
 
 

 
  

  

  

 
  

  

  

 

 

 
 

 

 

 

APPENDIX B 
THE DATA QUALITY OBJECTIVES PROCESS 

B.1 Introduction 

This appendix provides information about the basic framework of the DQO process (ASTM 
5792; EPA, 2000; NRC, 1998; MARSSIM, 2000). The DQO planning process empowers both 
data users and data suppliers to take control and resolve issues in a stepwise fashion. It brings 
together at the right time all key players from the data user and data supplier constituencies and 
enables each participant to play a constructive role in clearly defining:

  � The problem that requires resolution;
  � What type, quantity, and quality of data the decisionmaker needs to resolve that problem;
  � Why the decisionmaker needs that type and quality of data; 
  � How much risk of making a wrong decision is acceptable; and
  � How the decisionmaker will use the data to make a defensible decision. 

The DQO process provides a logic for setting well-defined, achievable objectives and developing 
a cost-effective, technically sound sampling and analysis design. It balances the data user�s 
tolerance for uncertainty with the available resources for obtaining data. The number of visible 
and successful applications of the DQO process has proven its value to the environmental 
community. The DQO process is adaptable depending on the complexity of the project and the 
input from the decisionmakers. Some users have combined DQO planning with remedy selection 
for restoration projects (e.g., DOE�s Streamlined Approach for Environmental Restoration�see 
Section A.5 in Appendix A). Other users have integrated their project scoping meetings with the 
DQO process. Much of the information that is developed during the DQO process is useful for 
developing the project plan documents (Chapter 4) and implementing the data validation process 
(Chapter 8) and the data quality assessment (DQA) process (Chapter 9). 

Since its inception, the term �data quality objectives� has been adopted by many organizations, 
and the definition has been adapted and modified (see box on next page). Throughout this docu-
ment, MARLAP uses EPA�s (2000) definition 
of DQOs: �Qualitative and quantitative 
statements derived from the DQO process that 
clarify study objectives, define the appropriate 
type of data, and specify the tolerable levels of 
potential decision errors that will be used as the 
basis for establishing the quality and quantity of 
data needed to support decisions.� 
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The Data Quality Objectives Process 

Definitions of Data Quality Objectives 
(1) Statements on the level of uncertainty  that a decisionmaker is willing  to accept in the 

results derived from environmental data (ASTM 5283; EPA, 1986). 
(2) Qualitative and quantitative statements derived from the DQO process that clarify study 

objectives, define the appropriate type of data, and specify the tolerable levels of potential 
decision errors that will be used as the basis for establishing the quality and quantity of 
data needed to support decisions (EPA, 2000). 

(3) Qualitative and quantitative statements derived from the DQO process describing the 
decision rules and the uncertainties of the decision(s) within the context of the problem(s) 
(ASTM D5792). 

(4) Qualitative and quantitative statements that specify the quality of the  data required to 
support decisions for any  process requiring  radiochemical analysis (radioassay) (ANSI 
N42.23). 

B.2 Overview of the DQO Process 

The DQO process (Figure B.1) consists of seven steps (EPA, 2000). In general, the first four 
steps require the project planning  team to define the problem and qualitatively determine 
required data quality. The next three steps establish quantitative performance measures for the 
decision and the data. The final step of the process involves developing  the data collection design 
based on the DQOs, which is dependent on a clear understanding of the first six steps. 

Although the DQO process is described as a 
sequence of steps, it is inherently iterative. The Step  1:     State the Problem  

output from each step influences the choices 
that will be  made  in subsequent steps. For Step  2:     Identify the Decision 

instance, a decision rule cannot be created 
Step  3:     Identify Inputs to  the Decision 

without first knowing  the problem and desired 
decision. Similarly, optimization of the Step 4:     Define the Study Boundaries 
sampling and analysis design generally cannot 
occur unless it  is clear what is being optimized Step  5:     Develop a Decision Rule 
�the results of the preceding  steps. Often the 
outputs of one step will trigger the need to Step  6:     Specify Limits on Decision  Errors 

rethink or address issues that were not evalua-
ted thoroughly in prior steps. These iterations Step  7:     Optimize the Design  for Obtaining Data 
lead to a more focused sampling  and analysis 
design for resolving the defined problem. The FIGURE B.1 � Seven steps of the DQO process 
first six  steps should be completed before the sampling and analysis design is developed, and 
every step should be completed before data collection  begins. The DQO process is considered 
complete with the approval of an optimal design for sampling and analysis to support a decision 
or when available historical data are sufficient to support a decision. 
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The Data Quality Objectives Process 

In practice, project planning teams often do a cursory job on the first four steps, wanting to get 
into technical design issues immediately. Without carefully defining the problem and the desired 
result, the project planning team may develop a design that is technically sound but answers the 
wrong question, or answers the questions only after the collection of significant quantities of 
unnecessary data. Time spent on the first four steps is well spent. Extra effort must be given to 
assure that Steps 1 to 4 are adequately addressed. 

When applying the DQO process, or any planning approach, it is important to document the 
outputs of each step to assure that all participants understand and approve the interim products, 
and that they have a clear record of their progress. It is sometimes useful to circulate an approval 
copy with signature page to ensure agreement of the stakeholders. 

B.3 The Seven Steps of the DQO Process 

Each step of the DQO process will be discussed in the following sections. Not all items will be 
applicable to every project. The project planning team should apply the concepts that are 
appropriate to the problem. 

B.3.1 DQO Process Step 1: State the Problem 

The first step is to define the problem clearly. The members of the project planning team present 
their concerns, identify regulatory issues and threshold levels, and review the site history. The 
project planning team should develop a concise description of the problem. Some elements to 
include in the description might be the study objectives, regulatory context, groups who have an 
interest in the study, funding and other resources available, previous study results, and any 
obvious sampling design constraints. The more facts, perceptions and concerns of the key 
stakeholders�including important social, economic, or political issues�that are identified 
during this step, the better the chances are that the issues driving the decisions and actions will be 
identified. 

The primary decisionmaker should be identified. The resources and relevant deadlines to address 
the problem are also defined at this time. If possible, a �project conceptual model� should be 
developed. This will help structure and package the diverse facts into an understandable picture 
of what the various issues are and how those issues can be focused into a specific problem. 
The expected outputs of Step 1 are:

  � A conceptual model that packages all the existing information into an understandable picture 
of the problem;

  � A list of the project planning team members and identification of the decisionmaker; 

JULY 2004 B-3 MARLAP 



 

  

  
  

 

 

  

 

 
 

 

  

The Data Quality Objectives Process 

  � A concise description of the problem; and 

  � A summary of available resources and relevant deadlines for the study. 

B.3.2 DQO Process Step 2: Identify the Decision 

During Step 2 of the DQO process, the project planning team defines what decision must be 
made or what question the project will attempt to resolve. The decision (or question) could be 
simple, like whether a particular discharge is or is not in compliance, or the decision could be 
complex, such as determining if observed adverse health is being caused by a nonpoint source 
discharge. Linking the problem and the decision focuses the project planning team on seeking 
only that information essential for decisionmaking, saving valuable time and money. 

The result may be a comprehensive decision for a straightforward problem, or a sequence of 
decisions for a complex problem. For complex problems with multiple concerns, these concerns 
should be ranked in order of importance. Often a complex concern is associated with a series of 
decisions that need to be made. Once these decisions have been identified, they should be 
sequenced in a logical order so the answer to one decision provides input in answering the next 
decision. It may be helpful to develop a logic-flow diagram (decision framework), arraying each 
element of the issue in its proper sequence along with its associated decision that requires an 
answer. 

The term �action level� is used in this document to denote the numerical value that will cause the 
decisionmaker to choose one of the alternative actions. The action level may be a derived 
concentration guideline level, background level, release criteria, regulatory decision limit, etc. 
The action level is often associated with the type of media, analyte, and concentration limit. 
Some action levels, such as release criteria for license termination, are expressed in terms of dose 
or risk. The release criteria typically are based on the total effective dose equivalent (TEDE), the 
committed effective dose equivalent (CEDE), risk of cancer incidence (morbidity), or risk of 
cancer death (mortality), and generally cannot be measured directly. A radionuclide-specific 
predicted concentration or surface area concentration of specific nuclides that can result in a dose 
(TEDE or CEDE) or specific risk equal to the release criterion is called the �derived concentra-
tion guideline level� (DCGL). A direct comparison can be made between the project�s analytical 
measurements and the DCGL (MARSSIM, 2000). 

The project planning team should define the possible actions that may be taken to solve the 
problem. Consideration should be given to the option of taking no action. A decision statement 
can then be developed by combining the decisions and the alternative actions. The decision rule 
and the related hypothesis test will be more fully developed in the DQO process at Steps 5 and 6. 

By defining the problem and its associated decision clearly, the project planning team has also 
begun to define the inputs and boundaries (DQO process Steps 3 and 4). At the end of Step 2, the 
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The Data Quality Objectives Process 

project planning team has:

  � Identified the principal decisions or questions;

  � Defined alternative actions that could be taken to solve the problem based on possible 
answers to the principal decisions and questions;

  � Combined the principal decisions and questions and the alternative actions into decision 
statements that expresses a choice among alternative actions; and

  � Organized multiple decisions. 

B.3.3 DQO Process Step 3: Identify Inputs to the Decision 

During Step 3, the project planning team makes a formal list of the specific information required 
for decisionmaking. The project planning team should determine what information is needed and 
how it can be acquired. The project planning team should specify if new measurements are 
required for the listed data requirements. The data required are based on outcomes of discussion 
during the previous two steps. The project planning team should define the basis for setting the 
action level. Depending on the level of detail of the discussion during the previous steps, then 
efforts associated with Step 3 may be primarily to capture that information. If the first two steps 
have not defined the inputs with enough specificity, then those inputs should be defined here. 
However, before going further, the output should be reviewed to assure that the problem, the 
decision steps and the input are compatible in complete agreement. 

An important activity during Step 3 is to determine if the existing data or information, when 
compared with the desired information, has significant gaps. If no gaps exist, then the existing 
data or information may be sufficient to resolve the problem and make the decision. (Although 
there may be no gaps in the data, the data may not have enough statistical power to resolve the 
action level. See Step 6 for more discussion.) In order to optimize the use of resources, the 
project planning team should maximize the use of historical information. If new data are 
required, then this step establishes what new data (inputs) are needed. The specific environmental 
variable or characteristic to be measured should be identified. The DQO process clearly links 
sampling and analysis efforts to an action and a decision. This linkage allows the project 
planning team to determine when enough data have been collected. 

If the project planning team determines that collection of additional data is needed, the analytical 
laboratory acquisition strategy options should be considered at this stage. Identifying suitable 
contracting options should be based on the scope, schedule, and budget of the project, and the 
capability and availability of laboratory resources during the life of the project, and other 
technical considerations of the project. If an ongoing contract with a laboratory is in place, it is 
advisable to involve them with the radioanalytical specialists as early as possible. 
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The Data Quality Objectives Process 

The project planning team should ensure that there are analytical protocols available to provide 
acceptable measurements. If analytical methods do not exist, the project planning team will need 
to consider the resources needed to develop a new method, reconsider the approach for providing 
input data, or perhaps reformulate the decision statement. 

The expected outputs of Step 3 are:

  � A list of information needed for decisionmaking;
  � Determination of whether data exist and are sufficient to resolve the problem;
  � Determination of what new data, if any, are required;
  � Definition of the characteristics that define the population and domain of interest;
  � Definition of the basis for the action level;
  � Confirmation that appropriate analytical protocols exist to provide the necessary data; and
  � A review of the planning output to assure the problem, decision, and inputs are fully linked. 

B.3.4 DQO Process Step 4: Define the Study Boundaries 

In Step 4, the project planning team specifies the spatial and temporal boundaries covered by the 
decision statement. The spatial boundaries define the physical aspects to be studied in terms of 
geographic area, media, and any appropriate subpopulations (e.g., an entire plant, entire river 
basin, one discharge, metropolitan air, emissions from a power plant). When appropriate, divide 
the population into strata that have relatively homogeneous characteristics. The temporal 
boundaries describe the time frame the study data will represent (e.g., possible exposure to local 
residents over a 30-year period) and when samples should be taken (e.g., instantaneous samples, 
hourly samples, annual average based on monthly samples, samples after rain events). Changing 
conditions that could impact the success of sampling and analysis and interpretation need to be 
considered. These factors include weather, temperature, humidity, or amount of sunlight and 
wind. 

The scale of the decision is also defined during this step. The selected scale should be the 
smallest, most appropriate subset of the population for which decisions will be made based on 
the spatial or temporal boundaries. During Step 4, the project planning team also should identify 
practical constraints on sampling and analysis that could interfere with full implementation of the 
data collection design. These include time, personnel, equipment, and seasonal or meteorological 
conditions when sampling is not possible or may bias the data. 

In practice, the study boundaries are discussed when the project planning team and decision-
maker agree on the problem and its associated decision. For instance, a land area that may be 
contaminated or a collection of waste containers would be identified as part of the problem and 
decision definition in Steps 1 and 2. The boundaries also would be considered when determining 
inputs to the decision in Step 3. If the study boundaries had not been addressed before Step 4 or 
if new issues were raised during Step 4, then Steps 1, 2, and 3 should be revisited to determine 
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The Data Quality Objectives Process 

how Step 4 results are now influencing the three previous steps. 

The outputs of Step 4 are:

  � A detailed description of the spatial and temporal boundaries of the problem; and
  � Any practical constraints that may interfere with the sampling and analysis activities. 

B.3.5 Outputs of DQO Process Steps 1 through 4 Lead Into Steps 5 through 7 

At this stage in the DQO process, the project planning team has defined with a substantial degree 
of detail the problem, its associated decision, and the inputs and boundaries for addressing that 
problem. The project planning team knows whether it needs new data to fill specific gaps and 
what that data should be. The remaining three steps are highly technical and lead to the selection 
of the sampling and analysis design. Even when new data are not required (i.e., a data collection 
design is not needed), the project planning team should continue with Steps 5 and 6 of the DQO 
process. By establishing the formal decision rule and the quantitative estimates of tolerable 
decision error rates, the project planning team is assured that consensus has been reached on the 
actions to be taken and information to establish criteria for the DQA process. 

It is important to emphasize that every effort must be made to assure that Steps 1 through 4 are 
adequately addressed. If the necessary time is taken in addressing the first four steps carefully 
and assuring consensus among the project planning team, then the three remaining steps are less 
difficult. 

B.3.6 DQO Process Step 5: Develop a Decision Rule 

In Step 5, the project planning team determines the appropriate statistical parameter that 
characterizes the population, specifies the action level, and integrates previous DQO process 
outputs into a single �if ..., then ...� statement (called a �decision rule�) that describes a logical 
basis for choosing among alternative actions. 

The four main elements to the decision rule are: 

A. THE PARAMETER OF INTEREST. A descriptive measure (e.g., mean, median, or proportion) that 
specifies the characteristic or attribute that the decisionmaker would like to know and that the 
data will estimate. The characteristics that define the population and domain of interest was 
established in Step 3. 

B. THE SCALE OF DECISIONMAKING. The smallest, most appropriate subset for which decisions 
will be made. The scale of decisionmaking was defined in Step 4. 

C. THE ACTION LEVEL. A threshold value of the parameter of interest that provides the criterion 
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The Data Quality Objectives Process 

for choosing among alternatives. Action levels may be based on regulatory standards or they 
may be derived from project- and analyte-specific criteria such as dose or risk analysis. The 
basis for the action level was determined in Step 3. 

D. THE ALTERNATIVE ACTIONS. The actions the decisionmaker would take, depending on the 
�true value� of the parameter of interest. The alternative actions were determined in Step 2. 

The decision rule is a logical, sequential set of steps to be taken to resolve the problem. For 
example, �If one or more conditions exists then take action 1, otherwise take action 2.� 

The outputs of Step 5 are:

  � The action level;
  � The statistical parameter of interest; and
  � An �if ..., then ...� statement that defines the conditions that would cause the decisionmaker 

to choose among alternative courses of action. 

PROCEDURE FOR DEVELOPING A DECISION RULE 

The outcome of a decision rule is a result: often to take action or not to take action. The decision 
rule is an �If..., then...� statement that defines the conditions that would cause the decisionmaker 
to choose an action. The decision rule establishes the exact criteria for making that choice. There 
are four main elements to a decision rule: 

A. The parameter of interest. For example, the mean or median of the concentration of an 
analyte. 

B. The area over which the measurements are taken. For example, in MARSSIM, a survey 
unit. 

C. The action level. For example, in MARSSIM, the action level is called the DCGL. 
D. Alternative actions. For example, if the mean is greater than the action level, then 

corrective action must be taken, otherwise the survey unit may be released. 

A decision rule is action oriented, so a decision rule has the general form: 

If the value of parameter A, over the area B, is greater than C, then take action D, 
otherwise take action D*. 

For example, if: 

(A) the true mean concentration of 238U in the 
(B) surface soil of the survey unit is greater than 
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The Data Quality Objectives Process 

(C) 30 pCi/g, then 
(D) remove the soil from the site; otherwise, 
(D*) leave the soil in place. 

The decisionmaker and planning team should be comfortable with the decision rule regarding the 
criteria for taking action before any measurements are taken. The input to a decision rule is the 
result of measurements. A decision will be made, and action taken, based upon those results. 

There is uncertainty with every scientific measurement taken. Sampling uncertainty is due to the 
natural spatial and temporal variation in contaminant concentrations across a site. Measurement 
uncertainty is the variability in a combination of factors that arise during sample analysis. 
Because there is uncertainty in measurement results, the decision based on them could be 
incorrect. Controlling decision error is the subject of Step 6 of the DQO process. 

B.3.7 DQO Process Step 6: Specify the Limits on Decision Errors 

In this step, the project planning team assesses the potential consequences of making a wrong 
decision and establishes a tolerable level for making a decision error. The project planning team 
defines the types of decision errors (Type I and II) and the tolerable limits on the decision error 
rates. In general, a Type I error is deciding against the default assumption (the null hypothesis) 
when it is actually true; a Type II error is not deciding against the null hypothesis when it is 
actually false (see Attachment B1 and Appendix C for detailed discussions). The limits imposed 
on the probability of making decision errors will be used to establish measurement performance 
criteria for the data collection design. 

Traditionally, the principles of statistical hypothesis testing have been used to determine tolerable 
levels of decision error rates. Other approaches applying decision theory have been applied 
(Bottrell et al., 1996a, b). Based on an understanding of the possible consequences of making a 
wrong decision in taking alternative actions, the project planning team chooses the null 
hypotheses and judges what decision error rates are tolerable for making a Type I or Type II 
decision error. 

The project planning team also specifies a range of possible values where the consequences of 
decision errors are relatively minor (the gray region). Specifying a gray region is necessary 
because variability in the population and imprecision in the measurement system combine to 
produce variability in the data such that the decision may be �too close to call� when the true 
value is very near the action level. The width of the gray region establishes the distance from the 
action level where it is most important that the project planning team control Type II errors. For 
additional information on the gray region, hypothesis testing, and decision errors, see EPA 
(2000) and NRC (1998). 

The tolerable decision error rates are used to establish performance goals for the data collection 
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The Data Quality Objectives Process 

design. Overall variability in the result can be attributed to several sources, including sample 
location, collection, and handling; laboratory handling and analysis; and data handling and 
analysis. In many environmental cases, sampling is a much larger source of uncertainty than 
laboratory analyses. The goal is to develop a sampling and analysis design that reduces the 
chance of making a wrong decision. The greater certainty demanded by the decisionmakers, the 
more comprehensive and expensive the data collection process is likely to be. In this step, the 
project planning team has to come to an agreement on how to determine acceptable analytical 
uncertainty and how good the overall data results are required to be. The team has to reach a 
consensus on the trade off between the cost of more information and the increased certainty in 
the resulting decision. 

Often the project planning team does not feel comfortable with the concepts and terminology of 
hypothesis testing (Type I and Type II errors, gray region, critical region, tolerable decision error 
rates). As a result, the project planning team may have difficulty with (or want to skip) this step 
of the directed planning process. If these steps are skipped or insufficiently addressed, it is more 
likely that the data will not be of the quality needed for the project. Attachment B1 gives 
additional guidance on these concepts. MARLAP recommends that for each radionuclide of 
concern, an action level, gray region, and limits on decision error rates be established during a 
directed planning process. A stepwise procedure for accomplishing this is given at the end of this 
section. 

Figure B.2 summarizes the outputs of the decisions made by the project planning team in a 
decision performance goal diagram (EPA, 2000). The horizontal axis represents the (unknown) 
true value of the parameter being estimated. The vertical axis represents the decisionmaker�s 
desired probability of concluding that the parameter exceeds an action limit. The �gray region� 
(bounded on one side by the action level) defines an area where the consequences of decision 
error are relatively minor (in other words, it defines how big a divergence from the action level 
we wish to distinguish). The gray region is related to the desired precision of the measurements. 
The height of the indicated straight lines to the right and left of the gray region depict the 
decisionmaker�s tolerance for Type I and Type II errors. 

For purposes of this example, the default assumption (null hypothesis) was established as �the 
measured concentration exceeds the action level� (Figure B.2a). A Type I error consists in 
making a decision not to take action (e.g., remediate) when that action was in fact required (e.g., 
analyte concentrations are really above an action level). The desired limit on the probability of 
making a Type I error is set at 5 percent if the true concentration is between 100 and 150 and at 1 
percent if the true concentration exceeds 150. A Type II error is understood as taking an action 
when in fact that action is not required (e.g., analyte concentrations are really below the action 
level). The desired limit on the probability of making a Type II error is set at 5 percent if the true 
concentrations is less than 25 and 10 percent if the true concentrations is between 25 and 75. 
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Figure B.2(a) � Decision performance goal Figure B.2(b) � Decision performance goal 
diagram null hypothesis: the parameter exceeds diagram null hypothesis: the parameter is less 

the action level. than the action level. 

In Figure B.2(b), the default assumption (null hypothesis) was established as �the measured 
concentration is less than the action level.� The Type I error is understood as taking an action 
when in fact that action is not required (e.g., analyte concentrations are really below the action 
level). The desired limit on the probability of making a Type I error is set at 5 percent if the true 
concentration is less than 25, and at 10 percent if the true concentration is between 25 and 100. 
The Type II error is understood as making a decision not to take action to solve an environmental 
problem (e.g., to remediate) when that action was in fact required (e.g., analyte concentrations 
are really above an action level). The desired limit on the probability of making a Type II error is 
set at 10 percent if the true concentrations is between 125 and 150 and at 5 percent if the true 
concentrations is over 150. 

The output of Step 6 is:

  � The project planning team�s quantitative measure of tolerable decision error rates based on 
consideration of project resources. 

PROCEDURE FOR SPECIFYING LIMITS ON DECISION ERRORS�AN EXAMPLE 

Decisionmakers are interested in knowing the true state of some parameter for which action may 
be proposed. In Step 5 of the DQO process, the parameter, the action level, and the alternative 
actions were specified in a decision rule. But, decisionmakers cannot positively know the true 
state because there will always be the potential for uncertainty in estimating the parameter from 
data. There will be sampling uncertainty, due to spatial and temporal variability in concentrations 
across the site and from one sample to the next. There will also be analytical measurement 
uncertainty due to the variability in the measurement process itself. Since it is impossible to 
eliminate uncertainty, basing decisions on measurement data opens the possibility of making a 
decision error. Recognizing that decision errors are possible because of uncertainty is the first 
step in controlling them. 
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As an example problem, suppose that a decision must be made about whether or not a particular 
survey unit at a site meets established criteria for residual radioactivity concentrations. Table 
B.1(a) shows the two possible decision errors that might occur in deciding whether or not a 
survey unit has been remediated sufficiently so that it may be released. The decision will be 
based on concentration measurements taken in the survey unit. 

As another example problem, suppose that a decision must be made about whether or not a 
sample contains a particular radionuclide. Table B.1(b) shows the two possible decision errors 
that might occur in deciding whether or not a sample contains the radionuclide. The decision will 
be based on a measurement taken on the sample. 

TABLE B.1 � Possible decision errors 
(a) For survey unit release 

Decision True State 
Deciding  a survey  unit meets the release criterion  . . . . . . . . .  when it actually  does not  
Deciding a survey unit does not meet the release criterion . . . when it actually does 

(b) For radionuclide detection 
Decision True State 

Deciding a sample contains the radionuclide . . . . . . . . . . . . .  when it actually  does not  
Deciding a sample does not contain the radionuclide . . . . . . .  when it actually  does  

The probability of making a decision error can be controlled by the use of statistical hypothesis 
testing. In statistical hypothesis testing, data are used to select between a chosen baseline 
condition (null hypothesis) and an alternative condition. The test can then be used to decide if 
there is sufficient evidence to indicate that the baseline condition is unlikely and that the 
alternative condition is more consistent with the data. Actions appropriate to the alternative 
conditions would then be appropriate. Otherwise, the default baseline condition remains in place 
as the basis for decisions and actions. The burden of proof is placed on rejecting the baseline 
condition. The structure of statistical hypothesis testing maintains the baseline condition as being 
true until significant evidence is presented to indicate that the baseline condition is not true. 

The selection of the baseline condition is important to the outcome of the decision process. The 
same set of sample data from a survey unit might lead to different decisions depending on what is 
chosen as the baseline condition. 

In deciding if a sample analyzed for a particular radionuclide actually contains that radionuclide, 
the two possibilities for the baseline condition are: 

1) The sample contains the radionuclide, or 
2) The sample does not contain the radionuclide. 
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In this instance, suppose Condition 2, the sample does not contain the radionuclide, is taken as 
the baseline.1 The measurement result must be high in order to dismiss the assumption that the 
sample does not contain the radionuclide. If the measurement is high enough, it is no longer 
credible that the sample does not contain the radionuclide. Therefore it will be decided that the 
sample does contain the radionuclide. The framework of statistical hypothesis testing allows one 
to quantify what is meant by �high enough� and �no longer credible.� The measurement value 
that is considered just �high enough� that the baseline is �no longer credible� is called the 
�critical value.� The baseline condition is called the �null hypothesis,� usually denoted H0. The 
alternate condition is called the alternative hypothesis, usually denoted H1 or HA. 

Note that if a poor measurement is made�for example, if the sample containing a concentration 
near the minimum detectable concentration (MDC) is not counted as long as specified in the 
standard operating procedures�it will be less likely that a result that is clearly above the 
variability in the measurement of a blank sample will be obtained. Thus, it will be less likely that 
a sample with a concentration of the radionuclide near the MDC will be detected with greater 
than the 95 percent probability that is usually specified in MDC calculations. This is another 
consequence of the structure of statistical hypothesis testing that maintains the baseline condition 
until convincing evidence is found to the contrary. Poor or insufficient data often will result in 
the null hypothesis being retained even when it is not true. 

In choosing the baseline condition, it is usually prudent to consider which condition will cause 
the least harm if it is the one that is acted upon, even if it is not true. This is because the baseline 
will continue to be assumed true unless the data are clearly in conflict with it. 

In deciding if a survey unit meets the release criteria for a particular radionuclide, the two 
possibilities for the baseline condition are: 

1) The survey unit does not meet the release criteria, or 
2) The survey unit meets the release criteria. 

Condition 1 is usually taken as the baseline. This means that the measurement result must be low 
in order to dismiss the assumption that the survey unit does not meet the release criteria. If the 
measurement is low enough, it is no longer credible. Therefore it will be decided that the survey 
unit does meet the release criteria. Again, the framework of statistical hypothesis testing allows 
one to quantify what is meant by �low enough� and �no longer credible.� The null hypothesis, 
H0., is that the survey unit does not meet the release criteria; the alternative hypothesis, HA, is the 
survey unit does meet the release criteria. By phrasing the null hypothesis this way, the benefit of 
performing a good survey is that it will be more likely that a survey unit that should be released 

1 Condition 1 could only be used if it were phrased in reference to a particular concentration, e.g. the sample 
contains the radionuclide in concentration in excess of x pCi/g. Condition 2 implies a concentration of zero. 
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will be released. On the other hand, a poor survey will generally result in retaining the 
assumption that the release criterion has not been met even if it has. This arrangement provides 
the proper incentive for good survey work. 
 
The term  �Type I error� is assigned to the decision error made by concluding the null hypothesis 
is not true, when it actually is true. The term �Type II error� is assigned to the decision error 
made by concluding  the null hypothesis is true, when it actually is not true. The possibility of  a 
decision error can never be totally eliminated, but it can be controlled. 

When the decision is to be based on comparing  the average of a number of measurements from 
samples taken over some specified area, sampling  uncertainty can be reduced by collecting  a 
larger number of samples. Measurement uncertainty can be reduced by analyzing  individual 
samples several times or using more precise laboratory methods. Which uncertainty is more 
effective to control depends on their relative magnitude. For much environmental work, 
controlling the  sampling uncertainty  error  by  increasing the  number  of  field samples is usually 
more effective than controlling measurement uncertainty  by  repeated radiochemical analyses. 

One thing  is certain, however, that reducing  decision errors requires the expenditure of more 
resources. Drastically controlling  decision error probabilities to extremely small values may be 
unnecessary for making  a reasonable decision. If the consequences of a decision error are minor, 
a reasonable decision might be made based on relatively crude data. On the other hand, if the 
consequences of a decision error are severe, sampling  and measurement uncertainty should be 
controlled as much as reasonably possible. How much is enough? It is up to the decisionmaker 
and the planning  team to decide how much control is enough. They must specify tolerable limits 
on the probabilities for decision errors. If necessary, efforts to reduce sampling  and measurement 
uncertainty to meet these specified limits can then be investigated. 

Throughout the remainder of this example, the decision to be made is  going to be based on 
comparing  the average of a number of measurements from samples taken over a specific area to a 
pre-determined limit. The goal of the decisionmaker and planning  team is to design a sampling 
plan that controls the chance of making a decision error to a tolerable level. The strategy outlined 
below can be used to specify limits on decision errors: 

I.  Determine the potential range of the parameter of interest. 

II.  Choose the null hypothesis and identify  the Type I and Type II decision errors. 

III.  Specify a range of concentrations where the consequences of decision errors are relatively 
minor. 

IV. Assign tolerable decision error rates outside of the range specified in III. 
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 TABLE B.2 � Example of possible decision errors with null hypothesis that the average 
concentration in a survey unit is above the action level 

Decision True State Consequences Probability 
Deciding a survey unit is 
below the action level... 

 ...when it actually is above 
the action level (H0). 

Type I error α 

Deciding a survey unit is 
above the action level...

  ...when it actually is below 
the action level (HA). Type II error β 

The Data Quality Objectives Process 

I.  DETERMINE POTENTIAL  RANGE OF  THE PARAMETER OF  INTEREST 

Establish the range of average concentrations likely to be encountered in the survey unit. One 
must have some idea of the concentration range in order to specify  the type of analysis to be done 
and the sensitivity it must have.  It is also the starting point for deciding what differences in 
concentration are important to detect. 

In the example shown in  Figure 1.0
B.3, the project planning  team 
considers a range of feasible 0.8
concentrations for the radio-

orrrE
nuclide to be between 0�50 on

 
i

is 0.6pCi/g. This is based on prior D
ec

experience of the site, scoping, 

 f
 oy

characterization, and 

lit 0.4

ob
ab

i

remediation-control survey data. rP

0.2
II.  CHOOSE THE NULL 
HYPOTHESIS AND IDENTIFY 0.0
DECISION ERRORS Range of 0 10 20 30 40 50 

Parameter True Mean Value of X   (Mean Concentration, pCi/g) 
The decision rule states that  the of Interest 

action level will be  30 pCi/g  for FIGURE B.3 � Plot is made showing  the range of the parameter 
the radionuclide. The project of interest on the x-axis 
planning team  states the null hypothesis as� 

 H0: The survey unit  concentration exceeds the action level. 

The corresponding decision errors are defined as in Table B.2. 
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Now that a null hypothesis has been chosen, the meaning  of a Type I and a Type II decision error 
is also defined. In Figure B.4, a line is added showing  the action level. A Type I error occurs 
when the null hypothesis is incorrectly rejected. This means that it is decided that a survey unit 
with a true mean concentration 1.0 1.0
above the action level may be 
released. This is the only kind of Below AL  Above AL 
decision error that  can occur if the 0.8 0.8

orr (H (H0 true) 
true concentration is at or above Er 0 not true) 
the action level. A Type II error on

 
isi 0.6 0.6 Action Level 

occurs when the null hypothesis is D
ec

not rejected when it is false. This  o
f 

ty
Type II  errors can Type I errors 

means that it is decided that a i 0.40.4 occur when  the true  can occur 
survey unit with a true mean ob

ab
il

concentration is  when the true 
concentration below the action Pr below the action  concentration 0.2 0.2
level may not be released. This is level. is above the 

action level. the only kind of decision error 
that  can occur if the true 0.00.0 

concentration is below the action 00 1010 20 20 3030 4040 50 50

level. The type of decision error TTrrue Mean Value Mean Value of X ue of X  ((Mean ConcentMean Concentratration, ion, pCipCi//g) g)

possible at a  given value of the FIGURE B.4 � A line showing the action level, the type of 
true concentration is shown, and a decision error  possible  at  a given value of the  true 
y-axis for displaying  control concentration, and a  y-axis  showing the acceptable  limits on 

making a  decision error  have  been added to Figure  B.3 limits on making  decision errors, 
once they have been specified by the project planning  team, are also shown in  Figure  B.4. 

III.  SPECIFY A RANGE OF  CONCENTRATIONS  WHERE THE CONSEQUENCES OF  DECISION  ERRORS 
ARE  RELATIVELY MINOR 

The gray region, or region of uncertainty, indicates an area where the consequences of a  Type II 
decision error are relatively  minor. It may not be reasonable to attempt to control decision errors 
within the gray area. The resources expended to  distinguish small differences in concentration 
could well exceed the costs associated with making the decision error. 

In this example, the question is whether it would really make a major difference in the action 
taken if the concentration is called 30 pCi/g  when the true value is 26 or even 22 pCi/g.  If not, 
the gray region might extend from 20 to 30 pCi/g  . This is shown in  Figure  B.5. 

The width of the gray region reflects the decisionmaker�s concern for Type II decision errors near 
the action level. The decisionmaker should establish the  gray region by balancing the resources 
needed to �make a close call� versus the consequences of making a Type II decision error. The 
cost of collecting  data sufficient to distinguish small differences in concentration could exceed 
the cost of making a decision error. This is especially true if the consequences of the error are 
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judged to be minor. 1.0 
Gray Region 

There is one instance where the 0.8 consequences of a Type II 
decision error might be considered or

 

major. That is when expensive Er
r

0.6 

io
n 

remediation actions could be s

required that are not necessary to ec
i

D 0.4 
protect public health. It could be  o

f 
yt

argued that this is always the case 
il

ob
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i
when the true concentration is less 0.2 

Pr

than the action level. On the other Type II Errors Type I Errors 
hand, it can be also be argued that 0.0 
remediation of concentrations 0 10 20 30 40 50 
near, even though not above the FIGURE B.5 � The gray region is a specified range of values of 
action level, will still carry some the true concentration where the consequences of a decision 
benefit. To resolve the issue, error are considered  to be relatively  minor
however, the project planning  team knows that not all values of the average concentration below 
the action level are equally likely to  exist in the survey unit. Usually, there is some knowledge, if 
only approximate, of what the average value of the concentration in the survey unit is. This 
information can be used to set the width of the  gray  region. If  the planning team is fairly 
confident that the concentration is less than 20 pCi/g but probably more than 10 pCi/g, they 
would be concerned about making  Type II errors when the true concentration is between 10 and 
20 pCi/g. However, they will be much less concerned about making Type II errors when the true 
concentration is between 20 and 

1.0 30 pCi/g. This is simply because                            

they do not believe that the true 
                           

Gray Region
concentration is likely to be in that 0.8 

                           

range. Figure B.6 shows three 
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ro

                         

possible ways that the project Er 0.6 
                           

planning  team might decide to set on
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the gray region. In �A� the project 
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planning team believes the true  D
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concentration remaining  in the 

ytil

        
A 
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survey unit is about 15 pCi/g, in ob 0.2 
                           

�B� they believe it to be about 20 Pr                            

pCi/g, and in �C� about 25 pCi/g. Type II Errors 
                           

Type I Errors 
In each case, they are less 0.0 

            

0 10 20 30 40 50 
concerned about a decision error FIG  B.6 � Three possible ways of setting the gray region. involving  a true concentration URE

In (A) the project planning team believes the true 
greater than what is estimated to concentration remaining in the  survey  unit is about 15  pCi/g, 
actually remain. They have used in (B) about 20  pCi/g and in (C) about 25  pCi/g 
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their knowledge of the survey unit to choose the range of concentration where it is appropriate to 
expend resources to control the Type II decision error rate. The action level, where further 
remediation would be necessary, defines the upper bound of the gray region where the probability 
of a Type I error should be limited. The lower bound of the gray region defines the concentration 
below which remediation should not be necessary. Therefore, it defines where the probability of 
a Type II error that would require such an action should be limited.2 

IV. ASSIGN TOLERABLE PROBABILITY VALUES FOR THE OCCURRENCE OF DECISION ERRORS 
OUTSIDE OF THE RANGE SPECIFIED IN III 

As part of the DQO process, the decisionmaker and planning team must work together to identify 
possible consequences for each type of decision error. Based on this evaluation, desired limits on 
the probabilities for making decision errors are set over specific concentration ranges. The risk 
associated with a decision error will generally be more severe as the value of the concentration 
moves further from the gray region. The tolerance for Type I errors will decrease as the concen-
tration increases. Conversely, the tolerance for Type II errors will decrease as the concentration 
deceases. 

In the example, the decisionmaker has identified 20!30 pCi/g as the area where the consequen-
ces of a Type II decision error would be relatively minor. This is the gray region. The tolerable 
limits on Type I decision errors should be smallest for cases where the decisionmaker has the 
greatest concern for making an incorrect decision. This will generally be at relatively high values 
of the true concentration, well above the action level. Suppose, in the example, that the 
decisionmaker is determined to be nearly 99 percent sure that the correct decision is made, 
namely, not to reject the null hypothesis, not to release the survey unit, if the true concentration 
of radionuclide X is 40 pCi/g or more. That means the decisionmaker is only willing to accept a 
Type I error rate of roughly 1 percent, or making an incorrect decision 1 out of 100 times at this 
concentration level. This is shown in Figure B.7(a). 

If the true concentration of X is closer to the action level, but still above it, the decisionmaker 
wants to make the right decision, but the consequences of an incorrect decision are not 
considered as severe at concentrations between 30 and 40 pCi/g as they are when the concen-
tration is over 40 pCi/g. The project planning team wants the correct action to be taken at least 90 
percent of the time. They will accept an error rate not worse than about 10 percent. They will 
only accept a data collection plan that limits the potential to incorrectly decide not to take action 
when it is actually needed to about 1 in 10 times. This is shown in Figure B.7(b). 

2 Had the null hypothesis been chosen differently, the ranges of true concentration where Type I and Type II errors 
occur would have been reversed. 
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The decisionmaker and project 1.0 
planning  team are also concerned 
about wasting  resources by 

r 0.8 cleaning  up sites that do not ro

represent any substantial risk.  E
r

Limits of tolerable probability are 

noisi 0.6 
set  low for extreme Type II errors, ec

 D

y uni

fo Type II Errors Type I Errors
i.e. failing  to release a surve  t y  

when the true concentration is far 

til 0.4 

ob
ab

i

(d) 
below the gray region and the Pr 20% (b) 
action level. They want to limit 0.2 (c) 10%          (a) 
the chances of deciding to take 5%                  

1% action when it really is not needed 0.0 
           

to about 1 in 20 if the true con- 0 10 20 30 40 50 
centration is less than 10 pCi/g. FIGURE B.7 � Example decision performance  goal diagram  
This is shown in Figure  B.7(c). 

They are more willing  to accept higher decision error rates for concentrations nearer to the  gray 
region. After all, there is some residual risk that will be avoided even though the concentration is 
below the action level. A Type II error probability limit of 20 percent in the 10!20 pCi/g  range is 
agreed upon. They consider this to be an appropriate transition between a range of concentrations 
where Type II errors are of great  concern (<10 pCi/g) to a range where Type II errors are of little 
concern. The latter is, by definition, the gray region, which is 20!30 pCi/g  in this case . The 
chance of taking  action when it is not needed within the range 10!20 pCi/g  is set at roughly  1 in 
5. This is shown in  Figure  B.7(d). 

Once the limits on both types of decision error rates have been specified, the information can be 
displayed on a decision performance goal diagram, as shown in Figure  B.7, or made into a 
decision error limits table, as shown in Table B.3. Both are valuable tools for visualizing and 
evaluating  proposed limits for decision errors. 

TABLE B.3 � Example decision error limits table 
Tolerable Probability  of Making 

True Concentration Correct Decision a Decision Error 
0 � 10 pCi/g Does not exceed 5% 
10 � 20 pCi/g Does not exceed 20% 

gray region: decision error 20 � 30 pCi/g Does not exceed probabilities not controlled 
30 � 40 pCi/g Does exceed 10% 
40 � 50 pCi/g Does exceed 1% 
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There are no fixed rules for identifying at what level the decisionmaker and project planning 
team should be willing  to tolerate the probability of decision errors. As a guideline, as the 
possible true values of the parameter of interest move closer to the action level, the tolerance for 
decision errors usually increases. As the severity of the consequences of a decision error 
increases, the tolerance decreases. 

The ultimate goal of the DQO process is to identify the most resource-effective study design that 
provides the type, quantity, and quality of data needed to support defensible decisionmaking. The 
decisionmaker and planning  team must evaluate design options and select the one that provides 
the best balance between cost and the ability to meet the stated DQOs. 

A statistical tool known as an estimated power curve can  be  extremely  useful when investigating 
the performance of alternative survey  designs. The probability that the null hypothesis is rejected 
when it should be rejected is 
called the statistical  power of a 1.1.00 
hypothesis test. It is equal to one 

                                                                                                        
                                                      

minus the probability of a Type II 0.0.88 
                                                      

error (1!β). In the example, the 
null hypothesis is false whenever 
the true concentration is less than 0.0.66 

PoPowewer =r = 
the action level. Figure B.8 shows rree

ww 11--TTyyppe II Ere II Erroror r PPrroobbaabbiilliittyy TTyyppee I  I EErrorror Pror Probbababilility ity
the power diagram constructed PoPo = 1= 1 - - ββ0.0.44  = = αα 

from Figure B.7 by replacing  the 
desired limits on Type II error 
probabilities, β, with the power, 0.0.2 2

1!β. The desired limits on Type I                                                   

error probabilities, α, are carried 0.0.00 
                                                  

over without modification, as is 00 1010 2020 3030 4040 5050 
TTrruue Me Meaean Van Vallueue of of X X   ((MMean ean CoConncecenntrtratatiionon, ,  pCpCii//g) g)

the gray region. Drawing  a smooth 
FIGURE B.8 � A power curve constructed  from the decision decreasing  function through the performance goal diagram in Figure B.7 

desired limits results in the 
desired power curve. A decision performance goal diagram with an estimated power curve can 
help the project planning  team visually identify information about a proposed study design. 

Statisticians can determine the number of measurements needed for a proposed survey design 
from four values identified on the  decision performance goal diagram: 

 (1)  The tolerable limit for the probability of making  Type I decision errors, α, at the action 
level AL). 

(2)  The tolerable limit for the probability of making  Type II decision errors, β, along  the 
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lower bound of the gray region (LBGR). 

(3) The width of the gray region, ∆ = AL  ! LBGR, where the consequences of Type  II 
decision errors are relatively minor. 

(4)  The statistical  expression for the total expected variability of the measurement data in the 
survey unit, σ. 

The actual power curve for the statistical hypothesis test can be calculated using these values, and 
can be compared to the desired limits on the probability of d ecision errors. 

The estimated number of measurements required for a proposed survey  design depends heavily 
on the expected variability of  the  measurement data in the survey  unit, σ. This may not always be 
easy to estimate from the information available. However, the impact of varying this parameter 
on the study design is fairly easy to determine  during the planning process. Examining a range of 
reasonable values for σ may not result in  great differences in survey  design.  If so, then a crude 
estimate for  σ is sufficient.  If not, the estimate for σ may need to be refined, perhaps by a pilot 
study of 20 to 30 samples. If the change in the number of samples (due to refining the estimate of 
σ) is also about 20 to 30 in a single survey unit, it may be better to simply use a conservative 
estimate of  σ that leads to the larger number of samples rather than conduct a pilot study  to 
obtain a more accurate estimate of σ . On the other hand, if several or many similar survey units 
will be subject to the same design, a pilot study  may be worthwhile. 

The example in  Figure  B.9 shows that the probability  of making a decision error for  any value of 
the true concentration can be 
determined at any point on the 1.1.00 
power curve. At 25 pCi/g, the 

                                                      ∆∆ 
probability of a Type II error is 

                                                      

0.0.8 8
roughly 45!50 percent. At 35 

 pCi/g, the probability of a Type I ββ
error is roughly 3 percent. 0.0.6 6

rr PoPowewer =r = 

ee
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The larger the number of samples PoPo 0.0.4 4
required to meet the stated DQOs, αα 
the greater the costs of sampling 

0.0.22 and analysis for a proposed plan. 
Specifying a narrow gray  region 
and/or very small limits on 

                                                  
0.0.00 

00 1010 2020 30 30 4040 50 50decision error probabilities TTrruue Me Meaean Van Vallueue of of X  X  ((MMean ean CoConncecenntrtratatiionon, ,  pCpCii//g) g)

indicate a high level of certainty is FIGURE B.9 � Example power curve showing  the key 
needed and a larger number of parameters used to determine the appropriate number of 
samples will be required. samples to  take in  the survey  unit 
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Specifying a wide gray region and/or larger limits on decision error probabilities indicates a 
lower level of certainty is required. A smaller number of samples will be necessary. The required 
level of certainty should be consistent with the consequences of making decision errors balanced 
against the cost in numbers of samples to achieve that level of certainty. 

If a proposed survey design fails to meet the DQOs within constraints, the decisionmaker and 
planning team may need to consider: 

  � ADJUSTING THE ACCEPTABLE DECISION ERROR RATES. For example, the decisionmaker may 
be unsure what probabilities of decision error are acceptable. Beginning with extremely 
stringent decision error limits with low risk of making a decision error may require an 
extremely large number of samples at a prohibitive cost. After reconsidering the potential 
consequences of each type of decision error, the decisionmaker and planning team may be 
able to relax the tolerable rates.

  � ADJUST THE WIDTH OF THE GRAY REGION. Generally, an efficient design will result when the 
relative shift, ∆/σ, lies between the values of 1 and 3. A narrow gray region usually means 
that the proposed survey design will require a large number of samples to meet the specified 
DQOs. By increasing the number of samples, the chances of making a Type II decision error 
is reduced, but the potential costs have increased. The wider the gray region, the less stringent 
the DQOs. Fewer samples will be required, costs will be reduced but the chances of making a 
Type II decision error have increased. The relative shift, ∆/σ, depends on the width of the 
gray region, ∆, and also on the estimated data variability, σ. Better estimates of either or both 
may lead to a more efficient survey design. In some cases it may be advantageous to try to 
reduce σ by using more precise measurement methods or by forming more spatially 
homogeneous survey units, i.e. adjusting the physical boundaries of the survey units so that 
the anticipated concentrations are more homogeneous with them. 

B.3.8 DQO Process Step 7: Optimize the Design for Obtaining Data 

By the start of Step 7, the project planning team has established their priority of concerns, the 
definition of the problem, the decision or outcome to address the posed problem, the inputs and 
boundaries, and the tolerable decision error rates. They have also agreed on decision rules that 
incorporate all this information into a logic statement about what action to take in response to the 
decision. During Step 7, the hard decisions are made between the planning team�s desire to have 
measurements with greater certainty and the reality of the associated resource needs (time, cost, 
etc.) for obtaining that certainty. Another viewpoint of this process is illustrated in Attachment 
B1. The application of this process to MDC calculations is given in Attachment B2. 

During Step 7, the project planning team optimizes the sampling and analytical design and 
establishes the measurement quality objectives (MQOs) so the resulting data will meet all the 
established constraints in the most resource-effective manner. The goal is to determine the most 
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efficient design (combination of sample type, sample number and analytical procedures) to meet 
all the constraints established in the previous steps. Once the technical specialists and the rest of 
the project planning team come to agreement about the sampling and analysis design, the 
operational details and theoretical assumptions of the selected design should be documented. 

If a proposed design cannot be developed to meet the limits on decision error rates within budget 
or other constraints, then the project planning team will have to consider relaxing the error 
tolerance, adjusting the width of the gray region, redefining the scale of decision, or committing 
more funding. There is always a trade off among quality, cost, and time. The project planning 
team will need to develop a consensus on how to balance resources and data quality. If the 
proposed design requires analysis using analytical protocols not readily available, the project 
planning team must consider the resources (time and cost) required to develop and validate a 
method, generate method detection limits relevant to media of concern, and develop appropriate 
QA/QC procedures and criteria (Chapter 6, Selection and Application of an Analytical Method). 

If the project entails a preliminary investigation of a site or material for which little is known, the 
planners may choose to employ MQOs and requirements that typically are achieved by the 
selected sampling and analytical procedures. At this early point in the project, the lack of detailed 
knowledge of the site or material may postpone the need for the extra cost of more expensive 
sampling and analytical procedures and large numbers of samples, until more site or material 
knowledge is acquired. The less-demanding MQOs, however, should be adequate to further 
define the site or material. For situations when the measured values are distant from an action 
level the MQO-compliant data could also be sufficient to support the project decision. 

The planning of data collection activities typically is undertaken to determine if a characteristic 
of an area or item does or does not exist above an action level. Since the area of interest (popula-
tion) is usually too large to be submitted to analyses, in its entirety, these data collection activities 
generally include sampling. If sampling is done correctly, the field sample or set of field samples 
will represent the characteristics of interest and, if analyzed properly, the information gleaned 
from the samples can be used to make decisions about the larger area. However, if errors occur 
during implementation of the project, the samples and associated data may not accurately reflect 
the material from which the samples were collected and incorrect decisions could be made. 

The planning team attempts to anticipate, quantify, and minimize the uncertainty in decisions 
resulting from imprecision, bias, and blunders�in other words, attempts to manage uncertainty 
by managing its sources. The effort expended in managing uncertainty is project dependent and 
depends upon what constitutes an acceptable level of decision uncertainty and the proximity of 
the data to a decision point. For example, Figure B.10(a) presents a situation where the data have 
significant variability. Yet the variability of the data does not materially add to the uncertainty of 
the decision since the measurements are so far removed from the action level. More resources 
could be expended to control the variability. However, the additional expenditure would be 
unnecessary, since they would not alter the decision or measurably increase confidence in the 
decision. 
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In contrast, Figure B.10(b) depicts data with 
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Figure B.10 � How proximity to the action  level 
  � Detailed plans and criteria for data determines what is an acceptable level of

uncertainty assessment. 
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ATTACHMENT B1 
Decision Error Rates and the Gray Region for Decisions 
About Mean Concentrations  

B1.1 Introduction 

This attachment presents additional information on decision error rates and the gray region. The 
project planning  team will need to specify a range of possible values where the consequences of 
decision errors are relatively  minor�the �gray region.� Specifying a gray  region is necessary 
because variability in the population and imprecision in the measurement system combine to 
produce variability in the data such that the decision may be �too close to call� when the true 
value is very near the action level. The  gray  region establishes the minimum separation from the 
action level, where it is most important that the project planning team control Type II errors. 

B1.2 The Region  of  Interest 

The first step in constructing  the 
gray region is setting the range of 
concentrations that  is a region of 
interest (a range of possible values). 
This normally means defining  the 
lowest and highest average concen-
trations at which the contaminant is 
expected to exist. Usually there is an 
action level (such as the derived 
concentration guideline level, 
DCGL, a regulatory limit) that 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

should not be exceeded.  If the Conce ntra  tio  n  

project planning  team wants a FIGURE B1.1 � The action  level  is 1.0 method to measure sample concen-
trations around this level, they  would not select one that worked at concentrations at 10 to 100 
times the action level, nor would they  select one that worked from  zero to half the action level. 
They would want a method that worked well around the action level�perhaps from 0.1 to 10 
times the action level, or from one-half to two times the action level. For the purpose of the 
example in this attachment, the action level is 1.0 and the project planning team selected a region 
of interest that is zero to twice the action level (0�2), as shown on the x-axis in  Figure B1.1. 

B1.3 Measurement Uncertainty at the Action  Level 

The action level marks the concentration level that the project planning team must be able to 
distinguish. The  project planning  team wants to be  able to tell if the  measured concentration is 
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above or below the action level. Does this mean that the project  planning team needs to be able 
to distinguish 0.9999 times the action level from 1.0001 times the action level? Sometimes, but 
not usually. This is fortunate, because current measurement techniques are probably  not good 
enough to distinguish that small a difference in concentrations. 

How close to the action level can the 
project planning  team plan to 
measure? This example assumes 
that the standard uncertainty (1 
sigma, σ) of the measured 
concentration is 10 percent of the 
action level. With that kind of 
measurement �precision,� can the 
project planning  team tell the 
difference between a sample with 
0.9 times the action level from one 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

right at the action level? Not always. Conce ntra tion  

Figure B1.2 shows the distribution F 0.  of the concentration that is measured IGURE B1.2 � The true mean concentration is 1. The 
standard uncertainty  of the distribution of measured 

(assuming a normal distribution). concentrations is 0.1. 
This means that about 16 percent of 
the time, the measured concentration (in the shaded area) will appear to be 0.9 times the action 
level or less, even though the true concentration is exactly  equal to the action level. 

Similarly, about 16 percent of the time, the measured concentration will appear to be at or above 
the action level (as shown in the shaded area in Figure B1.3), even though the true concentration 
is only 0.9 times the action level. 

The problem is, when there is only the measurement result to go by, the project planning team 
cannot tell the difference with confidence. If the measured concentration is 0.9, it is more likely 
that the true concentration is 0.9 than it is 1.0, but there remains a chance that  it is really 1.0. The 
moral of the story is that measurement variability causes some ambiguity about what the true 
concentration is. This translates into some uncertainty in the decisionmaking  process. This 
uncertainty can be controlled with careful planning, but it can never be eliminated. On the other 
hand, the ambiguity  caused  by  measurement variability really only  affects the ability to 
distinguish between concentrations that are �close  together.�  In our example, 0.9 and 1.0 are 
�close together� not because 0.1 is a small difference, but because there is a great degree of 
overlap between the curves shown in Figures B1.2 and B1.3. The peaks of the two curves are 
separated by 0.1, but each curve spreads out over a value several times this amount on both sides. 
The most common statistical measure of the amount of this spread is the standard deviation. The 
standard deviation in this case is 0.1, the same as the amount of separation between the peaks. If 
the peaks were separated by 0.3, i.e. 3 standard deviations, there would be far less overlap, and 
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far less ambiguity. There would be 
very little uncertainty in deciding 
which curve a single measurement 
belonged to, and consequently 
whether the mean was 0.7 or 1.0. 

From this discussion, at least two 
very important conclusions can be 
drawn: 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

(1) True mean concentrations that Conce ntra  tion 

are �very  close  together� are  not FIGURE B1.3 � The true mean concentration is 0.9.  The 
easily distinguished by a single standard uncertainty  of the distribution of measured 
measurement. concentrations is 0.1. 

(2) A useful way for determining  what is meant by  �very  close together� is by  measuring the 
separation in concentration in standard deviation units. Concentrations that are one or fewer 
standard deviations apart are close together, whereas concentrations that are three or more 
standard deviations apart are  well separated. 

From conclusion (1), it is immediately apparent that no matter how small the measurement 
variability is, there must be some separation between the concentration values to be distin-
guished. It is not possible to determine whether or not the concentration is on one side or the 
other of �a bright line� (e.g. above or below the action level). Instead, one must be content to 
pick two concentrations separated  by  a finite amount and attempt to tell them apart. These two 
concentrations define what is known as the  gray  region, because one cannot be certain about 
deciding whether concentrations that 
lie between the two boundaries are 
above or below the action level. To 
illustrate this with the example, if 
the measured concentration is 
0.95�exactly in the middle of the 
gray region between the two 
concentrations to be distinguished� 
it is  equally likely that the  true 
concentration is 0.9 as it is 1.0 
(Figure B1.4). 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Conce ntra  tion 

To formalize this process of F  B1.4 � If 0.95 is measured, is the true mean distinguishing whether the true IGURE
concentration  1.0 (right) or 0.9 (left)?  The standard 

concentration is above our upper uncertainty of the distribution of measured concentrations 
bound or below our lower bound, is 0.1. 
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two hypotheses will be defined and a statistical hypothesis test will be used to decide between the 
two. 

B1.4 The Null Hypothesis 

How does the project planning team decide whether the true concentration is above or below the 
gray region? By formulating hypotheses. Suppose it has been decided that it is important to 
distinguish whether the true mean concentration is above 1.0 or below 0.9. These concentrations 
then correspond to the �upper bound of the gray region� (UBGR) and to the �lower bound of the 
gray region� (LBGR), respectively. 

The project planning team starts by asking which mistake is worse: (1) deciding the true 
concentration is less than the action level when it is actually above, or (2) deciding the true 
concentration is above the action level when it is actually below? 

Mistake (1) may result in an increased risk to human health in the general population following 
site release, while mistake (2) may result in increased occupational risks or a waste of resources 
that might have been used to reduce risks elsewhere. 

The way to avoid the �worse mistake� is to assume the worse case is true, i.e., make the worse 
case the baseline or null hypothesis. For example, to avoid mistake (1), deciding the true 
concentration is less than the action level when it is actually above, the null hypothesis should be 
that the true concentration is above the action level. Only when the data provide convincing 
evidence to the contrary will it be decided that the true concentration is less than the action level. 
Borderline cases will default to retaining (not rejecting) the null hypothesis. 

Note that while the null hypothesis must be, in fact, either true or false, the data cannot prove that 
it is true or false with absolute certainty. When the probability of obtaining the given data is 
sufficiently low under the conditions specified by the null hypothesis, it is evidence to decide that 
the null hypothesis should be rejected. On the other hand, if the null hypothesis is not rejected, it 
is not the same as proving that the null hypothesis is true. It only means that there was not 
enough evidence, based on the probability of observing the data obtained, to decide to reject it. 

Notice that in Figure B.2 (Section B.3.7 on page B-11), the risk that is elevated in the gray region 
is that of making a Type II error. That is, in the gray region, the Type II error rate exceeds the 
tolerable limit set at the boundary of the gray region. The Type I error rate remains fixed. (It is 
fixed at exactly the value used to determine the critical value for the statistical test.) A Type II 
error is incorrectly accepting (failing to reject) the null hypothesis when it is false. So another 
way to think about choosing the null hypothesis is to decide which mistake is less tolerable, and 
framing the null hypothesis so that kind of mistake corresponds to a Type I error (i.e., incorrectly 
rejecting the null hypothesis when it is actually true). 
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Another pragmatic consideration is that the project planning team really does not want to make a 
mistake that is likely to remain undiscovered or will be difficult or expensive to correct if it is 
discovered. If the project planning team decides the true concentration is less than the action 
level, the team is not likely to look at the data again. That would mean that the mistake would 
probably not be discovered until much later (e.g. during a confirmatory survey), if at all. On the 
other hand, if the project planning  team decides that the true concentration is over the action level 
when it really is not, the  project planning  team will discover  the  mistake  while  they are  trying  to 
figure out how to take action (i.e., to remediate). This is a pragmatic reason to set the null 
hypothesis so as to assume the true concentration  exceeds the action level. This null hypothesis 
will not be rejected unless the project planning  team is certain that the true concentration is 
below the action level. This way of choosing the null hypothesis will not work when the action 
level is so low compared with the expected data variability that no reasonable values of Type II 
error rates can be achieved. This can occur, for  example, when the action level is close to (or 
even equal to)  zero. In that case, if the action level is chosen to be the UBGR, the lower bound 
might have to be negative. It is impossible to demonstrate that the true concentration is less than 
some negative value, because negative concentrations are not possible. In such cases, there may 
be no alternative but to choose as the null  hypothesis that the action level is met. Then a 
concentration that is unacceptably higher than the action level is chosen for the UBGR. 

CASE 1:  ASSUME THE  TRUE  CONCENTRATION IS  OVER  1.0 

If a true concentration of 1.0 or more is over a regulatory limit, such as a DCGL, the project 
planning  team will not want to make mistake (1) above. So they  generally  will choose as the null 
hypothesis that the true concentration  exceeds the action level of 1.0. How sure does the project 
planning  team need to be? To be 95 percent sure, they would have to stay with their assumption 
that the true concentration is over 
1.0 unless the measured concen-
tration is 0.84 or less (Figure B1.5). 
The project planning  team knows 
that they  will only observe a concen-
tration less than 0.84 about 5 percent 
of the time when the true concentra-
tion is really 1.0. That is, the 
measurement has to be less than 
0.84 to be 95 percent sure the true 
concentration is less than 1.0. This 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

is an example of a decision rule Conce ntra tion  

being  used to decide between two 
alternative hypotheses. If a FIGURE B1.5 � When the true mean concentration is 1.0, 

and  the standard uncertainty of the distribution of concentration of less than 0.84 is measured concentrations is 0.1, a measured concentration 
observed, one can decide  that the of 0.84 or less will be observed only about 5 percent of the 
true concentration is less than 1.0� time 
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i.e., the null hypothesis is rejected. Otherwise, if a concentration over 0.84 is observed, there is 
not enough evidence to reject the null hypothesis, and one retains the assumption that the true 
concentration is over 1.0. 

But what if the true concentration is 
0.9 or less? Under the null hypothe-
sis, how often will the project 
planning team say that the true 
concentration is over 1.0 when it is 
really only 0.84? As seen in Figure 
B1.6, there is only a 50-50 chance of 
making the right decision when the 
true concentration really is 0.84. 
That is the price of being sure the 
action level is not exceeded. The 
Type II error rate, when the true 
concentration is 0.9, is over 50 FIGURE B1.6 � When the true mean concentration is 0.84, 

and the standard uncertainty of the distribution of percent. 
measured concentrations is 0.1, a measured concentration 

of 0.84 or less will be observed only about half the time 
How low does the true concentration 
have to be in order to have a pretty good chance of deciding that the true concentration is below 
the limit? To be 95 percent sure, the true concentration needs to be twice as far below the action 
level as the decision point (i.e., critical value), namely at about 0.68. That is, the project planning 
team will need a concentration of 0.68 or less to be 95 percent sure that they will be able to 
decide the true concentration is less than 1.0 (see the unshaded portion in Figure B1.7). The 
�critical value� (or decision point) is the measured value that divides the measurement results 
into two different sets: (1) those 
values that will cause the null 
hypothesis to be rejected and 
(2) those values that will leave the 
null hypothesis as the default. In 
other words, it is only when the true 
concentration is 0.68 or less that the 
project planning team can be pretty 
sure that they will decide the true 
concentration is less than 1.0. Notice 
that the project planning team could 
change the decision rule. For 
example, they could decide that if 

FIGURE B1.7 � When the true mean concentration is 0.68 the measured concentration is less and the standard uncertainty of the distribution of 
than 0.9, they will reject the null measured concentrations is 0.1, a measured concentration 
hypothesis. Examining Figures B1.2 over 0.84 will be observed only about 5 percent of the time 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Conce ntra tion  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Conce ntra tion  
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and B1.3 once again, the Type I error rate will be about 16 percent instead of 5 percent. However, 
the Type II error rate will decrease from 50 percent to 16 percent. Fortunately, by moving the 
decision point�called the �critical value��the error rates can be adjusted. However, reducing 
one error rate necessarily increases the other. The only way to decrease both decision error rates 
is to reduce the uncertainty (standard deviation) of the distribution of measured concentrations. 

CASE 2: ASSUME THE TRUE CONCENTRATION IS 0.9 

As stated previously, the mistake that is most serious determines the null hypothesis. Suppose 
that the project planning team determined that it is worse to decide that the true concentration is 
over 1.0 when it is 0.9 (than it is to decide it is 0.9 when it is 1.0). Then, the default assumption 
(the null hypothesis) would be that the true concentration is less than 0.9, unless the measured 
concentration is large enough to 
convince the planning team 
otherwise. Using a decision rule 
(critical value) of 1.06, the 
planning team can decide the true 
concentration is over 1.0 with 
only a 5 percent chance that it is 
actually 0.9 or less (Figure B1.8). 
The team will have to have a true 
concentration of 1.22 or more to 
be 95 percent sure that they will 
be able to decide the true 
concentration is over 1.0. 

B1.5 The Gray Region 

In the previous sections of this attachment, the project planning team:

  � Set the region of interest for the measured concentrations between zero and about twice the 
action level;

  � Assumed that the true concentration exceeds 1.0, unless they measure �significantly� below 
that, the default assumption (null hypothesis);

  � Defined �significantly below� to mean a concentration that would be observed less than 5 
percent of the time, when the true concentration is actually 1.0. To describe their uncertainty, 
the project planning team used the normal distribution, with a relative standard deviation of 
10 percent at the action level, as a model;

  � Developed an operational decision rule: If the measured concentration is less than 0.84, then 

Figure B1.8 � The true mean concentration is 0.9 (left) and 
1.22 (right). The standard uncertainty of the distribution of 

measured concentrations is 0.1. 
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decide the true concentration is less than 1.0. Otherwise, decide there is not enough reason to 
change the default assumption (null hypothesis); and

  � Found using this operational decision rule that they were pretty sure (95 percent) of deciding 
that the true concentration is less than 1.0 only when the true concentration is actually 0.68 or 
less. 

If the true concentration is between 0.68 and 1.0, all the project planning team really can say is 
that the probability of correctly deciding that the true concentration is less than 1.0 will be 
between 5 percent (when the true concentration is just under 1.0) and 95 percent (when the true 
concentration is 0.68). In other words, when the true concentration is in the range of 0.68 to 1.0, 
the probability of incorrectly deciding that the true concentration is not less than 1.0 (i.e., the 
probability of making a Type II error) will be between 5 percent (when the true concentration is 
0.68) and 95 percent (when the true concentration is just under 1.0). This range of concentrations, 
0.68 to 1.0, is the �gray region.� 

When the null hypothesis is that the true concentration exceeds the action level (1.0), the gray 
region is bounded from above by the action level. This is where α (the desired limit on the Type I 
error rate) is set. It is bounded from below at the concentration where β (the desired limit on the 
Type II error rate) is set. There is some flexibility in setting the LBGR. If the project planning 
team specifies a concentration, they can calculate the probability β. If they specify β, they can 
calculate the value of the true concentration that will be correctly detected as being below 1.0 
with probability 1!β. 

Often it will make sense to set the LBGR at a concentration at, or slightly above, the project 
planning team�s best estimate of the true concentration based on all of the information that is 
available to them. Then the width of the gray region will truly represent the minimum separation 
in concentration that it is important to detect, namely, that between the action level and what 
actually is believed to be there. 

In our example, the project planning team found that they needed the true concentration to be 
0.68 or less to be at least 95 percent sure that they will correctly decide (by observing a measured 
value of 0.84 or less) that the true concentration is less than 1.0. If the project planning team is 
not satisfied with that, the team can find that a true concentration of 0.71 will be correctly 
detected 90 percent of the time (also by observing a measured value of 0.84 or less). The critical 
value, or decision point, is determined by α, not β. 

If the project planning team decides to raise the LBGR (i.e., narrow the gray region) the Type II 
error rate at the LBGR goes up. If they lower the LBGR (i.e., widen the gray region) the Type II 
error rate at the LBGR goes down. Nothing substantive is really happening. The project planning 
team is merely specifying the ability to detect that the null hypothesis is false (i.e., reject the null 
hypothesis because it is not true) at a particular concentration below the action level called the 
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Conce ntra tion  

LBGR. 

If the project planning team wants to make a substantive change, they need to change the 
probability that an error is made. That is, they need to change the uncertainty (standard deviation) 
of the measurements. Suppose the relative standard deviation of the measurements at the action 
level is 5 percent instead of 10 percent. Then the value of the true concentration that will be 
correctly detected to be below the action level (by observing a measured value of 0.92 or less) 95 
percent of the time, is 0.84. Cutting the standard deviation of the measurement in half has cut the 
(absolute) width of the gray region in half, but left the width of the gray region in standard 
deviations unchanged. Previously, with σ = 10 percent, the width of the gray region was 1.0 ! 
0.68 = 0.32 = 3.2 (0.10) = 3.2σ. As 
Figure B1.9 illustrates, with σ = 5 
percent, the width of the gray region 
is 1.0 ! 0.84 = 0.16 = 3.2 (0.05) = 
3.2σ. 

What is important is the width of the 
gray region in standard deviations; 
not the width of the gray region in 
concentration. In order to achieve 
the same specified Type II error rate 
at the LBGR, the action level and 
the LBGR must be separated by the FIGURE B1.9 � The true mean concentration is 0.84 (left) 
same number of standard deviations. and 1.0 (right). The standard uncertainty of the distribution 
The width of the gray region (action of measured concentrations is 0.05. The relative shift is 3.2. 
level minus LBGR) will be denoted 
by delta (∆), the �shift.� ∆/σ is how many standard deviations wide the gray region is. ∆/σ is 
called the �relative shift.� 

If the gray region is less than one standard deviation wide, the Type II error rate may be high at 
the LBGR. The only way to improve the situation would be to decrease the standard deviation 
(i.e., increase the relative shift, ∆/σ). This can be done by employing a more precise measurement 
method or by averaging several measurements. When the width of the gray region is larger than 
about three standard deviations (i.e., ∆/σ exceeds 3), it may be possible to use a simpler, less 
expensive measurement method or take fewer samples. Unnecessary effort should not be 
expended to achieve values of ∆/σ greater than 3. 

B1.6 Summary 

The mistake that is �worse� defines the null hypothesis and also defines a �Type I� error. The 
probability of a Type I error happening is called the �Type I error rate,� and is denoted by alpha 
(α). Under the original null hypothesis (Case 1: Assume the true concentration is over 1.0), a 
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Type I error would be deciding that the concentration was less than 1.0 when it really was not. In 
general, a Type I error is deciding against the null hypothesis when it is actually true. (A Type I 
error is also called a �false positive.� This can be confusing when the null hypothesis appears to 
be a �positive� statement. Therefore, MARLAP uses the neutral terminology.) 

The �less serious� mistake is called a Type II error, and the probability of it happening is the 
�Type II error rate,� denoted by beta (β). Under the original null hypothesis that the concentration 
was 1.0 or more, a Type II error would be deciding that the concentration was more than 1.0 
when it really was not. In general, a Type II error is not deciding against the null hypothesis when 
it is actually false. 

In both Case 1 and Case 2, the probability of both Type I errors and Type II errors were set to 5 
percent. The probabilities were calculated at multiples of the standard deviation, assuming a 
normal distribution. The data may not always be well described by a normal distribution, so a 
different probability distribution may be used. However, the probability of a Type I error is 
always calculated as the probability that the decisionmaker will reject the null hypothesis when it 
is actually true. This is simple enough, as long as there is a clear boundary for the parameter of 
interest. 

The parameter of interest in both Case 1 and Case 2 was the true concentration. The true 
concentration had a limit of 1.0. Therefore, all the project planning team had to do was calculate 
the probability that they would get a measured concentration that would cause them to decide 
that the true concentration was less than 1.0, even though it was equal to 1.0. In the example, the 
project planning team actually started with the probability (5 percent) and worked out the critical 
value. The �critical value� (or decision point) is the measured value that divides the measurement 
results into two different sets: (1) those values that will cause the null hypothesis to be rejected 
and (2) those values that will leave the null hypothesis as the default. 

The Type I and Type II error rates, α and β, often are both set at 5 percent. This is only by 
tradition. Neither error rate needs to be set at 5 percent, nor do they have to be equal. The way the 
project planning team should set the value is by examining the consequences of making a Type I 
or a Type II error. What consequences will happen as a result of making each type of error? This 
is a little different than the criterion that was used to define the null hypothesis. It may be that in 
some circumstances, a Type II error is riskier than a Type I error. In that case, consider makingα 
bigger than β. 
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ATTACHMENT B2 
Decision Error Rates and the Gray Region for Detection 
Decisions 

B2.1 Introduction 

This section is provided to present some additional discussion on the subject of applying the Data 
Quality Objectives (DQO) process to the problem of measurement detection capability. In 
particular, �not detected� does not mean zero radioactivity concentration. To understand this, one 
needs to examine the concept of �minimum detectable concentration� (MDC). This involves the 
DQO process and limiting decision error rates. 

B2.2 The DQO Process Applied to the Detection Limit Problem 

STEP 1. PROBLEM STATEMENT 
To determine if the material that is being measured contains radioactivity. 

STEP 2. IDENTIFY THE DECISION 
Decide if the material contains radioactivity at a level that requires action. 

STEP 3. IDENTIFY INPUTS TO THE DECISION 
What level of radioactivity in the material is important to detect? 

STEP 4. DEFINE THE STUDY BOUNDARIES 
How much material is to be measured, what instrumentation/analysis is available, how much 
time and resources are available for the measurements. 

STEP 5. DEVELOP A DECISION RULE 
This is an �if...then� rule that specifies the parameter of interest to be measured, and an action 
level against which it is compared in order to choose between alternative actions. At this 
stage, it is assumed that the true value of the parameter can be measured exactly without 
uncertainty. Such a decision rule in this case might be �If the true concentration in the sample 
is greater than zero, appropriate action will be taken. Otherwise, no action is required.� 

STEP 6. SPECIFY LIMITS ON DECISION ERROR RATES 
Develop an operational rule so that when the measurement is made, a decision on the 
appropriate action to take can be made. This rule takes into account that there is uncertainty 
in any measurement, and therefore there is the possibility of making decision errors. When 
the material is processed and inserted into an instrument, the measurement is made and the 
instrument output is a result that is a number. The decision rule involves taking that 
numerical result and comparing it to a pre-determined number called the critical value. If the 
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Decision Error Rates and the Gray Region for Detection Decisions 

result is greater than the critical value, the decision is made to treat the material as containing 
radioactivity above the action level, and then taking the appropriate action. The critical value 
will vary depending on the limits on decision errors rates that are specified. 

The material either contains radioactivity or it does not. Unfortunately, it is impossible to 
determine absolutely whether the material does or does not contain radioactivity. Decisions can 
only be based on the result of measurements. There are four possibilities:

  � The material does not contain radioactivity, and the measurement results in a value below the 
critical value and so it is decided that it does not contain radioactivity.

  � The material does contain radioactivity, and the measurement results in a value above the 
critical value and so it is decided that it does contain radioactivity.

  � The material does not contain radioactivity, and the measurement results in a value above the 
critical value and so it is decided that it does contain radioactivity. This would be a decision 
error.

  � The material does contain radioactivity, and the measurement results in a value below the 
critical value and so it is decided that it does not contain radioactivity. This also would be a 
decision error. 

Note that one never knows if a decision error is made, one only knows the result of the 
measurement. Measurements are not perfect, people make mistakes, and decision errors are 
unavoidable. However, recognizing that decision errors exist does allow their severity to be 
controlled. Several steps are necessary in order to create the framework for controlling decision 
error rates. These are described in the following sections. 

B2.3 Establish the Concentration Range of Interest 

Step three of the DQO process determined a level of radioactivity concentration in the material 
that is important to detect. This is also sometimes called an action level (such as the DCGL, a 
regulatory limit) that should not be exceeded. It is also important to define a region of interest 
ranging from the lowest to the highest average concentrations at which the contaminant is 
expected to exist. If the project planning team wants a method to measure sample concentrations 
around the action level, they would not select one that only worked at concentrations at 10 to 100 
times the action level, nor would they select one that only worked from zero to half the action 
level. They would want a method that worked well around the action level�perhaps from 0.1 to 
10 times the action level, or from one-half to two times the action level. For the purpose of the 
example in this attachment, the action level is 1.0 and the project planning team selected a region 
of interest that is zero to twice the action level (0�2), as shown on the x-axis of Figure B2.1. The 

JULY 2004 B-37 MARLAP 



Decision Error Rates and the Gray Region for Detection Decisions 

first thing to notice is that Figure  B2.1 
ranges from  !1 to 2 and not 0 to 2. Why is 
this?  

If a blank sample is placed in the 
instrument, the �true concentration� is zero. 
The instrument will produce a reading that 
is a number, and not necessarily the same 
reading  each time. This is shown in  Figure -1 0 1 2 

B2.2(a). Usually, the instrument output 
must  be converted to a concentration value Figure B2.1 � Region of interest for the 
using a calibration factor. For simplicity, concentration around the action level of 1.0 
this example will assume that  the 
calibration factor is 100, and in the remaining  figures the measurement results will be shown 
directly in concentration. The zero point of concentration is at the average instrument reading 
when �nothing� (a blank) is being  measured. In Figure B2.2(a) this is 100. The distribution of 
many measurements of nothing  will look 
like Figure B2.2(b). This is obtained from 
Figure B2.2(a) by subtracting  the average 
blank reading  (100) and dividing  by the 
calibration factor (also 100). The spread in 
these measurement results is characterized 
by the standard deviation of this 
distribution. In Figure B2.2(b), the standard 
deviation is 0.2. For the problem to be 
actually addressed, the standard deviation 0  1 0 0  2 0 0  3 0 0  

may be larger or smaller than this, but it 
will not be  zero. There  is always some 
variability in measurements, and this will 
always cause some uncertainty about 
whether or not the decisions based on these 
measurements are correct. 

Consider a possible decision rule: Decide 
that there is radioactivity in the sample if 
the measurement result is  greater than zero. 
(This means that the �critical value� is 
zero.) -1 0 1 2 

F  B2.2 (a) � The distribution of blaB2.2 shows that if the critical IGURE nk Figure value (background) readings. (b) The true concentration is 
for the decision is made equal to zero, a 0.0.  The standard deviation  of  the distribution of 
decision that there is radioactivity in the measured concentrations is 0.2. 
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sample will be made about half the time, even when there is nothing to measure. Also, notice that 
unless the instrument reading is negative, it is not possible to decide that there is no radioactivity 
in the sample. There is nothing contradictory about this. The zero point on the x-axis was chosen 
simply to be the average measurement of �nothing.� About half the time a measurement of 
nothing will be larger, and about half the time it will be smaller. This does not imply anything 
about concentrations being negative. It is about the variability of measurement readings, not the 
true concentration. 

Decisionmakers might not be too 
happy about a decision rule that will 
lead them to the wrong conclusion 
half of the time. How can this be 
improved? Notice that if the critical 
value is made larger, the wrong 
conclusion (that there is radio-
activity when there is none) will be 
made less often. If the critical value 
for the example is 0.2, it will be 
decided that there is radioactivity in 
the sample when the measurement 
result is greater than 0.2. From the 
example in Figure B2.3, this will be 
estimated to happen about 16 
percent of the time. 

By making the critical value larger and larger, the probability can be reduced practically to zero 
of deciding that there is radioactivity when there is not. This apparently happy solution comes at 
a price. To see that, just consider the 
opposite situation. Suppose, instead 
of �nothing,� there is a 
concentration of 0.2 in the sample 
(in this example, units are 
irrelevant). If a sample with this 
concentration is measured often, the 
distribution of results might look 
like Figure B2.4. 

Notice that with a critical value of 
0.2, a decision that there is 
radioactivity in this sample will 
only be made about half the time. 
Even if the critical value were zero, 

-1 0 1 2 

FIGURE B2.3 � The true concentration is 0.0, and the 
standard deviation of the distribution of measured 

concentrations is 0.2. A critical value of 0.2 would be 
exceeded about 16 percent of the time. 

-1 0 1 2 

Figure B2.4 � The true concentration is 0.2 and the 
standard deviation of the distribution of measured 

concentrations is 0.2 
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a decision that there is radioactivity in the sample would only be made about 84 percent of the 
time. 

As shown above, there are two types of decision errors that can be made: that there is radio-
activity when there is not, or that there is no radioactivity when there is. What the figures show is 
that by making the critical value for the decision rule bigger, one can reduce the chances of 
making first kind of decision error, but doing so will increase the chance of making the second 
kind of decision error. Making the critical value for the decision rule smaller will reduce chances 
of the second kind of decision error, but will increase the chance of the first kind of decision 
error. 

This example used a measurement variability (standard deviation) of 0.2. What if the variability 
is larger or smaller? By looking at the figures, one can conclude that no matter what the 
variability actually is:

 (1)If a critical value of zero is used, one will conclude that there is radioactivity in a sample that 
actually contains nothing about half the time.

 (2)If a critical value is selected equal to the standard deviation, one will conclude that there is 
radioactivity in a sample that actually contains nothing about 16 percent of the time. (A slight 
modification of the figures would show that if the critical value equals two times the standard 
deviation, one will conclude that there is radioactivity in a sample that actually contains 
nothing about 2.5 percent of the time.)

 (3)If a critical value of zero is used, one will conclude that there is no radioactivity in a sample 
that actually contains a concentration that is numerically equal to the standard deviation about 
16 percent of the time. (A slight modification of the figures would show that if the critical 
value were equal to zero, one will conclude that there is no radioactivity in a sample that 
actually contains a concentration equal to twice the standard deviation about 2.5 percent of 
the time.)

 (4)If a critical value is selected equal to the standard deviation, one will conclude that there is no 
radioactivity in a sample that actually contains a concentration numerically equal to the 
standard deviation about half the time. 

The key is to notice that it is not the numerical value of the variability alone nor the numerical 
value of the concentration alone, that determines the probability of a decision error. It is the ratio 
of the concentration to the standard deviation that is important. In essence, the standard deviation 
determines the scale of the x-axis (concentration axis) for this problem. Background determines 
the zero point of the concentration axis. 

The MDC for a measurement process is the concentration that the sample must contain so that 
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the probability of a Type II decision 
error is limited to 5 percent. (Other 
values may be chosen, but 5 percent 
is most commonly used in this 
context.) 

This means that if a sample 
containing a concentration equal to 
the MDC is measured, about 95 
percent of the time the measurement 
result will lead to the decision that 
the sample contains radioactivity. 
This is shown in Figure B2.5. 

However, if a sample containing a 
blank is measured, the probability 
that the measurement result will 
lead to the decision that the sample 
contains radioactivity will be only 
about 5 percent. This is shown in 
Figure B2.6. 

For this example, Figure B2.7 
summarizes the relationship among 
the distribution of measurements on 
a blank, the critical value, the MDC, 
and the action level. 

The critical value used to limit the 
decision error of concluding that 
there is radioactivity in a sample 
that actually contains a blank to 5 
percent, is about 1.5 or 2 times the 
measurement variability when measuring a blank. Limiting the decision error of concluding that 
there is no radioactivity in a sample that actually contains a concentration equal to the MDC, 
results in an MDC that is usually about twice the critical value. Consequently, the MDC is 
usually about 3 or 4 times the measurement variability when measuring a blank. 

B2.4 Estimate the Measurement Variability when Measuring a Blank 

The measurement variability when measuring a blank is thus a key parameter for planning. The 
best way to get a handle on this is by making many measurements of a blank sample and 

-1 0 1 2 

FIGURE B2.5 � The true value of the concentration is 0.66 
and the standard deviation of the distribution of measured 

concentrations is 0.2. A critical value of 0.33 will be 
exceeded about 95 percent of the time. 

-1 0 1 2 

FIGURE B2.6 � The true value of the measured 
concentration is 0.0 and the standard deviation of the 

measured concentrations is 0.2. A critical value of 0.33 
would be exceeded about 5 percent of the time. 
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-1 0 1 2 

Action Level 

MDC 

Critical Value 
computing the standard deviation of 
the measurement results. 

What can be concluded about the 
ability to measure �nothing� (i.e., no 
analyte)? Radioactivity present at a 
concentration less than the MDC 
may be detected, but less than 95 
percent of the time. If the �true 
concentration� is at half the MDC 
(right at the critical value), the 
presence of radioactivity will be 
detected about half the time, and 

Figure B2.7 � The standard deviation of the normally about half the time it will not. distributed measured concentrations is 0.2. The critical 
Concentrations lower than the value is 0.33, the MDC is 0.66 and the action level is 1.0. 
critical value will be detected less 
often. The only way to do better is to reduce the measurement variability. This usually can only 
be done by either taking more measurements or by using an instrument or measurement process 
that has less variability when measuring a blank sample. 

So what does it mean if a sample is measured, and a decision was made that there was no 
radioactivity? (This is another way of saying that no radioactivity was detected.) By itself, such a 
statement means nothing, and has no value unless one knows the level of radioactivity that could 
be detected if it were there�i.e. the MDC. 

Similarly, a criterion for action specifying that no radioactivity be detected in a sample must be 
qualified by information on how hard one must look. That is, the MDC must be specified, which 
in turn implies a certain limit on the variability of the measurement procedure. 

In either case, one can never measure zero. One can only decide from a measurement, with a 
prescribed limit on the probability of being wrong, that if enough radioactivity were there, it 
would be found. If it is not found, it does not mean it is not present; it only means that whatever 
might be there is unlikely to be more than the MDC. 

In conclusion, an action level must be determined, and the MDC must be below it. Only then can 
radioactivity concentrations of concern can be detected with any degree of certainty. Conversely, 
specifying a measurement process implies an action level (level of concern) that is at or above 
the MDC. 
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	This appendix provides information about the basic framework of the DQO process (ASTM 5792; EPA, 2000; NRC, 1998; MARSSIM, 2000). The DQO planning process empowers both data users and data suppliers to take control and resolve issues in a stepwise fashion. It brings together at the right time all key players from the data user and data supplier constituencies and enables each participant to play a constructive role in clearly defining:
	  • 
	  • 
	  • 
	The problem that requires resolution;

	  • 
	  • 
	What type, quantity, and quality of data the decisionmaker needs to resolve that problem;

	  • 
	  • 
	Why the decisionmaker needs that type and quality of data; 

	  • 
	  • 
	How much risk of making a wrong decision is acceptable; and

	  • 
	  • 
	How the decisionmaker will use the data to make a defensible decision. 


	The DQO process provides a logic for setting well-defined, achievable objectives and developing a cost-effective, technically sound sampling and analysis design. It balances the data user•s tolerance for uncertainty with the available resources for obtaining data. The number of visible and successful applications of the DQO process has proven its value to the environmental community. The DQO process is adaptable depending on the complexity of the project and the input from the decisionmakers. Some users hav
	Since its inception, the term •data quality objectives• has been adopted by many organizations, and the definition has been adapted and modified (see box on next page). Throughout this docu
	-

	ment, MARLAP uses EPA•s (2000) definition of DQOs: •Qualitative and quantitative statements derived from the DQO process that clarify study objectives, define the appropriate type of data, and specify the tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions.• 
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	Definitions of Data Quality Objectives 
	(1) 
	(1) 
	(1) 
	Statements on the level of uncertainty that a decisionmaker is willing to accept in the results derived from environmental data (ASTM 5283; EPA, 1986). 

	(2) 
	(2) 
	Qualitative and quantitative statements derived from the DQO process that clarify study objectives, define the appropriate type of data, and specify the tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions (EPA, 2000). 

	(3) 
	(3) 
	Qualitative and quantitative statements derived from the DQO process describing the decision rules and the uncertainties of the decision(s) within the context of the problem(s) (ASTM D5792). 

	(4) 
	(4) 
	Qualitative and quantitative statements that specify the quality of the data required to support decisions for any process requiring radiochemical analysis (radioassay) (ANSI N42.23). 


	Figure


	B.2 Overview of the DQO Process 
	B.2 Overview of the DQO Process 
	The DQO process (Figure B.1) consists of seven steps (EPA, 2000). In general, the first four steps require the project planning team to define the problem and qualitatively determine required data quality. The next three steps establish quantitative performance measures for the decision and the data. The final step of the process involves developing the data collection design based on the DQOs, which is dependent on a clear understanding of the first six steps. 
	Although the DQO process is described as a sequence of steps, it is inherently iterative. The output from each step influences the choices that will be made in subsequent steps. For instance, a decision rule cannot be created without first knowing the problem and desired decision. Similarly, optimization of the sampling and analysis design generally cannot occur unless it is clear what is being optimized •the results of the preceding steps. Often the outputs of one step will trigger the need to rethink or a
	-
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	Step 7:     Optimize the Design for Obtaining Data 
	lead to a more focused sampling and analysis 

	FIGURE B.1 • Seven steps of the DQO process 
	FIGURE B.1 • Seven steps of the DQO process 
	design for resolving the defined problem. The first six steps should be completed before the sampling and analysis design is developed, and every step should be completed before data collection begins. The DQO process is considered complete with the approval of an optimal design for sampling and analysis to support a decision or when available historical data are sufficient to support a decision. 
	Figure
	Figure
	Figure
	Figure
	Figure
	In practice, project planning teams often do a cursory job on the first four steps, wanting to get into technical design issues immediately. Without carefully defining the problem and the desired result, the project planning team may develop a design that is technically sound but answers the wrong question, or answers the questions only after the collection of significant quantities of unnecessary data. Time spent on the first four steps is well spent. Extra effort must be given to assure that Steps 1 to 4 
	When applying the DQO process, or any planning approach, it is important to document the outputs of each step to assure that all participants understand and approve the interim products, and that they have a clear record of their progress. It is sometimes useful to circulate an approval copy with signature page to ensure agreement of the stakeholders. 


	B.3 The Seven Steps of the DQO Process 
	B.3 The Seven Steps of the DQO Process 
	Each step of the DQO process will be discussed in the following sections. Not all items will be applicable to every project. The project planning team should apply the concepts that are appropriate to the problem. 
	B.3.1 DQO Process Step 1: State the Problem 
	B.3.1 DQO Process Step 1: State the Problem 
	The first step is to define the problem clearly. The members of the project planning team present their concerns, identify regulatory issues and threshold levels, and review the site history. The project planning team should develop a concise description of the problem. Some elements to include in the description might be the study objectives, regulatory context, groups who have an interest in the study, funding and other resources available, previous study results, and any obvious sampling design constrain
	The primary decisionmaker should be identified. The resources and relevant deadlines to address the problem are also defined at this time. If possible, a •project conceptual model• should be developed. This will help structure and package the diverse facts into an understandable picture of what the various issues are and how those issues can be focused into a specific problem. The expected outputs of Step 1 are:
	  • 
	  • 
	  • 
	A conceptual model that packages all the existing information into an understandable picture of the problem;

	  • 
	  • 
	A list of the project planning team members and identification of the decisionmaker; 

	  • 
	  • 
	A concise description of the problem; and 

	  • 
	  • 
	A summary of available resources and relevant deadlines for the study. 



	B.3.2 DQO Process Step 2: Identify the Decision 
	B.3.2 DQO Process Step 2: Identify the Decision 
	During Step 2 of the DQO process, the project planning team defines what decision must be made or what question the project will attempt to resolve. The decision (or question) could be simple, like whether a particular discharge is or is not in compliance, or the decision could be complex, such as determining if observed adverse health is being caused by a nonpoint source discharge. Linking the problem and the decision focuses the project planning team on seeking only that information essential for decision
	The result may be a comprehensive decision for a straightforward problem, or a sequence of decisions for a complex problem. For complex problems with multiple concerns, these concerns should be ranked in order of importance. Often a complex concern is associated with a series of decisions that need to be made. Once these decisions have been identified, they should be sequenced in a logical order so the answer to one decision provides input in answering the next decision. It may be helpful to develop a logic
	The term •action level• is used in this document to denote the numerical value that will cause the decisionmaker to choose one of the alternative actions. The action level may be a derived concentration guideline level, background level, release criteria, regulatory decision limit, etc. The action level is often associated with the type of media, analyte, and concentration limit. Some action levels, such as release criteria for license termination, are expressed in terms of dose or risk. The release criteri
	-

	The project planning team should define the possible actions that may be taken to solve the problem. Consideration should be given to the option of taking no action. A decision statement can then be developed by combining the decisions and the alternative actions. The decision rule and the related hypothesis test will be more fully developed in the DQO process at Steps 5 and 6. 
	By defining the problem and its associated decision clearly, the project planning team has also begun to define the inputs and boundaries (DQO process Steps 3 and 4). At the end of Step 2, the 
	project planning team has:
	  • 
	  • 
	  • 
	Identified the principal decisions or questions;

	  • 
	  • 
	Defined alternative actions that could be taken to solve the problem based on possible answers to the principal decisions and questions;

	  • 
	  • 
	Combined the principal decisions and questions and the alternative actions into decision statements that expresses a choice among alternative actions; and

	  • 
	  • 
	Organized multiple decisions. 



	B.3.3 DQO Process Step 3: Identify Inputs to the Decision 
	B.3.3 DQO Process Step 3: Identify Inputs to the Decision 
	During Step 3, the project planning team makes a formal list of the specific information required for decisionmaking. The project planning team should determine what information is needed and how it can be acquired. The project planning team should specify if new measurements are required for the listed data requirements. The data required are based on outcomes of discussion during the previous two steps. The project planning team should define the basis for setting the action level. Depending on the level 
	An important activity during Step 3 is to determine if the existing data or information, when compared with the desired information, has significant gaps. If no gaps exist, then the existing data or information may be sufficient to resolve the problem and make the decision. (Although there may be no gaps in the data, the data may not have enough statistical power to resolve the action level. See Step 6 for more discussion.) In order to optimize the use of resources, the project planning team should maximize
	If the project planning team determines that collection of additional data is needed, the analytical laboratory acquisition strategy options should be considered at this stage. Identifying suitable contracting options should be based on the scope, schedule, and budget of the project, and the capability and availability of laboratory resources during the life of the project, and other technical considerations of the project. If an ongoing contract with a laboratory is in place, it is advisable to involve the
	The project planning team should ensure that there are analytical protocols available to provide acceptable measurements. If analytical methods do not exist, the project planning team will need to consider the resources needed to develop a new method, reconsider the approach for providing input data, or perhaps reformulate the decision statement. 
	The expected outputs of Step 3 are:
	  • 
	  • 
	  • 
	A list of information needed for decisionmaking;

	  • 
	  • 
	Determination of whether data exist and are sufficient to resolve the problem;

	  • 
	  • 
	Determination of what new data, if any, are required;

	  • 
	  • 
	Definition of the characteristics that define the population and domain of interest;

	  • 
	  • 
	Definition of the basis for the action level;

	  • 
	  • 
	Confirmation that appropriate analytical protocols exist to provide the necessary data; and

	  • 
	  • 
	A review of the planning output to assure the problem, decision, and inputs are fully linked. 



	B.3.4 DQO Process Step 4: Define the Study Boundaries 
	B.3.4 DQO Process Step 4: Define the Study Boundaries 
	In Step 4, the project planning team specifies the spatial and temporal boundaries covered by the decision statement. The spatial boundaries define the physical aspects to be studied in terms of geographic area, media, and any appropriate subpopulations (e.g., an entire plant, entire river basin, one discharge, metropolitan air, emissions from a power plant). When appropriate, divide the population into strata that have relatively homogeneous characteristics. The temporal boundaries describe the time frame 
	The scale of the decision is also defined during this step. The selected scale should be the smallest, most appropriate subset of the population for which decisions will be made based on the spatial or temporal boundaries. During Step 4, the project planning team also should identify practical constraints on sampling and analysis that could interfere with full implementation of the data collection design. These include time, personnel, equipment, and seasonal or meteorological conditions when sampling is no
	In practice, the study boundaries are discussed when the project planning team and decision-maker agree on the problem and its associated decision. For instance, a land area that may be contaminated or a collection of waste containers would be identified as part of the problem and decision definition in Steps 1 and 2. The boundaries also would be considered when determining inputs to the decision in Step 3. If the study boundaries had not been addressed before Step 4 or if new issues were raised during Step
	In practice, the study boundaries are discussed when the project planning team and decision-maker agree on the problem and its associated decision. For instance, a land area that may be contaminated or a collection of waste containers would be identified as part of the problem and decision definition in Steps 1 and 2. The boundaries also would be considered when determining inputs to the decision in Step 3. If the study boundaries had not been addressed before Step 4 or if new issues were raised during Step
	how Step 4 results are now influencing the three previous steps. 

	The outputs of Step 4 are:
	  • 
	  • 
	  • 
	A detailed description of the spatial and temporal boundaries of the problem; and

	  • 
	  • 
	Any practical constraints that may interfere with the sampling and analysis activities. 



	B.3.5 Outputs of DQO Process Steps 1 through 4 Lead Into Steps 5 through 7 
	B.3.5 Outputs of DQO Process Steps 1 through 4 Lead Into Steps 5 through 7 
	At this stage in the DQO process, the project planning team has defined with a substantial degree of detail the problem, its associated decision, and the inputs and boundaries for addressing that problem. The project planning team knows whether it needs new data to fill specific gaps and what that data should be. The remaining three steps are highly technical and lead to the selection of the sampling and analysis design. Even when new data are not required (i.e., a data collection design is not needed), the
	It is important to emphasize that every effort must be made to assure that Steps 1 through 4 are adequately addressed. If the necessary time is taken in addressing the first four steps carefully and assuring consensus among the project planning team, then the three remaining steps are less difficult. 

	B.3.6 DQO Process Step 5: Develop a Decision Rule 
	B.3.6 DQO Process Step 5: Develop a Decision Rule 
	In Step 5, the project planning team determines the appropriate statistical parameter that characterizes the population, specifies the action level, and integrates previous DQO process outputs into a single •if ..., then ...• statement (called a •decision rule•) that describes a logical basis for choosing among alternative actions. 
	The four main elements to the decision rule are: 
	A. THE PARAMETER OF INTEREST. A descriptive measure (e.g., mean, median, or proportion) that specifies the characteristic or attribute that the decisionmaker would like to know and that the data will estimate. The characteristics that define the population and domain of interest was established in Step 3. 
	B. THE SCALE OF DECISIONMAKING. The smallest, most appropriate subset for which decisions will be made. The scale of decisionmaking was defined in Step 4. 
	C. THE ACTION LEVEL. A threshold value of the parameter of interest that provides the criterion 
	for choosing among alternatives. Action levels may be based on regulatory standards or they may be derived from project- and analyte-specific criteria such as dose or risk analysis. The basis for the action level was determined in Step 3. 
	D. THE ALTERNATIVE ACTIONS. The actions the decisionmaker would take, depending on the •true value• of the parameter of interest. The alternative actions were determined in Step 2. 
	The decision rule is a logical, sequential set of steps to be taken to resolve the problem. For example, •If one or more conditions exists then take action 1, otherwise take action 2.• 
	The outputs of Step 5 are:
	  • 
	  • 
	  • 
	The action level;

	  • 
	  • 
	The statistical parameter of interest; and

	  • 
	  • 
	An •if ..., then ...• statement that defines the conditions that would cause the decisionmaker to choose among alternative courses of action. 


	PROCEDURE FOR DEVELOPING A DECISION RULE 
	The outcome of a decision rule is a result: often to take action or not to take action. The decision rule is an •If..., then...• statement that defines the conditions that would cause the decisionmaker to choose an action. The decision rule establishes the exact criteria for making that choice. There are four main elements to a decision rule: 
	A. The parameter of interest. For example, the mean or median of the concentration of an analyte. 
	B. The area over which the measurements are taken. For example, in MARSSIM, a survey unit. 
	C. The action level. For example, in MARSSIM, the action level is called the DCGL. 
	D. Alternative actions. For example, if the mean is greater than the action level, then corrective action must be taken, otherwise the survey unit may be released. 
	A decision rule is action oriented, so a decision rule has the general form: 
	If the value of parameter A, over the area B, is greater than C, then take action D, otherwise take action D*. 
	For example, if: 
	(A) 
	(A) 
	(A) 
	the true mean concentration of U in the 
	238


	(B) 
	(B) 
	surface soil of the survey unit is greater than 

	(C) 
	(C) 
	30 pCi/g, then 

	(D) 
	(D) 
	remove the soil from the site; otherwise, (D*) leave the soil in place. 


	The decisionmaker and planning team should be comfortable with the decision rule regarding the criteria for taking action before any measurements are taken. The input to a decision rule is the result of measurements. A decision will be made, and action taken, based upon those results. 
	There is uncertainty with every scientific measurement taken. Sampling uncertainty is due to the natural spatial and temporal variation in contaminant concentrations across a site. Measurement uncertainty is the variability in a combination of factors that arise during sample analysis. Because there is uncertainty in measurement results, the decision based on them could be incorrect. Controlling decision error is the subject of Step 6 of the DQO process. 

	B.3.7 DQO Process Step 6: Specify the Limits on Decision Errors 
	B.3.7 DQO Process Step 6: Specify the Limits on Decision Errors 
	In this step, the project planning team assesses the potential consequences of making a wrong decision and establishes a tolerable level for making a decision error. The project planning team defines the types of decision errors (Type I and II) and the tolerable limits on the decision error rates. In general, a Type I error is deciding against the default assumption (the null hypothesis) when it is actually true; a Type II error is not deciding against the null hypothesis when it is actually false (see Atta
	Traditionally, the principles of statistical hypothesis testing have been used to determine tolerable levels of decision error rates. Other approaches applying decision theory have been applied (Bottrell et al., 1996a, b). Based on an understanding of the possible consequences of making a wrong decision in taking alternative actions, the project planning team chooses the null hypotheses and judges what decision error rates are tolerable for making a Type I or Type II decision error. 
	The project planning team also specifies a range of possible values where the consequences of decision errors are relatively minor (the gray region). Specifying a gray region is necessary because variability in the population and imprecision in the measurement system combine to produce variability in the data such that the decision may be •too close to call• when the true value is very near the action level. The width of the gray region establishes the distance from the action level where it is most importa
	The tolerable decision error rates are used to establish performance goals for the data collection 
	design. Overall variability in the result can be attributed to several sources, including sample location, collection, and handling; laboratory handling and analysis; and data handling and analysis. In many environmental cases, sampling is a much larger source of uncertainty than laboratory analyses. The goal is to develop a sampling and analysis design that reduces the chance of making a wrong decision. The greater certainty demanded by the decisionmakers, the more comprehensive and expensive the data coll
	Often the project planning team does not feel comfortable with the concepts and terminology of hypothesis testing (Type I and Type II errors, gray region, critical region, tolerable decision error rates). As a result, the project planning team may have difficulty with (or want to skip) this step of the directed planning process. If these steps are skipped or insufficiently addressed, it is more likely that the data will not be of the quality needed for the project. Attachment B1 gives additional guidance on
	Figure B.2 summarizes the outputs of the decisions made by the project planning team in a decision performance goal diagram (EPA, 2000). The horizontal axis represents the (unknown) true value of the parameter being estimated. The vertical axis represents the decisionmaker•s desired probability of concluding that the parameter exceeds an action limit. The •gray region• (bounded on one side by the action level) defines an area where the consequences of decision error are relatively minor (in other words, it 
	For purposes of this example, the default assumption (null hypothesis) was established as •the measured concentration exceeds the action level• (Figure B.2a). A Type I error consists in making a decision not to take action (e.g., remediate) when that action was in fact required (e.g., analyte concentrations are really above an action level). The desired limit on the probability of making a Type I error is set at 5 percent if the true concentration is between 100 and 150 and at 1 percent if the true concentr
	Figure B.2(a) • Decision performance goal Figure B.2(b) • Decision performance goal diagram null hypothesis: the parameter exceeds diagram null hypothesis: the parameter is less the action level. than the action level. 
	In Figure B.2(b), the default assumption (null hypothesis) was established as •the measured concentration is less than the action level.• The Type I error is understood as taking an action when in fact that action is not required (e.g., analyte concentrations are really below the action level). The desired limit on the probability of making a Type I error is set at 5 percent if the true concentration is less than 25, and at 10 percent if the true concentration is between 25 and 100. The Type II error is und
	The output of Step 6 is:
	  • The project planning team•s quantitative measure of tolerable decision error rates based on consideration of project resources. 
	PROCEDURE FOR SPECIFYING LIMITS ON DECISION ERRORS•AN EXAMPLE 
	Decisionmakers are interested in knowing the true state of some parameter for which action may be proposed. In Step 5 of the DQO process, the parameter, the action level, and the alternative actions were specified in a decision rule. But, decisionmakers cannot positively know the true state because there will always be the potential for uncertainty in estimating the parameter from data. There will be sampling uncertainty, due to spatial and temporal variability in concentrations across the site and from one
	As an example problem, suppose that a decision must be made about whether or not a particular survey unit at a site meets established criteria for residual radioactivity concentrations. Table B.1(a) shows the two possible decision errors that might occur in deciding whether or not a survey unit has been remediated sufficiently so that it may be released. The decision will be based on concentration measurements taken in the survey unit. 
	As another example problem, suppose that a decision must be made about whether or not a sample contains a particular radionuclide. Table B.1(b) shows the two possible decision errors that might occur in deciding whether or not a sample contains the radionuclide. The decision will be based on a measurement taken on the sample. 
	TABLE B.1 • Possible decision errors 
	TABLE B.1 • Possible decision errors 
	TABLE B.1 • Possible decision errors 

	(a) For survey unit release 
	(a) For survey unit release 

	Decision True State 
	Decision True State 

	Deciding a survey unit meets the release criterion ......... when it actually does not 
	Deciding a survey unit meets the release criterion ......... when it actually does not 

	Deciding a survey unit does not meet the release criterion . . . when it actually does 
	Deciding a survey unit does not meet the release criterion . . . when it actually does 

	(b) For radionuclide detection 
	(b) For radionuclide detection 

	Decision True State 
	Decision True State 

	Deciding a sample contains the radionuclide ............. when it actually does not 
	Deciding a sample contains the radionuclide ............. when it actually does not 

	Deciding a sample does not contain the radionuclide ....... when it actually does 
	Deciding a sample does not contain the radionuclide ....... when it actually does 


	The probability of making a decision error can be controlled by the use of statistical hypothesis testing. In statistical hypothesis testing, data are used to select between a chosen baseline condition (null hypothesis) and an alternative condition. The test can then be used to decide if there is sufficient evidence to indicate that the baseline condition is unlikely and that the alternative condition is more consistent with the data. Actions appropriate to the alternative conditions would then be appropria
	The selection of the baseline condition is important to the outcome of the decision process. The same set of sample data from a survey unit might lead to different decisions depending on what is chosen as the baseline condition. 
	In deciding if a sample analyzed for a particular radionuclide actually contains that radionuclide, the two possibilities for the baseline condition are: 
	1) The sample contains the radionuclide, or 
	2) The sample does not contain the radionuclide. 
	In this instance, suppose Condition 2, the sample does not contain the radionuclide, is taken as the baseline. The measurement result must be high in order to dismiss the assumption that the sample does not contain the radionuclide. If the measurement is high enough, it is no longer credible that the sample does not contain the radionuclide. Therefore it will be decided that the sample does contain the radionuclide. The framework of statistical hypothesis testing allows one to quantify what is meant by •hig
	1
	0.
	1
	A

	Note that if a poor measurement is made•for example, if the sample containing a concentration near the minimum detectable concentration (MDC) is not counted as long as specified in the standard operating procedures•it will be less likely that a result that is clearly above the variability in the measurement of a blank sample will be obtained. Thus, it will be less likely that a sample with a concentration of the radionuclide near the MDC will be detected with greater than the 95 percent probability that is 
	In choosing the baseline condition, it is usually prudent to consider which condition will cause the least harm if it is the one that is acted upon, even if it is not true. This is because the baseline will continue to be assumed true unless the data are clearly in conflict with it. 
	In deciding if a survey unit meets the release criteria for a particular radionuclide, the two possibilities for the baseline condition are: 
	1)The survey unit does not meet the release criteria, or 
	2) The survey unit meets the release criteria. 
	Condition 1 is usually taken as the baseline. This means that the measurement result must be low in order to dismiss the assumption that the survey unit does not meet the release criteria. If the measurement is low enough, it is no longer credible. Therefore it will be decided that the survey unit does meet the release criteria. Again, the framework of statistical hypothesis testing allows one to quantify what is meant by •low enough• and •no longer credible.• The null hypothesis, H, is that the survey unit
	0.
	A

	will be released. On the other hand, a poor survey will generally result in retaining the assumption that the release criterion has not been met even if it has. This arrangement provides the proper incentive for good survey work. 
	The term •Type I error• is assigned to the decision error made by concluding the null hypothesis is not true, when it actually is true. The term •Type II error• is assigned to the decision error made by concluding the null hypothesis is true, when it actually is not true. The possibility of a decision error can never be totally eliminated, but it can be controlled. 
	When the decision is to be based on comparing the average of a number of measurements from samples taken over some specified area, sampling uncertainty can be reduced by collecting a larger number of samples. Measurement uncertainty can be reduced by analyzing individual samples several times or using more precise laboratory methods. Which uncertainty is more effective to control depends on their relative magnitude. For much environmental work, controlling the sampling uncertainty error by increasing the nu
	One thing is certain, however, that reducing decision errors requires the expenditure of more resources. Drastically controlling decision error probabilities to extremely small values may be unnecessary for making a reasonable decision. If the consequences of a decision error are minor, a reasonable decision might be made based on relatively crude data. On the other hand, if the consequences of a decision error are severe, sampling and measurement uncertainty should be controlled as much as reasonably possi
	Throughout the remainder of this example, the decision to be made is going to be based on comparing the average of a number of measurements from samples taken over a specific area to a pre-determined limit. The goal of the decisionmaker and planning team is to design a sampling plan that controls the chance of making a decision error to a tolerable level. The strategy outlined below can be used to specify limits on decision errors: 
	I. Determine the potential range of the parameter of interest. 
	II. Choose the null hypothesis and identify the Type I and Type II decision errors. 
	III. Specify a range of concentrations where the consequences of decision errors are relatively minor. 
	IV. 
	IV. 
	Assign tolerable decision error rates outside of the range specified in III. 

	I. DETERMINE POTENTIAL RANGE OF THE PARAMETER OF INTEREST 
	Establish the range of average concentrations likely to be encountered in the survey unit. One must have some idea of the concentration range in order to specify the type of analysis to be done and the sensitivity it must have. It is also the starting point for deciding what differences in concentration are important to detect. 
	In the example shown in Figure B.3, the project planning team considers a range of feasible concentrations for the radionuclide to be between 0•50 pCi/g. This is based on prior experience of the site, scoping, characterization, and remediation-control survey data. 
	-

	II. CHOOSE THE NULL HYPOTHESIS AND IDENTIFY DECISION ERRORS 
	The decision rule states that the action level will be 30 pCi/g for FIGURE B.3 • Plot is made showing the range of the parameter of interest on the x-axis 
	the radionuclide. The project planning team states the null hypothesis as• 
	H: The survey unit concentration exceeds the action level. 
	0

	The corresponding decision errors are defined as in Table B.2. 
	 Condition 1 could only be used if it were phrased in reference to a particular concentration, e.g. the sample contains the radionuclide in concentration in excess of x pCi/g. Condition 2 implies a concentration of zero. 
	 Condition 1 could only be used if it were phrased in reference to a particular concentration, e.g. the sample contains the radionuclide in concentration in excess of x pCi/g. Condition 2 implies a concentration of zero. 
	1



	TABLE B.2 • Example of possible decision errors with null hypothesis that the average concentration in a survey unit is above the action level 
	TABLE B.2 • Example of possible decision errors with null hypothesis that the average concentration in a survey unit is above the action level 
	50 40 30 20 10 0 True Mean Value of X (Mean Concentration, pCi/g) Range of Parameter of Interest 
	Decision 
	Decision 
	Decision 
	True State 
	Consequences 
	Probability 

	Deciding a survey unit is below the action level... 
	Deciding a survey unit is below the action level... 
	...when it actually is above the action level (H0). 
	Type I error 
	α 

	Deciding a survey unit is above the action level...
	Deciding a survey unit is above the action level...
	 ...when it actually is below the action level (HA). 
	Type II error 
	β 


	with a true mean concentration 
	with a true mean concentration 
	with a true mean concentration 

	above the action level may be 
	above the action level may be 

	released. This is the only kind of 
	released. This is the only kind of 

	decision error that can occur if the 
	decision error that can occur if the 

	true concentration is at or above 
	true concentration is at or above 

	the action level. A Type II error 
	the action level. A Type II error 

	occurs when the null hypothesis is 
	occurs when the null hypothesis is 

	not rejected when it is false. This 
	not rejected when it is false. This 

	means that it is decided that a 
	means that it is decided that a 

	survey unit with a true mean 
	survey unit with a true mean 

	concentration below the action 
	concentration below the action 

	level may not be released. This is 
	level may not be released. This is 

	the only kind of decision error 
	the only kind of decision error 

	that can occur if the true 
	that can occur if the true 

	concentration is below the action 
	concentration is below the action 

	level. The type of decision error 
	level. The type of decision error 

	possible at a given value of the 
	possible at a given value of the 
	FIGURE B.4 • A line showing the action level, the type of 

	true concentration is shown, and a 
	true concentration is shown, and a 
	decision error possible at a given value of the true 

	y-axis for displaying control limits on making decision errors, 
	y-axis for displaying control limits on making decision errors, 
	concentration, and a y-axis showing the acceptable limits on making a decision error have been added to Figure B.3 


	0.00.20.40.60.81.050403020100True Mean Value of X(Mean Concentration, pCi/g)0.0 0.2 0.4 0.6 0.8 1.0 50 40 30 20 10 0 True Mean Value of X (Mean Concentration, pCi/g) Below AL (H0 not true) Above AL (H0 true) Action Level Probability of Decision ErrorType II errors can occur when the true concentration is below the action level. Type I errors can occur when the true concentration is above the action level. 
	Now that a null hypothesis has been chosen, the meaning of a Type I and a Type II decision error is also defined. In Figure B.4, a line is added showing the action level. A Type I error occurs when the null hypothesis is incorrectly rejected. This means that it is decided that a survey unit 
	once they have been specified by the project planning team, are also shown in Figure B.4. 
	III. SPECIFY A RANGE OF CONCENTRATIONS WHERE THE CONSEQUENCES OF DECISION ERRORS ARE RELATIVELY MINOR 
	The gray region, or region of uncertainty, indicates an area where the consequences of a Type II decision error are relatively minor. It may not be reasonable to attempt to control decision errors within the gray area. The resources expended to distinguish small differences in concentration could well exceed the costs associated with making the decision error. 
	In this example, the question is whether it would really make a major difference in the action taken if the concentration is called 30 pCi/g when the true value is 26 or even 22 pCi/g. If not, the gray region might extend from 20 to 30 pCi/g . This is shown in Figure B.5. 
	The width of the gray region reflects the decisionmaker•s concern for Type II decision errors near the action level. The decisionmaker should establish the gray region by balancing the resources needed to •make a close call• versus the consequences of making a Type II decision error. The cost of collecting data sufficient to distinguish small differences in concentration could exceed the cost of making a decision error. This is especially true if the consequences of the error are 
	The width of the gray region reflects the decisionmaker•s concern for Type II decision errors near the action level. The decisionmaker should establish the gray region by balancing the resources needed to •make a close call• versus the consequences of making a Type II decision error. The cost of collecting data sufficient to distinguish small differences in concentration could exceed the cost of making a decision error. This is especially true if the consequences of the error are 
	however, the project planning team knows that not all values of the average concentration below the action level are equally likely to exist in the survey unit. Usually, there is some knowledge, if only approximate, of what the average value of the concentration in the survey unit is. This information can be used to set the width of the gray region. If the planning team is fairly confident that the concentration is less than 20 pCi/g but probably more than 10 pCi/g, they would be concerned about making Type

	judged to be minor. 
	judged to be minor. 
	judged to be minor. 

	There is one instance where the 
	There is one instance where the 

	consequences of a Type II 
	consequences of a Type II 

	decision error might be considered 
	decision error might be considered 

	major. That is when expensive 
	major. That is when expensive 

	remediation actions could be 
	remediation actions could be 

	required that are not necessary to 
	required that are not necessary to 

	protect public health. It could be 
	protect public health. It could be 

	argued that this is always the case 
	argued that this is always the case 

	when the true concentration is less 
	when the true concentration is less 

	than the action level. On the other 
	than the action level. On the other 

	hand, it can be also be argued that 
	hand, it can be also be argued that 

	remediation of concentrations 
	remediation of concentrations 

	near, even though not above the 
	near, even though not above the 
	FIGURE B.5 • The gray region is a specified range of values of 

	action level, will still carry some 
	action level, will still carry some 
	the true concentration where the consequences of a decision 

	benefit. To resolve the issue, 
	benefit. To resolve the issue, 
	error are considered to be relatively minor


	FIGURE B.6 • Three possible ways of setting the gray region. 
	involving a true concentration 
	In (A) the project planning team believes the true 
	In (A) the project planning team believes the true 
	greater than what is estimated to 
	concentration remaining in the survey unit is about 15 pCi/g, actually remain. They have used in (B) about 20 pCi/g and in (C) about 25 pCi/g 
	Probability of Decision Error 0.0 0.2 0.4 0.6 0.8 1.0 50 40 30 20 10 0 Type II Errors Type I Errors Gray Region 
	                                    Probability of Decision Error 0.0 0.2 0.4 0.6 0.8 1.0 50 40 30 20 10 0                                    Type II Errors Type I Errors Gray Region                                    C B A 
	their knowledge of the survey unit to choose the range of concentration where it is appropriate to expend resources to control the Type II decision error rate. The action level, where further remediation would be necessary, defines the upper bound of the gray region where the probability of a Type I error should be limited. The lower bound of the gray region defines the concentration below which remediation should not be necessary. Therefore, it defines where the probability of a Type II error that would re
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	IV. ASSIGN TOLERABLE PROBABILITY VALUES FOR THE OCCURRENCE OF DECISION ERRORS OUTSIDE OF THE RANGE SPECIFIED IN III 
	As part of the DQO process, the decisionmaker and planning team must work together to identify possible consequences for each type of decision error. Based on this evaluation, desired limits on the probabilities for making decision errors are set over specific concentration ranges. The risk associated with a decision error will generally be more severe as the value of the concentration moves further from the gray region. The tolerance for Type I errors will decrease as the concentration increases. Conversel
	-

	In the example, the decisionmaker has identified 20!30 pCi/g as the area where the consequences of a Type II decision error would be relatively minor. This is the gray region. The tolerable limits on Type I decision errors should be smallest for cases where the decisionmaker has the greatest concern for making an incorrect decision. This will generally be at relatively high values of the true concentration, well above the action level. Suppose, in the example, that the decisionmaker is determined to be near
	-

	If the true concentration of X is closer to the action level, but still above it, the decisionmaker wants to make the right decision, but the consequences of an incorrect decision are not considered as severe at concentrations between 30 and 40 pCi/g as they are when the concentration is over 40 pCi/g. The project planning team wants the correct action to be taken at least 90 percent of the time. They will accept an error rate not worse than about 10 percent. They will only accept a data collection plan tha
	-

	The decisionmaker and project 
	1.0 
	planning team are also concerned about wasting resources by 
	0.8 
	cleaning up sites that do not represent any substantial risk. Limits of tolerable probability are 
	0.6 
	set low for extreme Type II errors, 
	i.e. failing to release a survey unit 
	0.4 
	when the true concentration is far below the gray region and the action level. They want to limit 
	0.2 
	the chances of deciding to take action when it really is not needed 
	0.0 
	to about 1 in 20 if the true concentration is less than 10 pCi/g. 
	-

	 Had the null hypothesis been chosen differently, the ranges of true concentration where Type I and Type II errors occur would have been reversed. 
	 Had the null hypothesis been chosen differently, the ranges of true concentration where Type I and Type II errors occur would have been reversed. 
	2



	FIGURE B.7 • Example decision performance goal diagram 
	FIGURE B.7 • Example decision performance goal diagram 
	This is shown in Figure B.7(c). 
	They are more willing to accept higher decision error rates for concentrations nearer to the gray region. After all, there is some residual risk that will be avoided even though the concentration is below the action level. A Type II error probability limit of 20 percent in the 10!20 pCi/g range is agreed upon. They consider this to be an appropriate transition between a range of concentrations where Type II errors are of great concern (<10 pCi/g) to a range where Type II errors are of little concern. The la
	5. This is shown in Figure B.7(d). 
	Once the limits on both types of decision error rates have been specified, the information can be displayed on a decision performance goal diagram, as shown in Figure B.7, or made into a decision error limits table, as shown in Table B.3. Both are valuable tools for visualizing and evaluating proposed limits for decision errors. 
	Probability of Decision Error 
	50 40 30 20 10 0 Type II Errors Type I Errors                          1% 10% 20% 5%            (a) (d) (c) (b) 
	TABLE B.3 • Example decision error limits table 
	TABLE B.3 • Example decision error limits table 
	TABLE B.3 • Example decision error limits table 

	True Concentration 
	True Concentration 
	Correct Decision 
	Tolerable Probability of Making a Decision Error 

	0 • 10 pCi/g 
	0 • 10 pCi/g 
	Does not exceed 
	5% 

	10 • 20 pCi/g 
	10 • 20 pCi/g 
	Does not exceed 
	20% 

	20 • 30 pCi/g 
	20 • 30 pCi/g 
	Does not exceed 
	gray region: decision error probabilities not controlled 

	30 • 40 pCi/g 
	30 • 40 pCi/g 
	Does exceed 
	10% 

	40 • 50 pCi/g 
	40 • 50 pCi/g 
	Does exceed 
	1% 


	There are no fixed rules for identifying at what level the decisionmaker and project planning team should be willing to tolerate the probability of decision errors. As a guideline, as the possible true values of the parameter of interest move closer to the action level, the tolerance for decision errors usually increases. As the severity of the consequences of a decision error increases, the tolerance decreases. 
	The ultimate goal of the DQO process is to identify the most resource-effective study design that provides the type, quantity, and quality of data needed to support defensible decisionmaking. The decisionmaker and planning team must evaluate design options and select the one that provides the best balance between cost and the ability to meet the stated DQOs. 
	A statistical tool known as an estimated power curve can be extremely useful when investigating the performance of alternative survey designs. The probability that the null hypothesis is rejected 
	when it should be rejected is called the statistical power of a hypothesis test. It is equal to one minus the probability of a Type II error (1!β). In the example, the null hypothesis is false whenever the true concentration is less than the action level. Figure B.8 shows the power diagram constructed from Figure B.7 by replacing the desired limits on Type II error probabilities, β, with the power, 1!β. The desired limits on Type I error probabilities, α, are carried over without modification, as is the gra

	FIGURE B.8 • A power curve constructed from the decision 
	FIGURE B.8 • A power curve constructed from the decision 
	decreasing function through the 

	performance goal diagram in Figure B.7 
	performance goal diagram in Figure B.7 
	desired limits results in the desired power curve. A decision performance goal diagram with an estimated power curve can help the project planning team visually identify information about a proposed study design. 
	Statisticians can determine the number of measurements needed for a proposed survey design from four values identified on the decision performance goal diagram: 
	(1) 
	(1) 
	(1) 
	The tolerable limit for the probability of making Type I decision errors, α, at the action level AL). 

	(2) 
	(2) 
	(2) 
	The tolerable limit for the probability of making Type II decision errors, β, along the 

	lower bound of the gray region (LBGR). 

	(3) 
	(3) 
	The width of the gray region, ∆ = AL ! LBGR, where the consequences of Type II decision errors are relatively minor. 

	(4) 
	(4) 
	The statistical expression for the total expected variability of the measurement data in the survey unit, σ. 


	1.00.00.20.40.60.850403020100True Mean Value of X(Mean Concentration,pCi/g)PowerPower =1-Type II Error Probability= 1 -βType I Error Probability= α1.0 0.0 0.2 0.4 0.6 0.8 50 40 30 20 10 0 True Mean Value of X (Mean Concentration, pCi/g) PowerPower = 1-Type II Error Probability = 1 -β Type I Error Probability = α 
	The actual power curve for the statistical hypothesis test can be calculated using these values, and can be compared to the desired limits on the probability of decision errors. 
	The estimated number of measurements required for a proposed survey design depends heavily on the expected variability of the measurement data in the survey unit, σ. This may not always be easy to estimate from the information available. However, the impact of varying this parameter on the study design is fairly easy to determine during the planning process. Examining a range of reasonable values for σ may not result in great differences in survey design. If so, then a crude estimate for σ is sufficient. If
	The example in Figure B.9 shows that the probability of making a decision error for any value of 
	the true concentration can be determined at any point on the power curve. At 25 pCi/g, the probability of a Type II error is roughly 45!50 percent. At 35 pCi/g, the probability of a Type I error is roughly 3 percent. 
	The larger the number of samples required to meet the stated DQOs, the greater the costs of sampling and analysis for a proposed plan. Specifying a narrow gray region and/or very small limits on decision error probabilities indicate a high level of certainty is needed and a larger number of samples will be required. 
	1.00.00.20.40.60.850403020100True Mean Value of X(Mean Concentration,pCi/g)PowerβαPower =1-Type II Error ProbabilityType I Error Probability1.0 0.0 0.2 0.4 0.6 0.8 50 40 30 20 10 0 True Mean Value of X (Mean Concentration, pCi/g) Power β ∆ α Power = 1-Type II Error Probability Type I Error Probability FIGURE B.9 � Example power curve showing the key parameters used to determine the appropriate number of samples to take in the survey unit 
	Specifying a wide gray region and/or larger limits on decision error probabilities indicates a lower level of certainty is required. A smaller number of samples will be necessary. The required level of certainty should be consistent with the consequences of making decision errors balanced against the cost in numbers of samples to achieve that level of certainty. 
	If a proposed survey design fails to meet the DQOs within constraints, the decisionmaker and planning team may need to consider: 
	  • 
	  • 
	  • 
	ADJUSTING THE ACCEPTABLE DECISION ERROR RATES. For example, the decisionmaker may be unsure what probabilities of decision error are acceptable. Beginning with extremely stringent decision error limits with low risk of making a decision error may require an extremely large number of samples at a prohibitive cost. After reconsidering the potential consequences of each type of decision error, the decisionmaker and planning team may be able to relax the tolerable rates.

	  • 
	  • 
	ADJUST THE WIDTH OF THE GRAY REGION. Generally, an efficient design will result when the relative shift, ∆/σ, lies between the values of 1 and 3. A narrow gray region usually means that the proposed survey design will require a large number of samples to meet the specified DQOs. By increasing the number of samples, the chances of making a Type II decision error is reduced, but the potential costs have increased. The wider the gray region, the less stringent the DQOs. Fewer samples will be required, costs wi




	B.3.8 DQO Process Step 7: Optimize the Design for Obtaining Data 
	B.3.8 DQO Process Step 7: Optimize the Design for Obtaining Data 
	By the start of Step 7, the project planning team has established their priority of concerns, the definition of the problem, the decision or outcome to address the posed problem, the inputs and boundaries, and the tolerable decision error rates. They have also agreed on decision rules that incorporate all this information into a logic statement about what action to take in response to the decision. During Step 7, the hard decisions are made between the planning team•s desire to have measurements with greate
	During Step 7, the project planning team optimizes the sampling and analytical design and establishes the measurement quality objectives (MQOs) so the resulting data will meet all the established constraints in the most resource-effective manner. The goal is to determine the most 
	During Step 7, the project planning team optimizes the sampling and analytical design and establishes the measurement quality objectives (MQOs) so the resulting data will meet all the established constraints in the most resource-effective manner. The goal is to determine the most 
	efficient design (combination of sample type, sample number and analytical procedures) to meet all the constraints established in the previous steps. Once the technical specialists and the rest of the project planning team come to agreement about the sampling and analysis design, the operational details and theoretical assumptions of the selected design should be documented. 

	If a proposed design cannot be developed to meet the limits on decision error rates within budget or other constraints, then the project planning team will have to consider relaxing the error tolerance, adjusting the width of the gray region, redefining the scale of decision, or committing more funding. There is always a trade off among quality, cost, and time. The project planning team will need to develop a consensus on how to balance resources and data quality. If the proposed design requires analysis us
	If the project entails a preliminary investigation of a site or material for which little is known, the planners may choose to employ MQOs and requirements that typically are achieved by the selected sampling and analytical procedures. At this early point in the project, the lack of detailed knowledge of the site or material may postpone the need for the extra cost of more expensive sampling and analytical procedures and large numbers of samples, until more site or material knowledge is acquired. The less-d
	The planning of data collection activities typically is undertaken to determine if a characteristic of an area or item does or does not exist above an action level. Since the area of interest (population) is usually too large to be submitted to analyses, in its entirety, these data collection activities generally include sampling. If sampling is done correctly, the field sample or set of field samples will represent the characteristics of interest and, if analyzed properly, the information gleaned from the 
	-

	The planning team attempts to anticipate, quantify, and minimize the uncertainty in decisions resulting from imprecision, bias, and blunders•in other words, attempts to manage uncertainty by managing its sources. The effort expended in managing uncertainty is project dependent and depends upon what constitutes an acceptable level of decision uncertainty and the proximity of the data to a decision point. For example, Figure B.10(a) presents a situation where the data have significant variability. Yet the var
	Concentration Action Level Mean Frequency of  OccurrenceConcentration Action Level Mean Frequency of  Occurrence (a) (b) 
	In contrast, Figure B.10(b) depicts data with relatively little variability, yet this level of variability is significant since the measured data are adjacent to the action level, which results in increased uncertainty in the decision. Depending upon the consequences of an incorrect decision, it may be advisable to expend more resources with the intention of increasing confidence in the decision. 
	The outputs of Step 7 are:
	  • The most resource-effective design for sampling and analysis that will obtain the specific amount and quality of data needed to resolve the problem within the defined constraints; and 
	Figure B.10 • How proximity to the action level determines what is an acceptable level of
	  • Detailed plans and criteria for data 
	uncertainty 
	uncertainty 
	assessment. 



	B.4 References 
	B.4 References 
	American National Standards Institute (ANSI) N42.23. American National Standard Measurement and Associated Instrument Quality Assurance for Radioassay Laboratories. 2003. 
	-

	American Society for Testing and Materials (ASTM) D5283. Standard Practice for Generation of Environmental Data Related to Waste Management Activities: Quality Assurance and Quality Control Planning and Implementation. 1992. 
	American Society for Testing and Materials (ASTM) D5792. Standard Practice for Generation of Environmental Data Related to Waste Management Activities: Development of Data Quality Objectives, 1995. 
	American Society for Testing and Materials (ASTM) D6051. Standard Guide for Composite Sampling and Field Subsampling for Environmental Waste Management Activities. 1996. 
	Bottrell, D., S. Blacker, and D. Goodman. 1996a. •Application of Decision Theory Methods to the Data Quality Objectives Process.• In, Proceedings of the Computing in Environmental Resource Management Conference, Air and Waste Management Association. 
	Bottrell, D., N. Wentworth, S. Blacker, and D. Goodman. 1996b. •Improvements to Specifying Limits on Decision Errors in the Data Quality Objectives Process.• In, Proceedings of the Computing in Environmental Resource Management Conference, Air and Waste Management Association. 
	U.S.
	U.S.
	U.S.
	 Environmental Protection Agency (EPA). 1986. Development of Data Quality Objectives, Description of Stages I and II. Washington, DC. 

	U.S.
	U.S.
	 Environmental Protection Agency (EPA). 2000. Guidance for the Data Quality Objective Processquality1/qa_docs.html. 
	 (EPA QA/G-4). EPA/600/R-96/055, Washington, DC. Available at www.epa.gov/ 



	MARSSIM. 2000. Multi-Agency Radiation Survey and Site Investigation Manual, Revision 1. NUREG-1575 Rev 1, EPA 402-R-97-016 Rev1, DOE/EH-0624 Rev1. August. Available at /. 
	www.epa.gov/radiation/marssim

	U.S. Nuclear Regulatory Commission (NRC). 1998. A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys. NUREG-1505, Rev. 1. 
	ATTACHMENT B1 Decision Error Rates and the Gray Region for Decisions About Mean Concentrations 
	B1.1 Introduction 
	B1.1 Introduction 
	This attachment presents additional information on decision error rates and the gray region. The project planning team will need to specify a range of possible values where the consequences of decision errors are relatively minor•the •gray region.• Specifying a gray region is necessary because variability in the population and imprecision in the measurement system combine to produce variability in the data such that the decision may be •too close to call• when the true value is very near the action level. T

	B1.2 The Region of Interest 
	B1.2 The Region of Interest 
	The first step in constructing the gray region is setting the range of concentrations that is a region of interest (a range of possible values). This normally means defining the lowest and highest average concentrations at which the contaminant is expected to exist. Usually there is an action level (such as the derived concentration guideline level, DCGL, a regulatory limit) that should not be exceeded. If the project planning team wants a 
	-

	FIGURE B1.1 • The action level is 1.0 
	method to measure sample concentrations around this level, they would not select one that worked at concentrations at 10 to 100 times the action level, nor would they select one that worked from zero to half the action level. They would want a method that worked well around the action level•perhaps from 0.1 to 10 times the action level, or from one-half to two times the action level. For the purpose of the example in this attachment, the action level is 1.0 and the project planning team selected a region of
	-


	B1.3 Measurement Uncertainty at the Action Level 
	B1.3 Measurement Uncertainty at the Action Level 
	The action level marks the concentration level that the project planning team must be able to distinguish. The project planning team wants to be able to tell if the measured concentration is 
	The action level marks the concentration level that the project planning team must be able to distinguish. The project planning team wants to be able to tell if the measured concentration is 
	above or below the action level. Does this mean that the project planning team needs to be able to distinguish 0.9999 times the action level from 1.0001 times the action level? Sometimes, but not usually. This is fortunate, because current measurement techniques are probably not good enough to distinguish that small a difference in concentrations. 
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	How close to the action level can the project planning team plan to measure? This example assumes that the standard uncertainty (1 sigma, σ) of the measured concentration is 10 percent of the action level. With that kind of measurement �precision,� can the project planning team tell the difference between a sample with 
	0.9 times the action level from one right at the action level? Not always. Figure B1.2 shows the distribution 
	FIGURE B1.2 • The true mean concentration is 1.0. The 
	FIGURE B1.2 • The true mean concentration is 1.0. The 
	of the concentration that is measured 
	standard uncertainty of the distribution of measured (assuming a normal distribution). This means that about 16 percent of the time, the measured concentration (in the shaded area) will appear to be 0.9 times the action level or less, even though the true concentration is exactly equal to the action level. 
	concentrations is 0.1. 

	Similarly, about 16 percent of the time, the measured concentration will appear to be at or above the action level (as shown in the shaded area in Figure B1.3), even though the true concentration is only 0.9 times the action level. 
	The problem is, when there is only the measurement result to go by, the project planning team cannot tell the difference with confidence. If the measured concentration is 0.9, it is more likely that the true concentration is 0.9 than it is 1.0, but there remains a chance that it is really 1.0. The moral of the story is that measurement variability causes some ambiguity about what the true concentration is. This translates into some uncertainty in the decisionmaking process. This uncertainty can be controlle
	The problem is, when there is only the measurement result to go by, the project planning team cannot tell the difference with confidence. If the measured concentration is 0.9, it is more likely that the true concentration is 0.9 than it is 1.0, but there remains a chance that it is really 1.0. The moral of the story is that measurement variability causes some ambiguity about what the true concentration is. This translates into some uncertainty in the decisionmaking process. This uncertainty can be controlle
	far less ambiguity. There would be very little uncertainty in deciding which curve a single measurement belonged to, and consequently whether the mean was 0.7 or 1.0. 
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	From this discussion, at least two very important conclusions can be drawn: 
	(1) True mean concentrations that are •very close together• are not 

	FIGURE B1.3 • The true mean concentration is 0.9. The 
	FIGURE B1.3 • The true mean concentration is 0.9. The 
	easily distinguished by a single 
	standard uncertainty of the distribution of measured measurement. concentrations is 0.1. 
	(2) A useful way for determining what is meant by •very close together• is by measuring the separation in concentration in standard deviation units. Concentrations that are one or fewer standard deviations apart are close together, whereas concentrations that are three or more standard deviations apart are well separated. 
	From conclusion (1), it is immediately apparent that no matter how small the measurement variability is, there must be some separation between the concentration values to be distinguished. It is not possible to determine whether or not the concentration is on one side or the other of •a bright line• (e.g. above or below the action level). Instead, one must be content to pick two concentrations separated by a finite amount and attempt to tell them apart. These two concentrations define what is known as the g
	-
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	lie between the two boundaries are above or below the action level. To illustrate this with the example, if the measured concentration is 0.95•exactly in the middle of the gray region between the two concentrations to be distinguished• it is equally likely that the true concentration is 0.9 as it is 1.0 (Figure B1.4). 
	To formalize this process of distinguishing whether the true concentration is above our upper bound or below our lower bound, 
	To formalize this process of distinguishing whether the true concentration is above our upper bound or below our lower bound, 
	two hypotheses will be defined and a statistical hypothesis test will be used to decide between the two. 

	0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Conce ntra tion FIGURE B1.4 • If 0.95 is measured, is the true mean concentration 1.0 (right) or 0.9 (left)? The standard uncertainty of the distribution of measured concentrations is 0.1. 


	B1.4 The Null Hypothesis 
	B1.4 The Null Hypothesis 
	How does the project planning team decide whether the true concentration is above or below the gray region? By formulating hypotheses. Suppose it has been decided that it is important to distinguish whether the true mean concentration is above 1.0 or below 0.9. These concentrations then correspond to the •upper bound of the gray region• (UBGR) and to the •lower bound of the gray region• (LBGR), respectively. 
	The project planning team starts by asking which mistake is worse: (1) deciding the true concentration is less than the action level when it is actually above, or (2) deciding the true concentration is above the action level when it is actually below? 
	Mistake (1) may result in an increased risk to human health in the general population following site release, while mistake (2) may result in increased occupational risks or a waste of resources that might have been used to reduce risks elsewhere. 
	The way to avoid the •worse mistake• is to assume the worse case is true, i.e., make the worse case the baseline or null hypothesis. For example, to avoid mistake (1), deciding the true concentration is less than the action level when it is actually above, the null hypothesis should be that the true concentration is above the action level. Only when the data provide convincing evidence to the contrary will it be decided that the true concentration is less than the action level. Borderline cases will default
	Note that while the null hypothesis must be, in fact, either true or false, the data cannot prove that it is true or false with absolute certainty. When the probability of obtaining the given data is sufficiently low under the conditions specified by the null hypothesis, it is evidence to decide that the null hypothesis should be rejected. On the other hand, if the null hypothesis is not rejected, it is not the same as proving that the null hypothesis is true. It only means that there was not enough evidenc
	Notice that in Figure B.2 (Section B.3.7 on page B-11), the risk that is elevated in the gray region is that of making a Type II error. That is, in the gray region, the Type II error rate exceeds the tolerable limit set at the boundary of the gray region. The Type I error rate remains fixed. (It is fixed at exactly the value used to determine the critical value for the statistical test.) A Type II error is incorrectly accepting (failing to reject) the null hypothesis when it is false. So another way to thin
	Another pragmatic consideration is that the project planning team really does not want to make a mistake that is likely to remain undiscovered or will be difficult or expensive to correct if it is discovered. If the project planning team decides the true concentration is less than the action level, the team is not likely to look at the data again. That would mean that the mistake would probably not be discovered until much later (e.g. during a confirmatory survey), if at all. On the other hand, if the proje
	CASE 1: ASSUME THE TRUE CONCENTRATION IS OVER 1.0 
	If a true concentration of 1.0 or more is over a regulatory limit, such as a DCGL, the project planning team will not want to make mistake (1) above. So they generally will choose as the null hypothesis that the true concentration exceeds the action level of 1.0. How sure does the project planning team need to be? To be 95 percent sure, they would have to stay with their assumption that the true concentration is over 
	1.0 unless the measured concentration is 0.84 or less (Figure B1.5). The project planning team knows that they will only observe a concentration less than 0.84 about 5 percent of the time when the true concentration is really 1.0. That is, the measurement has to be less than 
	-
	-
	-

	0.84 to be 95 percent sure the true concentration is less than 1.0. This is an example of a decision rule being used to decide between two alternative hypotheses. If a concentration of less than 0.84 is observed, one can decide that the true concentration is less than 1.0• 
	0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Concentration FIGURE B1.5 • When the true mean concentration is 1.0, and the standard uncertainty of the distribution of measured concentrations is 0.1, a measured concentration of 0.84 or less will be observed only about 5 percent of the time 
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	i.e., the null hypothesis is rejected. Otherwise, if a concentration over 0.84 is observed, there is not enough evidence to reject the null hypothesis, and one retains the assumption that the true concentration is over 1.0. 
	But what if the true concentration is 
	0.9 or less? Under the null hypothesis, how often will the project planning team say that the true concentration is over 1.0 when it is really only 0.84? As seen in Figure B1.6, there is only a 50-50 chance of making the right decision when the true concentration really is 0.84. That is the price of being sure the action level is not exceeded. The Type II error rate, when the true 
	-

	concentration is 0.9, is over 50 FIGURE B1.6 • When the true mean concentration is 0.84, and the standard uncertainty of the distribution of 
	percent. 
	measured concentrations is 0.1, a measured concentration of 0.84 or less will be observed only about half the time 
	How low does the true concentration have to be in order to have a pretty good chance of deciding that the true concentration is below the limit? To be 95 percent sure, the true concentration needs to be twice as far below the action level as the decision point (i.e., critical value), namely at about 0.68. That is, the project planning team will need a concentration of 0.68 or less to be 95 percent sure that they will be able to decide the true concentration is less than 1.0 (see the unshaded portion in Figu
	(2) those values that will leave the null hypothesis as the default. In other words, it is only when the true concentration is 0.68 or less that the project planning team can be pretty sure that they will decide the true concentration is less than 1.0. Notice that the project planning team could change the decision rule. For example, they could decide that if 
	FIGURE B1.7 • When the true mean concentration is 0.68 
	the measured concentration is less 
	and the standard uncertainty of the distribution of measured concentrations is 0.1, a measured concentration hypothesis. Examining Figures B1.2 over 0.84 will be observed only about 5 percent of the time 
	than 0.9, they will reject the null 
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	and B1.3 once again, the Type I error rate will be about 16 percent instead of 5 percent. However, the Type II error rate will decrease from 50 percent to 16 percent. Fortunately, by moving the decision point•called the •critical value••the error rates can be adjusted. However, reducing one error rate necessarily increases the other. The only way to decrease both decision error rates is to reduce the uncertainty (standard deviation) of the distribution of measured concentrations. 
	CASE 2: ASSUME THE TRUE CONCENTRATION IS 0.9 
	As stated previously, the mistake that is most serious determines the null hypothesis. Suppose that the project planning team determined that it is worse to decide that the true concentration is over 1.0 when it is 0.9 (than it is to decide it is 0.9 when it is 1.0). Then, the default assumption (the null hypothesis) would be that the true concentration is less than 0.9, unless the measured concentration is large enough to convince the planning team otherwise. Using a decision rule (critical value) of 1.06,

	B1.5 The Gray Region 
	B1.5 The Gray Region 
	In the previous sections of this attachment, the project planning team:
	  • 
	  • 
	  • 
	Set the region of interest for the measured concentrations between zero and about twice the action level;

	  • 
	  • 
	Assumed that the true concentration exceeds 1.0, unless they measure •significantly• below that, the default assumption (null hypothesis);

	  • 
	  • 
	Defined •significantly below• to mean a concentration that would be observed less than 5 percent of the time, when the true concentration is actually 1.0. To describe their uncertainty, the project planning team used the normal distribution, with a relative standard deviation of 10 percent at the action level, as a model;

	  • 
	  • 
	Developed an operational decision rule: If the measured concentration is less than 0.84, then 


	Figure
	Figure B1.8 • The true mean concentration is 0.9 (left) and 
	Figure B1.8 • The true mean concentration is 0.9 (left) and 
	1.22 (right). The standard uncertainty of the distribution of measured concentrations is 0.1. 


	decide the true concentration is less than 1.0. Otherwise, decide there is not enough reason to 
	change the default assumption (null hypothesis); and
	  • Found using this operational decision rule that they were pretty sure (95 percent) of deciding that the true concentration is less than 1.0 only when the true concentration is actually 0.68 or less. 
	If the true concentration is between 0.68 and 1.0, all the project planning team really can say is that the probability of correctly deciding that the true concentration is less than 1.0 will be between 5 percent (when the true concentration is just under 1.0) and 95 percent (when the true concentration is 0.68). In other words, when the true concentration is in the range of 0.68 to 1.0, the probability of incorrectly deciding that the true concentration is not less than 1.0 (i.e., the probability of making
	0.68) and 95 percent (when the true concentration is just under 1.0). This range of concentrations, 
	0.68 to 1.0, is the •gray region.• 
	When the null hypothesis is that the true concentration exceeds the action level (1.0), the gray region is bounded from above by the action level. This is where α (the desired limit on the Type I error rate) is set. It is bounded from below at the concentration where β (the desired limit on the Type II error rate) is set. There is some flexibility in setting the LBGR. If the project planning team specifies a concentration, they can calculate the probability β. If they specify β, they can calculate the value
	Often it will make sense to set the LBGR at a concentration at, or slightly above, the project planning team•s best estimate of the true concentration based on all of the information that is available to them. Then the width of the gray region will truly represent the minimum separation in concentration that it is important to detect, namely, that between the action level and what actually is believed to be there. 
	In our example, the project planning team found that they needed the true concentration to be 
	0.68 or less to be at least 95 percent sure that they will correctly decide (by observing a measured value of 0.84 or less) that the true concentration is less than 1.0. If the project planning team is not satisfied with that, the team can find that a true concentration of 0.71 will be correctly detected 90 percent of the time (also by observing a measured value of 0.84 or less). The critical value, or decision point, is determined by α, not β. 
	If the project planning team decides to raise the LBGR (i.e., narrow the gray region) the Type II error rate at the LBGR goes up. If they lower the LBGR (i.e., widen the gray region) the Type II error rate at the LBGR goes down. Nothing substantive is really happening. The project planning team is merely specifying the ability to detect that the null hypothesis is false (i.e., reject the null hypothesis because it is not true) at a particular concentration below the action level called the 
	If the project planning team decides to raise the LBGR (i.e., narrow the gray region) the Type II error rate at the LBGR goes up. If they lower the LBGR (i.e., widen the gray region) the Type II error rate at the LBGR goes down. Nothing substantive is really happening. The project planning team is merely specifying the ability to detect that the null hypothesis is false (i.e., reject the null hypothesis because it is not true) at a particular concentration below the action level called the 
	LBGR. 
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	If the project planning team wants to make a substantive change, they need to change the probability that an error is made. That is, they need to change the uncertainty (standard deviation) of the measurements. Suppose the relative standard deviation of the measurements at the action level is 5 percent instead of 10 percent. Then the value of the true concentration that will be correctly detected to be below the action level (by observing a measured value of 0.92 or less) 95 percent of the time, is 0.84. Cu
	0.68 = 0.32 = 3.2 (0.10) = 3.2σ. As Figure B1.9 illustrates, with σ = 5 percent, the width of the gray region is 1.0 ! 0.84 = 0.16 = 3.2 (0.05) = 3.2σ. 
	What is important is the width of the gray region in standard deviations; not the width of the gray region in concentration. In order to achieve the same specified Type II error rate at the LBGR, the action level and 
	FIGURE B1.9 • The true mean concentration is 0.84 (left) same number of standard deviations. and 1.0 (right). The standard uncertainty of the distribution The width of the gray region (action of measured concentrations is 0.05. The relative shift is 3.2. 
	the LBGR must be separated by the 

	level minus LBGR) will be denoted by delta (∆), the �shift.� ∆/σ is how many standard deviations wide the gray region is. ∆/σ is called the �relative shift.� 
	If the gray region is less than one standard deviation wide, the Type II error rate may be high at the LBGR. The only way to improve the situation would be to decrease the standard deviation (i.e., increase the relative shift, ∆/σ). This can be done by employing a more precise measurement method or by averaging several measurements. When the width of the gray region is larger than about three standard deviations (i.e., ∆/σ exceeds 3), it may be possible to use a simpler, less expensive measurement method or
	B1.6 Summary 
	The mistake that is �worse� defines the null hypothesis and also defines a �Type I� error. The probability of a Type I error happening is called the �Type I error rate,� and is denoted by alpha (α). Under the original null hypothesis (Case 1: Assume the true concentration is over 1.0), a 
	The mistake that is �worse� defines the null hypothesis and also defines a �Type I� error. The probability of a Type I error happening is called the �Type I error rate,� and is denoted by alpha (α). Under the original null hypothesis (Case 1: Assume the true concentration is over 1.0), a 
	Type I error would be deciding that the concentration was less than 1.0 when it really was not. In general, a Type I error is deciding against the null hypothesis when it is actually true. (A Type I error is also called a •false positive.• This can be confusing when the null hypothesis appears to be a •positive• statement. Therefore, MARLAP uses the neutral terminology.) 

	The �less serious� mistake is called a Type II error, and the probability of it happening is the �Type II error rate,� denoted by beta (β). Under the original null hypothesis that the concentration was 1.0 or more, a Type II error would be deciding that the concentration was more than 1.0 when it really was not. In general, a Type II error is not deciding against the null hypothesis when it is actually false. 
	In both Case 1 and Case 2, the probability of both Type I errors and Type II errors were set to 5 percent. The probabilities were calculated at multiples of the standard deviation, assuming a normal distribution. The data may not always be well described by a normal distribution, so a different probability distribution may be used. However, the probability of a Type I error is always calculated as the probability that the decisionmaker will reject the null hypothesis when it is actually true. This is simple
	The parameter of interest in both Case 1 and Case 2 was the true concentration. The true concentration had a limit of 1.0. Therefore, all the project planning team had to do was calculate the probability that they would get a measured concentration that would cause them to decide that the true concentration was less than 1.0, even though it was equal to 1.0. In the example, the project planning team actually started with the probability (5 percent) and worked out the critical value. The •critical value• (or
	The Type I and Type II error rates, α and β, often are both set at 5 percent. This is only by tradition. Neither error rate needs to be set at 5 percent, nor do they have to be equal. The way the project planning team should set the value is by examining the consequences of making a Type I or a Type II error. What consequences will happen as a result of making each type of error? This is a little different than the criterion that was used to define the null hypothesis. It may be that in some circumstances, 
	ATTACHMENT B2 Decision Error Rates and the Gray Region for Detection Decisions 
	B2.1 Introduction 
	This section is provided to present some additional discussion on the subject of applying the Data Quality Objectives (DQO) process to the problem of measurement detection capability. In particular, •not detected• does not mean zero radioactivity concentration. To understand this, one needs to examine the concept of •minimum detectable concentration• (MDC). This involves the DQO process and limiting decision error rates. 
	B2.2 The DQO Process Applied to the Detection Limit Problem 
	STEP 1. PROBLEM STATEMENT To determine if the material that is being measured contains radioactivity. 
	STEP 2. IDENTIFY THE DECISION Decide if the material contains radioactivity at a level that requires action. 
	STEP 3. IDENTIFY INPUTS TO THE DECISION What level of radioactivity in the material is important to detect? 
	STEP 4. DEFINE THE STUDY BOUNDARIES How much material is to be measured, what instrumentation/analysis is available, how much time and resources are available for the measurements. 
	STEP 5. DEVELOP A DECISION RULE This is an •if...then• rule that specifies the parameter of interest to be measured, and an action level against which it is compared in order to choose between alternative actions. At this stage, it is assumed that the true value of the parameter can be measured exactly without uncertainty. Such a decision rule in this case might be •If the true concentration in the sample is greater than zero, appropriate action will be taken. Otherwise, no action is required.• 
	STEP 6. SPECIFY LIMITS ON DECISION ERROR RATES Develop an operational rule so that when the measurement is made, a decision on the appropriate action to take can be made. This rule takes into account that there is uncertainty in any measurement, and therefore there is the possibility of making decision errors. When the material is processed and inserted into an instrument, the measurement is made and the instrument output is a result that is a number. The decision rule involves taking that numerical result 
	STEP 6. SPECIFY LIMITS ON DECISION ERROR RATES Develop an operational rule so that when the measurement is made, a decision on the appropriate action to take can be made. This rule takes into account that there is uncertainty in any measurement, and therefore there is the possibility of making decision errors. When the material is processed and inserted into an instrument, the measurement is made and the instrument output is a result that is a number. The decision rule involves taking that numerical result 
	result is greater than the critical value, the decision is made to treat the material as containing 

	radioactivity above the action level, and then taking the appropriate action. The critical value 
	will vary depending on the limits on decision errors rates that are specified. 
	The material either contains radioactivity or it does not. Unfortunately, it is impossible to determine absolutely whether the material does or does not contain radioactivity. Decisions can only be based on the result of measurements. There are four possibilities:
	  • 
	  • 
	  • 
	The material does not contain radioactivity, and the measurement results in a value below the critical value and so it is decided that it does not contain radioactivity.

	  • 
	  • 
	The material does contain radioactivity, and the measurement results in a value above the critical value and so it is decided that it does contain radioactivity.

	  • 
	  • 
	The material does not contain radioactivity, and the measurement results in a value above the critical value and so it is decided that it does contain radioactivity. This would be a decision error.

	  • 
	  • 
	The material does contain radioactivity, and the measurement results in a value below the critical value and so it is decided that it does not contain radioactivity. This also would be a decision error. 


	Note that one never knows if a decision error is made, one only knows the result of the measurement. Measurements are not perfect, people make mistakes, and decision errors are unavoidable. However, recognizing that decision errors exist does allow their severity to be controlled. Several steps are necessary in order to create the framework for controlling decision error rates. These are described in the following sections. 
	B2.3 Establish the Concentration Range of Interest 
	Step three of the DQO process determined a level of radioactivity concentration in the material that is important to detect. This is also sometimes called an action level (such as the DCGL, a regulatory limit) that should not be exceeded. It is also important to define a region of interest ranging from the lowest to the highest average concentrations at which the contaminant is expected to exist. If the project planning team wants a method to measure sample concentrations around the action level, they would
	Step three of the DQO process determined a level of radioactivity concentration in the material that is important to detect. This is also sometimes called an action level (such as the DCGL, a regulatory limit) that should not be exceeded. It is also important to define a region of interest ranging from the lowest to the highest average concentrations at which the contaminant is expected to exist. If the project planning team wants a method to measure sample concentrations around the action level, they would
	calibration factor is 100, and in the remaining figures the measurement results will be shown directly in concentration. The zero point of concentration is at the average instrument reading when •nothing• (a blank) is being measured. In Figure B2.2(a) this is 100. The distribution of many measurements of nothing will look 
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	like Figure B2.2(b). This is obtained from Figure B2.2(a) by subtracting the average blank reading (100) and dividing by the calibration factor (also 100). The spread in these measurement results is characterized by the standard deviation of this distribution. In Figure B2.2(b), the standard deviation is 0.2. For the problem to be actually addressed, the standard deviation may be larger or smaller than this, but it will not be zero. There is always some variability in measurements, and this will always caus
	Consider a possible decision rule: Decide that there is radioactivity in the sample if the measurement result is greater than zero. (This means that the •critical value• is zero.) 
	Figure B2.2 shows that if the critical value for the decision is made equal to zero, a decision that there is radioactivity in the 
	Figure B2.2 shows that if the critical value for the decision is made equal to zero, a decision that there is radioactivity in the 
	sample will be made about half the time, even when there is nothing to measure. Also, notice that unless the instrument reading is negative, it is not possible to decide that there is no radioactivity in the sample. There is nothing contradictory about this. The zero point on the x-axis was chosen simply to be the average measurement of •nothing.• About half the time a measurement of nothing will be larger, and about half the time it will be smaller. This does not imply anything about concentrations being n

	-1 0 1 2 FIGURE B2.2 (a) • The distribution of blank (background) readings. (b) The true concentration is 0.0. The standard deviation of the distribution of measured concentrations is 0.2. 0 100 200 300 
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	Decisionmakers might not be too happy about a decision rule that will lead them to the wrong conclusion half of the time. How can this be improved? Notice that if the critical value is made larger, the wrong conclusion (that there is radioactivity when there is none) will be made less often. If the critical value for the example is 0.2, it will be decided that there is radioactivity in the sample when the measurement result is greater than 0.2. From the example in Figure B2.3, this will be estimated to happ
	-

	By making the critical value larger and larger, the probability can be reduced practically to zero of deciding that there is radioactivity when there is not. This apparently happy solution comes at a price. To see that, just consider the opposite situation. Suppose, instead of •nothing,• there is a concentration of 0.2 in the sample (in this example, units are irrelevant). If a sample with this concentration is measured often, the distribution of results might look like Figure B2.4. 
	Notice that with a critical value of 0.2, a decision that there is radioactivity in this sample will only be made about half the time. Even if the critical value were zero, 
	Notice that with a critical value of 0.2, a decision that there is radioactivity in this sample will only be made about half the time. Even if the critical value were zero, 
	a decision that there is radioactivity in the sample would only be made about 84 percent of the time. 
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	FIGURE B2.3 • The true concentration is 0.0, and the standard deviation of the distribution of measured concentrations is 0.2. A critical value of 0.2 would be exceeded about 16 percent of the time. 
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	Figure B2.4 • The true concentration is 0.2 and the standard deviation of the distribution of measured concentrations is 0.2 


	As shown above, there are two types of decision errors that can be made: that there is radioactivity when there is not, or that there is no radioactivity when there is. What the figures show is that by making the critical value for the decision rule bigger, one can reduce the chances of making first kind of decision error, but doing so will increase the chance of making the second kind of decision error. Making the critical value for the decision rule smaller will reduce chances of the second kind of decisi
	-

	This example used a measurement variability (standard deviation) of 0.2. What if the variability is larger or smaller? By looking at the figures, one can conclude that no matter what the variability actually is:
	 (1)If a critical value of zero is used, one will conclude that there is radioactivity in a sample that actually contains nothing about half the time.
	 (2)If a critical value is selected equal to the standard deviation, one will conclude that there is radioactivity in a sample that actually contains nothing about 16 percent of the time. (A slight modification of the figures would show that if the critical value equals two times the standard deviation, one will conclude that there is radioactivity in a sample that actually contains nothing about 2.5 percent of the time.)
	 (3)If a critical value of zero is used, one will conclude that there is no radioactivity in a sample that actually contains a concentration that is numerically equal to the standard deviation about 16 percent of the time. (A slight modification of the figures would show that if the critical value were equal to zero, one will conclude that there is no radioactivity in a sample that actually contains a concentration equal to twice the standard deviation about 2.5 percent of the time.)
	 (4)If a critical value is selected equal to the standard deviation, one will conclude that there is no radioactivity in a sample that actually contains a concentration numerically equal to the standard deviation about half the time. 
	The key is to notice that it is not the numerical value of the variability alone nor the numerical value of the concentration alone, that determines the probability of a decision error. It is the ratio of the concentration to the standard deviation that is important. In essence, the standard deviation determines the scale of the x-axis (concentration axis) for this problem. Background determines the zero point of the concentration axis. 
	The MDC for a measurement process is the concentration that the sample must contain so that 
	the probability of a Type II decision error is limited to 5 percent. (Other values may be chosen, but 5 percent is most commonly used in this context.) 
	This means that if a sample containing a concentration equal to the MDC is measured, about 95 percent of the time the measurement result will lead to the decision that the sample contains radioactivity. This is shown in Figure B2.5. 
	However, if a sample containing a blank is measured, the probability that the measurement result will lead to the decision that the sample contains radioactivity will be only about 5 percent. This is shown in Figure B2.6. 
	For this example, Figure B2.7 summarizes the relationship among the distribution of measurements on a blank, the critical value, the MDC, and the action level. 
	The critical value used to limit the decision error of concluding that there is radioactivity in a sample that actually contains a blank to 5 percent, is about 1.5 or 2 times the measurement variability when measuring a blank. Limiting the decision error of concluding that there is no radioactivity in a sample that actually contains a concentration equal to the MDC, results in an MDC that is usually about twice the critical value. Consequently, the MDC is usually about 3 or 4 times the measurement variabili
	B2.4 Estimate the Measurement Variability when Measuring a Blank 
	The measurement variability when measuring a blank is thus a key parameter for planning. The best way to get a handle on this is by making many measurements of a blank sample and 
	The measurement variability when measuring a blank is thus a key parameter for planning. The best way to get a handle on this is by making many measurements of a blank sample and 
	computing the standard deviation of the measurement results. 

	-1 0 1 2 
	FIGURE B2.5 • The true value of the concentration is 0.66 and the standard deviation of the distribution of measured concentrations is 0.2. A critical value of 0.33 will be exceeded about 95 percent of the time. 
	FIGURE B2.5 • The true value of the concentration is 0.66 and the standard deviation of the distribution of measured concentrations is 0.2. A critical value of 0.33 will be exceeded about 95 percent of the time. 
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	FIGURE B2.6 • The true value of the measured concentration is 0.0 and the standard deviation of the measured concentrations is 0.2. A critical value of 0.33 would be exceeded about 5 percent of the time. 
	FIGURE B2.6 • The true value of the measured concentration is 0.0 and the standard deviation of the measured concentrations is 0.2. A critical value of 0.33 would be exceeded about 5 percent of the time. 
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	What can be concluded about the ability to measure •nothing• (i.e., no analyte)? Radioactivity present at a concentration less than the MDC may be detected, but less than 95 percent of the time. If the •true concentration• is at half the MDC (right at the critical value), the presence of radioactivity will be detected about half the time, and 
	Figure B2.7 • The standard deviation of the normally 
	about half the time it will not. 
	distributed measured concentrations is 0.2. The critical 
	Concentrations lower than the 
	value is 0.33, the MDC is 0.66 and the action level is 1.0. 
	critical value will be detected less often. The only way to do better is to reduce the measurement variability. This usually can only be done by either taking more measurements or by using an instrument or measurement process that has less variability when measuring a blank sample. 
	So what does it mean if a sample is measured, and a decision was made that there was no radioactivity? (This is another way of saying that no radioactivity was detected.) By itself, such a statement means nothing, and has no value unless one knows the level of radioactivity that could be detected if it were there•i.e. the MDC. 
	Similarly, a criterion for action specifying that no radioactivity be detected in a sample must be qualified by information on how hard one must look. That is, the MDC must be specified, which in turn implies a certain limit on the variability of the measurement procedure. 
	In either case, one can never measure zero. One can only decide from a measurement, with a prescribed limit on the probability of being wrong, that if enough radioactivity were there, it would be found. If it is not found, it does not mean it is not present; it only means that whatever might be there is unlikely to be more than the MDC. 
	In conclusion, an action level must be determined, and the MDC must be below it. Only then can radioactivity concentrations of concern can be detected with any degree of certainty. Conversely, specifying a measurement process implies an action level (level of concern) that is at or above the MDC. 







