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Abstract

State 305(b) water quality monitoring programs typically employ judgment sampling
designs, in which sample sites are selected according to a number of often vaguely
defined criteria. The resulting data are likely to yield biased estimates of parameters
such as the percent of the water resources that are satisfactory for their designated uses
(e.g., swimming, drinking, fishing, etc.). Moreover, there is no statistically justifiable
method for combining such data across states as mandated by Section 305(b) of
the Clean Water Act. This paper describes how probability-based sampling designs
can be implemented to sample water resources. A diverse variety of probability-
based sampling designs are available, the scientific judgment of the investigator can
be taken into account during the selection of strata, and multiple-stage designs can

be used to reduce sampling costs. Data resulting from probability-based sampling



designs can be used to obtain unbiased estimates of such quantities as the percent
of water resources meeting environmental criteria for designated uses, and the total
mass of a chemical contaminant is a state’s water resources. Moreover, data from the
various states can be easily combined even if different states use different probability-
based sampling designs. Despite these advantages, managers of state water quality
monitoring programs are reluctant to implement probability-based sampling designs.
Much of this reluctance stems from the fear that information from the historical
data base will be lost. A procedure for combining data from probability-based and
judgment sampling designs is demonstrated. This procedure exploits spatio-temporal
correlation among the observations from both data bases to back predict what data
would have been obtained had a probability-based sampling design been implemented

from the very beginning of the monitoring program.
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1 Introduction

Section 305(b) of the 1972 Federal Water Pollution Control Act (usually known as the
Clean Water Act) mandates that each state submit a surface water quality assessment
report to the Environmental Protection Agency (EPA) every two years, and that
the EPA submit a comprehensive assessment of the condition of the nation’s waters
to Congress every two years. The latter requires the combining of data obtained
by the former as well as various native American tribes. However, current state
monitoring efforts present a number of obstacles to combining data at a national level
in a statistically defensible manner. Many of the obstacles arise from differences in
the objectives among the states and between the states and the EPA. While the EPA
is required to report on the condition of the totality of all of the nation’s aquatic

resources, states and tribes often select monitoring stations based on local purposes



(305(b) Consistency Workgroup, 1996).

The combination of data across states and tribes would be straightforward pro-
vided all states and tribes used probability-based sampling designs, provided that
there is some consistency in what variables are measured and how they are measured,
and provided that there is consistency in the definitions of target populations and
sample units. It is not necessary that all states employ the same probability-based
design, and so, states are free to implement designs tailored to their local require-
ments. However, few states or tribes employ probability-based sampling designs,
and for most states and tribes, the sample population covers less than 100% of their
water resources. Consequently, the representativeness of the current monitoring sta-
tions must be questioned. Statistical inference is limited to statements, for example,
regarding the percentage of sample sites showing impaired conditions, and not the
percentage the state’s water resources that show impaired conditions. Efforts to com-
bine data across states and tribes are also impaired by variation among states and
tribes in site selection criteria, definition of target populations and strata, what vari-
ables are measured, sampling protocols, and analytical laboratory procedures. Some
limitations are biological: there is considerable natural variation among states in the
composition of their biota (i.e., what species are present) irrespective of anthropogenic
effects. Moreover, different states have different types of water resources (e.g., estuar-

ies in coastal states, mountain streams in states having mountains, etc.), and different



resource types are likely to respond differently to environmental insults.

Recent years have seen new efforts to improve the quality of Section 305(b) water
resource monitoring. In 1992, the Intergovernmental Task Force on Water Quality
(ITFWQ) was established in response to Office of Management and Budget Memoran-
dum 92-01. Cochaired by the EPA and the United States Geological Service (USGS),
the ITFWQ is charged with the review and evaluation of national water quality mon-
itoring efforts, and to recommend improvements. They have recommended that Sec-
tion 305(b) change from the current 2-year reporting cycle to a 5-year reporting cycle.
This would help states achieve better coverage of their water resources through the
implementation of rotating panel and similar designs (see Section 3.3) under which
1/5 of the sample sites are monitored each year. The EPA has also established a
305(b) Consistency Workgroup, which as its name implies is tasked with improving
the consistency of Section 305(b) water quality monitoring among the states and
tribes. The 305(b) Consistency Workgroup is also exploring the implementation of
probability-based designs.

This paper considers issues regarding the replacement of current judgment sam-
pling designs used by most state water resource monitoring programs with probability-
based sampling designs. This together with efforts to improve consistency among
state and tribal programs in their sampling protocols, analytical laboratory proce-

dures, definitions of target populations, etc., would facilitate future efforts to combine



data across states and tribes. Of particular concern is how we might replace current
sampling designs with minimal loss of historical monitoring information. Methods
are developed for combining historical data with new probabilistic data to obtain
predictions of what data would have been obtained had a probability-based design
been implemented in the very beginning of the monitoring program. Although it is
intended that sampling at judgment sample sites be discontinued at some point in
the future, sampling at a subset of such sites could continued to address site specific
questions and for purposes of model building. This paper does not consider methods
for combining judgment sample data with probability sample data collected during
the same time interval to improve estimates at that time interval. For a discussion of
such methods, see Overton, Young, and Overton (1993) and Cox Pieogorsch (1996).

After describing the available data in Section 2, Section 3 provides a general dis-
cussion of survey designs including those for sampling over space and time. The
current status of 305(b) water quality monitoring efforts is discussed in Section 4;
this includes a response to the concerns raised by the 305(b) Consistency Workgroup
regarding the replacement of current judgment sampling designs by probability based
sampling designs, and a discussion of how data may be combined across state un-
der probability-based sampling. Section 5 gives some specific design alternatives for
sampling lakes and streams, including designs that involve sampling at access points.

Methods for combining historical judgment data with new probabilistic data are con-



sidered in Section 6.

2 Available Data

The Regional Environmental Monitoring and Assessment Program (REMAP), and
the Clean Lakes Program provide data on Secchi depth from lakes in the Savannah
River Basin. Secchi depth is a measure of water clarity. It is obtained by dropping a
Secchi disk over the side of a boat and measuring the depth at which the disk is no

longer visible.

2.1 Savannah River Initiative (REMAP)

The Savannah River Initiative of the Regional Environmental Monitoring and As-
sessment Program is sponsored by the Environmental Protection Agency. Data on
chlorophyll A and Secchi depth was collected in July 17-21, 1995 and June 24 to July
5, 1996. Each year, 37-40 sites were sampled from the embayments of large lakes in
the Savannah River Basin, including Russell, Thurmond, Hartwell, Keowee, Jocassee,
and Burton. Sample sites were selected according to the two-tiered sampling design.
A 7 x 7 x 7 fold enhancement of the EMAP base grid was placed over the Savannah
River Basin. Each grid point is circumscribed by a 1.86 km? hexagon; 7 of these
hexagons form a 13 km? hexal, and 7 hexals form a 635 km? EMAP hexagon. The

tier 1 sample is comprised of 3 randomly selected 13 km? hexals from each of the



635 km? EMAP hexagons covering the Savannah River Basin. All embayments were
enumerated within each of the selected hexals. The tier 2 sample of embayments to
be sampled each year was then selected using the procedure of Larsen and Christie

(1993).

2.2 Clean Lakes Program

The Clean Lakes Program is sponsored by the South Carolina Department of Health
and Environmental Control (SC-DHEC) and the Environmental Protection Agency.
This program involves the collection of data used to evaluate the quality of lake water
in South Carolina. Secchi depth was observed at 17 sites located in five large lakes in
South Carolina. These sites were selected according to a judgment sampling design
favoring the main channels of each lake. At each site, 0-2 monthly observations
were collected between April and October of each year. The length of the data
records depends on the sample site. This study was initiated at 10 sample sites
scattered throughout lakes Russell, Hartwell, Keowee, and Jocassee in April 1991.
Three additional sample sites were added in May 1992, one in Lake Russell and two
in Lake Keowee. Three sites in Broadway Lake were sampled only in 1994, and one
site in Lake Hartwell was sampled in 1993. In addition to Secchi depth, chlorophyll
A was measured occasionally, but records of this variable were too sparse to warrant

further analysis.
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Figure 1: Mean secchi depth by month.

The seasonal pattern of variation in Secchi depth is illustrated in Figure 1. Monthly
means were adjusted to take into account variation among years in what sites were
included the sample. Mean Secchi depth was lowest in April at 2.82 m, increased to
a maximum of 3.83 m in June, then decreased to an asymptote of approximately 3.5

m thereafter.

3 General Design Issues

Environmental monitoring programs should be designed within the context of their
objectives in such a way as to optimize the amount of information they yield about
the resource of interest. The objectives may call for the selection of specific sites of

interest, for example sites near point sources of environmental contamination. For
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the latter, pairs of sites are often employed, one immediately downstream and the
second upstream of the point source. In such cases, inferences are restricted to the
environmental conditions that occur at those specific sites, and may include compar-
isons between upstream and downstream sites. When interest is restricted to specific
sites, sufficient monitoring resources should be made available to sample all of these
sites. If, however, the objectives call for inferences regarding the status of the envi-
ronment on a regional scale, sufficient monitoring resources are not available to census
all of the waters in that region. In such cases, a sample of sites must be selected. To
guarantee unbiased estimates of status, this sample of sites must be selected using a
probability-based sampling design. Probability-based designs involve some method of
random selection of sample sites, but are not restricted to simple random sampling.
Probability-based sampling designs may be used to estimate the mean value of an
environmental parameter in the lakes of a region of interest, the percent of stream
miles that have impaired environmental conditions, the total mass of a contaminant in
the estuaries in a study region, or the percent of the area of lakes showing improving
environmental conditions. Probability-based sampling designs are most appropriate
for investigating nonpoint sources of environmental contamination and can also be
used to select reference sites for the investigation of the impact of point sources of
environmental contamination.

Nonprobability-based sampling designs must rely on the judgment of the investi-

11



gator. Such judgment sampling designs are not likely to yield a representative sample,
and hence, can lead to biased estimates of population parameters. Unbiased estima-
tion of environmental parameters under judgement sampling requires the assumption
that the population or region of interest is homogeneous, an assumption that seems

unlikely to be tenable in nature.

3.1 Statistical Inference

Two types of statistical inference can be distinguished, design-based and model-based.
Design-based inference requires that data be obtained under a probability-based sam-
pling design. Under design-based inference, the values of the variable of interest in the
population or region of interest are assumed to be fixed and nonrandom. Here, the
source of random variation comes from the random selection of sample sites. Since
the sampling design is specified by the investigator, and hence is known, no model
assumptions are required. Design-based inferences are made on the actual population
or region from which the sample was drawn, and not on the parameters of some as-
sumed model. Such inferences may include unbiased estimates of the mean value of
an environmental parameter in the lakes of a region of interest, the percent of stream
miles that have impaired environmental conditions, the total mass of a contaminant
in the estuaries of a region of interest, or the percent of the area of lakes showing

improving environmental conditions. Standard errors and confidence intervals are
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available for all of these population parameters. Design-based hypothesis testing pro-
cedures test how likely that a sample with the observed data could have been drawn
from a population with the null parameter value(s). Since inferences are restricted to
the population from which the sample was drawn, design-based inference cannot be
used to predict future observations or data at unsampled sites.

Under model-based inference, it is assumed that the data are realized from some
random model. In multiple regression, for example, the variable of interest is assumed
to be a linear function of some explanatory variables plus a random error. Further
assumptions may include the homoskedasticity of the errors, and that the data are un-
correlated and normally distributed. However, we may wish to assume that data are
spatially and temporally correlated, in which case, assumptions are required regarding
the specific correlation structure. Instead of making inferences about the region from
which the data were obtained, model-based inferences are made on model parame-
ters. Such inferences may include estimates of the model parameters, together with
their corresponding standard errors, as well as predictions of future observations and
data at unsampled sites. Model-based hypothesis testing procedures test whether or
not the data are compatible with a null model. Although model-based inferences are
available for both probability-based and nonprobability-based sampling designs, pa-
rameter estimates can be biased under the latter. Typically, model-based inferences

ignore variability due to random selection of sample sites.
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3.2 Examples of Probability-Based Designs

A wide variety of probability-based sampling designs are available. The simple ran-
dom sampling design is the most basic method for selecting sample sites from a region.
For rectangular study regions, a simple random sample is obtained by random and
independent selection of X,Y coordinates from. For irregularly shaped regions, lo-
cations are sampled from the smallest rectangular region until a sufficient number of
sites are located in the study region (Figure 2); only those sites falling in the study
region are retained in the sample. Subregions will tend to be sampled in proportion
to their areas; for example, if 40% of the region is in loamy soils, then we expect 40%
of the sample sites to fall on loamy soils. Aside from the selection of the study region,
the selection of sample sites does not involve any scientific judgment.

The selection of a probability-based design need not, and should not ignore the
scientific judgment of the investigator. Under a stratified random sampling design,
the region is partitioned into strata, often corresponding the different habitats of in-
terest. For example, streams may be partitioned into first-, second-, and third-order
streams, while lakes may be partitioned by trophic level, ecoregion, size, access (public
or private), or whether they are natural or man-made. The wetlands surrounding the
Carolina Bay in Figure 3 are partitioned into five "undisturbed” habitat types. Sam-
ple units are then selected from each stratum according to a some probability-based

sampling design; a simple random sampling deign is used in Figure 3. Here, scientific
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Figure 2: Simple random sample of 100 sites in Ebenezer Aquifer (closed circles).

Sites falling outside the study region (open circles) are excluded from the sample.
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judgment is required for optimal selection of strata. Strata should be selected in such
a way that differences between strata are as large as possible, while units within strata
are as uniform as possible. By controlling for differences among strata, the stratified
random sampling design reduces the sampling variance and hence improves the pre-
cision of population parameter estimates. Therefore, a stratified random sampling
design can achieve the same precision at a smaller sample size than a simple random
sampling design, and hence reduce costs.

The optimum allocation of sampling effort among strata requires the within stra-
tum variances of the variables of interest, information that is not likely to be available
at the beginning of a new monitoring program. However, allocation proportional to
stratum size works well, and sample allocation may adjusted as data are obtained. It
is almost certain that different variables will yield different optimal allocation schemes,
and so, some compromise allocation scheme Costs may be reduced by decreasing sam-
pling effort in expensive strata, and increasing sampling effort in cheap strata. By
adjusting the allocation of sampling effort to the different strata, we may increase the
sampling effort in ecologically important strata, and ensure that an adequate sample
is obtained from rare habitats.

Another way in which the cost of sampling efforts can be reduced is to employ a
double sampling design. Double sampling can be used when a inexpensive ancillary

variable is available as a surrogate for the variable of interest. For example, Secchi
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Figure 3: Stratified random sampling design in the wetlands surrounding a Carolina
Bay. Circles are in grasslands, squares are in briars and shrubs, triangles are in vines

and small trees, stars are in hardwoods and pines, and crosses are in pines.
17



depth, which is inexpensive to obtain, may be an ancillary variable for total suspended
solids or Chlorophyll A, which require more expensive equipment and laboratory
procedures. Under a double sampling design, primary sample sites are first selected
according to any sampling design, then secondary sample sites are obtained by taking
a simple random sample of the primary sites (Figure 4). Both the ancillary variable
and the variable of interest are measured at the secondary sample sites, while only the
ancillary variable is measured at the primary sample sites. Under double sampling,
parameter estimation relies on the correlation between the variable of interest and
the ancillary variable. The ratio of secondary over primary sample sites depends on
the cost of obtaining the variable interest relative to the cost of the ancillary variable,
and on the magnitude of the correlation between the two variables. As the cost of
the variable of interest increases and the correlation increases, the optimal ratio of
secondary over primary sample sites decreases.

The above sampling designs require maps depicting all of the state’s water re-
sources, from which a listing of all lakes, stream reaches, and estuaries may be ob-
tained. Such information might be obtained from River Reach File Version 3 (RF3)
(Horn and Grayman 1993). This file is not perfect; information on new man-made
reservoirs, small lakes, and higher order streams may be missing, and it also includes
some lower order ephemeral streams that may not be present if sought on the ground.

In any case, the information contained in RF3 should be verified on the ground, and
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Figure 4: Double sampling design in Ebenezer Aquifer. Primary sample sites are

designated by open circles, and secondary sample sites are designated by closed circles.
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an effort should be made to fill in any missing information. If point sources of conta-
mination are of concern, then a list of all point sources is required, information that
is not available from RF3.

It may not be practical to be obtain such a list frame of all water resources within a
state. Multiple-stage sampling designs do not require list frames of all water resources,
and hence, may be more practical for water resource monitoring. Under a two-stage
sampling design (a special case of a multiple-stage sampling design), the population is
first partitioned into primary sample units, then a simple random sample of primary
units is selected, and finally, a simple random sample is obtained from each of the
selected primary units. Thus, water resources only need to be enumerated within
each of the selected primary units. Primary units should be small enough so that
all water resources within each of them can be easily enumerated. The flexibility of

multiple-stage sampling designs is illustrated by the following examples:

e To investigate the trophic levels of all small lakes in a region, the state may
first be partitioned into hexagons. Then a simple random sample of hexagons is
selected. The small lakes are enumerated within each of the selected hexagons,
and then a simple random sample of lakes is obtained from each of the selected

hexagons. Finally water samples are collected from each of the selected lakes.

e To investigate point sources of environmental contamination, the state may first
be partitioned into Natural Resource Conservation Service (NRCS) watershed

20



units. Then a simple random sample of watershed units is selected. The point
sources are enumerated within each of the selected watershed units, and then a
simple random sample of the point sources is obtained. Finally, water samples

may be obtained upstream and downstream of the selected point sources.

e To investigate the soils of Ebenezer Aquifer, n parallel line transects may be
randomly located within the aquifer, and then m soil samples may be randomly
selected along the length of each transect (Figure ). Here, the transects are

treated as the primary sample units.

From the third example above, observe that the transect sampling design familiar
to ecologists is a special case of a two-stage sampling design. Two-stage sampling
designs can be extended into multiple stage designs by further partitioning each of
the sampled primary units into secondary units, partitioning sampled secondary units
into tertiary units, and so on. At each stage, a simple random sample of the units
defined that stage is obtained. Multiple-stage sampling designs may be modified to
allow stratified random sampling during any stage of the design.

Under the above conventional sampling designs, the sample selection procedure
does not depend on the observations obtained during the course of the survey. Under
adaptive sampling designs, however, the selection of future sample sites depends on
the observations that have been obtained up to the present time. Adaptive cluster
sampling designs are particularly suitable for the investigation of highly localized
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4

Figure 5: Line transect design in Ebenezer Aquifer.

phenomena such as clusters of a rare species or hot spots of highly contaminated
environmental resources (Thompson 1990, 1992). Under an adaptive cluster sampling
design, a simple random sample of locations is first selected (Figure 6). If a given
sample site satisfies a given condition (i.e., presence of a rare species, or high levels
of contamination), addition sample sites are clustered around that site. This process
is repeated with the new sample locations until no new sites are added which satisfy
the criterion.

The above examples illustrate just a fraction of the diversity of available probability-
based sampling designs. Probability-based sampling designs can be tailored for almost
any scientific situation and can be constructed in response to many budgetary and

scientific constraints.
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Figure 6: Adaptive cluster sampling design. First 10 sample units are selected at
random (dark shaded squares). Then adjacent unit are added to the sample whenever

one or more points are observed in the selected unit (light shaded squares).
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3.3 Sampling over Space and Time

So far, we have only considered probability-based designs for selecting sample sites at
a given point in time. Here, we shall consider the allocation of sampling effort over

space and time. There are at least four approaches to sampling over space and time:

e Permanent Stations: A sample of n permanent sample stations are selected
from some probability-based design; data are collected from each sample station

during every sample interval.

o Serially Alternating Design: Sample stations are selected from some probability-
based design and are partitioned into m sets of equal size n. Set ¢ is then
sampled during intervals 4,7 + m,i + 2m, - - -, as shown in Table 1 (Rao and
Graham 1964). This design was proposed for the Environmental Monitoring
and Assessment Program (EMAP) (Messer et. al 1991); here EMAP hexagons
are partitioned into m sets of size n, and hexagons are sampled as described

above.

e Rotating Panel Design: Sample stations are initially selected from some probability-
based design and are partitioned into m sets of equal size n. During each sample
interval, one set of sites is dropped from the sample, and is replaced by an ad-

ditional set of n sites selected from the probability-based design as shown in

Table 2 (Skalski 1990).

24



Sampling Interval (ie., year, month, season)

Set 1 2 3 4 5 6 7 8 9 10 11 12

1 X X X

Table 1: Serially alternating design.

o Fver-Changing Stations. Under this sample design, a new and independent

probability sample is obtained during each sample interval.

The latter three sample designs can be augmented by selection of additional per-
manent sample stations which are to be sampled during each interval (Urquhart,

Overton, and Birkes 1993).

The various alternatives to spatio-temporal sampling offer a number of advantages
and disadvantages with respect to design-based inference and spatio-temporal model-
ing and prediction. Correlation matrices are of block-Toeplitz form under permanent
station and serially alternating designs, and so, computationally more efficient algo-
rithms may be used during spatio-temporal modeling. If temporal trends are expected
to depend on location, permanent station and serially alternating designs are most
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Sampling Interval (ie., year, month, season)

Set 1 2 3 4 5 6 7 8 9 10 11 12

N
ST B B
T
o T T I
o T T I
T I
o T I
T B B
o T I
o T T I
T

o T B B

10

11

12

13

14

ST S

15

Table 2: Rotating panel design.
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suitable for estimating such quantities as the proportion of stream miles showing im-
proving or degrading environmental conditions. Permanent station designs yield the
smallest level of spatial coverage, while the greatest level of spatial coverage is ob-
tained under ever-changing station designs. Repeated sampling at permant stations
may have an impact on the local environments at those stations, or example, through
the trampling of sensitive vegetation by observers, or through modification of the
behavior of people knowing the locations of those stations.

The optimal allocation of sampling effort over space and time depends on the
relative magnitude of spatial and temporal autocorrelation. This spatio-temporal
autocorrelation comes from the observation that data close together in space or time
are likely to be more similar than data collected far apart over space or time. Under
strong temporal autocorrelation, repeated observations at a given site will contain
a large amount of redundant information, and so the optimal design will sample a
large number of sites at infrequent times. In contrast, when spatial autocorrelation is
strong, data collected at different locations at a given point in time will contain are
large amount of redundant information, and so, the optimal design will consist of a
few sights that are sampled frequently. To quantify the optimal allocation of sampling
effort over space and time, we require estimates of the relative magnitudes of spatial
and temporal autocorrelation. The following considers Secchi depth data from two

environmental monitoring programs involving the lakes of the Savannah River Basin,
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the Clean Lakes Program of SC-DHEC, and the Regional Environmental Monitoring
and Assessment Program sponsored by EPA.

Data from the 17 sites of the Clean Lakes Program were used to estimate mag-
nitude of temporal correlation in Secchi depth. Observations were not collected at a
sufficient number of sites to effectively model spatial correlation using this data. The
Secchi depth Z(s;, 1)) at site s; and time ¢, (month j in year k) was fit to the linear
model

Z(si,tjx) = p+ o+ 75 +e(sq, tjk)
where g1 is the overall mean, o; is the effect of site 4, 7; is the effect of month j, and
(s, tjx) is the model error. The year of the observation did not enter significantly
into the model. Temporal dependence in between the data at times ¢ and ¢’ at site s

may be modeled through the temporal variogram
29, ([t = ¥']) = var{Z(s,;t) — Z(s,1') };

assume that the variogram depends only on the difference |t — #'| between the two
points in time. In general, there will be little variability (high autocorrelation) be-
tween data at times that are close together, and hence the temporal variogram will
be small for short time lags. Conversely, there will be high variability (low autocor-
relation) between data at times that are far apart, and hence the variogram will tend
to be an increasing function of time lag. If temporal trends are adequately modeled,
then the variogram will tend to approach an asymptote as the time lag increases; the

28



time it takes to approach that asymptote is the range of temporal correlation. Pairs
of observations further apart than the range of temporal correlation are negligibly
correlated.

A nonparametric estimate of the variogram can be obtained from the residuals
g(SZ’, t]k) = Z(Si, t]k) — (/)\él — ?ja

where &; and 7; are the ordinary least squares estimates of the parameters a; and 75,
respectively. Then the temporal variogram at site s; may be estimated by

. 1 - ~
271(T> = NZ(T) ]Zk |€(Si7tjk) - g(s’htjk’ + T)|27

where N;(r) is the number of pairs of observations lag r apart in time at site s;. A

pooled estimate of the temporal variogram over all n sites may then be obtained from

R

Figure 7 gives the nonparametric estimate of the temporal variogram for the Clean
Lakes program data (closed circles). The curved line gives the least squares fit of the

Gaussian variogram model
27,(r) = co + ¢o(1 =€) (1)

Estimates of the variogram parameters are ¢y = 0.2815, ¢, = 0.207, and & = 0.144.
The large nugget effect of ¢, = 0.2815 suggests that there is a large amount of measure-
ment error, or short-term variability in Secchi depth. The estimate of « corresponds to
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Figure 7: Temporal variogram for Clean Lakes Program data. The closed circles give

the nonparametric estimates, while the curved line gives the fitted variogram model.

a range of temporal autocorrelation of \/3/_a = 4.6 months; observations more than
4.6 months apart are negligibly correlated (correlations are less than e™® = 0.05).
Estimated monthly (Table 3) means show the same pattern as in Figure 1; Secchi
depth is lowest in April, increases to a maximum in June, and then decreases to an

asymptote.
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Month ~ Mean (m) Standard Error

April 2.831 0.092
May 3.247 0.090
June 3.839 0.093
July 3.684 0.093
August 3.499 0.096
September 3.454 0.091
October 3.583 0.094

Table 3: Mean secchi depth by month for Clean Lakes Program data

The REMAP data was used to model spatial correlation in Secchi depth. REMAP
observations were not collected at a sufficient number of times to effectively model
temporal autocorrelation. Moreover, the above results of analysis of the Clean Lakes
Program data suggest that the range of temporal autocorrelation is only 4.6 months,
which is shorter than the one-year time interval separating the REMAP observations.

The Secchi depth Z(s;,t;) at location s; and year ¢; was fit to the linear model

Z(si,t;) = p+ 75 + (s, t5),

where g is the overall mean, 7; is the effect of year j, and e(s;,t;) is the model

error. The spatial dependence between data at locations s and u at a given time ¢ is
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modeled through the spatial variogram

27,([ls = ull) = var{Z(s,t) = Z(u, 1) };

assume that 2, depends only on the distance ||s — u|| between the two locations. In
general, there will be little variability (high spatial autocorrelation) between data at
close locations, and hence the temporal variogram will be small for short distance
lags. Conversely, there will be high variability (low spatial autocorrelation) between
data at far apart locations, and hence the variogram will tend to be an increasing
function of distance lag. If spatial trends are adequately modeled, then the variogram
will tend to approach an asymptote as the time lag increases; the distance at which
it approaches that asymptote is the range of spatial correlation. Pairs of observations
further apart than the range of spatial autocorrelation are negligibly correlated.

A nonparametric estimate of the spatial variogram at lag distance d, and at time

t; may be obtained from

where the sum is over all pairs of sites approximately d apart, and NN;(d) is the number
of such pairs of sites. A pooled estimate of the spatial variogram over all sampling

intervals may then be obtained from

i) = TR
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Figure 8 give the nonparametric estimate of the spatial variogram for the REMAP
data (closed circles). The curved line gives the weighted least squares fit of the

exponential variogram model

27,(d) = co + ce(1 — 7). (2)

Restricted maximum likelihood estimates of the variogram parameters are ¢y = 0.726,
ce = 1.2937, and a = 0.0797. The large nugget effect of ¢y = 0.726 suggests that there
is a large amount of measurement error, or microscale spatial variability in Secchi
depth. The estimate of o corresponds to a range of temporal correlation of 3/& = 37.7
km; observations more than 37.7 km apart are negligibly correlated (correlations are
less than e™3 2 0.05).

The results described above show that Secchi depth exhibits both strong spatial
and temporal correlation in lakes of the Savannah River basin. This correlation
suggests that there is some redundancy in the data. The level of redundancy may be
quantified by computing the effective sample size, which is defined to be the number of
independent samples required to achieve the same precision of parameter estimate as a
sample of correlated observations of a given sample size. Consider, for example, model
based estimation of the mean. The variance of the sample mean of n uncorrelated

observations is equal to
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Figure 8: Spatial Variogram for REMAP data. The closed circles give the nonpara-

metric estimates, while the curved line gives the fitted variogram model.
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while the variance of the sample of n correlated observations is equal to

n

0.2 n
Vo = Zzpija

)
[
where o2 is the population variance and p;; 1s the correlation between observations 4

and j. Then the effective sample size is equal to

Vi n?

X =S sm
Voo XL py

Table 4 gives the effective sample size for different sampling frequencies under the
fitted temporal Gaussian variogram model (1). When sampling up to three times per
year, the effective sample size is very close to the number of samples taken. How-
ever, as the sampling frequency increases, the redundancy in the data also increases,
resulting in effective sample sizes that are a fraction of the total number of samples

taken.

Table 5 shows the effective sample sizes of the two REMAP samples under the
fitted exponential variogram model (2). Notice that there is considerable redundancy
in the REMAP data; the effective sample size is less than a third of the number of

samples taken in each of the two years.
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Sample Frequency  Total Samples FEffective Sample Size

Twice per Month 240 53.5
Once per Month 120 47.4
Six times per Year 60 38.6
Four times per Year 40 32.5
Three times per Year 30 27.7
Twice per Year 20 19.9
Once per Year 10 10.0

Table 4: Effective sample size as a function of sample frequency for a 10 year study.

Year Total Samples Effective Sample Size

1995 42 11.3

1996 35 10.9

Table 5: Effective sample size for the two REMAP sample years

36



The optimal allocation of sampling effort over space and time was investigated un-
der varying ranges of spatial and temporal correlation. Serially alternating sampling
designs with varying sampling frequencies, number of sample stations per sampling
interval, and numbers of cycles were investigated. Each design has an equal total
sampling effort of n = 256 samples in a 16 x 16 unit region over an 8 year period.
Sampling frequencies of 0.5, 1, 2, 4, and 8 times per year were considered. The num-
ber of cycles ranged from 1, 2,4, ---,8f, where f is the sampling frequency. Note that
when the number of cycles is equal to 1, we have a permanent station design, and
when the number of cycles is equal to 8 f, we have an ever-changing station design.
Under a k-cycle design with a sampling frequency of f, the total number of loca-
tions sampled is m = 32k/f. These stations were randomly located in the 16 x 16
unit region under the constraint that no two stations be located within 8/1/m of one
another.

Table 6 gives the optimum number of cycles to estimate linear temporal trend for
a serially alternating under different ranges of spatial and temporal autocorrelation.

Here, the data Z(s,t) at the location s at time ¢ are modeled as

Z(st) = By + Bit + &(s,t),

where the errors have exponential spatio-temporal correlation function

pthyr) = corr{Z(s,t),Z(s+hit+r)}
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= exp{=3|h| /as — 3r/a;},

s is the range of spatial autocorrelation, and «; is the range of temporal autocorrela-
tion. The optimum design is defined to be the design under which the variance of the
general least squares estimator of (3; is minimized, and hence yields the greatest power
for detecting linear temporal trends in the data. Among the designs considered, the
optimal sampling frequency was 8 times per year. From Table 6, the optimal design
under a range of temporal autocorrelation of 1/2 year and spatial autocorrelation
of 8 units, the optimal design is an 8 cycle design. The optimal number of cycles
depends on the relative ranges of spatial and temporal autocorrelation. As the range
of temporal autocorrelation increases, the optimal number of cycles also increases,
but as the range of spatial autocorrelation increases, the optimal number of cycles

decreases.

4 Current Status of Section 305(b) Water Resource Monitoring

Although Section 305(b) of the Clean Water Act mandates that each state submit a
surface water quality assessment report to the Environment Protection Agency (EPA)
every two years, little guidance is given as to what specific data should be collected.
Consequently, states tend to design their water quality monitoring programs to meet
local priorities governing the allocation of their water resources, and in response to

local sources of environmental degradation.. Most states do not monitor all of their
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Range of Spatial Autocorrelation

1 2 4 8 16
0.0625 | 2 2 1 1 1
0.125 | 4 2 2 2 1
Range of 0.25 |8 4 4 2 2
Temporal 0.5 8 8 8 4 4
Autocorrelation | 1.0 | 16 16 8 8 8
20 |32 16 16 16 8

4.0 32 32 32 16 16

Table 6: Optimum number of cycles for serially alternating designs under different

levels of spatial and temporal correlation.
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waterbodies every two years, and do not employ probability-based sampling designs
when selecting locations for sample sites. Instead sample sites are selected according
to a number of criteria, that differ among states and are not always well defined. For
example, the South Carolina Water Quality Monitoring Program selects 265 primary
stations that are influent or effluent to sub-basins, at major streams at state lines,
at the confluence of major streams, above and below major industrial and municipal
areas, in major lakes, and at the mouth of major tributaries. In Maryland, the
Basic Water Monitoring Program established a network of 68 sites in locations where
known water quality programs exist, and in rivers or major tributaries just above the
confluence with a river, but excludes areas with no serious water quality problems.
In either case, the representativeness of the sample sites cannot be readily quantified,
and hence estimates of the overall quality of the states’ water resources are likely
be biased, especially in states which avoid areas thought to contain no serious water
quality problems.

In defense of state efforts, it should be pointed out that federal water resource mon-
itoring designs have not provided leadership by employing probability-based designs
themselves. The National Stream Quality Accounting Network (NAWQAN), the Na-
tional Water-Quality Assessment Program (NAWQA), and the National Status and
Trends Program (NS&T) all employ judgment sampling designs. It is interesting

to note that, while the Biomonitoring Environmental Status and Trends Program
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(BEST) uses a probability-based design to monitor presticides in starlings, it uses a
judgment sampling design to monitor pesticides in fish. The Environmental Monitor-
ing and Assessment Program (EMAP) is the only large federal program that employs a
probability-based sampling design to monitor aquatic resources, but this program was
only recently established and has a questionable future. In contrast, most programs
that monitor terrestrial resources, including EMAP, use probability-based sampling
designs (Olsen et al. 1998).

Recent years have seen attempts to improve water quality monitoring efforts. The
Intergovernmental Task Force on Monitoring Water Quality (ITFM) was established
in 1992 to review and evaluate national water quality monitoring efforts and to make
recommendations for improvements. The I'TFM has recommended that states change
from a 2 year reporting cycle to a 5 or 6 year reporting cycle. By doing so, states
may increase spatial coverage of their water resources through the implementation of
serially alternating sampling designs.

In 1990, the EPA established the National 305(b) Consistency Workgroup to ad-
dress variation in sampling protocols and reporting methods among states. In re-
sponse to efforts of this workgroup, several states are exploring methods for obtaining
more representative samples of their water resources. For example, South Carolina is
establishing Watershed Water Quality Management (WWQM) Stations at the down-

stream access of every Natural Resource Conservation Service (NRCS) watershed unit.
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Thus, a census of all watershed units is obtained. However, the representativeness of
the resulting data depends on how watershed units are partitioned. Nevertheless, the
WWQM stations provide good spatial coverage of the South Carolina’s watersheds.
Some states have implemented probability-based sampling designs. The Delaware
Department of Natural Resources and Environmental Conservation selected a sample
of 96 sites, randomly selected from a list frame of 3200 roadway crossings of nontidal
streams in the northern two counties of the state. The Maryland Department of
Natural Resources randomly selected a sample of about 350 sites from a list frame of

all first, second, and third order stream reaches.

4.1 Response to 305(b) Consistency Workgroup

The failure of states to adapt probability-based sampling designs in their water quality
monitoring efforts may in part be due to misperceptions regarding their limitations.
Many of these misperceptions can be found in the draft report of the Monitoring
and Assessment Design Focus Group of the 305(b) Consistency Workgroup (1996),
which lists a number of disadvantages and concerns with probability-based sampling
designs. The following shall address each these by suggesting how a probability-based
design that can be used to address each of these concerns. Note that these proposed
designs may require some modification for specific applications.

Concern 1. Probability-based designs will not identify new problem sites unless

42



they happen to be selected randomly. A similar statement could be made about judg-
ment sampling designs: Judgment sampling designs will not identify new problem
sites unless they can be identified by the investigator. Thus, under a judgment sam-
pling design, the ability to identify new problem sites is limited by the judgment of
the investigator. The probability of identifying new problem sites can be increased by
increasing the spatial coverage of a sampling design either through implementation
of serially alternating or rotating panel designs, or through sampling a new set of
sites during each sampling interval. A more efficient approach would require assump-
tions regarding causal mechanisms, and then information on the causal variables,
preferrably over the entire population. For example, an investigator might attempt
to identify all potential point sources of environmental contamination (for example,
from a listing of all sewage treatment plants, or all paper mills in the state). How-
ever, sufficient resources may not be available to sample all of the potential point
sources. Further information regarding the characteristics of the identified potential
point sources might be used to select which ones are most likely to pose environmental
hazards, but the cost of compiling such information may be prohibitive. Moreover,
some potential point sources which appear to pose to no environmental hazard, and
hence are not included in the sample, may in truth pose a significant environmental
hazard.

A probability-based sampling design can be used to identify which potential point
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sources pose a significant environmental hazard. This can be accomplished by se-
lecting a simple random sample of potential point sources in the first year of the
investigation. Selected sites that show significant environmental damage may then be
sampled in each of the next years, perhaps until they meet or exceed regulatory stan-
dards. In the second year, a simple random sample of the remaining sites is selected,
and again, those sites showing significant environmental damage are retained. This
process is repeated in subsequent years until all potential point sources are sampled
at least once.

In states where it is prohibitively expensive to identify all potential point sources
of environmental contamination, a two-stage sampling design might be used to assist
in the identification of point sources as follows: The state’s water resources are par-
titioned into the NRCS watershed units. In the first year, a simple random sample
of the watershed units is selected. Then the potential point sources of environmental
contamination are identified within each of the selected watershed units. A simple
random sample of the identified point sources may then be selected. In each of the
subsequent years, a simple random sample of the heretofore unsampled watershed
units is sampled until all watershed units have been sampled. After that time, the
process may be repeated. Thus, in each year, only those potential point sources within
the selected watershed units need by enumerated, from which a simple random sample

can be selected for field sampling.
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Adaptive sampling designs are particularly well suited to the identification of new
problem sites under nonpoint sources of environmental contamination. Start with a
simple random sample of sites. Then cluster new sample sites around each site show-
ing a level of environmental degradation about some threshold. A response-surface
model (Myers 1976) may be fit to the data, to identify locations where additional
sampling is required to obtain an estimate of the location of the local maximum
level of environmental degradation. Occasionally, additional sample points should be
randomly selected to ensure the identification of new problem sites.

Concern 2. Probability-based designs will not determine temporal trends at priority
sites. There are a number of very legitimate reasons why specific priority sites may
be of interest. For example, we may wish to investigate the efficacy of environmental
remediation at locations of sewage or industrial discharge, or hot spots known to show
especially high levels environmental damage. To assess the efficacy of such restoration
efforts, however, it may be necessary to compare temporal trends at these priority
sites to temporal trends at reference sites, selected to represent conditions existing
prior to environmental degradation at the priority sites. If interest lies in the levels of
contaminants in the waters of a river or stream, then it may suffice to locate reference
sites upstream of priority sites and a probability-based sampling design need not be
considered. If, however, interest lies in the restoration of the ecological community at

priority sites, then upstream sites are not guaranteed to be representative of conditions
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that had existed prior to environmental degradation at priority sites, and hence, a
probability-based sampling design should be used to select reference sites. To further
ensure the representativeness of reference sample sites, a stratified random sampling
design might be used, where the allocation of sampling effort to strata is proportional
to the number of priority sites found in each stratum. Alternatively, reference sites
may be located some random distance and direction from each of the priority sites,
or if sufficient resources are available, two or more reference sites may be clustered
around each priority site.

Concern 3. Probability-based designs are not designed to assess improvements
i specific waterbodies or watersheds due to controls, enforcement, or restoration.
When assessing improvements at specific waterbodies or watersheds is of interest,
then each of the specified waterbodies or watersheds must be sampled. However,
the question remains as to what specific locations should be sampled within those
waterbodies or watersheds. If the water quality of a stream or river is of interest,
it may suffice to sample at the effluent end of that stream or river. If, on the other
hand, the status of the ecological community, or the quality of bottom sediments are
of interest, a probability-based design is required to ensure that the sample sites are
representative of the waterbody or watershed of interest. Here, individual waterbodies
or watersheds can be treated as strata for a stratified random sampling design. The

use of a judgment sampling design to select what specific sites are to be sampled
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within each waterbody or watershed can result in biased estimates of status and
temporal within that waterbody or watershed.

Concern 4. Probability-based designs respond poorly to political priorities. With-
out more specifics regarding what political priorities are to be considered, it is not
possible to make specific recommendations as to how a probability-based sampling
design may accommodate them. However, the sampling intensity can adjusted to
ensure that a higher density of sample sites is obtained in high priority regions at the
cost of a lower density of sample sites in low priority regions.

Concern 5. If all 305(b) assessments were based on changing probabilistic sites,
States would no longer track specific waterbodies and mapping a spatial analysis would
be curtailed. The use of changing probabilistic sites does not preclude temporal and
spatial analysis of the data. Statistical methods for such analyses shall be discussed in
Section 5.2 below. Regardless of whether a probability-based or judgment sampling
design is used, the power of analysis for temporal trends within specific waterbodies
will depend on how many observations are available within those waterbodies. How-
ever, if permanent sample sites are selected according to a judgment sampling design,
then the only statistically justifiable inferences are with respect to those specific sites.
Under a probability-based design, statistically justifiable inferences regarding tempo-
ral trends can be made regarding the waterbodies as a whole. Moreover, statistical

tests for trend are also likely to be more powerful under changing probabilistic sample
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sites than under a fixed station design (See Section 4.2).

Concern 6. Probability-based designs require significant up-front effort for proper
design and long-term adherence to the study plan. The ability to make statistically
justifiable inferences regarding the water resources as a whole should justify the added
up-front effort required to obtain an appropriate probability-based design. The costs
of long-term adherence to the study plan can be reduced by using a serially alternating
design (see Section 4.2) instead of selecting a new set of probabilistic sample points
for each sample interval.

Concern 7. Under a probability-base design, states would lose the benefits of exist-
ing sites with many years of data. In Section 6.0, a method for combining historical
data from a judgment sample design with new data from a probability-based is de-
veloped. The proposed method calls for a period of overlap in which observations
are collected from both designs. Then the spatio-temporal autocorrelation among the
observations from both data bases is exploited to back predict what data would have
been obtained had a probability-based design been used from the very beginning of
the monitoring program. The resulting predictor relies heavily on the historical data
base, especially for predictions many years in the past.

Concern 8. Determining sources of impairment may be beyond the capability of
probability-based designs. Results of observational studies can not provide definitive

evidence that a given factor or combination of factors are responsible for environ-
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mental impairment. Correlations between levels of environmental impairment and
alleged sources of impairment may be spurious. Moreover, the highest contaminant
concentrations are not necessarily located near their sources, but may be located
downstream where local site characteristics may promote adsorbtion of contaminants
in the sediment or their entry into the food chain. Definitive evidence for causal
relationships can only be obtained through randomized experimental manipulations
of the environment. However, such manipulations may not only be impractical, but
also unethical. Nevertheless, it may be possible to gain some insight through a care-
fully planned observational study. Sites should be selected in a factorial arrangement
in which all combinations of high and low levels of each of the alleged causal fac-
tors are equally replicated. However, the information required for such a design may
not be readily available. A more cost-effective approach would be to implement a
probability-based design in which the alleged causal factors are measured along with
the measures of impairment. Supplemental sites may then be added to provide infor-
mation from factor combinations missed by the probability-based design, improving
the power to separate out causal contributions.

Concern 9. If the design does not allow sampling at access points like bridges,
sampling elsewhere will be difficult and expensive. The savings incurred by sampling
at access points may allow larger sample sizes under tight budgetary constraints,

and hence potentially more precise estimates of environmental parameters and more
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statistical power for detecting trends. Probability-based sampling methods can be
used to select what access points are to be included in the sample. However, to
statistically justify inference to the water resource as a whole, evidence is required
that the access points are representative of that water resource, or alternatively, an
estimate of the bias introduced by sampling at access points. There are a number of

reasons why the representativeness of access points may be questioned:

e The density of access points such as bridges will tend to be higher in regions of

high human population density, and lower where human populations are sparse.

e The level of environmental impairment may vary with the suitability of locations
for bridge construction. Do we really want bridge engineers to determine where

we sample?

e The bridges themselves may adversely affect their local environments.

Section 5.3 discusses how each of these concerns may be addressed using probability-
based designs.

Concern 10. Concern over the number of years required to determine spatial or
temporal trends in a basin or state. Probability-based designs require no more years to
determine spatial or temporal trends than judgment sampling designs. The power to
detect such trends is a function of the sample size, and the degree of spatio-temporal
correlation in the data. If probability-based designs show less spatio-temporal correla-
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tion, as would often be the case, then they should be more powerful than a judgment
sample of the same size. It should be kept in mind that spatial and temporal trends
should be interpreted with caution. Ecological systems are inherently dynamic; so,
in order to investigate the impact of management on environmental impairment, we
must distinguish between trends resulting from management practices and natural
environmental fluctuations. This requires an understanding of the natural fluctua-
tions that may occur in a waterbody that might only be obtained from collecting data
over a number of years.

Concern 11. Concerns over the expense of sampling sufficient sites for statistical
rigor and also availability of technical support for States. Given the high cost of
environmental monitoring, it is essential that the sampling design yield the strongest
possible statistical inference with respect to the states’ water resources. Regardless of
sample size, statistically justifiable inferences can be made regarding the status of the
water resources as a a whole under a probability-based sampling design. Since the only
statistically justifiable inferences that can be made under a judgment sampling design
are with respect to status and trends at the sample themselves, judgment sampling
designs make very inefficient use of funds allocated to environmental monitoring.
The EPA should be responsible for providing technical support to the states for

implementing probability-based sampling designs, and analyses of the resulting data.
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4.2 Combining Data Across States

In addition to the biennial water quality assessment reports that must submitted by
the states, Section 305(b) of the Clean Water Act also mandates that the EPA submit
a comprehensive assessment of the quality of the nation’s water resources to Congress
every two years. The latter requires the combining of data submitted in the states’
reports. Given that most states employ judgment sampling designs, valid statistical
inference is limited to statements regarding what percentage of sample stations sup-
port their designated uses (e.g., drinking water supply, fish consumption, recreation,
etc.), and what percentage of stations show improving or degrading water quality.
Statements regarding what percentage of water resources support their designated
uses, or show improving or degrading water quality cannot be statistically justified.
The combining of data across states would be straightforward if all states were
to employ probability-based sampling designs and provided that they use the same
defintion for the target population, and consistent measurement protocols. Then the
different states can be treated as strata, and the mean level of an environmental

indicator across the 50 states can be estimated by

1 50
SO 6

i=1
where [i; is the estimated mean level of the environmental indicator in state i, |A;]|

is the quantity of the water resource (e.g., stream miles, total surface area of lakes
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or estuaries, etc.) in state 7, and |A] is the total quantitative of that resource in the
nation (i.e., |A| = 32, | 4;|). The precision of this estimate can be estimated through

its variance

A 1 2
var(ji) = |A|2Z|A| - var (fi;). (4)

In a similar manner, the proportion of the nation’s water resources showing a given
condition (e.g., degraded, supporting designated uses, showing improving conditions,

etc.) can be estimated by
p= |Asl - pi, (5)
Ep2
where p; is the estimated proportion of the water resources of state ¢ that show that

condition. The corresponding variance estimate is

5) 1 2
var(p) = \A|2Z|A‘ -var(p;). (6)

The above estimates do not require that the same sampling design be employed
by all states; they only require that each state employ a probability-based sampling
design. Estimates of state means p,;, proportions p;, and their corresponding variances
depend on the particular sampling designs employed by each state. However, unbiased
estimation across the 50 states requires some consistency among states with respect
to what data are collected and how the data are obtained.

Differences among states in definitions of target populations (e.g., what orders of

streams or sizes of lakes are sampled) can lead to biased estimates of the status of
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the nation’s water resources. For example, if some states do not sample lower order
stream reaches, and such stream reaches tend to have better (lower) water quality
than higher order reaches, then the overall proportion of stream miles meeting a water
quality standard will be underestimated (overestimated). To avoid this source of bias,
the EPA (with input from the state agencies) should provide the states a clear and
concrete definition of the target population of water resources that should be sampled.
Depending on their needs, individual states may elect to sample sites not included in
this target population, but data from those sites should be reported separately.
Differences among states in sampling protocols (e.g., at what depth a water sample
is obtained, when samples are taken, how samples are handled and stored following
collection), and laboratory procedures for assaying samples may also lead to biased
estimates. This bias may be reduced by having states adopt consistent sampling pro-
tocols, and laboratory procedures for assaying samples (ITFM 1995). Nevertheless, it
is likely that there will remain some variation among state field crews and laboratories
with respect to how sampling protocols and laboratory procedures are applied. To
reduce the resulting biases, groups of states should engage in joint sampling efforts,
in which field crews from the various states sample the same sites using their own
sampling protocols, and their own laboratories for assaying resulting samples. The

analysis of variance model

Yij = 1+ B+ + € (7)
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can then be fit to the resulting data y;; at site j using the field crew from state
1. Here, p is the overall mean, 3; is the bias attributed to the methods for state
i, 7, is the effect of site j, and ¢;; is the model error. The bias terms §; are not
individually estimable unless further assumptions are made; for example we assume
that S-°°, 8, = 0, or, alternatively, that one of the individual states uses unbiased
methods (i.e., 8, = 0 for some 7). The parameters of (7) can be estimated using the
generalized linear model procedure (PROC GLM) of the Statistical Analysis System
(SAS Institute 1997). Given estimates of the bias terms, a bias corrected estimate of
the overall mean can then be obtained from

1 50 =R
b= Ail - (1 — By)-

i=1
Note that if the analysis of variance shows that there are no significant differences
among the states, then no bias correction is necessary.

Note that the above does not require that all 50 states sample each site. Instead,
it suffices that the data from all of the states be connected (sensu Searle 1971, pp.
319-324). To determine if all states are connected, create a table showing which state
crews sampled which sites. For example, see Figure 9 in which six sites are sampled
by six states; here state ‘B’ sampled sites 2 and 5, and site 2 was sampled by both
states ‘B’ and 'F’. To find the connected subsets, draw horizontal and vertical line
segments connecting any pair of observations on the same row or column; observations

that can be connected by such line segments form a connected subset; in Figure 9,
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Figure 9: Connected subsets of states.

for example, states ‘B’ and 'F’ form one connected subset, states ’A’” and 'D’ form a
second connected subset, and states 'C’ and 'E’ form a third connected subset. Since
there are more than one connected subsets, the data are disconnected, and hence we
would not be able to estimate the relative biases of the states’ data. The states would

be connected if, for example, state ‘B’ were to sample the additional sites 3 and 4.

The above analyses also assume that there is no interaction between states and
sites, so that the bias in a given state’s methods does not depend on site. Tukey’s
procedure (Snedecor and Cochran 1980, pp. 283-285) may be used to test for this
interaction. If a significant interaction is found, then the analysis variance model may

be fit to log transformed data:

ny;; = p+ B +7; + &ij.
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Then, the overall mean can be estimated by

1 50 B
= Al e
2

Regardless of efforts to improve consistency among state water resource moni-
toring programs, it is likely that states will continue to differ with respect to what
variables are measured. Moreover, it is not necessarily appropriate for states with
widely different types of water resources to measure the same variables. This is espe-
cially true for biotic measurements, since there is considerable geographic variation
in the composition of aquatic communities over the United States. Obviously, esti-
mation of the overall mean level of an environmental variable across the 50 states
requires that the same variable be measured in each state. On the other hand, esti-
mation of the proportion of water resources showing a given condition (i.e., degraded,
supporting a designated use, showing improving conditions), do not require that the
same variables be measured across the states. However, the quality of the estimates
could be improved by some general agreement with respect to definitions of what is
meant by a degraded condition, or when a waterbody supports a designated use or
shows improving conditions. Without such an agreement, expression (5) would only
estimate what proportion of the nation’s water resources were designated as showing
a given condition, and not necessarily in any clearly defined way what proportion

actually shows that condition.
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5 Design Alternatives for Section 305(b) Water Resource Monitoring

Statistically defensible methods for combining data across the 50 states require that
the states replace their current judgement sampling designs with probability-based
sampling designs. The specific probability-based design to be implemented by a
given state depends on the resources available from that state to support monitoring
efforts, the logistical constraints under which monitoring is to be carried out, and
the characteristics of that state’s water resources. Therefore, detailed descriptions
of specific monitoring designs are beyond the scope of this report. The following
broadly outlines some alternative probability-based designs that may be implemented
for water resource monitoring. For each sampling design, methods for estimating the
population mean, population proportion, and the total mass of an environmental

contaminant are considered.

5.1 Sampling Lakes

The recommended approach to sampling lakes depends on the monitoring objectives,
the distribution of sizes and types of lakes within a state, and the information available
on the population of lakes to be sampled. The objectives may call for sampling all of
the larger lakes in the state, but resources are unlikely to be available for sampling

all of the smaller lakes each year. For the latter, we may require a random sample.
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5.1.1 Sampling Large Lakes

A stratified random sampling design can be used to sample the large lakes within
a state, where each lake is treated as a stratum. Under such a design, n; sample
sites are randomly located within each of m large lakes according to a simple random
sampling design (Figure 2); i = 1,---, m. Suppose that sufficient funds are available
to sample n sites during each sample interval. Then the recommended allocation of

sampling effort calls for selecting

n-%n<—|Ai| ) or n-%n<—|vi| )
;‘n=1‘Aj| ;n=1|v3’

sites from lake i, where |A;| and |V;|, respectively, are the surface area and volume
of lake 7. Thus, lakes are sampled proportional to their sizes. The allocation scheme
is optimal (minimizes sampling variance) under the assumption that the within lake
variances are homogeneous (i.e., they are identical among the large lakes). If the
within-lake variances are heterogeneous, then an optimal allocation scheme would
call for increased allocation of sampling effort within lakes showing high variability,
and decreased allocation within lakes showing low variability. Different environmen-
tal variables are likely to show different patterns of within-lake variability, so that
an allocation scheme is optimal for one variable is not likely to be optimal for the
remaining variables. Moreover, the within-lake variances are not likely to be known

a priori, and hence, allocation proportional to lake size is recommended.
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Under the stratified random sampling design described above, the mean level of
an environmental variable across the surface area of lake ¢ can be estimated by the
sample mean 7; of the n; observations in that lake. The precision of this estimate can

be estimated by

where s? is the sample variance of the n; observations in lake i. The overall mean

across the surface of all m large lakes can be estimated by

:ust: ’A|Z‘A’ yz

with corresponding variance estimate

g2
_’
)

var :ust |A|2 Z |

The proportion of the surface area of lake i showing a given condition (i.e., de-
graded, supporting designated uses, etc.) can be estimated by p;, the proportion of

sample sites showing that condition. The corresponding variance estimate is given by

pi(1 — ;)

The proportion of the surface area of all m large lakes showing that condition can

then be estimated by

pSt ’A|Z|A| p’L
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with corresponding variance estimate

pi(l —pi)
var(Dy) |A|2Z|A AER

’L
Suppose that the concentration of an environmental contaminant in a given water
sample is expressed in terms of mass per unit volume. Then the total mass of that

contaminant in lake ¢ can be estimated by

CIA RS

i = Zdl] Yij,

/\

where d;; and y;; are the water depth and concentration at site j in lake ¢, and
the constant c¢ is defined to achieve the appropriate units of measurement. The

corresponding variance estimate is

n—l

ey PP e, 1 2
var(7;) = Zd YT (; dij - y,-j)
Then the total mass of the contaminant across all m large lakes can be estimated by
=)
with corresponding variance estimate
var (Tg;) Zvar Ti)-

Instead of locating sample sites according to a simple random sampling design
within each of the large lakes in the population, sample sites can be located accord-
ing to a randomized-tessellation stratified design (Stevens 1997). Under such a design,

61



a grid of contiguous polygons is randomly placed over the study region, as is shown
for example in Figure 10, where a hexagonal tessellation is randomly located over
Lake Jocassee. Then a single site is randomly located within each of the polygons.
Only sites falling in the region of interest are included in the sample. The sampling
variance under the randomized-tessellation stratified design is smaller than that un-
der the simple random sampling design, especially if the data shows strong spatial
correlation. The Yates-Grundy estimator for its variance is reasonably stable under
strong spatial correlation. If there is a large measurement error, or if there is large mi-
croscale variation in the data, however, the Yates-Grundy estimator for the variance
can be unstable; in such cases, the randomized-tessellation stratified design cannot

be recommended.

5.1.2 Sampling Small Lakes

The recommended approach to sampling small lakes depends the quality of informa-
tion that is available regarding what lakes are present in a state. Ideally a listing of all
small lakes in the state would be available, perhaps from USGS maps, aerial photos,
or satellite images. Then a simple random sample or stratified random sample could
be selected from the list frame of lakes. However, the cost of obtaining a list frame of
all lakes within a state may be prohibitive. In this case, a two-stage sampling design

may be required.

62



Figure 10: Randomized-tessellation stratified design for Lake Jocassee
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Simple Random Sample. Suppose that a list frame of all NV lakes in a state is
available. Then a simple random sample n lakes can be obtained from randomly
drawing numbers between 1 and N until a sample of n unique lakes is drawn. Then
one sample site is located within each of the sampled lakes. The decision as to
what actual location is selected within each of the sampled lakes depends on the
variable that is to be measured and the monitoring objectives. If it is desired to make
inferences about the total mass of contaminants in the lakes of a given state, then sites
should be selected randomly. A random sample would also be required to estimate
the proportion of the volume of lake waters or surface area of lakes of a state that
are impaired. If, on the other hand, it is desired to make inferences about the mean
level of an environmental variable accross the population of lakes, or the proportion
of lakes showing impaired conditions, random selection of sites within lakes may not
be necessary. In such cases, water samples may be taken from the deepest part of the
lake, or biota may be sampled in the multiple habitats around the lake in which they
are found.

Under a simple random sampling design, the mean level of an environmental
variable across the lakes in a state can be estimated by the sample mean 7, with

corresponding variance estimate

)

n

) = (Y1) 2

where s? is the sample variance. The proportion of lakes showing a given condition
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(i.e., degraded, supporting designated use, etc.) can be estimated by p, the proportion

of sample sites showing that condition. The corresponding variance estimate is

i = (45) 5T

Instead of estimating the mean level of an environmental variable across the lakes,
we may wish to estimate the mean level of that variable across the surface area of
those lakes, or over the volume of the lakes. In such cases, sample sites should be

randomly located within each of the selected lakes. The ratio estimators

-1 |Az’ " Yi
Ms = n Y (8)
i |Ail
and
~ ?:1 |V;’ “Yi
Mv = n Y (9)
i1 | Vil

can then be used to estimate the mean level of the variable across the surface area
and volume of lakes in the population, respectively. Here, |A;| and |V;| respectively
are the area and volume of lake i, and y; is the value of the variable of interest in
lake 7. Thus, the data are weighted by the sizes of the lakes that were sampled. The

variance estimates are

RN N(N —n) S (A -y — i Ad])?

Var([ug) = (n|A|2 ) . 1 (| |n_ . ’ ) (10)
and

. NWN-n) 2 (Vi -y — A,V

Var('uv) — (n|v|2 ) . 1 (| ’n_ : ) , (11)

65



where |A| and |V| respectively are the total surface area and volume of the N lakes
in the population. If |A] and |V| are unknown, we may replace these quantities in

the expressions above by their estimates

A= 23" A and [7] = = |,

i=1 i=1

To estimate the proportion of the total surface area or volume of lakes that shows a
given condition, replace y; in the expressions above with a binary variable that takes
the value 1 if sample site ¢ shows that condition, and the value 0 if otherwise.

The total mass of an environmental contaminant can be estimated by
7=|\V|- i, (12)
with corresponding variance estimate
var(7) = |V[*var(f,). (13)
If the total volume is unknown, total mass may be estimated by
. NZ
T:—Z\Ai"di'yi (14)
=
where d; is the water depth at sample site ¢. The corresponding variance estimate is
_ N(N —n)
1)

(7 = — {Z Ayt~ (z A4 - d;- yz-) } )
i=1 i=1

n(n —
To sample lakes over time, a serially alternating design with k cycles may be
implemented by randomly partitioning the small lakes into k sets of size n = N/k.
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This may be accomplished by taking a simple random sample of size n from the N
lakes in the list frame to form the first set of lakes. The second set of lakes is obtained
by taking a simple random sample of size n from the remaining N — n lakes. This
process is repeated until all lakes have been assigned to sets. Lakes in set ¢ are then
sampled at time intervals ¢,¢ + k,7 + 2k, - - -, as shown in Table 1 for a k£ = 4 cycle
design. Observations from each time interval can be treated is though they were
obtained from a simple random sample from the original population of N lakes, and
so, population parameters may be estimated as described above. The proportion of
lakes showing improving (deteriorating) conditions can be obtained by dividing the
number of lakes showing improving (deteriorating) conditions by N. Since the entire

population of lakes is sampled, this estimate has no sampling variance.

Stratified Random Sample. Suppose that in addition to a simple listing of lakes,
further information is available about each lake in the list frame. For example, we
may know which lakes are man made and which lakes are natural, we may have a
list of oligotrophic and eutrophic lakes, or a description of the geological formation
on which each lake lies. If the variable of interest depends on such characteristics,
then a stratified random sampling design can be used to reduce sampling variation,
and hence improve the precision of population parameter estimates. Strata may also

correspond to their designated uses (i.e., drinking water, fishing, etc.). Stratified
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random sampling designs can also guarantee that rare types of lakes are included
in the sample, and to allocate more sampling effort to lakes that are deemed to be
ecologically, economically, or sociologically important. Populations of lakes will tend
to contain a very small number of larger lakes, and a very large number of small lakes,
and so, a simple random sample may not pick up any of the important large lakes in
the population. By stratifying by lake size, we can ensure that an adequate sample
of large lakes is selected.

Under a stratified random sampling design, the list frame of lakes is first parti-
tioned into K strata; let NV}, denote the number of lakes in stratum h. Then a simple
random sample of n;, lakes is obtained from stratum h, h = 1,2, ---, K. Finally, one
sample site is randomly located within each of the sampled lakes. The number of
lakes sampled from each stratum may be proportional to the total number of lakes in
each stratum

G
h 2521 Nk )

proportional to the total surface area of lakes in each stratum
np=mn (—’Ah‘ )
Zé:l |Ak| ’
or proportional to the total volume of lakes in each stratum

Zﬁ:l |Vk|

Using one of these sample allocation schemes as a starting point, sampling effort can
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be increased in strata deemed to be more important, and reduced in strata deemed
to be less important.

Since a simple random sample of lakes is obtained from each of the strata, the
stratum means and proportions, the total mass of contaminant within a stratum, and
their corresponding variances can be estimated using the same methods as described
above for the simple random sampling design. The mean level of an environmental

variable across the IV lakes in the population can be estimated by

1 K

where
1 &
Yp = — Z Yhi
Mh =1
is the sample mean of the observations yu1, - -, Ynn, from stratum h. The correspond-

ing variance estimate is

2

. 1 & Sh
var(yy,) = N2 Z Ni(Np — nh)n—h,
h=1

where

np 2 —2
> izt Yni — ",
ny — 1

82 =
is the sample variance of the observations from stratum h. Similarly, the proportion

of lakes showing a given condition can be estimated by
1 K
e = — > Nup
Pst N e hDh
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where py, is the proportion of observations from stratum A showing that condition.

The corresponding variance estimate is
K ~ ~
P pr(l —p
var(ps) = —5 > Na(N, — nh)M

The mean level of an environmental variable across the surface area or volume of
the lakes may be estimated by
1 K
,U'sts = ’A| Z ’Ah’ Nhs?

h=1

and

oy = Vil :

sty ’V| Z| h :uhv
respectively, where |Ay| and |V}| are the total surface area and volume of lakes in
stratum h, and |A| and |V| are the total surface area and volume of all lakes. Here,

s and i, are computed from observations in stratum h using expressions (8) and

(9), respectively. The corresponding variance estimators are

Var(//lsts) |A‘2 Z |Ah’ Var(uhs)

and

N 1
Va’r(ustv) ’V|2 Z ’Vh Var(:uhv)

respectively, where var(fi,,) and var(fi,,) are computed from the observations from

stratum h using expressions (10) and (11), respectively.
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The total mass of an environmental contaminant over all lakes can be estimated

by summing the estimated mass of that contaminant over the strata. That is, take

K
Tst = Z Th,
h=1

where 7, is computed from the observations in stratum h using either expressions

(12) or (14). The variance of Ty can then be estimated by
K
var(7g) = Y var(7h).
h=1

To sample lakes over time, a serially alternating design may be implemented in
each of the strata as described above for the simple random sampling design. If a k
cycle design is implemented in each stratum, then at each time the sample allocation
is proportional to the number of lakes in each stratum. Note, however, that there is
no requirement that the number of cycles k be identical among strata. By using a
smaller number of cycles, more sampling effort can be made in more important strata,

while larger number of cycles can be used in less important strata.

Two-Stage Sample. The implementation of the above sampling designs requires a
list frame of all lakes in the target population. The cost of obtaining such a list frame
can be prohibitive. These costs can be reduced by implementing a two-stage sampling
design. Under a two-stage sampling design, the state is first partitioned into primary

sample units, which may correspond to counties, watershed units, or a contiguous
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grid of hexagonal or square quadrats. The first stage of the design is comprised of the
random selection of n primary sample units from the population of N primary units.
Then the lakes are enumerated within each of the selected primary sample units. The
second stage of the design is comprised of the random selection of lakes within each
of the selected primary units. Typically, allocation of sampling effort among primary
units is proportional to the number of lakes in each of the selected primary units.

Thus, if a total of m lakes are to be sampled, select

i
m; =m (n—) )
j=1 7

from primary unit ¢, where ; is the number of lakes in the i-th selected primary unit.
Note that for variance estimation, we require m; > 2 (unless a particular primary unit
only contains one or two lakes).

To sample lakes over time, a serially alternating design with k£ cycles may be
implemented by randomly partitioning the N primary units into sets of size n = N/k.
Primary units in set ¢ are then sampled at time intervals i,¢ + k, 7+ 2k, - - -, as shown
in Table 1 for a £ = 4 cycle design. In each time interval, the lakes are enumerated
within each member of the appropriate set of primary units, from each of which, a
simple random sample of lakes is drawn. Thus, after k£ time intervals, all of the lakes
within the state will have been enumerated.

Within a given time interval, the mean level of an environmental variable across
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the population of lakes in the state can be estimated by
N N &
fip = ——3%_ T (16)
nos
where  is the total number of lakes in the state, and 7, is the sample mean value of

the environmental variable among the selected lakes in primary unit i. The variance

of ji;; may be estimated by

N N\?2/N —n si N X 3%
Var(uu)=<—) ( N )g‘f‘ QZ (i —my)—,

notis m;

where s? is the sample variance of lakes selected from primary unit 4, and

n 22 1 n —\2
2 2u4=1 iyi_;( i1 i)

n—1

Although the total number of lakes  in the state will be known after the first £ time
intervals of the serially alternating design described above, this quantity may not be
known beforehand, or if this serially alternating design is not implemented. The total

number of lakes in the state may however be estimated by

—~ N
niz
Substituting "~ into expression (16), we obtain the ratio estimator for the population

mearn:

whose variance may be estimated by

- N\2/N-n\8 N & 57
@) = (=) () 245X o —m)s




where

§2 o ?:1 12(yz B //J’R)Q
n—1 '

Similarly, the proportion of lakes showing a given condition (i.e., degraded, sup-

porting designated use, etc.) may be estimated by

brir = n_; iDi

if the total number of lakes  is known, or by the ratio estimator

X D
PrR= — —

n .
i=1 1

if the total number of lakes is unknown. Here, p; is the proportion of lakes sampled

in stratum ¢ that satisfy that condition. The corresponding variances are

@(@I):<E>Z<N—">S_§+ N i . pi(1 - pi)

N n n o (= mi) =17
where
n ~ n ~\2
§2 — Zi=l 1'21%2 - % (X i)
P n—1 ’
and
L N\>/N-n\3 N & pi(1—pi)
where
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The mean level of an environmental variable across the surface area of the lakes

may be estimated by

A= Y o e | Ayl
s . m; )
i1t e | A

where y;; and |A;;| are the observation from and surface area of lake j in primary unit

t. The variance of i, may then be estimated by

2
i~ 1 N(N—n) n 9 1 I l/l m;
= = 21 N A — 22 ST A
N& o i—my) 1 1 ?
# 35 (1 = o 3l ) = 7 (141 o 2 Wl
n; mi(mz—l);< I mikgl I / mi,;l !

where

Al = ;Z_Z\Aiﬂ

i=1 M j=
is the estimated total surface area of the lakes in the population. The proportion of
the surface area satisfying a given condition can be estimated by replacing y;; in the
expressions above with a binary variable that takes the value 1 if that condition is
satisfied in lake 7 of primary unit ¢, and takes the value 0 if otherwise. The mean
level of the environmental variable across the volume of the lakes may be estimated
by replacing the lake areas |A;;| by the corresponding volumes |Vj;|.

The total mass of an environmental contaminant may be estimated by

R N n ’I/mi
T=—> —> |Ayl-dij-yy

ni= Mo
where d;; is the water depth at the sample site in lake j in primary unit ¢. The
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corresponding variance estimate is

2

- 7 _* Ai"di"i'__ _r Al - dos - .

V&I‘(T) n(n—l z_zl(szZJ ]| j * Yij nkzlmk;| k]| kj ykg)
N n z( z_mz) myg 1 mg 2
I s z(| s = 3 Al |

5.2 Sampling Rivers and Streams

Rivers and streams are unique among natural resources in that, except for regions
under tidal influence, the waters flowing past a given point originate from upstream
of that point. Thus, observations of the water quality at the effluent end of a water-
shed are in some sense representative of the waters flowing through that watershed.
This observation has led many water quality monitoring programs to target sampling
at the effluent ends of watersheds. For example, South Carolina’s Watershed Water
Quality Management (WWQM) program targets sites at the downstream access of
every National Resource Conservation Service (NRCS) watershed units. Note that
not all NRCS watersheds units are watersheds unto themselves, but are subwater-
sheds. A subwatershed is a subset of a watershed obtained by subtracting out those
regions covered by other watershed units in the collection. A mass balance model can
be constructed from WWQM sample stations provided sufficient information is avail-
able. The total mass of a contaminant passing by a sample station can be computed
by the product of the concentration of that contaminant in a water sample times the
volume of water flowing past that station per unit time. Then the contribution of the
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watershed unit to that mass can be obtained by subtracting the mass of contaminants
input into that watershed unit by upstream watershed units from the mass of con-
taminants effluent from the watershed unit. However, such computations require the
assumption that no contaminants are lost due to adsorption onto bottom substrates,
uptake in organisms, or evaporation.

Unless a mass balance model or other mechanistic modeling effort is planned,
there is very little reason to target sampling at confluences of waterways. Moreover,
since representativeness of such sample site is not known, such targeted efforts are
not appropriate for sampling the bottom substrate, or biotic communities. Only a
probability sampling design can be used to obtain unbiased estimates of the mean
level of an environmental contaminant across the length of rivers and streams, the
proportion of stream and river miles that support designated uses, or the total mass
of an environmental contaminant in the streams and rivers of a state.

The following considers three broad design alternatives for sampling rivers and
streams within a state. The choice of design depends on what information is available
on the population of streams and rivers, and the resources available for planning

sampling efforts.

Simple Random Sampling. A simple random sampling design requires a digitized

map of all rivers (and streams) within the state. Such a design can be constructed by
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first partitioning the rivers into river segments, defined to be any length of river con-
taining no branches. The river segments are then laid out end to end in any arbitrary
order. Finally, n sample points are obtained by random selection of locations between
0 and L, the total length of the river segments. Since there tend to be more miles
of first-order streams, than higher-order streams, a simple random sample will tend
to be dominated by first-order stream sites. Therefore, it is generally recommended
that streams be stratified by stream order (see below).

Parameter estimation under the simple random sampling design is straightforward:
The mean level of an environmental variable across the length of the river system can
be unbiasedly estimated by the sample mean 7, with corresponding variance estimate

82
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where s? is the sample variance. The proportion of river miles showing a given
condition (i.e., degraded, supporting designated uses, etc.) can be estimated by p,
the proportion of sample sites showing that condition. The corresponding variance
estimate is

i~ _PA-=D
var(p) = 51_1).

Finally, the total mass of an environmental contaminant in the rivers of the state can

be estimated by

. L&
T==> Al y, (17)
nai=
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where y; is the concentration of the contaminant in a water sample collected at site
i, and | A;| is the cross-sectional area of the river at that site. The variance of 7 may

then be estimated by

L2 7'7; A122_l w AZ : i2
@_(?):_ 7,—1’ ‘y’b n( 7,—1’ ‘ y) ) (18)

n n—1

Stratified Random Sample. A stratified random sampling design may be im-
plemented to improve the precision of parameter estimates, to facilitate comparisons
among strata, and ensure adequate sampling effort in rare strata. Here, strata may
correspond to stream orders, or designated uses (i.e., swimming, drinking water, fish-
ing, etc.). Under a stratified random sampling design, the list of river segments is first
partitioned into K strata. Then a simple random sample of n;, sites is selected from
each stratum h; h = 1,2,---, K, as described above. The number of sites sampled
from each stratum may be proportional to the total length L; of river segments in
each stratum:
— Lh
e <ZkK:1 Lk) '

Using this sample allocation scheme as a starting point, additional sampling effort
can be designated in strata deemed to be more important, while reduced sampling
effort can be designated in strata deemed to be less important.

Since a simple random sample design is obtained from each stratum, the stratum

means and proportions, the total mass of a contaminant within each stratum, and
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their corresponding variances can be obtained using the same methods as described
above for simple random sampling. Then mean level of an environmental contaminant

across the lengths of all rivers in the population can be estimated by

1 K
yst:_ZLh'y}w
Lh:l

where
1 &
Yp = — Z Yhi
Th =1
is the sample mean of the observations yu1,- -, Ynn, from stratum h, and L is the

total river miles in the population of rivers. The corresponding variance estimate is

o 1 K2
) - 3 1
h=1

where

np, 2 —2
>im1 Y — MhTp
ny — 1

52 =
is the sample variance of the observations from stratum h.
Similarly, the proportion of rivers miles showing a given condition can be estimated
by
1 K
P =7 > Ly - Pn,
h=1
where pj, is the proportion of sample stations from stratum h showing that condition.

The corresponding variance estimate is

- 1 & o pu(l = pn)
Var(pst) = ﬁ Z L%’W
h=1

80



The total mass of an environmental contaminant across the lengths of all rivers in
the population can be estimated by summing the estimated mass of that contaminant
over the strata. That is, take

K
?St - Z ?ha
h=1
where 7, is computed from observations in stratum h using expression (17). The

variance of 75, can then be estimated from
K
var(Tg) = Z var (7).
h=1

Two Stage Sample. The implementation of the above sampling designs requires a
digitized map of all rivers and streams in the target population. The cost of obtaining
such a map can be prohibitive. These costs may be reduced by implementing a
two-stage sampling design. Under this design, the state is first partitioned into N
primary sample units, which may correspond to counties, NRCS watershed units,
or a contiguous gird of hexagonal or square quadrats. The first stage of the design
is comprised of the simple random selection of n primary sample units from the
population of N primary units. Then the rivers and streams are digitized within
each of the selected primary units; there is no need to digitize waterways within the
remaining primary units. The second stage of the design is comprised of taking a
simple random sample of sites along the lengths of the waterways within each of the

selected primary units. Typically, allocation among the primary units is proportional
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to the number of river miles in each of the selected primary units. Thus, if a total of

m sites are to be sampled, select

m;=m|=—5 |
j=1 Lj

from primary unit ¢, where L; is the total river miles in primary unit ¢. Note that for
variance estimation, we require that m; > 2.
The mean level of an environmental variable along the lengths of the rivers and

streams in the population may be estimated by the ratio estimator

i Li -7,
Z?:l Li ’

o~

Hr =
where 7, is the sample mean of the variable among the observations from primary
unit ¢. The corresponding variance estimate is

o N 25{5 N
i) = (7) 5 om S,
=1

’L

where

2 — o L3 (g, — fip)?
n—1

Y

s2 is the sample variance of observations from primary unit ¢, and

is the estimated total length of waterways in the target population.
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Similarly, the proportion of river miles showing a given condition can be estimated
by

2?21 Lz‘ : ﬁz
i Li

Pr =

where p; is the proportion of sites from stratum ¢ showing that condition. The corre-

sponding variance estimate is

i) = (X)

_|_

SRS

N & ohi(l—p)
NP ILI TR

where

2 _ Zis L;(pi — Pr)?
p n—1 '

The total mass of an environmental contaminant across the volume of the popu-

lation of waterways can be estimated by

| Al - g

where y;; and |A;;| are the contaminant concentration and the cross-sectional area of

the waterway at sample site j in primary unit 7. The corresponding variance estimate

is

2
N n L mg n L
var(7) (n — Z ( Z |Aij| - yis — Z k Z | Al - yk])
l:l l] 1
N n mg 1 m; 2
Ez P2 > <|Aij| Y — — > |Aud - ym> :
i=1 m; k=1
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5.3 Sampling at Access Points

The savings incurred by sampling at access points allows larger sample sizes under
tight budgetary constraints, and hence potentially more precise parameter estimates
and greater statistical power for detecting spatial and temporal trends. The collection
of access points can be treated as the sample population from which a probability
sample can be obtained. However, to statistically justify inference to the water re-
source as a whole, we require evidence that the access points are representative of
that water resource, or alternatively, we require an estimate of the bias introduced
by sampling at the access points.

There are a number of reasons why the representativeness of access points may
be questioned: First, the density of bridges will tend to be higher in regions of high
human population density, and lower where human populations are sparse. Thus,
by taking a simple random sample of bridges, the level of environmental impairment
may be over estimated. This source of bias may be reduced by weighting the data
proportional to the length of the river segment comprised of all points closer to the
selected bridge than any other bridge (Figure 11a). Thus, the population mean level

of an environmental variable is estimated by
1 n

fiy = =D Wiy (19)
niz

where y; is the data collected at the bridge i, the weight w; = ¢;/L, ¢; is the length
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of the river segment comprised of all points closer to bridge ¢ than any other bridge,
and L is the total river miles of the target population. The precision of 1, can be

estimated by its sampling variance:

N —n)\ s2
var(ji,,) = — 20
(i) = (~—) (20)
where N is the total number of bridges in the population of bridges, n is the number

of bridges sampled, and

2.2 )
2 Do WiYi — Ny,
w n—1

S

The estimated mean (19) assumes that the bridge is representative of the river seg-
ment containing that bridge, and the corresponding variance (20) makes the further
assumption that the variable is constant over the length of that river segment (Figure
11b). So the sampling variance is likely to be underestimated.

If the lengths of the river segments vary considerably, then the sampling variance
of fi,, can be quite large. This sampling variance can be reduced by using an unequal
probability sample of bridges: Randomly locate points along the lengths of the rivers
and streams, and then select the bridge that lies closest to each of the selected points.
Bridges are sampled with replacement; that is, if a given bridge is selected more
than once, data collected by that bridge should be counted as many times as that
bridge is selected. Again, we shall assume that each bridge is representative of all
points along the length of the river closer to that bridge than any other bridge. Then
the population mean can be estimated by the sample mean 7, with corresponding
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Figure 11: Sampling Bridges. (a) The locations of nine bridges along the length of
a river. The river is partitioned into segments S1 to S9 as shown. A bridge will be
sampled if a random point falls in that bridge’s segment. (b) Assumed relationship

between the variable of interest and location along the length of the river.

variance estimate var(y) = s*/n, where s? is the sample variance. This estimate of
the population mean assumes that the bridge is representative of the river segment
containing that bridge, and the corresponding variance estimate does not take into

account variation along the length of that river segment.

The level of environmental impairment may vary with the suitability of locations
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for bridge construction, also resulting in biased estimates of the mean level of an envi-
ronmental variable. This source of bias may be reduced by using a stratified random
sampling design: The river segments associated with the bridges are partitioned into
m strata defined by their suitability for bridge construction. Thus each stratum will
consist of river segments that are roughly equally suitable for bridge construction.
River segments within each stratum are then laid out end to end, and n; points are
randomly selected along the total length of stratum ¢; i = 1,---m. Finally, select
the bridge closest to each of the selected points. Then the population mean can be
estimated by
1 m
[st = i ; Ly,

where 7, is the sample mean of selected bridges in stratum ¢, L; is the total length
of river segments in stratum i, and L is the total river miles of the system. The

corresponding variance estimate is

o 1 & L2s?
Var(:ust) - ﬁ Z n
=1 ?

where s? is the sample variance of selected bridges in stratum i. Again, the estimator
Iy, assumes that the bridge site is representative of the river segment containing
that bridge, and the corresponding variance estimator does not account for variation
within river segments.

Some portion of the lengths of rivers may be completely unsuitable for bridge
construction. This portion cannot be sampled at access points, and so, should be
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treated as a separate stratum to be sampled using one of the methods described in
Section 5.2.

The bridges themselves may have adverse effects their local environment, resulting
in overestimates of environmental impairment. This source of bias might be reduced
by sampling some random distance upstream from each bridge, instead of immediately
below or adjacent to them.

Regardless of what design is used to select the access points to be sampled, evi-
dence is required to demonstrate that the resulting sample yields unbiased estimates
of environmental parameters. This requires data collected from a probability-based
design, in which sites are selected from the water resource as a whole (e.g., using
methods such as described in Section ). Let fi, denote the estimated population
mean obtained from sampling at bridges, let fi, denote the estimated population
mean obtained from sampling along the water resource as a whole, and let var(ji,)
and var(fi,) denote the corresponding variances. Then the null hypothesis that sam-
pling at bridges yields an unbiased estimate of the population mean can be tested

using the test statistic
_ ﬁb _ //)’a
\/var(fi,) + var(ji,)

Under the null hypothesis, t is approximately t-distributed with n, + n, — 2 degrees

t

of freedom, where n, and n; are the number of observations from the two respective

samples. If estimates from access points are not significantly different from estimates
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obtained from the probability-based design over the resource as a whole, then sampling

at access points suffices. If not, then the bias can be estimated by
6 = //)’b - :aa'

Assuming that the two samples are independent, then the variance of the estimated

bias can be estimated by

~

var((3) = var(fi,) + var(fi)

This bias correction can then be applied to future data collected exclusively from
access points; that is, if i,, is an uncorrected estimate of the population mean obtained
from access point data, then a bias corrected estimate of the population mean is given
by

e = i = B,
with corresponding variance estimate

o~

(i) = var(i,) + var(3).

Note that this presumes that the same sampling design was employed, and assumes
that the bias does not change over time. It is recommended that the latter assumption
be checked periodically using data from a probability based design including non-
access points. A better approach would be to include both access and non-access
points in the design during each sampling interval. The allocation of sampling effort

89



between access and non-access points can be determined so as to obtain the most
precise estimates at minimum cost. Improved performance may also be achieved by

applying different bias corrections to different strata.

6 Retaining Information from Historical Data

Despite the advantages outlined above, managers of state water quality monitoring
programs are reluctant to implement probability-based sampling designs. Much of
this reluctance stems from the fear that information from the historical data base will
be lost. Therefore, probability-based sampling designs are not likely to be widely im-
plemented unless statistical approaches to combining data from judgment and prob-
ability sampling designs are available. Unfortunately, methods for combining such
data have received very little attention in the statistical literature. Overton, Young,
and Overton (1993) use sampling frame attributes to assign judgment sites to clusters
of similar probability sites. Judgment sites assigned to a given cluster are assumed to
be representative of that cluster, and are treated as though they were obtained from a
probability-based sampling design. However, the representativeness of the judgment
sites with respect to their assigned clusters is difficult to diagnose, and if false, the
combined data may yield biased estimates (Cox and Piegorsch 1996).

The following proposes an alternative approach to combining data from historical

judgment sample sites with data from new probability-based sample sites. This ap-
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proach requires an interval of overlap in which both historical judgment sites and new
probability-based sites are sampled. Then the spatio-temporal correlation between
the two sampling designs is exploited to predict what data would have been obtained
had a probability-based sampling design been implemented from the very beginning

of the monitoring program.

6.1 Space-Time Model

The following assumes that the data are a partial realization of a spatio-temporal
random process. In particular, assume that the data Z(s, t) at site s =(z, y) and time

t are realized from the model

Z(s,t) = By + Byza(st) + -+ + ﬂpxp(s, t) +e(s,t), (21)
where 3, 3y, - - -, 3, are model parameters, and £(s, t) is a zero-mean error term. The
explanatory variables x;(s,t), - - -, x,(s,t) may be functions of the spatial coordinates,

time, distances to known geographic features (e.g., the mouth of the river system),
or environmental variables such as water temperature, current, or turbidity.

Pairs of observations that are close together in space and time are likely to be
more similar to one another than pairs of observations that are far apart. This
spatio-temporal dependence can be modeled through the spatio-temporal correlation
function

p([lsy = sl , [ty — t2|) = corr{Z(s1, 1), Z(s2, 12)},
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which depends only on the distance ||s; — sq|| between the pair of sample sites s;
and ss, and the difference in sample times t; and t5. The correlation function takes
values between -1 and 1; positive values indicating positive spatio-temporal depen-
dence, while negative values indicate negative spatio-temporal dependence. Typi-
cally, the correlation function will be a decreasing function of both ||s; —sq| and
|t1 — t2|, asymptotically approaching zero as the spatial and temporal distances be-
tween the observations increase. The rate at which the correlation function approaches
zero determines the range of spatio-temporal correlation; correlation functions that
rapidly approach zero characterize processes where interactions occur only between
sites that are very close together, while correlations that slow approach zero charac-
terize processes where distant sites interact. Observations have a perfect correlation
of 1 with themselves so that p(0,0) = 1. However, there is often a discontinuity at
zero when the correlation function is plotted against distance in space or time. This
discontinuity is the so-called nugget effect, and is typically the result of measurement
error or small-scale sampling variation.

Alternative measures of spatio-temporal dependence in the data include the co-

variance function

C(h,r) = a*p(h,7)

and the variogram

2v(h,r) = var{Z(s;t) — Z(s+hit+r)}
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= (1= p(h,1)),

where 02 is the variance of the data. The importance of the variogram comes from

the observation that nonparametric estimates of the variogram are less biased than

nonparametric estimates of the covariance or correlation functions (Cressie 1991).
Typically, the variogram is assumed to take a parametric form, such as given by

the exponential model

0; (h,r)=1(0,0)
2y(h,r) =

co + ce[l —exp{=3(h/ks +r/k)}]; (h,7) # (0,0)
The parameter ¢ is the nugget effect, x, is the range of spatial correlation, and &, is
the range of temporal correlation. The nugget effect ¢y can be interpreted to be the
variance due to measurement error plus microscale sampling variance. Pairs of sites
located distances further than x, apart or observations collected at times further than

k; are negligibly correlated. The variance o2 = %(co + ce).

A variety of methods are available for estimating variogram parameters; for a
review, see Cressie (1991, Section 2.6). The weighted least squares estimate requires
no distributional assumptions, and is particularly well suited to fitting models to

large spatio-temporal data sets. It involves the fitting of a parametric variogram

model 27(h,r; ) to the method of moments estimator of the variogram

1

2(h,r) = 5

> [E(si t) = E(sj,t + 1), (22)
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where the sum is over all pairs of observations collected at sites approximately distance
h apart and at sample times r apart, and N, is the number of such pairs of sites.
The values €(s;,t) are residuals from a multiple regression of the data against the
explanatory variables x1(s,t),---,z,(s,t). The weighted least squares estimator of

the parameter 0 is then obtained by finding 6 that minimizes

|7 hjvrk (hj’rk§0)|2
Z Z var{y(h;, )} ’

where the sum is over all spatial and temporal lags at which 25(h,r) is computed,

and

var{3(h;, )} = 2{2y(h,;0)}*/Ni,.

6.2 Spatio-Temporal Prediction

Suppose that fixed sites sy, ---,s, are selected according to an arbitrary judgment
sampling design, and that the variable of interest is observed at those sites at time ¢ =

1,---,T. Thus, the judgment sample data are {Z(s;,t) :i=1,---,n;t=1,---,T}.

At time t = < T, a probability-based sampling design is implemented, selecting
sites uy,---,u,,. Data are then collected at times ¢t = , 4+ 1,---, so that the
probability sample data are {Z(w;,t) :i=1,---,m;t = ,---,T}. More generally,

new probability sample sites may be selected in each sample interval, or a serially
alternating design may be implemented. For ease of notation, however, we shall use
a permanent station sample design here (see Section 3.3).
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Our objective is to back predict what data would have been obtained had a
probability-based sampling design been implemented from the very beginning of the
monitoring program; that is, predict the unobserved values of { Z(u;,t) : i =1,--- ,m;
t=1,---, —1}. Kriging is perhaps the most popular method of spatial predic-
tion (Cressie 1989), and can be easily extended to spatio-temporal prediction. This
popularity owes much to its stability with respect to violations of model assump-
tions (e.g., Cressie and Zimmerman 1992). In particular, kriging is not sensitive to
whether or not a spatial trend is included in the model (Journel and Rossi 1989), or
to misspecification of the variogram model (Stein and Handcock 1989).

If the complete data base were to be used, spatio-temporal prediction would re-
quire the solution of nT'+m(T — +1)+p+1 linear equations for the same number
of unknowns. This may not be practical for a reasonably large data set. Therefore,
the following spatio-temporal predictor shall only use data from the judgment sample
at time ¢, and data from the probability design at time  to predict the unobserved
values of the data from the probability sample at time ¢. Then the universal kriging

predictor is

Z(uk,t) = Z)‘lzZ(Szyt) +ZA2¢Z(U¢, ), (23)
i—1 i—1
where the coefficients Ai1,- -+, An, Ao1, - -+, Aoy, are selected to minimize the mean

squared prediction error subject to the constraint that the resulting predictor be

unbiased for the true value. These coefficients can be obtained by solving the linear
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system of n +m + p + 1 equations

p
ZAW |si —s;l[,0) +ZAM lw; —s5ll,  —t) + &+ D &uilsy,t) = v (lls; —wll,0);
=1 =1

J = 17' , 1,
n m p
Doy (i —will,0) + > Aoy (lwi —wyll, =) + &+ &wiu,t) = y(lu —wl, —1);
=1 i=1 -
J = 17' , M,

dAi+Dd =1,
i=1 i=1

ZAlzx‘y(S»“ Z 7,!17] 111, ) :xj(uknt)) J: 17-..’])7
=1

=1

for the n +m + p + 1 unknowns Aiq, -+, Ain, a1, +5 Ao, §05 &1, -+ -, €,,- This system
of equations is called the kriging equations. The precision of the resulting kriging

predictor is described by the kriging variance
m p
?(ug, t ZMN [ =il ,0) + D Aoy (lwe —will, =) + & + D &, t)
i=1 i=1

6.3 Simulation Model

Spatio-temporal data comprised of observations from both judgment and probability
sampling designs are not available. Therefore, we must rely on simulation to assess
the efficacy of the above approach to combining. In particular, data shall be simulated

from the spatio-temporal random model

Z(s,t) = agf(t) + asp(s) + ara(t) + asB(s, t) + ac(s, t). (24)
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The function f(t) models the background temporal trend (Figure 12). The spatial

random field p(s) has unit variance and spatial correlation function

ps(h) = exp{—3h/k}

with a long range of spatial dependence of xk, = 200 km; for the current application,
it can be considered to model the spatial trend in the data (Figure 13). Likewise, the

temporal process «(t) has unit variance and temporal correlation function

py(r) = exp{—3r/r:}

with a long random of temporal correlation of k; = 3000 years. The spatio-temporal
random process (s, t) allows the temporal trend to depend on location; it has unit

variance and spatio-temporal correlation function

po(h,1m) = exp{—3h/ks — 3r/kK}

with relatively short ranges of spatial and temporal correlation set at x; = 20 km
and x; = 10 years. All three of the above processes were simulated using the spectral
method (Shinozuka 1971; Mejia and Rodriguez-Iturbe 1974). The error &(s,t) is
Gaussian white noise with unit variance, and models the effects of measurement error.
It was simulated using the polar method (Ripley 1987, p. 62).

The relative influence of the four component processes on the resulting data can

be fixed by varying the levels of the coefficients as, a;, ag, and a.. If we set ag = 0,
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Figure 12: Temporal Trend.

then the spatial and temporal effects are additive, and the sampling bias attributed
to the judgment sampling design can be simply removed by subtraction. It seems
more likely that temporal trends occurring in the data may depend on location, and
so, sampling bias cannot be simply removed by subtraction.

Two samples of data are generated. A total of 100 probability sites uy, - - -, uigg
are obtained a simple random sample over a 100 x 100 km region. For the judgment
sample, an additional 100 sites sy, - - - , 8199 are independently selected from the density

proportional to

p(s) = exp{ By + B1(s)}
14 exp{By + Byu(s)}’

which depends on the realization of the first component of our simulation model (24).
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Figure 13: Spatial Trend.
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Note that if 3; = 0, then we obtain another simple random sample. For 3; > 0, the
judgment sample is biased in favor of high data values, while for 3; < 0, the judgment
sample is biased in favor of low data values. Data for both designs is generated for
years t = 1,---,50, but it is assumed that the probability-based points are only

observed for years ¢t = 41,---,50.

6.4 Effect of Sampling Bias

The geostatistical methods described in Sections 6.1 and 6.2 are carried out condi-
tional on what sites are actually included in the sample, and thus, ignore the effects
of sampling variation on variogram estimates and spatio-temporal predictions. In
particular, the potential effects of sampling bias in the judgment sampling design are
not considered. These effects shall be thoroughly explored under the following values
of the model parameters: ay = 5, a; = 10, a; = 3, ag = 3, a. = 0.5, B, = —1, and
B, = 4. Taking 3, > 0 yields a judgment sampling design biased in favor of large val-
ues. In Figure 14, the sample means for both designs are plotted against time. Data
from the judgment sampling design show an increasing trend over time (triangles),
with a large jump in mean level occurring in year 31. The probability sites were only
sampled after year 41, but, as expected given that $; > 0, have lower means than
the judgment sites (circles). Our objective is to predict the unobserved values for the

probability-based design from years 1 to 40.
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Figure 14: Annual means for judgment (triangles) and probability (circles) sample
sites.

The data from the two designs were fitted separately to the planar trend model
Z(I7 Y, t) =opt+or+ QoY + 6(1’, Y, t)a

where Z(x,y,t) denotes the data collected at coordinates (z,y) at time ¢, and e(x, y, t)

is the model error. Ordinary least squares estimates yield the fitted models
Z(x,y,t) = 15.7 4+ 0.0701x — 0.0155y

for the judgment design, and
Z(x,y,t) = 18.2 4 0.0867 — 0.0269y

for the probability-based design. Notice that the estimated partial slopes are of lower
magnitude under the judgment design than under the probability-based design.
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The method of moments estimator 27,(h) for the spatial variogram 2v,(h) =
27v(h,0) (expression (22)) was computed separately for each of the two designs. The
results suggest that the biased judgment sampling design also yields a biased estimate
of the variogram. For both designs, 27,(h) increases rapidly to an asymptote with
increasing h (Figure 15). However, the asymptote under the judgment sampling
design appears to be larger than that under the probability-based design. Weighted
least squares estimation was used to fit the exponential variogram model

27,(h) = 20%(1 — exp{—3h/k,})
to 27,(h) for each design, where o2 is the variance of the data, and , is the range
of spatial correlation. The two designs yielded nearly identical estimated ranges of
spatial correlation; ks = 31.7 km for the probability-based sites, and ks = 30.6 km for
the judgment sites. However, the judgment sites show a higher variance (6% = 12.02)
than the probability sites (52 = 10.45).

Under the assumptions of the model, the method of moments estimator of the
temporal variogram 27,(r) = 2v(0,7) (expression 22) remains unbiased even when
a biased sample is obtained. Therefore, the estimate of the temporal variogram
was obtained by pooling all of the observed data. The temporal variogram 27,(r)
increases to an asymptote with increasing time lag r (Figure 16). Weighted least

squares estimation was used to fit the exponential variogram model

27,(r) = 20%(1 — exp{—3h/k})
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Figure 15: Fitted spatial variogram models for probability-based (solid line fit to the

circles), and judgment (dashed line fit to the triangles) sample sites.

to 29,(r), where o2 is the variance of the data, and x; is the range of temporal
correlation. The estimated range of temporal correlation was k; = 12.2 years.

The universal kriging predictor (23) was computed for the unobserved data at the
probability sample sites between years 1 and 40. Then, within each of these years,

the mean of the predicted values was computed using

SIH

i Z(u.t) (25)

where Z (uy, ) is given by expression (23). Figure 17 compares these mean predicted
values (x’s) with the unobserved mean values (open circles) of the probability sites

in years 1 to 40. Note that the means of the predicted values form a smoother curve
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Figure 16: Fitted temporal variogram model.

than either the observed means of the judgment sample sites, or the unobserved
means of the probability sample sites. This is not unexpected given that kriging is
a smoothing algorithm. The means of the predicted values do tend to fall below
the observed means from the judgment sample sites (triangles) indicating that the
proposed procedure does reduce the bias attributed to the judgment sampling design.
Moreover, the means of the predicted values successfully pick up the discontinuity in
the data at year 31. However, the means of the predicted values also tend to fall above
the unobserved means of the probability sample sites (open circles), which they were

intended to predict. Thus, the proposed procedure still yields biased predictions.
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Figure 17: Comparison of predicted (x’s) and unobserved (open circles) sample means

for probability sites in years 1 to 40. In addition, observed annual means for judgment

(triangles) and probability (open circles) sample sites are given.
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6.5 Bias Reduction

The observed positive bias is not unexpected given that the judgment sample sites
are biased in favor of high data values, and given the role that the judgment sample
sites play in predicting unobserved past values at the probability sample sites. The
magnitude of this bias can be estimated using data from those years in which obser-
vations from both designs are available. This can be accomplished by predicting the

observed data from the probability based design using
uk; Z)\lz Szat)+z)\212(uut+])a t = 7"'>T_17

where the coefficients Ai1,- -, An, Aa1, - -+, Aoy, are selected to minimize the mean
squared prediction error subject to the constraint that the resulting predictor be
unbiased for the true value of the data. This predictor uses data from the judgment
sampling at time ¢, and data from the probability-based sampling design at time ¢+ j
to predict the data for the probability-based design at time ¢. Then the prediction

bias of Z;(uy, t) is given by
bj(ur, t) = Z;(ug, t) — Z;(uy, t).

The subscript j is included in Z;(uy,t) and bj(uy,t) to take into account that the
prediction bias may depend on the number of time lags j in the past we are attempting

to back predict the probability-based data. The mean prediction bias in year ¢ under
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a predictor using probability based data j years in the future is then given by

Table 7 gives the mean prediction bias in year ¢t under predictors using probability
based data j time lags in the future. Notice that the prediction bias depends strongly
on what year’s data we are attempting to predict. However, this is of little use for
estimating the mean bias in years 1 to 40. Within each year, the bias appears to
increase somewhat with increasing time lag. This suggests that the magnitude of bias
in the proposed predictor will increase as we attempt to back predict the probability
data further into the past.

To quantify the relationship between mean bias and time lag, the general linear
model

bjt:/L‘FOdj—*—ﬁt"—Sjt

was fit to the observations in table 7, where p is the over mean o is the effect of time
lag j, and 3, is the effect of year t. Then the mean bias for time lag j was adjusted
to take into account variation among years using the general linear models procedure
of SAS (SAS Institute 1985). The adjusted mean bias is then plotted against time
lag as shown in Figure 18. Notice that the adjusted mean bias appears to increase
linearly with increasing time lag, further indicating the bias in the proposed predictor

increases as we attempt to back predict the probability data further into the past.
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lag 7

Year 1 2 3 4 5) 6 7 8 9
41 1428 1.488 1.515 1.515 1.517 1.542 1.567 1.566 1.579
42 1.118 1.149 1.144 1.145 1.176 1.203 1.201 1.215

43 0.509 0.487 0.481 0.514 0.542 0.536 0.551

44 0.518 0.517 0.561 0.596 0.589 0.606

45 1.015 1.059 1.093 1.077 1.093

46 0.927 0972 0.950 0.969

47 0.717 0.675 0.693

48  0.691 0.725

49 1.097

Table 7: Mean bias as a function of year in which probability data are predicted and

time lag.
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Figure 18: Adjusted mean bias plotted against time lag.

Fitting a linear model to the data in Figure 18, we obtain the following estimate for
the bias at time lag j:

b; = 0.87989 4 0.014164j.

Using the expression above, a bias corrected predictor for the mean of the proba-

bility sample sites in year ¢ is given by

= i, — 0.87989 — 0.014164 x (41 — t).

Figure 19 compares bias corrected predicted mean values (x’s) with the unobserved
mean values (open circles) of the probability sites in years 1 to 40. Comparing the
results in Figure 19 with those previously obtained in Figure 17, notice that the bias
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correction was successful in reducing the bias in predicted values. However, there
is a suggestion of a small overcorrection, with biased corrected predictions falling
slightly below the unobserved means that they are attempting to predict. That the
predicted values fall well below the unobserved means in the first nine years can be
attributed to the observation that the judgment sites show very little sampling bias in
those years. This points to one of the shortcomings of the proposed approach to back
prediction; it assumes that the sampling bias shows no temporal trends. Nevertheless,
it is interesting to note that the predicted values track the trend function in Figure

12 very well.

6.6 Conclusions and Recommendations

The above approach exploits the spatio-temporal correlation with historical data from
the judgment sampling design to back predict the unobserved means at probability
sample sites. To compensate for the sampling bias of the judgment sample, a bias
correction is required. This approach requires the careful modeling of any spatial
trends that may occur over the study region, the spatio-temporal correlation structure
in the data, and the bias resulting from the judgment sample design. To ensure
that model assumptions are satisfied, appropriate diagnostic procedures should be
implemented.

Bias correction requires a period of overlap in which observations are collected
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Figure 19: Comparison of bias corrected predicted (x’s) and unobserved (open circles)

sample means for probability sites in years 1 to 40. In addition, observed annual means

for judgment (triangles) and probability (closed circles) sample sites are given.
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from both sampling designs. Further research is required to determine how long that
period of overlap should be. The bias correction also assumes that the sampling
bias of the judgment design shows no temporal trends. In practice, it is not possible
to determine that validity of this assumption. Improved predictions could poten-
tially be obtained if sites from both the probability-based and judgment sampling
designs are partitioned into strata selected to minimize sampling bias of judgment
sites within strata. Such strata might be selected using the methods of Overton et
al. (1993). Stratum identification can then be used as explanatory variables in the
spatio-temporal model (21), not only improving the precision of predictions, but also

reducing the effects of sampling bias.
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