pointing down into the lungs.  The compound enters the 
lungs and is transported throughout the body quickly via 
arterial blood.  The chemical enters adipose tissue (fat), richly 
perfused tissues (such as the stomach), poorly perfused tissues 
(such as the skin), and the liver.   

Compartments in the model are separated like this to represent 
the compartments that are important for metabolism of the 
compound of interest.  From these four compartments in the 
model, venous blood continues to distribute the compound and 
transport it back to the lungs.  The arrow pointing out of the 
liver indicates that this compound is metabolized in the liver. 

Figure 11 shows how the concentration of the compound in the 
model changes over time in the liver, fat, and the richly and 
poorly perfused tissues.  Recall that exposure in this example 
occurred over 2 hours. 

Figure 11.  Inhalation of Toluene Model Results 
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Concentration trends in richly perfused tissues (shown in dark blue) and the liver (shown in dark green) show a 
rapid spike in the parent compound concentration between 0 and 2 hours.  Poorly perfused tissues (shown in 
light blue) exhibit a smaller spike in the parent compound due to the slower distribution of the compound to the 
venous blood supply.  The rate of distribution to the fat (shown in light green) is slightly lower compared with 
the liver.  It is also clear that the compound is much slower to decay in the fat, which in this case is due in part 
to its lipophilic nature. 
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Backward Analysis 

Backward, or reconstructive, analysis uses PK modeling to infer total dose from measured contaminant levels in 
tissues or body fluids.  In order to apply reconstructive modeling, biomonitoring data and other data are needed 
to parameterize and calibrate the model.  Because many of the parameter inputs for PK modeling are dependent 
on empirical results from laboratory research, modeling is limited by the available data.  In some cases where 
measured data are not available for a parameter, surrogate or substitute values can be used with justification. 

As the name implies, backward modeling is not used to predict future exposures, and it is not applicable to all 
chemicals.  Also, the exact sources and pathways of exposure resulting in body burden of the chemical cannot 
be determined by this method.  A backward analysis is often useful to exposure assessors because it provides a 
way to reconstruct exposures from biomonitoring data.   

To conduct a reconstructive analysis, one must follow these four steps. 

1.) Collect biomonitoring data on a specific chemical or contaminant in the body.   

2.) Based on the available data, develop a PK model or select an existing PK model. 

Often, the model needs to be able to handle internal dose metrics resulting from a variety of dosing 
patterns.  For example, low-level, intermittent occupational exposures over 8 hours per day, 5 days per 
week or, alternatively, a one-time accidental exposure to a high concentration of a chemical might need 
to be modeled.   

3.) Determine modeling parameters specific to the chemical under investigation based on existing 
data to give the most accurate estimate of dose.   

Ideally, laboratory studies on animals or selected human biomonitoring studies will provide data that 
can be used to parameterize the model with regard to absorption, distribution, metabolism, and 
excretion of a chemical in the body.  Human dosing studies have sometimes provided the data 
necessary to calibrate a model, but this is rarely the case.   

4.) Run the PK model and use the results to back-calculate the exposure that resulted in the 
measured body burden. 

Presented in Figure 12 is an example reconstructive analysis for dioxin, using a one-compartment, first-order, 
steady-state model.  In this example, biomonitoring has indicated a measured dioxin level of 6.7 picograms 
(pg)/g in the tissue of interest.  The model equation requires the half life of dioxin and a volume of distribution.  
Here, it is assumed that the half life is 5 years, and the volume of distribution in adipose tissue is 10 liters.  
These values are all based on collected data.  The model equation is used to solve for a dose estimate.  In the 
figure, the equation has been solved for the adjusted daily dose, and the available data have been plugged in.  
However, more information is needed in order to solve for the correct units: density of blood and body weight.  
With all of the required information, the equation can be solved and the average daily dose of dioxin can be 
estimated at 0.385 pg/kg-day. 

  



EXA 408:  Interpreting Biomonitoring Data and Using Pharmacokinetic Modeling in Exposure Assessment 

 
16 

A second example uses 
perfluorooctanoic 
sulfonate (PFOS) (see 
Figure 13).  PFOS is one 
compound in a class of 
chemicals called PFCs, or 
perfluorinated compounds.  
PFOS is extremely stable 
and both hydrophobic and 
lipophobic, which 
accounts for its 
widespread application in 
stain-resistant and 
nonstick products.  
Reflecting its high 
stability, PFOS has been 
shown to be persistent and bioaccumulative, with primary exposure pathways believed to be dietary ingestion 
and ingestion of house dust.  NHANES provides biomonitoring data that can be used to characterize PFOS 
body burden. 

Figure 12.  Reconstruction of Dioxin Dose 
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Figure 13.  Reconstruction of PFOS Dose 
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For this example, the body 
burden concentration of PFOS 
obtained from NHANES is 20.7 
ng/mL.  To calculate the steady-
state average daily dose from 
the model equation, the volume 
of distribution for PFOS and the 
PFOS elimination constant (k) 
are needed.  To obtain this 
information, results of other 
modeling studies were 
examined by Egeghy and 
Lorber (2011).  Recall that k is a 
function of the half life and the 
natural log of 2.  Egeghy and 

Lorber (2011) estimated a half life of PFOS by calculating the median of the half lives used in several 
occupational studies.  In this example, the study authors then selected two serum volumes of distribution 
(normalized to bodyweight) of 200 and 3,000 mL/kg to encompass the volumes used in other analyses (Egeghy 
and Lorber, 2011).   

This example can be used to illustrate the impact of serum volume, a physiological parameter, on dose.  If we 
assume a steady-state model and use the same values for body burden and elimination constant, these two 
serum volumes will lead to different adjusted daily doses.  Specifically, as illustrated in Figure 14, using a 
volume of 200 mL/kg, the modeled intake rate is 1.6 ng/kg-day.  If PFOS is distributed through the larger 
volume of 3,000 mL/kg, the modeled intake is estimated to be 24.2 ng/kg-day (Egeghy and Lorber, 2011).  For 

http://hero.epa.gov/index.cfm?action=search.view&reference_id=723765
http://hero.epa.gov/index.cfm?action=search.view&reference_id=723765
http://hero.epa.gov/index.cfm?action=search.view&reference_id=723765
http://hero.epa.gov/index.cfm?action=search.view&reference_id=723765
http://hero.epa.gov/index.cfm?action=search.view&reference_id=723765
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comparison, the first bar in Figure 14 shows the intake rate of 4.2 ng/kg-day calculated using exposure pathway 
and exposure factor data gathered by Egeghy and Lorber (2011).   

Depending on the volume 
of distribution used, the PK 
model predicts either higher 
or lower values than the 
screening level exposure 
intake assessment 
performed by Egeghy and 
Lorber (2011).  Thus, this 
example shows that the PK 
model used was highly 
sensitive to the volume of 
distribution for PFOS and 
highlights the importance 
of making sure model 
inputs are correct and 
justified. 

 

Figure 14.  PFOS Modeling Results Compared with Results of  
Conventional Exposure Pathway Analysis 
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4. BIOMONITORING EQUIVALENTS 

This section briefly discusses biomonitoring equivalents.  Body burden measurements represent the current 
level of the chemical in the body, not the intake dose.  However, human health reference values for acceptable 
levels of chemicals, such as reference doses, tolerable daily intakes, or minimal risk levels, are based on intake 
doses.  Very few chemicals have health-based screening levels for body burden measurements.  This means that 
for most chemicals, biomonitoring concentrations cannot be directly compared to human health reference 
values.  This is where biomonitoring equivalents come into play. 

Biomonitoring equivalents, or BEs, are values that correlate a body burden measurement with intake doses 
that are considered safe and acceptable (Hays et al., 2007).  By developing BEs, biomonitoring data could be 
linked with health effects using epidemiological studies.  However, due to relatively small sample sizes and 
complicated relationships between chemical detection and manifestation of a health effect, the use of BEs is 
unlikely to occur on a large scale in the near future.  BEs are not currently used for setting regulatory 
requirements in the United States, but this could change.  Some risk assessors argue that a strength of the BE 
approach is that they can be more easily understood by the general public than values such as reference doses or 
reference concentrations.  Health Canada and some European nations have begun using BEs for characterizing 
exposure and risk.  EPA continues to uses dose-based reference values like the RfD (Hays et al., 2007). 

One example of a BE used in the United States is the one defined for lead in blood.  Lead can cause toxicity 
through multiple modes of action operating in multiple systems.  As a result, effects from lead exposure are 
varied and numerous.  Children, however, are not only more vulnerable to lead exposure, but are also more 
sensitive.  Their bodies absorb more lead than adults, and their brains and nervous systems are more sensitive to 
the damaging effects of lead.   

As recently as the 1960s, the blood lead level of 
concern for children was 60 µg/dL.  As new 
information has emerged about the neurological, 
reproductive, and possible hypertensive toxicity of 
lead, and as more sensitive parameters are 
developed, the blood-lead levels of concern for lead 
exposure in children have been progressively 
lowered by CDC.  As shown in Figure 15, a level 
of 10 µg/dL was adopted by CDC in 1991 as a level 
of concern for children based on the correlation 
between this blood lead level and adverse health 
effects.  This is an advisory level for environmental 
and educational intervention.  At the 
recommendation of its Advisory Committee on Childhood Lead Poisoning Prevention, the agency adopted a 
value of 5 µg/dL in 2012 (Betts, 2012).  This value is based on the 97.5th percentile of blood lead levels in U.S. 
children aged 1-5 years, as measured by NHANES. This reference value will be updated every four years based 
on the two most recent iterations of NHANES. 

A Biological Exposure Index (BEI) for lead has been developed by the American Conference of Governmental 
Industrial Hygienists (ACGIH) as a guidance value for assessing biomonitoring results related to occupational 

Figure 15.  CDC Blood-Lead Levels of Concern  
Identified for Children since 1960 
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exposure in adults.  The BEI for blood lead is 30 µg/dL (ACGIH, 2005).  This level indicates exposure to lead 
has occurred at the Threshold Limit Value (TLV) of 50 µg/m3 in air.  Blood-lead level is a type of 
biomonitoring equivalent.  It is a biomarker level that indicates that exposure to lead has occurred that could 
potentially lead to adverse effects (ATSDR, 2007). 

http://hero.epa.gov/index.cfm?action=search.view&reference_id=156188
http://hero.epa.gov/index.cfm?action=search.view&reference_id=787739
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5. CONCLUSION 

This EXA course provides an overview of biomonitoring data and how these data might be used in exposure 
assessment.  Some important points of this course are summarized below. 

• Biomonitoring measures the actual levels of chemicals in the body reflecting internal dose, which can 
be used in a variety of ways to inform exposure assessments.  Biomonitoring data allow evaluation of 
aggregate exposure to a given compound from multiple exposure sources and routes. 

• NHANES is an important source of biomonitoring data for people in the United States.  NHANES 
sampling is designed to ensure the data represent the entire population, and data are updated every 2 
years.  Because data are gathered periodically and across large population segments, trends in body 
burdens of chemicals for specific subpopulations can be analyzed. 

• Body burden and other biomarker data gathered through biomonitoring can be used to strengthen 
exposure assessments. 

• Pharmacokinetic modeling can be used in conjunction with biomonitoring data to relate exposure to 
internal dose using predictive analysis, or internal dose to exposure in a reconstructive analysis.  It is 
important to ensure that the appropriate PK model is selected and that appropriate model inputs are 
used so that the estimated internal dose or exposure represents the most biologically plausible estimate. 
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