OCTANE BENEFITS MOBILE SOURCE TECHNICAL REVIEW SUBCOMMITEE

Coleman Jones, GM

May 5, 2015 Old Town Hilton; Alexandria, Virginia

INCREASING OCTANE

- Increasing octane facilitates increasing compression ratio (CR)
 - Higher CR leads to higher engine efficiencies with higher octane fuel
 - Higher CR leads to lower engine efficiencies and power with lower octane fuel
 - Mis-fueling with low octane (todays "regular unleaded") will lead to customer dissatisfaction
- On a piece cost basis, increasing CR can be virtually free
 - Development work is needed, particularly to manage misfueling with low octane fuels
- Adding increased ethanol capability will have a cost
 - Maximum cost is known, the cost of an FFV

WELL TO TANK TO WHEELS CO2 EMISSIONS

GENERAL MOTORS

Per 100 kBBL/day refinery From Speth et al, ES&T 2014, MIT

OCTANE TODAY

- Premium gasoline has poor customer value
- Additional cost of premium is more than efficiency gain
- An automaker could market their vehicle as "premium required" and capture the efficiency and power gain
 - However their competitors would take advantage of this and tout their regular gasoline capability
 - Some customers may ignore the "Premium Required" admonishment
- Premium in the US is a performance fuel

PRICE OF OCTANE

- The difference between retail regular and premium gasoline has risen steadily
- Wholesale prices have fluctuated in line with trends in the fuel market

GENERAL MOTORS

EIA data

OCTANE VALUE

EIA data

- Fuel needs to be a good value for the average customer
- Percentage price increase for premium typically exceeds the fuel economy benefit
 - Yesterday's and today's premiums are performance fuels
 - As declining usage shows, customers are valuing performance less

GASOLINE

- Looking back at the gasoline market, several things are evident
 - Recent declines in volume
 - Declining hydrocarbon octane
 - Declining premium market share
 - Increasing ethanol market share

Gasoline Market and Octane Trends

GASOLINE

 Declining hydrocarbon octane is primarily related to increased ethanol usage

Hydrocarbon Octane (R+M)/2

HOW TO INCREASE OCTANE?

- Options
 - Increase production of traditional higher octane components
 - Reduce use of low octane components
 - Increase ethanol usage
 - Introduce new high octane molecules

HOW TO INCREASE OCTANE?

110 105 Research Octane Number (RON) 100 95 → 94 AKI (Best Premium) 90 ---91 AKI (Western Premium) 85 → 87 AKI (E0) 80 *** 84 AKI (Current BOB) 75 → 78 AKI (Sub grade) ---70 AKI (Natural Gasoline) 70 20 60 0 40 80 100 Volume Percent Ethanol

Application of Anderson & Kramer's method, et al, Energy & Fuels, 2010, 24, 6576-6585

"WHERE WILL THE OCTANE COME FROM?"

Joseph M. Colucci,

SAE 2013 INTERNATIONAL HIGH OCTANE FUELS SYMPOSIUM

HOW TO INCREASE OCTANE?

- The market is large
- Regional solutions are likely
 - Raw material cost
 - Conversion availability
 - Transportation costs
- All states and provinces need a solution

HOW TO IMPLEMENT A NEW FUEL?

CHALLENGES

- 1. Regulating market fuel changes
- 2. Providing good value to the customer
- 3. Managing the transition to a new market
- 4. Matching certification and field fuel so that the "actual use" of certification fuel is high

MISFUELING

- If ethanol blends above 10% ethanol appear in the market, misfueling become a significant concern
 - Legacy E10 vehicles need to be protected
- If the ethanol level is above 15%, newer vehicles also need protection
- "Premium Required" vehicles can also be mis-fueled with low octane fuel
 - Full optimization to high octane fuel makes this a more serious concern
- The Lead experience in the 70s shows that many consumers ignore requirements
 - A significant portion of vehicles were mis-fueled despite the nozzle mis-match
- API commissioned a study of mis-fueling prevention pathways
 - There was no painless, highly effective pathway

CONCLUSIONS

- Higher octane gasoline offers fuel economy and GHG benefits on both a tank to wheels and well to wheels basis
- Higher octane gasoline is not and has not been a good value for consumers except for those seeking improved performance
- The pathway to higher octane market fuels is unclear
- Mis-fueling control remains an important issue that limits optimization to higher octane
- All stakeholders will have to work together to capitalize on the advantages and address the challenges of moving to higher octane fuels

DOE High-Octane Fuels Study: How much fuel economy can be gained by increasing octane ratings, and how does this answer change for different high-octane blends?

Approach: Generate engine-based data for a range of fuel octane ratings, comparing blend streams at approximately equivalent RON. Downselect fuels for complete engine maps and vehicle modelling to estimate fuel economy impacts.

Include in study

- Multiple paths to higher octane.
 - Ethanol, isobutanol, high-octane hydrocarbons
- Multiple octane levels.
 - ~100 RON, ~ 98 RON, ~ 95 RON
- Fundamental fuels, such as isooctane.
- Identify technical challenges that limit improvements.

