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a b s t r a c t  

We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, 
namely T+M simulator. Modeling of the vertical fracture development involves continuous updating 
of the boundary conditions and of the data connectivity, based on the finite element method for 
geomechanics. The T+M simulator can model the initial fracture development during the hydraulic 
fracturing operations, after which the domain description changes from single continuum to double or 
multiple continua in order to rigorously model both flow and geomechanics for fracture–rock matrix 
systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, 
accounting for thermo-poro-mechanics, treats nonlinear permeability and geomechanical moduli 
explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully 
account for leak-off in all directions during hydraulic fracturing. 

We first test the T+M simulator, matching numerical solutions with the analytical solutions for 
poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of 
various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation 
of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared 
with fast injection, when the same amount of fluid is injected. Changes in initial total stress and 
contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, 
and the geomechanical responses are still well-posed. 

Published by Elsevier Ltd. 
1. Introduction 

Hydraulic fracturing is widely used in reservoir engineering 
applications to increase production by enhancing permeability 
(Zoback, 2007; Fjaer et al., 2008). Injection of fluid generates high 
pressure around wells, which can create a fracture normal to the 
direction of the smallest magnitude of the principal total stresses. 
The creation of the fracture, arising from tensile and shear failures, 
significantly improves permeability, and changes heat and fluid 
flow regimes. For example, hydraulic fracturing is applied to 
geothermal engineering because the fractured geothermal reser­
voirs can increase heat extraction from geothermal reservoirs 
(Legarth et al., 2005; Rutqvist et al., 2008). In reservoir engineer­
ing, gas production in shale/tight gas reservoirs typically hinges on 
hydraulic fracturing because of the extremely low permeability of 
such reservoirs (Freeman et al., 2011; Vermylen and Zoback, 2011; 
Fisher and Warpinski, 2012). Horizontal wells along with hydraulic 
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fracturing are typically applied to maximize production of gas in 
the shale gas reservoirs (Freeman et al., 2011; Vermylen and 
Zoback, 2011). Longuemare et al. (2001) studied fracture propaga­
tion based on the PKN fracture model, associated with a 3D two 
phase thermal reservoir simulator. Adachi et al. (2007) reviewed a 
brief history of the models of hydraulic fracturing in reservoir 
engineering, which were developed before the stage of full 3D 
hydraulic fracturing simulation. According to Adachi et al. (2007), 
two models from plane strain geomechanics, namely PKN model 
(Perkins and Kern, 1961) and KGD model (Nordren, 1972), were 
developed at early times, assuming simple fracture geometries. 
Then, the pseudo-3D (P3D) model and the planar 3D model (PL3D) 
model were proposed for more realistic fracture shapes than those 
of the PKN and KGD models. The four models provide low 
computational cost, but they cannot properly simulate the cases 
of hydraulic fracturing tightly coupled to flow, such as in shale gas 
reservoirs. Hydraulic fracturing in the shale gas reservoirs requires 
rigorous modeling in fracture propagation and fluid flow, such as 
tightly coupled flow and geomechanics. 

Several studies to develop algorithms for hydraulic fracturing 
simulation have been made in reservoir or geothermal engineering. 
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Ji et al. (2009) developed a numerical model for hydraulic fractur­
ing, considering coupled flow and geomechanics, where the algo­
rithm is based on the dynamic update of the boundary conditions 
along the fracture plane, fundamentally motivated by the node 
splitting. Later, Nassir et al. (2012) partially incorporated shear 
failure to hydraulic fracturing, although poromechanical effects are 
not fully considered. Dean and Schmidt (2009) employed the same 
fracturing algorithm in Ji et al. (2009) for tensile fracturing, while 
using different criteria based on rock toughness. Fu et al. (in press) 
used the node-splitting method when material faces tensile failure, 
based on the elastic fracture mechanics (Henshell and Shaw, 1975; 
Camacho and Ortiz, 1996; Ruiz et al., 2000). The algorithm by Ji et al. 
(2009) can only consider the vertical fracturing, but can easily be 
implemented to the finite element geomechanics codes, changing 
the boundary conditions and the corresponding data connectivity. 
Furthermore, it can easily couple flow and geomechanics, account­
ing for the leak-off of the injected fluid to the reservoirs. On the 
other hand, the method by Fu et al. (in press) is not restricted to the 
vertical fracturing. However, fracturing in 3D problems causes high 
complexity in code development, and massive modification of the 
data connectivity is very challenging, compared with the algorithm 
by Ji et al. (2009). Moreover, the method by Fu et al. (in press) only 
allows fluid flow along gridblocks, so the leak-off of the injected 
fluid to the gridblocks cannot properly be considered. 

The enhanced assumed strain (EAS) and extended finite ele­
ment methods (XFEM) have been studied in the computational 
mechanics community in order to model strong discontinuity in 
displacement (e.g., Borja, 2008; Moes et al., 1999). These methods 
introduce discontinuous interpolation functions, and theoretically 
do not require the remeshing when applied to the modeling in 
fracture propagation. However, even though the mesh is not 
updated, the applications in the full 3D problems are still very 
challenging, requiring huge complexities and coding effort, 
because the fracture shape in 3D is at least two-dimensional, 
while 2D problems have mainly been studied, where the fracture 
shapes in 2D are simply a line. Furthermore, the coupling of flow 
and geomechanics by the EAS method or XFEM has not extensively 
been investigated. For example, Legarth et al. (2005) applied XFEM 
to hydraulic fracturing, but the application potentially has the 
same difficulties as the method by Fu et al. (in press). Ji et al. 
(2009) showed significant differences between the results with 
and without poroelastic effects in hydraulic fracturing. The por­
omechanical effects can be significant for low permeable and high 
compressible reservoirs with low compressible fluid, such as water 
injection (Kim et al., 2011c, 2012a). 

From the aforementioned characteristics of the algorithms of 
hydraulic fracturing, we develop a coupled flow and geomechanic 
simulator of hydraulic fracturing in this study, using a similar 
method of Ji et al. (2009) for tensile fracturing. In addition, we 
employ a tensile failure criterion that can also account for shear 
stress effects as well as normal stress (Ruiz et al., 2000). We also 
include shear failure with Drucker–Prager and Mohr–Coulomb 
models (e.g., Wang et al., 2004), and can simultaneously account 
for tensile and shear failures. 

Creation of the fractures by tensile or shear failure implies that 
two different porous media, such as fracture and rock matrix, coexist 
at a continuum level, and thus the double or multiple continuum 
methods are desirable for more accurate modeling in not only flow-
only but also coupled flow and geomechanics simulation (Barenblatt 
et al., 1960; Pruess and Narasimhan, 1985; Berryman, 2002; Kim 
et al., 2012b). The developed simulator can consider thermo-poro­
mechanical effects in pore volume more rigorously in the multiple 
porosity model, as described in Kim et al. (2012b). We consider  the
permeability change in the fracture(s), motivated by the cubic law 
(Witherspoon et al., 1980; Rutqvist and Stephansson, 2003). Then we 
take verification tests for poromechanical effects, the widths of static 
fractures, and fracture propagations. We also perform several 3D 
numerical simulations in shale gas reservoirs, and investigate evolu­
tion of flow and geomechanical properties and variables such as the 
dimension and opening of the fractures, fluid pressure, and effective 
stress. 
2. Mathematical formulation 

2.1. Governing equation 

Hydraulic fracturing requires the modeling of coupled fluid-
heat flow and geomechanics rigorously. The governing equation 
for fluid flow is written as follows: 

where the superscript k indicates the fluid component. dðOÞ =dt means 
the time derivative  of a physical  quantity  ðOÞ relative to the motion of 
the solid skeleton. mk is mass of component k. fk and qk are its flux 
and source terms  on the domain  Ω with a boundary surface Γ, 
respectively, where n is the normal vector of the boundary. 

The fluid mass of component k is written as 

km ¼ ∑ϕSJ ρJX
k þ δSð 1−ϕÞ ρRϒG; ð 2ÞJ
 

J
 

where the subscript J indicates fluid phases. ϕ is the true porosity, 
defined as the ratio of the pore volume to the bulk volume in 
the deformed configuration. SJ, ρJ , and XJ

k are saturation, density 
of phase J, and the mass fraction of component k in phase J, 
respectively. δS is the indicator for gas sorption. δS ¼ 0:0 for non­
sorbing rock such as tight gas systems, while δS ¼ 1:0 for gas­
sorbing media, such as shales (Moridis et al., 2012). ρR is the rock 
density, and ϒ G is the mass of sorbed component per unit mass 
of rock. 

The mass flux term is obtained from 

fk ¼ ∑ð wk þ JkJ Þ ; ð 3ÞJ
 
J
 

where wk
J and JkJ are the convective and diffusive mass flows of 

component k in phase J, respectively. For the liquid phase, J¼ L, wk 
J 

can be given by Darcy's law  as  

k ρJkrJ wJ ¼ Xk
J wJ ; wJ ¼ − kpð Grad pJ −ρJ gÞ ; ð 4Þ 

μJ 

where kp is the absolute (intrinsic) permeability tensor. The terms μJ , 
krJ, and  pJ are the viscosity, relative permeability, and pressure of fluid 
phase J, respectively. g is the gravity vector, and Grad is the gradient 
operator. Depending on the circumstances, we use more appropriate 
flow  equations such as the  Forchheimer  equation (Forchheimer, 
1901), which incorporates laminar, inertial and turbulent effects. In 
this case, Darcy's law is written with scalar permeability as 

where χJ is the turbulence correction factor (Katz, 1959). 
For the gaseous phase, J¼ G, wk

G is given by 

where kK is the Klinkenberg factor (Klinkenberg, 1941). The diffusive 
flow JkJ is described as 

JkJ ¼ −ϕSJ τJ Dk
J ρJ Grad Xk

J ; ð 7Þ 

where Dk and τJ are the hydrodynamic dispersion tensor and 
tortuosity, respectively. 

J 

d
dt

Z
Ω
mk dΩþ

Z
Γ
fk � n dΓ ¼

Z
Ω
qk dΩ; ð1Þ

wJ ¼−ρJ
2ðGrad pJ−ρJgÞ

μJ
kpkrJ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μJ

kpkrJ

� �2

þ4χJρJ jGrad pJ−ρJg ;j

r ð5Þ

Xk
G ¼ Xk

GwG; wG ¼− 1þ kK
PG

� �
k
ρGkrG
μG

ðGrad pG−ρGgÞ; ð6Þ
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Fig. 1. Left: a schematic diagram that represents a fracture–matrix system after 
failure. Right: a conceptual diagram of the multiple interacting continuum (MINC) 
model, as an example of the multiple porosity model (Pruess and Narasimhan, 
1985). In the MINC model, fluid flows through a high permeable material, such as 
the fracture, over the domain, while the other materials store fluid and convey it to 
the high permeable material. 

 

 

The governing equation for heat flow comes from heat balance, 
written as 

where the superscript H indicates the heat component. mH , fH          , and 
qH are heat, its H 

flux, and source terms, respectively. The term m is 
the heat accumulation term, and is expressed as 

where T, CR and T0 are temperature, heat capacity of the porous 
medium, and reference temperature, respectively. eJ and eS;G 

denote specific internal energy of phase J and sorbed gas, respec­
tively. The heat flux is written as 

fH ¼−KH Grad T þ∑hJ wJ ; ð10Þ 
J 

where KH is the composite thermal conductivity of the porous 
media. The specific internal energy, eJ, and enthalpy, hJ , of compo­
nents k in phase J, respectively, become 

e k
J ¼∑Xke k k 

J J ; hJ ¼∑XJ hJ : ð11Þ 
k k 

More detailed descriptions of the governing equations for fluid 
and heat flow are shown in Moridis et al. (2012). For the boundary 
conditions for the flow problems, we consider the boundary 
conditions pJ ¼ pJ (prescribed pressure) on the boundary Γp, and 
wJ O n ¼wJ (prescribed mass flux) on the boundary Γf , where 
Γp∩Γf ¼∅, and Γp∪Γf ¼ ∂Ω. The boundary conditions for heat 
flow are T ¼ T (prescribed temperature) on the boundary ΓT , and 

H
f H  O n ¼ f (prescribed heat flux) on the boundary ΓH , where 
ΓT ∩ΓH ¼∅, and ΓT ∪ΓH ¼ ∂Ω.
 

The governing equation for geomechanics is based on the
 
quasi-static assumption (Coussy, 1995), written as 

Div r þ ρbg ¼ 0; ð12Þ 
where Div i s  the divergence operator.  r is the total stress tensor, and 
ρb is the bulk density. Note that tensile stress is positive in this study. 
The infinitesimal transformation is used to allow the strain tensor, ϵ, 
to be the symmetric gradient of the displacement vector, u: 

ϵ 1¼ 2ðGrad
T u þ Grad uÞ: ð13Þ 

The boundary conditions for geomechanics are as follows: u ¼ u, 
given displacement, on a boundary Γu, and  r O n ¼ t, traction on a
boundary Γt , where  Γu∪Γt ¼ ∂Ω, the boundary over the domain, and 
Γu∩Γt ¼∅. The initial total stress satisfies the mechanical equili­
brium for given boundary conditions. 

Note that the boundary conditions of geomechanics in hydrau­
lic fracturing are not prescribed but dependent on the solutions of 
geomechanics (i.e., nonlinearity). Conventional plastic mechanics 
such as Mohr–Coulomb failure yields material nonlinearity while 
the boundary conditions are still prescribed (Simo and Hughes, 
1998). On the other hand, geomechanics of hydraulic fracturing in 
this study does not yield material nonlinearity while nonlinearity 
lies in the boundary conditions. 

2.2. Constitutive relations 

Gas flow within homogeneous rock can be modeled using 
single porosity poromechanics, extended from Biot's theory 
(Coussy, 1995). However, when failure occurs and fractures are 
created, we face local heterogeneity because fractures and rock 
matrix coexist. In this case, it is desirable to use double or multiple 
porosity models, which allow local heterogeneity, particularly for 
low permeable rock matrix, as shown in Fig. 1. We employ the 
generalized formulation that can be used for the non-isothermal 

d
dt

Z
Ω
mH dΩþ

Z
Γ
fH � n dΓ ¼

Z
Ω
qH dΩ; ð8Þ

mH ¼ ð1−ϕÞ
Z T

T0

ρRCR dT þ∑
J
ϕSJρJeJ þ δSð1−ϕÞρReS;GϒG; ð9Þ
multiphase flow and multiple porosity models, described as (Kim 
et al., 2012b) 

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflδr′ ffl{
δr ¼Cup : δðϵ−ϵ Þ−bn 

p l;J δpl;J 1−K b~ lδT1; bn |fflffl dr l;J ¼ −Kffl{zfflfflffl} dr ðbSJ Þl; ð14Þ
ϵe

    1 ηk η αη
 ~¼ ; Cup ¼ Kdr Ck; bl ¼− ; bl ¼ 3ðαT ηÞl; 15

K K K k K l
ð Þ

dr k 

δζ n

l;J −δϕ
 

l;J δε  p 
¼ bl;J v;e þ L−1 δp D δT  ð Þ |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflð Þ l;J;m;I m;I − l;J;m m; 16ffl}

δζðl;JÞe 

~ðS−sJ δmJ Þl ¼ −blKdrδεv−Dl;m;I δpm;I þ D~ l;mδTm; ð17Þ 

δκl ¼−Hl O δξl; ð18Þ 

where the subscripts e and p denote elasticity and plasticity, 
respectively, and double indices indicate summation. 1 is the 
rank-2 identity tensor. ϵe and ϵp are the elastic and plastic strains, 
respectively. Kdr and Cup are the upscaled elastoplastic drained bulk 
and tangent moduli at the level of a gridblock, respectively. αl is the 
Biot coefficient of the subelement l (i.e., αl ¼ 1−Kl=Ks, where K s is 
the intrinsic solid grain bulk modulus). αT is the thermal dilation 
coefficient, ηl is the volume fraction of the subelement l, and  Kl is 
the drained bulk modulus of the subelement l. ζ l;J d ϕ l;J p 

are 
e 
an the 

elastic and plastic fluid contents for the mat
ð
eria

Þ
 l l an

ð
d

Þ
 phase J, 

respectively. δζ l;J δ ρ
 
¼ ð m= Þð Þe l;J , wherem ðl;JÞ is the fluid mass of phase J 

within the subelement l. L ¼ fL fil;J;m;Ig is a positive-de nite tensor, 
extended from the Biot modulus of single phase flow. S is the total 
entropy, and sJ is the internal entropy per unit mass of the phase J 
(i.e., specific entropy). κ l and ξl are the internal stress-like and strain-
like plastic variables for material l, respectively. Hl is a positive 
definite hardening modulus matrix for material l. D ¼ fDl;m;I g is 
determined by coupling between fluid flow and heat transfer, 
regardless of geomechanics, and D~  D ~¼ f l;mg is the heat capacity term. 
The off-diagonal terms of D and D~  are typically taken to be zero.
Then, the diagonal terms of D and D~  are determined by 3αsl;I and 
ðCd=TÞl, respectively. 3αsl;I is the thermal dilation coefficient related 
to solid grain and phase I of the subelement l, and  Cd is the total 
volumetric heat capacity. 

For ϕðl;J  Þp , we 
 

take (Armero, 1999) 

δϕðl;JÞp 
¼ bn 

l;J δεv;p: ð19Þ 

L for single phase flow with a fracture–rock matrix (double porosity) 
system can be written in a matrix form, when the off-diagonal terms 
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Fig. 2. A schematic diagram for a planar fracture. Fluid pressure acts as traction on 
the fractured area. Effective normal stress, tn, mainly induces tensile failure and the 
fracture opening in hydraulic fracturing. Effective shear stresses, tt and ts, may also 
contribute to tensile failure in hydraulic fracturing. 
are taken to be zero, as 

where NF and NM are the  inverse of  the Biot  moduli,  MF and MM , for  
the fracture and rock matrix media, respectively (i.e., NF ¼ 1=MF and 
NM ¼ 1=MM , where  Mf ¼ ϕcf þ ðαf −ϕÞ=Ks and cf is the intrinsic 
fluid compressibility). The subscripts F and M indicate the fracture 
and rock matrix, respectively. More details of the formulation are 
described in Kim et al. (2012b). 

Here, we can relate the above formulation to the porosity used 
in reservoir simulation, Φ, called Lagrange's porosity or reservoir 
porosity (Settari and Mourits, 1998; Tran et al., 2004). Φ is defined 
as the ratio of the pore volume in the deformed configuration to 
the bulk volume in the reference (typically initial) configuration. 
Specifically, for single phase flow 

δml ¼ ρlΦηlðcf δpf −cT δTÞ þ ρJ ηlδΦ; 

1 dρf 1 dρfwhere cf ¼ ; cT ¼− ; ð21Þ 
ρf dpf ρf dT 

where the subscript f means fluid. cT is the thermal expansivity of 
fluid. Comparing Eq. (21) with Eq. (16), we obtain 

where sv is the total (volumetric) mean stress. 
In this study, we neglect the heat contribution directly from 

~geomechanics to heat flow, ignoring the term related to −blKdr δεv 

of Eq. (16) (i.e., one-way coupling from heat flow to geomecha­
nics). This assumption is justified when heat capacity of material 
or fluid is high, or direct heat generation from deformations is 
negligible (Lewis and Schrefler, 1998; Kim et al., 2012a). 

Note that the double porosity model is used initially for 
naturally fractured reservoirs, while, in this study, we change the 
single porosity model into the double porosity during simulation 
dynamically when a material faces plasticity. Thus, for the natu­
rally fractured reservoirs, Cup and Kdr at a gridblock are obtained 
from the upscaling from given properties of subelements such as 
fracture and rock matrix materials. Accordingly, the return map­
ping for elastoplasticity is performed at all the subelements (Kim 
et al., 2012b). 

On the other hand, in this study, Cup and Kdr are directly 
obtained from the elastoplastic tangent moduli at a gridblock 
(global) level, not the subelements, while we need to determine 
the drained bulk moduli of the fracture and rock matrix materials 
for the double porosity model, followed by the coupling coeffi­
cients. To this end, we assume that the rock matrix has the same 
drained bulk modulus as that of the single porosity material before 
plasticity (i.e., elasticity), because the rock matrix is undamaged 
(Kim and Moridis, 2012). Then, from Eq. (16), the drained bulk 
modulus of the fracture can be determined as 

KdrKMKf ¼ ηf : ð23Þ
KM −Kdr ð1−ηf Þ 

Considering Kdr and Kf to be positive for wellposedness, the 
volume fraction of the fracture, ηf , has the constraint as 

KMηf 41− : ð24Þ
Kdr 

L−1 ¼
ηFNF 0
0 ηMNM

" #
; ð20Þ

δΦl ¼
α2l
Kl

þ αl−Φl

Ks

 !
δpf þ 3αT ;lαlδT−

bl
ηl
δsv; ð22Þ
2.3. Failure and fracturing 

2.3.1. Tensile failure 
We employ a tensile failure condition for large-scale fracture 

propagation, used in Ruiz et al. (2000), as follows: 

where tn, tt, and ts are the normal and shear effective stresses, 
acting on a fracture plane, as shown in Fig. 2. Tc is tensile strength 
of material, typically determined from a tension test such as the 
Brazilian test. From Eq. (25), we can account for contribution from 
both normal and shear effective stresses to tensile failure. When 
β ¼ ∞, the tensile failure is purely caused by the normal effective 
stress. For β ¼ 1:0, s′ c of Eq. (25) becomes identical to that of 
Asahina et al. (2011). 

Note that we employ the fracturing condition based on tensile 
strength in this study, rather than using toughness-based fractur­
ing conditions, because we focus on large scale fracture propaga­
tion. The toughness-based fracturing conditions with the stress 
intensity factor are typically employed in small scale fracture 
propagation (Adachi et al., 2007). 

For a given geomechanical loading, the boundary condition of 
geomechanics is modified when the effective stresses reach a 
tensile failure condition. The internal natural (Neumann) bound­
ary conditions are introduced at the areas where the effective 
stresses satisfy the tensile failure condition, Eq. (25). 

When hydraulic fracturing induces a dry zone of a created 
fracture, followed by a fluid lag (Adachi et al., 2007), the fluid 
pressure within the dry zone is determined from the surrounding 
reservoir pressure in this study. This implies that the pressure of 
the dry zone is locally equilibrated with the surroundings, because 
the time scale of the local pressure equilibrium is much smaller 
than the time scale of fluid flow within the fracture. 

2.3.2. Shear failure 
For shear failure, we use the Drucker–Prager and Mohr–Coulomb 

models, which are widely used to model failure of cohesive 
frictional materials. The Drucker–Prager model is expressed as 

where I1 is the first stress invariant of the effective stress and J2 

is the second stress invariant of the effect deviatoric stress. f and g 
are the yield and plastic potential functions, respectively. βf , κf , βg , 
and κg are the coefficients to characterize the yield and plastic 
potential functions. 

The Mohr–Coulomb model is given as 

f ¼ τ′ m−s′ m sin Ψ f −ch cos Ψ f ≤0;
 
g ¼ τ′ m−s′ m sin Ψ d−ch cos Ψd ≤0; ð27Þ
 

s′ 1 þ s′ 3 s′ 1−s′ 3 s′ m ¼ and τ′ m ¼ ; ð28Þ
2 2 

s′cð ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−2ðt′2t þ t2s Þ þ t2n

q
Þ≥Tc; ð25Þ

f ¼ βf I1 þ
ffiffiffiffi
J2

p
−κf ≤0; g¼ βgI1 þ

ffiffiffiffi
J2

p
−κg ≤0; ð26Þ
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where s′ 1, s′ 2, and s′ 3 are the maximum, intermediate, and 
minimum principal effective stresses, respectively. ch, Ψ f , and 
Ψd are the cohesion, the friction angle, and the dilation angle, 
respectively. Fig. 3 shows the yield functions of the Drucker–Prager 
and Mohr–Coulomb models. The Drucker–Prager model can also 
be modified for the Mohr–Coulomb model, taking βf , kf, βg , and kg 

as, respectively, 

where θ is  the Lode angle  (Bathe, 1996; Wang et al., 2004), written as 

where J3 is the third stress invariant of the effect deviatoric stress. 

βf ¼
sin Ψ f

0:5ð3ð1− sin Ψ f Þ sin θ þ
ffiffiffi
3

p
ð3þ sin Ψ f Þ cos θÞ

; ð29Þ

kf ¼
3ch

0:5ð3ð1− sin Ψ f Þ sin θ þ
ffiffiffi
3

p
ð3þ sin Ψ f Þ cos θÞ

; ð30Þ

βg ¼
sin Ψ d

0:5ð3ð1− sin ΨdÞ sin θ þ
ffiffiffi
3

p
ð3þ sin ΨdÞ cos θÞ

; ð31Þ

kg ¼ 3ch
0:5ð3ð1− sin Ψ dÞ sin θ þ

ffiffiffi
3

p
ð3þ sin Ψ dÞ cos θÞ

; ð32Þ

θ¼ 1
3

cos −1 3
ffiffiffi
3

p

2
J3
J3=22

 !
; ð33Þ
3. Numerical modeling 

We developed the T+M hydraulic fracturing simulator by 
coupling the Lawrence Berkeley National Laboratory (LBNL) in-
house simulator TOUGH+RealGasH2O (for the description of the 
non-isothermal flow of water and a real gas mixture through 
porous/fractured media) with the ROCMECH in-house geomechanics 
Fig. 3. The yield surfaces of the Mohr–Coulomb and Drucker–Prager models on 
(a) the principle effective stress space and (b) the deviatoric plane. All the effective 
stresses are located inside or on the yield surface. 

Fig. 4. Schematics of hydraulic fracturing in 3D. Left: general type of planar fracturing. Ri
no horizontal displacement condition at the plane that contains the vertical fracture, by
simulator. We describe the numerical algorithms and characteristics 
of the coupled simulator as follows. 
3.1. Discretization 

Space discretization is based on the finite volume method, also 
called the integral finite difference method, in the simulation of 
fluid and heat flow (TOUGH+RealGasH2O code), and the finite 
element method in the geomechanical component of the coupled 
simulations (ROCHMECH code). T+M denotes a coupled simulator 
from the flow and geomechanics simulators. Time discretization in 
both constituent components of T+M is based on the backward 
Euler method that is typically employed in reservoir simulation. 
3.2. Failure modeling 

3.2.1. Tensile failure and node splitting 
We introduce the new internal Neumann boundaries by split­

ting nodes when fracturing occurs, and assign the traction from 
the fluid pressure inside the fractures. The node splitting is 
performed based on the tensile failure condition, as described in 
the previous section. In this study, the focus is on vertical tensile 
fracturing. Because of symmetry, we easily extend the numerical 
simulation capabilities to 3D domains. The fracture plane is 
located at the outside boundary (Ji et al., 2009), as shown in Fig. 4. 
3.2.2. Shear failure and elastoplasticity 
We use classical elastoplastic return mapping algorithms for 

the Mohr–Coulomb and Drucker–Prager models (Simo and 
Hughes, 1998). Unlike tensile failure, we account for shear failure 
with no assumption of a certain fracturing direction. The Drucker– 
Prager model provides a simple closed analytical formulation 
for return mapping because it is only associated with I1 and J2. 
However, the Mohr–Coulomb model also takes J3, and thus the 
return mapping is not straightforward unlike the Drucker– 
Prager model. 

We employ the two-stage return mapping algorithm proposed 
by Wang et al. (2004) for the Mohr–Coulomb model, after slight 
modification. At the edges of the failure envelope, we also employ 
the Drucker–Prager model with the explicit treatment of J3 to 
avoid numerical instability. The Drucker–Prager model with the 
explicit treatment of J3 can simulate the Mohr–Coulomb failure 
accurately not only at the edges but also over the failure envelope 
(Kim and Moridis, 2012). 
ght: vertical propagation of a fracture, reduced from a general planar fracture due to 
 symmetry. 
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Fig. 5. The sequential implicit algorithm based on the fixed-stress split method. 
Flow and geomechanics simulators are communicated sequentially. 

Fig. 6. Left: Terzaghi's problem. Right: Mandel's problem. Verification for porome­
chanical effects is tested. 

Fig. 7. Hydraulic fracturing in plane strain geomechanics. Injection of fluid induces 
tensile failure and opens the created fracture. s0, pf, q

f ωf , lf indicate the initial total 
stress acting on the fracture, fluid pressure within the fracture, the injection rate, 
the fracture width, and the fracture length, respectively. 

 

 

3.3. Sequential implicit approach 

There are two typical solution approaches to solve the coupled 
problems: fully coupled and sequential implicit methods. The fully 
coupled method usually provides unconditional and convergent 
numerical solutions for mathematically wellposed problems. How­
ever, it requires a unified flow-geomechanics simulator, which results 
in enormous software development effort and a large computational 
cost. 

On the other hand, the sequential implicit method uses existing 
simulators for the solution of the constituent subproblems. For 
example, the subproblems of non-isothermal flow, or of geome­
chanics, are solved implicitly, fixing certain geomechanical (or 
flow) variables, and then geomechanics (or flow) is solved impli­
citly from the flow (or geomechanics) variables obtained from the 
previous step. According to Kim et al. (2011b,c), the fixed stress 
sequential scheme provides unconditional stability and numerical 
convergence with high accuracy in poromechanical problems. The 
unconditional stability is also valid for the given multiple porosity 
formulation (Kim et al., 2012b). By the fixed-stress split method, 
we solve the flow problem, fixing the total stress field. This 
scheme can easily be implemented in flow simulators by updating 
the Lagrange porosity function and its correction term as follows 
(Kim et al., 2012b): 

 

n nwhere ΔðOÞ ¼ ðOÞnþ1−ðOÞ , and the superscript n indicates the time 
level. cp is the pore compressibility in reservoir simulation. The 
porosity correction term, ΔΦl , is calculated from geomechanics, 
which corrects the porosity estimated from the pore compressibility. 

For permeability of the fracture, we employ nonlinear perme­
ability motivated by the cubic law (Witherspoon et al., 1980; 
Rutqvist and Stephansson, 2003), written as, for an example of 
single water phase 

c

ωnp 

Qw ¼ ac HðGrad p−ρwgÞ; ð36Þ
12μw 

where ω is the fracture opening (also called aperture or width). 
Qw and H are flow rate of water and the fracture plate width, 
respectively. np characterizes the nonlinear fracture permeability. 
When np ¼3.0, Eq. (36) is identical to the cubic law. ac is the 
correction factor reflecting the fracture roughness, as used in 
Nassir et al. (2012). We calculate the fracture permeability of a 
gridblock based on harmonic average of the permeabilities at the 
grid corner points near the gridblock. 

For geomechanical properties of the fracture, we assign a very 
low Young's modulus, compared with rock matrix, when tensile 
fracturing occurs. For shear failure, the return mapping algorithm 
automatically determines nonlinear geomechanical properties. 
Fig. 5 briefly shows how flow and geomechanics simulators are 
communicated sequentially. 

4. Verification examples 

We show three verification tests that can provide analytical 
solutions. The first test is Terzaghi's and Mandel's problems, which 

Φnþ1
l −Φn

l ¼
α2l
Kl

þ αl−Φn
l

Ks

 !
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ð35Þ
can examine the poromechanical effects (Terzaghi, 1943; 
Abousleiman et al., 1996), as shown in Fig. 6. Consideration of the 
poromechanical effects (i.e., two-way coupling between flow and 
geomechanics) is necessary for accurate modeling of fracture 
propagation not only within the shale gas reservoirs but also outside 
the reservoirs, for example, in areas which are highly water-
saturated, and thus much more incompressible than gas (Kim 
et al., 2012a). For the second and third tests, as shown in Fig. 7, 
we also analyze the width variation of static fractures (Sneddon 
and Lowengrub, 1969) and fracture propagations in plane strain 
geomechanics (Valko and Economies, 1995; Gidley et al., 1990). 
4.1. Terzaghi's and Mandel's problems 

For Terzaghi's problem, the  left  of  Fig. 6, we have 31 gridblocks,
the sizes of which are uniform, 1.0 m. Liquid water is fully saturated, 
and the initial pressure is 8.3 MPa. We impose a drainage boundary 
on the top and no-flow conditions at the bottom. The initial total 
stress is also −8.3 MPa over the domain, and we set 16.6 MPa as 
the overburden, two times greater than the initial total stress. The 
Young's modulus and Poisson ratio are 450 MPa and 0.0, respectively. 
Only vertical displacement is allowed and no gravity is applied. 
We consider isothermal fluid flow, where liquid water at 25 1C is
fully saturated. The permeability and porosity are 6:51 x 10−15 m2, 
6.6 mD, (1 Darcy¼9.87 x10−13 m2) and 0.425, respectively. Biot's 
coefficient is 1.0. The monitoring well is located at the last gridblock. 

http:Darcy�9.87


190 J. Kim, G.J. Moridis / Computers & Geosciences 60 (2013) 184–198 

The Terzaghi problem The Mandel problem 
1 0.5 

0.8 0.4 

0.6 0.3 

(P
−P

i )/
P

i 

Analytic 
T+M 

0 0.5 1 1.5 2 2.5 3 

Analytic 
T+M 

0 0.1 0.2 0.3 0.4 0.5 

(P
−P

i)/
P

i 

0.4 0.2 

0.2 0.1 

0 0 

td=4c t/(L )2 td=4c t/(L )2 
v z v z

Fig. 8. Comparison between numerical solutions of T+M and analytical solutions of Terzaghi's problem (left) and Mandel's problem (right). T+M matches the analytical 
solutions. cv is the consolidation coefficient, defined as cv ¼ kp;f =μf ð1=Kdr þ ϕcf Þ. Pi is the initial reservoir pressure. 
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Fig. 9. Comparison between the numerical solutions of T+M and the analytical solutions for the fracture widths. T+M is tested for various geomechanical properties, 
matching the analytical solutions. 
From the left of Fig. 8, the numerical solution from T+M matches  
the analytical solution. We identify the accurate instantaneous 
pressure buildup at the initial time, followed by the decrease of 
pressure due to the fluid flow  to  the drainage boundary  at the top.  

For Mandel's problem, by symmetry, we take the upper half 
domain in the right of Fig. 6 for numerical simulation, 20 m x 
0.265 m. We have 40 x 5 gridblocks, the sizes of which are uniform 
in the x direction, 0.5 m, while the sizes in the z direction are non­
uniform, 0.005 m, 0.01 m, 0.05 m, 0.1 m, 0.1 m. The initial pressure 
is 10.0 MPa. We have the drainage boundary at the left and right 
sides and no-flow conditions at the other sides. The initial total 
stress is also 10.0 MPa over the domain, and we have 20.0 MPa of 
the overburden, two times greater than the initial total stress. We 
approximate the constraint of Mandel's problem that the vertical 
displacement at the top is uniform. The Young's modulus and 
Poisson ratio are 450.0 MPa and 0.0, respectively. We have the 2D 
plane strain geomechanics. The monitoring well is located at 
(5.25 m, 0.215 m), as shown in the right of Fig. 8. No gravity is 
considered. Only horizontal flow is allowed, while vertical flow is 
hydro-static. We take the same flow variables and properties as 
the previous Terzaghi problem. 

The right of Fig. 8 shows that the result from T+M matches the 
analytical solution. The numerical result captures the Mandel–Cryer 
effect of Mandel's problem, correctly, which cannot be captured by 
the flow-only simulation. 

4.2. Static fracture in plane strain geomechanics 

We take, by symmetry, a quarter of the domain in Fig. 7 for 
numerical simulation, i.e., the upper and right domain. We have 
150 x 1 x 10 gridblocks for the plane strain geomechanics problem 
that has a static fracture. No gravity is considered. The sizes of the 
gridblocks in the x, y, and z directions are uniform, 0.05 m, 0.1 m, 
and 0.1 m, respectively. The initial total stress is zero, and the 
fluid pressure within the fracture is uniform, 10 MPa, resulting in 
10 MPa of the net pressure. Then, the fracture width, ωf , is tested 
with various geomechanics properties, i.e., 600 MPa and 6.0 GPa of 
Young's modulus, and 0.0 and 0.3 of Poisson's ratio. 

We use an analytical solution of the width of a static fracture in 
plane strain geomechanics for a given net pressure, proposed 
by Sneddon and Lowengrub (1969). From Fig. 9, the numerical 
solutions match the analytical solutions for the different geome­
chanics properties, successfully testing the T+M simulator. 

4.3. Fracture propagation in plane strain geomechanics 

We inject water to a fully water-saturated reservoir for 
hydraulic fracturing. The simulation domain is a quarter of the 
domain in Fig. 7. We have 150 gridblocks for flow within the 
fracture in the x direction, the sizes of which are uniform, 0.05 m, 
0.5, m, 0.5 m. The initial reservoir pressure is 10 MPa, and no 
gravity is considered. The reservoir permeability and porosity are 
8.65 x 10−23 m2 and 0.1, respectively. The density and viscosity of 
water are 1000 kg/m3 and 1.0 x 10−3 Pa s, respectively. For geome­
chanics, we use 6.0 GPa of Young's modulus and 0.3 of Poisson's 
ratio, which represent a shale gas reservoir (Eseme et al., 2007). 
Biot's coefficient is 0.0, because the analytical solutions used in this 
section do not account for the poromechanical effects. 

Then we test two cases: viscosity-dominated and toughness-
dominated regimes in hydraulic fracturing. For the viscosity-
dominated regime, the solution can be approximated by a limit 
solution from the assumption that rock has zero toughness 
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(Detournay, 2004). We use 5:0 x 10−7 kg=s of the injection rate and 
an extremely low value of tensile strength, 1:0 x 10−4 Pa. Even 
though there is no definitive mathematical relation between tensile 
strength and rock toughness, according to Zhang (2002), tensile
strength and the mode I toughness, K1C are related positively based 
on experimental observations from the data of the previous studies. 
Precisely, Zhang (2002) proposed an empirical relation as Tc ðMPaÞ ¼  
6:88 x K1C ðMPa m0:5Þ. For the toughness-dominated regime, we use 
1:0 x 10−6 kg=s of the injection rate and 0.1 MPa of tensile strength, 
where fracturing is controlled by rock toughness. We use the 
analytical solutions shown in Valko and Economies (1995) and 
Gidley et al. (1990) for the viscosity and toughness dominated 
regimes, respectively (Dean and Schmidt, 2009; Fu et al., in press). 

Fig. 10 shows that numerical solutions of T+M are close to the 
analytical solutions, validating T+M. Small differences are mainly 
due to the sequential implicit method, where only one iteration 
is performed, the empirical relation between tensile strength and 
rock toughness, and the assumptions of the analytical solutions. 
5. Numerical examples for 3D vertical fracture propagation 

We then investigate several 3D numerical examples of hydrau­
lic fracturing induced in a shale gas reservoir, as shown in the right 
of Fig. 4. Even though the flow and geomechanical properties used 
in this section mostly represent shale gas reservoirs, we investi­
gate sensitivity analysis for flow and geomechanics parameter 
spaces (e.g., permeability, porosity, Young's modulus, Poisson's 
ratio, tensile strength), not strictly restricted to the shale gas 
reservoirs. The in-depth investigation and discussion of the shale 
gas reservoirs such as Marcellus shale will be shown elsewhere. 

The domain of geomechanics has 50, 5, and 50 gridblocks in x, y 
and z directions, respectively, where the x–z plane is normal to the 
direction of the lowest magnitude of the principal total stresses, 
Sh (i.e., the minimum compressive principal total stress). The sizes 
of the gridblocks in the x and z directions are uniform, i.e., Δx ¼ 
Δz ¼ 3m. The sizes of the gridblocks in the y direction are non­
uniform, i.e. 0.1 m, 0.5 m, 3.0 m, 10.0 m, 20.0 m. 

The Young's modulus and Poisson's ratio are 6.0 GPa and 0.3, 
respectively. The tensile strength of material for the reference case 
is 4.0 MPa. Initial fluid pressure is 17.10 MPa at 1350 m in depth 
with the 12.44 kPa/m gradient. Initial temperature is 58.75 1C 
at 1350 m in depth with the 0.025 1C/m geothermal gradient. 
The initial total principal stresses are −26.21 MPa, and −23.30 MPa, 
and −29.12 MPa at 1350 m in depth in x, y, and z directions, 
respectively, where the corresponding stress gradients are 
−19.42 kPa/m, −17.59 kPa/m, and −21.57 kPa/m, respectively. We 
consider gravity with 2200 kg/m3 of the bulk density, have no 
l f/
L x
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Fig. 10. Comparison between the numerical solutions of T+M and the analytical solut
toughness dominated regime. Mi is the initial mass of water in place. The numerical so
horizontal displacement boundary conditions at sides, except the 
fractured nodes, and have no displacement boundary at the 
bottom. 

For flow, we have 50, 6, and 50 gridblocks in x, y and z directions, 
respectively, where  one more layer  for the  fracture  plane is intro­
duced for flow within the fracture, 0.1 m. The initial permeability and 
porosity of the shale reservoir are 8:65 x 10−19 m2, and  0.19, respec­
tively. Once tensile fracturing occurs, the fracture permeability is 
determined from Eq. (36), where np ¼3.0 and ac ¼ 0:017. For shear 
failure, we simply assign a constant permeability, 5:9 x 10−14 m2, 
60 mD. Once failure occurs, we change the single porosity to the 
double porosity model where fracture and rock matrix volume 
fractions are 0.1 and 0.9, respectively. The reference fracture porosity 
is 0.9, when the fracture is created, and the porosity varies during 
simulation due to poromechanical effects. Biot's coefficient is 1.0. We 
inject gas at (x¼75 m, z¼−1440 m), and vary the injection rate, 
plastic properties, and the initial total stress field. We assume that 
the injected gas has the same physical properties as shale gas for 
simplicity. We choose gas injection as a reference case because gas 
has higher mobility in shale gas reservoirs than water does, which can 
enhance fracturing. 

There are several options for modeling relative permeability and 
capillarity, implemented in the flow simulator, TOUGH+RealGasH2O. 
In this study, we use a modified version of Stone's relative perme­
ability model (Aziz and Settari, 1979) and the van Genutchen capillary 
pressure model (van Genuchten, 1980), respectively, written as 

where kr;J , Sir;J , and  nk are relative permeability of phase J, irreducible 
saturation of phase J, and the exponent that characterizes the relative 
permeability curve, respectively. Pc, λp and Πc are capillary pressure, 
the exponent that characterizes the capillary pressure curve, and the 
capillary modulus, respectively. Then, we take Sir;w ¼ 0:08, 
Sir;g ¼ 0:01, and nk ¼ 4:0 for relative permeability, and λp ¼ 0:45, 
Sir;w ¼ 0:05, Sir;g ¼ 0:0, and Πc ¼ 2:0kPa for capillarity, where smaller 
Sir;w and Sir;g are chosen in the capillary pressure model in order to 
prevent unphysical behavior (Moridis et al., 2008). Note that we 
employ the equivalent pore-pressure concept in multiphase flow 
coupled with geomechanics (Coussy, 2004), not using the average 
pore-pressure concept. According to Kim et al. (2011a), the equivalent 
pore-pressure provides high accuracy for strong capillarity, while the 
average pore-pressure, widely used in reservoir simulation, may cause 
large errors and/or numerical instability when strong capillarity 
exists. 

kr;J ¼max 0;min
SJ−Sir;J
1:0−Sir;w

� �nk

;1
� 	� 	

; ð37Þ

Pc ¼ΠcððSeÞ−1=λp−1Þ1−λp ; Se ¼ Sw−Sir;w
1−Sir;g−Sir;w

; ð38Þ
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5.1. Gas injection 

We first test a reference case, where the injection rate is 8.0 kg/s, 
as follows. We do not consider shear failure for this reference case. 
Fig. 11 shows the fracture propagation in vertical direction due to 
tensile failure. At the initial time, we obtain a very small fracture. As 
the injection proceeds, the fracture grows, propagating horizontally 
and vertically. In this test, the fracture propagates upward more 
than downward, because, from the initial conditions, Sh decreases 
more than the initial pressure as the depth decreases, causing 
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Fig. 11. Fracture propagation in vertical direction due to tensile failure. Left: fractured are
simulation. The fracture propagates upward more than downward because of low Sh at t
top area than the fracture opening at the bottom area. 
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Fig. 12. Pressure distribution on the x–z plane at different times. The pressure within th
permeability. 
higher net pressure. The increase of the net pressure yields a larger 
opening of the fracture around the top area of the fracture than that 
of the bottom area, as shown in the right of Fig. 11. During  the
period of the simulation, we obtain a finite (stable) growth 
of the fracture. This implies that the fracture propagation from 
hydraulic fracturing can be controlled by injection time. 

In Fig. 12, we observe the distinct pressure distribution 
between inside and outside the fractured zone. Note that the 
fracture of tensile failure creates very high permeability. Because 
of high permeability, the pressure within the fracture is almost the 
 
t=600.0 s

0.01 

(m
) 0.005 

0 
−1350 

−1400 150 

−1450 
50 

100 

 z (m) −1500 0 x (m) 

as at different times. Right: the fracture opening (i.e., half of the width) at the end of 
he shallower depth. As a result, we obtain larger opening of the fracture around the 

t=15.0 s 
30 

25 

20 

15 
−1300 

200 
−1400 100 

z (m) −1500 0 x (m) 

t=600.0 s
 
30
 

25 

M
P

a 
M

P
a 

20 

15 
−1300 

200 
−1400 100 

−1500z (m) 0 x (m) 

e fracture is almost same as the injection pressure at late time because of its high 
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same as the injection pressure at late time, and its gradient is very
low. As a result, the pressure difference at the fracture tip is
considerably higher.

Fig. 13 shows the evolution of pressure at the injection point
and the total number of fractured nodes of the reservoir domain.
From the left figure, at early time, pressure increases because
of injection. Once the injection induces a pressure value enough
for tensile failure at the fracture tip, fracturing occurs and the
fracture volume increases instantaneously. As a result, the pres-
sure within the fracture decreases instantaneously, based on the
fluid compressibility. Specifically, the pressure at the injection
point increases up to 38 MPa, and drops significantly. Then, the
pressure increases again due to the fluid injection. We observe this
behavior during the fracturing process, yielding saw-tooth pres-
sure history. At early time, the oscillation is high because of small
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we observe saw-tooth pressure history. At early time, the oscillation is high because of sm
pore volume becomes large. Stairwise fracturing of the right figure ensures numerical s
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30 
pore volume of the fracture. As the fracture pore volume becomes
large, the oscillation becomes mild. The right figure shows the
evolution of the total number of the fractured nodes. Note that a
sequential implicit method between flow and geomechanics might
limit numerical stability in hydraulic fracturing. Thus, to ensure
the numerical stability, we control time step sizes that can cause
no fracturing at least once at the next time of any events of
fracturing. The right figure shows the aforementioned character-
istics of the sequential implicit method in hydraulic fracturing, as
well as finite fracturing during simulation.

Fig. 14 shows evolution and distribution of effective shearpffiffiffiffi
stress, i.e., J2. From the figure, the shear stress increases during
simulation, and the high shear stresses are located around the
fracture tip. The effective stresses at the x–z plane at early and late
times are plotted in Fig. 15 (Mohr–Coulomb plot). From the figure,
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effective stresses at many locations may cross over the failure line 
at late times, when cohesion is low, indicating potential shear 
failure, which will be tested in the next section. 

5.2. Mohr–Coulomb plasticity 

We investigate effects of shear failure in hydraulic fracturing, 
simultaneously considering tensile failure as well. We take ch ¼ 
2:0 MPa  and  Φf ¼ Φd ¼ 28:61 ð0:5 radÞ, which yield the same failure 
line as shown in Fig. 15. From  Fig. 16, shear failure occurs in all 
directions, including the y direction. The shear failure zone is neither 
thin nor two-dimensional, but three-dimensional, having some 
volume. All the effective stresses of the domain, not only the x–z 
plane but also the inside domain, are plotted in Fig. 17. We identify  
that all the effective stresses are on and inside the yield surface. 

As shear failure grows during simulation, it limits the vertical 
fracture propagation from tensile failure, as shown in the left of 
Fig. 18. The fractured area from tensile failure is much smaller than 
that of the reference case, even though the injection time is two 
times. Note that shear failure increases permeability of the reservoir 
formations. The failure along the y direction induces flow of fluid in 
the y direction followed by additional shear fracturing horizontally, 
because changes in pore-pressure induce changes in effective stress. 
We also observe different behavior in pressure between with and 
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without shear failure, as shown in the right of Fig. 18, when it is
compared with the evolution of pressure in Fig. 13, 

5.3. Effect of the injection rate 

We change the injection rate of the reference case, from 8.0 kg/s to 
0.8 kg/s. From Fig. 19, we  find  that  the fracture propagation  is  nearly
proportional to injection rate. When the injection rate is reduced 
by one order, the fracture propagates more slowly by the same order. 
The evolution of pressure also shows almost the same behavior as 
that of the reference case. But, the total number of the fractured nodes 
at 6000 s, approximately 300 nodes, is smaller than that of the 
reference case at 600 s, approximately 410 nodes, where the same 
amount of fluid is  injected for  both  cases,  because longer time allows  
more leak-off of the fluid to the reservoir formation. 

5.4. Contribution of effective shear stress in tensile failure 

We test the effect of β of Eq. (25) in order to investigate minor 
contribution of effective shear stress in tensile failure, taking β ¼ 10:0. 
In Fig. 20, we obtain almost the same results as those of the reference 
case. The width of the fracture is also nearly the same as that of the 
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Fig. 20. Effect of effective shear stress in tensile failure. When introducing small perturbations in shear effective stress for tensile failure, β ¼ 10:0, we still obtain small 
changes in hydraulic fracturing. 
reference case (the right figure). This implies that small perturbations 
in shear effective stress for tensile failure only cause small changes in 
hydraulic fracturing. The tensile failure condition is well-posed, when 
we consider the mixed failure mode with normal and shear effective 
stresses. 

5.5. Effect of the maximum compressive total horizontal stress 

We increase the maximum compressive total horizontal stress, 
SH, which is higher than overburden stress, SV (i.e., SH ¼ 1:2 x SV ). 
Failure is fundamentally determined by effective stress, which 
results from close interactions between flow and geomechanics. 
Thus, SH indirectly affects hydraulic fracturing. In Fig. 21, we obtain 
more vertical fracturing (the left figure), compared with the 
reference case, while the width of the fracture is similar to that 
of the reference case (the right figure). High SH is more favorable to 
fracture propagation in the vertical direction, limiting horizontal 
fracturing in the x direction. 
6. Conclusions 

We developed the T+M hydraulic fracturing simulator by coupl­
ing the TOUGH+RealGasH2O flow simulator with the ROCMECH 
geomechanics code. T+M has the following characteristics: (1) vertical 
fracturing is mainly modeled by updating the boundary conditions 
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F
t

and the corresponding data structures; (2) shear failure can also 
be modeled during hydraulic fracturing; (3) a double- or multiple-
porosity approach is employed after the initiation of fracturing in 
order to rigorously model flow and geomechanics; (4) nonlinear 
models for permeability and geomechanical properties can easily be 
implemented; (5) leak-off in all directions during hydraulic 
fracturing is fully considered; and (6) the code provides two-
way coupling between fluid-heat flow and geomechanics, rig­
orously describing thermo-poro-mechanical effects, and accu­
rately modeling changes in effective stress, deformation, 
fractures, pore volumes, and permeabilities. 

Numerical solutions of the T+M simulator matched the analy­
tical solutions of poromechanical effects, the widths of the static 
fractures, and the fracture propagations of the viscosity and 
toughness dominated regimes, which successfully tested the T 
+M implementation. From various tests of the planar fracture 
propagation, shear failure can limit the vertical fracture propaga­
tion of tensile failure, while it induces the enhanced permeability 
areas inside the domain, followed by inducing the leak-off into the 
reservoirs. When the same amount of fluid is injected, slow 
injection results in more leak-off and less fracturing, compared 
with fast injection. The maximum horizontal total stress, SH, 
affects tensile fracturing, and contributions of shear effective stress 
to tensile failure can also change the fractured areas. For both 
cases, the geomechanical responses are still stable and well-posed. 
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