
  

 

 
   

 

 
 

  

 

  
 

 

 

 

 

  

19  MEASUREMENT UNCERTAINTY 

19.1 Overview 

This chapter discusses the evaluation and reporting of measurement uncertainty. Laboratory 
measurements always involve uncertainty, which must be considered when analytical results are 
used as part of a basis for making decisions.1 Every measured result reported by a laboratory 
should be accompanied by an explicit uncertainty estimate. One purpose of this chapter is to give 
users of radioanalytical data an understanding of the causes of measurement uncertainty and of 
the meaning of uncertainty statements in laboratory reports. The chapter also describes proce-
dures which laboratory personnel use to estimate uncertainties. 

This chapter has more than one intended audience. Not all readers are expected to have the 
mathematical skills necessary to read and completely understand the entire chapter. For this 
reason the material is arranged so that general information is presented first and the more tech-
nical information, which is intended primarily for laboratory personnel with the required mathe-
matical skills, is presented last. The general discussion in Sections 19.2 and 19.3 requires little 
previous knowledge of statistical metrology on the part of the reader and involves no mathe-
matical formulas; however, if the reader is unfamiliar with the fundamental concepts and terms 
of probability and statistics, he or she should read Attachment 19A before starting Section 19.3. 
The technical discussion in Sections 19.4 and 19.5 requires an understanding of basic algebra and 
at least some familiarity with the fundamental concepts of probability and statistics. The discus-
sion of uncertainty propagation requires 
knowledge of differential calculus for a com-
plete understanding. Attachments 19C�E are 
intended for technical specialists. 

The major recommendations of the chapter 
are summarized in Section 19.3.9. 

19.2 The Need for Uncertainty 
Evaluation 

Radiochemical laboratories have long recog-
nized the need to provide uncertainties with 
their results. Almost from the beginning, lab-
oratories have provided the counting uncer-
tainty for each result, because it is usually 
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1 Planners and decisionmakers must also consider the variability of the analyte in sampled populations, as discussed 
in Appendix C; however, the focus of this chapter is on the uncertainty of measuring the analyte in each laboratory 
sample. 
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easy to evaluate (see Sections 19.3.5 and 19.5.2). However, the counting uncertainty is only one 
component of the total measurement uncertainty. Over the years it has been recommended 
repeatedly that laboratories perform good evaluations of the total uncertainty of each measure-
ment. In 1980 the Environmental Protection Agency published a report entitled �Upgrading 
Environmental Radiation Data,� which was produced by an ad hoc committee of the Health 
Physics Society. Two of the recommendations of this report were stated as follows (EPA 1980). 

Every reported measurement result (x) should include an estimate of its overall 
uncertainty (ux) which is based on as nearly a complete an assessment as possible. 

The uncertainty assessment should include every conceivable or likely source of 
inaccuracy in the result. 

More recently ANSI N42.23, American National Standard Measurement and Associated Instru-
ment Quality Assurance for Radioassay Laboratories, recommended that service laboratories 
report both the counting uncertainty and the total propagated uncertainty. ISO/IEC 17025, 
General Requirements for the Competence of Testing and Calibration Laboratories, which was 
released as a standard in 1999, requires calibration and testing laboratories to �have and apply� 
procedures for estimating measurement uncertainties (ISO/IEC, 1999). The National Environ-
mental Laboratory Accreditation Conference (NELAC) has also published a standard on labora-
tory quality systems, which requires a radiochemical testing laboratory to report with each result 
its associated measurement uncertainty (NELAC, 2002, ch. 5). 

Note that the concept of traceability (see Chapter 18) is defined in terms of uncertainty. Trace-
ability is defined as the �property of the result of a measurement or the value of a standard 
whereby it can be related to stated references, usually national or international standards, through 
an unbroken chain of comparisons all having stated uncertainties� (ISO, 1993a). Thus, a labora-
tory cannot realistically claim that its measurement results are �traceable� to a standard unless 
there exists a chain of comparisons, each with an associated uncertainty, connecting its results to 
that standard. 

This chapter considers only measurement uncertainty. The claim is often made that field samp-
ling uncertainties are so large that they dwarf laboratory measurement uncertainties. Although the 
claim may be true in some cases, MARLAP rejects this argument as an excuse for failing to per-
form a full evaluation of the measurement uncertainty. A realistic estimate of the measurement 
uncertainty is one of the most useful quality indicators for a result. 

Although the need for good uncertainty evaluation has long been recognized, not all laboratories 
have been able to implement the recommendations fully. A certain level of mathematical sophis-
tication is required. Implementation requires, at a minimum, a mastery of basic algebra, some 
knowledge of differential calculus and a grasp of many concepts of probability and statistics; but 
even more fundamentally it requires an understanding of the various aspects of the measurement 

MARLAP 19-2 JULY 2004 
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process in the laboratory, including chemical and physical principles as well as practical consid-
erations. Implementation at a laboratory is certainly easier if there are those who understand both 
the measurement process and the mathematical methods, but in some cases it may be necessary 
to use a team approach that brings together all the required expertise. 

Today there is software that performs the mathematical operations for uncertainty evaluation and 
propagation, and some of the difficulties of implementation may disappear as such software 
becomes more widely available. Nevertheless analysts and technicians will still need to under-
stand the concepts of measurement uncertainty and how they apply to particular measurement 
processes in the laboratory. 

19.3 Evaluating and Expressing Measurement Uncertainty 

The methods, terms, and symbols recommended by MARLAP for evaluating and expressing 
measurement uncertainty are described in the Guide to the Expression of Uncertainty in Meas-
urement, hereafter abbreviated as GUM, which was published by the International Organization 
for Standardization (ISO) in 1993 and corrected and reprinted in 1995 (ISO, 1995). The methods 
presented in the GUM are summarized in this chapter and adapted for application to radiochem-
istry. 

The terminology and notation used by the GUM and this chapter may be unfamiliar or confusing 
to readers who are familiar with statistics but not metrology. Metrology (the science of measure-
ment) uses the language and methods of probability and statistics, but adds to them its own 
terms, symbols, and approximation methods. 

19.3.1  Measurement, Error, and Uncertainty 

The result of a measurement is generally used to estimate some particular quantity called the 
measurand. For example, the measurand for a radioactivity measurement might be the specific 
activity of 238Pu in a laboratory sample. The difference between the measured result and the 
actual value of the measurand is the error of the measurement. Both the measured result and the 
error may vary with each repetition of the measurement, while the value of the measurand (the 
true value) remains fixed. 

Measurement error may be caused by random effects and systematic effects in the measurement 
process. Random effects cause the measured result to vary randomly when the measurement is 
repeated. Systematic effects cause the result to tend to differ from the value of the measurand by 
a constant absolute or relative amount, or to vary in a nonrandom manner. Generally, both ran-
dom and systematic effects are present in a measurement process. 
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Measurement Uncertainty 

A measurement error produced by a random effect is a random error, and an error produced by a 
systematic effect is a systematic error. A systematic error is often called a �bias� (see also 
Attachment 19A).2 The distinction between random and systematic errors depends on the specifi-
cation of the measurement process, since a random error in one measurement process may appear 
systematic in another. For example, a random error in the measurement of the specific activity of 
a radioactive standard solution may be systematic from the point of view of a laboratory that pur-
chases the solution and uses it to calibrate instruments for other measurements. 

Measurement errors may also be spurious errors, such as those caused by human blunders and 
instrument malfunctions. Blunders and other spurious errors are not taken into account in the 
statistical evaluation of measurement uncertainty. They should be avoided, if possible, by the use 
of good laboratory practices, or at least detected and corrected by appropriate quality assurance 
and quality control. 

The error of a measurement is unknowable, because one cannot know the error without knowing 
the true value of the quantity being measured (the measurand). For this reason, the error is pri-
marily a theoretical concept. However, the uncertainty of a measurement is a concept with prac-
tical uses. According to the GUM, the term �uncertainty of measurement� denotes a �parameter, 
associated with the result of a measurement, that characterizes the dispersion of the values that 
could reasonably be attributed to the measurand.� The uncertainty of a measured value thus gives 
a bound for the likely size of the measurement error. In practice, there is seldom a need to refer to 
the error of a measurement, but an uncertainty should be stated for every measured result. 

19.3.2  The Measurement Process 

The International Union of Pure and Applied Chemistry (IUPAC) defines a (chemical) measure-
ment process as an �analytical method of defined structure that has been brought into a state of 
statistical control, such that its imprecision and bias are fixed, given the measurement condi-
tions� (IUPAC, 1995). The requirement of statistical control is an important aspect of the defini-
tion, since it is crucial to the determination of realistic uncertainty estimates. Statistical control 
implies that the measurement process is stable with a predictable distribution of results, and is a 
prerequisite for uncertainty evaluation and for the determination of process performance charac-
teristics, such as the detection and quantification capabilities (see Chapter 20). 

The laboratory ensures that the measurement process remains in a state of statistical control by 
following appropriate quality control (QC) procedures, as described in Chapter 18. Procedures 

2 In some performance-testing programs, the term �bias� is used to mean the difference between a laboratory�s 
measured result and the target value. For example, one of the two definitions of bias stated in ANSI N13.30, �Per-
formance Criteria for Radiobioassay,� is the �deviation of a single measured value of a random variable from a cor-
responding expected value.� MARLAP notes that such a deviation, even if it is large, may not give a reliable indica-
tion of bias in the statistical or metrological sense. 
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for statistical QC can be designed not only to ensure process stability but also to obtain data for 
use in the evaluation of measurement uncertainties. 

The first step in defining a measurement process is to define the measurand clearly. The specifi-
cation of the measurand is always ambiguous to some extent, but it should be as clear as neces-
sary for the intended purpose of the data.3 For example, when measuring the activity of a 
radionuclide in a laboratory sample, it is generally necessary to specify the activity as of a certain 
date and time and whether the entire sample or only a certain fraction is of interest. For very 
accurate work, it may be necessary to specify other conditions, such as temperature (e.g., activity 
concentration at 20 EC). 

Often the measurand is not measured directly but instead an estimate is calculated from the meas-
ured values of other input quantities, which have a known mathematical relationship to the meas-
urand. For example, input quantities in a measurement of radioactivity may include the gross 
count, blank or background count, counting efficiency and test portion size. So, another 
important aspect of the measurement process is the mathematical model for the relationship 
between the output quantity, Y, and measurable input quantities, X1,X2,�,XN, on which its value 
depends. The relationship will be expressed here abstractly as Y = f(X1,X2,�,XN), but in practice 
the actual relationship may be expressed using a set of equations. What is important about a 
mathematical model is that it describes exactly how the value of the output quantity depends on 
the values of the input quantities. 

The mathematical model for a radioactivity measurement often has the general form 

(Gross Instrument Signal) � (Blank Signal % Estimated Interferences) Y �� 
Sensitivity 

Each of the quantities shown here may actually be a more complicated expression. For example, 
the sensitivity (the ratio of the net signal to the measurand) may be the product of factors such as 
the mass of the test portion, the chemical yield (recovery) and the instrument counting efficiency. 

When the measurement is performed, a value xi is estimated for each input quantity, Xi, and an 
estimated value, y, of the measurand is calculated using the relationship y = f(x1,x2,�,xN).4 Since 
there is an uncertainty in each input estimate, xi , there is also an uncertainty in the output esti-

3 Because of the unavoidable ambiguity in the specification of the measurand, one should, to be precise, speak of �a 
value� of the measurand and not �the value.� 

4 In accordance with the GUM, an uppercase letter is used here to denote both the input or output quantity and the 
random variable associated with its measurement, while a lowercase letter is used for the estimated value of the 
quantity. For simplicity, in most of the later examples this convention will be abandoned. Only one symbol will be 
used for the quantity, the random variable, and the estimated value of the quantity. 
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mate, y. In order to obtain a complete estimate of the uncertainty of y, all input quantities that 
could have a potentially significant effect on y should be included in the model. 

19.3.3  Analysis of Measurement Uncertainty 

Determining the uncertainty of the output estimate y requires that the uncertainties of all the input 
estimates xi be determined and expressed in comparable forms. The uncertainty of xi is expressed 
in the form of an estimated standard deviation, called the standard uncertainty and denoted by 
u(xi), or in the form of an estimated variance, denoted by u2(xi), which is the square of the stan-
dard uncertainty. A standard uncertainty is sometimes informally called a �one-sigma� uncer-
tainty. The ratio u(xi) / |xi |  is called the relative standard uncertainty of xi, which may be denoted 
by ur(xi). If the input estimates are potentially correlated, covariance estimates u(xi,xj) must also 
be determined. The covariance u(xi,xj) is often recorded and presented in the form of an 
estimated correlation coefficient, r(xi,xj), which is defined as the quotient u(xi,xj) / u(xi)u(xj). The 
standard uncertainties and estimated covariances are combined to obtain the combined standard 
uncertainty of y, denoted by uc(y). (The term �total propagated uncertainty,� or TPU, has been 
used for the same concept; however, MARLAP recommends the GUM�s terminology.) The 
square of the combined standard uncertainty, denoted by uc

2(y), is called the combined variance. 

The mathematical operation of combining the standard uncertainties of the input estimates, 
x1,x2,�,xN, to obtain the combined standard uncertainty of the output estimate, y, is called 
�uncertainty propagation.� Mathematical methods for propagating uncertainty and for evaluating 
the standard uncertainties of the input estimates are described in Section 19.4. 

When one repeats a measurement many times, the observed standard deviation is generated pri-
marily by random measurement errors and not by those systematic errors that remain fixed from 
one measurement to the next. Although the combined standard uncertainty of a result is ex-
pressed in the form of an estimated standard deviation, it is intended to account for both random 
and systematic errors, and for this reason it should tend to be somewhat larger than the standard 
deviation that is observed in repeated measurements. So, if the measurement is repeated many 
times and the observed standard deviation is substantially larger than the combined standard un-
certainties of the results, one may conclude that the uncertainties are being underestimated. 

Methods for evaluating the standard uncertainties u(xi) are classified as either Type A or Type B. 
A Type A evaluation is a statistical evaluation based on repeated observations. One typical 
example of a Type A evaluation involves making a series of independent measurements of a 
quantity, Xi, and calculating the arithmetic mean and the experimental standard deviation of the 
mean. The arithmetic mean is used as the input estimate, xi, and the experimental standard 
deviation of the mean is used as the standard uncertainty, u(xi). There are other Type A methods, 
but all are based on repeated measurements. Any evaluation of standard uncertainty that is not a 
Type A evaluation is a Type B evaluation. 
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Sometimes a Type B evaluation of uncertainty involves making a best guess based on all avail-
able information and professional judgment. Laboratory workers may be reluctant to make this 
kind of evaluation, but it is better to make an informed guess about an uncertainty component 
than to ignore it completely. 

A standard uncertainty u(xi) may be called a �Type A� or �Type B� standard uncertainty, depend-
ing on its method of evaluation, but no distinction is made between the two types for the pur-
poses of uncertainty propagation. 

19.3.4  Corrections for Systematic Effects 

When a systematic effect in the measurement process has been identified and quantified, a quan-
tity should be included in the mathematical measurement model to correct for it. The quantity, 
called a correction (additive) or correction factor (multiplicative), will have an uncertainty which 
should be evaluated and propagated. 

Whenever a previously unrecognized systematic effect is detected, the effect should be investi-
gated and either eliminated procedurally or corrected mathematically. 

19.3.5  Counting Uncertainty 

The counting uncertainty of a radiation measurement (historically called �counting error�) is the 
component of uncertainty caused by the random nature of radioactive decay and radiation count-
ing. Radioactive decay is inherently random in the sense that two atoms of a radionuclide will 
generally decay at different times, even if they are identical in every discernible way. Radiation 
counting is also inherently random unless the efficiency of the counting instrument is 100 %. 

In many cases the counting uncertainty in a single gross radiation counting measurement can be 
estimated by the square root of the observed counts. The Poisson model of radiation counting, 
which is the mathematical basis for this rule, is discussed in Section 19.5. Note that the use of 
this approximation is a Type B evaluation of uncertainty. 

Historically many radiochemistry laboratories reported only the counting uncertainties of their 
measured results. MARLAP recommends that a laboratory consider all possible sources of meas-
urement uncertainty and evaluate and propagate the uncertainties from all sources believed to be 
potentially significant in the final result. 

19.3.6  Expanded Uncertainty 

When a laboratory reports the result of a measurement, it may report the combined standard 
uncertainty, uc(y), or it may multiply uc(y) by a factor k, called a coverage factor, to produce an 
expanded uncertainty, denoted by U, such that the interval from y ! U to y + U has a specified 
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high probability p of containing the value of the measurand. The specified probability, p, is called 
the level of confidence or the coverage probability and is generally only an approximation of the 
true probability of coverage. 

When the distribution of the measured result is approximately normal, the coverage factor is 
often chosen to be k = 2 for a coverage probability of approximately 95 %. An expanded uncer-
tainty calculated with k = 2 or 3 is sometimes informally called a �two-sigma� or �three-sigma� 
uncertainty. In general, if the desired coverage probability is γ and the combined standard uncer-
tainty is believed to be an accurate estimate of the standard deviation of the measurement proc-
ess, the coverage factor for a normally distributed result is k = z(1 + γ) /  2, which can be found in a 
table of quantiles of the standard normal distribution (see Table G.1 in Appendix G). 

The GUM recommends the use of coverage factors in the range 2�3 when the combined standard 
uncertainty represents a good estimate of the true standard deviation. Attachment 19D describes a 
more general procedure for calculating the coverage factor, kp, that gives a desired coverage 
probability p when there is substantial uncertainty in the value of uc(y). 

The GUM does not assign a name to the interval y ± U, but it clearly states that the interval 
should not be called a �confidence interval,� because this term has a precise statistical definition 
and the interval described by the expanded uncertainty usually does not meet the requirements. 
The interval y ± U is sometimes called an �uncertainty interval.�5 

19.3.7  Significant Figures 

The number of significant figures that should be reported for the result of a measurement 
depends on the uncertainty of the result. A common convention is to round the uncertainty (stan-
dard uncertainty or expanded uncertainty) to either one or two significant figures and to report 
both the measured value and the uncertainty to the resulting number of decimal places (ISO, 
1995; Bevington, 1992; EPA, 1980; ANSI N42.23). MARLAP recommends this convention and 
suggests that uncertainties be rounded to two figures. The following examples demonstrate the 
application of the rule. 

5 When the distribution of the result is highly asymmetric, so that the result is more likely to fall on one side of the 
value of the measurand than the other, the use of a single expanded uncertainty, U, to construct a symmetric uncer-
tainty interval about the result may be misleading, especially if one wishes to state an approximate coverage prob-
ability for the interval. However, methods for constructing an asymmetric uncertainty interval with a stated coverage 
probability are beyond the scope of this chapter and require more information than that provided by the input 
estimates, their standard uncertainties, and estimated covariances (e.g., Monte Carlo simulation). Note that the value 
of the combined standard uncertainty is unaffected by the symmetry or asymmetry of the distribution. 
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EXAMPLES 

MEASURED 
VALUE 

(y) 

EXPANDED 
UNCERTAINTY 

U = kuc(y) 

REPORTED 
RESULT 

0.8961     0.0234 0.896 ± 0.023 

0.8961     0.2342 0.90 ± 0.23 

0.8961     2.3419 0.9 ± 2.3 

0.8961   23.4194 1 ± 23 

0.8961 234.1944 0 ± 230 

Only final results should be rounded in this manner. Intermediate results in a series of calculation 
steps should be carried through all steps with additional figures to prevent unnecessary roundoff 
errors. Additional figures are also recommended when the data are stored electronically. Round-
ing should be performed only when the result is reported. (See Section 19.5.11 for a discussion of 
the measurement uncertainty associated with rounding.) 

19.3.8  Reporting the Measurement Uncertainty 

When a measured value y is reported, its uncertainty should always be stated. The laboratory may 
report either the combined standard uncertainty uc(y) or the expanded uncertainty U. 

The measured value, y, and its expanded uncertainty, U, may be reported in the format y ± U or 
y +� U. 

The plus-minus format may be used to report an expanded uncertainty, but it generally should be 
avoided when reporting a standard uncertainty, because readers are likely to interpret it as a con-
fidence interval with a high coverage probability. A commonly used shorthand format for report-
ing a result with its standard uncertainty places the one or two digits of the standard uncertainty 
in parentheses immediately after the corresponding final digits of the rounded result. For ex-
ample, if the rounded result of the measurement is 1.92 and the standard uncertainty is 0.14, the 
result and uncertainty may be shown together as 1.92(14). Another acceptable reporting format 
places the entire standard uncertainty in parentheses. The result in the preceding example would 
appear in this format as 1.92(0.14). The laboratory may also report the standard uncertainty 
explicitly. 

Since laboratories may calculate uncertainties using different methods and report them using 
different coverage factors, it is a bad practice to report an uncertainty without explaining what it 
represents. Any analytical report, even one consisting of only a table of results, should state 
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whether the uncertainty is the combined standard uncertainty or an expanded uncertainty, and in 
the latter case it should also state the coverage factor used and, if possible, the approximate cov-
erage probability. A complete report should also describe the methods used to calculate the un-
certainties. If the laboratory uses a shorthand format for the uncertainty, the report should include 
an explanation of the format. 

The uncertainties for environmental radioactivity measurements should be reported in the same 
units as the results. Relative uncertainties (i.e., uncertainties expressed as percentages) may also 
be reported, but the reporting of relative uncertainties alone is not recommended when the meas-
ured value may be zero, because the relative uncertainty in this case is undefined. A particularly 
bad practice, sometimes implemented in software, is to compute the relative uncertainty first and 
multiply it by the measured value to obtain the absolute uncertainty. When the measured value is 
zero, the uncertainty is reported incorrectly as zero. Reporting of relative uncertainties without 
absolute uncertainties for measurements of spiked samples or standards generally presents no 
problems, because the probability of a negative or zero result is negligible. 

It is possible to calculate radioanalytical results that are less than zero, although negative radio-
activity is physically impossible. Laboratories sometimes choose not to report negative results or 
results that are near zero. Such censoring of results is not recommended. All results, whether pos-
itive, negative, or zero, should be reported as obtained, together with their uncertainties. 

The preceding statement must be qualified, because a measured value y may be so far below zero 
that it indicates a possible blunder, procedural failure, or other quality control problem. Usually, 
if y + 3uc(y) < 0, the result should be considered invalid, although the accuracy of the uncertainty 
estimate uc(y) must be considered, especially in cases where only few counts are observed during 
the measurement and counting uncertainty is the dominant component of uc(y). (See Chapter 18, 
Laboratory Quality Control, and Attachment 19D of this chapter.) 

19.3.9  Recommendations 

MARLAP makes the following recommendations to radioanalytical laboratories. 

� All radioanalytical laboratories should adopt the terminology and methods of the Guide to 
the Expression of Uncertainty in Measurement (ISO, 1995) for evaluating and reporting 
measurement uncertainty. 

� The laboratory should follow QC procedures that ensure the measurement process 
remains in a state of statistical control, which is a prerequisite for uncertainty evaluation. 

� Uncertainty estimates should account for both random and systematic effects in the meas-
urement process, but they should not account for possible blunders or other spurious 
errors. Spurious errors indicate a loss of statistical control of the process. 
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� The laboratory should report each measured value with either its combined standard 
uncertainty or its expanded uncertainty. 

� The reported measurement uncertainties should be clearly explained. In particular, when 
an expanded uncertainty is reported, the coverage factor should be stated, and, if possible, 
the approximate coverage probability should also be given. 

� A laboratory should consider all possible sources of measurement uncertainty and eval-
uate and propagate the uncertainties from all sources believed to be potentially significant 
in the final result. 

� Each uncertainty should be rounded to either one or two significant figures, and the 
measured value should be rounded to the same number of decimal places as its uncer-
tainty. (MARLAP prefers the use of two figures in the uncertainty.) Only final results 
should be rounded in this manner. 

� The laboratory should report all results, whether positive, negative, or zero, as obtained, 
together with their uncertainties. 

MARLAP makes no recommendations regarding the presentation of radioanalytical data by the 
laboratory�s clients or other end users of the data. 

19.4 Procedures for Evaluating Uncertainty 

The usual steps for evaluating and reporting the uncertainty of a measurement may be sum-
marized as follows (adapted from Chapter 8 of the GUM): 

1. Identify the measurand, Y, and all the input quantities, Xi, for the mathematical model. 
Include all quantities whose variability or uncertainty could have a potentially significant 
effect on the result. Express the mathematical relationship, Y = f(X1,X2,�,XN), between 
the measurand and the input quantities. 

2. Determine an estimate, xi, of the value of each input quantity, Xi  (an �input estimate,� as 
defined in Section 19.3.2). 

3. Evaluate the standard uncertainty, u(xi), for each input estimate, xi , using either a Type A 
or Type B method of evaluation (see Section 19.3.3). 

4. Evaluate the covariances, u(xi,xj), for all pairs of input estimates with potentially signifi-
cant correlations. 

JULY 2004 19-11 MARLAP 



   
   

 

  

 

 

 

 

Measurement Uncertainty 

5. Calculate the estimate, y, of the measurand from the relationship y = f(x1,x2,�,xN), where 
f is the function determined in Step 1. 

6. Determine the combined standard uncertainty, uc(y), of the estimate, y (see Section 
19.3.3). 

7. Optionally multiply uc(y) by a coverage factor k to obtain the expanded uncertainty U 
such that the interval [y ! U, y + U] can be expected to contain the value of the measur-
and with a specified probability (see Section 19.3.6 and Attachment 19D). 

8. Report the result as y ± U with the unit of measurement, and, at a minimum, state the 
coverage factor used to compute U and the estimated coverage probability. Alternatively, 
report the result, y, and its combined standard uncertainty, uc(y), with the unit of 
measurement. 

19.4.1  Identifying Sources of Uncertainty 

The procedure for assessing the uncertainty of a measurement begins with listing all conceivable 
sources of uncertainty in the measurement process. Even if a mathematical model has been iden-
tified, further thought may lead to the inclusion of more quantities in the model. Some sources of 
uncertainty will be more significant than others, but all should be listed. 

After all conceivable sources of uncertainty are listed, they should be categorized as either poten-
tially significant or negligible. Each uncertainty that is potentially significant should be evaluated 
quantitatively. The following sources of uncertainty may not always be significant but should at 
least be considered: 

� radiation counting 
� instrument calibration (e.g., counting efficiency) 
� tracers, carriers, or other methods of yield measurement 
� variable instrument backgrounds 
� variable counting efficiency (e.g., due to the instrument or to source geometry and 

placement) 
� contamination of reagents and tracers 
� interferences, such as crosstalk and spillover 
� baseline determination (gamma-ray spectrometry) 
� laboratory subsampling 

Other sources of uncertainty include: 

� volume and mass measurements 
� determination of counting time and correction for dead time 
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� time measurements used in decay and ingrowth calculations 
� approximation errors in simplified mathematical models 
� published values for half-lives and radiation emission probabilities 

NOTE: MARLAP does not recommend that laboratories expend tremendous effort on the evalu-
ation of small components of uncertainty when much larger components are known to dominate 
the combined standard uncertainty of the result. However, this chapter does provide guidance in 
several places on the evaluation of very small uncertainties. Such examples may be instructive 
even if the uncertainties are negligible, because they illustrate either important concepts or pos-
sible methods of uncertainty evaluation. Furthermore, an uncertainty component that is negligible 
in one context (e.g., pipetting uncertainty in the context of measuring the activity of a 
radionuclide in a soil sample) may be considered significant in another (e.g., quality control of 
measuring instruments). It is also true that a very large number of small uncertainties may be 
significant when combined. 

19.4.2  Evaluation of Standard Uncertainties 

Calculating the combined standard uncertainty of an output estimate y = f(x1,x2,�,xN) requires 
the evaluation of the standard uncertainty of each input estimate, xi. As stated earlier, methods for 
evaluating standard uncertainties are classified as either �Type A� or �Type B.� A Type A eval-
uation of an uncertainty uses a series of measurements to estimate the standard deviation empiri-
cally. Any other method of evaluating an uncertainty is a Type B method. 

In general, the standard uncertainty of an input estimate, xi, is an estimated standard deviation for 
the estimator whose value is used for xi. The appropriate methods for estimating this standard 
deviation depend on how the value of the input estimate is obtained. 

19.4.2.1  Type A Evaluations 

Suppose Xi is an input quantity in the mathematical model. If a series of n independent observa-
tions of Xi are made under the same measurement conditions, yielding the results Xi,1, Xi,2, ..., Xi,n, 
the appropriate value for the input estimate xi is the arithmetic mean, or average, Xi , defined as 

X i ' 1 j 
n 

Xi,k (19.1) 
n k'1 

The experimental variance of the observed values is defined as 

n 
s 2(Xi,k) ' 1 (Xi,k & X i)

2 (19.2) 
n & 1 k

j
'1 
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and the experimental standard deviation, s(Xi, k), is the square root of s2(Xi, k). The experimental 
standard deviation of the mean, s(Xi ), is obtained by dividing s(Xi, k) by n .6 

s(Xi,k) s(Xi) ' (19.3) 
n 

The experimental standard deviation of the mean is also commonly called the �standard error of 
the mean.� 

The Type A standard uncertainty of the input estimate xi = Xi  is defined to be the experimental 
standard deviation of the mean. Combining the preceding formulas gives the following equation 
for the standard uncertainty of xi : 

1 n 
(Xi,k & X i)

2 (19.4) u(xi) ' 
n (n & 1) k

j
'1 

When the input estimate xi and standard uncertainty u(xi) are evaluated as described above, the 
number of degrees of freedom for the evaluation is equal to n ! 1, or one less than the number of 
independent measurements of the quantity Xi . In general, the number of degrees of freedom for a 
statistical determination of a set of quantities equals the number of independent observations 
minus the number of quantities estimated. The number of degrees of freedom for each evaluation 
of standard uncertainty is needed to implement the procedure for calculating coverage factors 
described in Attachment 19D. 

EXAMPLE 19.1  Ten independent measurements of a quantity Xi are made, yielding the values 

12.132  12.139  12.128  12.133  12.132 
12.135  12.130  12.129  12.134  12.136 

The estimated value xi is the arithmetic mean of the values Xi,k . 

1 n 121.328 xi ' Xi ' j Xi,k ' ' 12.1328 
n k'1 10 

6 The experimental standard deviation of the mean, s(Xi) , may be used as the standard uncertainty of the average, 
Xi , even if the individual observations Xi,k are obtained under different conditions of measurement, so long as all 
pairs of distinct observations, Xi,k and Xi,l, can be considered to be uncorrelated. However, in these circumstances, it 
is sometimes better to define the input estimate, xi, to be a weighted average of the observations. 

Measurement Uncertainty 
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The standard uncertainty of xi is 

1 n 
(Xi,k & Xi)

2 u(xi) ' s(Xi) ' 
n (n&1) k

j
'1 

1 10 
' (Xi,k & 12.1328)2 

10  (10�1)  kj'1 

' 1.12889 × 10&6 ' 0.0011 

 

 

  
  

  

 

 

 
 

  

Measurement Uncertainty 

USE OF HISTORICAL DATA 

In some cases there may be accumulated data for a measurement system, such as a balance or 
pipet, which can be used in a Type A evaluation of uncertainty for future measurements, 
assuming the measurement process remains in control. In fact the use of recent historical data is 
advisable in such cases, because it enlarges the pool of data available for uncertainty evaluation 
and increases the number of degrees of freedom. This type of uncertainty evaluation can be 
linked closely to the measurement system�s routine quality control. 

One may pool recent historical data with current measurement data, or one may evaluate an 
uncertainty based on historical data alone. The appropriate expression for the standard uncer-
tainty depends on how the data are used to calculate the input estimate, xi, and on whether xi is 
used to estimate the value of a parameter or to predict the value of a variable. An example of 
estimating the value of a parameter is measuring the mass of material in a container using an 
analytical balance. An example of predicting the value of a variable is calibrating a pipet, since 
the actual volumes dispensed by the pipet in subsequent measurements vary and are seldom 
measured directly. 

Attachment 19E provides descriptions and examples of the use of historical data for Type A eval-
uations of uncertainty in mass and volume measurements. 

EVALUATION OF COVARIANCE 

If Xi and Xj are two input quantities and estimates of their values are correlated, a Type A evalua-
tion of covariance may be performed by making n independent pairs of simultaneous observa-
tions of Xi and Xj and calculating the experimental covariance of the means. If the observed pairs 
are (Xi,1, Xj,1), (Xi,2, Xj,2), �, (Xi,n, Xj,n), the experimental covariance of the values is 
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1 n 
s(Xi,k,Xj,k) ' (Xi,k & X i) (Xj,k & Xj) (19.5) 

n & 1 k
j
'1 

and the experimental covariance of the means Xi and  Xj is 

s(Xi,k,Xj,k) s(Xi,X j) ' (19.6) 
n 

So, the Type A covariance of the input estimates xi = Xi  and xj = Xj  is 

u(xi,xj) �� s(X i,Xj) �� 1 n 
(Xi,k � Xi) (Xj,k � X j) (19.7) 

n (n � 1)  k
j

�1 � 

Measurement Uncertainty 

An evaluation of variances and covariances of quantities determined by  the method of least 
squares may also be a Type A evaluation. 

19.4.2.2  Type B  Evaluations 

There are many ways to perform Type B evaluations of standard uncertainty. This section de-
scribes some common Type B evaluations but is not meant to be exhaustive. 

POISSON COUNTING UNCERTAINTY 

One example of a Type B method already  given is the estimation of counting uncertainty using 
the square root of the observed counts. If the observed count is N, when the Poisson approxima-
tion is used, the standard uncertainty of N may be evaluated as u(N) = N . When N may be very 
small or even zero, MARLAP  recommends the use of the equation u(N) = N % 1  instead (see 
Attachment 19D). 

EXAMPLE 19.2  A Poisson counting  measurement is performed, during which N = 121 counts 
are observed. So, the standard uncertainty of N is u(N) = 121  = 11. 

RECTANGULAR  DISTRIBUTION 

Sometimes a Type B evaluation of an uncertainty  u(x) consists of estimating  an upper bound a 
for the magnitude of the error of x based on professional judgment and the best available infor-
mation. If nothing  else is known about the distribution of the measured result, then after a is esti-
mated, the standard uncertainty may be calculated using the equation 
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u(x) ' (19.8) 
3 

Measurement Uncertainty 

a 

which is derived from a statistical model in which the error has a rectangular, or uniform, distri-
bution bounded by �a and +a (see Section 19A.6 in Attachment 19A). 

EXAMPLE 19.3  The maximum error of a measured value x = 34.40 is estimated to be a = 0.05, 
with all values between 34.35 and 34.45 considered equally likely. So, the standard uncertainty 
of x is u(x) = 0.05 / 3  = 0.029. 

EXAMPLE 19.4  A strontium carrier solution is prepared by dissolving  strontium nitrate in 
acidified water. The purity, P, of the strontium nitrate is stated to be 99.9 %, or 0.999, but no 
tolerance or uncertainty is provided. By default, a rectangular distribution with half-width 
1 !  P, or 0.001, is assumed. So, the standard uncertainty of P is evaluated as u(P) = 
0.001 / 3  = 0.00058. 

TRAPEZOIDAL  DISTRIBUTION 

It may also happen that one can estimate an upper bound, a, for the magnitude of the error so that 
the input quantity is believed with near certainty to lie between x  !  a and x + a, but one believes 
that values near x are more likely than those near the extremes, x ± a. In this case, a symmetric 
trapezoidal distribution may be used to obtain the standard uncertainty of x. The trapezoidal dis-
tribution is named for the fact that the graph of its pdf has the shape of a trapezoid (see Section 
19A.7 in Attachment 19A). To use the trapezoidal  model, one determines  the value a, which rep-
resents the maximum possible error of the input estimate, and another value, β, which describes 
the fraction of possible values about the input estimate that are considered most likely 
(0 < β < 1). Then the standard uncertainty of x is given by the following  expression. 

1 % β2 
(19.9) u(x) ' a 

6 

As β approaches zero, the trapezoidal distribution becomes triangular, and the standard uncer-
tainty of  x approaches a / 6 . As β approaches one, the trapezoidal distribution becomes rectan-
gular, and the standard uncertainty of x approaches a / 3 . 
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 EXAMPLE 19.5  Extreme bounds for a quantity X are estimated to be 34.3 and 34.5, with val-
ues between 34.35 and 34.45 considered most likely. Using the trapezoidal model, one obtains 
the input estimate 

34.3 % 34.5 x ' 
2 

the half-width 

a ' 
34.5 & 34.3 

2 
' 0.1 

and the fraction 

β ' 
34.45 & 34.35 
34.5 & 34.3 

' 
0.1 
0.2 

' 0.5 

Then the standard uncertainty of x is calculated as follows. 

u(x) ' a 1 % β2 

6 
' 0.1 1 % 0.52 

6 
' 0.046 

Measurement Uncertainty 

EXAMPLE 19.6  The manufacturer of a 100-milliliter volumetric flask specifies that the 
capacity tolerance is 0.08 mL. The user of the flask assumes the tolerance represents the half-
width of a triangular distribution and evaluates the standard uncertainty of the capacity to be 
0.08 / 6  = 0.033 mL. (See Section 19.5.10 and Attachment 19E for more information about 
the uncertainty of a volume measurement.) 

IMPORTED VALUES 

When the estimate of an input quantity is taken from an external source, such as a book or a cali-
bration certificate, which states the uncertainty as a multiple of the standard deviation s, the stan-
dard uncertainty is obtained by dividing  the stated uncertainty by the stated multiplier of  s. 

EXAMPLE 19.7  The uncertainty for a measured activity concentration, cA, is stated to be 0.015 
Bq/L and the stated multiplier is 2. So, the standard uncertainty of  cA is u(cA) = 0.015 / 2 = 
0.0075 Bq/L. 

If the estimate is provided  by  a source which  gives a bound c for the error such that the interval 
from  x  !  c to x + c contains the true value with 100γ  % confidence (0 < γ < 1) but no other infor-
mation about the distribution is  given, the measured result may be assumed to have a normal dis-
tribution, and the standard uncertainty may therefore be evaluated as 

MARLAP 19-18 JULY 2004 



 

 

 

 

 

 

Measurement Uncertainty 

c u(x) ' (19.10) z(1%γ) /2  

The value of z(1 + γ) / 2 may be found in a table of quantiles of the standard normal distribution (see 
Table G.1 in Appendix G). 

EXAMPLE 19.8  The specific activity, x, of a commercial standard solution is stated to lie 
within the interval (4530 ± 64) Bq/g with 95 % confidence. The standard uncertainty may 
therefore be evaluated as u(x) = 64 / z0.975 = 64 / 1.96 = 33 Bq/g. 

EVALUATION OF COVARIANCE 

Evaluation of the covariance of two input estimates, xi and xj, whose uncertainties are evaluated 
by Type B methods may require expert judgment. Generally, in such cases it is simpler to esti-
mate the correlation coefficient, r(xi,xj), first and then multiply it by the standard uncertainties, 
u(xi) and u(xj) to obtain the covariance, u(xi,xj). The correlation coefficient must be a number 
between !1 and +1. A correlation coefficient of zero indicates no correlation between the esti-
mates, while a value of ±1 indicates the strongest possible correlation. Usually, if the two input 
estimates have a significant correlation, it is easy to guess the sign of the correlation coefficient, 
but estimating its magnitude may require knowledge and experience. 

If the input estimates are imported values (e.g., from a published reference), the only practical 
method of evaluating their covariance is to use the correlation coefficient, if any, provided with 
the estimates. When no correlation coefficient is stated, the input estimates must be assumed to 
be uncorrelated. 

In many cases when a correlation between two input estimates is suspected, the reason for the 
suspicion is that identifiable random or systematic effects in the measurement process are known 
to affect both estimates. It may be possible in such cases to include additional explicit variables 
in the mathematical model to account for those effects, eliminating the need for Type B covar-
iance evaluations. 

Sometimes two input estimates for one measurement model are explicitly calculated from other 
measured values. Section 19.4.4 shows how one may evaluate the covariance for two such calcu-
lated values. 
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N 2 N&1 N 
2 Mf Mf Mf u (y) ' j c u 2(xi) % 2 j j u(xi,xj) 

i'1 Mxi i'1 j' i%1 Mxi Mxj (19.11) 

Measurement Uncertainty 

19.4.3  Combined Standard Uncertainty 

19.4.3.1  Uncertainty Propagation Formula 

Consider the mathematical  model Y = f(X1,X2,�,XN). If  x1, x2, �, xN are measured values of the 
input quantities, Xi, and y = f(x1,x2,�,xN) is the calculated value of the output quantity,  Y, the 
combined standard uncertainty of y is obtained using  the following  formula. 

Uncertainty Propagation Formula 

Here u2(xi) denotes the estimated variance of xi , or the square of its standard uncertainty; u(xi,xj) 
denotes the estimated covariance of xi and xj ; Mf / Mxi (or My / Mxi) denotes the partial derivative  of 
f with respect to Xi evaluated at the measured values x1, x2, �,  xN ; and u2

c(y) denotes the combined 
variance of y, whose positive square root, uc(y), is the combined standard uncertainty of y. The 
partial derivatives, Mf / Mxi, are called sensitivity coefficients. 

The preceding  formula, called the �law of propagation of uncertainty� in the GUM, will be called 
the �uncertainty propagation formula� or the �first-order uncertainty propagation formula� in this 
document. Equation 19.11 is commonly used to define the combined standard uncertainty, but 
note that the combined standard uncertainty is only an approximation of the true standard devia-
tion of the output estimate, and sometimes other definitions provide better approximations (e.g., 
see Section 19.4.5.1).7 

Table 19.1 shows several rules for partial differentiation, which tend to be useful when one cal-
culates the sensitivity coefficients in the uncertainty propagation formula. Table 19.2 shows how 
to propagate uncertainties in some common cases. The  expressions for the combined standard 
uncertainties shown in Table 19.2 may be derived from the uncertainty propagation formula 
using the differentiation rules listed in Table 19.1. 

7 The uncertainty propagation formula may  be derived by approximating  the function f by a first-order Taylor 
polynomial. 
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TABLE 19.1 � Differentiation rules 

In the following equations the symbols F and G denote arbitrary expressions, which may contain the variables 
x1,x2,...,xN. The symbol c denotes either a constant expression or any other expression that does not contain the 
variable xi. 

Mc 
Mxi 

' 0 M(F ± G) 
Mxi 

' MF 
Mxi 

± MG 
Mxi 

M(F c) 
Mxi 

' cF c&1 MF 
Mxi 

Mxi 

Mxi 

' 1 M(FG) 
Mxi 

' MF G % F MG 
Mxi Mxi 

M(eF) 
Mxi 

F MF 
' e

Mxi 

Mxj 

Mxi 

' 0, if i … j M(F / G) 
Mxi 

' 
(MF / Mxi)G & F (MG / Mxi) 

G 2 

M(ln F) 
Mxi 

' 
MF / Mxi 

F 

M(cF) 
Mxi 

' c MF 
Mxi 

M(1 / F) 
Mxi 

' 
&MF / Mxi 

F 2 

M(log10 F) 
Mxi 

' 
MF / Mxi 

(ln 10)F 

TABLE 19.2 � Applications of the first-order uncertainty propagation formula 

SUMS AND 
DIFFERENCES 

If a and b are constants, then 
2 u (ax ± by) ' a 2u 2(x) % b 2u 2(y) ± 2ab @ u(x,y) c 

PRODUCTS If x and y are measured values, then 
2 u (xy) ' u 2(x)y 2 % x 2u 2(y) % 2xy @ u(x,y) c 

When x and y are nonzero, the formula may be rewritten as 
2 u 2(x) 

% u 2(y) 
% 2u(x,y) u (xy) ' x 2y 2 

c 
x 2 y 2 xy 

QUOTIENTS If x and y are measured values, then 
2 x 

' u 2(x) 
% x 2u 2(y) 

& 2x @ u(x,y) u c y y 2 y 4 y 3 

When x is nonzero, the variance formula may be rewritten as 
2 x 

' x 2 u 2(x) 
% u 2(y) 

& 2u(x,y) u c y y 2 x 2 y 2 xy 

EXPONENTIALS If a is a constant, then 
2 2ax u 2(x) u (eax ) ' a 2 ec 

If n is a positive integral constant, then 
2 u (x n ) ' n 2 x 2n & 2 u 2(x) c 

LOGARITHMS If a is a constant and ax is positive, then 
2 2 u 2(x) u 2(x) u (ln ax) ' u 2(x) and u (log10 ax) ' . c c 

x 2 (ln 10)2 x 2 (5.302)x 2 

Measurement Uncertainty 
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EXAMPLE 19.9 

Problem: A 6000-second gross-alpha measurement is performed on a test source prepared  by 
evaporating water on a stainless steel planchet. The measurement produces 120 alpha counts. 
The preceding  blank measurement on the instrument had a duration of 6000 s and produced 42 
alpha counts. The estimated alpha-particle counting efficiency is 0.223 with a standard uncer-
tainty of 0.015. The sample volume analyzed is 0.05000 L, with a standard uncertainty of 
0.00019 L. The alpha-particle emission rate per unit volume is described by the mathematical 
model 

N
c S / t & S N

 B / tB 
'α g V 

where 
cα is the alpha-particle emission rate per unit volume; 
NS is the source count (NS = 120); 
NB is the blank count (NB = 42); 
tS is the source count time (tS = 6000 s); 
tB is the blank count time (tB = 6000 s); 
g is the counting efficiency (g = 0.223); and 
V is the volume analyzed (V = 0.0500 L). 

What is the output estimate cα and what is its combined standard uncertainty, uc(cα)? (Use the 
Poisson approximation for the uncertainties of  NS and NB.) 

If the input estimates x1, x2, �, xN are uncorrelated, the uncertainty propagation formula reduces 
to 

2 
N Mf 2 

uc (y) �� j u 2(xi) (19.12) 
i��1 Mxi 

Measurement Uncertainty 

Equation 19.12 is only valid when the input estimates are uncorrelated. Although this case occurs 
frequently in practice, there are notable exceptions. When input estimates are obtained using the 
same measuring  devices or the same standard solutions, or when they are calculated from the 
same data, there is a potential for correlation. For example, instrument calibration parameters 
determined by least-squares analysis may be strongly correlated. Fortunately, the method of least 
squares provides covariance estimates with almost no additional effort (see Attachment 19C). In 
general, ignoring  correlations between the input estimates may  lead to overestimation or under-
estimation of the combined standard uncertainty. 
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S S & B B 
' 120/6000 & 42/6000 cα ' . 1.17 s&1 @ L&1 

gV (0.223)(0.05000) 

 
 

Solution: First compute  the  output estimate  cα (alpha particles per second per liter). 

N / t N / t

Then compute the combined standard uncertainty uc(cα). The only uncertainties included in the 
model will be those associated with the counts NS and NB, the efficiency g, and the volume V. 
There is no reason to suspect correlations between the measured values; so, the uncertainty 
propagation formula becomes 

2 2 2 2 Mcα Mcα Mcα Mcα u 2(V) u 2(g) % u 2(NS) % u 2(NB) % uc
2(cα) ' 

Mg MV MNS MNB 

The sensitivity coefficients are evaluated using the differentiation rules shown in Table 19.1: 

Mcα M(NS / tS & NB / tB) /  MNS Mcα M(NS / tS & NB / tB) /  MNB 
' ' 

MNS gV MNB gV 
M(NS / tS) /  MNS & 0 0 & M(NB / tB) /  MNB 

' ' 
gV gV 

MNS / MNS &MNB / MNB 
' ' 

tS gV tB gV 
1 &1 

' ' 
tS gV tB gV 

' 0.0149477 s&1 @ L&1 ' &0.0149477 s&1 @ L&1 

Mcα NS / tS & NB / tB Mg Mcα NS / tS & NB / tB MV 
' &  ' &  

Mg g 2V Mg MV gV 2 MV 
NS / tS & NB / tB NS / tS & NB / tB 

' &  ' &  
g 2 V gV 2 

' &5.22834 s&1 @ L&1 ' &23.3184 s&1 @ L&2 

The Poisson approximation is used for the standard uncertainties of the counts NS and NB. So, 

u2(NS) = NS = 120  and      u2(NB) = NB = 42 

Measurement Uncertainty 
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Recall from the statement of the problem that u(g) = 0.015 and u(V) = 0.00019. When the 
values of all these expressions are substituted into the uncertainty propagation formula, the 
combined variance is 

uc
2(cα) ' (0.0149477)2(120) % (&0.0149477)2(42) % (&5.22834)2(0.015)2 

% (&23.3184)2(0.00019)2 

' 0.0424 s&2 @ L&2 

So, the combined standard uncertainty is uc(cα) = 0.0424 . 0.21 s!1 @ L!1. 

19.4.3.2  Components of Uncertainty 

The product of |Mf / Mxi | and the standard uncertainty u(xi) is called the component of the com-
bined standard uncertainty generated by the standard uncertainty of xi , and may be denoted 
by ui(y). When all the input estimates are uncorrelated, the combined standard uncertainty may be 
written in terms of its components as follows. 

N 
2 2 u (y) ' j ui (y) (19.13) c 

i'1 

Since uc
2(y) is the sum of the squares of the components ui(y), the combined standard uncertainty 

tends to be determined primarily by its largest components. When the input estimates are corre-
lated, Equation 19.13 is replaced by 

N N&1 N 
uc

2(y) ' j ui 
2(y) % 2 j j r(xi,xj)ui(y)uj(y) (19.14) 

i'1 i'1 j' i%1 

Recall that r(xi,xj) denotes the estimated correlation coefficient of xi and xj. 

Figure 19.1 relates Equation 19.13 to the Pythagorean theorem about right triangles to illustrate 
graphically how uncertainty components are added to produce the combined standard uncertainty 
in the case of a model, y = f(x1,x2), with two uncorrelated input estimates, x1 and x2. 

Measurement Uncertainty 
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u2(y) = u1
2(y) + u2

2(y) c 

u (y) c
u2(y) 

u1(y) 

FIGURE 19.1 � Addition of uncertainty components 

In the figure, the first component, u1(y), is five times larger than the second component, u2(y), 
and as a result the combined standard uncertainty, uc(y), is dominated by u1(y). Ignoring u2(y) in 
this case would decrease the combined standard uncertainty by only about 2 % of its value. 

When the model involves more than two input quantities, the addition process shown in the 
figure may be iterated.8 

19.4.3.3  Special Forms of the Uncertainty Propagation Formula 

It is helpful to remember certain special forms of the uncertainty propagation formula. For 
example, if the values x1, x2, �, xn and z1, z2, �, zm are uncorrelated and nonzero, the combined 

x1 x2 @ @ @xn standard uncertainty of y =  may be calculated from the formula 
z1 z2 @ @ @zm 

u 2(x1) u 2(x2) u 2(xn) u 2(z1) u 2(z2) u 2(zm) 
uc

2(y) ' y 2 % % @ @ @ % % % % @ @ @ % (19.15) 
2 2 2 2 2 2 x x x z z z 1 2 n 1 2 m 

f(x1,x2,�,x )n As another example, suppose y ' , where f is some specified function of x1, x2, �, xn , z1 z2 @ @ @zm 

all the zi are nonzero, and all the input estimates are uncorrelated. Then 

u 2 f(x1 x2 @ @ @x ) u 2(z1) u 2(z2) u 2(z ) 2 c n uc (y) ' % y 2 % % @ @ @ % m (19.16) 
2 2 2 2 2 2 z 2 @ @ @z z z z 1 z m 1 2 m 

8 When the two input estimates are correlated, the vectors that represent u1(y) and u2(y) may still be added graph-
ically, but they are no longer perpendicular. In this case the correlation coefficient, r(xi,xj), equals the cosine of the 
angle between the two vectors. When there are more than two input quantities, the existence of correlations among 
the input estimates makes the graphical addition method impractical. 

Measurement Uncertainty 
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Equation 19.16 is particularly useful in radiochemistry, where f(x1,x2,�,xn) might be a net count 
rate and z1 z2@ @ @zm might be the product of the test portion size, chemical yield, counting effi-
ciency, decay factor, and other sensitivity factors. 

EXAMPLE 19.10  Consider the preceding gross-alpha example. Equation 19.16 implies the 
following equation for the combined variance of cα. 

2 
2 uc (NS / tS & NB / tB) 2 u 2(g ) 

% 
u 2(V) uc (cα) ' % cα 

g 2V 2 g 2 V 2 

u 2(NS) /  tS
2 
% u 2(NB) /  tB

2 
2 u 2(g ) 

% u 2(V) 
' % cα 

g 2V 2 g 2 V 2 

Then, since u2(NS) = NS and u2(NB) = NB, 

2 2 
2 NS / tS % NB / tB 2 u 2(g ) 

% 
u 2(V) uc (cα) ' % cα 

g 2V 2 g 2 V 2 

120 / (6000 s)2 % 42 / (6000 s)2 0.0152 
% (0.00019 L)2 

' % (1.17 s&1 @L&1)2 

(0.223)2(0.0500 L)2 0.2232 (0.0500 L)2 

' 0.0424 s&2 @ L&2 

and uc(cα) = 0.21 s!1 @ L!1. 

19.4.4  The Estimated Covariance of Two Output Estimates 

Measured values obtained from two measurement processes may be correlated if some of the 
same input estimates are used to calculate output estimates in both models. If the two measured 
values are to be used as input quantities in a third model, their covariance must be estimated. 

Suppose the combined set of input quantities in two mathematical models consists of X1, X2, �, 
XN . Then the models can be expressed as Y = f(X1,X2,�,XN) and Z = g(X1,X2,�,XN), where each 
of the measurands may actually depend on only a subset of the combined list of input quantities. 
If the input estimates are x1, x2, �, xN and the output estimates are y = f(x1,x2,�,xN) and z = 
g(x1,x2,�,xN), the covariance of y and z is estimated by 

N N Mf Mg u(y,z) ' j j u(xi,xj) (19.17) 
i'1 j'1 Mxi Mxj 

Measurement Uncertainty 
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Measurement Uncertainty 

Since u(y,y) = uc
2(y), the preceding equation may be considered a generalization of the first-order 

uncertainty propagation formula. 

Even when all the input estimates, xi and xj, are uncorrelated, the output estimates, y and z, may 
be correlated, but in this case Equation 19.17 reduces to the following. 

N Mf Mg u(y,z) ' j u 2(xi) (19.18) 
i'1 Mxi Mxi 

EXAMPLE 19.11  A radiation counter is calibrated for a certain source geometry and the count-
ing efficiency is determined to be 0.423 with a standard uncertainty of 0.012. A 6000-second 
blank measurement is performed and 108 counts are recorded. Next two 3000-second meas-
urements of a radioactive source in the required geometry are performed. The first measure-
ment produces 1210 counts and the second produces 1244 counts. The activity of the source is 
calculated twice, using the model 

NS / tS & NB / tB A ' 
g 

where 
A is the source activity; 
NS is the count observed when the source is measured (1210 and 1244); 
tS is the source count time (3000 s, negligible uncertainty); 
NB is the count observed when the blank is measured; 
tB is the blank count time (6000 s, negligible uncertainty); and 
g is the counting efficiency (0.423 ± 0.012). 

Let A1 and A2 denote the two calculated activities. Assuming all the input estimates are uncor-
related, estimate the covariance u(A1, A2). 

The standard uncertainties of NS and NB in each measurement are evaluated using the Poisson 
approximation. So, u2(NS) = NS and u2(NB) = NB. Then Equation 19.16 can be used to calculate 
the combined standard uncertainty of each result, as shown below. 

2 2 
2 u 2(NS) /  tS % u 2(NB) /  tB 

% A 2 u 2(g ) uc (A) ' 
g 2 g 2 

/ t 2 / t 2 NS S % NB B 
% A 2 u 2(g ) 

' 
g 2 g 2 
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Equation 19.18 for the covariance in this example becomes 

MA1 MA2 MA1 MA2 u(A1,A2) ' u 2(NB) % u 2(g) 
MNB MNB Mg Mg 

The required sensitivity coefficients are found as follows. 

MA 
'

&1 MA NS / tS & NB / tB 
' &  ' &

A 
MNB tB g Mg g2 g 

For the first measurement 

A1 ' 
1210 / 3000 & 108 / 6000 

' 0.91095 Bq 
0.423 

1210 / 30002 % 108 / 60002 
uc(A1) ' % 0.910952 0.0122 

' 0.0379 Bq 
0.4232 0.4232 

MA1 
'

&1 
' &3.9401 × 10&4 Bq 

MNB (6000)(0.423) 
MA1 

' &
0.91095 

' &2.1536 Bq 
Mg 0.423 

For the second measurement 

A2 ' 
1244 / 3000 & 108 / 6000 

' 0.93775 Bq 
0.423 

1244 / 30002 % 108 / 60002 
u % 0.937752 0.0122 

' 0.0387 Bq c(A2) ' 
0.4232 0.4232 

MA2 &1 
' ' &3.9401 × 10&4 Bq 

MNB (6000)(0.423) 
MA2 

' &
0.93775 

' &2.2169 Bq 
Mg 0.423 

Measurement Uncertainty 
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So, the covariance is estimated to be 

u(A1,A2) ' (&3.9401 × 10&4)(&3.9401 × 10&4)(108) % (&2.1536)(&2.2169)(0.012)2 

' 7.043 × 10&4 Bq2 

The estimated correlation coefficient is 

r(A1,A2) ' 
u(A1,A2) 

u(A1)u(A2) 
' 7.043 × 10&4 

(0.0379)(0.0387) 
' 0.48 . 

N 2 N N 2 1 M2f 
% Mf M3f 2 u 2(xi) % j uc (y) ' j 

Mf u 2(xi)u 2(xj) (19.19) j 2 i'1 Mxi i'1 j'1 2 Mxi Mxj Mxi Mxi Mxj 

Measurement Uncertainty 

19.4.5  Special Considerations for Nonlinear Models 

19.4.5.1  Uncertainty Propagation for Nonlinear Models 

The first-order uncertainty propagation formula tends to give better variance estimates when the 
function f is linear, because the formula is  derived from a linear approximation of f (i.e., a first-
order Taylor polynomial). Generally, obtaining  a reliable estimate of u2

c(y) using  the first-order 
formula requires (at least) that whenever f is nonlinear in one of the input quantities Xi , the rela-
tive uncertainty of the input estimate xi must be small.9 In radiochemistry, for example, this fact 
implies that the uncertainty of an instrument calibration factor, chemical yield, or test portion 
size should be kept small. 

If  all the input estimates xi are uncorrelated and distributed symmetrically about their means, a 
better approximation of u2

c(y) may be made by including  higher-order terms in the uncertainty 
propagation formula, as shown below. 

See also  Section 5.1.2 of  the GUM. In some cases, if the uncertainties of the input estimates are 
extremely large, even Equation 19.19 may be inadequate. 

9 The uncertainty propagation formula also provides  finite  estimates of  variance in  cases where,  strictly  speaking, 
the true variance is infinite or undefined. For example, if  x has a normal or Poisson distribution, the variance of 1 / x 
is  undefined, although the formula provides  a finite estimate of  it. On the other hand, if the relative standard uncer-
tainty of  x is small, the combined variance u2

c(1 / x) will almost always  be consistent with  observation, making  the 
estimate useful in practice. 

JULY 2004 19-29 MARLAP 



 

 

 

   

EXAMPLE 19.12  Suppose x and y are independent estimates of input quantities X and Y, 
respectively. Then the combined variance of the product p = xy according to the first-order 
uncertainty propagation formula is 

uc
2(p) = y2 u2(x) + x2 u2(y) 

For example, suppose x = 5, with u(x) = 0.5, and y = 10, with u(y) = 3. Then p = 50, and the 
first-order formula gives the combined standard uncertainty 

uc(p) = 102 0.52 % 52 42  =  15.8 

When higher-order terms are included, 

2 uc (p) ' y 2 u 2(x) % x 2 u 2(y) % 0 ×  u 4(x) % 
1 u 2(x) u 2(y) % 

1 u 2(y) u 2(x) % 0 ×  u 4(y) 
2 2 

' y 2 u 2(x) % x 2 u 2(y) % u 2(x)u 2(y) 

With numbers, 
uc(p) = 102 0.52 % 52 32 % 0.52 32  =  15.9 

Since 15.9 is only slightly greater than 15.8, in this example the first-order approximation 
appears adequate. 

The combined variance of the quotient q = x / y according to the first-order formula is 

u 2(x) q 2 u 2(y) uc
2(q) =  + 

y 2 y 2 

Using the same values for x and y again, q = 0.5 and the first-order formula gives 

0.52 32 
uc(q) = % 0.52  =  0.158 

102 102 

When the higher-order terms are included, 

Measurement Uncertainty 
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Mq 
' 

1 M2q M3q 
' 0 ' 0 

Mx y Mx 2 Mx 3 

Mq M2q 
' 2x M3q 

' &  x 
' &

6x 
My y 2 My 2 y 3 My 3 y 4 

M2q M3q 2 M3q 
' &  

1 
' ' 0 

Mx My y 2 Mx My 2 y 3 My Mx 2 

1 
& 

1 2 1 2 2(q) ' 
u 2(x) 

% q 2 u 2(y) u 2(x) u 2(y) 
y 2 y 2 

uc % 0 ×  u 4(x) % % 
2 y 2 y y 3 

1 
& 1 2 1 4x 2 

&
6x 

& x u 4(y) 
2 

u 2(y) u 2(x) % % % 0 % 
y 2 y 6 y 2 y 4 

' 
u 2(x) 

2 

% q 2 u 2(y) 1 % 3 u 2(y) 1 % 8 u 2(y) 
y 2 y 2 y 2 y 2 

With numbers, 

0.52 
1 % 3 32 32 

1 % 8 32 
uc(q) ' % 0.52 ' 0.205 

102 102 102 102 

In this case, since 0.205 is substantially larger than 0.158, the first-order formula is inadequate. 

If the standard uncertainty of y is much larger than 3 (in this case 30 % in relative terms), even 
the higher-order formula begins to fail here. 

19.4.5.2  Bias due to Nonlinearity 

As noted earlier, when the measurement model has the form Y = f(X1,X2,�,XN) and the input 
estimates are x1, x2, �, xN, the output estimate is given by y = f(x1,x2,�,xN). If the function, f, is 
nonlinear, the output estimate, y, may be a biased estimate of the value of the output quantity, Y, 
even if the model is correct and each of the input estimates, xi, is an unbiased estimate of the 
associated input quantity (Ku, 1966). 

For example, if the model is Y ' f(X) ' X 2  and X is an unbiased estimator for some quantity θ, 
then Y ' X 2  is a biased estimator for the quantity θ2 . (I.e., the mean of the square is not equal to 
the square of the mean.) Since the variance of X is V(X) ' E(X 2) & E(X)2  and the mean of X is 
E(X) = θ, the mean of Y in this case is given by 

Measurement Uncertainty 
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E(Y) ' E(X 2) ' E(X)2 % V(X) ' θ2 % V(X) (19.20) 

So, the bias of Y ' X 2  as an estimator for θ2  is equal to the variance of X. In metrology the true 
variance of the estimator X is unknown of course, but the bias of an output estimate, y = x2, can 
be estimated by u2(x), the square of the standard uncertainty of the input estimate, x. 

More generally, the portion of the bias of y associated with the nonlinearity of the model may be 
estimated, if necessary, by the formula 

1 N N M2f Bias(y) . 
2 j j u(xi,xj) (19.21) 

i'1 j'1 Mxi Mxj 

In practice, Equation 19.21 is equivalent to the following (Ku, 1966). 

N N&1 N 1 M2f M2f Bias(y) . 
2 j 2 

u 2(xi) % j j u(xi,xj) (19.22) 
i'1 Mx i'1 j' i%1 Mxi Mxj i 

This bias is usually negligible in comparison to the combined standard uncertainty, uc(y), if the 
relative standard uncertainty of each input estimate is small. (These equations are based on an 
approximation of the function f by a second-order Taylor polynomial.) 

Note that the bias calculated by Equations 19.21 and 19.22 may not represent the overall bias of 
the output estimate. It represents only the bias associated with nonlinearity of the mathematical 
model. If the input estimates are biased or the model is inexact, the overall bias may be different. 

MARLAP does not recommend correcting the output estimate for the estimated bias due to non-
linearity. Instead, the standard uncertainties of the input estimates should be kept small enough to 
make this portion of the bias negligible. For a typical radiochemical measurement model 
involving a net count rate divided by a denominator consisting of a product of factors such as the 
counting efficiency, test portion size, and chemical yield, this requirement means keeping the 
uncertainties of the counting times and all the factors in the denominator relatively small. The 
relative uncertainties of the raw counts may be large. 
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EXAMPLE 19.13  If x is an estimate of a positive quantity X, the bias of y = 1 / x as an estimate 
of 1 / X may be approximated using Equation 19.22. Since y is a function of only one variable, 
the partial derivatives of y are the same as ordinary derivatives. The first derivative is dy / dx = 
!x!2 and the second derivative is d2y / dx2 = 2x!3. So, the bias due to nonlinearity can be esti-
mated as Bias(y) . (1 /2) (2x!3)u2(x) = u2(x) /  x3. 

Suppose x = 1.2 and its standard uncertainty is 0.2. Then the calculated value of y is 1 / 1.2, or 
0.833, and the estimated bias of y due to nonlinearity is 0.22 / 1.23 = 0.023. 

EXAMPLE 19.14  If x and y are uncorrelated, unbiased estimates of quantities X and Y, respec-
tively, the bias of the product z = xy as an estimate of XY is given approximately by 

1 M2z u 2(x) % M
2z u 2(y) Bias(z) . 

2 Mx 2 My 2 

which equals zero, since M2z / Mx 2 ' M2z / My 2 ' 0 . (In this case, it can be shown that the bias of 
z is exactly zero, not just approximately zero.) 

EXAMPLE 19.15  If t is an estimate of the decay time T for a radionuclide whose decay con-
stant is λ (assumed to have negligible uncertainty), the bias of the estimated decay factor D = 
e!λt is given approximately by 

1 M2D 1 Bias(D) . u 2(t) ' λ2e&λ t u 2(t) 
2 Mt 2 2 

and the relative bias is λ2 u2(t) / 2. For example, suppose the radionuclide is 228Ac, which has a 
half-life of T1/2 = 6.15 h, and the decay time has a standard uncertainty of u(t) = 2 h (large for 
the sake of illustration). Then the decay constant λ equals ln(2) / 6.15 = 0.112707 h!1. The bias 
equation above implies that the relative bias of the decay factor D due to the uncertainty of t is 
approximately 

Bias(D) 1 1 . λ2u 2(t) ' (0.112707)2 (2)2 ' 0.025 
D 2 2 

or 2.5 %. Note that the relative bias of D is small if u 2(t) /  T 2  is small. (In this example, 
T 2 1/2 

u2(t) / 1/2  = 22 / 6.152 = 0.1058.) 

Measurement Uncertainty 
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19.4.6  Monte Carlo Methods 

An alternative to uncertainty propagation is the use of computerized Monte Carlo methods to 
propagate not the uncertainties of input estimates but their distributions. Given assumed distribu-
tions for the input estimates, the method provides an approximate distribution for the output esti-
mate, from which the combined standard uncertainty or an uncertainty interval may be derived. 
The joint working group responsible for the GUM is reported to be developing new guidance on 
the use of such methods. Monte Carlo methods may be particularly useful when the distribution 
of the result is not approximately normal. However, these methods are most effective when the 
model can be formulated in terms of independent input estimates. 

19.5 Radiation Measurement Uncertainty 

19.5.1  Radioactive Decay 

Although it is impossible to know when an unstable nucleus will decay, it is possible to calculate 
the probability of decay during a specified time interval. The lifetime of the nucleus has an 
exponential distribution, which is a model for the life of any object whose expected remaining 
life does not change with age. 

The exponential distribution is described by one parameter λ, which measures the expected frac-
tional decay rate. This parameter λ is called the decay constant and equals ln(2) / T1/2 , or approx-
imately 0.693 / T1/2 , where T1/2 is the half-life of the radionuclide (sometimes denoted by t1/2). The 
half-life is the same as the median of the exponential distribution. 

The probability that an atom will survive until time t without decaying is equal to e!λt. Thus the 
probability of survival decreases exponentially with time. Consequently, when a large number of 
atoms of the same radionuclide are considered, the expected number of surviving atoms also 
decreases exponentially with time, as shown in Figure 19.2. 

Since the probability that an atom survives until time t is equal to e!λt, it follows that the proba-
bility of decay during this time is 1 ! e!λt . 
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f(t) = e −λt 

FIGURE 19.2 � Expected fraction of atoms remaining at time t 

19.5.2  Radiation Counting 

Undoubtedly the best-known rule of radiation measurement statistics is the fact that the counting 
uncertainty for a gross radiation measurement can be evaluated as the square root of the observed 
counts. The square-root rule is useful, because it permits the estimation of a potentially 
significant uncertainty component without replicate measurements. Although the rule is usually 
valid as an approximation, for reasons which are discussed below, there are limits to its applica-
bility. It is also important to remember that the counting uncertainty is only one component of the 
total measurement uncertainty. 

19.5.2.1  Binomial Model 

When a source containing a radionuclide is placed in a detector, the probability that a particular 
atom of the radionuclide will produce a count is the product of three factors: the probability of 
decay, the probability of emission of the radiation being measured, and the probability of 
detection. According to the exponential decay model, the probability of decay is equal to 

&λtS 1 & e , where λ is the decay constant and tS is the counting time. The probability of radiation 
emission, denoted here by F, is a characteristic of the radionuclide. The probability of detection 
is the counting efficiency, g. Then the probability that an atom will generate a count is p = 

&λtS) (1 & e Fg. 

If the source initially contains n atoms of the radionuclide, the instrument is stable, and its back-
ground is negligible, the number of observed counts N has a binomial distribution with parame-
ters n and p. In general, if an experiment has only two possible outcomes, which may be called 
�success� and �failure,� and the probability of success is p, then the number of successes ob-
served when the experiment is repeated in n independent trials has a binomial distribution with 
parameters n and p. 
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tS tS tS . NB % (1 & p) ' (1 � p)NS % pNB NS & NB σNS tB tB tB 

Measurement Uncertainty 

Actually the probability  p is a random variable, because the counting efficiency for an instrument 
and source can vary for a number of reasons, such as source placement, dead time and other 
instrument characteristics. These variations generate  measurement uncertainty, but their  effects 
are not included in the �counting uncertainty.� The counting uncertainty is the standard deviation 
of the theoretical distribution of counts observed in a fixed time period when the efficiency is 
held constant. Thus, the actual variability observed in repeated measurements of a single radio-
active source may be greater than the theoretical counting uncertainty. 

19.5.2.2  Poisson Approximation 

The mean and variance of the binomial distribution are np and np(1 !  p), respectively. In radia-
tion counting, the value of p is usually small enough that the factor 1 !  p in the variance can be 
ignored (i.e., treated as 1). When this is true, the binomial distribution can be approximated  by  a 
Poisson distribution with mean  µ = np. The variance of a Poisson distribution equals the mean; 
so, both can be estimated  by  the same measured result N, and the standard deviation can be esti-
mated by  N . 10 

When  µ is large, N  is an excellent estimator for the standard deviation, σN, but the estimate may 
be poor when µ is small. For example, if µ = 100, the coefficient of variation of N  is only about 
5 % and its bias (caused by the nonlinearity of the square-root function) is negligible.11 If  µ = 10, 
the coefficient of variation is more than 16 % and there is a negative bias of more than 1 %.  If 
µ = 1, the coefficient of variation is more than 63 % and the negative bias is more than 22 %. 
Furthermore, when µ is small, it is possible to observe zero counts, so that N  = 0. MARLAP 
recommends that N  be replaced by  N % 1  when extremely low counts are possible (see also 
Attachment 19D).12 

10 In the rare cases  when the Poisson model is inadequate and the binomial model is required, if  the instrument 
background level is negligible, the standard deviation  of  the source count NS can be estimated by  (1 � p)NS . If the 
background is not negligible, the variance of  NS is the sum of components contributed by the background and the 
source. So, if a Poisson background is measured for time tB and NB counts are observed, the background 
contribution to NS is estimated by  NBtS / tB, and the source contribution is estimated  by  (NS  !  NBtS / tB). Then the 
standard deviation of  NS may be estimated  by  combining the estimated variances  of these  two contributions, as 
shown below. 

These expressions  for the  standard deviation of  NS are appropriate only  when the source counts are generated by a 
single radionuclide or by one radionuclide plus the instrument background. 

11  The coefficient of  variation  of  a nonnegative random variable is defined as the ratio  of  its standard  deviation to 
its mean (see Attachment 19A). 

12 The negative bias of  N  as an estimator for σ %N is largely eliminated if one replaces it by  N  0.25 . MARLAP 
recommends the estimator N % 1  although it is positively  biased. 
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A sum of independent Poisson quantities also has a Poisson distribution. So, when the Poisson 
approximation is valid for all the sources of counts in a counting measurement, the total count 
obeys Poisson counting statistics as well. 

If a short-lived radionuclide (large λ) is counted in a high-efficiency detector (large g), the prob-
ability p that an atom placed in the detector will produce a count may be so large that the Poisson 
approximation is invalid. In this case the Poisson approximation overestimates the counting un-
certainty; however, it is important to consider that the statistical model described thus far repre-
sents only the process of counting. In most cases previous steps in the measurement process 
decrease the probability that one of the atoms of interest initially present in the test portion (the 
portion of sample taken for analysis) will produce a count. If a correction for decay before count-
ing is performed, the decay factor must be included in p. If the measured activity of a (single) 
decay product is used to estimate the activity of a parent, p must include both ingrowth and decay 
factors. If a chemical extraction is performed, the recovery factor must be considered. When 
these factors are included, the Poisson model is usually valid. Note, however, that these factors 
must be measured and their standard uncertainties evaluated and propagated, increasing the total 
measurement uncertainty even further.13 

Both the binomial and Poisson models may be invalid if one atom can produce more than one 
count during the measurement. This situation occurs when the activity of a parent is estimated 
from the total count produced by the parent and a series of short-lived progeny (Lucas and 
Woodward, 1964; Collé and Kishore, 1997). For example when 222Rn is measured by counting 
the emissions of the parent and its progeny, an atom of 222Rn may produce several counts as it 
decays through the short-lived series 218Po, 214Pb, 214Bi and 214Po, to the longer-lived 210Pb. 
Another example is the measurement of 234Th by beta-counting a source that contains 234Th and 
its short-lived progeny, 234mPa. 

Both counting models may also be invalid if the total dead time of the measurement is significant 
(see Section 19.5.3.1). 

Instrument background measurements are usually assumed to follow the Poisson model. This 
assumption is reasonable if the background counts are produced by low levels of relatively long-
lived radionuclides. However, the true background may vary between measurements (e.g., cos-
mic background). Furthermore, the measured background may include spurious instrument-
generated counts, which do not follow a Poisson distribution. Generally, the variance of the ob-
served background is somewhat greater than the Poisson counting variance, although it may be 

13 It is possible to evaluate the uncertainties associated with the decay and ingrowth of a small number of short-lived 
atoms before counting using the binomial model, but under the stated conditions, the assumption of Poisson 
counting statistics simplifies the calculation. A more complete evaluation of uncertainty may be necessary if the 
same source is counted more than once. 
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The uncertainty of t may be ignored if u(t) / t << 1 / N , that is, if the relative standard uncer-
tainty of t is much less than 1 over the square root of the count. 

EXAMPLE 19.16  A source is counted for t = 100 s, where t has standard uncertainty u(t) = 
0.1 s, and N = 25 counts are observed. Thus, the observed count rate, R, equals 0.250 s!1. 
When u(t) is ignored, the combined standard uncertainty of R is uc(R) = N / t 2  = 0.050 s!1. 
When u(t) is included, the combined standard uncertainty is 

uc(R) ' N 
t 2 

% N 2 

t 4 
u 2(t) ' 25 

1002 
% 252 

1004 
0.12 . 0.050 s&1 

In this case the difference between the two uncertainty estimates is negligible. 

EXAMPLE 19.17  A source is counted for t = 100 s, where u(t) = 1 s, and N = 10,609 counts are 
observed. The count rate, R, equals N / t, or 106.09 s!1. When u(t) is ignored, uc(R) = N / t 2  = 
1.03 s!1. When u(t) is included, 

N 
% 

N 2 
u 2(R) ' u 2(t) (19.23) 

t 2 t 4 

Measurement Uncertainty 

less for certain types of instruments, such as those that  use parallel coincidence counters to com-
pensate for background instability (Currie et al., 1998). Departures from the Poisson model  may 
be detected using  the chi-squared test described in Section 18B.2 of Attachment 18B; however, 
deviations from the model over short time periods may be small and difficult to measure. 

19.5.3  Count Time and Count Rate 

Suppose a radiation counting measurement of duration t is made for the purpose of estimating  a 
mean count rate r, assumed to be constant, and the result of the measurement (in counts) has a 
distribution that is approximately Poisson with mean rt. If  t is known precisely, the best estimate 
of r given a single observation, N, is the measured count rate R = N / t, and the best estimate of 
the variance of the measured rate is  u2(R) = N / t2 = R / t. Under the Poisson assumption, even if 
repeated measurements are made, the best estimates of the count rate and its variance are ob-
tained by pooling  the counts and count times and using the same formulas. 

In fact, the count time t is known imperfectly; so a more complete estimate of the variance of R is 
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N 
% N 2 10,609 

% 10,6092 
u 2(t) ' uc(R) ' 12 . 1.48 s &1 

t 2 t 4 1002 1004 

In this example the two uncertainty estimates are clearly different, although both are relatively 
small (1 % to 1.4 %). 

Measurement Uncertainty 

Sometimes a radiation counter is set to acquire a predetermined number of counts. In this case 
the number of counts is a constant and only the count time varies. If the mean count rate does not 
change appreciably during the measurement, then Equation 19.23 may still be used.14 

19.5.3.1  Dead Time 

The dead time for a counting instrument is the minimum separation, τ, between two events re-
quired for the instrument to process and record both. Theoretical models for dead time are gen-
erally of two types. If the dead time for one event may be extended by a second event that arrives 
before the first has been processed, the system is called �paralyzable� and the dead time is called 
�extendable.� Otherwise, the system is called �non-paralyzable� and the dead time is called �non-
extendable� (Knoll, 1989; Turner, 1995; NCRP, 1985). Both models are idealized. The behavior 
of an actual counting  system tends to fall between the two extremes. At low count rates, 
however, both models give essentially the same predictions. 

At low count rates the observed count rate, N / t, may be corrected for dead time by dividing by 
the factor 1 !  Nτ / t. Many counting  instruments perform the correction automatically by  ex-
tending the real  time t of the measurement to achieve a desired live time, tL. Since tL = t  !  Nτ, the 
corrected count rate is simply  N / tL. When the dead time rate for the measurement is low, the 
variance of the corrected count rate may be estimated as N / t 2

L . Thus, the Poisson model remains 
adequate if the �count time� is equated with the live time. When the dead time rate is high (above 
20 %), the same estimate may not be adequate (NCRP, 1985). In this case the measurement 
should be repeated, if possible, in a manner that reduces the dead time rate. 

Dead time effects may be evaluated experimentally to confirm that  they do not invalidate the 
Poisson model at the count rates expected for  typical measurements. The chi-squared test de-
scribed in Section 18B.2 of Attachment 18B  can be used for this purpose. 

14 If the mean count rate, r, is constant, the waiting  times between events are independent exponentially distributed 
random variables with parameter λ = r. Therefore, the total time required to obtain n counts is the sum of the n 
waiting  times, which has a gamma distribution with parameters  α = n and λ = r (or α = n and β = 1/λ = 1/r). 
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Here γ is the desired confidence coefficient, or the minimum probability of coverage, and for any 
ν, χp 

2(ν) denotes the p-quantile of the chi-squared distribution with ν degrees of freedom (see 
Table G.3 in Appendix G). If ν = 0, the chi-squared distribution χ2(ν) is degenerate. For our 
purposes, χp 

2(0) should be considered to be 0. 

EXAMPLE 19.18  Suppose 10 counts are observed during a 600-second instrument background 
measurement. Then the 95 % confidence limits for the background count rate are 

χ2 
0.025(20) 9.59078 

' ' 0.00799 s &1 rlower ' 
(2)(600) 1200 
χ2 

0.975(22) 36.7807 r ' ' ' 0.03065 s &1 
upper (2)(600) 1200 

EXAMPLE 19.19  Suppose 0 counts are observed during a 600-second measurement. Then the 
95 % confidence limits for the count rate are 

χ2 
0.025(0) 

' 0 s  &1 rlower ' 
(2)(600) 
χ2 

0.975(2) 7.3778 r ' ' ' 0.00615 s &1 
upper (2)(600) 1200 

Measurement Uncertainty 

19.5.3.2  A Confidence Interval for the Count Rate 

When the Poisson model of radiation counting is valid, lower and upper confidence limits for the 
mean count rate r given an observation of N counts in time t may be calculated as follows:15 

2t rlower ' χ2
(1&γ) /2(2N) 

(19.24) 
r ' χ2

(1%γ) /2(2N % 2) 2t upper 

15 The chi-squared distribution is  a  special case of  a gamma distribution, whose relationship to the Poisson distribu-
tion is described by Hoel et al. (1971) and Stapleton (1995). This relationship is the basis for the two formulas in 
Equation 19.24. The relationship is such that  if  X is chi-squared with 2N degrees of freedom and Y is Poisson with 
mean µ, then Pr[X  # 2µ] = Pr[Y  $  N]. 
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19.5.4  Instrument Background 

As noted above, single-channel background measurements are usually assumed to follow the 
Poisson model, although there may be effects which increase the variance beyond what the model 
predicts. For example, cosmic radiation and other natural sources of instrument background may 
vary between measurements, the composition of source holders and containers may vary, the 
instrument may become contaminated by sources, or the instrument may simply be unstable. For 
certain types of instruments, the Poisson model may overestimate the background variance 
(Currie et al., 1998). If the background does not closely follow the Poisson model, its variance 
should be estimated by repeated measurements. 

The �instrument background,� or �instrument blank,� is usually measured with source holders or 
containers in place, since the presence of the container may affect the count rate. In many cases, 
perhaps most, it is not feasible to use the same container during both the background and test 
source measurements, but nearly identical containers should be used. Variations in container 
composition may affect the background count rate. If test sources contain enough mass to atten-
uate background radiation, then it is best to use a similar amount of blank material during the 
background measurement. 

If repeated measurements demonstrate that the background level is stable, then the average, x̄ , of 
the results of many similar measurements performed over a period of time may give the best esti-
mate of the background. In this case, if all measurements have the same duration, the experi-
mental standard deviation of the mean, s(x̄) , is also a good estimate of the measurement uncer-
tainty. Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson esti-
mate, which equals the square root of the summed counts, divided by the number of measure-
ments, but the experimental standard deviation may be used when the Poisson assumption is 
invalid. 

If the background drifts or varies nonrandomly over time (i.e., is nonstationary), it is important to 
minimize the consequences of the drift by performing frequent blank measurements. 

If the background variance includes a small non-Poisson component, that component can be esti-
mated from historical background data and added to the calculated Poisson component. A chi-
squared statistic may be used to detect and quantify non-Poisson background variance (Currie, 
1972; see also Section 18B.3 of Attachment 18B), but chi-squared provides an unbiased estimate 
of the additional variance only if the background remains stationary while the data are being 
collected. If the observed background counts, in order, are N1, N2, �, Nn and the corresponding 
counting intervals are t1, t2, �, tn , then the quantity 
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Measurement Uncertainty 

may be used to estimate the non-Poisson variance of a net count rate due to background even if 
the background is not stationary.16 The distribution of ξB

2  is not simple, and ξB
2  may even assume 

negative values, which are clearly unrealistic. So, if this estimator is used, it should be calculated 
for several data sets and for more than one instrument, if possible, to give an indication of its 
reliability. Although replicate measurements are involved, this type of evaluation of uncertainty 
should be considered a Type B method. 

If background and test source measurements are performed under different conditions, the back-
ground measurement may be biased. Such a bias may occur, for example, if test sources are 
counted in containers or on planchets which are not present during background measurements. A 
situation of this kind should be avoided if possible. 

When instrument background levels are low or when count times are short, it is possible that too 
few counts will be observed to provide an accurate estimate of the measurement uncertainty. 
Attachment 19D describes a method for choosing an appropriate coverage factor when only few 
counts are observed. 

19.5.5  Radiochemical Blanks 

Instrument background is only one of the sources of counts observed when an analyte-free 
sample is analyzed. Other sources may include contaminants in the tracers, reagents, and glass-
ware used for measurements. Contamination of this type tends to be most significant when the 
analytes are naturally occurring radionuclides, such as isotopes of uranium, thorium, and radium; 
but nonnatural contaminants may also be present in some radiochemical tracers. 

The level of contamination may be determined by analyzing reagent blanks or other process 
blanks alongside laboratory samples (see Chapter 18). Alternatively, if the contaminant is present 
in a specific reagent or tracer solution, its concentration in the solution may be measured and 
incorporated into the mathematical model of the measurement. Regardless of which method of 
evaluation is used, it is important to remember that the concentration of contaminant may vary 
from one reagent lot to another, and that the amount of contaminant in the prepared source may 

16 Each term of the sum is an unbiased estimator for the non-Poisson variance of the difference between successive 
measurements of the background. Note that (Ni%1 / ti%1 & Ni / ti)

2  is an unbiased estimator for the total variance and 
(Ni %Ni%1) /  ti ti%1 , which equals (Ni %Ni%1) / (ti % ti%1) × (1/ ti % 1/ ti%1) , is an unbiased estimator for the Poisson 
variance. 
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Measurement Uncertainty 

be affected by incomplete recovery during the chemical separation and purification steps of the 
analytical process. 

If the amount of blank contaminant varies between measurements (e.g., because the analyte is 
present at varying levels in the laboratory environment), it is usually necessary to determine the 
blank level and its uncertainty by replicate measurements (a Type A evaluation). In this case, 
using the pure Poisson model for the uncertainty of the blank correction is inappropriate. Repli-
cate measurements are also more appropriate if the causes of blank contamination are simply not 
well understood. 

If there is no observable contamination when analyte-free samples are analyzed, the radiochemi-
cal blank may be only a blank source, which mimics the geometry and composition of an actual 
test source. In this case the laboratory should routinely analyze method blanks to check for con-
tamination (see Chapter 18) and take corrective action if contamination is found. 

19.5.6  Counting Efficiency 

The counting efficiency for a measurement of radioactivity (usually defined as the detection 
probability for a particle or photon of interest emitted by the source) may depend on many fac-
tors, including source geometry, placement, composition, density, activity, radiation type and 
energy and other instrument-specific factors. The estimated efficiency is sometimes calculated 
explicitly as a function of such variables (in gamma-ray spectrometry, for example). In other 
cases a single measured value is used (e.g., alpha-particle spectrometry). If an efficiency function 
is used, the uncertainties of the input estimates, including those for both calibration parameters 
and sample-specific quantities, must be propagated to obtain the combined standard uncertainty 
of the estimated efficiency. Calibration parameters tend to be correlated; so, estimated covari-
ances must also be included. If a single value is used instead of a function, the standard uncer-
tainty of the value is determined when the value is measured. 

EXAMPLE 19.20  Fifteen sources in the same geometry are prepared from a standard solution 
and used to calibrate a radiation counter. The specific activity of the standard is 150.0 Bq/g 
with a combined standard uncertainty of 2.0 Bq/g. The steps of the calibration are as follows: 

1. A 1-milliliter aliquant of the standard solution is added by pipet to each source and 
weighed on an analytical balance. The solution contains the radionuclide of interest 
dissolved in 0.3 M nitric acid, whose density at the current room temperature is 
1.0079 g/mL. The density of the solution is used only to calculate the buoyancy-correction 
factor for the mass measurements, which equals 1.001028 in this case (see Attachment 
19E). The uncertainties of the buoyancy-corrected masses are considered negligible. 
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2. A blank measurement is made. The blank count time is 6000 s. The number of blank 
counts observed is 87. 

3. Each source is counted once on the instrument for 300 s. 

The radionuclide is long-lived; so, no decay corrections are needed. The uncertainties of the 
count times are assumed to be negligible. 

The mathematical model for the calibration is: 

n 1 NS,i / tS & NB / tB g ' j n i'1 mi aS 

where 
g is the counting efficiency; 
n is the number of sources (15); 
NS, i is the gross count observed during the measurement of the ith source; 
tS is the source count time (300 s); 
NB is the observed blank count (87); 
tB is the blank count time (6000 s); 
mi is the mass of standard solution added to the ith source; and 
aS is the specific activity of the standard solution (150.0 Bq/g). 

For the purpose of uncertainty evaluation, it is convenient to rewrite the model as 

R g ' 
aS 

where 
N 1 NS,i / tS & NB / tB R ' j Ri and Ri ' , i ' 1,2, ...,n 

n i'1 mi 

The values Ri and their average, R , are estimates of the count rate produced by 1 g of the stan-
dard solution, while R / aS  is an estimate of the count rate produced by 1 Bq of activity. The 
standard uncertainty of R  can be evaluated experimentally from the 15 repeated measure-
ments. Since only one blank measurement is made, the input estimates Ri are correlated with 
each other. The covariance between Ri and Rj, for i … j, may be estimated as 

MRi MRj &1 &1 u 2(NB) 
u(Ri,Rj) ' u 2(NB) ' u 2(NB) ' 

MNB MNB
2 tB mi tB mj tB mi mj 
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n 1 u 2(R) ' s 2(R) ' (Ri & R)2 

n (n & 1) j 
i'1 

u 2(R) u 2(aS) 
u (g ) ' % g 2 

c 2 2 a a S S 

Assume the following data were obtained for the 15 calibration sources. 

Source number, 
i 

Uncorrected 
mass (g) 

Buoyancy-
corrected mass, 

mi / g 
Gross count, NS,i Ri / (s!1 @ g!1) 

1 1.0056 1.00663 18,375 60.832
2 1.0031 1.00413 18,664 61.943 
3 1.0058 1.00683 18,954 62.737 
4 1.0082 1.00924 19,249 63.562 
5 1.0069 1.00793 19,011 62.857 
6 1.0074 1.00843 18,936 62.578 
7 1.0048 1.00583 18,537 61.417 
8 1.0069 1.00794 18,733 61.937 
9 1.0031 1.00413 18,812 62.434 
10 1.0079 1.00894 18,546 61.258 
11 1.0063 1.00734 18,810 62.229 
12 1.0067 1.00774 19,273 63.736 
13 1.0055 1.00653 18,893 62.554 
14 1.0091 1.01014 18,803 62.033 
15 1.0030 1.00403 18,280 60.674 

Average,  R / (s!1 @ g!1): 62.1854 
Experimental standard deviation, s(Ri) / (s!1 @ g!1): 0.8910 

Experimental standard deviation of the mean, s( R ) / (s!1 @ g!1): 0.2301 

Then the estimated counting efficiency is 

R 62.1854 s&1 @g&1 
g ' ' ' 0.4146 

aS 150.0 Bq/g 

Measurement Uncertainty 

However, the correlation is negligible here because the uncertainty of the blank count, NB, is 
much smaller than the uncertainty of each source count, NS,i. So, the input estimates Ri will be 
treated as if they were uncorrelated, and the following  equations will be used to calculate the 
combined standard uncertainty of g: 
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u 2(aS) u 2(R) 
% g 2 % φ2 (19.26) u(g ) ' 

2 2 a a S S 

and the (combined) standard uncertainty of g is given by 

(0.2301 s&1 @g&1)2 (2.0 Bq/g)2 
u(g ) ' % 0.41462 × ' 0.005736 

(150.0 Bq/g)2 (150.0 Bq/g)2 

which may be rounded to 0.0057. (Note that the relative standard uncertainty of g is approxi-
mately 1.4 %, which is large enough to justify neglecting the small uncertainties of the 
masses.) 

(0.2301 s&1 @g&1)2 (2.0 Bq/g)2 
u(g ) ' % 0.41462 % 0.0122 ' 0.0076 (19.27) 

(150.0 Bq/g)2 (150.0 Bq/g)2 

Measurement Uncertainty 

In fact the standard uncertainty of g calculated in the preceding  example may be incomplete. The 
true counting efficiency may vary from source to source because of variations in  geometry, posi-
tion and other influence quantities not explicitly included in the model. So, the standard uncer-
tainty of  g should include not only the standard uncertainty of the estimated mean, as calculated 
in the example, but also another component of uncertainty due to variations of the true efficiency 
during  subsequent measurements. The additional component  may be written as gφ, where φ is the 
coefficient of variation of the true efficiency. Then the total uncertainty of g is obtained by 
squaring  the original uncertainty estimate, adding  g2φ2 , and taking  the square root of the sum. 

In the example above, the experimental variance of the ratios, Ri, may be used to estimate  φ. 
Section 18B.2 of Attachment 18B, describes an approach for estimating  such �excess� variance 
in a series of measurements. When the methods of Section 18B.2 are used with these data, the 
resulting estimate  of  φ is approximately 0.012, or 1.2 %. So, the total uncertainty of g as a 
predictor of the counting efficiency for a source prepared and counted at some time in the future 
is 

Variations in counting  efficiency due to source placement should be reduced as much as possible 
through the use of positioning  devices that ensure a source with a given geometry  is always 
placed in the same location relative to the detector. If such devices are not used, variations in 
source position may significantly increase the measurement  uncertainty. 
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Measurement Uncertainty 

Calibrating an instrument under conditions different from the conditions under which test sources 
are counted may lead to large uncertainties in the sample activity measurements. Source geome-
try in particular tends to be an important factor for many types of radiation counters. Generally, 
calibration sources should be prepared with the sizes and shapes of test sources and counted in 
the same positions, although in some cases it may be possible to calculate correction factors 
which allow one calibration to be used for different geometries. When correction factors are 
used, their uncertainties should be evaluated and propagated. 

If the efficiency, g, is calculated from a model that includes one of the quantities Xi appearing 
elsewhere in the sample activity model, there is a correlation between the measured values of g 
and Xi, which should not be ignored. It is often simpler to include the entire expression for g in 
the expression for the laboratory sample activity before applying the uncertainty propagation 
formula. 

EXAMPLE 19.21  Suppose the counting efficiency for a measurement is modeled by the equa-
tion g = A exp(!BmS), where A and B are calibration parameters and mS is the source mass; and 
suppose the chemical yield Y is modeled by mS / mC, where mC is the expected mass at 100 % 
recovery. Then the estimated values of the counting efficiency and the yield are correlated, 
because both are calculated from the same measured value of the source mass. When the com-
bined standard uncertainty of the sample activity is calculated, the covariance u(g,Y) may be 
included in the uncertainty propagation formula (see Section 19.4.4), or the variables g and Y 
in the model may be replaced by the expressions A exp(!BmS) and mS / mC , respectively, 
before the sensitivity coefficients are calculated. 

In some cases the estimated value of the counting efficiency has no effect on the output estimate 
of laboratory sample activity. This happens often in alpha-particle spectrometry, for example, 
when isotopic tracers are used. The efficiency estimate is needed to obtain an estimate of the 
yield of the chemistry procedure, but the efficiency usually cancels out of the mathematical 
model for the laboratory sample activity and its uncertainty is not propagated when determining 
the combined standard uncertainty of the activity estimate. 

19.5.7  Radionuclide Half-Life 

The component of combined standard uncertainty associated with the half-life of a radionuclide 
is often negligible in measurements performed by typical radioanalytical laboratories, since the 
half-lives of most radionuclides of interest have been measured very accurately and in many 
cases decay times are short relative to the half-life (so that the sensitivity coefficient is small). 
However, this uncertainty component is also one of the most easily obtained components, since 
radionuclide half-lives and their standard uncertainties are evaluated and published by the 
National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. The data may be 
obtained from the NNDC web site (www.nndc.bnl.gov). 
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Measurement Uncertainty 

19.5.8  Gamma-Ray Spectrometry 

Most radiochemistry laboratories rely on commercial software for the analysis of gamma-ray 
spectra and for the evaluation and propagation of the associated uncertainties. There are a 
number of sources of measurement uncertainty in gamma-ray spectrometry, including:

  � Poisson counting uncertainty;
  � Compton baseline determination;
  � Background peak subtraction;
  � Multiplets and interference corrections;
  � Peak-fitting model errors;
  � Efficiency calibration model error;
  � Summing;
  � Density-correction factors; and
  � Dead time. 

See Chapter 16 for further discussion of measurement models and uncertainty analysis for 
gamma-ray spectrometry, but note that neither Chapter 16 nor this chapter attempts to describe 
all of the relevant issues in detail. 

19.5.9  Balances 

The uncertainty of a balance measurement tends to be small, even negligible, when the balance is 
used properly and the mass being measured is much larger than the balance�s readability. How-
ever, the uncertainty may also be difficult to evaluate unless the balance is well maintained and 
operated in a controlled environment that protects it from external influences. In particular, drafts 
or sudden changes in pressure, temperature or humidity (e.g., opening doors or dishwashers) may 
produce spurious errors. 

Even if one assumes the balance measurement uncertainty is negligible, there are reasons for per-
forming at least a partial evaluation of the uncertainty. One reason is to confirm the assumption 
that the uncertainty is negligible or to determine the range of measurement conditions under 
which the assumption is true. For example the uncertainty may be significant if the mass being 
weighed is comparable in magnitude to the readability of the balance, or if the mass is calculated 
as the difference between two much larger and nearly equal masses that are determined at differ-
ent times and under possibly different environmental conditions (e.g., a planchet and filter 
weighed before and after adding a small amount of precipitate to the filter). Another reason is to 
establish acceptance criteria for the strict quality control necessary to ensure that the uncertainty 
remains negligible. 

The uncertainty of a mass measurement generally has components associated with 
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  � Calibration;
  � Linearity;
  � Repeatability;
  � Day-to-day or hour-to-hour variability due to environmental factors; and
  � Air buoyancy. 

Other sources of uncertainty may include leveling  errors and off-center errors, which should be 
controlled. Static electrical charges  may also have an effect. For some materials gain or loss of 
mass before or after weighing  (e.g., by absorption or evaporation of water) may be significant. 
Attachment 19E of  this chapter describes balance measurement uncertainties in more detail. 

Balance manufacturers provide specifications for repeatability  and linearity, which are usually  of 
the same order of magnitude as the balance�s readability, but  tests  of repeatability and linearity 
should also be included in the routine quality control for the balance. 

Repeatability is expressed as a standard deviation, sr, and is typically assumed to be independent 
of the load. It  represents the variability of the  result of  zeroing the  balance,  loading and centering 
a mass on the pan, and reading  the final balance indication. Attachment 19E describes procedures 
for evaluating  the repeatability experimentally. 

The linearity tolerance of a balance, aL, should be specified by the manufacturer as the maximum 
deviation of the balance indication from the value that would be obtained  by  linear interpolation 
between the calibration points. Different methods may be used to convert this tolerance to a 
standard uncertainty, depending  on the form the linearity  error is assumed to take. One method, 
which is recommended by the Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical 
Measurement, is to treat the tolerance, aL, as the half-width of a  rectangular distribution and 
divide aL by  3  to obtain the standard uncertainty (Eurachem, 2000). Another method, suggested 
in Attachment 19E of this chapter, is to treat the linearity  error as a sinusoidal function of the 
load, with amplitude aL. This model requires that aL be divided by 2  to obtain the standard 
uncertainty. The latter method is used below. 

Procedures for evaluating  the relative standard uncertainties due to calibration and environmental 
factors and for calculating  the buoyancy-correction factor and its standard uncertainty are des-
cribed in Attachment 19E. 

When one evaluates the uncertainty of a balance measurement that is performed as part of a 
typical radiochemical measurement, where the relative combined standard uncertainty of the final 
result is usually  5 % or more, often much more, the evaluation may involve only a few 
components of the uncertainty. Important components for this purpose include those due to 
repeatability, linearity, and environmental factors. Gains or losses of mass may be important in 
some cases, but calibration errors and  buoyancy effects usually  can be ignored, since they  tend to 
be significant in the mass measurement only when the total uncertainty of the mass is so small 
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u(m) ' 2s % aL % m 2 φ (19.29) r env 

where 
m is the net mass; 
sr is the repeatability standard deviation; 
aL is the linearity tolerance; and 
φenv is the relative standard uncertainty due to environmental effects. 

In some cases the balance is simply zeroed before adding the mass and there is no tare measure-
ment. (Unfortunately the operation of zeroing the balance is often called �taring.�) In such cases 
the factor 2 that appears before s2

r in Equation 19.29 should be omitted. 

If tare and gross measurements are made under possibly different environmental conditions (e.g., 
on different days), then the following expression should be used to account for the greater uncer-
tainty due to environmental effects. 

u(m) ' 2s 2 
% aL

2 
% I 2 

% I 2 φ2 (19.30) r tare gross env 

Measurement Uncertainty 

that it is negligible in the overall analytical process. The remainder of this section will consider 
only the mass uncertainties due to repeatability, linearity, and environmental factors (but see 
Attachment 19E). 

A typical mass measurement in the laboratory involves separate measurements of a gross mass 
and a tare mass. The net mass, m, is determined by subtracting  the balance indication for the tare 
mass, Itare, from the indication for the  gross mass, Igross. That is, 

m ' I ' I & I net gross tare (19.28) 

If the tare and  gross measurements are made under the same environmental conditions (e.g., at 
nearly the same time), the standard uncertainty of  m is given (according  to the simplified model) 
by 

2 2 2 

EXAMPLE 19.22  The chemical yield (recovery) for a strontium analysis is determined 
gravimetrically by weighing  a stainless steel planchet before and after evaporating a strontium 
nitrate solution onto it, and then dividing  the net mass by  the predicted mass of strontium 
nitrate at 100 %  yield. The balance has readability  0.0001 g. According to the manufacturer it 
has repeatability 0.00010 g  and linearity 0.00020 g, and these values have been reasonably well 
confirmed by historical QC data. The analyst has also used balance QC data to determine that 
the relative standard uncertainty due to environmental effects is approximately 2 × 10!5 (see 
Attachment 19E). Suppose for a particular measurement the tare mass of the planchet is 
8.5923 g  and the gross mass, which is measured two hours later, is 8.5978 g. Then the net mass 
is 

MARLAP 19-50 JULY 2004 



 

 

 

 

 

  
 

 

m ' 8.5978 g & 8.5923 g ' 0.0055 g 

Since two hours elapse between the tare and gross measurements, Equation 19.30 is used to 
calculate the standard uncertainty. 

u(m) ' 2s 2 
% aL

2 
% I 2 

% I 2 φ2 
r tare gross env 

' 2(0.00010 g)2 % (0.00020 g)2 % (8.5923 g)2 % (8.5978 g)2 (2 × 10&5)2 

' 0.00035 g 

Thus the relative standard uncertainty is approximately 6 %, which is significant in the determi-
nation of a yield factor. 

Note that using the linearity tolerance, 0.00020 g, is rather conservative when the difference 
between the gross and tare masses is so small, but the uncertainty component due to linearity is 
not dominant in this example. It is actually smaller than the uncertainty due to environmental 
effects. 

EXAMPLE 19.23  An aliquant of dry soil is subsampled for analysis and weighed on the same 
laboratory balance described in the preceding example. The repeatability of the balance is 
0.00010 g, the linearity is 0.00020 g, and the relative standard uncertainty due to environ-
mental effects is 2 × 10!5. Suppose the analyst zeros the balance with an empty container on 
the pan, adds the aliquant of soil to the container, and reads the final balance indication with-
out a significant time delay. If the final indication is 1.0247 g, then the mass estimate is m = 
1.0247 g and its standard uncertainty is 

u(m) ' s 2 
% aL

2 
% m 2φ2 

r Env 

' (0.00010 g)2 % (0.00020 g)2 % (1.0247 g)2(2 × 10&5)2 

' 0.00022 g 

So, the relative standard uncertainty is approximately 0.022 %, which is likely to be negligible 
in comparison to the uncertainty of subsampling (heterogeneity). 

Note that in this example the uncertainty due to environmental effects is the smallest of the 
three uncertainty components. 

Measurement Uncertainty 
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Any volumetric measuring  device should have a specified tolerance for its capacity, or for the 
possible bias of the device (e.g., ASTM E288 and ASTM E969). This tolerance, δcap, may be 
assumed to represent the half-width of a rectangular or triangular distribution. Assuming a tri-
angular distribution, as recommended by the Eurachem/CITAC Guide, one evaluates the 
uncertainty component of the volume associated with the capacity as  δcap / 6  (Eurachem, 2000). 

The simplest type of uncertainty evaluation is possible when the manufacturer of a pipetting 
device provides specifications for both bias and precision (e.g., Eppendorf® pipettes). In this case 
the Type B standard uncertainty of a pipetted volume, V, may be evaluated as 

δ2 

u(V) ' s 2 cap 
% (19.31) 

Measurement Uncertainty 

19.5.10  Pipets and Other Volumetric Apparatus 

Generally, a pipet or volumetric flask is used not to measure an  existing volume of liquid, but to 
obtain a volume of a predetermined nominal size. The nominal value is treated as if it were a 
measured value, although it is known before the �measurement.� The true volume is the variable 
quantity. Since a volumetric �measurement� of this  type cannot be repeated, pipets and flasks are 
good examples of measurement systems for which historical data are important for Type A eval-
uations of standard uncertainty. 

The uncertainty of a pipet measurement, like that of a balance measurement, is often relatively 
small in comparison to other uncertainties in a radiochemical analysis. However, the use of the 
wrong type of pipetting device for a particular measurement may result in a relatively large 
pipetting  uncertainty. For example, one manufacturer�s technical specifications for various 
models of pipetting  devices list precision values that range from 0.1 % to 5 % and bias tolerances 
that range from 0.3 % to 12 %. (Here a �bias tolerance� means an upper bound for the possible 
magnitude of the pipet�s unknown systematic error.) So, it is important for the user of a particular 
model to know its performance characteristics. 

The total uncertainty of a volumetric measurement may include several components, but since 
most of the components are negligible in a typical radiochemical measurement process, a very 
simple method of evaluation is usually adequate as long as quality control  is  strict enough to 
ensure that the measuring devices and personnel are performing as expected. The method sug-
gested here considers only two components, which are associated with precision and the capacity 
(or bias) of the device. Attachment 19E presents more complete methods of evaluation. 

6 

where δcap is the manufacturer�s stated bias tolerance and s is the stated standard deviation. 
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EXAMPLE 19.24  Suppose the manufacturer of a 5-milliliter pipetting device specifies the 
relative bias tolerance to be 0.6 % and the relative precision to be 0.2 %. Then the standard 
uncertainty of the volume may be evaluated as 

u(V) ' s 2 % 
δ2 

cap 

6 
' (5 mL × 0.002)2 % (5 mL × 0.006)2 

6 
' 0.0158 mL 

The relative standard uncertainty in this case is only about 0.3 %, which might be considered 
negligible for many applications. 

EXAMPLE 19.25  Suppose the relative bias tolerance for an adjustable-volume pipetting device 
is 2.5 % when the device is set at 10 µL, and the relative precision is 0.7 %. Then the standard 
uncertainty of a volume delivered at the 10-microliter setting may be evaluated as 

δ2 

u(V) ' s 2 % cap 
' (10 µL × 0.007)2 % (10 µL × 0.025)2 

' 0.124 µL 
6 6 

The relative standard uncertainty in this case is about 1.2 %, which would be considered 
potentially significant for many types of measurements. 

δ2 
cap % (πδ d 2 / 4)2 

men (19.32) u(V) ' 
6 

A Type A (experimental) method of evaluation may also be used (see Attachment 19E). 

Measurement Uncertainty 

When volumetric glassware is used, or when the manufacturer does not specify the precision, the 
uncertainty due to imprecision must be determined by other means. One Type B method of eval-
uating  the imprecision for volumetric glassware is  to examine the dimensions of the glassware 
and use experience and professional judgment to estimate the maximum possible deviation of the 
meniscus from the capacity  line. If δmen denotes this maximum deviation and d denotes the 
internal diameter of the glassware at the capacity mark, the  maximum deviation of the volume 
from its value at  the capacity  mark is given by  πδmen d 2 / 4 . Note that if δmen and d are expressed 
in centimeters, this expression gives a value in milliliters. Then, if  δmen is assumed to be the half-
width of a triangular distribution, the standard uncertainty of V is given by the following  equation 
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EXAMPLE 19.26  Suppose the inside diameter of an ASTM Class-A 1-milliliter volumetric 
pipet is 0.4 cm, and the analyst estimates δmen, the maximum deviation from the capacity line, 
to be 0.075 cm. The capacity tolerance, δcap, is specified by ASTM E969 to be 0.006 mL. So, 
the standard uncertainty of the volume (V = 1 mL) is 

δ2 
% (πδ d 2 / 4)2 

cap men u(V) ' 
6 

(0.006 mL)2 % π (0.075 cm)(0.4 cm)2 / 4  2 
' 

6 
' 0.00456 mL 

The relative standard uncertainty is approximately 0.5 %. 

19.5.11  Digital Displays and Rounding 

If a measuring device, such as an analytical balance, has a digital display with resolution δ, the 
standard uncertainty of a measured value is at least δ / 2 3 . This uncertainty component exists 
even if the instrument is completely stable. 

A similar Type B method may be used to evaluate the standard uncertainty due to computer 
roundoff error. When a value x is rounded to the nearest multiple of 10n, the component of uncer-
tainty generated by roundoff error is 10n / 2 3 . When rounding is performed properly and x is 
printed with an adequate number of figures, this component of uncertainty should be negligible 
in comparison to the total uncertainty of x. 

EXAMPLE 19.27  The readability of a digital balance is 0.1 g. Therefore, the minimum stan-
dard uncertainty of a measured mass is 0.1 / 2 3  = 0.029 g. 

EXAMPLE 19.28  A computer printout shows the result x of a measurement as 

3.40E+01 +� 9.2E�02 

where the expanded uncertainty is calculated using a coverage factor of 2. Since the coverage 
factor is 2, the printout implies the standard uncertainty is 0.092 / 2, or 0.046. However, since 
the measured value is rounded to the nearest multiple of 0.1, the standard uncertainty of x 
should be increased from 0.046 to 

Measurement Uncertainty 
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0.1 2 
u(x) ' 0.0462 % ' 0.054. 

2 3 

1 1 kd 3 (19.33) 
mS mL 

& u(FS) ' 

19.5.12  Subsampling 

Appendix F  of this manual discusses laboratory subsampling. The subsampling  of heterogeneous 
materials for laboratory analysis increases the variability of the measurement result and thus adds 
a component of measurement uncertainty, which is usually difficult to quantify without replicate 
measurements. Appendix  F summarizes important aspects of the statistical theory  of particulate 
sampling  and applies the theory to subsampling  in the radiation laboratory (see also Gy, 1992, 
and Pitard, 1993). The mathematical estimates obtained using  the theory often require unproven 
assumptions about the material analyzed and rough estimates of unmeasurable parameters. How-
ever, in some cases the theory  can be used to suggest how subsampling errors may be affected  by 
either changing  the subsample size or grinding  the material  before subsampling. Of course the 
total measurement uncertainty, including components contributed  by  subsampling, may always 
be evaluated  by  repeated subsampling and analysis. 

If subsampling  is not repeated, its effects may  be represented in the mathematical measurement 
model by including  an input quantity  FS whose value is the ratio of the analyte concentration of 
the subsample to that of the total sample. This ratio, which will be called the subsampling factor 
(a MARLAP term), appears in the model as a divisor of the net instrument signal and thus is sim-
ilar to the chemical yield, counting efficiency and other sensitivity  factors. The value of FS is 
estimated as 1, but the value has a standard uncertainty, u(FS), which increases the combined 
standard uncertainty of the result. 

Although the component of uncertainty caused  by  the subsampling of heterogeneous solid matter 
may be difficult to estimate, it should not be ignored, since it may be  relatively large and in some 
cases may even dominate all other components. One may use previous experience with similar 
materials to evaluate the uncertainty, possibly with the aid of the information and methods pre-
sented in Appendix  F. Appendix  F shows how the value of the subsampling uncertainty  depends 
on the maximum particle diameter, d, the mass of the sample, mL, and the mass of the subsample, 
mS. The equation for the standard uncertainty of FS typically has the form 

where the value of  depends on the sample. By default, if �hot particles� are not suspected, and 
if reasonable precautions are taken either to homogenize (mix) the material or to build the sub-
sample from  a large number of randomly  selected increments, one may assume k  . 0.4 g/cm3, or 

k

JULY 2004 19-55 MARLAP 



 

  

EXAMPLE 19.29 

Problem: A 609-gram soil sample is ground until it passes through an ASTM #10 sieve, 
which has a mesh size of 2.0 mm. The sample is then homogenized and a 0.7957-gram sub-
sample is removed. Use Equation 19.33 with k = 0.0004 g/mm3 to evaluate the standard 
uncertainty of the subsampling factor, u(FS). Repeat the evaluation assuming an ASTM #18 
sieve, whose mesh size is 1.0 mm. 

Solution: First, assume d = 2.0 mm. Then the subsampling uncertainty is 

1 1 u(FS) ' & (0.0004 g/mm3)(2.0 mm)3 ' 0.063 
0.7957 g 609 g 

Now assume d = 1.0 mm. Then 

1 1 u(FS) ' & (0.0004 g/mm3)(1.0 mm)3 ' 0.022 
0.7957 g 609 g 

Measurement Uncertainty 

0.0004 g/mm3. If hot particles are suspected, special measurement techniques are probably 
required, as described in Appendix  F. In  this case Equation 19.33 should not be used. 

Another alternative is to evaluate the subsampling  variance for each type of material  and analyte 
at a  specified maximum particle  size, d, and subsample mass, mS. Such an evaluation can be per-
formed experimentally by repeated subsampling  and analysis of one or more actual samples, pro-
vided that the concentrations are high enough and the measurement precision good enough to 
allow estimation of the variance attributable to subsampling. However, an artificially spiked 
sample is usually inappropriate for this purpose, because its heterogeneity differs from that of 
real samples. If the precision of the measurement process after subsampling  is inadequate, the 
subsampling  variance may be hard to quantify experimentally. 

19.5.13  The Standard Uncertainty for a Hypothetical Measurement 

MARLAP�s recommended method selection criteria in Chapter 3 require that a laboratory esti-
mate the standard uncertainty  for a measurement of the activity  concentration of a radionuclide in 
a hypothetical laboratory sample whose true concentration is specified (i.e., the �method uncer-
tainty,� as defined  by  MARLAP). To estimate the combined standard uncertainty of the meas-
ured concentration, one must obtain estimates for all the input quantities and their standard 
uncertainties. All quantities except the  gross instrument signal may be measured and the standard 
uncertainties evaluated by routine Type A and Type B methods. Alternatively, the values and 
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EXAMPLE 19.30  Suppose the mathematical model for a radioactivity measurement is 

a ' 
NS / tS & NB / tB 

&λ (tD % tS /2)  FS mS Yg e 
where 

a is the specific activity of the radionuclide in the sample; 
NS is the test source count; 
NB is the blank count; 
tS is the source count time; 
tB is the blank count time; 
tD is the decay time; 
mS is the mass of the test portion; 
Y is the chemical yield; 
g is the counting efficiency; 
λ is the decay constant; and 
FS is the subsampling factor. 

With values given for the specific activity a; test portion mass mS; blank count NB; count times 
tS, tB, and tD; efficiency g ; and yield Y; the source count NS can be predicted. The predicted 
value is NS = tS (amS Yg exp(!λ(tD + tS / 2) ) + NB / tB). When this value is treated like a meas-
ured value, its estimated variance according to Poisson statistics is u2(NS) = NS. So, assuming 
negligible uncertainties in the times tS, tB, and tD, the (first-order) uncertainty propagation for-
mula gives the combined variance of the output estimate, a, as 

u 2(NS) / tS
2 
% u 2(NB) / t 2 u 2(mS) 

% u 2(Y) 
% u 2(g ) u 2(FS) 

uc
2(a) ' B 

% a 2 % 
2 �2 λ (tD % tS /2)  Y 2 g 2 F 2 mS Y 2g 2 e m 2 

S S 

�λ (tD % tS /2)  
% NB amS Yg e / tB / tS % NB / tB

2 u 2(mS) 
% u 2(Y) 

% u 2(g ) u 2(FS) 
' % a 2 % 

2 �2 λ (tD % tS /2)  Y 2 g 2 F 2 mS Y 2g 2 e m 2 
S S 

Measurement Uncertainty 

their standard uncertainties may be determined from historical data. The estimate of the  gross 
signal and its standard uncertainty must be obtained by other means, since the laboratory sample 
is only hypothetical. The predicted value of the gross count NS is calculated by rearranging  the 
equation or equations in the model and solving  for  NS. The standard uncertainty of the measured 
value may then be evaluated either from theory (e.g., Poisson counting statistics), historical data, 
or experimentation. 
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ATTACHMENT 19A 
Statistical Concepts and Terms 

19A.1  Basic Concepts 

Every laboratory measurement involves a measurement error. Methods for analyzing measure-
ment error are generally based on the theory of random variables. A random variable may be 
thought of as the numerical outcome of an experiment, such as a laboratory measurement, which 
produces varying results when repeated. In this document a random variable is most often the 
result of a measurement. Random variables will usually be denoted in this attachment by upper-
case letters. 

Of primary importance in almost any discussion of a random variable is its distribution, or prob-
ability distribution. The distribution of a random variable X describes the possible values of X 
and their probabilities. Although the word �distribution� has a precise meaning in probability 
theory, the term will be used loosely in this document. This attachment describes several types of 
distributions, including the following: 

� normal (Gaussian) 
� log-normal (or lognormal) 
� chi-squared (or chi-square) 
� Student�s t 
� rectangular (uniform) 
� trapezoidal  
� exponential 
� binomial 
� Poisson 

Normal distributions are particularly important because they appear often in measurement proc-
esses. The other types listed are also important in this chapter, but only the exponential, binomial 
and Poisson distributions are described in the text. 

The distribution of X is uniquely determined by its distribution function, defined by F(x) = 
Pr[X # x], where Pr[X # x] denotes the probability that X is less than or equal to x. The distribu-
tion function is also called the cumulative distribution function (cdf). If there is a function f(x) 
such that the probability of any event a # X # b is equal to Ia

b f(x) dx (i.e., the area under the curve 
y = f(x) between x = a and x = b), then X is a continuous random variable and f(x) is a probability 
density function (pdf) for X. When X is continuous, the pdf uniquely describes its distribution. A 
plot of the pdf is the most often used graphical illustration of the distribution (e.g., see Figures 
19.3 and 19.4), because the height of the graph over a point x indicates the probability that the 
value of X will be near x. 
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µ µ + σ 

µ  = Mean = Median 
σ  = Standard deviation 

σ 

FIGURE 19.3 � A symmetric distribution 

Two useful numerical characteristics of the distribution of a random variable are its mean and 
variance. The mean is also called the expectation or the expected value and may be denoted by 
µX or E(X). The mean of a distribution is conceptually similar to the center of mass of a physical 
object. It is essentially a weighted average of all the possible values of X, where the weight of a 
value is determined by its probability. The variance of X, denoted by σX 

2, Var(X), or V(X), is a 
measure of the variability of X, or the dispersion of its values, and is defined as the expected 
value of (X ! µX)2. 

The standard deviation of X, denoted by σX is defined as the positive square root of the variance. 
Although the variance appears often in statistical formulas, the standard deviation is a more intui-
tive measure of dispersion. If X represents a physical quantity, then σX has the same physical 
dimension as X. The variance σX 

2, on the other hand, has the dimension of X squared. 

Any numerical characteristic of a distribution, such as the mean or standard deviation, may also 
be thought of as a characteristic of the random variables having that distribution. 

The mean and standard deviation of a distribution may be estimated from a random sample of 
observations of the distribution. The estimates calculated from observed values are sometimes 
called the sample mean and sample standard deviation. Since the word �sample� here denotes a 
statistical sample of observations, not a physical sample in the laboratory, metrologists often use 
the terms arithmetic mean, or average, and experimental standard deviation to avoid confusion. 

The mean is only one measure of the center of a distribution (�measure of central tendency�). 
Another is the median. The median of X is a value x0.5 that splits the range of X into upper and 
lower portions which are equally likely, or, more correctly, a value x0.5 such that the probability 
that X # x0.5 and the probability that X $ x0.5 are both at least 0.5. Note that for some distributions 
the median may not be unique. Figure 19.4 shows the probability density function of a symmetric 
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distribution, whose mean and median coincide, and Figure 19.4 shows the pdf of an asymmetric 
distribution, whose mean and median are distinct. 

Median 
Mean 

µ 

µ  = Mean 
σ  = Standard deviation 

µ + σ 

σ 

FIGURE 19.4 � An asymmetric distribution 

The median of X is also called a quantile of order 0.5, or a 0.5-quantile. In general, if p is a num-
ber between 0 and 1, a p-quantile of  X is a number xp such that the probability that X < xp is at 
most p and the probability that  X  #  xp is at least p. A p-quantile is often called a 100pth  percentile. 

Sometimes the standard deviation of a nonnegative quantity is more meaningful when expressed 
as a fraction of the mean. The coefficient of variation, or CV, is defined for this reason as the 
standard deviation divided by the mean. The coefficient of variation is a dimensionless number, 
which may be converted to a percentage. The term �relative standard deviation,� or RSD, is also 
used. The term �relative variance� is sometimes used to mean the square of the relative standard 
deviation. 

The results of two analytical measurements may be correlated when they have measurement 
errors in common. This happens, for example, if laboratory samples are analyzed using the same 
instrument without repeating  the instrument calibration. Any error in the calibration parameters 
affects all results obtained from the instrument. This type of association between two quantities X 
and Y is measured by their covariance, which is denoted by  σX,Y or Cov(X,Y). The covariance of X 
and Y is defined as the expected value of the product (X  !  µX)(Y  !  µY). 

Covariance, like variance, is somewhat nonintuitive because of its physical dimension. Further-
more, a large value for the covariance of two variables X and Y does not necessarily indicate a 
strong  correlation between them. A measure of correlation must take into account not only the 
covariance σX,Y, but also the standard deviations σX and σY. The correlation coefficient, denoted 
by  ρX,Y, is therefore defined as σX,Y divided by the product of σX and σY. It is a dimensionless num-
ber between !1 and +1. The quantities X and Y are said to be strongly correlated when the abso-
lute value of their correlation coefficient is close to 1. 
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Statistical formulas are generally simpler when expressed in terms of variances and covariances, 
but the results of statistical analyses of data are more easily understood when presented in terms 
of standard deviations and correlation coefficients. 

The lack of a correlation between two quantities X and Y is not a sufficient condition to guarantee 
that two values f(X) and g(Y) calculated from them will also be uncorrelated. A stronger condi-
tion called independence is required. For most practical purposes, to say that two quantities are 
�independent� is to say that their random components are completely unrelated. A more rigorous 
definition appears in the MARLAP glossary. 

When the value of a random variable X is used to estimate the value of an unknown parameter θ, 
then X is called an estimator for θ. The bias of X is the difference between the mean µX and the 
actual value θ. If the bias is zero, then X is said to be unbiased; otherwise, X is biased. Note that 
metrologists use the term �bias� with a somewhat different but similar meaning (see Section 
19.3.1). 

As mentioned in Section 19.4.5.2, even if X is an unbiased estimator for θ, the application of a 
nonlinear function, f, to X may produce a biased estimator, f(X), for the value of f(θ). Colloquially 
speaking, the function of the mean is different from the mean of the function. For example, if X 
is an unbiased estimator for θ, then generally X2 is a biased estimator for θ2. 

If the value of X is used not to estimate the value of a parameter but to �predict� the value of 
another random variable, Y, whose value oftentimes is not directly observed, then X is called a 
predictor for Y. 

19A.2  Probability Distributions 

This section briefly describes the probability distributions used in Chapter 19. 

Distributions may be classified according to their mathematical properties. Distributions in the 
same class or family are described by the same mathematical formulas. The formulas involve 
numerical parameters which distinguish one member of the class from another. 

Two important kinds of distributions are the normal and log-normal, which are observed often in 
nature. Other types of distributions important in radioanalysis include the rectangular, binomial, 
Poisson, Student�s t, chi-squared and exponential distributions. Poisson distributions in particular 
are important in radiation counting measurements and are described in Section 19.5.2. 
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19A.2.1  Normal Distributions 

Many quantities encountered in nature and in the laboratory have distributions which can be de-
scribed by the �bell curve.� This type of distribution, called a normal, or Gaussian, distribution, 
is usually a reasonably good model for the result of a radioanalytical measurement. A number of 
commonly used methods for evaluating  data sets depend on their having  an approximately nor-
mal distribution. The probability density function (pdf) for a normal distribution is shown in Fig-
ure 19.5. 

A normal distribution is uniquely specified by its mean µ and variance σ2. The normal distribu-
tion with mean 0 and variance 1 is called the standard normal distribution. If  X is normally dis-
tributed with mean  µ and variance σ2, then (X  !  µ) /  σ has the standard normal distribution. 

The sum of a large number of independent random variables has an approximately normal distri-
bution, even if the individual variables themselves are not normally distributed, so long  as the 
variance of each term is much smaller than the variance of the sum.17 This is one reason why the 
normal distribution occurs often in nature. When a quantity is the result of additive processes 
involving  many small random variations, the quantity tends to be normally distributed. It is also 
true that many other distributions, such as the binomial, Poisson, Student�s t and chi-squared, can 
be approximated by normal distributions under certain conditions. 

The mean value of a normal distribution is also its median, or the value that  splits the range into 
equally likely portions. 

17 The number of quantities required to obtain a sum that is approximately normal depends on the distribution  of  the 
quantities. If the distribution is symmetric and mound-shaped  like the bell curve, the  number may be rather  small. 
Other distributions  such as the log-normal distribution, which is  asymmetric, may require a much larger number. 
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FIGURE 19.6 � A log-normal distribution 
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The value of a normally distributed quantity will be within one standard deviation of the mean 
about 68 % of the time. It will be within two standard deviations about 95 % of the time and 
within three standard deviations more than 99 % of the time. It is important to remember that 
these percentages apply only to normal distributions. 

19A.2.2  Log-normal Distributions 

The concentration of a contaminant in the environment may not be normally distributed. Instead 
it often tends to be log-normally distributed, as shown in  Figure 19.6. 

By definition, a quantity  X has a log-normal (or lognormal) distribution if the logarithm of  X is 
normally distributed. The product of a large number of independent positive random variables 
with similar variances is approximately log-normal, because the logarithm of the product is a 
sum of independent random variables, and the sum is approximately normal. The concentration 
of a contaminant in the environment tends to  be log-normal because it is the result of processes 
of concentration and dilution, which are multiplicative. 

The distribution of a log-normal quantity  X can be uniquely specified by the mean µln  X and vari-
ance  σ2 

lnX of ln  X, but more commonly used parameters are the geometric mean  µg = exp(µln  X) 
and the geometric standard deviation  σg = exp(σln  X). The geometric mean and geometric standard 
deviation are defined so that, if k is a positive number, the probability that  X will fall between 
µ k k

g / σg  and µgσg  is the same as the probability that lnX, which is normally distributed, will fall 
between µ 2

ln  X  !  kσln  X and µln  X + kσln  X. For example, the value of X will be between  µg / σg and 
µgσ2

g about 95 % of the time. 

Although the mean and median of a normal distribution are identical, for a log-normal distribu-
tion these values are distinct. The median, in fact, is the same as the geometric mean µg. As 
shown in Figure 19.6, the mean µ is larger than the geometric mean µg . The mean may be cal-
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culated from the geometric mean and geometric standard deviation as shown in Table G.6 in 
Appendix G.18,19 

The log-normal distribution is important for the interpretation of environmental radiation data, 
but it may also have applications in the laboratory. Two possible applications are decay factors 
e!λt based on uncertain time measurements and concentrations of contaminants in laboratory 
reagents. 

19A.2.3  Chi-squared Distributions 

If Z1, Z2, �, Zν are independent random variables and each has the standard normal distribution, 
the sum Z1

2 + Z2
2 + """ + Z2 

ν has a chi-squared (or chi-square) distribution with ν degrees of free-
dom. A chi-squared distribution, like a log-normal distribution, is asymmetric and does not in-
clude negative values. For large ν, the chi-squared distribution is approximately normal. Figure 
19.7 shows the densities for chi-square distributions with 1, 2, 3 and 10 degrees of freedom. 

ν = 1 

ν = 2 

ν = 3 ν = 10 

0 5 10 15 20 
0.0 

0.1 

0.2 
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0.4 

0.5 

f(x) 

x 

FIGURE 19.7 � Chi-squared distributions 

Chi-squared distributions are used frequently in hypothesis testing, especially for tests of hypoth-
eses about the variances of normally distributed data. Chi-squared distributions also appear in 
least-squares analysis (see Attachment 19C). 

18 Given the mean µ and standard deviation σ of the log-normal distribution, the geometric mean and geometric 
standard deviation may be calculated as µg ' µ2 µ2 % σ2  and σg ' exp ln(1 % σ2 / µ2) . 

19 Note that the symbols µ and σ are often used to denote the mean and standard deviation of ln X, which is normally 
distributed, rather than those of X, which is log-normally distributed. 
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A sum of independent chi-squared random variables is also chi-squared. Specifically, if X and Y 
are independent chi-squared random variables with ν1 and ν2 degrees of freedom, respectively, 
then X + Y has a chi-squared distribution with ν1 + ν2 degrees of freedom. 

The mean of a chi-squared distribution equals the number of degrees of freedom ν, and the vari-
ance equals 2ν. The median does not have a simple formula. 

19A.2.4  T-Distributions 

If Z is standard normal, X is chi-squared with ν degrees of freedom, and Z and X are independent, 
then  Z / X / ν has a Student�s t-distribution with ν degrees of freedom. A t-distribution is sym-
metric and mound-shaped like a normal distribution and includes both positive and negative val-
ues. Figure 19.8 shows the pdf for a t-distribution with 3 degrees of freedom. A dotted standard 
normal curve is also shown for comparison. 

f(x) 

0.4 

0.3 

0.2 

0.1 

0.0 
x 

Normal 

−4  −3  −2  −1  0  1  2  3  4  

FIGURE 19.8 � The t-distribution with 3 degrees of freedom 

When ν is large, the t-distribution is virtually identical to the standard normal distribution. 

The median of a t-distribution is zero. The mean is also zero if ν > 1 but is undefined for ν = 1. 
The variance equals ν / (ν ! 2) if ν > 2 and is undefined otherwise. 

T-distributions are often used in tests of hypotheses about the means of normally distributed data 
and are important in statistical quality control. T-distributions are also used in the procedure de-
scribed in Attachment 19D for calculating measurement coverage factors. 

If X1, X2, �, Xn are independent and normally distributed with the same mean µ and the same 
variance, then the quantity 

X � µ 
sX / n 

Measurement Uncertainty: Statistical Concepts and Terms 
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where X  is the arithmetic mean and sX is the experimental standard deviation, has a t-distribution 
with n ! 1 degrees of freedom. 

If X1, X2, �, Xn, Y are independent and normally distributed with the same mean and variance, 
then the quantity 

Y � X 
sX 1 % 1/n 

where X  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-
distribution with n ! 1 degrees of freedom. 

If Z is standard normal, X is chi-squared with ν degrees of freedom, Z and X are independent, and 
δ is a constant, then (Z % δ) /  X / ν  has the noncentral t-distribution with ν degrees of freedom 
and noncentrality parameter δ (Stapleton, 1995). When the (central) t-distribution is used to test 
the null hypothesis that two normal distributions have the same mean, a noncentral t-distribution 
describes the distribution of the test statistic if the null hypothesis is false. For example, if X1, 
X2, �, Xn, Y are independent and normally distributed with the same variance σ2, and X1, X2, �, 
Xn have the same mean µX, then the statistic 

Y & X 
sX 1 % 1/n 

where X  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-
distribution with n ! 1 degrees of freedom if µX = µY, but it has a noncentral t-distribution with 
noncentrality parameter 

µ Y � µX δ �� 
σ 1 % 1 /  n 

if µX … µY. 

The noncentral t-distribution is useful in the theory of detection limits and appears in Attachment 
20A of Chapter 20, �Detection and Quantification Capabilities.� 

19A.2.5  Rectangular Distributions 

If X only assumes values between a� and a+ and all such values are equally likely, the distribution 
of X is called a rectangular distribution, or a uniform distribution (see Figure 19.9). 

The mean and median of the rectangular distribution equal the midrange (a� + a+) / 2, and the 
standard deviation is (a+ ! a�) / 2 3 . 

Measurement Uncertainty: Statistical Concepts and Terms 

JULY 2004 19-71 MARLAP 



2a 

2aβ 

f(x) 

a− a x 
+ 

FIGURE 19.10 � A trapezoidal distribution 

Rectangular distributions are frequently used for Type B  evaluations of standard uncertainty (see 
Sections 19.4.2.2 and 19.5.11). 
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FIGURE 19.9 � A rectangular distribution 
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19A.2.6  Trapezoidal and Triangular Distributions 

Another type of bounded distribution used for Type B  evaluations of standard uncertainty is a 
trapezoidal distribution, which is described in Section 19.4.2.2. If  X has a trapezoidal distribu-
tion, it only assumes values between two numbers a� and a+, but values near the midrange 
(a� + a+) / 2 are more likely than those near the extremes. The pdf for a  symmetric trapezoidal 
distribution is shown in  Figure 19.10. Asymmetric trapezoidal distributions are not considered 
here. 

The mean and median of this distribution are both equal to the midrange.  If the width of the trap-
ezoid at its base is 2a and the width at the top is 2aβ, where 0 < β < 1, then the standard deviation 
is a (1 % β2) / 6 . As β approaches 0, the trapezoidal distribution approaches a triangular distri-
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bution, whose standard deviation is a / 6 , or (a+ ! a�) / 2 6 . As β approaches 1, the distribution 
approaches the rectangular distribution described in Section 19A.2.5. 

19A.2.7  Exponential Distributions 

The exponential distribution describes the life of an unstable atomic nucleus, whose remaining 
life does not depend on its current age. The distribution is described by one parameter, often 
denoted by λ, which represents the fractional decay rate. The mean of the distribution is 1 / λ and 
its variance is 1 / λ2. The median is the same as the half-life of the radionuclide. The pdf for an 
exponential distribution is shown in Figure 19.11. 

0 x0.5 

0 

λ/4 

λ/2 

3λ/4 

λ 

f(x) 

x 

FIGURE 19.11 � An exponential distribution 

The exponential distribution also describes waiting times between events in a Poisson process. 
For example, if the instrument background for a radiation counter follows the Poisson model 
with mean count rate rB (see Section 19A.2.9), the waiting times between counts are 
exponentially distributed with parameter rB. 

19A.2.8  Binomial Distributions 

The binomial distribution, introduced in Section 19.5.2, arises when one counts the outcomes of 
a series of n independent and identical experiments, each of which can produce the result �suc-
cess� or �failure.� If the probability of success for each event is p, the number of successes has a 
binomial distribution with parameters n and p. Important facts about the binomial distribution 
include the following:

  � The distribution is discrete; its only possible values are 0, 1, 2, �, n.
  � The mean of the distribution is np.
  � The variance is np(1 ! p).
  � If n is large and p is not close to 0 or 1, the distribution is approximated well by a normal 

distribution. 

Measurement Uncertainty: Statistical Concepts and Terms 
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If X is binomial with parameters n and p, then for k = 0, 1, 2, �, n, the probability that X = k is 
given by the equation 

Pr[X �� k] �� n 
k 

p k(1 � p)n�k 

where  denotes a binomial coefficient, which equals n 
k 

n! 
k!(n&k)! 

(19.36) 

. 

19A.2.9  Poisson Distributions 

As explained in Section 19.5.2, the Poisson distribution arises naturally as an approximation to 
the binomial distribution when n is large and p is small. Even if n is not large, the variance of the 
binomial distribution can be approximated using the Poisson model if p is small. Other important 
facts about a Poisson distribution include the following: 

� The distribution is discrete; its only possible values are the nonnegative integers 
0, 1, 2, �. 

� The mean and variance of the distribution are equal. 
� If the mean is large, the distribution is well approximated by a normal distribution. 
� A sum of independent Poisson random variables is also Poisson. 

If X has a Poisson distribution with mean µ, then for any nonnegative integer n, the probability 
that X = n is given by 

µ ne&µ 
Pr[X ' n] ' (19.37) 

n! 

The Poisson distribution is related to the chi-squared distribution, since 

Pr[X # n] ' Pr[χ2(2n % 2) $ 2µ] and Pr[X $ n] ' Pr[χ2(2n) # 2µ] (19.38) 

where χ2(ν) denotes a chi-squared random variable with ν degrees of freedom. This fact allows 
one to use quantiles of a chi-squared distribution to construct a confidence interval for µ based 
on a single observation X = n (Stapleton, 1995). Table 19.3 lists 95 % two-sided confidence 

χ2 χ2 intervals for µ some small values of n. For large values of n, the quantiles (2n) and (2n + 2) 
may be approximated using the Wilson-Hilferty formula (NBS, 1964): 

p p 

3 

2 2 (19.39) χ2 
p(ν) . ν 1 & % zp 9ν 9ν 
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   TABLE 19.3 � 95 % confidence interval for a Poisson mean 

n 
1 χ2 µlower = (2n) 0.025 2 

1 χ2 µupper = (2n + 2) 0.975 2 

0 0.000 3.689 
1 0.025 5.572 
2 0.242 7.225 
3 0.619 8.767 
4 1.090 10.242 
5 1.623 11.668 

n % 0.5 & µ Pr[X # n] . Φ (19.40) 
µ 

Measurement Uncertainty: Statistical Concepts and Terms 

As noted above, when the mean µ is large, the Poisson distribution may be approximated  by  a 
normal distribution. Specifically, 

where Φ denotes the distribution function of the standard normal distribution. For most purposes, 
this approximation is adequate if  µ  $ 20. 

Figures 19.12a and b show how the normal approximation improves as µ increases from 3 to 
100. For any  n, the probability Pr[X  #  n] is represented by the total area of bars 0 to n, while the 
value given by the normal approximation is represented by the total area under the dotted curve 
to the  left of  the  vertical line at n + 0.5. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Poisson: Bars 
Normal: Dotted line 

µ = 3 

n 

FIGURE 19.12a � Poisson distribution vs. normal distribution, µ = 3 
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n 

FIGURE 19.12b � Poisson distribution vs. normal distribution, µ = 100 
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ATTACHMENT 19B 
Example Calculations 

19B.1  Overview 

The following example shows how to calculate the combined standard uncertainty for a typical 
radioanalytical measurement. 

19B.2  Sample Collection and Analysis 

A soil sample is analyzed for 239/240Pu and 238Pu by alpha-particle spectrometry.

  � The sample is collected on July 10, 1999, at 11:17 am EDT, and shipped to a laboratory for 
analysis.

  � The entire laboratory sample is dried, weighed and ground to a maximum particle size of 
1.0 mm. The dry weight is approximately 2 kg.

  � The prepared sample is homogenized, and a test portion is removed by increments. The 
documented procedure requires a test portion of approximately 0.5 g.

  � The test portion is weighed and the mass is found to be 0.5017 g. The standard uncertainty of 
the mass includes contributions from repeatability, linearity, and sensitivity drift.

  � A 1-milliliter aliquant of 242Pu tracer is added to the test portion. The activity concentration of 
the tracer solution has previously been measured as 0.0705 Bq/mL with a standard uncer-
tainty of 0.0020 Bq/mL on June 30, 1999, at 11:00 am CDT. The aliquant is dispensed by a 
pipet, whose dispensed volume has a combined standard uncertainty previously determined to 
be 0.0057 mL.

  � After fusion, dissolution, chemical purification, and coprecipitation, a test source on a 
stainless steel planchet is prepared for counting in an alpha-particle spectrometer.

  � The efficiency of the spectrometer for the chosen geometry, which is assumed to be 
independent of the particle energy, has previously been measured as 0.2805 with a standard 
uncertainty of 0.0045.

  � A blank source is counted in the spectrometer for 60,000 s. The blank consists of a filter 
mounted on a planchet in the same geometry as the test source. In the 242Pu region of interest, 
2 counts are measured; and in the 238Pu region of interest, 0 counts are measured. Historical 
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data for this and similar spectrometers at the laboratory indicate that the background is stable 
between measurements.

  � The test source is placed in the spectrometer and counted for 60,000 s, beginning on August 
24, 1999, at 4:47 pm CDT. In the 242Pu region of interest, 967 counts are measured; and in the 
238Pu region of interest, 75 counts are measured. 

  � It is assumed that there is no detectable plutonium in the reagents; however, a method blank 
is analyzed simultaneously using a different spectrometer to check for contamination of 
reagents and glassware. 

In this example the measurand will be the specific activity of 238Pu in the 2-kilogram sample (dry 
weight) at the time of collection. 

19B.3  The Measurement Model 

The following notation will be used: 

mS is the mass of the test portion (0.5017 g) 
mL is the mass of the entire laboratory sample (~2000 g) 
d is the mesh size of the sieve (1.0 mm) 
cT is the tracer activity concentration (0.0705 Bq/mL) 
VT is the tracer aliquant volume (1 mL) 
tB is the blank count time (60,000 s) 
tS is the count time for the test source (60,000 s) 
NS is the total count in a region of interest when the source is counted (238Pu or 242Pu) 
NB is the count in a region of interest when the blank is counted (238Pu or 242Pu) 
R is the fraction of alpha particles with measured energy in the region of interest (238Pu 

or 242Pu) 
D is the decay-correction factor (238Pu or 242Pu) 
g is the alpha-particle counting efficiency 
Y is the plutonium chemical yield fraction 
FS is the subsampling factor (estimated as 1.00) 
a238 is the specific activity of 238Pu in the dried laboratory sample, decay-corrected to the 

time of collection 

Subscripts will be used to distinguish between quantities associated with particular regions of 
interest (238Pu or 242Pu). 

The decay-correction factor for either isotope is calculated as follows: 
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&λ tD 1 & e D ' e 

λ tS 

where λ is the decay constant (s!1) and tD is the time between collection and the start of the count-
ing measurement (3,911,400 s). Since λtS is small for both isotopes in this example, D may be 
approximated accurately by 

&λ (tD % tS /2)  D ' e 

The half-lives of 238Pu and 242Pu are 87.75 a and 375,800 a, respectively. So, 

D238 ' exp &ln2 
(87.75 a)×(365.2422 d /a)×(86,400 s /d) 

3,911,400 s % 
60,000 s 

2 
' 0.9990 

and D242 ' 1.000 . 

Dead time is negligible in this example; so, no distinction is made between the real time and the 
live time. If the real time were greater than the live time, the correction for decay during the 
counting period would be based on the real time. 

The fraction of alpha particles of each isotope actually measured in the nominal region of interest 
is estimated to lie between 0.96 and 1.00. A rectangular distribution is assumed, with center at 
0.98 and half-width equal to 0.02. Then the Type B standard uncertainties of R238 and R242 are 

0.02 
' 0.01155 u(R238) ' u(R242) ' 

3 

The chemical yield of plutonium is calculated using the model 

Y ' 
NS,242 / tS & NB,242 / tB 

cT VT g R242 D242 

Then the following model is used to estimate the measurand. 

NS,238 / tS & NB,238 / tB 
' a238 mS Yg R238 D238 FS 

Measurement Uncertainty: Example Calculations 

&λ t
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When values are inserted, 

967 / (60,000 s) & 2 / (60,000 s) Y ' ' 0.82990 
(0.0705 Bq/mL)×(1 mL)×0.2805×0.98×1 

75 / (60,000 s) & 0 / (60,000 s) 
' ' 0.010932 Bq/g a238 (0.5017 g)×0.82990×0.2805×0.98×0.9990×1.00 

(or 10.932 Bq/kg) 

19B.4  The Combined Standard Uncertainty 

The efficiency, g, effectively cancels out of the equation for a238, because it is multiplied by the 
yield Y and also appears as a factor in the denominator of the expression for Y (see also Section 
19.5.6). Therefore, the uncertainty of g has no effect on the uncertainty of a238. When using the 
uncertainty propagation formula to calculate the combined standard uncertainty of a238, one might 
include a covariance term for u(Y,g) to account for the relationship between the measured values 
of Y and g, but it is simpler to treat Yg as one variable. Application of the first-order uncertainty 
propagation formula (Section 19.4.3) to the equations above then gives the following: 

2 u 2(NS,242) /  tS
2 
% u 2(NB,242) /  tB

2 u 2(cT) u 2(VT) ) 
u (Yg ) ' % (Yg )2 % % 

u 2(R242 
c 2 2 V 2 R 2 cT VT

2 R 2 c 242 D 2 
T 242 242 T 

2 u 2(NS,238) /  tS
2 
% u 2(NB,238) /  tB

2 
2 u 2(mS) 

% u 2(Yg ) u 2(R238) u 2(FS) 
uc (a238) ' % a238 % % 

2 (Yg )2 R 2 F 2 mS
2 (Yg )2 R 2 m 238 D 2 S S 238 238 

All other input estimates are assumed to be uncorrelated. 

Note that u2(FS) is the subsampling variance associated with taking a small test portion 
(0.5017 g) from a much larger sample (2000 g). The estimation method suggested in Section 
19.5.12 will be used here to evaluate u(FS). 

1 1 kd 3 where k ' 0.0004 g/mm3 & u(FS) ' 
mS mL 

' 
1 1 (0.0004 g/mm3)(1.0 mm)3 & 

0.5017 g 2000 g 
' 0.0282. 
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 TABLE 19.4 � Input estimates and standard uncertainties 

INPUT 
QUANTITY 

INPUT 
ESTIMATE 

STANDARD 
UNCERTAINTY 

MEASUREMENT 
UNIT 

TYPE OF 
EVALUATION 

mS 0.5017 2.2 × 10!4 g Combined* 

cT 0.0705 0.0020 Bq/mL Combined* 

VT 1.0000 0.0057 mL Combined* 

tB 60,000 Negligible s B 
tS 60,000 Negligible s B 

NB, 238 0 1 counts B 
NB, 242 2 1.73 counts B 
NS, 238 75 8.72 counts B 
NS, 242 967 31.1 counts B 

R238, R242 0.98 0.01155 none B 
g 0.2805 0.0045 none Combined* 

FS 1.00 0.0282 none B 
D238 0.9990 Negligible none B 
D242 1.0000 Negligible none B 

* �Combined� here means �determined by uncertainty propagation.� 

Measurement Uncertainty: Example Calculations 

Appendix F  provides more information about subsampling  errors and methods for estimating 
their variances. 

The standard uncertainty of the mass of the test portion, mS, is evaluated using  the methods de-
scribed in Section 19.5.9. The total uncertainty of mS has components due to repeatability, lin-
earity, and sensitivity drift (environmental factors). Assume the repeatability standard deviation 
is 0.0001 g, the linearity tolerance is 0.0002 g, and the relative standard uncertainty due to sen-
sitivity drift is 1 × 10!5. If the balance is zeroed with an empty container on the pan, the soil is 
added to the container, and the display is read, then the standard uncertainty of the mass mS is 

u(mS) ' (0.0001 g)2 % (0.0002 g)2 % (0.5017 g)2 (1 × 10&5)2 ' 2.2 × 10&4 g 

Since extremely low counts are possible, each Poisson counting variance in this example will be 
estimated by the number of observed counts plus one (see Section 19.5.2.2 and Section 19D.3 of 
Attachment 19D). So, for example, u(NB, 238) equals one, not zero. 

Table 19.4 summarizes the input estimates and their standard uncertainties. 

Other possible sources of uncertainty in alpha-particle spectrometry measurements include: 
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2 968 / (60,000 s)2 % 3 / (60,000 s)2 
u (Yg ) ' c 

(0.0705 Bq/mL)2 ×(1  mL)2 ×0.982 ×12 

0.00202 
% 

0.00572 
% 

0.011552 
% (0.82990×0.2805)2 

0.07052 12 0.982 

' 0.0001094007 

' 0.010462 

and 

2 76 / (60,000 s)2 % 1 / (60,000 s)2 
uc (a238) ' 

(0.5017 g)2 ×(0.82990×0.2805)2 ×0.982 ×0.99902 

(2.2×10&4)2 0.010462 
% 

0.011552 
% 

0.02822 
% (0.010932 Bq/g)2 % 

0.50172 (0.82990×0.2805)2 0.982 12 

' 1.98915 × 10&6 Bq2 /g2 

' (0.001410 Bq/g)2 

So, uc(a238) = 0.00141 Bq/g or 1.41 Bq/kg. If the result is to be reported with an expanded 
uncertainty calculated from the combined standard uncertainty uc(a238) and a coverage factor 
k = 2, the result should appear as (0.0109 ± 0.0028) Bq/g or (10.9 ± 2.8) Bq/kg (dry weight). 

Measurement Uncertainty: Example Calculations 

  � uncertainties in half-lives and decay times;
  � spillover and baseline interferences caused by poor peak resolution;
  � incomplete equilibration of tracer and analyte before chemical separation; and
  � changing  instrument background. 

These uncertainties are evaluated as negligible in this example. Uncertainties associated with 
half-lives and decay times are negligible, because the decay times in the example are much 
shorter than the half-lives; but in practice one should confirm that any other uncertainties are 
small enough to be neglected. 

When values are inserted into the formulas 
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ATTACHMENT 19C 
Multicomponent Measurement Models 

19C.1  Introduction 

In this attachment, the term �multicomponent measurement model� means a mathematical model 
with more than one output quantity calculated from the same set of input quantities. One com-
mon application of a multicomponent model is the determination of a calibration curve involving 
two or more parameters. In principle, the approach to uncertainty propagation described in Sec-
tion 19.4 applies equally  well to single-component or multicomponent models. However, a 
straightforward implementation of the uncertainty propagation formula for some multicomponent 
models may be tedious unless software for automatic uncertainty propagation is available. 

At the time of this writing, the joint working group responsible for the GUM is reported to be 
developing  additional guidance to deal with multicomponent models, but the guidance is not yet 
available. 

19C.2  The Covariance Matrix 

A multicomponent model is most naturally described in terms of vectors and matrices, and the 
remainder of this attachment assumes the reader is familiar with those concepts and with the 
notation commonly used to describe them. The single-component model, Y = f(X1,X2,�,XN), 
which was used earlier, is now replaced by a multicomponent model, Y = f(X), where X and Y 
denote column vectors and f denotes a vector-valued function of X. The input vector, which is 
formed from the input estimates, xj, will be denoted by  x, and the output vector, which is formed 
from the output estimates, yi, will be denoted by  y. The estimated variances and covariances of all 
the input estimates are arranged in a square matrix, called the covariance matrix and denoted 
here by  u2(x), whose ijth element equals the covariance u(xi,xj). Application of the covariance 
equation in Section 19.4.4 leads to the following  expression for the covariance matrix of the out-
put vector, y. 

 

 

 

u2(y) ' u2(x) (19.46) 
Mx Mx 

) Mf Mf 

In this equation, Mf / Mx denotes the matrix whose ijth element is Mfi / Mxj. 

19C.3  Least-Squares Regression 

One application for which specialized multicomponent methods for uncertainty propagation may 
be useful is least-squares regression. For example the method of least squares may be used to 
find an approximate solution, y� , of a matrix equation of the form 
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Ay – b (19.47) 

where the components of the vector b have uncertainties. The least-squares solution for this prob-
lem can usually be expressed as 

y� ' (A) WA)&1A) Wb  (19.48) 

where W denotes a diagonal weight matrix, whose ith diagonal element is the inverse of the var-
iance of bi. If there is no uncertainty in the matrix A, and the elements of b are uncorrelated, then 
the covariance matrix for y�  is given simply by 

u2(y�) ' (A) WA)&1 (19.49) 

If there are uncertainties in the elements of A, the expression above is incomplete. Suppose the 
elements of A are functions of variables z1, z2, �, zr, whose estimated variances and covariances 
are available. Arrange these variables, zj, in a column vector, z, and let u2(z) denote the 
covariance matrix. If the bi are not correlated with the zj, then a more complete expression for the 
covariance matrix of y�  is the following. 

My� My� u2(y�) ' (A)WA)&1 % u2(z) 
) 

(19.50) 
Mz Mz 

The derivative matrix, My� / Mz, which appears above, may be calculated column by column. The 
jth column of My� / Mz is given by the formula 

My� MA) 

y) & A) W 
MA 

' (A) WA)&1 W (b & A � y� (19.51) 
Mzj Mzj Mzj 

where MA / Mzj denotes the matrix obtained from A by differentiating each element with respect 
to zj. If the uncertainties in the matrix A are large, even this method of uncertainty propagation 
may be inadequate (e.g., see Fuller, 1987). 

19C.4  References 
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ATTACHMENT 19D 
Estimation of Coverage Factors 

19D.1  Introduction 

Although it is common for laboratories to use a fixed coverage factor such as 2 or 3 when deter-
mining an expanded uncertainty for a measured value, the true coverage probability for the resul-
ting interval may be lower than expected if the standard uncertainties of the input estimates are 
determined from evaluations with too few degrees of freedom. This attachment summarizes a 
general method presented in Annex G of the GUM for determining appropriate coverage factors 
in these circumstances (ISO, 1995). Section 19D.3 applies the method to Poisson counting uncer-
tainties. 

19D.2  Procedure 

19D.2.1  Basis of Procedure 

When one evaluates a parameter, θ, statistically by making a series of n independent, unbiased 
measurements under the same measurement conditions and averaging the results, xi, if the results 
are approximately normally distributed, a confidence interval for θ may be constructed using the 
fact that the quantity ( x̄  ! θ) / s(x̄)  has a t-distribution with ν = n ! 1 degrees of freedom. If the 
desired confidence level is p, then the confidence interval is x̄ ± t s(x̄) , where t = t(1+p)/2(ν) is the 
(1 + p) / 2-quantile of a t-distribution with ν degrees of freedom. Here, x̄  is the result of the 
measurement of θ, and s(x̄)  is its standard uncertainty (Type A). The quantile, t, is the coverage 
factor that makes the coverage probability equal to p. For smaller values of ν, larger values of t 
are necessary to give the same coverage probability, because of the increased variability of the 
variance estimator, s 2(x̄) . 

The procedure described below is derived by assuming that the output estimate, y, for a more 
complex measurement and the combined standard uncertainty, uc(y), can take the place of x̄  and 
s(x̄) , respectively, in the confidence interval above; and that the appropriate coverage factor, kp, 
can be approximated by a quantile of a t-distribution with an appropriate number of degrees of 
freedom. The number of degrees of freedom is determined from the estimated coefficient of vari-
ation of the variance estimator, uc

2(y) . 

19D.2.2  Assumptions 

Assume the mathematical model for a measurement is Y = f(X1,X2,�,XN), the input estimates 
x1, x2, �, xN are independent, and the output estimate is y = f(x1,x2,�,xN). Also assume that the 
combined standard uncertainty of y is not dominated by one component determined from a Type 
A evaluation with only a few degrees of freedom or from a Type B evaluation based on a distri-
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4 4 4 uc (y) N ui (y) uc (y) 
' j or νeff ' 

4 ν eff i'1 ν i N ui (y) (19.52) 
j
i'1 ν i 

Measurement Uncertainty: Estimation of Coverage Factors 

bution very different from a normal distribution. Then the distribution of the output estimate y 
should be approximately normal, and the following procedure may be used to obtain a coverage 
factor, kp, for the expanded uncertainty of y that gives a desired coverage probability, p. 

19D.2.3  Effective Degrees of  Freedom 

First compute the effective degrees of  freedom of the measurement,  νeff, using  the Welch-
Satterthwaite formula 

Here ui(y) = |Mf / Mxi| u(xi) is the component of the combined standard uncertainty generated  by 
u(xi). If  u(xi) is evaluated by a Type A method, then νi is the number of degrees of freedom for 
that evaluation. If  u(xi) is evaluated instead by a Type B method, then νi may be defined as 

ν i ' 
1 
2 

u 2(xi) 

σ2 u(xi) 
' 

1 
2 

∆u(xi) 
u(xi) 

&2 

(19.53) 

where ∆u(x ) is the estimated standard deviati the standard uncertainty, u(xi), and σ2
i on of (u(xi)) 

denotes its square. This definition of νi for a Type B evaluation is an approximation based on the 
relationship between the number of degrees of freedom for a Type A evaluation and the coeffi-
cient of variation of the uncertainty estimator. In most cases estimation of  ∆u(xi) is subjective and 
requires professional judgment.20 

In some cases one may consider the value of ∆u(xi) for a Type B standard uncertainty to be zero 
or negligible, as for example when evaluating  the uncertainty associated with rounding  a number 
(Section 19.5.11) or when the standard uncertainty estimate, u(xi), is very conservative. In such 
cases one may assume  νi = 4; so, the  ith term  of the sum appearing  in the denominator of the 
Welch-Satterthwaite  formula vanishes. 

If an input estimate, xi, and its standard uncertainty, u(xi), are taken from a calibration certificate, 
the effective degrees of freedom for u(xi) may be stated on the certificate. In this case the stated 
number of degrees of freedom should be used as νi. 

20 A more rigorously derived mathematical definition of  νi in terms of  ∆u(xi) exists, but its use is not warranted 
given the usually subjective nature of the estimate of  ∆u(xi) and the other approximations involved in the Welch-
Satterthwaite formula. 
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R g ' 
aS 

kp ' n % 1 & νeff t(1%p) /2(n) % νeff & n t(1%p) /2(n % 1) (19.55) 

The expanded uncertainty  Up = kpuc(y) is estimated to have a coverage probability approximately 
equal to p. 

EXAMPLE 19.31 

Problem: Refer to the efficiency-calibration problem presented in Example 19.20 in Section 
19.5.6. The efficiency for a radiation counter, g, is calculated using  the equation 

where R  (62.1854 s!1@g!1) and its uncertainty (0.2301 s!1@g!1) are determined from 15 replicate 
measurements (14 degrees of freedom), and aS (150.0 Bq/g) and its uncertainty (2.0 Bq/g) 
are obtained from a calibration certificate. The calculated efficiency is 0.4146 and its com-
bined standard uncertainty is 0.005736. 

 Measurement Uncertainty: Estimation of Coverage Factors 

The number of effective degrees of freedom, νeff, satisfies the following  inequalities. 

n 
min ν i # ν eff #  ν i (19.54) 

1# i#n i'1 
j

So, νeff is no worse than the worst value of  νi and no better than the  sum of  all the  νi. The maxi-
mum (best)  value  for  νeff in Equation 19.54 is attained only if each νi is proportional to u2 

i (y). This 
fact suggests that, at least for Type A uncertainty components, the fraction of the total uncertainty 
evaluation effort spent on a particular component, ui(y), should be based on the anticipated mag-
nitude of u2 

i (y). 

19D.2.4  Coverage Factor 

The coverage factor, kp, is defined to be the (1 + p) / 2-quantile, t(1 + p) / 2  (νeff), of a t-distribution 
with ν 21

eff degrees of freedom.  Since the calculated value of νeff will generally not be an integer, it 
must be truncated to an integer, or else an interpolated t-factor should be used. That is, if n < 
νeff < n + 1, then use either kp = t(1 + p) / 2  (lνeffm), where l@m denotes the truncation operator, or 

21 The GUM uses the notation tp(ν) to denote the (1 + p) / 2-quantile of a t-distribution with ν degrees of freedom 
(ISO, 1995), but the same notation in most statistical literature denotes the p-quantile (e.g., ISO, 1993). MARLAP 
follows the latter convention. 
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00 00

00 00

Mg 1 0.2301 s&1 @g&1 
uR(g ) ' / / u(R) ' u(R) ' ' 0.001534. 

MR aS 150.0 Bq/g 0 0 
The component generated by u(aS) is 

Mg R 62.1854 s&1 @g&1 
uaS

(g ) ' / / u(aS) ' u(aS) ' (2.0 Bq/g) ' 0.0055276. 
MaS 

2 (150.0 Bq/g)2 0 0 aS 

So, the number of effective degrees of freedom, νeff, for uc(g) is given by 

uc
4(g ) (0.005736)4 

' . 14.42 . νeff ' 
u 4(g ) u 4 (g ) 0.0015344 

% 0.00552764 
R aS 

% 15 & 1 12.5 νR νaS 

Since 14.42 is not an integer, an interpolated t-factor may be used (see Table G.2 in Appendix 
G). The coverage factor for 95 % coverage probability is 

' (15 & 14.42) t0.975(14) % (14.42 & 14) t0.95(15) ' (0.58)(2.145) % (0.42)(2.131) ' 2.139. k0.95 

So, the expanded uncertainty is 

(g ) ' (2.139)(0.005736) . 0.012. U0.95 ' k0.95 uc 

 Measurement Uncertainty: Estimation of Coverage Factors 

Assume the certificate states that the number of effective degrees of freedom for u(aS) is 12.5. 
Find the effective degrees of freedom for uc(g), the coverage factor, k0.95, that gives 95 % 
coverage probability, and the expanded uncertainty, U0.95. 

Solution: The component of the combined standard uncertainty of g generated by  u(R)  is 

19D.3  Poisson Counting Uncertainty 

As stated in Section 19.5.2.2, the standard uncertainty in the number of counts, N, observed 
during a radiation measurement may often be estimated by  u(N) = N , according  to the Poisson 
counting  model. This method of evaluating the standard uncertainty is a Type B method; so, the 
effective degrees of freedom ν for the evaluation should be determined from ∆u(N). The standard 
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u(N) ' N and ν ' 2N (19.56) 

or, if very low counts are possible, by 

u(N) ' N % 1  and  ν ' 2(N % 1) (19.57) 

Measurement Uncertainty: Estimation of Coverage Factors 

deviation of N  is always less than 0.65.22 If  N is greater than about 10, the standard deviation of 
N  is approximately equal to 0.5, and, in this case, Equation  19.53 gives  the  estimate  ν  . 2N. 

For smaller values of  N, the same approximation is inadequate. 

MARLAP recommends that the standard uncertainty, u(N), and degrees of freedom, ν, for a 
Poisson measured value, N, be estimated  by 

If the expected count is greater than about 10, these formulas tend to give a coverage probability 
near the desired probability, p. When the expected count is small, the coverage probability tends 
to be greater than p. 

Although the estimate u(N) = N % 1  may be derived by the Bayesian approach to counting 
statistics assuming  a flat prior distribution for the mean count (Friedlander et al., 1981), the 
recommended expressions for u(N) and ν in Equation 19.57 have been chosen for the purely 
practical reason that they are simple and seem to give satisfactory results. When the count is low, 
the assumptions underlying  the Welch-Satterthwaite formula are usually violated, because the 
combined standard uncertainty is dominated by  counting uncertainty, and the distribution of the 
count is not normal. However, even in this case, if the formula is used, the recommended expres-
sions for u(N) and ν tend to give conservative results. 

EXAMPLE 19.32 

Problem: An alpha spectrometer is used to make a 60,000-second blank measurement fol-
lowed by a 60,000-second sample measurement. The observed blank count is 2 and the 
observed sample count is 0. The net count rate is modeled as 

22 Taking  the square root of a Poisson random variable is a common variance-stabilizing transformation, as 
described in Chapter 20 of  Experimental Statistics (NBS, 1963). The stated (slightly conservative) upper bound for 
the standard deviation of  N  is based on calculations performed at the EPA�s National Air and Radiation Environ-
mental Laboratory, although the same approximate value may be determined  by  inspecting  Figure 20-2  of NBS 
(1963). The precise calculation  maximizes a  function f(x) whose value is  the variance of  the square root of a Poisson 
random variable with mean x. The first derivative of  f is positive, decreasing  and convex between x = 0 and the 
location of the maximum of the function at x = 1.31895; so, Newton�s Method converges to the solution  from 
below. The maximum value of  f is found to be (0.642256)2. 
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000 000

RN ' 
NS 

tS 

& 
NB 

tB 

where 
RN is the net count rate (!3.333 × 10!5 s!1); 
NS is the sample count (0); 
tS is the sample count time (60,000 s); 
NB is the blank count (2); and 
tB is the blank count time (60,000 s). 

Assume the only source of uncertainty is Poisson counting statistics. Determine the effective 
degrees of freedom for uc(RN) and the coverage factor, k0.95, that gives 95 % coverage proba-
bility. 

Solution: Since very low counts are possible, 

u(NS) ' NS % 1 ' 1 and νNS 
' 2(NS % 1) ' 2 

u(NB) ' NB % 1 ' 1.732 and νNB 
' 2(NB % 1) ' 6 

Then 

u (RN) ' c

u 2(NS) 

t 2 
S 

% 
u 2(NB) 

t 2 
B 

' 
1 

(60,000 s)2 
% 

3 
(60,000 s)2 

' 3.333 × 10&5 s&1 

) ' uNS
(RN / 

0 
MRN 

MNS 

/ 
0 
u(NS) ' 1 

tS 

NS % 1 ' 1 
60,000 s 

' 1.667 × 10&5 s&1 

(RN) ' uNB
/ 
0 
MRN 

MNB 

/ 
0 
u(NB) ' 1 

tB 

NB % 1 ' 1.732 
60,000 s 

' 2.887 × 10&5 s&1 

So, the number of effective degrees of freedom is 

uc
4(RN) (3.333 × 10&5)4 

' ' 8 νeff ' 
uN 

4
S
(RN) uN 

4
B
(RN) (1.667 × 10&5)4 

% (2.887 × 10&5)4 

% 
νNS 

νNB

2 6 
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Then the coverage factor for a 95 % coverage probability is obtained from Table G.2 in 
Appendix G. 

(8) ' 2.306 k0.95 ' t0.975 

Notice that in this example, νeff ' νNS 
% νNB

, but this equality would not hold if the count times 
for the sample and blank were unequal. 

Also notice that the net count rate in this example is negative. Negative results may be com-
mon when environmental samples are analyzed for anthropogenic radionuclides. 
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ATTACHMENT 19E 
Uncertainties of Mass and Volume Measurements 

19E.1  Purpose 

This attachment describes methods that may be used to evaluate the measurement uncertainty of 
a mass or liquid volume measurement. The first purpose of the attachment is to provide methods 
for more complete evaluations of these uncertainties than those presented earlier in Sections 
19.5.9 and 19.5.10. A second purpose is to provide additional examples of uncertainty evalua-
tions, and especially Type A evaluations based on historical data, as described in Section 
19.4.2.1. 

A third purpose of the attachment is to provide information about the sources of error in mass 
and volume measurements that may be useful for establishing reasonable quality control criteria. 
Even if one assumes that weighing and pipetting errors are negligible, the quality control for bal-
ances and volumetric apparatus should be strict enough to ensure the assumption is true. Some of 
the sources of error described below will undoubtedly be considered negligible in many radio-
chemical measurement processes, yet they may be too large to be ignored in a strict quality con-
trol program. 

The existence of the attachment is not meant to imply that the uncertainties of mass and volume 
measurements tend to be relatively important in a radiochemistry laboratory. In fact the relative 
standard uncertainties of mass and volume measurements tend to be small if the measurements 
are made properly using appropriate instruments, and they may even be negligible in many cases 
when compared to other uncertainties associated with radiochemical analysis (e.g., see Section 
19.5.12, �Subsampling�). However, one needs to know the performance limits of any measuring 
instrument. For example the measurement uncertainty may actually be relatively large if a labora-
tory balance is used to weigh a mass that is too small for it. The uncertainty may also be large in 
some cases if the sensitivity of the balance varies slightly between tare and gross measurements. 

19E.2  Mass Measurements 

19E.2.1  Considerations 

Regardless of the methods used to evaluate balance measurement uncertainty, the results may be 
misleading unless the balance is well maintained and protected from external influences, such as 
drafts and sudden changes in pressure, temperature and humidity. 

The appropriate method for evaluating the standard uncertainty of a mass measured using a bal-
ance depends on the type of balance, including its principles of calibration and operation, but the 
uncertainty of the measured result generally has components associated with balance sensitivity, 
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linearity, repeatability, and air buoyancy. Typically, the component associated with sensitivity 
includes the uncertainty of calibration and may include variability caused by changing environ-
mental conditions, such as temperature. Other sources of uncertainty may include leveling errors 
and off-center errors, which should be controlled. Static electrical charges may also have an 
effect. Changes in mass (e.g., by absorption or evaporation of water) may be very significant for 
some materials. 

19E.2.2  Repeatability 

The repeatability of a balance is expressed as a standard deviation and is usually assumed to be 
independent of the load. It represents the variability of the result of zeroing the balance, loading a 
mass on the pan, and reading the indication. 

Balance manufacturers provide specifications for repeatability, but a test of repeatability should 
also be part of the routine quality control for the balance (see ASTM E898). The simplest pro-
cedure for evaluating repeatability is to make a series of replicate measurements of a mass stan-
dard under �repeatability conditions.� Repeatability conditions require one balance, one observer, 
one measurement location, and repetition during a short time period. For each measurement one 
must zero the balance, load the mass standard, and read the balance indication. 

EXAMPLE 19.32  Suppose a laboratory balance has readability 0.0001 g, and, according to the 
manufacturer, the repeatability is also 0.0001 g. An analyst performs a series of 28 measure-
ments using a 1-gram mass standard to check the repeatability. The results are listed below. 

1.0001 0.9996 0.9999 1.0002 
1.0002 0.9999 0.9999 1.0001 
0.9998 0.9999 1.0000 1.0001 
0.9999 0.9999 0.9999 1.0001 
0.9998 0.9998 1.0000 0.9998 
0.9996 0.9999 0.9999 1.0000 
1.0002 0.9999 1.0001 1.0004 

The analyst calculates the average, W , and standard deviation, s, of these values (Wi) as 
follows. 

1 28 
W ' Wi ' 0.9999607 g 

28 ji'1 

1 28 
s ' (Wi & W)2 ' 0.00018 g 

28 & 1 ji'1 

So, the analyst evaluates the repeatability to be 0.00018 g. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 
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sr ' 
K 1 

K (J & 1) j 
k'1 

J 

j 
j'1 

(xk, j & x̄k)
2 (19.58) 

where 
sr is the estimated repeatability standard deviation; 
J is the number of repetitions per session; 
K is the number of sessions; 
xk,j is the jth result obtained in the kth session; and 
x̄  k is the average of all the results in the kth session. 

The repeatability standard deviation determined by this method is a Type A standard uncertainty 
with K (J ! 1) degrees of freedom. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

In this example, since the mass standard is so small, it  may not be important that all the meas-
urements be made during  a short time period. Environmental factors produce relatively small 
day-to-day variability in the balance indication, and this variability may not be observable for a 
1-gram load. So, the repeatability might be evaluated using the results of 28 routine quality 
control measurements. 

A nested experimental design can also be used to evaluate both the repeatability and the day-to-
day (or hour-to-hour) variability due to environmental factors. In this procedure, one makes a 
series of replicate measurements with the same mass standard each  day for a number of days, or 
perhaps in a morning  session and afternoon session each day. Ideally, one should use a mass near 
the capacity of the balance to obtain the most reliable estimate of day-to-day variability, but 
almost any mass in the balance�s range will do for an estimate of repeatability. The  repeatability 
standard deviation is estimated by 

19E.2.3  Environmental Factors 

The correct method for evaluating the balance measurement uncertainty due to environmental 
factors depends strongly on the method and frequency of calibration. Some balances, especially 
newer models, have internal calibration masses, which allow frequent calibration with only the 
push of a button. Other balances use external calibration mass standards and require more care in 
the calibration process.  Balances of the latter type in many  cases are calibrated infrequently. If a 
balance is calibrated immediately before a measurement, then the uncertainty due to environ-
mental factors can be considered to be zero. However, if hours or days pass between the time of 
calibration and the time of measurement, then this uncertainty component may be significant. For 
the remainder of this subsection, the latter case is assumed. 
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Given the nested experimental data from the preceding section, one may estimate the variability 
due to environmental factors (day-to-day or hour-to-hour variability) as follows.23 

2 s 2 1 K 
r s ' (x̄k & x)2 & (19.59) env K & 1 k

j
'1 J 

where 
se

2
nv is the estimated variance due to environmental factors and 

x is the grand average of all the data (the average of the x̄  k ). 

If se
2
nv is found to be positive, then senv is estimated by its square root; otherwise, senv is assumed to 

be zero. One estimates the relative component of standard uncertainty of a measured mass due to 
environmental factors by 

senv φenv ' (19.60) mcheck 

where mcheck is the mass of the standard used in the experiment. 

If the variability due to environmental factors is large, its magnitude can also be estimated by 
weighing a heavy mass standard once per day for a number of days, or perhaps once in the morn-
ing and once in the afternoon of each day. Clearly, the observed variability will include the 
effects of both environmental factors and repeatability, but environmental factors presumably 
dominate when a heavy mass is weighed, because their effect is proportional to the mass, 
whereas the repeatability is essentially constant at all masses. So, the observed variability can be 
used as a reasonable estimate of the variability due to environmental factors alone. 

EXAMPLE 19.33  Suppose a laboratory balance has readability 0.0001 g, repeatability 
0.0001 g, and a capacity of approximately 110 g. An analyst performs QC measurements using 
masses of 1, 50, and 100 g. The results obtained using the 100-gram mass standard during a 
certain time period are as follows: 

99.9992 99.9989 99.9986 100.0008 
100.0001 99.9990 100.0002 100.0010 
99.9993 99.9988 100.0003 99.9975 
99.9989 100.0015 99.9989 99.9981 
99.9992 99.9992 100.0012 100.0009 

100.0002 99.9997 100.0002 100.0005 
99.9989 99.9990 100.0011 99.9991 

23 An F-test may be used to test for the presence of variance due to environmental factors. If this variance is zero, 
then the quantity Jsx̄

2 / sr 
2 , where sx̄

2  denotes the experimental variance of the averages x̄  i , may be assumed to have 
an F-distribution with K ! 1 numerator degrees of freedom and K(J ! 1) denominator degrees of freedom. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 
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The average, W , and standard deviation, s(Wi), of these values are calculated below. 

1 28 
W ' Wi ' 99.9996536 g 

28 ji'1 

1 28
(Wi & W)2 ' 0.001016 g 

28 & 1 js(Wi) ' 
i'1 

Since this standard deviation is much larger than the repeatability, 0.0001 g, essentially all of 
the variability may be attributed to environmental factors. The estimate is slightly inflated by 
the balance�s repeatability variance, but the difference in this case is only about 0.5 % of the 
value shown. So, the relative standard uncertainty due to environmental factors is estimated as 
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Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

19E.2.4  Calibration 

The uncertainty of calibration includes components associated with the mass standard or stan-
dards, repeatability, and variability due to environmental factors. 

When a precision mass standard is used for calibration, the standard uncertainty of its mass is 
generally negligible. However, the uncertainty may be evaluated if necessary from the specified 
mass tolerance. For example, a 100-gram ASTM Class-1 mass standard has a tolerance of 
0.00025 g, which may be assumed to represent the half-width of a triangular distribution centered 
at zero (ASTM E617). The standard uncertainty may be found by  dividing this tolerance by  6 
and is approximately 0.00010 g, or 1.0 × 10!6 when expressed in relative terms. 

The total relative standard uncertainty of a  mass measurement due to calibration may be esti-
mated as follows. 

where 
φcal is the total relative standard uncertainty of a balance measurement due to calibration; 
φenv is the relative standard uncertainty due to environmental factors; 
sr is the repeatability standard deviation; 
δcal is the tolerance for the mass of the calibration standard; and 
mcal is the mass of the standard used for calibration. 
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FIGURE 19.13 � Nonlinear balance response curve 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

If environmental conditions are not well-controlled, φenv may tend to dominate the other compo-
nents here, since both sr and δcal are much smaller than mcal. 

19E.2.5  Linearity 

The linearity of a balance should be specified by the manufacturer as a tolerance, aL, which repre-
sents the maximum deviation of the balance indication from the value that would be obtained  by 
linear interpolation between the calibration points. Routine quality control  should ensure that the 
linearity remains within acceptable limits. 

The Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement recommends 
that the linearity tolerance aL be treated as the half-width of a rectangular distribution and that aL 
therefore be divided by  3  to obtain the standard uncertainty  (Eurachem, 2000). However, since 
the linearity error is likely to vary as a sinusoidal function of the load, as illustrated in Figure 
19.13, the divisor 2  may be more appropriate. So, the standard uncertainty due to linearity for a 
simple mass measurement may be evaluated as aL / 2 . Whether one uses 3  or the more 
conservative value 2  depends partly on how conservative one believes the estimate of aL to be. 

19E.2.6  Gain or Loss of  Mass 

When gain or loss of mass is a relevant issue, as for example when the material being weighed is 
a volatile liquid or a hygroscopic solid, the mass should be treated as a function of time. One 
method of determining  this function is to weigh the material at different times, recording both the 
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m ' Inet B (19.62) 

where 

B ' 
1 & kA, C 

1 & kA, M 

/ kC 

/ kM 
(19.63) 

and 
m is the corrected value for the mass of the material being weighed; 
Inet is the net balance indication; 
B is the buoyancy-correction factor; 
kM is the density of the material being weighed; 
kAM is the density of the air at the time the material is weighed; 
kC is the density of the calibration mass standard; and 
kAC is the density of the air at the time of calibration. 

The standard uncertainty of B may be obtained as follows. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

time and the observed mass, and fit a line or curve to the resulting data points. One can then cal-
culate the mass at a particular time of interest (e.g., before any  gain or loss occurred, or perhaps 
during  the period when the material was in a radiation counter). If possible, it is better to weigh 
the material both before and after the time of interest to avoid  extrapolating the curve to points in 
time where its accuracy may be unknown. However, in some situations extrapolation may be 
necessary, as for example when determining  the dry mass of a hygroscopic precipitate. 

The standard uncertainty of a mass calculated in this manner includes components for curve-
fitting errors. 

19E.2.7  Air-Buoyancy Corrections 

Air-buoyancy corrections are not often performed in radiochemistry laboratories, because they 
are usually negligible in comparison to the overall uncertainty of the result. However, when the 
measurand is the mass itself and not some other quantity such as a radionuclide concentration 
whose calculated value depends on the mass,  buoyancy corrections may be important. Failure to 
correct for air buoyancy when weighing  water, for example, introduces a relative error of 
approximately  !0.1 %, which may be much larger than the standard uncertainty of the un-
corrected mass (e.g., when weighing  a gram or more of an aqueous solution on a typical four-
place analytical balance). 

When a buoyancy-correction factor is used, the true mass is estimated as follows. 
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ap & φ (bt  & c) kA ' (19.66) 273.15 K % t 

where 
a   =  3.48589 × 10!3 K @ s2 / m2; 
b   =  2.5211151 × 10!4 g / mL; and 
c   =  2.0590571 × 10!3 K @ g / mL. 
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Evaluation of this uncertainty requires estimates of  kM, kC, kAM and kAC as well as their standard 
uncertainties and covariances. The covariance u(kAC, kC) is usually zero or negligible, and 
u(kAM, kM) also is usually negligible if the material being  weighed is a solid. 

Clearly, u(B) tends to be no more significant in a radiochemical measurement than the factor B 
itself is, but it may generate a large fraction of the uncertainty of the mass, m, since the uncer-
tainty of the mass is often tiny. 

The density of air (kA) depends on temperature, pressure, and humidity, as shown in the 
following equation. 

where 
kA is the density of air; 
k0 is the density of dry air at 0 EC and 101.325 kPa (1 atm); 
t is the Celsius temperature; 
p is the barometric pressure; 
φ is the relative humidity (a fraction between 0 and 1); and 
eS is the saturation vapor pressure of water at  temperature t. 

The vapor pressure, eS, is a nonlinear function of t, but it can be approximated by a linear func-
tion in the range of temperatures typically encountered in the laboratory. When this approxima-
tion is made, the resulting  equation for the air density may be written as follows. 
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EXAMPLE 19.34  Suppose the density of the weighed material, kM, is 0.5 g/mL with a toler-
ance of 0.2 g/mL, assumed to represent the half-width of a triangular distribution. The density 
of the calibration mass standard, kC, is 7.850 g/mL with a tolerance of 0.025 g/mL. Instead of 
measuring temperature, pressure and humidity at the time of each measurement, the laboratory 
assumes the following nominal values and tolerances: 

Temperature (t) (22.5 ± 2.5) EC 
Pressure (p) (101.3 ± 2.0) kPa 
Relative humidity (φ)  (0.60 ± 0.25) 

Recall that 
a   =  3.48589 × 10!3 K @ s2 / m2; 
b   =  2.5211151 × 10!4 g / mL; and 
c   =  2.0590571 × 10!3 K @ g / mL. 

Then the air density is calculated as follows. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

If  p is expressed in kPa and t in EC, then Equation 19.66 with the given numerical values of a, b, 
and c provides the numerical value of the density, kA, in kg/Lor g/mL. 

Then the standard uncertainty of kA is given by 

The densities of the calibration weight (kC) and of the solid or liquid material being  weighed (kM) 
also depend on temperature somewhat, but these  temperature effects can usually be safely  ig-
nored when calculating  the uncertainty of the buoyancy-correction factor, since temperature 
affects the density of air much more than the density of a solid or liquid. 

The effect of pressure on the density of the material being weighed can also usually  be neglected. 
For most practical purposes, the compressibility of  a  solid or liquid can be considered to  be zero. 
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ap & φ × (bt  & c) kAC ' kAM ' 
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' 

295.65 K 

' 1.1871 × 10&3 g /mL 

(For convenience, unit symbols will be omitted from intermediate steps in the equations 
below.) 

If each of the tolerances for t, p, and φ represents the half-width of a triangular distribution, 
then 

u 2(t) ' 
2.52 

6 
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So, the standard uncertainties of kAC and kAM are 
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Then the buoyancy-correction factor is 
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The tolerances for the densities kC and kM are the half-widths of triangular distributions; so, 
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The covariances u(kAC, ρC) and u(kAM, kM) are zero in this example. So, the standard uncer-
tainty of B is 

) /  k2 ) /  k2 ) /  k2 ) /  k2 u 2(kAC AC % u 2(kC C 
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% 0.22 / 6  
(1.1871 × 10&3)2 7.852 
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(1.1871 × 10&3)2 0.52 

' 1.00223 
7.85 2 0.5 2 

� 1  � 1  
1.1871 × 10&3 1.1871 × 10&3 

' 3.9 × 10�4 

Thus, the buoyancy-correction factor increases the result of the measurement by about 0.2 % 
and generates a relative standard uncertainty component of approximately 0.04 %. An exam-
ination of the calculation reveals that the uncertainty of B in this case is dominated by the 
uncertainty of ρM, the density of the material being weighed. Note that the uncertainty of B is 
very small and would generally be considered negligible in the final result of a radiochemistry 
measurement, but it may represent a significant fraction of the uncertainty of the mass meas-
urement. 

19E.2.8  Combining the Components 

When the balance is used to measure the mass, m, of an object placed on the pan, the mass is 
given by m = IB, and its standard uncertainty by 

2 

B 2 a 
% I 2 u 2(B) (19.68) u(m) ' I 2 (φ2 ) % L 

% s 2 
cal % φ2

2 r env 

where 
m is the buoyancy-corrected mass; 
I is the balance indication; 
B is the buoyancy-correction factor24; 
ncal is the relative standard uncertainty due to calibration; 
nenv is the relative standard uncertainty due to environmental factors; 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

24 Variations in temperature, humidity, and pressure may produce a correlation between the buoyancy-correction 
factor, B, and the balance indication, I, because of the influence of environmental factors on the balance�s sensi-
tivity. The correlation is  assumed here to be negligible. 
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aL is the linearity tolerance; and 
sr is the repeatability standard deviation. 

Often the balance is used to weigh material in a container. The balance is zeroed with the empty 
container on the pan and the container is then filled and weighed. In this case the linearity  uncer-
tainty component is counted twice, because the linearity  error is assumed to vary  between the two 
loads. (This assumption tends to be conservative when small masses are weighed.) Although the 
buoyancy factors for the container and its contents may differ because of the different densities of 
the materials, the only value of  B that is used is the buoyancy factor for the material being 
weighed. 

In a third scenario the empty container is weighed, removed from the pan, and then filled with 
material. The balance is zeroed again, and the filled container is weighed. In this case both the 
linearity and repeatability components of uncertainty must be counted twice, because two distinct 
measurements are made. So, the corrected net mass and its standard uncertainty are 

m ' Inet B 
(19.69) 2 2 u(m) ' B 2 I 2 (φ2 

env) % aL % 2s % Inet 
2 u 2(B) net cal % φ2

r 

where 
Inet is the net balance indication (gross ! tare) and 
B is the buoyancy factor for the material being weighed. 

In a variant of the third scenario, the same weighing  procedure is used but there is a significant 
time delay between the tare and gross measurements, which allows environmental conditions to 
change and the balance sensitivity to drift. In this case the mass and its standard uncertainty 
should be calculated as follows. 

where Itare and Igross denote the balance indications for the tare and  gross  measurements, respec-
tively. In this scenario the uncertainty due to environmental effects may be relatively large if the 
tare mass is large relative to the net. When this is true, the analyst should consider measuring and 
correcting for  the  sensitivity  drift. 

19E.3  Volume Measurements 

Section 19.5.10 presents a simplified approach to the evaluation of the uncertainty of a volume 
measurement, which may be adequate for most purposes in a typical radiochemistry  laboratory. 

MARLAP 19-104 JULY 2004 



Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

This section describes experimental methods for evaluating the uncertainty components de-
scribed in Section 19.5.10 and also considers additional uncertainty components. 

The density of a liquid depends on its temperature. For this reason, when a volume is measured, 
it may be important whether the volume of interest is the volume at the current room tempera-
ture, the long-term mean room temperature, or some other temperature, such as 20 EC. However, 
one should determine whether the effect of temperature is really significant for the measurement, 
since temperature effects are usually  very  small. 

If  the quantity of interest is the volume at room temperature when the volume is measured, the 
effects of temperature can usually  be ignored. The following discussion assumes that the quantity 
of interest is the volume at the mean room temperature and that the actual room temperature may 
fluctuate within specified limits. 

Three approaches to uncertainty evaluation for volume measurements are discussed. The follow-
ing uncertainty  components are considered:

  � The capacity  of the measuring device,
  � Repeatability, 
  � The analyst�s bias in using the device (e.g., reading a meniscus), and
  � Temperature effects. 

19E.3.1  First Approach 

The first approach considered here is appropriate for volumetric glassware. Example 19.26 in 
Section 19.5.10 illustrates this approach using  only the uncertainty components associated with 
capacity and repeatability, which tend to be dominant. 

CAPACITY 

The capacity  of a volumetric pipet or flask (at 20 EC) is generally specified with a tolerance,  δcap, 
which may be assumed to represent the half-width of a rectangular or triangular distribution (e.g., 
see ASTM E288 and ASTM E969). The Eurachem/CITAC Guide recommends a triangular 
distribution, which is based on the assumption that values near the nominal value are more likely 
than those near the extremes (Eurachem, 2000). Using a triangular distribution, one evaluates the 
uncertainty component of the volume associated with the capacity as δcap / 6 . 

REPEATABILITY 

As described in Section 19.5.10, one may evaluate the uncertainty associated with precision, or 
repeatability, for volumetric glassware by obtaining  the dimensions of the glassware and esti-
mating  the maximum �possible� deviation of the meniscus from the capacity line. ASTM E969, 
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�Standard Specification for Glass Volumetric (Transfer) Pipets,� specifies that the internal cross-
section of any Class A or Class B pipet must be circular, and provides ranges of permissible in-
ternal diameters at the capacity mark. If d denotes the actual diameter and δmen denotes the maxi-
mum deviation of the meniscus from the capacity mark, then the maximum deviation of the 
volume from its value at the capacity mark is given by 

When  δmen and d are expressed in centimeters,  Equation 19.71 gives  the maximum volume devia-
tion, δrep, in milliliters. Then if  δmen is assumed to represent the half-width of a triangular distribu-
tion, the standard uncertainty of the volume due to repeatability is δrep / 6 , which equals 

ANALYST�S BIAS 

A similar method can be used to evaluate the uncertainty due to the analyst�s bias in reading the 
meniscus. One estimates the maximum possible systematic error in the height of the meniscus, 
δsys, and evaluates the associated uncertainty component of the volume as 

Presumably the value of δsys should be only a fraction of that of δmen; so, this uncertainty should 
contribute little to the total uncertainty of a single volume measurement, although it may be 
relatively more significant if the glassware is used to dispense several aliquants of liquid in a 
single experiment. 

TEMPERATURE EFFECTS 

Temperature influences a volume measurement through its effects on the density of the liquid 
and the capacity of the glassware. Both effects tend to be very small and can often be ignored. 

Volumetric glassware is calibrated at 20 EC, but the glassware expands with increasing tempera-
ture. For most purposes the effect of temperature on capacity can be ignored, because it is much 
smaller than the effect on the density of the liquid. For example, the capacity of ASTM Type I, 
Class A, borosilicate glassware increases by only about 0.001 % for each degree Celsius of tem-
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TABLE 19.5 � Coefficients of cubical expansion 

Material  Coefficient of cubical expansion, EC!1 

Fused silica (quartz)           0.0000016 

Borosilicate glass (Type I, Class A)           0.000010 

Borosilicate glass (Type I, Class B)           0.000015 

Soda-lime glass           0.000025 

Polypropylene plastic           0.000240 

Polycarbonate plastic           0.000450 

Polystyrene plastic           0.000210 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

perature increase. Temperature effects on softer materials, such as plastic, may be more signifi-
cant; however, soft plastic volumetric ware is seldom used when high accuracy  is required. 

The glassware�s capacity at room temperature may be approximated  by 

Vt (1 % αV (t & 20 EC)) ' V20 (19.72) 

where 
t is the room temperature (Celsius); 
Vt is the capacity  at temperature  t; 
V20 is the  nominal capacity at 20 EC; and 
αV is the glassware�s coefficient of thermal cubical expansion. 

Table 19.5, which is taken from ASTM E542, lists values of αV for materials often used in volu-
metric ware. The referenced document does not provide the uncertainties of these values, but 
relative tolerances of ±10 % (triangular distribution) seem reasonable. The actual uncertainty is 
likely to be insignificant to the analyst. 

Example 19.35  An analyst uses a 1-milliliter ASTM Type I, Class A borosilicate glass pipet 
to dispense an aliquant of a solution when the room temperature is approximately 22.5 EC. 
The actual volume dispensed is estimated to be 

Vt = (1 mL)(1 + (0.000010 EC!1)(22.5 EC ! 20 EC)) = 1.000025 mL 

The analyst considers  the  temperature correction and its uncertainty in this case to be negli-
gible. 
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1 & kAC / kC V ' Ī Z  where Z ' (19.73) 
kM & kAM 
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The standard uncertainty due to temperature effects on the liquid�s density may be derived from a 
temperature range, t ± δtem, and the liquid�s coefficient of thermal expansion, β, at the center of 
the range. Assuming a triangular distribution for the temperature with half-width δtem, the relative 

temperatures the value of β for water lies in the range 0.00021 C  to 0.00026 C ; so, the total 
standard uncertainty due to temperature effects is generally less than 0.05 %, which can often be 
considered negligible. Values of β for water may also be applied to dilute aqueous solutions. 
Other liquids have different coefficients of thermal expansion. 

Example 19.36  An analyst measures a volume of dilute HCl in a laboratory where the tem-
perature range is assumed to be (22.5 ± 2.0) EC. The coefficient of thermal expansion for 
water at 22.5 EC is approximately 0.00023 EC!1. So, the relative standard uncertainty of the 
volume due to temperature effects on the density of the solution is 

Again, the analyst considers the uncertainty due to temperature (0.02 %) to be negligible. 

19E.3.2  Second Approach 

An alternative approach, which is suitable for most varieties of pipets, is to calibrate the device 
gravimetrically using an analytical balance. The balance, to be useful, must provide better accu-
racy than the pipet. In particular the balance�s repeatability and linearity tolerances should be 
small relative to the tolerances for the pipet. The calibration provides an estimate of the pipet�s 
capacity, the standard uncertainty of the capacity, and the variability to be expected during use. 
The procedure involves dispensing a series of n pipet volumes of a specified liquid into a con-
tainer and weighing the container and zeroing the balance after each volume is added. Usually 
the container must have a small mouth to reduce evaporation. The temperature of the room, the 
liquid, and the apparatus involved should be specified, equilibrated, and controlled during the 
experiment. The calibration is most often performed using water. 

The procedure produces a set of balance indications, Ii , from which the arithmetic mean, Ī , and 
the experimental standard deviation, s(Ii), are calculated. To obtain the estimated mean pipet

¯ volume, V, the mean balance indication, I , is multiplied by a factor, Z, which equals the quotient 
of the buoyancy-correction factor and the density of the liquid at room temperature. So, v is given 
explicitly by 
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and where 
kM is the density of the liquid; 
kAM is the density of the air at the time the liquid is weighed; 
kC is the density of the calibration mass standard for the balance; and 
kAC is the density of the air at the time of the balance calibration. 

A correction factor for thermal expansion of the pipet may also be included, if desired. 

ASTM E542, �Standard Practice for Calibration of Laboratory Volumetric Apparatus,� provides 
additional information about the procedure, including tables of values of Z for various condi-
tions. Table 19.6, which is taken from ASTM E542, shows the density of air-free water at var-
ious temperatures.25 Section 19E.2.7 of this attachment describes an equation to calculate the 
density of air as a function of temperature, pressure, and humidity. 

TABLE 19.6 � Density of air-free water 

Temperature, EC Density, g / cm3 Temperature, EC Density, g / cm3 

15 0.999098 26 0.996782 

16 0.998941 27 0.996511 

17 0.998773 28 0.996232 

18 0.998593 29 0.995943 

19 0.998403 30 0.995645 

20 0.998202 31 0.995339 

21 0.997990 32 0.995024 

22 0.997768 33 0.994701 

23 0.997536 34 0.994369 

24 0.997294 35 0.994030 

25 0.997043 

The volume, V, estimated by the calibration may be substituted for the pipet�s nominal capacity 
when the pipet is used later in an analytical measurement. The uncertainty of V as a predictor of 
the volume that will be dispensed during a subsequent measurement may be calculated as 

25 The densities in the table are approximated adequately (to six decimal places) by the rational function 

k ' 0.999924794 % 7.37771644×10&3(t) & 7.52261541×10&6(t 2) 
1 % 7.3265954×10&3(t) 

where k denotes density in g/cm3 and t denotes temperature in EC. Use of this equation allows calculation of the 
coefficient of thermal expansion, β, since β = !(dk / dt) / k. 
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where s(Ii) denotes the experimental standard deviation of the n balance indications, ncal and nenv 
denote the relative standard uncertainties of mass measurements associated with balance calibra-
tion and environmental factors, respectively (see Section 19E.2), δtem denotes the temperature 
tolerance, and β denotes the liquid�s coefficient of thermal expansion. Note that the uncertainty 
of the buoyancy-correction factor has been ignored here and the standard uncertainty of Z has 
been equated with the component due to thermal expansion of the liquid, which is assumed to be 
dominant. The temperature distribution is taken to be triangular. Also note that the correlation 
between Z and Ī  induced by temperature effects on both the liquid�s density and the balance 
sensitivity is unknown and has been ignored. Given the typical magnitudes of the various 
uncertainty components here, the following uncertainty estimate is likely to be adequate for most 
purposes (a pure Type A evaluation with n ! 1 degrees of freedom). 

Note that if a different analyst performs the measurement, there may be an additional uncertainty 
component associated with the difference in individual techniques. 

If the mean volume is within specified tolerances, a slightly simplified approach is possible. The 
pipet�s nominal capacity may be used as the volume, V, and the tolerance, δcap, may be used in a 
Type B evaluation of standard uncertainty. In this case, the standard uncertainty of V is evaluated 
as shown below. 

Again, given the typical magnitudes of the uncertainty components, the following simpler ex-
pression is usually adequate. 

The experimental procedure outlined above may also be adapted for other volume measuring 
devices, including flasks and graduated cylinders. 
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Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

19E.3.3  Third Approach 

The manufacturers of certain types of pipetting devices (e.g., Eppendorf® pipettes) provide speci-
fications for bias and precision. For these devices, the manufacturer�s specifications for bias and 
precision may be assumed, provided the analyst uses the device properly, according to the manu-
facturer�s directions. In this case the Type B standard uncertainty of a pipetted volume, V, is eval-
uated as 

where δcap is the manufacturer�s stated bias tolerance, assumed to represent the half-width of a tri-
angular distribution, s is the stated standard deviation, β is the liquid�s coefficient of thermal ex-
pansion, and δtem is the temperature tolerance. This approach has the advantage of simplicity; 
however, if the analyst fails to follow the manufacturer�s directions for use, the uncertainty esti-
mate given by Equation 19.78 may be unrealistic. (As in the preceding section, the uncertainty 
due to temperature effects can usually be ignored.) 

Either of the first two approaches described above may also be used for these devices. 
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	19.1 Overview 
	19.1 Overview 
	This chapter discusses the evaluation and reporting of measurement uncertainty. Laboratory measurements always involve uncertainty, which must be considered when analytical results are used as part of a basis for making decisions. Every measured result reported by a laboratory should be accompanied by an explicit uncertainty estimate. One purpose of this chapter is to give users of radioanalytical data an understanding of the causes of measurement uncertainty and of the meaning of uncertainty statements in 
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	This chapter has more than one intended audience. Not all readers are expected to have the mathematical skills necessary to read and completely understand the entire chapter. For this reason the material is arranged so that general information is presented first and the more technical information, which is intended primarily for laboratory personnel with the required mathematical skills, is presented last. The general discussion in Sections 19.2 and 19.3 requires little previous knowledge of statistical met
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	-
	-
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	sion of uncertainty propagation requires knowledge of differential calculus for a complete understanding. Attachments 19C•E are intended for technical specialists. 
	-

	The major recommendations of the chapter are summarized in Section 19.3.9. 

	19.2 The Need for Uncertainty Evaluation 
	19.2 The Need for Uncertainty Evaluation 
	Radiochemical laboratories have long recognized the need to provide uncertainties with their results. Almost from the beginning, laboratories have provided the counting uncertainty for each result, because it is usually 
	-
	-
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	 Planners and decisionmakers must also consider the variability of the analyte in sampled populations, as discussed in Appendix C; however, the focus of this chapter is on the uncertainty of measuring the analyte in each laboratory sample. 
	1

	easy to evaluate (see Sections 19.3.5 and 19.5.2). However, the counting uncertainty is only one component of the total measurement uncertainty. Over the years it has been recommended repeatedly that laboratories perform good evaluations of the total uncertainty of each measurement. In 1980 the Environmental Protection Agency published a report entitled •Upgrading Environmental Radiation Data,• which was produced by an ad hoc committee of the Health Physics Society. Two of the recommendations of this report
	-

	Every reported measurement result (x) should include an estimate of its overall 
	uncertainty (u) which is based on as nearly a complete an assessment as possible. 
	x

	The uncertainty assessment should include every conceivable or likely source of 
	inaccuracy in the result. 
	More recently ANSI N42.23, American National Standard Measurement and Associated Instrument Quality Assurance for Radioassay Laboratories, recommended that service laboratories report both the counting uncertainty and the total propagated uncertainty. ISO/IEC 17025, General Requirements for the Competence of Testing and Calibration Laboratories, which was released as a standard in 1999, requires calibration and testing laboratories to •have and apply• procedures for estimating measurement uncertainties (ISO
	-
	-
	-

	Note that the concept of traceability (see Chapter 18) is defined in terms of uncertainty. Traceability is defined as the •property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties• (ISO, 1993a). Thus, a laboratory cannot realistically claim that its measurement results are •traceable• to a standard unless there exists a chain of compa
	-
	-

	This chapter considers only measurement uncertainty. The claim is often made that field sampling uncertainties are so large that they dwarf laboratory measurement uncertainties. Although the claim may be true in some cases, MARLAP rejects this argument as an excuse for failing to perform a full evaluation of the measurement uncertainty. A realistic estimate of the measurement uncertainty is one of the most useful quality indicators for a result. 
	-
	-

	Although the need for good uncertainty evaluation has long been recognized, not all laboratories have been able to implement the recommendations fully. A certain level of mathematical sophistication is required. Implementation requires, at a minimum, a mastery of basic algebra, some knowledge of differential calculus and a grasp of many concepts of probability and statistics; but even more fundamentally it requires an understanding of the various aspects of the measurement 
	Although the need for good uncertainty evaluation has long been recognized, not all laboratories have been able to implement the recommendations fully. A certain level of mathematical sophistication is required. Implementation requires, at a minimum, a mastery of basic algebra, some knowledge of differential calculus and a grasp of many concepts of probability and statistics; but even more fundamentally it requires an understanding of the various aspects of the measurement 
	-

	process in the laboratory, including chemical and physical principles as well as practical considerations. Implementation at a laboratory is certainly easier if there are those who understand both the measurement process and the mathematical methods, but in some cases it may be necessary to use a team approach that brings together all the required expertise. 
	-


	Today there is software that performs the mathematical operations for uncertainty evaluation and propagation, and some of the difficulties of implementation may disappear as such software becomes more widely available. Nevertheless analysts and technicians will still need to understand the concepts of measurement uncertainty and how they apply to particular measurement processes in the laboratory. 
	-


	19.3 Evaluating and Expressing Measurement Uncertainty 
	19.3 Evaluating and Expressing Measurement Uncertainty 
	The methods, terms, and symbols recommended by MARLAP for evaluating and expressing measurement uncertainty are described in the Guide to the Expression of Uncertainty in Measurement, hereafter abbreviated as GUM, which was published by the International Organization for Standardization (ISO) in 1993 and corrected and reprinted in 1995 (ISO, 1995). The methods presented in the GUM are summarized in this chapter and adapted for application to radiochemistry. 
	-
	-

	The terminology and notation used by the GUM and this chapter may be unfamiliar or confusing to readers who are familiar with statistics but not metrology. Metrology (the science of measurement) uses the language and methods of probability and statistics, but adds to them its own terms, symbols, and approximation methods. 
	-

	19.3.1  Measurement, Error, and Uncertainty 
	19.3.1  Measurement, Error, and Uncertainty 
	The result of a measurement is generally used to estimate some particular quantity called the measurand. For example, the measurand for a radioactivity measurement might be the specific activity of Pu in a laboratory sample. The difference between the measured result and the actual value of the measurand is the error of the measurement. Both the measured result and the error may vary with each repetition of the measurement, while the value of the measurand (the true value) remains fixed. 
	238

	Measurement error may be caused by random effects and systematic effects in the measurement process. Random effects cause the measured result to vary randomly when the measurement is repeated. Systematic effects cause the result to tend to differ from the value of the measurand by a constant absolute or relative amount, or to vary in a nonrandom manner. Generally, both random and systematic effects are present in a measurement process. 
	-

	A measurement error produced by a random effect is a random error, and an error produced by a systematic effect is a systematic error. A systematic error is often called a •bias• (see also Attachment 19A). The distinction between random and systematic errors depends on the specification of the measurement process, since a random error in one measurement process may appear systematic in another. For example, a random error in the measurement of the specific activity of a radioactive standard solution may be 
	2
	-
	-

	Measurement errors may also be spurious errors, such as those caused by human blunders and instrument malfunctions. Blunders and other spurious errors are not taken into account in the statistical evaluation of measurement uncertainty. They should be avoided, if possible, by the use of good laboratory practices, or at least detected and corrected by appropriate quality assurance and quality control. 
	The error of a measurement is unknowable, because one cannot know the error without knowing the true value of the quantity being measured (the measurand). For this reason, the error is primarily a theoretical concept. However, the uncertainty of a measurement is a concept with practical uses. According to the GUM, the term •uncertainty of measurement• denotes a •parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the 
	-
	-

	 In some performance-testing programs, the term •bias• is used to mean the difference between a laboratory•s measured result and the target value. For example, one of the two definitions of bias stated in ANSI N13.30, •Performance Criteria for Radiobioassay,• is the •deviation of a single measured value of a random variable from a corresponding expected value.• MARLAP notes that such a deviation, even if it is large, may not give a reliable indication of bias in the statistical or metrological sense. 
	 In some performance-testing programs, the term •bias• is used to mean the difference between a laboratory•s measured result and the target value. For example, one of the two definitions of bias stated in ANSI N13.30, •Performance Criteria for Radiobioassay,• is the •deviation of a single measured value of a random variable from a corresponding expected value.• MARLAP notes that such a deviation, even if it is large, may not give a reliable indication of bias in the statistical or metrological sense. 
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	19.3.2  The Measurement Process 
	19.3.2  The Measurement Process 
	The International Union of Pure and Applied Chemistry (IUPAC) defines a (chemical) measurement process as an •analytical method of defined structure that has been brought into a state of statistical control, such that its imprecision and bias are fixed, given the measurement conditions• (IUPAC, 1995). The requirement of statistical control is an important aspect of the definition, since it is crucial to the determination of realistic uncertainty estimates. Statistical control implies that the measurement pr
	-
	-
	-
	-

	The laboratory ensures that the measurement process remains in a state of statistical control by following appropriate quality control (QC) procedures, as described in Chapter 18. Procedures 
	for statistical QC can be designed not only to ensure process stability but also to obtain data for use in the evaluation of measurement uncertainties. 
	The first step in defining a measurement process is to define the measurand clearly. The specification of the measurand is always ambiguous to some extent, but it should be as clear as necessary for the intended purpose of the data. For example, when measuring the activity of a radionuclide in a laboratory sample, it is generally necessary to specify the activity as of a certain date and time and whether the entire sample or only a certain fraction is of interest. For very accurate work, it may be necessary
	-
	-
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	Often the measurand is not measured directly but instead an estimate is calculated from the measured values of other input quantities, which have a known mathematical relationship to the measurand. For example, input quantities in a measurement of radioactivity may include the gross count, blank or background count, counting efficiency and test portion size. So, another important aspect of the measurement process is the mathematical model for the relationship between the output quantity, Y, and measurable i
	-
	-
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	N
	1
	2
	N

	The mathematical model for a radioactivity measurement often has the general form 
	(Gross Instrument Signal) • (Blank Signal % Estimated Interferences) 
	(Gross Instrument Signal) • (Blank Signal % Estimated Interferences) 

	Y •• 
	Sensitivity 
	Each of the quantities shown here may actually be a more complicated expression. For example, the sensitivity (the ratio of the net signal to the measurand) may be the product of factors such as the mass of the test portion, the chemical yield (recovery) and the instrument counting efficiency. 
	When the measurement is performed, a value x is estimated for each input quantity, X, and an estimated value, y, of the measurand is calculated using the relationship y = f(x,x,•,x). Since there is an uncertainty in each input estimate, x, there is also an uncertainty in the output esti
	i
	i
	1
	2
	N
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	i 
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	 In accordance with the GUM, an uppercase letter is used here to denote both the input or output quantity and the random variable associated with its measurement, while a lowercase letter is used for the estimated value of the quantity. For simplicity, in most of the later examples this convention will be abandoned. Only one symbol will be used for the quantity, the random variable, and the estimated value of the quantity. 
	 In accordance with the GUM, an uppercase letter is used here to denote both the input or output quantity and the random variable associated with its measurement, while a lowercase letter is used for the estimated value of the quantity. For simplicity, in most of the later examples this convention will be abandoned. Only one symbol will be used for the quantity, the random variable, and the estimated value of the quantity. 
	4


	mate, y. In order to obtain a complete estimate of the uncertainty of y, all input quantities that could have a potentially significant effect on y should be included in the model. 
	 Because of the unavoidable ambiguity in the specification of the measurand, one should, to be precise, speak of •a value• of the measurand and not •the value.• 
	 Because of the unavoidable ambiguity in the specification of the measurand, one should, to be precise, speak of •a value• of the measurand and not •the value.• 
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	19.3.3  Analysis of Measurement Uncertainty 
	19.3.3  Analysis of Measurement Uncertainty 
	Determining the uncertainty of the output estimate y requires that the uncertainties of all the input estimates x be determined and expressed in comparable forms. The uncertainty of x is expressed in the form of an estimated standard deviation, called the standard uncertainty and denoted by u(x), or in the form of an estimated variance, denoted by u(x), which is the square of the standard uncertainty. A standard uncertainty is sometimes informally called a •one-sigma• uncertainty. The ratio u(x) / |x| is ca
	i
	i
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	The mathematical operation of combining the standard uncertainties of the input estimates, x,x,•,x, to obtain the combined standard uncertainty of the output estimate, y, is called •uncertainty propagation.• Mathematical methods for propagating uncertainty and for evaluating the standard uncertainties of the input estimates are described in Section 19.4. 
	1
	2
	N

	When one repeats a measurement many times, the observed standard deviation is generated primarily by random measurement errors and not by those systematic errors that remain fixed from one measurement to the next. Although the combined standard uncertainty of a result is expressed in the form of an estimated standard deviation, it is intended to account for both random and systematic errors, and for this reason it should tend to be somewhat larger than the standard deviation that is observed in repeated mea
	-
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	Methods for evaluating the standard uncertainties u(x) are classified as either Type A or Type B. A Type A evaluation is a statistical evaluation based on repeated observations. One typical example of a Type A evaluation involves making a series of independent measurements of a quantity, X, and calculating the arithmetic mean and the experimental standard deviation of the mean. The arithmetic mean is used as the input estimate, x, and the experimental standard deviation of the mean is used as the standard u
	i
	i
	i
	i

	Sometimes a Type B evaluation of uncertainty involves making a best guess based on all available information and professional judgment. Laboratory workers may be reluctant to make this kind of evaluation, but it is better to make an informed guess about an uncertainty component than to ignore it completely. 
	-

	A standard uncertainty u(x) may be called a •Type A• or •Type B• standard uncertainty, depending on its method of evaluation, but no distinction is made between the two types for the purposes of uncertainty propagation. 
	i
	-
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	19.3.4  Corrections for Systematic Effects 
	19.3.4  Corrections for Systematic Effects 
	When a systematic effect in the measurement process has been identified and quantified, a quantity should be included in the mathematical measurement model to correct for it. The quantity, called a correction (additive) or correction factor (multiplicative), will have an uncertainty which should be evaluated and propagated. 
	-

	Whenever a previously unrecognized systematic effect is detected, the effect should be investigated and either eliminated procedurally or corrected mathematically. 
	-


	19.3.5  Counting Uncertainty 
	19.3.5  Counting Uncertainty 
	The counting uncertainty of a radiation measurement (historically called •counting error•) is the component of uncertainty caused by the random nature of radioactive decay and radiation counting. Radioactive decay is inherently random in the sense that two atoms of a radionuclide will generally decay at different times, even if they are identical in every discernible way. Radiation counting is also inherently random unless the efficiency of the counting instrument is 100 %. 
	-

	In many cases the counting uncertainty in a single gross radiation counting measurement can be estimated by the square root of the observed counts. The Poisson model of radiation counting, which is the mathematical basis for this rule, is discussed in Section 19.5. Note that the use of this approximation is a Type B evaluation of uncertainty. 
	Historically many radiochemistry laboratories reported only the counting uncertainties of their measured results. MARLAP recommends that a laboratory consider all possible sources of measurement uncertainty and evaluate and propagate the uncertainties from all sources believed to be potentially significant in the final result. 
	-


	19.3.6  Expanded Uncertainty 
	19.3.6  Expanded Uncertainty 
	When a laboratory reports the result of a measurement, it may report the combined standard uncertainty, u(y), or it may multiply u(y) by a factor k, called a coverage factor, to produce an expanded uncertainty, denoted by U, such that the interval from y ! U to y + U has a specified 
	When a laboratory reports the result of a measurement, it may report the combined standard uncertainty, u(y), or it may multiply u(y) by a factor k, called a coverage factor, to produce an expanded uncertainty, denoted by U, such that the interval from y ! U to y + U has a specified 
	c
	c

	high probability p of containing the value of the measurand. The specified probability, p, is called the level of confidence or the coverage probability and is generally only an approximation of the true probability of coverage. 

	When the distribution of the measured result is approximately normal, the coverage factor is often chosen to be k = 2 for a coverage probability of approximately 95 %. An expanded uncertainty calculated with k = 2 or 3 is sometimes informally called a �two-sigma� or �three-sigma� uncertainty. In general, if the desired coverage probability is γ and the combined standard uncertainty is believed to be an accurate estimate of the standard deviation of the measurement process, the coverage factor for a normally
	-
	-
	-
	(1 + γ)/ 2

	The GUM recommends the use of coverage factors in the range 2•3 when the combined standard uncertainty represents a good estimate of the true standard deviation. Attachment 19D describes a more general procedure for calculating the coverage factor, k, that gives a desired coverage probability p when there is substantial uncertainty in the value of u(y). 
	p
	c

	The GUM does not assign a name to the interval y ± U, but it clearly states that the interval should not be called a •confidence interval,• because this term has a precise statistical definition and the interval described by the expanded uncertainty usually does not meet the requirements. The interval y ± U is sometimes called an •uncertainty interval.•
	5 

	 When the distribution of the result is highly asymmetric, so that the result is more likely to fall on one side of the value of the measurand than the other, the use of a single expanded uncertainty, U, to construct a symmetric uncertainty interval about the result may be misleading, especially if one wishes to state an approximate coverage probability for the interval. However, methods for constructing an asymmetric uncertainty interval with a stated coverage probability are beyond the scope of this chapt
	 When the distribution of the result is highly asymmetric, so that the result is more likely to fall on one side of the value of the measurand than the other, the use of a single expanded uncertainty, U, to construct a symmetric uncertainty interval about the result may be misleading, especially if one wishes to state an approximate coverage probability for the interval. However, methods for constructing an asymmetric uncertainty interval with a stated coverage probability are beyond the scope of this chapt
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	19.3.7  Significant Figures 
	19.3.7  Significant Figures 
	The number of significant figures that should be reported for the result of a measurement depends on the uncertainty of the result. A common convention is to round the uncertainty (standard uncertainty or expanded uncertainty) to either one or two significant figures and to report both the measured value and the uncertainty to the resulting number of decimal places (ISO, 1995; Bevington, 1992; EPA, 1980; ANSI N42.23). MARLAP recommends this convention and suggests that uncertainties be rounded to two figure
	-

	EXAMPLES 
	MEASURED VALUE (y) 
	MEASURED VALUE (y) 
	MEASURED VALUE (y) 
	EXPANDED UNCERTAINTY U = kuc(y) 
	REPORTED RESULT 

	0.8961
	0.8961
	    0.0234 
	0.896 ± 0.023 

	0.8961
	0.8961
	    0.2342 
	0.90 ± 0.23 

	0.8961
	0.8961
	    2.3419 
	0.9 ± 2.3 

	0.8961
	0.8961
	  23.4194 
	1 ± 23 

	0.8961 
	0.8961 
	234.1944 
	0 ± 230 


	Only final results should be rounded in this manner. Intermediate results in a series of calculation steps should be carried through all steps with additional figures to prevent unnecessary roundoff errors. Additional figures are also recommended when the data are stored electronically. Rounding should be performed only when the result is reported. (See Section 19.5.11 for a discussion of the measurement uncertainty associated with rounding.) 
	-


	19.3.8  Reporting the Measurement Uncertainty 
	19.3.8  Reporting the Measurement Uncertainty 
	When a measured value y is reported, its uncertainty should always be stated. The laboratory may report either the combined standard uncertainty u(y) or the expanded uncertainty U. 
	c

	The measured value, y, and its expanded uncertainty, U, may be reported in the format y ± U or y +• U. 
	The plus-minus format may be used to report an expanded uncertainty, but it generally should be avoided when reporting a standard uncertainty, because readers are likely to interpret it as a confidence interval with a high coverage probability. A commonly used shorthand format for reporting a result with its standard uncertainty places the one or two digits of the standard uncertainty in parentheses immediately after the corresponding final digits of the rounded result. For example, if the rounded result of
	-
	-
	-
	1.92(0.14

	Since laboratories may calculate uncertainties using different methods and report them using different coverage factors, it is a bad practice to report an uncertainty without explaining what it represents. Any analytical report, even one consisting of only a table of results, should state 
	Since laboratories may calculate uncertainties using different methods and report them using different coverage factors, it is a bad practice to report an uncertainty without explaining what it represents. Any analytical report, even one consisting of only a table of results, should state 
	whether the uncertainty is the combined standard uncertainty or an expanded uncertainty, and in the latter case it should also state the coverage factor used and, if possible, the approximate coverage probability. A complete report should also describe the methods used to calculate the uncertainties. If the laboratory uses a shorthand format for the uncertainty, the report should include an explanation of the format. 
	-
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	The uncertainties for environmental radioactivity measurements should be reported in the same units as the results. Relative uncertainties (i.e., uncertainties expressed as percentages) may also be reported, but the reporting of relative uncertainties alone is not recommended when the measured value may be zero, because the relative uncertainty in this case is undefined. A particularly bad practice, sometimes implemented in software, is to compute the relative uncertainty first and multiply it by the measur
	-

	It is possible to calculate radioanalytical results that are less than zero, although negative radioactivity is physically impossible. Laboratories sometimes choose not to report negative results or results that are near zero. Such censoring of results is not recommended. All results, whether positive, negative, or zero, should be reported as obtained, together with their uncertainties. 
	-
	-

	The preceding statement must be qualified, because a measured value y may be so far below zero that it indicates a possible blunder, procedural failure, or other quality control problem. Usually, if y + 3u(y) < 0, the result should be considered invalid, although the accuracy of the uncertainty estimate u(y) must be considered, especially in cases where only few counts are observed during the measurement and counting uncertainty is the dominant component of u(y). (See Chapter 18, Laboratory Quality Control,
	c
	c
	c


	19.3.9  Recommendations 
	19.3.9  Recommendations 
	MARLAP makes the following recommendations to radioanalytical laboratories. 
	• 
	• 
	• 
	All radioanalytical laboratories should adopt the terminology and methods of the Guide to the Expression of Uncertainty in Measurement (ISO, 1995) for evaluating and reporting measurement uncertainty. 

	• 
	• 
	The laboratory should follow QC procedures that ensure the measurement process remains in a state of statistical control, which is a prerequisite for uncertainty evaluation. 

	• 
	• 
	Uncertainty estimates should account for both random and systematic effects in the measurement process, but they should not account for possible blunders or other spurious errors. Spurious errors indicate a loss of statistical control of the process. 
	-


	• 
	• 
	The laboratory should report each measured value with either its combined standard uncertainty or its expanded uncertainty. 

	• 
	• 
	The reported measurement uncertainties should be clearly explained. In particular, when an expanded uncertainty is reported, the coverage factor should be stated, and, if possible, the approximate coverage probability should also be given. 

	• 
	• 
	A laboratory should consider all possible sources of measurement uncertainty and evaluate and propagate the uncertainties from all sources believed to be potentially significant in the final result. 
	-


	• 
	• 
	Each uncertainty should be rounded to either one or two significant figures, and the measured value should be rounded to the same number of decimal places as its uncertainty. (MARLAP prefers the use of two figures in the uncertainty.) Only final results should be rounded in this manner. 
	-


	• 
	• 
	The laboratory should report all results, whether positive, negative, or zero, as obtained, together with their uncertainties. 


	MARLAP makes no recommendations regarding the presentation of radioanalytical data by the laboratory•s clients or other end users of the data. 


	19.4 Procedures for Evaluating Uncertainty 
	19.4 Procedures for Evaluating Uncertainty 
	The usual steps for evaluating and reporting the uncertainty of a measurement may be summarized as follows (adapted from Chapter 8 of the GUM): 
	-

	1. 
	1. 
	1. 
	Identify the measurand, Y, and all the input quantities, X, for the mathematical model. Include all quantities whose variability or uncertainty could have a potentially significant effect on the result. Express the mathematical relationship, Y = f(X,X,•,X), between the measurand and the input quantities. 
	i
	1
	2
	N


	2. 
	2. 
	Determine an estimate, x, of the value of each input quantity, X (an •input estimate,• as defined in Section 19.3.2). 
	i
	i


	3. 
	3. 
	Evaluate the standard uncertainty, u(x), for each input estimate, x, using either a Type A or Type B method of evaluation (see Section 19.3.3). 
	i
	i 


	4. 
	4. 
	Evaluate the covariances, u(x,x), for all pairs of input estimates with potentially significant correlations. 
	i
	j
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	5. 
	5. 
	Calculate the estimate, y, of the measurand from the relationship y = f(x,x,•,x), where f is the function determined in Step 1. 
	1
	2
	N


	6. 
	6. 
	Determine the combined standard uncertainty, u(y), of the estimate, y (see Section 19.3.3). 
	c


	7. 
	7. 
	Optionally multiply u(y) by a coverage factor k to obtain the expanded uncertainty U such that the interval [y ! U, y + U] can be expected to contain the value of the measurand with a specified probability (see Section 19.3.6 and Attachment 19D). 
	c
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	8. 
	8. 
	Report the result as y ± U with the unit of measurement, and, at a minimum, state the coverage factor used to compute U and the estimated coverage probability. Alternatively, report the result, y, and its combined standard uncertainty, u(y), with the unit of measurement. 
	c



	19.4.1  Identifying Sources of Uncertainty 
	19.4.1  Identifying Sources of Uncertainty 
	The procedure for assessing the uncertainty of a measurement begins with listing all conceivable sources of uncertainty in the measurement process. Even if a mathematical model has been identified, further thought may lead to the inclusion of more quantities in the model. Some sources of uncertainty will be more significant than others, but all should be listed. 
	-

	After all conceivable sources of uncertainty are listed, they should be categorized as either potentially significant or negligible. Each uncertainty that is potentially significant should be evaluated quantitatively. The following sources of uncertainty may not always be significant but should at least be considered: 
	-

	• 
	• 
	• 
	radiation counting 

	• 
	• 
	instrument calibration (e.g., counting efficiency) 

	• 
	• 
	tracers, carriers, or other methods of yield measurement 

	• 
	• 
	variable instrument backgrounds 

	• 
	• 
	variable counting efficiency (e.g., due to the instrument or to source geometry and placement) 

	• 
	• 
	contamination of reagents and tracers 

	• 
	• 
	interferences, such as crosstalk and spillover 

	• 
	• 
	baseline determination (gamma-ray spectrometry) 

	• 
	• 
	laboratory subsampling 


	Other sources of uncertainty include: 
	• 
	• 
	• 
	volume and mass measurements 

	• 
	• 
	determination of counting time and correction for dead time 

	• 
	• 
	time measurements used in decay and ingrowth calculations 

	• 
	• 
	approximation errors in simplified mathematical models 

	• 
	• 
	published values for half-lives and radiation emission probabilities 


	NOTE: MARLAP does not recommend that laboratories expend tremendous effort on the evaluation of small components of uncertainty when much larger components are known to dominate the combined standard uncertainty of the result. However, this chapter does provide guidance in several places on the evaluation of very small uncertainties. Such examples may be instructive even if the uncertainties are negligible, because they illustrate either important concepts or possible methods of uncertainty evaluation. Furt
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	19.4.2  Evaluation of Standard Uncertainties 
	19.4.2  Evaluation of Standard Uncertainties 
	Calculating the combined standard uncertainty of an output estimate y = f(x,x,•,x) requires the evaluation of the standard uncertainty of each input estimate, x. As stated earlier, methods for evaluating standard uncertainties are classified as either •Type A• or •Type B.• A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation empirically. Any other method of evaluating an uncertainty is a Type B method. 
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	In general, the standard uncertainty of an input estimate, x, is an estimated standard deviation for the estimator whose value is used for x. The appropriate methods for estimating this standard deviation depend on how the value of the input estimate is obtained. 
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	19.4.2.1  Type A Evaluations 
	19.4.2.1  Type A Evaluations 
	Suppose X is an input quantity in the mathematical model. If a series of n independent observations of X are made under the same measurement conditions, yielding the results , X, ..., X, the appropriate value for the input estimate x is the arithmetic mean, or average, X, defined as 
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	The experimental variance of the observed values is defined as 
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	and the experimental standard deviation, s(X), is the square root of s(X). The experimental standard deviation of the mean, s(), is obtained by dividing s(X) by n.
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	The experimental standard deviation of the mean is also commonly called the •standard error of the mean.• 
	The Type A standard uncertainty of the input estimate x =  is defined to be the experimental standard deviation of the mean. Combining the preceding formulas gives the following equation for the standard uncertainty of x: 
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	When the input estimate x and standard uncertainty u(x) are evaluated as described above, the number of degrees of freedom for the evaluation is equal to n ! 1, or one less than the number of independent measurements of the quantity X. In general, the number of degrees of freedom for a statistical determination of a set of quantities equals the number of independent observations minus the number of quantities estimated. The number of degrees of freedom for each evaluation of standard uncertainty is needed t
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	EXAMPLE 19.1  Ten independent measurements of a quantity X are made, yielding the values 12.132  12.139  12.128  12.133  12.132 12.135  12.130  12.129  12.134  12.136 
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	The estimated value x is the arithmetic mean of the values X. 
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	The standard uncertainty of x is 
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	USE OF HISTORICAL DATA 
	In some cases there may be accumulated data for a measurement system, such as a balance or pipet, which can be used in a Type A evaluation of uncertainty for future measurements, assuming the measurement process remains in control. In fact the use of recent historical data is advisable in such cases, because it enlarges the pool of data available for uncertainty evaluation and increases the number of degrees of freedom. This type of uncertainty evaluation can be linked closely to the measurement system•s ro
	One may pool recent historical data with current measurement data, or one may evaluate an uncertainty based on historical data alone. The appropriate expression for the standard uncertainty depends on how the data are used to calculate the input estimate, x, and on whether x is used to estimate the value of a parameter or to predict the value of a variable. An example of estimating the value of a parameter is measuring the mass of material in a container using an analytical balance. An example of predicting
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	Attachment 19E provides descriptions and examples of the use of historical data for Type A evaluations of uncertainty in mass and volume measurements. 
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	EVALUATION OF COVARIANCE 
	If X and X are two input quantities and estimates of their values are correlated, a Type A evaluation of covariance may be performed by making n independent pairs of simultaneous observations of X and X and calculating the experimental covariance of the means. If the observed pairs are (X, X), (X, X), •, (X, X), the experimental covariance of the values is 
	If X and X are two input quantities and estimates of their values are correlated, a Type A evaluation of covariance may be performed by making n independent pairs of simultaneous observations of X and X and calculating the experimental covariance of the means. If the observed pairs are (X, X), (X, X), •, (X, X), the experimental covariance of the values is 
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	and the experimental covariance of the means and  is 
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	So, the Type A covariance of the input estimates x =  and x =  is 
	i
	X
	i
	j
	X
	j

	u(x,x) •• s(X,X)•• (X• X)(X• X) (19.7) k•1 
	i
	j
	i
	j
	1 
	n 
	i,k 
	i
	j,k 
	j
	n(n •1) 
	j

	• 
	An evaluation of variances and covariances of quantities determined by the method of least squares may also be a Type A evaluation. 
	19.4.2.2  Type B Evaluations 
	There are many ways to perform Type B evaluations of standard uncertainty. This section describes some common Type B evaluations but is not meant to be exhaustive. 
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	POISSON COUNTING UNCERTAINTY 
	One example of a Type B method already given is the estimation of counting uncertainty using the square root of the observed counts. If the observed count is N, when the Poisson approximation is used, the standard uncertainty of N may be evaluated as u(N) = N . When N may be very small or even zero, MARLAP recommends the use of the equation u(N) = N % 1 instead (see Attachment 19D). 
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	EXAMPLE 19.2  A Poisson counting measurement is performed, during which N = 121 counts are observed. So, the standard uncertainty of N is u(N) = 121 = 11. 
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	RECTANGULAR DISTRIBUTION 
	Sometimes a Type B evaluation of an uncertainty u(x) consists of estimating an upper bound a for the magnitude of the error of x based on professional judgment and the best available information. If nothing else is known about the distribution of the measured result, then after a is estimated, the standard uncertainty may be calculated using the equation 
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	which is derived from a statistical model in which the error has a rectangular, or uniform, distribution bounded by •a and +a (see Section 19A.6 in Attachment 19A). 
	-

	EXAMPLE 19.3  The maximum error of a measured value x = 34.40 is estimated to be a = 0.05, with all values between 34.35 and 34.45 considered equally likely. So, the standard uncertainty of x is u(x) = 0.05 / 3 = 0.029. 
	Figure

	EXAMPLE 19.4  A strontium carrier solution is prepared by dissolving strontium nitrate in acidified water. The purity, P, of the strontium nitrate is stated to be 99.9 %, or 0.999, but no tolerance or uncertainty is provided. By default, a rectangular distribution with half-width 1 ! P, or 0.001, is assumed. So, the standard uncertainty of P is evaluated as u(P) = 0.001 / 3 = 0.00058. 
	Figure

	TRAPEZOIDAL DISTRIBUTION 
	It may also happen that one can estimate an upper bound, a, for the magnitude of the error so that the input quantity is believed with near certainty to lie between x ! a and x + a, but one believes that values near x are more likely than those near the extremes, x ± a. In this case, a symmetric trapezoidal distribution may be used to obtain the standard uncertainty of x. The trapezoidal distribution is named for the fact that the graph of its pdf has the shape of a trapezoid (see Section 19A.7 in Attachmen
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	As β approaches zero, the trapezoidal distribution becomes triangular, and the standard uncertainty of x approaches a / 6. As β approaches one, the trapezoidal distribution becomes rectangular, and the standard uncertainty of x approaches a / 3. 
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	EXAMPLE 19.5  Extreme bounds for a quantity X are estimated to be 34.3 and 34.5, with values between 34.35 and 34.45 considered most likely. Using the trapezoidal model, one obtains the input estimate 
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	Then the standard uncertainty of x is calculated as follows. 
	u(x) ' a 1 % β2 6 ' 0.1 1 % 0.52 6 ' 0.046 
	EXAMPLE 19.6  The manufacturer of a 100-milliliter volumetric flask specifies that the capacity tolerance is 0.08 mL. The user of the flask assumes the tolerance represents the half-width of a triangular distribution and evaluates the standard uncertainty of the capacity to be 
	 The experimental standard deviation of the mean, s(), may be used as the standard uncertainty of the average, , even if the individual observations X are obtained under different conditions of measurement, so long as all pairs of distinct observations, X and Xl, can be considered to be uncorrelated. However, in these circumstances, it is sometimes better to define the input estimate, x, to be a weighted average of the observations. 
	 The experimental standard deviation of the mean, s(), may be used as the standard uncertainty of the average, , even if the individual observations X are obtained under different conditions of measurement, so long as all pairs of distinct observations, X and Xl, can be considered to be uncorrelated. However, in these circumstances, it is sometimes better to define the input estimate, x, to be a weighted average of the observations. 
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	0.08 / 6 = 0.033 mL. (See Section 19.5.10 and Attachment 19E for more information about the uncertainty of a volume measurement.) 
	0.08 / 6 = 0.033 mL. (See Section 19.5.10 and Attachment 19E for more information about the uncertainty of a volume measurement.) 
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	IMPORTED VALUES 
	When the estimate of an input quantity is taken from an external source, such as a book or a calibration certificate, which states the uncertainty as a multiple of the standard deviation s, the standard uncertainty is obtained by dividing the stated uncertainty by the stated multiplier of s. 
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	EXAMPLE 19.7  The uncertainty for a measured activity concentration, c, is stated to be 0.015 Bq/L and the stated multiplier is 2. So, the standard uncertainty of c is u(c) = 0.015 / 2 = 0.0075 Bq/L. 
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	If the estimate is provided by a source which gives a bound c for the error such that the interval from x ! c to x + c contains the true value with 100γ % confidence (0 < γ < 1) but no other information about the distribution is given, the measured result may be assumed to have a normal distribution, and the standard uncertainty may therefore be evaluated as 
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	The value of z may be found in a table of quantiles of the standard normal distribution (see Table G.1 in Appendix G). 
	(1 + γ)/2

	EXAMPLE 19.8  The specific activity, x, of a commercial standard solution is stated to lie within the interval (4530 ± 64) Bq/g with 95 % confidence. The standard uncertainty may therefore be evaluated as u(x) = 64 / z = 64 / 1.96 = 33 Bq/g. 
	0.975

	EVALUATION OF COVARIANCE 
	Evaluation of the covariance of two input estimates, x and x, whose uncertainties are evaluated by Type B methods may require expert judgment. Generally, in such cases it is simpler to estimate the correlation coefficient, r(x,x), first and then multiply it by the standard uncertainties, u(x) and u(x) to obtain the covariance, u(x,x). The correlation coefficient must be a number between !1 and +1. A correlation coefficient of zero indicates no correlation between the estimates, while a value of ±1 indicates
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	If the input estimates are imported values (e.g., from a published reference), the only practical method of evaluating their covariance is to use the correlation coefficient, if any, provided with the estimates. When no correlation coefficient is stated, the input estimates must be assumed to be uncorrelated. 
	In many cases when a correlation between two input estimates is suspected, the reason for the suspicion is that identifiable random or systematic effects in the measurement process are known to affect both estimates. It may be possible in such cases to include additional explicit variables in the mathematical model to account for those effects, eliminating the need for Type B covariance evaluations. 
	-

	Sometimes two input estimates for one measurement model are explicitly calculated from other measured values. Section 19.4.4 shows how one may evaluate the covariance for two such calculated values. 
	-




	19.4.3  Combined Standard Uncertainty 
	19.4.3  Combined Standard Uncertainty 
	19.4.3.1  Uncertainty Propagation Formula 
	19.4.3.1  Uncertainty Propagation Formula 
	Consider the mathematical model Y = f(X,X,•,X). If x, x, •, x are measured values of the input quantities, X, and y = f(x,x,•,x) is the calculated value of the output quantity, Y, the combined standard uncertainty of y is obtained using the following formula. 
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	Uncertainty Propagation Formula 
	Here u(x) denotes the estimated variance of x, or the square of its standard uncertainty; u(x,x) denotes the estimated covariance of x and x; Mf / Mx (or My / Mx) denotes the partial derivative of f with respect to X evaluated at the measured values x, x,•, x; and u(y) denotes the combined variance of y, whose positive square root, u(y), is the combined standard uncertainty of y. The partial derivatives, Mf / Mx, are called sensitivity coefficients. 
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	The preceding formula, called the •law of propagation of uncertainty• in the GUM, will be called the •uncertainty propagation formula• or the •first-order uncertainty propagation formula• in this document. Equation 19.11 is commonly used to define the combined standard uncertainty, but note that the combined standard uncertainty is only an approximation of the true standard deviation of the output estimate, and sometimes other definitions provide better approximations (e.g., see Section 19.4.5.1).
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	Table 19.1 shows several rules for partial differentiation, which tend to be useful when one calculates the sensitivity coefficients in the uncertainty propagation formula. Table 19.2 shows how to propagate uncertainties in some common cases. The expressions for the combined standard uncertainties shown in Table 19.2 may be derived from the uncertainty propagation formula using the differentiation rules listed in Table 19.1. 
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	In the following equations the symbols F and G denote arbitrary expressions, which may contain the variables x,x,...,x. The symbol c denotes either a constant expression or any other expression that does not contain the 
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	TABLE 19.2 • Applications of the first-order uncertainty propagation formula 
	TABLE 19.2 • Applications of the first-order uncertainty propagation formula 
	TABLE 19.2 • Applications of the first-order uncertainty propagation formula 

	SUMS AND DIFFERENCES 
	SUMS AND DIFFERENCES 
	If a and b are constants, then 2 u (ax ± by) ' a 2u 2(x) % b 2u 2(y)±2ab @ u(x,y) c 

	PRODUCTS 
	PRODUCTS 
	If x and y are measured values, then 2 u (xy) ' u 2(x)y 2 % x 2u 2(y) % 2xy @ u(x,y) c When x and y are nonzero, the formula may be rewritten as 2 u 2(x) % u 2(y) % 2u(x,y) u (xy) ' x 2y 2 c x 2 y 2 xy 

	QUOTIENTS 
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	If x and y are measured values, then 2 x ' u 2(x) % x 2u 2(y) & 2x @ u(x,y) u c y y 2 y 4 y 3 When x is nonzero, the variance formula may be rewritten as 2 x ' x 2 u 2(x) % u 2(y) & 2u(x,y) u c y y 2 x 2 y 2 xy 

	EXPONENTIALS 
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	If a is a constant, then 2 2ax u 2(x) u (eax ) ' a 2 ec If n is a positive integral constant, then 2 u (x n ) ' n 2 x 2n & 2 u 2(x) c 

	LOGARITHMS 
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	If a is a constant and ax is positive, then 2 2 u 2(x) u 2(x) u (ln ax) ' u 2(x) and u (log10 ax) ' . c c x 2 (ln 10)2 x 2 (5.302)x 2 


	If the input estimates x, x, •, x are uncorrelated, the uncertainty propagation formula reduces to 
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	Equation 19.12 is only valid when the input estimates are uncorrelated. Although this case occurs frequently in practice, there are notable exceptions. When input estimates are obtained using the same measuring devices or the same standard solutions, or when they are calculated from the same data, there is a potential for correlation. For example, instrument calibration parameters determined by least-squares analysis may be strongly correlated. Fortunately, the method of least squares provides covariance es
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	EXAMPLE 19.9 
	Problem: A 6000-second gross-alpha measurement is performed on a test source prepared by evaporating water on a stainless steel planchet. The measurement produces 120 alpha counts. The preceding blank measurement on the instrument had a duration of 6000 s and produced 42 alpha counts. The estimated alpha-particle counting efficiency is 0.223 with a standard uncertainty of 0.015. The sample volume analyzed is 0.05000 L, with a standard uncertainty of 0.00019 L. The alpha-particle emission rate per unit volum
	-

	model 
	model 
	model 

	NS / tS & NB / tB cα ' g V 
	NS / tS & NB / tB cα ' g V 

	where 
	where 
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	cα 
	is the alpha-particle emission rate per unit volume; 

	NS 
	NS 
	is the source count (NS = 120); 

	NB 
	NB 
	is the blank count (NB = 42); 
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	is the source count time (tS = 6000 s); 

	tB 
	tB 
	is the blank count time (tB = 6000 s); 

	g 
	g 
	is the counting efficiency (g = 0.223); and 

	V 
	V 
	is the volume analyzed (V = 0.0500 L). 


	What is the output estimate c and what is its combined standard uncertainty, u(c)? (Use the Poisson approximation for the uncertainties of N and N.) 
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	Solution: First compute the output estimate c (alpha particles per second per liter). 
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	Then compute the combined standard uncertainty u(c). The only uncertainties included in the model will be those associated with the counts N and N, the efficiency g, and the volume V. There is no reason to suspect correlations between the measured values; so, the uncertainty propagation formula becomes 
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	The sensitivity coefficients are evaluated using the differentiation rules shown in Table 19.1: 
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	'&5.22834 s@ L'&23.3184 s@ LThe Poisson approximation is used for the standard uncertainties of the counts N and N. So, u(N) = N = 120  and      u(N) = N = 42 
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	Recall from the statement of the problem that u(g) = 0.015 and u(V) = 0.00019. When the values of all these expressions are substituted into the uncertainty propagation formula, the combined variance is 
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	So, the combined standard uncertainty is u(c) = 0.0424 . 0.21 s@ L. 
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	 The uncertainty propagation formula may be derived by approximating the function f by a first-order Taylor polynomial. 
	 The uncertainty propagation formula may be derived by approximating the function f by a first-order Taylor polynomial. 
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	19.4.3.2  Components of Uncertainty 
	19.4.3.2  Components of Uncertainty 
	The product of |Mf / Mx| and the standard uncertainty u(x) is called the component of the combined standard uncertainty generated by the standard uncertainty of x, and may be denoted by u(y). When all the input estimates are uncorrelated, the combined standard uncertainty may be written in terms of its components as follows. 
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	Since u(y) is the sum of the squares of the components u(y), the combined standard uncertainty tends to be determined primarily by its largest components. When the input estimates are correlated, Equation 19.13 is replaced by 
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	Recall that r(x,x) denotes the estimated correlation coefficient of x and x. 
	i
	j
	i
	j

	Figure 19.1 relates Equation 19.13 to the Pythagorean theorem about right triangles to illustrate graphically how uncertainty components are added to produce the combined standard uncertainty in the case of a model, y = f(x,x), with two uncorrelated input estimates, x and x. 
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	FIGURE 19.1 • Addition of uncertainty components 
	In the figure, the first component, u(y), is five times larger than the second component, u(y), and as a result the combined standard uncertainty, u(y), is dominated by u(y). Ignoring u(y) in this case would decrease the combined standard uncertainty by only about 2 % of its value. 
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	When the model involves more than two input quantities, the addition process shown in the figure may be iterated.
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	19.4.3.3  Special Forms of the Uncertainty Propagation Formula 
	19.4.3.3  Special Forms of the Uncertainty Propagation Formula 
	It is helpful to remember certain special forms of the uncertainty propagation formula. For example, if the values x, x, •, x and z, z, •, z are uncorrelated and nonzero, the combined 
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	As another example, suppose y ' , where f is some specified function of x, x, •, x, 
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	 When the two input estimates are correlated, the vectors that represent u(y) and u(y) may still be added graphically, but they are no longer perpendicular. In this case the correlation coefficient, r(x,x), equals the cosine of the angle between the two vectors. When there are more than two input quantities, the existence of correlations among the input estimates makes the graphical addition method impractical. 
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	Equation 19.16 is particularly useful in radiochemistry, where f(x,x,•,x) might be a net count rate and zz@@@z might be the product of the test portion size, chemical yield, counting efficiency, decay factor, and other sensitivity factors. 
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	EXAMPLE 19.10  Consider the preceding gross-alpha example. Equation 19.16 implies the following equation for the combined variance of c. 
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	19.4.4  The Estimated Covariance of Two Output Estimates 
	Measured values obtained from two measurement processes may be correlated if some of the same input estimates are used to calculate output estimates in both models. If the two measured values are to be used as input quantities in a third model, their covariance must be estimated. 
	Suppose the combined set of input quantities in two mathematical models consists of X, X, •, X. Then the models can be expressed as Y = f(X,X,•,X) and Z = g(X,X,•,X), where each of the measurands may actually depend on only a subset of the combined list of input quantities. If the input estimates are x, x, •, x and the output estimates are y = f(x,x,•,x) and z = g(x,x,•,x), the covariance of y and z is estimated by 
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	Since u(y,y) = u(y), the preceding equation may be considered a generalization of the first-order uncertainty propagation formula. 
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	Even when all the input estimates, x and x, are uncorrelated, the output estimates, y and z, may be correlated, but in this case Equation 19.17 reduces to the following. 
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	EXAMPLE 19.11  A radiation counter is calibrated for a certain source geometry and the counting efficiency is determined to be 0.423 with a standard uncertainty of 0.012. A 6000-second blank measurement is performed and 108 counts are recorded. Next two 3000-second measurements of a radioactive source in the required geometry are performed. The first measurement produces 1210 counts and the second produces 1244 counts. The activity of the source is calculated twice, using the model 
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	where 
	A is the source activity; 
	Nis the count observed when the source is measured (1210 and 1244); 
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	tis the source count time (3000 s, negligible uncertainty); 
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	Nis the count observed when the blank is measured; 
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	tis the blank count time (6000 s, negligible uncertainty); and 
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	g is the counting efficiency (0.423 ± 0.012). 
	Let A and A denote the two calculated activities. Assuming all the input estimates are uncorrelated, estimate the covariance u(A, A). 
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	The standard uncertainties of N and N in each measurement are evaluated using the Poisson approximation. So, u(N) = N and u(N) = N. Then Equation 19.16 can be used to calculate the combined standard uncertainty of each result, as shown below. 
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	Equation 19.18 for the covariance in this example becomes 
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	The required sensitivity coefficients are found as follows. 
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	So, the covariance is estimated to be u(A,A) ' (&3.9401 × 10)(&3.9401 × 10)(108) % (&2.1536)(&2.2169)(0.012)
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	19.4.5  Special Considerations for Nonlinear Models 
	19.4.5  Special Considerations for Nonlinear Models 
	19.4.5.1  Uncertainty Propagation for Nonlinear Models 
	19.4.5.1  Uncertainty Propagation for Nonlinear Models 
	The first-order uncertainty propagation formula tends to give better variance estimates when the function f is linear, because the formula is derived from a linear approximation of f (i.e., a first-order Taylor polynomial). Generally, obtaining a reliable estimate of u(y) using the first-order formula requires (at least) that whenever f is nonlinear in one of the input quantities X, the relative uncertainty of the input estimate x must be small. In radiochemistry, for example, this fact implies that the unc
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	If all the input estimates x are uncorrelated and distributed symmetrically about their means, a better approximation of u(y) may be made by including higher-order terms in the uncertainty propagation formula, as shown below. 
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	See also Section 5.1.2 of the GUM. In some cases, if the uncertainties of the input estimates are extremely large, even Equation 19.19 may be inadequate. 
	 The uncertainty propagation formula also provides finite estimates of variance in cases where, strictly speaking, the true variance is infinite or undefined. For example, if x has a normal or Poisson distribution, the variance of 1 / x is undefined, although the formula provides a finite estimate of it. On the other hand, if the relative standard uncertainty of x is small, the combined variance u(1 / x) will almost always be consistent with observation, making the estimate useful in practice. 
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	EXAMPLE 19.12  Suppose x and y are independent estimates of input quantities X and Y, respectively. Then the combined variance of the product p = xy according to the first-order uncertainty propagation formula is 
	u(p) = yu(x) + xu(y) 
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	For example, suppose x = 5, with u(x) = 0.5, and y = 10, with u(y) = 3. Then p = 50, and the first-order formula gives the combined standard uncertainty 
	u(p) = 100.5% 54 =  15.8 When higher-order terms are included, 
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	Using the same values for x and y again, q = 0.5 and the first-order formula gives 
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	In this case, since 0.205 is substantially larger than 0.158, the first-order formula is inadequate. 
	If the standard uncertainty of y is much larger than 3 (in this case 30 % in relative terms), even the higher-order formula begins to fail here. 

	19.4.5.2  Bias due to Nonlinearity 
	19.4.5.2  Bias due to Nonlinearity 
	As noted earlier, when the measurement model has the form Y = f(X,X,•,X) and the input estimates are x, x, •, x, the output estimate is given by y = f(x,x,•,x). If the function, f, is nonlinear, the output estimate, y, may be a biased estimate of the value of the output quantity, Y, even if the model is correct and each of the input estimates, x, is an unbiased estimate of the associated input quantity (Ku, 1966). 
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	For example, if the model is Y 'f(X) 'X  and X is an unbiased estimator for some quantity θ, then Y 'X  is a biased estimator for the quantity θ. (I.e., the mean of the square is not equal to the square of the mean.) Since the variance of X is V(X) 'E(X ) &E(X) and the mean of X is E(X) = θ, the mean of Y in this case is given by 
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	So, the bias of Y ' X  as an estimator for θ is equal to the variance of X. In metrology the true variance of the estimator X is unknown of course, but the bias of an output estimate, y = x, can be estimated by u(x), the square of the standard uncertainty of the input estimate, x. 
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	More generally, the portion of the bias of y associated with the nonlinearity of the model may be estimated, if necessary, by the formula 
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	In practice, Equation 19.21 is equivalent to the following (Ku, 1966). 
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	This bias is usually negligible in comparison to the combined standard uncertainty, u(y), if the relative standard uncertainty of each input estimate is small. (These equations are based on an approximation of the function f by a second-order Taylor polynomial.) 
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	Note that the bias calculated by Equations 19.21 and 19.22 may not represent the overall bias of the output estimate. It represents only the bias associated with nonlinearity of the mathematical model. If the input estimates are biased or the model is inexact, the overall bias may be different. 
	MARLAP does not recommend correcting the output estimate for the estimated bias due to nonlinearity. Instead, the standard uncertainties of the input estimates should be kept small enough to make this portion of the bias negligible. For a typical radiochemical measurement model involving a net count rate divided by a denominator consisting of a product of factors such as the counting efficiency, test portion size, and chemical yield, this requirement means keeping the uncertainties of the counting times and
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	EXAMPLE 19.13  If x is an estimate of a positive quantity X, the bias of y = 1 / x as an estimate of 1 / X may be approximated using Equation 19.22. Since y is a function of only one variable, the partial derivatives of y are the same as ordinary derivatives. The first derivative is dy/dx = !x and the second derivative is dy/dx = 2x. So, the bias due to nonlinearity can be estimated as Bias(y) . (1/2)(2x)u(x) = u(x)/ x. 
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	Suppose x = 1.2 and its standard uncertainty is 0.2. Then the calculated value of y is 1 / 1.2, or 0.833, and the estimated bias of y due to nonlinearity is 0.2 / 1.2 = 0.023. 
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	EXAMPLE 19.14  If x and y are uncorrelated, unbiased estimates of quantities X and Y, respectively, the bias of the product z = xy as an estimate of XY is given approximately by 
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	which equals zero, since Mz / Mx ' Mz / My ' 0. (In this case, it can be shown that the bias of z is exactly zero, not just approximately zero.) 
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	EXAMPLE 19.15  If t is an estimate of the decay time T for a radionuclide whose decay constant is λ (assumed to have negligible uncertainty), the bias of the estimated decay factor D = e is given approximately by 
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	and the relative bias is λu(t) / 2. For example, suppose the radionuclide is Ac, which has a half-life of T = 6.15 h, and the decay time has a standard uncertainty of u(t) = 2 h (large for the sake of illustration). Then the decay constant λ equals ln(2) / 6.15 = 0.112707 h. The bias equation above implies that the relative bias of the decay factor D due to the uncertainty of t is approximately 
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	or 2.5 %. Note that the relative bias of D is small if u (t)/ T  is small. (In this example, 
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	19.4.6  Monte Carlo Methods 
	19.4.6  Monte Carlo Methods 
	An alternative to uncertainty propagation is the use of computerized Monte Carlo methods to propagate not the uncertainties of input estimates but their distributions. Given assumed distributions for the input estimates, the method provides an approximate distribution for the output estimate, from which the combined standard uncertainty or an uncertainty interval may be derived. The joint working group responsible for the GUM is reported to be developing new guidance on the use of such methods. Monte Carlo 
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	19.5 Radiation Measurement Uncertainty 
	19.5 Radiation Measurement Uncertainty 
	19.5.1  Radioactive Decay 
	19.5.1  Radioactive Decay 
	Although it is impossible to know when an unstable nucleus will decay, it is possible to calculate the probability of decay during a specified time interval. The lifetime of the nucleus has an exponential distribution, which is a model for the life of any object whose expected remaining life does not change with age. 
	The exponential distribution is described by one parameter λ, which measures the expected fractional decay rate. This parameter λ is called the decay constant and equals ln(2) / T, or approximately 0.693 / T, where T is the half-life of the radionuclide (sometimes denoted by t). The half-life is the same as the median of the exponential distribution. 
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	The probability that an atom will survive until time t without decaying is equal to e. Thus the probability of survival decreases exponentially with time. Consequently, when a large number of atoms of the same radionuclide are considered, the expected number of surviving atoms also decreases exponentially with time, as shown in Figure 19.2. 
	!λt

	Since the probability that an atom survives until time t is equal to e, it follows that the probability of decay during this time is 1 ! e. 
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	FIGURE 19.2 • Expected fraction of atoms remaining at time t 
	FIGURE 19.2 • Expected fraction of atoms remaining at time t 



	19.5.2  Radiation Counting 
	19.5.2  Radiation Counting 
	Undoubtedly the best-known rule of radiation measurement statistics is the fact that the counting uncertainty for a gross radiation measurement can be evaluated as the square root of the observed counts. The square-root rule is useful, because it permits the estimation of a potentially significant uncertainty component without replicate measurements. Although the rule is usually valid as an approximation, for reasons which are discussed below, there are limits to its applicability. It is also important to r
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	19.5.2.1  Binomial Model 
	19.5.2.1  Binomial Model 
	When a source containing a radionuclide is placed in a detector, the probability that a particular atom of the radionuclide will produce a count is the product of three factors: the probability of decay, the probability of emission of the radiation being measured, and the probability of detection. According to the exponential decay model, the probability of decay is equal to 
	&λtS 
	1 & e , where λ is the decay constant and t is the counting time. The probability of radiation emission, denoted here by F, is a characteristic of the radionuclide. The probability of detection is the counting efficiency, g. Then the probability that an atom will generate a count is p = 
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	(1 & e Fg. 
	If the source initially contains n atoms of the radionuclide, the instrument is stable, and its background is negligible, the number of observed counts N has a binomial distribution with parameters n and p. In general, if an experiment has only two possible outcomes, which may be called •success• and •failure,• and the probability of success is p, then the number of successes observed when the experiment is repeated in n independent trials has a binomial distribution with parameters n and p. 
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	Actually the probability p is a random variable, because the counting efficiency for an instrument and source can vary for a number of reasons, such as source placement, dead time and other instrument characteristics. These variations generate measurement uncertainty, but their effects are not included in the •counting uncertainty.• The counting uncertainty is the standard deviation of the theoretical distribution of counts observed in a fixed time period when the efficiency is held constant. Thus, the actu
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	19.5.2.2  Poisson Approximation 
	19.5.2.2  Poisson Approximation 
	The mean and variance of the binomial distribution are np and np(1 ! p), respectively. In radiation counting, the value of p is usually small enough that the factor 1 ! p in the variance can be ignored (i.e., treated as 1). When this is true, the binomial distribution can be approximated by a Poisson distribution with mean µ = np. The variance of a Poisson distribution equals the mean; so, both can be estimated by the same measured result N, and the standard deviation can be esti-
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	When µ is large, N is an excellent estimator for the standard deviation, σ, but the estimate may be poor when µ is small. For example, if µ = 100, the coefficient of variation of N is only about  If µ = 10, the coefficient of variation is more than 16 % and there is a negative bias of more than 1 %. If µ = 1, the coefficient of variation is more than 63 % and the negative bias is more than 22 %. Furthermore, when µ is small, it is possible to observe zero counts, so that N = 0. MARLAP recommends that N be r
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	5 % and its bias (caused by the nonlinearity of the square-root function) is negligible.
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	 In the rare cases when the Poisson model is inadequate and the binomial model is required, if the instrument background level is negligible, the standard deviation of the source count N can be estimated by (1 • p)N. If the background is not negligible, the variance of N is the sum of components contributed by the background and the source. So, if a Poisson background is measured for time t and N counts are observed, the background contribution to N is estimated by Nt / t, and the source contribution is est
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	These expressions for the standard deviation of N are appropriate only when the source counts are generated by a single radionuclide or by one radionuclide plus the instrument background. 
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	  The coefficient of variation of a nonnegative random variable is defined as the ratio of its standard deviation to its mean (see Attachment 19A). 
	11

	 The negative bias of N as an estimator for σ is largely eliminated if one replaces it by N % 0.25. MARLAP recommends the estimator N % 1 although it is positively biased. 
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	A sum of independent Poisson quantities also has a Poisson distribution. So, when the Poisson approximation is valid for all the sources of counts in a counting measurement, the total count obeys Poisson counting statistics as well. 
	If a short-lived radionuclide (large λ) is counted in a high-efficiency detector (large g), the probability p that an atom placed in the detector will produce a count may be so large that the Poisson approximation is invalid. In this case the Poisson approximation overestimates the counting uncertainty; however, it is important to consider that the statistical model described thus far represents only the process of counting. In most cases previous steps in the measurement process decrease the probability th
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	measurement uncertainty even further.
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	Both the binomial and Poisson models may be invalid if one atom can produce more than one count during the measurement. This situation occurs when the activity of a parent is estimated from the total count produced by the parent and a series of short-lived progeny (Lucas and Woodward, 1964; Collé and Kishore, 1997). For example when Rn is measured by counting the emissions of the parent and its progeny, an atom of Rn may produce several counts as it decays through the short-lived series Po, Pb, Bi and Po, t
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	Both counting models may also be invalid if the total dead time of the measurement is significant (see Section 19.5.3.1). 
	Instrument background measurements are usually assumed to follow the Poisson model. This assumption is reasonable if the background counts are produced by low levels of relatively long-lived radionuclides. However, the true background may vary between measurements (e.g., cosmic background). Furthermore, the measured background may include spurious instrument-generated counts, which do not follow a Poisson distribution. Generally, the variance of the observed background is somewhat greater than the Poisson c
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	 It is possible to evaluate the uncertainties associated with the decay and ingrowth of a small number of short-lived atoms before counting using the binomial model, but under the stated conditions, the assumption of Poisson counting statistics simplifies the calculation. A more complete evaluation of uncertainty may be necessary if the same source is counted more than once. 
	13

	less for certain types of instruments, such as those that use parallel coincidence counters to compensate for background instability (Currie et al., 1998). Departures from the Poisson model may be detected using the chi-squared test described in Section 18B.2 of Attachment 18B; however, deviations from the model over short time periods may be small and difficult to measure. 
	-

	19.5.3  Count Time and Count Rate 
	Suppose a radiation counting measurement of duration t is made for the purpose of estimating a mean count rate r, assumed to be constant, and the result of the measurement (in counts) has a distribution that is approximately Poisson with mean rt. If t is known precisely, the best estimate of r given a single observation, N, is the measured count rate R = N / t, and the best estimate of the variance of the measured rate is u(R) = N / t = R / t. Under the Poisson assumption, even if repeated measurements are 
	2
	2
	-

	In fact, the count time t is known imperfectly; so a more complete estimate of the variance of R is 
	N 
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	N 
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	u (R) ' u (t) (19.23) 
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	t 
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	t 
	4 

	The uncertainty of t may be ignored if u(t) / t << 1 / N, that is, if the relative standard uncertainty of t is much less than 1 over the square root of the count. 
	Figure
	-

	EXAMPLE 19.16  A source is counted for t = 100 s, where t has standard uncertainty u(t) = 
	0.1 s, and N = 25 counts are observed. Thus, the observed count rate, R, equals 0.250 s. When u(t) is ignored, the combined standard uncertainty of R is u(R) = N / t  = 0.050 s. When u(t) is included, the combined standard uncertainty is 
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	In this case the difference between the two uncertainty estimates is negligible. 
	EXAMPLE 19.17  A source is counted for t = 100 s, where u(t) = 1 s, and N = 10,609 counts are observed. The count rate, R, equals N / t, or 106.09 s. When u(t) is ignored, u(R) = N / t  = 
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	In this example the two uncertainty estimates are clearly different, although both are relatively small (1 % to 1.4 %). 
	Sometimes a radiation counter is set to acquire a predetermined number of counts. In this case the number of counts is a constant and only the count time varies. If the mean count rate does not change appreciably during the measurement, then Equation 19.23 may still be used.
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	19.5.3.1  Dead Time 
	19.5.3.1  Dead Time 
	The dead time for a counting instrument is the minimum separation, τ, between two events required for the instrument to process and record both. Theoretical models for dead time are generally of two types. If the dead time for one event may be extended by a second event that arrives before the first has been processed, the system is called �paralyzable� and the dead time is called �extendable.� Otherwise, the system is called �non-paralyzable� and the dead time is called �nonextendable� (Knoll, 1989; Turner
	-
	-
	-

	At low count rates the observed count rate, N / t, may be corrected for dead time by dividing by the factor 1 ! Nτ / t. Many counting instruments perform the correction automatically by extending the real time t of the measurement to achieve a desired live time, t. Since t = t ! Nτ, the corrected count rate is simply N / t. When the dead time rate for the measurement is low, the variance of the corrected count rate may be estimated as N / t. Thus, the Poisson model remains adequate if the �count time� is eq
	-
	L
	L
	L
	L
	2

	Dead time effects may be evaluated experimentally to confirm that they do not invalidate the Poisson model at the count rates expected for typical measurements. The chi-squared test described in Section 18B.2 of Attachment 18B can be used for this purpose. 
	-

	 If the mean count rate, r, is constant, the waiting times between events are independent exponentially distributed random variables with parameter λ = r. Therefore, the total time required to obtain n counts is the sum of the n waiting times, which has a gamma distribution with parameters α = n and λ = r (or α = n and β = 1/λ = 1/r). 
	14


	19.5.3.2  A Confidence Interval for the Count Rate 
	19.5.3.2  A Confidence Interval for the Count Rate 
	When the Poisson model of radiation counting is valid, lower and upper confidence limits for the mean count rate r given an observation of N counts in time t may be calculated as follows:
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	r ' χ(2N % 2) 
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	Here γ is the desired confidence coefficient, or the minimum probability of coverage, and for any ν, χ(ν) denotes the p-quantile of the chi-squared distribution with ν degrees of freedom (see Table G.3 in Appendix G). If ν = 0, the chi-squared distribution χ(ν) is degenerate. For our purposes, χ(0) should be considered to be 0. 
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	EXAMPLE 19.18  Suppose 10 counts are observed during a 600-second instrument background measurement. Then the 95 % confidence limits for the background count rate are 
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	0.0259.59078 
	(20) 

	'' 0.00799 s 
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	(2)(600) 1200 
	(2)(600) 1200 
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	0.97536.7807 
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	r ' '' 0.03065 s 
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	upper 
	(2)(600) 1200 
	(2)(600) 1200 

	EXAMPLE 19.19  Suppose 0 counts are observed during a 600-second measurement. Then the 95 % confidence limits for the count rate are 
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	χ
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	2 

	0.9757.3778 
	(2) 

	r ' '' 0.00615 s 
	&1 

	upper 
	(2)(600) 1200 
	(2)(600) 1200 

	 The chi-squared distribution is a special case of a gamma distribution, whose relationship to the Poisson distribution is described by Hoel et al. (1971) and Stapleton (1995). This relationship is the basis for the two formulas in Equation 19.24. The relationship is such that if X is chi-squared with 2N degrees of freedom and Y is Poisson with mean µ, then Pr[X # 2µ] = Pr[Y $ N]. 
	15
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	19.5.4  Instrument Background 
	19.5.4  Instrument Background 
	As noted above, single-channel background measurements are usually assumed to follow the Poisson model, although there may be effects which increase the variance beyond what the model predicts. For example, cosmic radiation and other natural sources of instrument background may vary between measurements, the composition of source holders and containers may vary, the instrument may become contaminated by sources, or the instrument may simply be unstable. For certain types of instruments, the Poisson model ma
	The •instrument background,• or •instrument blank,• is usually measured with source holders or containers in place, since the presence of the container may affect the count rate. In many cases, perhaps most, it is not feasible to use the same container during both the background and test source measurements, but nearly identical containers should be used. Variations in container composition may affect the background count rate. If test sources contain enough mass to attenuate background radiation, then it i
	-

	If repeated measurements demonstrate that the background level is stable, then the average, x¯, of the results of many similar measurements performed over a period of time may give the best estimate of the background. In this case, if all measurements have the same duration, the experimental standard deviation of the mean, s(¯x), is also a good estimate of the measurement uncertainty. Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson estimate, which equals the square ro
	-
	-
	-
	-
	-

	If the background drifts or varies nonrandomly over time (i.e., is nonstationary), it is important to minimize the consequences of the drift by performing frequent blank measurements. 
	If the background variance includes a small non-Poisson component, that component can be estimated from historical background data and added to the calculated Poisson component. A chi-squared statistic may be used to detect and quantify non-Poisson background variance (Currie, 1972; see also Section 18B.3 of Attachment 18B), but chi-squared provides an unbiased estimate of the additional variance only if the background remains stationary while the data are being collected. If the observed background counts,
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	may be used to estimate the non-Poisson variance of a net count rate due to background even if  The distribution of ξ is not simple, and ξ may even assume negative values, which are clearly unrealistic. So, if this estimator is used, it should be calculated for several data sets and for more than one instrument, if possible, to give an indication of its reliability. Although replicate measurements are involved, this type of evaluation of uncertainty should be considered a Type B method. 
	the background is not stationary.
	16
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	If background and test source measurements are performed under different conditions, the background measurement may be biased. Such a bias may occur, for example, if test sources are counted in containers or on planchets which are not present during background measurements. A situation of this kind should be avoided if possible. 
	-

	When instrument background levels are low or when count times are short, it is possible that too few counts will be observed to provide an accurate estimate of the measurement uncertainty. Attachment 19D describes a method for choosing an appropriate coverage factor when only few counts are observed. 

	19.5.5  Radiochemical Blanks 
	19.5.5  Radiochemical Blanks 
	Instrument background is only one of the sources of counts observed when an analyte-free sample is analyzed. Other sources may include contaminants in the tracers, reagents, and glassware used for measurements. Contamination of this type tends to be most significant when the analytes are naturally occurring radionuclides, such as isotopes of uranium, thorium, and radium; but nonnatural contaminants may also be present in some radiochemical tracers. 
	-

	The level of contamination may be determined by analyzing reagent blanks or other process blanks alongside laboratory samples (see Chapter 18). Alternatively, if the contaminant is present in a specific reagent or tracer solution, its concentration in the solution may be measured and incorporated into the mathematical model of the measurement. Regardless of which method of evaluation is used, it is important to remember that the concentration of contaminant may vary from one reagent lot to another, and that
	 Each term of the sum is an unbiased estimator for the non-Poisson variance of the difference between successive measurements of the background. Note that (N/t& N/t) is an unbiased estimator for the total variance and (N%N)/ tt, which equals (N%N)/(t%t)×(1/t% 1/t), is an unbiased estimator for the Poisson variance. 
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	be affected by incomplete recovery during the chemical separation and purification steps of the analytical process. 
	If the amount of blank contaminant varies between measurements (e.g., because the analyte is present at varying levels in the laboratory environment), it is usually necessary to determine the blank level and its uncertainty by replicate measurements (a Type A evaluation). In this case, using the pure Poisson model for the uncertainty of the blank correction is inappropriate. Replicate measurements are also more appropriate if the causes of blank contamination are simply not well understood. 
	-

	If there is no observable contamination when analyte-free samples are analyzed, the radiochemical blank may be only a blank source, which mimics the geometry and composition of an actual test source. In this case the laboratory should routinely analyze method blanks to check for contamination (see Chapter 18) and take corrective action if contamination is found. 
	-
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	19.5.6  Counting Efficiency 
	19.5.6  Counting Efficiency 
	The counting efficiency for a measurement of radioactivity (usually defined as the detection probability for a particle or photon of interest emitted by the source) may depend on many factors, including source geometry, placement, composition, density, activity, radiation type and energy and other instrument-specific factors. The estimated efficiency is sometimes calculated explicitly as a function of such variables (in gamma-ray spectrometry, for example). In other cases a single measured value is used (e.
	-
	-
	-

	EXAMPLE 19.20  Fifteen sources in the same geometry are prepared from a standard solution and used to calibrate a radiation counter. The specific activity of the standard is 150.0 Bq/g with a combined standard uncertainty of 2.0 Bq/g. The steps of the calibration are as follows: 
	1. 
	1. 
	1. 
	A 1-milliliter aliquant of the standard solution is added by pipet to each source and weighed on an analytical balance. The solution contains the radionuclide of interest dissolved in 0.3 M nitric acid, whose density at the current room temperature is 1.0079 g/mL. The density of the solution is used only to calculate the buoyancy-correction factor for the mass measurements, which equals 1.001028 in this case (see Attachment 19E). The uncertainties of the buoyancy-corrected masses are considered negligible. 

	2. 
	2. 
	A blank measurement is made. The blank count time is 6000 s. The number of blank counts observed is 87. 

	3. 
	3. 
	Each source is counted once on the instrument for 300 s. 


	The radionuclide is long-lived; so, no decay corrections are needed. The uncertainties of the count times are assumed to be negligible. 
	The mathematical model for the calibration is: 
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	where 
	g is the counting efficiency; 
	n is the number of sources (15); 
	Nis the gross count observed during the measurement of the i source; 
	S, i 
	th

	tis the source count time (300 s); 
	S 

	Nis the observed blank count (87); 
	B 

	tis the blank count time (6000 s); 
	B 

	mis the mass of standard solution added to the i source; and 
	i 
	th

	ais the specific activity of the standard solution (150.0 Bq/g). 
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	For the purpose of uncertainty evaluation, it is convenient to rewrite the model as 
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	The values R and ther average, R , are estimates of the count rate produced by 1 g of the standard solution, while R /  is an estimate of the count rate produced by 1 Bq of activity. The standard uncertainty of R can be evaluated experimentally from the 15 repeated measurements. Since only one blank measurement is made, the input estimates R are correlated with each other. The covariance between R and R, for i … j, may be estimated as 
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	However, the correlation is negligible here because the uncertainty of the blank count, NB, is much smaller than the uncertainty of each source count, NS,i. So, the input estimates Ri will be treated as if they were uncorrelated, and the following equations will be used to calculate the combined standard uncertainty of g: n 1 u 2(R) ' s 2(R) ' (Ri & R)2 n(n & 1) j i'1 u 2(R) u 2(aS) u(g) ' % g2 c2 2 a a S S Assume the following data were obtained for the 15 calibration sources. 
	However, the correlation is negligible here because the uncertainty of the blank count, NB, is much smaller than the uncertainty of each source count, NS,i. So, the input estimates Ri will be treated as if they were uncorrelated, and the following equations will be used to calculate the combined standard uncertainty of g: n 1 u 2(R) ' s 2(R) ' (Ri & R)2 n(n & 1) j i'1 u 2(R) u 2(aS) u(g) ' % g2 c2 2 a a S S Assume the following data were obtained for the 15 calibration sources. 
	However, the correlation is negligible here because the uncertainty of the blank count, NB, is much smaller than the uncertainty of each source count, NS,i. So, the input estimates Ri will be treated as if they were uncorrelated, and the following equations will be used to calculate the combined standard uncertainty of g: n 1 u 2(R) ' s 2(R) ' (Ri & R)2 n(n & 1) j i'1 u 2(R) u 2(aS) u(g) ' % g2 c2 2 a a S S Assume the following data were obtained for the 15 calibration sources. 

	Source number, i 
	Source number, i 
	Uncorrected mass (g) 
	Buoyancy-corrected mass, mi / g 
	Gross count, NS,i 
	Ri / (s!1 @ g!1) 

	1 
	1 
	1.0056 
	1.00663 
	18,375 
	60.832 

	2 
	2 
	1.0031 
	1.00413 
	18,664 
	61.943 

	3 
	3 
	1.0058 
	1.00683 
	18,954 
	62.737 

	4 
	4 
	1.0082 
	1.00924 
	19,249 
	63.562 

	5 
	5 
	1.0069 
	1.00793 
	19,011 
	62.857 

	6 
	6 
	1.0074 
	1.00843 
	18,936 
	62.578 

	7 
	7 
	1.0048 
	1.00583 
	18,537 
	61.417 

	8 
	8 
	1.0069 
	1.00794 
	18,733 
	61.937 

	9 
	9 
	1.0031 
	1.00413 
	18,812 
	62.434 

	10 
	10 
	1.0079 
	1.00894 
	18,546 
	61.258 

	11 
	11 
	1.0063 
	1.00734 
	18,810 
	62.229 

	12 
	12 
	1.0067 
	1.00774 
	19,273 
	63.736 

	13 
	13 
	1.0055 
	1.00653 
	18,893 
	62.554 

	14 
	14 
	1.0091 
	1.01014 
	18,803 
	62.033 

	15 
	15 
	1.0030 
	1.00403 
	18,280 
	60.674 

	Average,  R / (s!1 @ g!1): 62.1854 Experimental standard deviation, s(Ri) / (s!1 @ g!1): 0.8910 Experimental standard deviation of the mean, s( R ) / (s!1 @ g!1): 0.2301 
	Average,  R / (s!1 @ g!1): 62.1854 Experimental standard deviation, s(Ri) / (s!1 @ g!1): 0.8910 Experimental standard deviation of the mean, s( R ) / (s!1 @ g!1): 0.2301 

	Then the estimated counting efficiency is R 62.1854 s&1 @g&1 g ' ' ' 0.4146 aS 150.0 Bq/g 
	Then the estimated counting efficiency is R 62.1854 s&1 @g&1 g ' ' ' 0.4146 aS 150.0 Bq/g 


	and the (combined) standard uncertainty of g is given by 
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	which may be rounded to 0.0057. (Note that the relative standard uncertainty of g is approximately 1.4 %, which is large enough to justify neglecting the small uncertainties of the masses.) 
	-

	In fact the standard uncertainty of g calculated in the preceding example may be incomplete. The true counting efficiency may vary from source to source because of variations in geometry, position and other influence quantities not explicitly included in the model. So, the standard uncertainty of g should include not only the standard uncertainty of the estimated mean, as calculated in the example, but also another component of uncertainty due to variations of the true efficiency during subsequent measureme
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	In the example above, the experimental variance of the ratios, R, may be used to estimate φ. Section 18B.2 of Attachment 18B, describes an approach for estimating such �excess� variance in a series of measurements. When the methods of Section 18B.2 are used with these data, the resulting estimate of φ is approximately 0.012, or 1.2 %. So, the total uncertainty of g as a predictor of the counting efficiency for a source prepared and counted at some time in the future is 
	i

	P
	Figure
	(0.2301 s
	&1 
	@g
	&1
	)
	2 

	P
	ParagraphSpan
	Figure
	(2.0 Bq/g)
	2 

	u(g) ' 
	% 0.4146
	2 


	% 0.012
	2 

	' 0.0076 (19.27) 
	Figure

	(150.0 Bq/g)
	(150.0 Bq/g)
	2 

	(150.0 Bq/g)
	2 


	Variations in counting efficiency due to source placement should be reduced as much as possible through the use of positioning devices that ensure a source with a given geometry is always placed in the same location relative to the detector. If such devices are not used, variations in source position may significantly increase the measurement uncertainty. 
	Calibrating an instrument under conditions different from the conditions under which test sources are counted may lead to large uncertainties in the sample activity measurements. Source geometry in particular tends to be an important factor for many types of radiation counters. Generally, calibration sources should be prepared with the sizes and shapes of test sources and counted in the same positions, although in some cases it may be possible to calculate correction factors which allow one calibration to b
	-

	If the efficiency, g, is calculated from a model that includes one of the quantities X appearing elsewhere in the sample activity model, there is a correlation between the measured values of g and X, which should not be ignored. It is often simpler to include the entire expression for g in the expression for the laboratory sample activity before applying the uncertainty propagation formula. 
	i
	i

	EXAMPLE 19.21  Suppose the counting efficiency for a measurement is modeled by the equation g = A exp(!Bm), where A and B are calibration parameters and m is the source mass; and suppose the chemical yield Y is modeled by m / m, where m is the expected mass at 100 % recovery. Then the estimated values of the counting efficiency and the yield are correlated, because both are calculated from the same measured value of the source mass. When the combined standard uncertainty of the sample activity is calculated
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	In some cases the estimated value of the counting efficiency has no effect on the output estimate of laboratory sample activity. This happens often in alpha-particle spectrometry, for example, when isotopic tracers are used. The efficiency estimate is needed to obtain an estimate of the yield of the chemistry procedure, but the efficiency usually cancels out of the mathematical model for the laboratory sample activity and its uncertainty is not propagated when determining the combined standard uncertainty o

	19.5.7  Radionuclide Half-Life 
	19.5.7  Radionuclide Half-Life 
	The component of combined standard uncertainty associated with the half-life of a radionuclide is often negligible in measurements performed by typical radioanalytical laboratories, since the half-lives of most radionuclides of interest have been measured very accurately and in many cases decay times are short relative to the half-life (so that the sensitivity coefficient is small). However, this uncertainty component is also one of the most easily obtained components, since radionuclide half-lives and thei
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	19.5.8  Gamma-Ray Spectrometry 
	19.5.8  Gamma-Ray Spectrometry 
	Most radiochemistry laboratories rely on commercial software for the analysis of gamma-ray spectra and for the evaluation and propagation of the associated uncertainties. There are a number of sources of measurement uncertainty in gamma-ray spectrometry, including:
	  • 
	  • 
	  • 
	Poisson counting uncertainty;

	  • 
	  • 
	Compton baseline determination;

	  • 
	  • 
	Background peak subtraction;

	  • 
	  • 
	Multiplets and interference corrections;

	  • 
	  • 
	Peak-fitting model errors;

	  • 
	  • 
	Efficiency calibration model error;

	  • 
	  • 
	Summing;

	  • 
	  • 
	Density-correction factors; and

	  • 
	  • 
	Dead time. 


	See Chapter 16 for further discussion of measurement models and uncertainty analysis for gamma-ray spectrometry, but note that neither Chapter 16 nor this chapter attempts to describe all of the relevant issues in detail. 

	19.5.9  Balances 
	19.5.9  Balances 
	The uncertainty of a balance measurement tends to be small, even negligible, when the balance is used properly and the mass being measured is much larger than the balance•s readability. However, the uncertainty may also be difficult to evaluate unless the balance is well maintained and operated in a controlled environment that protects it from external influences. In particular, drafts or sudden changes in pressure, temperature or humidity (e.g., opening doors or dishwashers) may produce spurious errors. 
	-

	Even if one assumes the balance measurement uncertainty is negligible, there are reasons for performing at least a partial evaluation of the uncertainty. One reason is to confirm the assumption that the uncertainty is negligible or to determine the range of measurement conditions under which the assumption is true. For example the uncertainty may be significant if the mass being weighed is comparable in magnitude to the readability of the balance, or if the mass is calculated as the difference between two m
	-
	-

	The uncertainty of a mass measurement generally has components associated with 
	  • 
	  • 
	  • 
	Calibration;

	  • 
	  • 
	Linearity;

	  • 
	  • 
	Repeatability;

	  • 
	  • 
	Day-to-day or hour-to-hour variability due to environmental factors; and

	  • 
	  • 
	Air buoyancy. 


	Other sources of uncertainty may include leveling errors and off-center errors, which should be controlled. Static electrical charges may also have an effect. For some materials gain or loss of mass before or after weighing (e.g., by absorption or evaporation of water) may be significant. Attachment 19E of this chapter describes balance measurement uncertainties in more detail. 
	Balance manufacturers provide specifications for repeatability and linearity, which are usually of the same order of magnitude as the balance•s readability, but tests of repeatability and linearity should also be included in the routine quality control for the balance. 
	Repeatability is expressed as a standard deviation, s, and is typically assumed to be independent of the load. It represents the variability of the result of zeroing the balance, loading and centering a mass on the pan, and reading the final balance indication. Attachment 19E describes procedures for evaluating the repeatability experimentally. 
	r

	The linearity tolerance of a balance, a, should be specified by the manufacturer as the maximum deviation of the balance indication from the value that would be obtained by linear interpolation between the calibration points. Different methods may be used to convert this tolerance to a standard uncertainty, depending on the form the linearity error is assumed to take. One method, which is recommended by the Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, is to treat the tolerance, a
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	Procedures for evaluating the relative standard uncertainties due to calibration and environmental factors and for calculating the buoyancy-correction factor and its standard uncertainty are described in Attachment 19E. 
	-

	When one evaluates the uncertainty of a balance measurement that is performed as part of a typical radiochemical measurement, where the relative combined standard uncertainty of the final result is usually 5 % or more, often much more, the evaluation may involve only a few components of the uncertainty. Important components for this purpose include those due to repeatability, linearity, and environmental factors. Gains or losses of mass may be important in some cases, but calibration errors and buoyancy eff
	When one evaluates the uncertainty of a balance measurement that is performed as part of a typical radiochemical measurement, where the relative combined standard uncertainty of the final result is usually 5 % or more, often much more, the evaluation may involve only a few components of the uncertainty. Important components for this purpose include those due to repeatability, linearity, and environmental factors. Gains or losses of mass may be important in some cases, but calibration errors and buoyancy eff
	that it is negligible in the overall analytical process. The remainder of this section will consider only the mass uncertainties due to repeatability, linearity, and environmental factors (but see Attachment 19E). 

	A typical mass measurement in the laboratory involves separate measurements of a gross mass and a tare mass. The net mass, m, is determined by subtracting the balance indication for the tare mass, I, from the indication for the gross mass, I. That is, 
	tare
	gross

	m ' I ' I & I 
	net gross tare (19.28) 
	If the tare and gross measurements are made under the same environmental conditions (e.g., at nearly the same time), the standard uncertainty of m is given (according to the simplified model) by 
	u(m) ' 2s % a% m φ(19.29) 
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	where 
	m is the net mass; 
	sis the repeatability standard deviation; 
	r 

	ais the linearity tolerance; and 
	L 

	φis the relative standard uncertainty due to environmental effects. 
	env 

	In some cases the balance is simply zeroed before adding the mass and there is no tare measurement. (Unfortunately the operation of zeroing the balance is often called •taring.•) In such cases the factor 2 that appears before s in Equation 19.29 should be omitted. 
	-
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	If tare and gross measurements are made under possibly different environmental conditions (e.g., on different days), then the following expression should be used to account for the greater uncertainty due to environmental effects. 
	-

	u(m) ' 2s % a% I % I φ(19.30) 
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	EXAMPLE 19.22  The chemical yield (recovery) for a strontium analysis is determined gravimetrically by weighing a stainless steel planchet before and after evaporating a strontium nitrate solution onto it, and then dividing the net mass by the predicted mass of strontium nitrate at 100 % yield. The balance has readability 0.0001 g. According to the manufacturer it has repeatability 0.00010 g and linearity 0.00020 g, and these values have been reasonably well confirmed by historical QC data. The analyst has 
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	m ' 8.5978 g & 8.5923 g ' 0.0055 g 
	Since two hours elapse between the tare and gross measurements, Equation 19.30 is used to calculate the standard uncertainty. 
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	Thus the relative standard uncertainty is approximately 6 %, which is significant in the determination of a yield factor. 
	-

	Note that using the linearity tolerance, 0.00020 g, is rather conservative when the difference between the gross and tare masses is so small, but the uncertainty component due to linearity is not dominant in this example. It is actually smaller than the uncertainty due to environmental effects. 
	EXAMPLE 19.23  An aliquant of dry soil is subsampled for analysis and weighed on the same laboratory balance described in the preceding example. The repeatability of the balance is 0.00010 g, the linearity is 0.00020 g, and the relative standard uncertainty due to environmental effects is 2 × 10. Suppose the analyst zeros the balance with an empty container on the pan, adds the aliquant of soil to the container, and reads the final balance indication without a significant time delay. If the final indication
	-
	!5
	-

	u(m) ' s % a% m φ
	Figure
	2 
	L
	2 
	2
	2 

	r Env 
	' (0.00010 g)% (0.00020 g)% (1.0247 g)(2 × 10)' 0.00022 g 
	2 
	2 
	2
	&5
	2 

	So, the relative standard uncertainty is approximately 0.022 %, which is likely to be negligible in comparison to the uncertainty of subsampling (heterogeneity). 
	Note that in this example the uncertainty due to environmental effects is the smallest of the three uncertainty components. 

	19.5.10  Pipets and Other Volumetric Apparatus 
	19.5.10  Pipets and Other Volumetric Apparatus 
	Generally, a pipet or volumetric flask is used not to measure an existing volume of liquid, but to obtain a volume of a predetermined nominal size. The nominal value is treated as if it were a measured value, although it is known before the •measurement.• The true volume is the variable quantity. Since a volumetric •measurement• of this type cannot be repeated, pipets and flasks are good examples of measurement systems for which historical data are important for Type A evaluations of standard uncertainty. 
	-

	The uncertainty of a pipet measurement, like that of a balance measurement, is often relatively small in comparison to other uncertainties in a radiochemical analysis. However, the use of the wrong type of pipetting device for a particular measurement may result in a relatively large pipetting uncertainty. For example, one manufacturer•s technical specifications for various models of pipetting devices list precision values that range from 0.1 % to 5 % and bias tolerances that range from 0.3 % to 12 %. (Here
	The total uncertainty of a volumetric measurement may include several components, but since most of the components are negligible in a typical radiochemical measurement process, a very simple method of evaluation is usually adequate as long as quality control is strict enough to ensure that the measuring devices and personnel are performing as expected. The method suggested here considers only two components, which are associated with precision and the capacity (or bias) of the device. Attachment 19E presen
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	Any volumetric measuring device should have a specified tolerance for its capacity, or for the possible bias of the device (e.g., ASTM E288 and ASTM E969). This tolerance, δ, may be assumed to represent the half-width of a rectangular or triangular distribution. Assuming a triangular distribution, as recommended by the Eurachem/CITAC Guide, one evaluates the uncertainty component of the volume associated with the capacity as δ/ 6 (Eurachem, 2000). The simplest type of uncertainty evaluation is possible when
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	where δ is the manufacturer�s stated bias tolerance and s is the stated standard deviation. 
	cap

	EXAMPLE 19.24  Suppose the manufacturer of a 5-milliliter pipetting device specifies the relative bias tolerance to be 0.6 % and the relative precision to be 0.2 %. Then the standard uncertainty of the volume may be evaluated as 
	u(V) ' s 2 % δ2 cap 6 ' (5 mL × 0.002)2 % (5 mL × 0.006)2 6 ' 0.0158 mL 
	The relative standard uncertainty in this case is only about 0.3 %, which might be considered negligible for many applications. 
	EXAMPLE 19.25  Suppose the relative bias tolerance for an adjustable-volume pipetting device is 2.5 % when the device is set at 10 µL, and the relative precision is 0.7 %. Then the standard uncertainty of a volume delivered at the 10-microliter setting may be evaluated as 
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	The relative standard uncertainty in this case is about 1.2 %, which would be considered potentially significant for many types of measurements. 
	When volumetric glassware is used, or when the manufacturer does not specify the precision, the uncertainty due to imprecision must be determined by other means. One Type B method of evaluating the imprecision for volumetric glassware is to examine the dimensions of the glassware and use experience and professional judgment to estimate the maximum possible deviation of the meniscus from the capacity line. If δ denotes this maximum deviation and d denotes the internal diameter of the glassware at the capacit
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	A Type A (experimental) method of evaluation may also be used (see Attachment 19E). 
	EXAMPLE 19.26  Suppose the inside diameter of an ASTM Class-A 1-milliliter volumetric pipet is 0.4 cm, and the analyst estimates δ, the maximum deviation from the capacity line, to be 0.075 cm. The capacity tolerance, δ, is specified by ASTM E969 to be 0.006 mL. So, the standard uncertainty of the volume (V = 1 mL) is 
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	' 0.00456 mL The relative standard uncertainty is approximately 0.5 %. 

	19.5.11  Digital Displays and Rounding 
	19.5.11  Digital Displays and Rounding 
	If a measuring device, such as an analytical balance, has a digital display with resolution δ, the standard uncertainty of a measured value is at least δ / 2 3. This uncertainty component exists even if the instrument is completely stable. A similar Type B method may be used to evaluate the standard uncertainty due to computer roundoff error. When a value x is rounded to the nearest multiple of 10, the component of uncertainty generated by roundoff error is 10 / 2 3. When rounding is performed properly and 
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	EXAMPLE 19.27  The readability of a digital balance is 0.1 g. Therefore, the minimum standard uncertainty of a measured mass is 0.1 / 2 3 = 0.029 g. 
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	EXAMPLE 19.28  A computer printout shows the result x of a measurement as 
	3.40E+01 +• 9.2E•02 
	where the expanded uncertainty is calculated using a coverage factor of 2. Since the coverage factor is 2, the printout implies the standard uncertainty is 0.092 / 2, or 0.046. However, since the measured value is rounded to the nearest multiple of 0.1, the standard uncertainty of x should be increased from 0.046 to 
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	19.5.12  Subsampling 
	19.5.12  Subsampling 
	Appendix F of this manual discusses laboratory subsampling. The subsampling of heterogeneous materials for laboratory analysis increases the variability of the measurement result and thus adds a component of measurement uncertainty, which is usually difficult to quantify without replicate measurements. Appendix F summarizes important aspects of the statistical theory of particulate sampling and applies the theory to subsampling in the radiation laboratory (see also Gy, 1992, and Pitard, 1993). The mathemati
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	If subsampling is not repeated, its effects may be represented in the mathematical measurement model by including an input quantity F whose value is the ratio of the analyte concentration of the subsample to that of the total sample. This ratio, which will be called the subsampling factor (a MARLAP term), appears in the model as a divisor of the net instrument signal and thus is similar to the chemical yield, counting efficiency and other sensitivity factors. The value of F is estimated as 1, but the value 
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	Although the component of uncertainty caused by the subsampling of heterogeneous solid matter may be difficult to estimate, it should not be ignored, since it may be relatively large and in some cases may even dominate all other components. One may use previous experience with similar materials to evaluate the uncertainty, possibly with the aid of the information and methods presented in Appendix F. Appendix F shows how the value of the subsampling uncertainty depends on the maximum particle diameter, d, th
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	where the value of k depends on the sample. By default, if •hot particles• are not suspected, and if reasonable precautions are taken either to homogenize (mix) the material or to build the subsample from a large number of randomly selected increments, one may assume k . 0.4 g/cm, or 
	where the value of k depends on the sample. By default, if •hot particles• are not suspected, and if reasonable precautions are taken either to homogenize (mix) the material or to build the subsample from a large number of randomly selected increments, one may assume k . 0.4 g/cm, or 
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	0.0004 g/mm. If hot particles are suspected, special measurement techniques are probably required, as described in Appendix F. In this case Equation 19.33 should not be used. 
	3


	EXAMPLE 19.29 Problem: A 609-gram soil sample is ground until it passes through an ASTM #10 sieve, which has a mesh size of 2.0 mm. The sample is then homogenized and a 0.7957-gram subsample is removed. Use Equation 19.33 with k = 0.0004 g/mm3 to evaluate the standard uncertainty of the subsampling factor, u(FS). Repeat the evaluation assuming an ASTM #18 sieve, whose mesh size is 1.0 mm. 
	EXAMPLE 19.29 Problem: A 609-gram soil sample is ground until it passes through an ASTM #10 sieve, which has a mesh size of 2.0 mm. The sample is then homogenized and a 0.7957-gram subsample is removed. Use Equation 19.33 with k = 0.0004 g/mm3 to evaluate the standard uncertainty of the subsampling factor, u(FS). Repeat the evaluation assuming an ASTM #18 sieve, whose mesh size is 1.0 mm. 
	EXAMPLE 19.29 Problem: A 609-gram soil sample is ground until it passes through an ASTM #10 sieve, which has a mesh size of 2.0 mm. The sample is then homogenized and a 0.7957-gram subsample is removed. Use Equation 19.33 with k = 0.0004 g/mm3 to evaluate the standard uncertainty of the subsampling factor, u(FS). Repeat the evaluation assuming an ASTM #18 sieve, whose mesh size is 1.0 mm. 
	-


	Solution: First, assume d = 2.0 mm. Then the subsampling uncertainty is 1 1 u(FS) ' & (0.0004 g/mm3)(2.0 mm)3 ' 0.063 0.7957 g 609 g Now assume d = 1.0 mm. Then 1 1 u(FS) ' & (0.0004 g/mm3)(1.0 mm)3 ' 0.022 0.7957 g 609 g 
	Solution: First, assume d = 2.0 mm. Then the subsampling uncertainty is 1 1 u(FS) ' & (0.0004 g/mm3)(2.0 mm)3 ' 0.063 0.7957 g 609 g Now assume d = 1.0 mm. Then 1 1 u(FS) ' & (0.0004 g/mm3)(1.0 mm)3 ' 0.022 0.7957 g 609 g 


	Another alternative is to evaluate the subsampling variance for each type of material and analyte at a specified maximum particle size, d, and subsample mass, m. Such an evaluation can be performed experimentally by repeated subsampling and analysis of one or more actual samples, provided that the concentrations are high enough and the measurement precision good enough to allow estimation of the variance attributable to subsampling. However, an artificially spiked sample is usually inappropriate for this pu
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	19.5.13  The Standard Uncertainty for a Hypothetical Measurement 
	19.5.13  The Standard Uncertainty for a Hypothetical Measurement 
	MARLAP•s recommended method selection criteria in Chapter 3 require that a laboratory estimate the standard uncertainty for a measurement of the activity concentration of a radionuclide in a hypothetical laboratory sample whose true concentration is specified (i.e., the •method uncertainty,• as defined by MARLAP). To estimate the combined standard uncertainty of the measured concentration, one must obtain estimates for all the input quantities and their standard uncertainties. All quantities except the gros
	MARLAP•s recommended method selection criteria in Chapter 3 require that a laboratory estimate the standard uncertainty for a measurement of the activity concentration of a radionuclide in a hypothetical laboratory sample whose true concentration is specified (i.e., the •method uncertainty,• as defined by MARLAP). To estimate the combined standard uncertainty of the measured concentration, one must obtain estimates for all the input quantities and their standard uncertainties. All quantities except the gros
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	their standard uncertainties may be determined from historical data. The estimate of the gross signal and its standard uncertainty must be obtained by other means, since the laboratory sample is only hypothetical. The predicted value of the gross count N is calculated by rearranging the equation or equations in the model and solving for N. The standard uncertainty of the measured value may then be evaluated either from theory (e.g., Poisson counting statistics), historical data, or experimentation. 
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	EXAMPLE 19.30  Suppose the mathematical model for a radioactivity measurement is 
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	where 
	where 

	a 
	a 
	is the specific activity of the radionuclide in the sample; 

	NS 
	NS 
	is the test source count; 

	NB 
	NB 
	is the blank count; 

	tS 
	tS 
	is the source count time; 

	tB 
	tB 
	is the blank count time; 

	tD 
	tD 
	is the decay time; 

	mS 
	mS 
	is the mass of the test portion; 

	Y 
	Y 
	is the chemical yield; 

	g 
	g 
	is the counting efficiency; 

	λ 
	λ 
	is the decay constant; and 

	FS 
	FS 
	is the subsampling factor. 


	With values given for the specific activity a; test portion mass m; blank count N; count times t, t, and t; efficiency g ; and yield Y; the source count N can be predicted. The predicted value is N = t(amYg exp(!λ(t + t / 2)) + N / t). When this value is treated like a measured value, its estimated variance according to Poisson statistics is u(N) = N. So, assuming negligible uncertainties in the times t, t, and t, the (first-order) uncertainty propagation formula gives the combined variance of the output es
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	19A.1  Basic Concepts 
	19A.1  Basic Concepts 
	Every laboratory measurement involves a measurement error. Methods for analyzing measurement error are generally based on the theory of random variables. A random variable may be thought of as the numerical outcome of an experiment, such as a laboratory measurement, which produces varying results when repeated. In this document a random variable is most often the result of a measurement. Random variables will usually be denoted in this attachment by uppercase letters. 
	-
	-

	Of primary importance in almost any discussion of a random variable is its distribution, or probability distribution. The distribution of a random variable X describes the possible values of X and their probabilities. Although the word •distribution• has a precise meaning in probability theory, the term will be used loosely in this document. This attachment describes several types of distributions, including the following: 
	-

	• 
	• 
	• 
	normal (Gaussian) 

	• 
	• 
	log-normal (or lognormal) 

	• 
	• 
	chi-squared (or chi-square) 

	• 
	• 
	Student•s t 

	• 
	• 
	rectangular (uniform) •trapezoidal 

	• 
	• 
	exponential 

	• 
	• 
	binomial 

	• 
	• 
	Poisson 


	Normal distributions are particularly important because they appear often in measurement processes. The other types listed are also important in this chapter, but only the exponential, binomial and Poisson distributions are described in the text. 
	-

	The distribution of X is uniquely determined by its distribution function, defined by F(x) = Pr[X # x], where Pr[X # x] denotes the probability that X is less than or equal to x. The distribution function is also called the cumulative distribution function (cdf). If there is a function f(x) such that the probability of any event a # X # b is equal to If(x) dx (i.e., the area under the curve y = f(x) between x = a and x = b), then X is a continuous random variable and f(x) is a probability density function (
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	19.3 and 19.4), because the height of the graph over a point x indicates the probability that the value of X will be near x. 
	µ µ + σ µ = Mean = Median σ = Standard deviation σ FIGURE 19.3 � A symmetric distribution 
	Two useful numerical characteristics of the distribution of a random variable are its mean and variance. The mean is also called the expectation or the expected value and may be denoted by µ or E(X). The mean of a distribution is conceptually similar to the center of mass of a physical object. It is essentially a weighted average of all the possible values of X, where the weight of a value is determined by its probability. The variance of X, denoted by σ, Var(X), or V(X), is a measure of the variability of 
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	The standard deviation of X, denoted by σ is defined as the positive square root of the variance. Although the variance appears often in statistical formulas, the standard deviation is a more intuitive measure of dispersion. If X represents a physical quantity, then σ has the same physical dimension as X. The variance σ, on the other hand, has the dimension of X squared. 
	X
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	X 
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	Any numerical characteristic of a distribution, such as the mean or standard deviation, may also be thought of as a characteristic of the random variables having that distribution. 
	The mean and standard deviation of a distribution may be estimated from a random sample of observations of the distribution. The estimates calculated from observed values are sometimes called the sample mean and sample standard deviation. Since the word •sample• here denotes a statistical sample of observations, not a physical sample in the laboratory, metrologists often use the terms arithmetic mean, or average, and experimental standard deviation to avoid confusion. 
	The mean is only one measure of the center of a distribution (•measure of central tendency•). Another is the median. The median of X is a value x that splits the range of X into upper and lower portions which are equally likely, or, more correctly, a value x such that the probability that X # x and the probability that X $ x are both at least 0.5. Note that for some distributions the median may not be unique. Figure 19.4 shows the probability density function of a symmetric 
	The mean is only one measure of the center of a distribution (•measure of central tendency•). Another is the median. The median of X is a value x that splits the range of X into upper and lower portions which are equally likely, or, more correctly, a value x such that the probability that X # x and the probability that X $ x are both at least 0.5. Note that for some distributions the median may not be unique. Figure 19.4 shows the probability density function of a symmetric 
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	distribution, whose mean and median coincide, and Figure 19.4 shows the pdf of an asymmetric distribution, whose mean and median are distinct. 

	Median Mean µ µ + σ µ = Mean σ = Standard deviation σ FIGURE 19.4 � An asymmetric distribution 
	The median of X is also called a quantile of order 0.5, or a 0.5-quantile. In general, if p is a number between 0 and 1, a p-quantile of X is a number x such that the probability that X < x is at most p and the probability that X # x is at least p. A p-quantile is often called a 100ppercentile. 
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	Sometimes the standard deviation of a nonnegative quantity is more meaningful when expressed as a fraction of the mean. The coefficient of variation, or CV, is defined for this reason as the standard deviation divided by the mean. The coefficient of variation is a dimensionless number, which may be converted to a percentage. The term •relative standard deviation,• or RSD, is also used. The term •relative variance• is sometimes used to mean the square of the relative standard deviation. 
	The results of two analytical measurements may be correlated when they have measurement errors in common. This happens, for example, if laboratory samples are analyzed using the same instrument without repeating the instrument calibration. Any error in the calibration parameters affects all results obtained from the instrument. This type of association between two quantities X and Y is measured by their covariance, which is denoted by σ or Cov(X,Y). The covariance of X and Y is defined as the expected value
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	Covariance, like variance, is somewhat nonintuitive because of its physical dimension. Furthermore, a large value for the covariance of two variables X and Y does not necessarily indicate a strong correlation between them. A measure of correlation must take into account not only the covariance σ, but also the standard deviations σ and σ. The correlation coefficient, denoted by ρ, is therefore defined as σ divided by the product of σ and σ. It is a dimensionless number between !1 and +1. The quantities X and
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	Statistical formulas are generally simpler when expressed in terms of variances and covariances, but the results of statistical analyses of data are more easily understood when presented in terms of standard deviations and correlation coefficients. 
	The lack of a correlation between two quantities X and Y is not a sufficient condition to guarantee that two values f(X) and g(Y) calculated from them will also be uncorrelated. A stronger condition called independence is required. For most practical purposes, to say that two quantities are •independent• is to say that their random components are completely unrelated. A more rigorous definition appears in the MARLAP glossary. 
	-

	When the value of a random variable X is used to estimate the value of an unknown parameter θ, then X is called an estimator for θ. The bias of X is the difference between the mean µ and the actual value θ. If the bias is zero, then X is said to be unbiased; otherwise, X is biased. Note that metrologists use the term �bias� with a somewhat different but similar meaning (see Section 19.3.1). 
	X

	As mentioned in Section 19.4.5.2, even if X is an unbiased estimator for θ, the application of a nonlinear function, f, to X may produce a biased estimator, f(X), for the value of f(θ). Colloquially speaking, the function of the mean is different from the mean of the function. For example, if X is an unbiased estimator for θ, then generally X is a biased estimator for θ. 
	2
	2

	If the value of X is used not to estimate the value of a parameter but to •predict• the value of another random variable, Y, whose value oftentimes is not directly observed, then X is called a predictor for Y. 

	19A.2  Probability Distributions 
	19A.2  Probability Distributions 
	This section briefly describes the probability distributions used in Chapter 19. 
	Distributions may be classified according to their mathematical properties. Distributions in the same class or family are described by the same mathematical formulas. The formulas involve numerical parameters which distinguish one member of the class from another. 
	Two important kinds of distributions are the normal and log-normal, which are observed often in nature. Other types of distributions important in radioanalysis include the rectangular, binomial, Poisson, Student•s t, chi-squared and exponential distributions. Poisson distributions in particular are important in radiation counting measurements and are described in Section 19.5.2. 
	19A.2.1  Normal Distributions 
	Many quantities encountered in nature and in the laboratory have distributions which can be described by the •bell curve.• This type of distribution, called a normal, or Gaussian, distribution, is usually a reasonably good model for the result of a radioanalytical measurement. A number of commonly used methods for evaluating data sets depend on their having an approximately normal distribution. The probability density function (pdf) for a normal distribution is shown in Figure 19.5. 
	-
	-
	-
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	FIGURE 19.5 • A normal distribution 
	FIGURE 19.5 • A normal distribution 
	A normal distribution is uniquely specified by its mean µ and variance σ. The normal distribution with mean 0 and variance 1 is called the standard normal distribution. If X is normally distributed with mean µ and variance σ, then (X ! µ) / σ has the standard normal distribution. 
	2
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	The sum of a large number of independent random variables has an approximately normal distribution, even if the individual variables themselves are not normally distributed, so long as the variance of each term is much smaller than the variance of the sum. This is one reason why the normal distribution occurs often in nature. When a quantity is the result of additive processes involving many small random variations, the quantity tends to be normally distributed. It is also true that many other distributions
	-
	17

	The mean value of a normal distribution is also its median, or the value that splits the range into equally likely portions. 
	 The number of quantities required to obtain a sum that is approximately normal depends on the distribution of the quantities. If the distribution is symmetric and mound-shaped like the bell curve, the number may be rather small. Other distributions such as the log-normal distribution, which is asymmetric, may require a much larger number. 
	17

	The value of a normally distributed quantity will be within one standard deviation of the mean about 68 % of the time. It will be within two standard deviations about 95 % of the time and within three standard deviations more than 99 % of the time. It is important to remember that these percentages apply only to normal distributions. 
	19A.2.2  Log-normal Distributions 
	The concentration of a contaminant in the environment may not be normally distributed. Instead it often tends to be log-normally distributed, as shown in Figure 19.6. 
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	FIGURE 19.6 • A log-normal distribution 
	By definition, a quantity X has a log-normal (or lognormal) distribution if the logarithm of X is normally distributed. The product of a large number of independent positive random variables with similar variances is approximately log-normal, because the logarithm of the product is a sum of independent random variables, and the sum is approximately normal. The concentration of a contaminant in the environment tends to be log-normal because it is the result of processes of concentration and dilution, which a
	The distribution of a log-normal quantity X can be uniquely specified by the mean µ and variance  σof ln X, but more commonly used parameters are the geometric mean µ = exp(µ) and the geometric standard deviation σ = exp(σ). The geometric mean and geometric standard deviation are defined so that, if k is a positive number, the probability that X will fall between µ / σ and µσ is the same as the probability that lnX, which is normally distributed, will fall between µ! kσ and µ + kσ. For example, the value of
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	Although the mean and median of a normal distribution are identical, for a log-normal distribution these values are distinct. The median, in fact, is the same as the geometric mean µ. As shown in Figure 19.6, the mean µ is larger than the geometric mean µ . The mean may be cal-
	Although the mean and median of a normal distribution are identical, for a log-normal distribution these values are distinct. The median, in fact, is the same as the geometric mean µ. As shown in Figure 19.6, the mean µ is larger than the geometric mean µ . The mean may be cal-
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	g
	g

	culated from the geometric mean and geometric standard deviation as shown in Table G.6 in Appendix G.
	18,19 


	The log-normal distribution is important for the interpretation of environmental radiation data, but it may also have applications in the laboratory. Two possible applications are decay factors e based on uncertain time measurements and concentrations of contaminants in laboratory reagents. 
	!λt

	19A.2.3  Chi-squared Distributions 
	If Z, Z, �, Z are independent random variables and each has the standard normal distribution, the sum Z + Z + """ + Z has a chi-squared (or chi-square) distribution with ν degrees of freedom. A chi-squared distribution, like a log-normal distribution, is asymmetric and does not include negative values. For large ν, the chi-squared distribution is approximately normal. Figure 
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	ν
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	2
	2 
	ν
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	19.7 shows the densities for chi-square distributions with 1, 2, 3 and 10 degrees of freedom. 
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	Chi-squared distributions are used frequently in hypothesis testing, especially for tests of hypotheses about the variances of normally distributed data. Chi-squared distributions also appear in least-squares analysis (see Attachment 19C). 
	-

	 Given the mean µ and standard deviation σ of the log-normal distribution, the geometric mean and geometric standard deviation may be calculated as µ' µ
	18
	Figure
	Figure
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	µ% σ and σ' exp ln(1 % σ/ µ) . 
	Figure
	2 
	2
	g 
	2
	2

	 Note that the symbols µ and σ are often used to denote the mean and standard deviation of ln X, which is normally distributed, rather than those of X, which is log-normally distributed. 
	19

	A sum of independent chi-squared random variables is also chi-squared. Specifically, if X and Y are independent chi-squared random variables with ν and ν degrees of freedom, respectively, then X + Y has a chi-squared distribution with ν + ν degrees of freedom. 
	1
	2
	1
	2

	The mean of a chi-squared distribution equals the number of degrees of freedom ν, and the variance equals 2ν. The median does not have a simple formula. 
	-

	19A.2.4  T-Distributions 
	If Z is standard normal, X is chi-squared with ν degrees of freedom, and Z and X are independent, then  Z / X / ν has a Student�s t-distribution with ν degrees of freedom. A t-distribution is symmetric and mound-shaped like a normal distribution and includes both positive and negative values. Figure 19.8 shows the pdf for a t-distribution with 3 degrees of freedom. A dotted standard normal curve is also shown for comparison. 
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	FIGURE 19.8 • The t-distribution with 3 degrees of freedom 
	When ν is large, the t-distribution is virtually identical to the standard normal distribution. 
	The median of a t-distribution is zero. The mean is also zero if ν > 1 but is undefined for ν = 1. The variance equals ν / (ν ! 2) if ν > 2 and is undefined otherwise. 
	T-distributions are often used in tests of hypotheses about the means of normally distributed data and are important in statistical quality control. T-distributions are also used in the procedure described in Attachment 19D for calculating measurement coverage factors. 
	-

	If X, X, •, X are independent and normally distributed with the same mean µ and the same variance, then the quantity 
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	X • µ 
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	where X is the arithmetic mean and s is the experimental standard deviation, has a t-distribution with n ! 1 degrees of freedom. 
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	If X, X, •, X, Y are independent and normally distributed with the same mean and variance, then the quantity s
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	where  is the arithmetic mean of the X and s is the experimental standard deviation, has a t-distribution with n ! 1 degrees of freedom. 
	X
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	X

	If Z is standard normal, X is chi-squared with ν degrees of freedom, Z and X are independent, and δ is a constant, then (Z % δ)/ X / ν has the noncentral t-distribution with ν degrees of freedom and noncentrality parameter δ (Stapleton, 1995). When the (central) t-distribution is used to test the null hypothesis that two normal distributions have the same mean, a noncentral t-distribution describes the distribution of the test statistic if the null hypothesis is false. For example, if X, X, �, X, Y are inde
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	where  is the arithmetic mean of the X and s is the experimental standard deviation, has a t-distribution with n ! 1 degrees of freedom if µ = µ, but it has a noncentral t-distribution with noncentrality parameter 
	X
	i
	X
	X
	Y

	µ• µ
	Y 
	X 

	δ �� 
	σ 1 % 1/ n if µ… µ. 
	Figure
	X 
	Y

	The noncentral t-distribution is useful in the theory of detection limits and appears in Attachment 20A of Chapter 20, •Detection and Quantification Capabilities.• 
	19A.2.5  Rectangular Distributions 
	If X only assumes values between a and a and all such values are equally likely, the distribution of X is called a rectangular distribution, or a uniform distribution (see Figure 19.9). 
	•
	+

	The mean and median of the rectangular distribution equal the midrange (a + a) / 2, and the standard deviation is (a! a) /2 3. 
	•
	+
	+ 
	•
	Figure

	Rectangular distributions are frequently used for Type B evaluations of standard uncertainty (see Sections 19.4.2.2 and 19.5.11). 
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	FIGURE 19.9 • A rectangular distribution 
	FIGURE 19.9 • A rectangular distribution 


	x 
	19A.2.6  Trapezoidal and Triangular Distributions 
	Another type of bounded distribution used for Type B evaluations of standard uncertainty is a trapezoidal distribution, which is described in Section 19.4.2.2. If X has a trapezoidal distribution, it only assumes values between two numbers a and a, but values near the midrange (a + a) / 2 are more likely than those near the extremes. The pdf for a symmetric trapezoidal distribution is shown in Figure 19.10. Asymmetric trapezoidal distributions are not considered here. 
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	FIGURE 19.10 • A trapezoidal distribution 
	FIGURE 19.10 • A trapezoidal distribution 


	x 
	The mean and median of this distribution are both equal to the midrange. If the width of the trapezoid at its base is 2a and the width at the top is 2aβ, where 0 < β < 1, then the standard deviation is a (1 % β)/6. As β approaches 0, the trapezoidal distribution approaches a triangular distri-
	The mean and median of this distribution are both equal to the midrange. If the width of the trapezoid at its base is 2a and the width at the top is 2aβ, where 0 < β < 1, then the standard deviation is a (1 % β)/6. As β approaches 0, the trapezoidal distribution approaches a triangular distri-
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	Figure
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	bution, whose standard deviation is a / 6, or (a! a) / . As β approaches 1, the distribution approaches the rectangular distribution described in Section 19A.2.5. 
	Figure
	+ 
	•
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	19A.2.7  Exponential Distributions 
	The exponential distribution describes the life of an unstable atomic nucleus, whose remaining life does not depend on its current age. The distribution is described by one parameter, often denoted by λ, which represents the fractional decay rate. The mean of the distribution is 1 / λ and its variance is 1 / λ. The median is the same as the half-life of the radionuclide. The pdf for an exponential distribution is shown in Figure 19.11. 
	2
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	FIGURE 19.11 • An exponential distribution 
	FIGURE 19.11 • An exponential distribution 


	x 
	The exponential distribution also describes waiting times between events in a Poisson process. For example, if the instrument background for a radiation counter follows the Poisson model with mean count rate r (see Section 19A.2.9), the waiting times between counts are exponentially distributed with parameter r. 
	B
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	19A.2.8  Binomial Distributions 
	The binomial distribution, introduced in Section 19.5.2, arises when one counts the outcomes of a series of n independent and identical experiments, each of which can produce the result •success• or •failure.• If the probability of success for each event is p, the number of successes has a binomial distribution with parameters n and p. Important facts about the binomial distribution include the following:
	-

	  • 
	  • 
	  • 
	The distribution is discrete; its only possible values are 0, 1, 2, •, n.

	  • 
	  • 
	The mean of the distribution is np.

	  • 
	  • 
	The variance is np(1 ! p).

	  • 
	  • 
	If n is large and p is not close to 0 or 1, the distribution is approximated well by a normal distribution. 


	If X is binomial with parameters n and p, then for k = 0, 1, 2, •, n, the probability that X = k is given by the equation 
	Pr[X •• k] •• n k p k(1 • p)n•k where  denotes a binomial coefficient, which equals n k n! k!(n&k)! 
	(19.36) 
	. 
	19A.2.9  Poisson Distributions 
	As explained in Section 19.5.2, the Poisson distribution arises naturally as an approximation to the binomial distribution when n is large and p is small. Even if n is not large, the variance of the binomial distribution can be approximated using the Poisson model if p is small. Other important facts about a Poisson distribution include the following: 
	• 
	• 
	• 
	The distribution is discrete; its only possible values are the nonnegative integers 0, 1, 2, •. 

	• 
	• 
	The mean and variance of the distribution are equal. 

	• 
	• 
	If the mean is large, the distribution is well approximated by a normal distribution. 

	• 
	• 
	A sum of independent Poisson random variables is also Poisson. 


	If X has a Poisson distribution with mean µ, then for any nonnegative integer n, the probability that X = n is given by n&µ Pr[X ' n] ' (19.37) 
	µ
	e

	n! 
	The Poisson distribution is related to the chi-squared distribution, since 
	Pr[X # n] ' Pr[χ(2n % 2) $ 2µ] and Pr[X $ n] ' Pr[χ(2n) # 2µ] (19.38) 
	2
	2

	where χ(ν) denotes a chi-squared random variable with ν degrees of freedom. This fact allows one to use quantiles of a chi-squared distribution to construct a confidence interval for µ based on a single observation X = n (Stapleton, 1995). Table 19.3 lists 95 % two-sided confidence 
	2
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	intervals for µ some small values of n. For large values of n, the quantiles (2n) and (2n + 2) may be approximated using the Wilson-Hilferty formula (NBS, 1964): 
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	As noted above, when the mean µ is large, the Poisson distribution may be approximated by a normal distribution. Specifically, 
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	(19.40) 
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	where Φ denotes the distribution function of the standard normal distribution. For most purposes, this approximation is adequate if µ $ 20. 
	Figures 19.12a and b show how the normal approximation improves as µ increases from 3 to 
	100. For any n, the probability Pr[X # n] is represented by the total area of bars 0 to n, while the value given by the normal approximation is represented by the total area under the dotted curve to the left of the vertical line at n + 0.5. 
	TABLE 19.3 • 95 % confidence interval for a Poisson mean 
	TABLE 19.3 • 95 % confidence interval for a Poisson mean 
	TABLE 19.3 • 95 % confidence interval for a Poisson mean 

	n 
	n 
	1 χ2 µlower = (2n) 0.025 2 
	1 χ2 µupper = (2n + 2) 0.975 2 

	0 
	0 
	0.000 
	3.689 

	1 
	1 
	0.025 
	5.572 

	2 
	2 
	0.242 
	7.225 

	3 
	3 
	0.619 
	8.767 

	4 
	4 
	1.090 
	10.242 

	5 
	5 
	1.623 
	11.668 
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	FIGURE 19.12a • Poisson distribution vs. normal distribution, µ = 3 
	FIGURE 19.12a • Poisson distribution vs. normal distribution, µ = 3 
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	FIGURE 19.12b • Poisson distribution vs. normal distribution, µ = 100 19A.3  References 
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	19B.1  Overview 
	19B.1  Overview 
	The following example shows how to calculate the combined standard uncertainty for a typical radioanalytical measurement. 

	19B.2  Sample Collection and Analysis 
	19B.2  Sample Collection and Analysis 
	A soil sample is analyzed for Pu and Pu by alpha-particle spectrometry.
	239/240
	238

	  • 
	  • 
	  • 
	The sample is collected on July 10, 1999, at 11:17 am EDT, and shipped to a laboratory for analysis.

	  • 
	  • 
	The entire laboratory sample is dried, weighed and ground to a maximum particle size of 


	1.0 mm. The dry weight is approximately 2 kg.
	1.0 mm. The dry weight is approximately 2 kg.
	  • 
	  • 
	  • 
	The prepared sample is homogenized, and a test portion is removed by increments. The documented procedure requires a test portion of approximately 0.5 g.

	  • 
	  • 
	The test portion is weighed and the mass is found to be 0.5017 g. The standard uncertainty of the mass includes contributions from repeatability, linearity, and sensitivity drift.

	  • 
	  • 
	A 1-milliliter aliquant of Pu tracer is added to the test portion. The activity concentration of the tracer solution has previously been measured as 0.0705 Bq/mL with a standard uncertainty of 0.0020 Bq/mL on June 30, 1999, at 11:00 am CDT. The aliquant is dispensed by a pipet, whose dispensed volume has a combined standard uncertainty previously determined to be 0.0057 mL.
	242
	-


	  • 
	  • 
	After fusion, dissolution, chemical purification, and coprecipitation, a test source on a stainless steel planchet is prepared for counting in an alpha-particle spectrometer.

	  • 
	  • 
	The efficiency of the spectrometer for the chosen geometry, which is assumed to be independent of the particle energy, has previously been measured as 0.2805 with a standard uncertainty of 0.0045.

	  • 
	  • 
	  • 
	A blank source is counted in the spectrometer for 60,000 s. The blank consists of a filter mounted on a planchet in the same geometry as the test source. In the Pu region of interest, 2 counts are measured; and in the Pu region of interest, 0 counts are measured. Historical 
	242
	238


	data for this and similar spectrometers at the laboratory indicate that the background is stable between measurements.

	  • 
	  • 
	The test source is placed in the spectrometer and counted for 60,000 s, beginning on August 24, 1999, at 4:47 pm CDT. In the Pu region of interest, 967 counts are measured; and in the Pu region of interest, 75 counts are measured. 
	242
	238


	  • 
	  • 
	It is assumed that there is no detectable plutonium in the reagents; however, a method blank is analyzed simultaneously using a different spectrometer to check for contamination of reagents and glassware. 


	In this example the measurand will be the specific activity of Pu in the 2-kilogram sample (dry weight) at the time of collection. 
	238



	19B.3  The Measurement Model 
	19B.3  The Measurement Model 
	The following notation will be used: 
	mis the mass of the test portion (0.5017 g) 
	S 

	mis the mass of the entire laboratory sample (~2000 g) 
	L 

	d is the mesh size of the sieve (1.0 mm) 
	cis the tracer activity concentration (0.0705 Bq/mL) 
	T 

	Vis the tracer aliquant volume (1 mL) 
	T 

	tis the blank count time (60,000 s) 
	B 

	tis the count time for the test source (60,000 s) 
	S 

	Nis the total count in a region of interest when the source is counted (Pu or Pu) 
	S 
	238
	242

	Nis the count in a region of interest when the blank is counted (Pu or Pu) 
	B 
	238
	242

	R is the fraction of alpha particles with measured energy in the region of interest (Pu 
	238

	or Pu) 
	242

	D is the decay-correction factor (Pu or Pu) 
	238
	242

	g is the alpha-particle counting efficiency 
	Y is the plutonium chemical yield fraction 
	Fis the subsampling factor (estimated as 1.00) 
	S 

	ais the specific activity of Pu in the dried laboratory sample, decay-corrected to the 
	238 
	238

	time of collection 
	Subscripts will be used to distinguish between quantities associated with particular regions of interest (Pu or Pu). 
	238
	242

	The decay-correction factor for either isotope is calculated as follows: 
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	where λ is the decay constant (s) and t is the time between collection and the start of the counting measurement (3,911,400 s). Since λt is small for both isotopes in this example, D may be approximated accurately by 
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	The half-lives of Pu and Pu are 87.75 a and 375,800 a, respectively. So, 
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	&ln2 (87.75 a)×(365.2422 d/a)×(86,400 s/d) 
	3,911,400 s % 60,000 s 2 
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	D242 
	' 1.000 . 


	Dead time is negligible in this example; so, no distinction is made between the real time and the live time. If the real time were greater than the live time, the correction for decay during the counting period would be based on the real time. 
	The fraction of alpha particles of each isotope actually measured in the nominal region of interest is estimated to lie between 0.96 and 1.00. A rectangular distribution is assumed, with center at 
	0.98 and half-width equal to 0.02. Then the Type B standard uncertainties of R and R are 
	0.98 and half-width equal to 0.02. Then the Type B standard uncertainties of R and R are 
	238
	242
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	The chemical yield of plutonium is calculated using the model 
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	Then the following model is used to estimate the measurand. 
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	When values are inserted, 
	967 / (60,000 s) & 2 / (60,000 s) 
	Y '' 0.82990 
	(0.0705 Bq/mL)×(1 mL)×0.2805×0.98×1 75 / (60,000 s) & 0 / (60,000 s) 
	'' 0.010932 Bq/g 
	a
	a
	238 

	(or 10.932 Bq/kg) 
	(0.5017 g)×0.82990×0.2805×0.98×0.9990×1.00 



	19B.4  The Combined Standard Uncertainty 
	19B.4  The Combined Standard Uncertainty 
	The efficiency, g, effectively cancels out of the equation for a, because it is multiplied by the yield Y and also appears as a factor in the denominator of the expression for Y (see also Section 19.5.6). Therefore, the uncertainty of g has no effect on the uncertainty of a. When using the uncertainty propagation formula to calculate the combined standard uncertainty of a, one might include a covariance term for u(Y,g) to account for the relationship between the measured values of Y and g, but it is simpler
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	All other input estimates are assumed to be uncorrelated. 
	Note that u(F) is the subsampling variance associated with taking a small test portion (0.5017 g) from a much larger sample (2000 g). The estimation method suggested in Section 
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	19.5.12 will be used here to evaluate u(F). 
	19.5.12 will be used here to evaluate u(F). 
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	Appendix F provides more information about subsampling errors and methods for estimating their variances. 
	The standard uncertainty of the mass of the test portion, m, is evaluated using the methods described in Section 19.5.9. The total uncertainty of m has components due to repeatability, linearity, and sensitivity drift (environmental factors). Assume the repeatability standard deviation is 0.0001 g, the linearity tolerance is 0.0002 g, and the relative standard uncertainty due to sensitivity drift is 1 × 10. If the balance is zeroed with an empty container on the pan, the soil is added to the container, and 
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	Since extremely low counts are possible, each Poisson counting variance in this example will be estimated by the number of observed counts plus one (see Section 19.5.2.2 and Section 19D.3 of Attachment 19D). So, for example, u(N) equals one, not zero. 
	B, 238

	Table 19.4 summarizes the input estimates and their standard uncertainties. 
	TABLE 19.4 • Input estimates and standard uncertainties 
	TABLE 19.4 • Input estimates and standard uncertainties 
	TABLE 19.4 • Input estimates and standard uncertainties 

	INPUT QUANTITY 
	INPUT QUANTITY 
	INPUT ESTIMATE 
	STANDARD UNCERTAINTY 
	MEASUREMENT UNIT 
	TYPE OF EVALUATION 

	mS 
	mS 
	0.5017 
	2.2 × 10!4 
	g 
	Combined* 

	cT 
	cT 
	0.0705 
	0.0020 
	Bq/mL 
	Combined* 

	VT 
	VT 
	1.0000 
	0.0057 
	mL 
	Combined* 

	tB 
	tB 
	60,000 
	Negligible 
	s 
	B 

	tS 
	tS 
	60,000 
	Negligible 
	s 
	B 

	NB, 238 
	NB, 238 
	0 
	1 
	counts 
	B 

	NB, 242 
	NB, 242 
	2 
	1.73 
	counts 
	B 

	NS, 238 
	NS, 238 
	75 
	8.72 
	counts 
	B 

	NS, 242 
	NS, 242 
	967 
	31.1 
	counts 
	B 

	R238, R242 
	R238, R242 
	0.98 
	0.01155 
	none 
	B 

	g 
	g 
	0.2805 
	0.0045 
	none 
	Combined* 

	FS 
	FS 
	1.00 
	0.0282 
	none 
	B 

	D238 
	D238 
	0.9990 
	Negligible 
	none 
	B 

	D242 
	D242 
	1.0000 
	Negligible 
	none 
	B 


	* •Combined• here means •determined by uncertainty propagation.• 
	Other possible sources of uncertainty in alpha-particle spectrometry measurements include: JULY 2004 19-81 MARLAP 
	  • 
	  • 
	  • 
	uncertainties in half-lives and decay times;

	  • 
	  • 
	spillover and baseline interferences caused by poor peak resolution;

	  • 
	  • 
	incomplete equilibration of tracer and analyte before chemical separation; and

	  • 
	  • 
	changing instrument background. 


	These uncertainties are evaluated as negligible in this example. Uncertainties associated with half-lives and decay times are negligible, because the decay times in the example are much shorter than the half-lives; but in practice one should confirm that any other uncertainties are small enough to be neglected. 
	When values are inserted into the formulas 
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	So, u(a) = 0.00141 Bq/g or 1.41 Bq/kg. If the result is to be reported with an expanded uncertainty calculated from the combined standard uncertainty u(a) and a coverage factor k = 2, the result should appear as (0.0109 ± 0.0028) Bq/g or (10.9 ± 2.8) Bq/kg (dry weight). 
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	19C.1  Introduction 
	19C.1  Introduction 
	In this attachment, the term •multicomponent measurement model• means a mathematical model with more than one output quantity calculated from the same set of input quantities. One common application of a multicomponent model is the determination of a calibration curve involving two or more parameters. In principle, the approach to uncertainty propagation described in Section 19.4 applies equally well to single-component or multicomponent models. However, a straightforward implementation of the uncertainty p
	-
	-

	At the time of this writing, the joint working group responsible for the GUM is reported to be developing additional guidance to deal with multicomponent models, but the guidance is not yet available. 

	19C.2  The Covariance Matrix 
	19C.2  The Covariance Matrix 
	A multicomponent model is most naturally described in terms of vectors and matrices, and the remainder of this attachment assumes the reader is familiar with those concepts and with the notation commonly used to describe them. The single-component model, Y = f(X,X,•,X), which was used earlier, is now replaced by a multicomponent model, Y = f(X), where X and Y denote column vectors and f denotes a vector-valued function of X. The input vector, which is formed from the input estimates, x, will be denoted by x
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	In this equation, Mf / Mx denotes the matrix whose ij element is Mf / Mx. 
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	19C.3  Least-Squares Regression 
	19C.3  Least-Squares Regression 
	One application for which specialized multicomponent methods for uncertainty propagation may be useful is least-squares regression. For example the method of least squares may be used to find an approximate solution, y•, of a matrix equation of the form 
	Ay– b (19.47) 
	where the components of the vector b have uncertainties. The least-squares solution for this problem can usually be expressed as 
	-

	y• ' (AWA)AWb (19.48) 
	) 
	&1
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	where W denotes a diagonal weight matrix, whose i diagonal element is the inverse of the variance of b. If there is no uncertainty in the matrix A, and the elements of b are uncorrelated, then the covariance matrix for y• is given simply by 
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	u(y•) ' (AWA)(19.49) 
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	If there are uncertainties in the elements of A, the expression above is incomplete. Suppose the elements of A are functions of variables z, z, •, z, whose estimated variances and covariances are available. Arrange these variables, z, in a column vector, z, and let u(z) denote the covariance matrix. If the b are not correlated with the z, then a more complete expression for the covariance matrix of y• is the following. 
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	(19.50) 
	Mz 
	Mz 
	The derivative matrix, My• / Mz, which appears above, may be calculated column by column. The j column of My• / Mz is given by the formula 
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	where MA / Mz denotes the matrix obtained from A by differentiating each element with respect to z. If the uncertainties in the matrix A are large, even this method of uncertainty propagation may be inadequate (e.g., see Fuller, 1987). 
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	19D.1  Introduction 
	19D.1  Introduction 
	Although it is common for laboratories to use a fixed coverage factor such as 2 or 3 when determining an expanded uncertainty for a measured value, the true coverage probability for the resulting interval may be lower than expected if the standard uncertainties of the input estimates are determined from evaluations with too few degrees of freedom. This attachment summarizes a general method presented in Annex G of the GUM for determining appropriate coverage factors in these circumstances (ISO, 1995). Secti
	-
	-
	-


	19D.2  Procedure 
	19D.2  Procedure 
	19D.2.1  Basis of Procedure 
	When one evaluates a parameter, θ, statistically by making a series of n independent, unbiased measurements under the same measurement conditions and averaging the results, x, if the results are approximately normally distributed, a confidence interval for θ may be constructed using the fact that the quantity (x¯ ! θ) / s(¯x) has a t-distribution with ν = n ! 1 degrees of freedom. If the desired confidence level is p, then the confidence interval is x¯± ts(¯x), where t = t(ν) is the (1 + p) / 2-quantile of 
	i
	(1+p)/2
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	The procedure described below is derived by assuming that the output estimate, y, for a more complex measurement and the combined standard uncertainty, u(y), can take the place of x¯ and s(¯x), respectively, in the confidence interval above; and that the appropriate coverage factor, k, can be approximated by a quantile of a t-distribution with an appropriate number of degrees of freedom. The number of degrees of freedom is determined from the estimated coefficient of variation of the variance estimator, u(y
	c
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	-
	c
	2

	19D.2.2  Assumptions 
	Assume the mathematical model for a measurement is Y = f(X,X,•,X), the input estimates x, x, •, x are independent, and the output estimate is y = f(x,x,•,x). Also assume that the combined standard uncertainty of y is not dominated by one component determined from a Type A evaluation with only a few degrees of freedom or from a Type B evaluation based on a distri-
	Assume the mathematical model for a measurement is Y = f(X,X,•,X), the input estimates x, x, •, x are independent, and the output estimate is y = f(x,x,•,x). Also assume that the combined standard uncertainty of y is not dominated by one component determined from a Type A evaluation with only a few degrees of freedom or from a Type B evaluation based on a distri-
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	bution very different from a normal distribution. Then the distribution of the output estimate y should be approximately normal, and the following procedure may be used to obtain a coverage factor, k, for the expanded uncertainty of y that gives a desired coverage probability, p. 
	p


	19D.2.3  Effective Degrees of Freedom 
	First compute the effective degrees of freedom of the measurement, ν, using the Welch-Satterthwaite formula 
	eff
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	i'1 (19.52) 
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	Here u(y) = |Mf / Mx| u(x) is the component of the combined standard uncertainty generated by u(x). If u(x) is evaluated by a Type A method, then ν is the number of degrees of freedom for that evaluation. If u(x) is evaluated instead by a Type B method, then ν may be defined as 
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	νi ' 1 2 u 2(xi) σ2 u(xi) ' 1 2 ∆u(xi) u(xi) 
	&2 
	(19.53) 
	where ∆u(x) is the estimated standard deviation of the standard uncertainty, u(x), and σ(u(x)) denotes its square. This definition of ν for a Type B evaluation is an approximation based on the relationship between the number of degrees of freedom for a Type A evaluation and the coefficient of variation of the uncertainty estimator. In most cases estimation of ∆u(x) is subjective and requires professional 
	i
	i
	2
	i
	i
	-
	i
	judgment.
	20 

	In some cases one may consider the value of ∆u(x) for a Type B standard uncertainty to be zero or negligible, as for example when evaluating the uncertainty associated with rounding a number (Section 19.5.11) or when the standard uncertainty estimate, u(x), is very conservative. In such cases one may assume ν = 4; so, the i term of the sum appearing in the denominator of the Welch-Satterthwaite formula vanishes. 
	i
	i
	i
	th

	If an input estimate, x, and its standard uncertainty, u(x), are taken from a calibration certificate, the effective degrees of freedom for u(x) may be stated on the certificate. In this case the stated number of degrees of freedom should be used as ν. 
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	 A more rigorously derived mathematical definition of ν in terms of ∆u(x) exists, but its use is not warranted given the usually subjective nature of the estimate of ∆u(x) and the other approximations involved in the Welch-Satterthwaite formula. 
	20
	i
	i
	i

	The number of effective degrees of freedom, ν, satisfies the following inequalities. 
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	min ν# ν# ν(19.54) 
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	1#i#ni'1 
	So, ν is no worse than the worst value of ν and no better than the sum of all the ν. The maximum (best) value for ν in Equation 19.54 is attained only if each ν is proportional to u(y). This fact suggests that, at least for Type A uncertainty components, the fraction of the total uncertainty evaluation effort spent on a particular component, u(y), should be based on the anticipated magnitude of u(y). 
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	19D.2.4  Coverage Factor 
	The coverage factor, k, is defined to be the (1 + p) / 2-quantile, t(ν), of a t-distribution with ν Since the calculated value of ν will generally not be an integer, it must be truncated to an integer, or else an interpolated t-factor should be used. That is, if n < ν < n + 1, then use either k = t(lνm), where l@m denotes the truncation operator, or 
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	The expanded uncertainty U = ku(y) is estimated to have a coverage probability approximately equal to p. 
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	EXAMPLE 19.31 
	Problem: Refer to the efficiency-calibration problem presented in Example 19.20 in Section 
	19.5.6. The efficiency for a radiation counter, g, is calculated using the equation 
	19.5.6. The efficiency for a radiation counter, g, is calculated using the equation 
	R 
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	g ' 
	aS 
	where  (62.1854 s@g) and its uncertainty (0.2301 s@g) are determined from 15 replicate measurements (14 degrees of freedom), and a (150.0 Bq/g) and its uncertainty (2.0 Bq/g) are obtained from a calibration certificate. The calculated efficiency is 0.4146 and its combined standard uncertainty is 0.005736. 
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	 The GUM uses the notation t(ν) to denote the (1 + p) / 2-quantile of a t-distribution with ν degrees of freedom (ISO, 1995), but the same notation in most statistical literature denotes the p-quantile (e.g., ISO, 1993). MARLAP follows the latter convention. 
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	Assume the certificate states that the number of effective degrees of freedom for u(a) is 12.5. Find the effective degrees of freedom for u(g), the coverage factor, k, that gives 95 % coverage probability, and the expanded uncertainty, U. 
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	Solution: The component of the combined standard uncertainty of g generated by u(R) is 
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	Since 14.42 is not an integer, an interpolated t-factor may be used (see Table G.2 in Appendix G). The coverage factor for 95 % coverage probability is 
	' (15 & 14.42)t(14) % (14.42 & 14)t(15) ' (0.58)(2.145) % (0.42)(2.131) ' 2.139. 
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	So, the expanded uncertainty is (g) ' (2.139)(0.005736) . 0.012. 
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	19D.3  Poisson Counting Uncertainty 
	19D.3  Poisson Counting Uncertainty 
	As stated in Section 19.5.2.2, the standard uncertainty in the number of counts, N, observed during a radiation measurement may often be estimated by u(N) = N , according to the Poisson counting model. This method of evaluating the standard uncertainty is a Type B method; so, the effective degrees of freedom ν for the evaluation should be determined from ∆u(N). The standard 
	Figure

	deviation of  is always less than 0.65. If N is greater than about 10, the standard deviation of  is approximately equal to 0.5, and, in this case, Equation 19.53 gives the estimate ν . 2N. For smaller values of N, the same approximation is inadequate. 
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	MARLAP recommends that the standard uncertainty, u(N), and degrees of freedom, ν, for a 
	Poisson measured value, N, be estimated by 
	Poisson measured value, N, be estimated by 
	Poisson measured value, N, be estimated by 

	u(N) ' 
	u(N) ' 
	N 
	and 
	ν ' 2N 
	(19.56) 

	or, if very low counts are possible, by 
	or, if very low counts are possible, by 

	u(N) ' 
	u(N) ' 
	N % 1 
	and 
	ν ' 2(N % 1) 
	(19.57) 


	If the expected count is greater than about 10, these formulas tend to give a coverage probability near the desired probability, p. When the expected count is small, the coverage probability tends to be greater than p. 
	Although the estimate u(N) =  may be derived by the Bayesian approach to counting statistics assuming a flat prior distribution for the mean count (Friedlander et al., 1981), the recommended expressions for u(N) and ν in Equation 19.57 have been chosen for the purely practical reason that they are simple and seem to give satisfactory results. When the count is low, the assumptions underlying the Welch-Satterthwaite formula are usually violated, because the combined standard uncertainty is dominated by count
	N % 1
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	EXAMPLE 19.32 
	Problem: An alpha spectrometer is used to make a 60,000-second blank measurement followed by a 60,000-second sample measurement. The observed blank count is 2 and the observed sample count is 0. The net count rate is modeled as 
	-

	 Taking the square root of a Poisson random variable is a common variance-stabilizing transformation, as described in Chapter 20 of Experimental Statistics (NBS, 1963). The stated (slightly conservative) upper bound for the standard deviation of N is based on calculations performed at the EPA•s National Air and Radiation Environmental Laboratory, although the same approximate value may be determined by inspecting Figure 20-2 of NBS (1963). The precise calculation maximizes a function f(x) whose value is the
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	is the net count rate (!3.333 × 10!5
	 s!1); 
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	is the sample count (0); 


	tis the sample count time (60,000 s); 
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	Nis the blank count (2); and 
	B 

	tis the blank count time (60,000 s). 
	B 

	Assume the only source of uncertainty is Poisson counting statistics. Determine the effective degrees of freedom for u(R) and the coverage factor, k, that gives 95 % coverage probability. 
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	Solution: Since very low counts are possible, 
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	So, the number of effective degrees of freedom is cN(3.333 × 10)
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	Then the coverage factor for a 95 % coverage probability is obtained from Table G.2 in Appendix G. 
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	Notice that in this example, ν' ν% ν, but this equality would not hold if the count times for the sample and blank were unequal. 
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	Also notice that the net count rate in this example is negative. Negative results may be common when environmental samples are analyzed for anthropogenic radionuclides. 
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	19E.1  Purpose 
	19E.1  Purpose 
	This attachment describes methods that may be used to evaluate the measurement uncertainty of a mass or liquid volume measurement. The first purpose of the attachment is to provide methods for more complete evaluations of these uncertainties than those presented earlier in Sections 
	19.5.9 and 19.5.10. A second purpose is to provide additional examples of uncertainty evaluations, and especially Type A evaluations based on historical data, as described in Section 19.4.2.1. 
	-

	A third purpose of the attachment is to provide information about the sources of error in mass and volume measurements that may be useful for establishing reasonable quality control criteria. Even if one assumes that weighing and pipetting errors are negligible, the quality control for balances and volumetric apparatus should be strict enough to ensure the assumption is true. Some of the sources of error described below will undoubtedly be considered negligible in many radiochemical measurement processes, y
	-
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	The existence of the attachment is not meant to imply that the uncertainties of mass and volume measurements tend to be relatively important in a radiochemistry laboratory. In fact the relative standard uncertainties of mass and volume measurements tend to be small if the measurements are made properly using appropriate instruments, and they may even be negligible in many cases when compared to other uncertainties associated with radiochemical analysis (e.g., see Section 19.5.12, •Subsampling•). However, on
	-


	19E.2  Mass Measurements 
	19E.2  Mass Measurements 
	19E.2.1  Considerations 
	Regardless of the methods used to evaluate balance measurement uncertainty, the results may be misleading unless the balance is well maintained and protected from external influences, such as drafts and sudden changes in pressure, temperature and humidity. 
	The appropriate method for evaluating the standard uncertainty of a mass measured using a balance depends on the type of balance, including its principles of calibration and operation, but the uncertainty of the measured result generally has components associated with balance sensitivity, 
	The appropriate method for evaluating the standard uncertainty of a mass measured using a balance depends on the type of balance, including its principles of calibration and operation, but the uncertainty of the measured result generally has components associated with balance sensitivity, 
	-

	linearity, repeatability, and air buoyancy. Typically, the component associated with sensitivity includes the uncertainty of calibration and may include variability caused by changing environmental conditions, such as temperature. Other sources of uncertainty may include leveling errors and off-center errors, which should be controlled. Static electrical charges may also have an effect. Changes in mass (e.g., by absorption or evaporation of water) may be very significant for some materials. 
	-


	19E.2.2  Repeatability 
	The repeatability of a balance is expressed as a standard deviation and is usually assumed to be independent of the load. It represents the variability of the result of zeroing the balance, loading a mass on the pan, and reading the indication. 
	Balance manufacturers provide specifications for repeatability, but a test of repeatability should also be part of the routine quality control for the balance (see ASTM E898). The simplest procedure for evaluating repeatability is to make a series of replicate measurements of a mass standard under •repeatability conditions.• Repeatability conditions require one balance, one observer, one measurement location, and repetition during a short time period. For each measurement one must zero the balance, load the
	-
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	EXAMPLE 19.32  Suppose a laboratory balance has readability 0.0001 g, and, according to the manufacturer, the repeatability is also 0.0001 g. An analyst performs a series of 28 measurements using a 1-gram mass standard to check the repeatability. The results are listed below. 
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	The analyst calculates the average, , and standard deviation, s, of these values (W) as follows. 
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	So, the analyst evaluates the repeatability to be 0.00018 g. 
	In this example, since the mass standard is so small, it may not be important that all the measurements be made during a short time period. Environmental factors produce relatively small day-to-day variability in the balance indication, and this variability may not be observable for a 1-gram load. So, the repeatability might be evaluated using the results of 28 routine quality control measurements. 
	-

	A nested experimental design can also be used to evaluate both the repeatability and the day-today (or hour-to-hour) variability due to environmental factors. In this procedure, one makes a series of replicate measurements with the same mass standard each day for a number of days, or perhaps in a morning session and afternoon session each day. Ideally, one should use a mass near the capacity of the balance to obtain the most reliable estimate of day-to-day variability, but almost any mass in the balance•s r
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	where 


	sis the estimated repeatability standard deviation; 
	r 

	J is the number of repetitions per session; 
	K is the number of sessions; 
	xis the j result obtained in the k session; and 
	k,j 
	th
	th

	x¯ is the average of all the results in the k session. 
	k 
	th

	The repeatability standard deviation determined by this method is a Type A standard uncertainty with K (J ! 1) degrees of freedom. 
	19E.2.3  Environmental Factors 
	The correct method for evaluating the balance measurement uncertainty due to environmental factors depends strongly on the method and frequency of calibration. Some balances, especially newer models, have internal calibration masses, which allow frequent calibration with only the push of a button. Other balances use external calibration mass standards and require more care in the calibration process. Balances of the latter type in many cases are calibrated infrequently. If a balance is calibrated immediatel
	-

	Given the nested experimental data from the preceding section, one may estimate the variability 
	due to environmental factors (day-to-day or hour-to-hour variability) as follows.
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	K & 1 k'1 where sis the estimated variance due to environmental factors and x is the grand average of all the data (the average of the x¯ ). 
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	If s is found to be positive, then s is estimated by its square root; otherwise, s is assumed to be zero. One estimates the relative component of standard uncertainty of a measured mass due to environmental factors by 
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	env
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	where m is the mass of the standard used in the experiment. 
	check

	If the variability due to environmental factors is large, its magnitude can also be estimated by weighing a heavy mass standard once per day for a number of days, or perhaps once in the morning and once in the afternoon of each day. Clearly, the observed variability will include the effects of both environmental factors and repeatability, but environmental factors presumably dominate when a heavy mass is weighed, because their effect is proportional to the mass, whereas the repeatability is essentially cons
	-

	EXAMPLE 19.33  Suppose a laboratory balance has readability 0.0001 g, repeatability 0.0001 g, and a capacity of approximately 110 g. An analyst performs QC measurements using masses of 1, 50, and 100 g. The results obtained using the 100-gram mass standard during a certain time period are as follows: 
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	 An F-test may be used to test for the presence of variance due to environmental factors. If this variance is zero, then the quantity Js/ s, where s denotes the experimental variance of the averages x¯ , may be assumed to have an F-distribution with K ! 1 numerator degrees of freedom and K(J ! 1) denominator degrees of freedom. 
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	The average, W, and standard deviation, s(W), of these values are calculated below. 
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	Since this standard deviation is much larger than the repeatability, 0.0001 g, essentially all of the variability may be attributed to environmental factors. The estimate is slightly inflated by the balance•s repeatability variance, but the difference in this case is only about 0.5 % of the value shown. So, the relative standard uncertainty due to environmental factors is estimated as 
	0.001016 
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	19E.2.4  Calibration 
	The uncertainty of calibration includes components associated with the mass standard or standards, repeatability, and variability due to environmental factors. 
	-

	When a precision mass standard is used for calibration, the standard uncertainty of its mass is generally negligible. However, the uncertainty may be evaluated if necessary from the specified mass tolerance. For example, a 100-gram ASTM Class-1 mass standard has a tolerance of 0.00025 g, which may be assumed to represent the half-width of a triangular distribution centered at zero (ASTM E617). The standard uncertainty may be found by dividing this tolerance by 6 and is approximately 0.00010 g, or 1.0 × 10 w
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	where φis the total relative standard uncertainty of a balance measurement due to calibration; φis the relative standard uncertainty due to environmental factors; sis the repeatability standard deviation; δis the tolerance for the mass of the calibration standard; and 
	cal 
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	is the mass of the standard used for calibration. 
	cal 
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	If environmental conditions are not well-controlled, φ may tend to dominate the other components here, since both s and δ are much smaller than m. 
	env
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	19E.2.5  Linearity 
	The linearity of a balance should be specified by the manufacturer as a tolerance, a, which represents the maximum deviation of the balance indication from the value that would be obtained by linear interpolation between the calibration points. Routine quality control should ensure that the linearity remains within acceptable limits. 
	L
	-

	The Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement recommends that the linearity tolerance a be treated as the half-width of a rectangular distribution and that atherefore be divided by 3 to obtain the standard uncertainty (Eurachem, 2000). However, since the linearity error is likely to vary as a sinusoidal function of the load, as illustrated in Figure 19.13, the divisor 2 may be more appropriate. So, the standard uncertainty due to linearity for a simple mass measurement may be e
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	Response 2aL Scale is exaggerated. 
	FIGURE 19.13 • Nonlinear balance response curve 
	FIGURE 19.13 • Nonlinear balance response curve 


	Load 
	19E.2.6  Gain or Loss of Mass 
	When gain or loss of mass is a relevant issue, as for example when the material being weighed is a volatile liquid or a hygroscopic solid, the mass should be treated as a function of time. One method of determining this function is to weigh the material at different times, recording both the 
	When gain or loss of mass is a relevant issue, as for example when the material being weighed is a volatile liquid or a hygroscopic solid, the mass should be treated as a function of time. One method of determining this function is to weigh the material at different times, recording both the 
	time and the observed mass, and fit a line or curve to the resulting data points. One can then calculate the mass at a particular time of interest (e.g., before any gain or loss occurred, or perhaps during the period when the material was in a radiation counter). If possible, it is better to weigh the material both before and after the time of interest to avoid extrapolating the curve to points in time where its accuracy may be unknown. However, in some situations extrapolation may be necessary, as for exam
	-


	The standard uncertainty of a mass calculated in this manner includes components for curve-fitting errors. 
	19E.2.7  Air-Buoyancy Corrections 
	Air-buoyancy corrections are not often performed in radiochemistry laboratories, because they are usually negligible in comparison to the overall uncertainty of the result. However, when the measurand is the mass itself and not some other quantity such as a radionuclide concentration whose calculated value depends on the mass, buoyancy corrections may be important. Failure to correct for air buoyancy when weighing water, for example, introduces a relative error of approximately !0.1 %, which may be much lar
	-

	When a buoyancy-correction factor is used, the true mass is estimated as follows. 
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	and 
	and 

	m 
	m 
	is the corrected value for the mass of the material being weighed; 

	Inet 
	Inet 
	is the net balance indication; 

	B 
	B 
	is the buoyancy-correction factor; 

	kM 
	kM 
	is the density of the material being weighed; 

	kAM 
	kAM 
	is the density of the air at the time the material is weighed; 

	kC 
	kC 
	is the density of the calibration mass standard; and 

	kAC 
	kAC 
	is the density of the air at the time of calibration. 


	The standard uncertainty of B may be obtained as follows. 
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	Evaluation of this uncertainty requires estimates of k, k, k and k as well as their standard uncertainties and covariances. The covariance u(k, k) is usually zero or negligible, and u(k, k) also is usually negligible if the material being weighed is a solid. 
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	Clearly, u(B) tends to be no more significant in a radiochemical measurement than the factor B itself is, but it may generate a large fraction of the uncertainty of the mass, m, since the uncertainty of the mass is often tiny. 
	-

	The density of air (k) depends on temperature, pressure, and humidity, as shown in the 
	A

	following equation. 
	following equation. 
	following equation. 
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	kA ' k0 
	273.15 K 273.15 K % t 
	p & (0.3783)φeS 101.325 kPa 
	(19.65) 

	where 
	where 

	kA 
	kA 
	is the density of air; 


	kis the density of dry air at 0 EC and 101.325 kPa (1 atm); t is the Celsius temperature; p is the barometric pressure; φ is the relative humidity (a fraction between 0 and 1); and eis the saturation vapor pressure of water at temperature t. 
	0 
	S 

	The vapor pressure, e, is a nonlinear function of t, but it can be approximated by a linear function in the range of temperatures typically encountered in the laboratory. When this approximation is made, the resulting equation for the air density may be written as follows. 
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	where a  =  3.48589 × 10 K @ s / m; b  =  2.5211151 × 10 g/ mL; and c  =  2.0590571 × 10 K @ g / mL. 
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	If p is expressed in kPa and t in EC, then Equation 19.66 with the given numerical values of a, b, and c provides the numerical value of the density, k, in kg/Lor g/mL. Then the standard uncertainty of k is given by 
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	273.15 K % t 
	273.15 K % t 
	The densities of the calibration weight (k) and of the solid or liquid material being weighed (k) also depend on temperature somewhat, but these temperature effects can usually be safely ignored when calculating the uncertainty of the buoyancy-correction factor, since temperature affects the density of air much more than the density of a solid or liquid. 
	C
	M
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	The effect of pressure on the density of the material being weighed can also usually be neglected. For most practical purposes, the compressibility of a solid or liquid can be considered to be zero. 
	EXAMPLE 19.34  Suppose the density of the weighed material, k, is 0.5 g/mL with a tolerance of 0.2 g/mL, assumed to represent the half-width of a triangular distribution. The density of the calibration mass standard, k, is 7.850 g/mL with a tolerance of 0.025 g/mL. Instead of measuring temperature, pressure and humidity at the time of each measurement, the laboratory assumes the following nominal values and tolerances: 
	M
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	Temperature (t) 
	Temperature (t) 
	Temperature (t) 
	(22.5 ± 2.5) EC 

	Pressure (p) 
	Pressure (p) 
	(101.3 ± 2.0) kPa 

	Relative humidity (φ)
	Relative humidity (φ)
	 (0.60 ± 0.25) 

	Recall that 
	Recall that 


	a  =  3.48589 × 10 K @ s / m; b  =  2.5211151 × 10 g/ mL; and c  =  2.0590571 × 10 K @ g / mL. 
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	Then the air density is calculated as follows. 
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	(For convenience, unit symbols will be omitted from intermediate steps in the equations below.) 
	If each of the tolerances for t, p, and φ represents the half-width of a triangular distribution, 
	then 
	then 
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	The covariances u(k, ρ) and u(k, k) are zero in this example. So, the standard uncertainty of B is 
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	Thus, the buoyancy-correction factor increases the result of the measurement by about 0.2 % and generates a relative standard uncertainty component of approximately 0.04 %. An examination of the calculation reveals that the uncertainty of B in this case is dominated by the uncertainty of ρ, the density of the material being weighed. Note that the uncertainty of B is very small and would generally be considered negligible in the final result of a radiochemistry measurement, but it may represent a significant
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	19E.2.8  Combining the Components 
	When the balance is used to measure the mass, m, of an object placed on the pan, the mass is given by m = IB, and its standard uncertainty by 
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	where 
	where 

	m 
	m 
	is the buoyancy-corrected mass; 

	I 
	I 
	is the balance indication; 

	B 
	B 
	is the buoyancy-correction factor24; 

	ncal 
	ncal 
	is the relative standard uncertainty due to calibration; 

	nenv 
	nenv 
	is the relative standard uncertainty due to environmental factors; 


	 Variations in temperature, humidity, and pressure may produce a correlation between the buoyancy-correction factor, B, and the balance indication, I, because of the influence of environmental factors on the balance•s sensitivity. The correlation is assumed here to be negligible. 
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	ais the linearity tolerance; and 
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	sis the repeatability standard deviation. 
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	Often the balance is used to weigh material in a container. The balance is zeroed with the empty container on the pan and the container is then filled and weighed. In this case the linearity uncertainty component is counted twice, because the linearity error is assumed to vary between the two loads. (This assumption tends to be conservative when small masses are weighed.) Although the buoyancy factors for the container and its contents may differ because of the different densities of the materials, the only
	-

	In a third scenario the empty container is weighed, removed from the pan, and then filled with material. The balance is zeroed again, and the filled container is weighed. In this case both the linearity and repeatability components of uncertainty must be counted twice, because two distinct measurements are made. So, the corrected net mass and its standard uncertainty are 
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	where 
	Iis the net balance indication (gross ! tare) and 
	net 

	B is the buoyancy factor for the material being weighed. 
	In a variant of the third scenario, the same weighing procedure is used but there is a significant time delay between the tare and gross measurements, which allows environmental conditions to change and the balance sensitivity to drift. In this case the mass and its standard uncertainty should be calculated as follows. 
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	where I and I denote the balance indications for the tare and gross measurements, respectively. In this scenario the uncertainty due to environmental effects may be relatively large if the tare mass is large relative to the net. When this is true, the analyst should consider measuring and correcting for the sensitivity drift. 
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	19E.3  Volume Measurements 
	19E.3  Volume Measurements 
	Section 19.5.10 presents a simplified approach to the evaluation of the uncertainty of a volume measurement, which may be adequate for most purposes in a typical radiochemistry laboratory. 
	This section describes experimental methods for evaluating the uncertainty components described in Section 19.5.10 and also considers additional uncertainty components. 
	-

	The density of a liquid depends on its temperature. For this reason, when a volume is measured, it may be important whether the volume of interest is the volume at the current room temperature, the long-term mean room temperature, or some other temperature, such as 20 EC. However, one should determine whether the effect of temperature is really significant for the measurement, since temperature effects are usually very small. 
	-

	If the quantity of interest is the volume at room temperature when the volume is measured, the effects of temperature can usually be ignored. The following discussion assumes that the quantity of interest is the volume at the mean room temperature and that the actual room temperature may fluctuate within specified limits. 
	Three approaches to uncertainty evaluation for volume measurements are discussed. The following uncertainty components are considered:
	-

	  • 
	  • 
	  • 
	The capacity of the measuring device,

	  • 
	  • 
	Repeatability, 

	  • 
	  • 
	The analyst•s bias in using the device (e.g., reading a meniscus), and

	  • 
	  • 
	Temperature effects. 


	19E.3.1  First Approach 
	The first approach considered here is appropriate for volumetric glassware. Example 19.26 in Section 19.5.10 illustrates this approach using only the uncertainty components associated with capacity and repeatability, which tend to be dominant. 
	CAPACITY 
	The capacity of a volumetric pipet or flask (at 20 EC) is generally specified with a tolerance, δ, which may be assumed to represent the half-width of a rectangular or triangular distribution (e.g., see ASTM E288 and ASTM E969). The Eurachem/CITAC Guide recommends a triangular distribution, which is based on the assumption that values near the nominal value are more likely than those near the extremes (Eurachem, 2000). Using a triangular distribution, one evaluates the uncertainty component of the volume as
	cap
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	REPEATABILITY 
	As described in Section 19.5.10, one may evaluate the uncertainty associated with precision, or repeatability, for volumetric glassware by obtaining the dimensions of the glassware and estimating the maximum •possible• deviation of the meniscus from the capacity line. ASTM E969, 
	As described in Section 19.5.10, one may evaluate the uncertainty associated with precision, or repeatability, for volumetric glassware by obtaining the dimensions of the glassware and estimating the maximum •possible• deviation of the meniscus from the capacity line. ASTM E969, 
	-

	�Standard Specification for Glass Volumetric (Transfer) Pipets,� specifies that the internal cross-section of any Class A or Class B pipet must be circular, and provides ranges of permissible internal diameters at the capacity mark. If d denotes the actual diameter and δ denotes the maximum deviation of the meniscus from the capacity mark, then the maximum deviation of the volume from its value at the capacity mark is given by 
	-
	men
	-


	πδd δ' (19.71) 4 
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	When δ and d are expressed in centimeters, Equation 19.71 gives the maximum volume deviation, δ, in milliliters. Then if δ is assumed to represent the half-width of a triangular distribution, the standard uncertainty of the volume due to repeatability is δ/ 6, which equals 
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	ANALYST•S BIAS 
	A similar method can be used to evaluate the uncertainty due to the analyst�s bias in reading the meniscus. One estimates the maximum possible systematic error in the height of the meniscus, δ, and evaluates the associated uncertainty component of the volume as 
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	Presumably the value of δ should be only a fraction of that of δ; so, this uncertainty should contribute little to the total uncertainty of a single volume measurement, although it may be relatively more significant if the glassware is used to dispense several aliquants of liquid in a single experiment. 
	sys
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	TEMPERATURE EFFECTS 
	Temperature influences a volume measurement through its effects on the density of the liquid and the capacity of the glassware. Both effects tend to be very small and can often be ignored. 
	Volumetric glassware is calibrated at 20 EC, but the glassware expands with increasing temperature. For most purposes the effect of temperature on capacity can be ignored, because it is much smaller than the effect on the density of the liquid. For example, the capacity of ASTM Type I, Class A, borosilicate glassware increases by only about 0.001 % for each degree Celsius of tem-
	Volumetric glassware is calibrated at 20 EC, but the glassware expands with increasing temperature. For most purposes the effect of temperature on capacity can be ignored, because it is much smaller than the effect on the density of the liquid. For example, the capacity of ASTM Type I, Class A, borosilicate glassware increases by only about 0.001 % for each degree Celsius of tem-
	-

	perature increase. Temperature effects on softer materials, such as plastic, may be more significant; however, soft plastic volumetric ware is seldom used when high accuracy is required. 
	-


	The glassware•s capacity at room temperature may be approximated by 
	Vt (1 % αV (t & 20 EC)) ' V20 
	Vt (1 % αV (t & 20 EC)) ' V20 
	Vt (1 % αV (t & 20 EC)) ' V20 
	(19.72) 

	where 
	where 

	t Vt V20 αV 
	t Vt V20 αV 
	is the room temperature (Celsius); is the capacity at temperature t; is the nominal capacity at 20 EC; and is the glassware•s coefficient of thermal cubical expansion. 


	Table 19.5, which is taken from ASTM E542, lists values of α for materials often used in volumetric ware. The referenced document does not provide the uncertainties of these values, but relative tolerances of ±10 % (triangular distribution) seem reasonable. The actual uncertainty is likely to be insignificant to the analyst. 
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	TABLE 19.5 • Coefficients of cubical expansion 
	TABLE 19.5 • Coefficients of cubical expansion 
	TABLE 19.5 • Coefficients of cubical expansion 

	Material 
	Material 
	Coefficient of cubical expansion, EC!1 

	Fused silica (quartz)
	Fused silica (quartz)
	          0.0000016 

	Borosilicate glass (Type I, Class A)
	Borosilicate glass (Type I, Class A)
	          0.000010 

	Borosilicate glass (Type I, Class B)
	Borosilicate glass (Type I, Class B)
	          0.000015 

	Soda-lime glass
	Soda-lime glass
	          0.000025 

	Polypropylene plastic
	Polypropylene plastic
	          0.000240 

	Polycarbonate plastic
	Polycarbonate plastic
	          0.000450 

	Polystyrene plastic
	Polystyrene plastic
	          0.000210 


	Example 19.35  An analyst uses a 1-milliliter ASTM Type I, Class A borosilicate glass pipet to dispense an aliquant of a solution when the room temperature is approximately 22.5 EC. The actual volume dispensed is estimated to be 
	V = (1 mL)(1 + (0.000010 EC)(22.5 EC ! 20 EC)) = 1.000025 mL 
	t
	!1

	The analyst considers the temperature correction and its uncertainty in this case to be negligible. 
	-

	The standard uncertainty due to temperature effects on the liquid�s density may be derived from a temperature range, t ± δ, and the liquid�s coefficient of thermal expansion, β, at the center of the range. Assuming a triangular distribution for the temperature with half-width δ, the relative standard uncertainty component due to temperature variations is 
	tem
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	βδ/ 6. At typical room temperatures the value of β for water lies in the range 0.00021 EC to 0.00026 EC; so, the total standard uncertainty due to temperature effects is generally less than 0.05 %, which can often be considered negligible. Values of β for water may also be applied to dilute aqueous solutions. Other liquids have different coefficients of thermal expansion. 
	tem 
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	Example 19.36  An analyst measures a volume of dilute HCl in a laboratory where the temperature range is assumed to be (22.5 ± 2.0) EC. The coefficient of thermal expansion for water at 22.5 EC is approximately 0.00023 EC. So, the relative standard uncertainty of the volume due to temperature effects on the density of the solution is 
	-
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	Again, the analyst considers the uncertainty due to temperature (0.02 %) to be negligible. 
	19E.3.2  Second Approach 
	An alternative approach, which is suitable for most varieties of pipets, is to calibrate the device gravimetrically using an analytical balance. The balance, to be useful, must provide better accuracy than the pipet. In particular the balance•s repeatability and linearity tolerances should be small relative to the tolerances for the pipet. The calibration provides an estimate of the pipet•s capacity, the standard uncertainty of the capacity, and the variability to be expected during use. The procedure invol
	-
	-

	The procedure produces a set of balance indications, I, from which the arithmetic mean, I, and the experimental standard deviation, s(I), are calculated. To obtain the estimated mean pipet
	i 
	¯
	i

	¯ 
	volume, V, the mean balance indication, I , is multiplied by a factor, Z, which equals the quotient of the buoyancy-correction factor and the density of the liquid at room temperature. So, v is given explicitly by 
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	and where 
	kis the density of the liquid; 
	M 

	kis the density of the air at the time the liquid is weighed; 
	AM 

	kis the density of the calibration mass standard for the balance; and 
	C 

	kis the density of the air at the time of the balance calibration. 
	AC 

	A correction factor for thermal expansion of the pipet may also be included, if desired. 
	ASTM E542, •Standard Practice for Calibration of Laboratory Volumetric Apparatus,• provides additional information about the procedure, including tables of values of Z for various conditions. Table 19.6, which is taken from ASTM E542, shows the density of air-free water at various  Section 19E.2.7 of this attachment describes an equation to calculate the density of air as a function of temperature, pressure, and humidity. 
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	temperatures.
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	TABLE 19.6 • Density of air-free water 
	TABLE 19.6 • Density of air-free water 
	TABLE 19.6 • Density of air-free water 

	Temperature, EC 
	Temperature, EC 
	Density, g / cm3 
	Temperature, EC 
	Density, g / cm3 

	15 
	15 
	0.999098 
	26 
	0.996782 

	16 
	16 
	0.998941 
	27 
	0.996511 

	17 
	17 
	0.998773 
	28 
	0.996232 

	18 
	18 
	0.998593 
	29 
	0.995943 

	19 
	19 
	0.998403 
	30 
	0.995645 

	20 
	20 
	0.998202 
	31 
	0.995339 

	21 
	21 
	0.997990 
	32 
	0.995024 

	22 
	22 
	0.997768 
	33 
	0.994701 

	23 
	23 
	0.997536 
	34 
	0.994369 

	24 
	24 
	0.997294 
	35 
	0.994030 

	25 
	25 
	0.997043 


	The volume, V, estimated by the calibration may be substituted for the pipet•s nominal capacity when the pipet is used later in an analytical measurement. The uncertainty of V as a predictor of the volume that will be dispensed during a subsequent measurement may be calculated as 
	 The densities in the table are approximated adequately (to six decimal places) by the rational function 
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	1 % 7.3265954×10(t) where k denotes density in g/cm and t denotes temperature in EC. Use of this equation allows calculation of the coefficient of thermal expansion, β, since β = !(dk / dt) / k. 
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	where s(I) denotes the experimental standard deviation of the n balance indications, n and ndenote the relative standard uncertainties of mass measurements associated with balance calibration and environmental factors, respectively (see Section 19E.2), δ denotes the temperature tolerance, and β denotes the liquid�s coefficient of thermal expansion. Note that the uncertainty of the buoyancy-correction factor has been ignored here and the standard uncertainty of Z has been equated with the component due to th
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	Note that if a different analyst performs the measurement, there may be an additional uncertainty component associated with the difference in individual techniques. 
	If the mean volume is within specified tolerances, a slightly simplified approach is possible. The pipet�s nominal capacity may be used as the volume, V, and the tolerance, δ, may be used in a Type B evaluation of standard uncertainty. In this case, the standard uncertainty of V is evaluated as shown below. 
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	Again, given the typical magnitudes of the uncertainty components, the following simpler expression is usually adequate. 
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	The experimental procedure outlined above may also be adapted for other volume measuring devices, including flasks and graduated cylinders. 
	19E.3.3  Third Approach 
	The manufacturers of certain types of pipetting devices (e.g., Eppendorf pipettes) provide specifications for bias and precision. For these devices, the manufacturer•s specifications for bias and precision may be assumed, provided the analyst uses the device properly, according to the manufacturer•s directions. In this case the Type B standard uncertainty of a pipetted volume, V, is evaluated as 
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	where δ is the manufacturer�s stated bias tolerance, assumed to represent the half-width of a triangular distribution, s is the stated standard deviation, β is the liquid�s coefficient of thermal expansion, and δ is the temperature tolerance. This approach has the advantage of simplicity; however, if the analyst fails to follow the manufacturer�s directions for use, the uncertainty estimate given by Equation 19.78 may be unrealistic. (As in the preceding section, the uncertainty due to temperature effects c
	cap
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	Either of the first two approaches described above may also be used for these devices. 
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