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Preface 

This book began as class notes for a course we teach on applied statistical methods to 
hydrologists of the Water Resources Division, U. S. Geological Survey (USGS).  It reflects our 
attempts to teach statistical methods which are appropriate for analysis of water resources data.  
As interest in this course has grown outside of the USGS, incentive grew to develop the material 
into a textbook. The topics covered are those we feel are of greatest usefulness to the practicing 
water resources scientist.  Yet all topics can be directly applied to many other types of 
environmental data. 

This book is not a stand-alone text on statistics, or a text on statistical hydrology.  For example, 
in addition to this material we use a textbook on introductory statistics in the USGS training 
course.  As a consequence, discussions of topics such as probability theory required in a general 
statistics textbook will not be found here.  Derivations of most equations are not presented.  
Important tables included in all general statistics texts, such as quantiles of the normal 
distribution, are not found here.  Neither are details of how statistical distributions should be 
fitted to flood data -- these are adequately covered in numerous books on statistical hydrology.   

We have instead chosen to emphasize topics not always found in introductory statistics 
textbooks, and often not adequately covered in statistical textbooks for scientists and engineers.  
Tables included here, for example, are those found more often in books on nonparametric 
statistics than in books likely to have been used in college courses for engineers.  This book 
points the environmental and water resources scientist to robust and nonparametric statistics, 
and to exploratory data analysis.  We believe that the characteristics of environmental (and 
perhaps most other 'real') data drive analysis methods towards use of robust and nonparametric 
methods. 

Exercises are included at the end of chapters.  In our course, students compute each type of 
analysis (t-test, regression, etc.) the first time by hand.  We choose the smaller, simpler examples 
for hand computation.  In this way the mechanics of the process are fully understood, and 
computer software is seen as less mysterious.   

We wish to acknowledge and thank several other scientists at the U. S. Geological Survey for 
contributing ideas to this book.  In particular, we thank those who have served as the other 
instructors at the USGS training course. Ed Gilroy has critiqued and improved much of the 
material found in this book. Tim Cohn has contributed in several areas, particularly to the 
sections on bias correction in regression, and methods for data below the reporting limit.  
Richard Alexander has added to the trend analysis chapter, and Charles Crawford has 
contributed ideas for regression and ANOVA.  Their work has undoubtedly made its way into 
this book without adequate recognition. 
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Professor Ken Potter (University of Wisconsin) and Dr. Gary Tasker (USGS) reviewed the 
manuscript, spending long hours with no reward except the knowledge that they have improved 
the work of others.  For that we are very grateful.  We also thank Madeline Sabin, who carefully 
typed original drafts of the class notes on which the book is based.  As always, the responsibility 
for all errors and slanted thinking are ours alone.   

Dennis R. Helsel 

Robert M. Hirsch 

Reston, VA  USA 
 June, 1991 

Citations of trade names in this book are for reference purposes only, and do not reflect endorsement by the 

authors or by the U. S. Geological Survey 



Chapter 1

Summarizing Data


When determining how to appropriately analyze any collection of data, the first consideration 
must be the characteristics of the data themselves.  Little is gained by employing analysis 
procedures which assume that the data possess characteristics which in fact they do not.  The 
result of such false assumptions may be that the interpretations provided by the analysis are 
incorrect, or unnecessarily inconclusive.  Therefore we begin this book with a discussion of the 
common characteristics of water resources data.  These characteristics will determine the 
selection of appropriate data analysis procedures. 

One of the most frequent tasks when analyzing data is to describe and summarize those data in 
forms which convey their important characteristics.  "What is the sulfate concentration one 
might expect in rainfall at this location"?  "How variable is hydraulic conductivity"?  "What is 
the 100 year flood" (the 99th percentile of annual flood maxima)?  Estimation of these and 
similar summary statistics are basic to understanding data.  Characteristics often described 
include: a measure of the center of the data, a measure of spread or variability, a measure of the 
symmetry of the data distribution, and perhaps estimates of extremes such as some large or small 
percentile.  This chapter discusses methods for summarizing or describing data. 

This first chapter also quickly demonstrates one of the major themes of the book -- the use of 
robust and resistant techniques.  The reasons why one might prefer to use a resistant measure, 
such as the median, over a more classical measure such as the mean, are explained. 



2	 Statistical Methods in Water Resources 

The data about which a statement or summary is to be made are called the population, or 
sometimes the target population. These might be concentrations in all waters of an aquifer or 
stream reach, or all streamflows over some time at a particular site.  Rarely are all such data 
available to the scientist.  It may be physically impossible to collect all data of interest (all the 
water in a stream over the study period), or it may just be financially impossible to collect them.  
Instead, a subset of the data called the sample is selected and measured in such a way that 
conclusions about the sample may be extended to the entire population.  Statistics computed 
from the sample are only inferences or estimates about characteristics of the population, such as 
location, spread, and skewness.  Measures of location are usually the sample mean and sample 
median. Measures of spread include the sample standard deviation and sample interquartile 
range.  Use of the term "sample" before each statistic explicitly demonstrates that these only 
estimate the population value, the population mean or median, etc.  As sample estimates are far 
more common than measures based on the entire population, the term "mean" should be 
interpreted as the "sample mean", and similarly for other statistics used in this book.  When 
population values are discussed they will be explicitly stated as such. 

1.1 	 Characteristics of Water Resources Data 

Data analyzed by the water resources scientist often have the following characteristics: 
1. 	 A lower bound of zero. No negative values are possible. 
2. 	 Presence of 'outliers', observations considerably higher or lower than most of the data, 

which infrequently but regularly occur. outliers on the high side are more common in water 
resources. 

3. 	 Positive skewness, due to items 1 and 2.  An example of a skewed distribution, the 
lognormal distribution, is presented in figure 1.1.  Values of an observation on the 
horizontal axis are plotted against the frequency with which that value occurs.  These 
density functions are like histograms of large data sets whose bars become infinitely narrow.  
Skewness can be expected when outlying values occur in only one direction. 

4. 	 Non-normal distribution of data, due to items 1 - 3 above.  Figure 1.2 shows an important 
symmetric distribution, the normal.  While many statistical tests assume data follow a 
normal distribution as in figure 1.2,  water resources data often look more like figure 1.1.  In 
addition, symmetry does not guarantee normality.  Symmetric data with more observations 
at both extremes (heavy tails) than occurs for a normal distribution are also non-normal. 

5. 	 Data reported only as below or above some threshold (censored data).  Examples include 
concentrations below one or more detection limits, annual flood stages known only to be 
lower than a level which would have caused a public record of the flood, and hydraulic 
heads known only to be above the land surface (artesian wells on old maps). 

6. 	 Seasonal patterns.  Values tend to be higher or lower in certain seasons of the year. 
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7. 	 Autocorrelation. Consecutive observations tend to be strongly correlated with each other.  
For the most common kind of autocorrelation in water resources (positive autocorrelation), 
high values tend to follow high values and low values tend to follow low values. 

8. 	 Dependence on other uncontrolled variables.  Values strongly covary with water discharge, 
hydraulic conductivity, sediment grain size, or some other variable. 

Methods for analysis of water resources data, whether the simple summarization methods such 
as those in this chapter, or the more complex procedures of later chapters, should recognize 
these common characteristics.  

1.2 	 Measures of Location 

The mean and median are the two most commonly-used measures of location, though they are 
not the only measures available.  What are the properties of these two measures, and when 
should one be employed over the other? 

1.2.1 Classical Measure -- the Mean 
The mean (X )  is computed as the sum of all data values X

i 
, divided by the sample size n: 

n Xi 
X = 	∑ n [1.1] 

i=1 
For data which are in one of k groups, equation [1.1] can be rewritten to show that the overall 
mean depends on the mean for each group, weighted by the number of observations ni in each 
group: 

n 

X = ∑ Xi 

ni	
[1.2]n

i=1 

where X
i
 is the mean for group i. The influence of any one observation Xj on the mean can be 

seen by placing all but that one observation in one "group", or 
1 

X = 	X ( j )
(n − 1) 

+ Xj• .nn 
1 

= X + ( X
( j )

− X 
)
) • . 	 [1.3]

( j ) ( j n
where X 

)
is the mean of all observations excluding Xj. Each observation's influence on the

( j 

overall mean X  is (Xj − X 
)
), the distance between the observation and the mean excluding 

( j 

that observation. Thus all observations do not have the same influence on the mean.  An 
'outlier' observation, either high or low, has a much greater influence on the overall mean X 
than does a more 'typical' observation, one closer to its X

( j )
. 
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Figure 1.1 Density Function for a Lognormal Distribution 

Figure 1.2 Density Function for a Normal Distribution 
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Another way of illustrating this influence is to realize that the mean is the balance point of the 
data, when each point is stacked on a number line (figure 1.3a).  Data points further from the 
center exert a stronger downward force than those closer to the center.  If one point near the 
center were removed, the balance point would only need a small adjustment to keep the data set 
in balance. But if one outlying value were removed, the balance point would shift dramatically 
(figure 1.3b). This sensitivity to the magnitudes of a small number of points in the data set 
defines why the mean is not a "resistant" measure of location.  It is not resistant to changes in 
the presence of, or to changes in the magnitudes of, a few outlying observations.  

When this strong influence of a few observations is desirable, the mean is an appropriate 
measure of center.  This usually occurs when computing units of mass, such as the average 
concentration of sediment from several samples in a cross-section.  Suppose that sediment 
concentrations closer to the river banks were much higher than those in the center.  Waters 
represented by a bottle of high concentration would exert more influence (due to greater mass 
of sediment per volume) on the final concentration than waters of low or average concentration.  
This is entirely appropriate, as the same would occur if the stream itself were somehow 
mechanically mixed throughout its cross section. 

Figure 1.3a The mean (triangle) as balance point of a data set. 

Figure 1.3b Shift of the mean downward after removal of outlier. 

1.2.2 Resistant Measure -- the Median 
The median, or 50th percentile P

0.50
 , is the central value of the distribution when the data are 

ranked in order of magnitude. For an odd number of observations, the median is the data point 
which has an equal number of observations both above and below it.  For an even number of 
observations, it is the average of the two central observations.  To compute the median, first 
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rank the observations from smallest to largest, so that x
1
 is the smallest observation, up to x ,

n 

the largest observation.  Then 

median ( P
0.50

) = X(n+1)/2 when n is odd, and

 median ( P
0.50

) = 
1 
2 (X(n/2) + X(n/2)+1) when n is even. [1.4] 

The median is only minimally affected by the magnitude of a single observation, being 
determined solely by the relative order of observations.  This resistance to the effect of a change 
in value or presence of outlying observations is often a desirable property. To demonstrate the 
resistance of the median, suppose the last value of the following data set (a) of 7 observations 
were multiplied by 10 to obtain data set (b): 

Example 1: 
(a) 2  4  8  9  11 11 12 X = 8.1 P.50= 9 
(b) 2  4  8  9  11 11 120 X = 23.6 P.50= 9 

)
The mean increases from 8.1 to 23.6. The median, the 

(7+1
th or 4th lowest data point,2 

is unaffected by the change. 

When a summary value is desired that is not strongly influenced by a few extreme observations, 
the median is preferable to the mean.  One such example is the chemical concentration one 
might expect to find over many streams in a given region.  Using the median, one stream with 
unusually high concentration has no greater effect on the estimate than one with low 
concentration.  The mean concentration may be pulled towards the outlier, and be higher than 
concentrations found in most of the streams. Not so for the median. 

1.2.3 Other Measures of Location 
Three other measures of location are less frequently used:  the mode, the geometric mean, and 
the trimmed mean. The mode is the most frequently observed value.  It is the value having the 
highest bar in a histogram. It is far more applicable for grouped data, data which are recorded 
only as falling into a finite number of categories, than for continuous data.  It is very easy to 
obtain, but a poor measure of location for continuous data, as its value often depends on the 
arbitrary grouping of those data. 

The geometric mean (GM) is often reported for positively skewed data sets.  It is the mean of 
the logarithms, transformed back to their original units. 

GM =  exp (Y ), where Yi = ln (Xi) [1.5] 
(in this book the natural, base e logarithm will be abbreviated ln, and its inverse ex abbreviated 
exp(x) ). For positively skewed data the geometric mean is usually quite close to the median.  In 
fact, when the logarithms of the data are symmetric, the geometric mean is an unbiased estimate 

jkmonson
`

jkmonson
`
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of the median. This is because the median and mean logarithms are equal, as in figure 1.2.  When 
transformed back to original units, the geometric mean continues to be an estimate for the 
median, but is not an estimate for the mean (figure 1.1). 

Compromises between the median and mean are available by trimming off several of the lowest 
and highest observations, and calculating the mean of what is left.  Such estimates of location are 
not influenced by the most extreme (and perhaps anomalous) ends of the sample, as is the mean.  
Yet they allow the magnitudes of most of the values to affect the estimate, unlike the median.  
These estimators are called "trimmed means", and any desirable percentage of the data may be 
trimmed away. The most common trimming is to remove 25 percent of the data on each end -­
the resulting mean of the central 50 percent of data is commonly called the "trimmed mean", but 
is more precisely the 25 percent trimmed mean.  A "0% trimmed mean" is the sample mean 
itself, while trimming all but 1 or 2 central values produces the median.  Percentages of trimming 
should be explicitly stated when used.  The trimmed mean is a resistant estimator of location, as 
it is not strongly influenced by outliers, and works well for a wide variety of distributional shapes 
(normal, lognormal, etc.). It may be considered a weighted mean, where data beyond the cutoff 
'window' are given a weight of 0, and those within the window a weight of 1.0 (see figure 1.4). 

Figure 1.4. Window diagram for the trimmed mean 

1.3 Measures of Spread 

It is just as important to know how variable the data are as it is to know their general center or 
location. Variability is quantified by measures of spread.   

1.3.1 Classical Measures 
The sample variance, and its square root the sample standard deviation, are the classical 
measures of spread.  Like the mean, they are strongly influenced by outlying values.   

n −X )2 

s 2 = ∑ (X
i  sample variance [1.6]

(n −1)i=1 
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 s =  s 2 sample standard deviation [1.7] 

They are computed using the squares of deviations of data from the mean, so that outliers 
influence their magnitudes even more so than for the mean.  When outliers are present these 
measures are unstable and inflated. They may give the impression of much greater spread than 
is indicated by the majority of the data set. 

1.3.2   Resistant Measures 
The interquartile range (IQR) is the most commonly-used resistant measure of spread.  It 
measures the range of the central 50 percent of the data, and is not influenced at all by the 25 
percent on either end. It is therefore the width of the non-zero weight window for the trimmed 
mean of figure 1.4. 

The IQR is defined as the 75th percentile minus the 25th percentile.  The 75th, 50th (median) 
and 25th percentiles split the data into four equal-sized quarters.  The 75th percentile (P.75), also 
called the upper quartile, is a value which exceeds no more than 75 percent of the data and is 
exceeded by no more than 25 percent of the data.  The 25th percentile (P.25) or lower quartile is 
a value which exceeds no more than 25 percent of the data and is exceeded by no more than 75 
percent. Consider a data set ordered from smallest to largest:  Xi, i =1,...n. Percentiles (Pj) are 
computed using equation [1.8] 

Pj = X(n+1)•j [1.8] 

where n is the sample size of Xi, and 
j is the fraction of data less than or equal to the percentile value (for the 25th, 50th 
and 75th percentiles, j= .25, .50, and .75). 

Non-integer values of (n+1)•j imply linear interpolation between adjacent values of X.  For the 
example 1 data set given earlier, n=7, and therefore the 25th percentile is X(7+1)•.25  or X2 = 4, 
the second lowest observation.  The 75th percentile is X6 , the 6th lowest observation, or 11.  
The IQR is therefore 11−4 = 7. 

One resistant estimator of spread other than the IQR is the Median Absolute Deviation, or 
MAD.  The MAD is computed by first listing the absolute value of all differences |d| between 
each observation and the median.  The median of these absolute values is then the MAD.   
 MAD (Xi) = median |di|, where di = Xi − median (Xi) [1.9] 

Comparison of each estimate of spread for the Example 1 data set is as follows.  When the last 
value is changed from 12 to 120, the standard deviation increases from 3.8 to 42.7.  The IQR 
and the MAD remain exactly the same. 
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data 2 4 8 9 11 11 12 IQR = 11 − 4 = 7 
(Xi − X )2 37.2 16.8 0.01 0.81 8.41 8.41 15.2 s 2  = (3.8)2 

|di = Xi−P.50| 7 5 1 0 2 2 3 MAD=median|di|=2 

data 2 4 8 9 11 11 120 IQR = 11 − 4 = 7 
(Xi − X )2 37.2 16.8 0.01 0.81 8.41 8.41 12,522 s 2  = (42.7)2 

|di = Xi−P.50| 7 5 1 0 2 2 111 MAD=median|di|=2 

1.4 Measures of Skewness 

Hydrologic data are typically skewed, meaning that data sets are not symmetric around the mean 
or median, with extreme values extending out longer in one direction.  The density function for 
a lognormal distribution shown previously as figure 1.1 illustrates this skewness.  When extreme 
values extend the right tail of the distribution, as they do with figure 1.1, the data are said to be 
skewed to the right, or positively skewed.  Left skewness, when the tail extends to the left, is 
called negative skew. 

When data are skewed the mean is not expected to equal the median, but is pulled toward the 
tail of the distribution.  Thus for positive skewness the mean exceeds more than 50 percent of 
the data, as in figure 1.1. The standard deviation is also inflated by data in the tail.  Therefore, 
tables of summary statistics which include only the mean and standard deviation or variance are 
of questionable value for water resources data, as those data often have positive skewness.  The 
mean and standard deviation reported may not describe the majority of the data very well.  Both 
will be inflated by outlying observations.  Summary tables which include the median and other 
percentiles have far greater applicability to skewed data.  Skewed data also call into question the 
applicability of hypothesis tests which are based on assumptions that the data have a normal 
distribution.  These tests, called parametric tests, may be of questionable value when applied to 
water resources data, as the data are often neither normal nor even symmetric.  Later chapters 
will discuss this in much detail, and suggest several solutions. 

1.4.1 Classical Measure of Skewness 
The coefficient of skewness (g) is the skewness measure used most often.  It is the adjusted third 
moment divided by the cube of the standard deviation: 

n

 g = 
n ∑ (x

i 
−X )3 

[1.10]
(n −1)(n − 2) i=1 s 3
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A right-skewed distribution has positive g;  a left-skewed distribution has negative g.  Again, the 
influence of a few outliers is important -- an otherwise symmetric distribution having one outlier 
will produce a large (and possibly misleading) measure of skewness.  For the example 1 data, the 
g skewness coefficient increases from −0.5 to 2.6 when the last data point is changed from 12 to 
120. 

1.4.2   Resistant Measure of Skewness 

A more resistant measure of skewness is the quartile skew coefficient qs (Kenney and Keeping, 

1954): 


(P.75 - P.50) - (P.50 - P.25) 
 qs = P.75 - P.25 

[1.11] 

the difference in distances of the upper and lower quartiles from the median, divided by the 
IQR.  A right-skewed distribution again has positive qs; a left-skewed distribution has negative 
qs.  Similar to the trimmed mean and IQR, qs uses the central 50 percent of the data.  For the 
example 1 data, qs = (11−9) − (9−4) / (11−4) = −0.43 both before and after alteration of the 
last data point.  Note that this resistance may be a liability if sensitivity to a few observations is 
important. 

1.5 Other Resistant Measures 

Other percentiles may be used to produce a series of resistant measures of location, spread and 
skewness.  For example, the 10 percent trimmed mean can be coupled with the range between 
the 10th and 90th percentiles as a measure of spread, and a corresponding measure of skewness: 

(P.90 - P.50) - (P.50 - P.10) 
[1.12]qs.10 = P.90 - P.10 

to produce a consistent series of resistant statistics.  Geologists have used the 16th and 84th 
percentiles for many years to compute a similar series of robust measures of the distributions of 
sediment particles (Inman, 1952).  However, measures based on quartiles have become generally 
standard, and other measures should be clearly defined prior to their use.  The median, IQR, and 
quartile skew can be easily summarized graphically using a boxplot (see Chapter 2) and are 
familiar to most data analysts. 
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1.6 	 Outliers 

Outliers, observations whose values are quite different than others in the data set, often cause 
concern or alarm. They should not.  They are often dealt with by throwing them away prior to 
describing data, or prior to some of the hypothesis test procedures of later chapters.  Again, they 
should not. Outliers may be the most important points in the data set, and should be 
investigated further. 

It is said that data on the Antarctic ozone "hole", an area of unusually low ozone concentrations, 
had been collected for approximately 10 years prior to its actual discovery.  However, the 
automatic data checking routines during data processing included instructions on deleting 
"outliers". The definition of outliers was based on ozone concentrations found at mid-latitudes.  
Thus all of this unusual data was never seen or studied for some time.  If outliers are deleted, the 
risk is taken of seeing only what is expected to be seen. 

Outliers can have one of three causes: 
1. 	 a measurement or recording error. 
2. 	 an observation from a population not similar to that of most of the data, 

such as a flood caused by a dam break rather than by precipitation. 
3. 	 a rare event from a single population that is quite skewed. 

The graphical methods of the Chapter 2 are very helpful in identifying outliers.  Whenever 
outliers occur, first verify that no copying, decimal point, or other obvious error has been made.  
If not, it may not be possible to determine if the point is a valid one.  The effort put into 
verification, such as re-running the sample in the laboratory, will depend on the benefit gained 
versus the cost of verification.  Past events may not be able to be duplicated.  If no error can be 
detected and corrected, outliers should not be discarded based solely on the fact that they 
appear unusual. Outliers are often discarded in order to make the data nicely fit a pre­
conceived theoretical distribution such as the normal.  There is no reason to suppose that they 
should!  The entire data set may arise from a skewed distribution, and taking logarithms or some 
other transformation may produce quite symmetrical data.  Even if no transformation achieves 
symmetry, outliers need not be discarded.  Rather than eliminating actual (and possibly very 
important) data in order to use analysis procedures requiring symmetry or normality, procedures 
which are resistant to outliers should instead be employed.  If computing a mean appears of little 
value because of an outlier, the median has been shown to be a more appropriate measure of 
location for skewed data.  If performing a t-test (described later) appears invalidated because of 
the non-normality of the data set, use a rank-sum test instead.   

In short, let the data guide which analysis procedures are employed, rather than altering the data 
in order to use some procedure having requirements too restrictive for the situation at hand. 
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1.7 Transformations 

Transformations are used for three purposes: 
1. to make data more symmetric, 
2. to make data more linear, and 
3. to make data more constant in variance. 

Some water resources scientists fear that by transforming data, results are derived which fit 
preconceived ideas.  Therefore, transformations are methods to 'see what you want to see' about 
the data. But in reality, serious problems can occur when procedures assuming symmetry, 
linearity, or homoscedasticity (constant variance) are used on data which do not possess these 
required characteristics.  Transformations can produce these characteristics, and thus the use of 
transformed variables meets an objective.  Employment of a transformation is not merely an 
arbitrary choice. 

One unit of measurement is no more valid a priori than any other.  For example, the negative 
logarithm of hydrogen ion concentration, pH, is as valid a measurement system as hydrogen ion 
concentration itself. Transformations like the square root of depth to water at a well, or cube 
root of precipitation volume, should bear no more stigma than does pH.  These measurement 
scales may be more appropriate for data analysis than are the original units.  Hoaglin (1988) has 
written an excellent article on hidden transformations, consistently taken for granted, which are 
in common use by everyone.  Octaves in music are a logarithmic transform of frequency.  Each 
time a piano is played a logarithmic transform is employed!  Similarly, the Richter scale for 
earthquakes, miles per gallon for gasoline consumption, f-stops for camera exposures, etc. all 
employ transformations.  In the science of data analysis, the decision of which measurement 
scale to use should be determined by the data, not by preconceived criteria.  The objectives for 
use of transformations are those of symmetry, linearity and homoscedasticity.  In addition, the 
use of many resistant techniques such as percentiles and nonparametric test procedures (to be 
discussed later) are invariant to measurement scale.  The results of a rank-sum test, the 
nonparametric equivalent of a t-test, will be exactly the same whether the original units or 
logarithms of those units are employed. 

1.7.1 The Ladder of Powers 
In order to make an asymmetric distribution become more symmetric, the data can be 
transformed or re-expressed into new units.  These new units alter the distances between 
observations on a line plot. The effect is to either expand or contract the distances to extreme 
observations on one side of the median, making it look more like the other side.  The most 
commonly-used transformation in water resources is the logarithm.  Logs of water discharge, 
hydraulic conductivity, or concentration are often taken before statistical analyses are performed.  
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Transformations usually involve power functions of the form y = xθ, where x is the 
untransformed data, y the transformed data, and θ the power exponent. In figure 1.5 the values 
of θ are listed in the "ladder of powers" (Velleman and Hoaglin, 1981), a useful structure for 
determining a proper value of θ. 

As can be seen from the ladder of powers, any transformations with θ less than 1 may be used 
to make right-skewed data more symmetric.  Constructing a boxplot or Q-Q plot (see Chapter 2) 
of the transformed data will indicate whether the transformation was appropriate.  Should a 
logarithmic transformation overcompensate for right skewness and produce a slightly left­
skewed distribution, a 'milder' transformation with θ closer to 1, such as a square-root or cube­
root transformation, should be employed instead.  Transformations with θ > 1 will aid in 
making left-skewed data more symmetric. 

Figure 1.5 
"LADDER OF POWERS" 

(modified from Velleman and Hoaglin, 1981)

 Use θ Transformation Name Comment 

for ( − ) 
skewness 3 

2 

• higher powers can be used 
• 
• 

x3 cube 

x2 square 

1 

1/2 x square root commonly used 

1/3 x cube root commonly used 

for ( + ) 
skewness 

0 log(x) logarithm commonly used. Holds the 
place of x0 

−1/2 x reciprocal root the minus sign preserves 
order of observations 

−1 −1/x reciprocal 

−2 −1/x2 
• 
• 
• lower powers can be used 

x no transformation 

3

 original units 

−1/
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However, the tendency to search for the 'best' transformation should be avoided.  For example, 
when dealing with several similar data sets, it is probably better to find one transformation which 
works reasonably well for all, rather than using slightly  different ones for each.  It must be 
remembered that each data set is a sample from a larger population, and another sample from 
the same population will likely indicate a slightly different 'best' transformation.  Determination 
of 'best' in great precision is an approach that is rarely worth the effort. 
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Exercises 

1.1 	 Yields in wells penetrating rock units without fractures were measured by Wright (1985), 
and are given below.  	Calculate the 


  a) mean 

b) trimmed mean 

c) geometric mean 


  d) median 

e) compare these estimates of location.  Why do they differ?


Unit well yields (in gal/min/ft) in Virginia  (Wright, 1985) 
0.001 0.030 0.10 0.003 0.040 0.454 
0.007 0.041 0.49 0.020 0.077 1.02 

1.2 For the well yield data of exercise 1.1,  calculate the 
a) standard deviation 
b) interquartile range 
c) MAD 
d) skew and quartile skew. 

Discuss the differences between a through c. 

1.3 	 Ammonia plus organic nitrogen (in mg/L) was measured in samples of precipitation by 
Oltmann and Shulters (1989).  Some of their data are presented below.  Compute 
summary statistics for these data.  Which observation might be considered an outlier? 
How should this value affect the choice of summary statistics used 

a) to compute the mass of nitrogen falling per square mile. 
b) to compute a "typical" concentration and variability for these data? 

0.3 0.9 0.36 0.92 0.5 1.0 
0.7 9.7 0.7 1.3 
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Chapter 2

Graphical Data Analysis


Perhaps it seems odd that a chapter on graphics appears at the front of a text on statistical 
methods.  We believe this is very appropriate, as graphs provide crucial information to the data 
analyst which is difficult to obtain in any other way.  For example, figure 2.1 shows eight 
scatterplots, all of which have exactly the same correlation coefficient.  Computing statistical 
measures without looking at a plot is an invitation to misunderstanding data, as figure 2.1 
illustrates.  Graphs provide visual summaries of data which more quickly and completely 
describe essential information than do tables of numbers.   

Graphs are essential for two purposes: 
1. to provide insight for the analyst into the data under scrutiny, and   
2. to illustrate important concepts when presenting the results to others. 

The first of these tasks has been called exploratory data analysis (EDA), and is the subject of this 
chapter.  EDA procedures often are (or should be) the 'first look' at data.  Patterns and theories 
of how the system behaves are developed by observing the data through graphs.  These are 
inductive procedures -- the data are summarized rather than tested.  Their results provide 
guidance for the selection of appropriate deductive hypothesis testing procedures.  

Once an analysis is complete, the findings must be reported to others.  Whether a written report 
or oral presentation, the analyst must convince the audience that the conclusions reached are 
supported by the data. No better way exists to do this than through graphics.  Many of the same 
graphical methods which have concisely summarized the information for the analyst will also 
provide insight into the data for the reader or audience. 

The chapter begins with a discussion of graphical methods for analysis of a single data set.  Two 
methods are particularly useful:  boxplots and probability plots.  Their construction is presented 
in detail. Next, methods for comparison of two or more groups of data are discussed.  Then 
bivariate plots (scatterplots) are presented, with an especially useful enhancement called a 
smooth.  The chapter ends with a discussion of plots appropriate for multivariate data. 
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Figure 2.1 Eight scatterplots all with correlation coefficient r = 0.70 

(Chambers and others, 1983). 


 PWS-Kent Pub.  Used with permission. 
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Throughout sections 2.1 and 2.2 two data sets will be used to compare and contrast the 
effectiveness of each graphical method.  These are annual streamflow (in cubic feet per second, 
or cfs) for the Licking River at Catawba, Kentucky, from 1929 through 1983, and unit well yields 
(in gallons per minute per foot of water-bearing material) for valleys without fracturing in 
Virginia (Wright, 1985). 

2.1 Graphical Analysis of Single Data Sets 

2.1.1 Histograms 
Histograms are familiar graphics, and their construction is detailed in numerous introductory 
texts on statistics.  Bars are drawn whose height is the number ni, or fraction ni/n, of data falling 
into one of several categories or intervals (figure 2.2).  Iman and Conover (1983) suggest that, 
for a sample size of n, the number of intervals k should be the smallest integer such that 2k ≥ n. 

Histograms have one primary deficiency -- their visual impression depends on the number of 
categories selected for the plot.  For example, compare figure 2.2a with 2.2b.  Both are 
histograms of the same data: annual streamflows for the Licking River. Comparisons of shape 
and similarity among these two figures and the many other possible histograms of the same data 
depend on the choice of bar widths and centers.  False impressions that these are different 
distributions might be given by characteristics such as the gap around 6,250 cfs.  It is seen in 
2.2b but not in 2.2a. 

Histograms are quite useful for depicting large differences in shape or symmetry, such as 
whether a data set appears symmetric or skewed.  They cannot be used for more precise 
judgements such as depicting individual values.  Thus from figure 2.2a the lowest flow is seen to 
be larger than 750 cfs, but might be as large as 2,250 cfs.  More detail is given in 2.2b, but this 
lowest observed discharge is still only known to be somewhere between 500 to 1,000 cfs. 

For data measured on a continuous scale (such as streamflow or concentration), histograms are 
not the best method for graphical analysis.  The process of forcing continuous data into discrete 
categories may obscure important characteristics of the distribution.  However, histograms are 
excellent when displaying data which have natural categories or groupings.  Examples of such 
data would include the number of individual organisms found at a stream site grouped by 
species type, or the number of water-supply wells exceeding some critical yield grouped by 
geologic unit. 
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Figure 2.2a. Histogram of annual streamflow for the Licking River 
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Figure 2.2b. Second histogram of same data, but with different interval divisions. 

2.1.2 Stem and Leaf Diagrams 
Figure 2.3 shows a stem and leaf (S-L) diagram for the Licking River streamflow data with the 
same divisions as in figure 2.2b. Stem and leaf diagrams are like histograms turned on their side, 
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with data magnitudes to two significant digits presented rather than only bar heights.  Individual 
values are easily found.  The S-L profile is identical to the histogram and can similarly be used to 
judge shape and symmetry, but the numerical information adds greater detail.  One S-L could 
function as both a table and a histogram for small data sets. 

An S-L is constructed by dividing the range of the data into roughly 10 intervals, and placing the 
first digit corresponding to these intervals to the left of the vertical line.  This is the 'stem', 
ranging from 0 to 7 (0 to 7000+ cfs) in figure 2.3.  Each observation is then represented by one 
digit to the right of the line (the 'leaves'), so that the number of leaves equals the number of 
observations falling into that interval.  To provide more detail, figure 2.3 has two lines for each 
stem digit, split to allow 5 leaf digits per line (0-4 and 5-9).  Here an asterisk (*) denotes the stem 
for leaves less than 5, and a period (.) for leaves greater than or equal to 5.  For example, in 
figure 2.3 four observations occur between 2000 and 2500 cfs, with values of 2000, 2200, 2200 
and 2400 cfs. 

The lowest flow is now seen to be between 900 and l,000 cfs.  The gap between 6,000 to 6,500 
cfs is still evident, and now the numerical values of the three highest flows are presented.  
Comparisons between distributions still remain difficult using S-L plots, however, due to the 
required arbitrary choice of group boundaries. 

(range in cfs)


( 500- 999) 


(1000-1499) 1* 


(1500-1999) 1. 


(2000-2499) 2* 


(2500-2999) 2. 


(3000-3499) 3* 


(3500-3999) 3. 


(4000-4499) 4* 


(4500-4999) 4. 


(5000-5499) 5* 


(5500-5999) 5. 


(6000-6499) 6* 


(6500-6999) 6. 


(7000-7499) 7* 


(7500-7999) 7. 


+0. 9 


2 


59 


0224 


66889 


01122 


55678889 


000124 


5566777 


01123334 


56899 


8 


2 


7 


Figure 2.3 Stem and Leaf Plot of Annual Streamflow 
(Leaf digit unit = 100 1 2  represents 1200) 



22 Statistical Methods in Water Resources 

2.1.3 Quantile Plots 
Quantile plots visually portray the quantiles, or percentiles (which equal the quantiles times 100) 
of the distribution of sample data.  Quantiles of importance such as the median are easily 
discerned (quantile, or cumulative frequency = 0.5).  With experience, the spread and skewness 
of the data, as well as any bimodal character, can be examined.  Quantile plots have three 
advantages: 

1. Arbitrary categories are not required, as with histograms or S-L's.   
2. All of the data are displayed, unlike a boxplot. 
3. Every point has a distinct position, without overlap.   

Figure 2.4 is a quantile plot of the streamflow data from figure 2.2.  Attributes of the data such 
as the gap between 6000 and 6800 cfs (indicated by the nearly horizontal line segment) are 
evident. The percent of data in the sample less than a given cfs value can be read from the 
graph with much greater accuracy than from a histogram. 

Figure 2.4 Quantile plot of the Licking R. annual streamflow data 

2.1.3.1 Construction of a quantile plot 
To construct a quantile plot, the data are ranked from smallest to largest.  The smallest data 
value is assigned a rank i=1, while the largest receives a rank i=n, where n is the sample size of 
the data set.  The data values themselves are plotted along one axis, usually the horizontal axis.  
On the other axis is the "plotting position", which is a function of the rank i and sample size n.  
As discussed in the next section, the Cunnane plotting position pi = (i−0.4)/(n+0.2) is used in 
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this book. Below are listed the first and last 5 of the 55 data pairs used in construction of figure 
2.4. When tied data values are present, each is assigned a separate plotting position (the plotting 
positions are not averaged).  In this way tied values are portrayed as a vertical "cliff" on the plot. 

qi = Licking R. streamflow, in cfs pi = plotting position 
i qi pi  i qi pi  i qi pi 
1 994.3 .01 5 2006.0 .08 52 5937.3 .93 
2 1263.1 .03 • 53 6896.0 .95 
3 1504.2 .05 • 54 7270.1 .97 
4 1949.5 .07 51 5907.0 .92 55 7730.7 .99 

Quantile plots are sample approximations of the cumulative distribution function (cdf) of a 
continuous random variable. The cdf for a normal distribution is shown in figure 2.7.  A second 
approximation is the sample (or empirical) cdf, which differs from quantile plots in its vertical 
scale.  The vertical axis of a sample cdf is the probability i/n of being less than or equal to that 
observation.  The largest observation has i/n = 1, and so has a zero probability of being 
exceeded. For samples (subsets) taken from a population, a nonzero probability of exceeding 
the largest value observed thus far should be recognized.  This is done by using the plotting 
position, a value less than i/n, on the vertical axis of the quantile plot.  As sample sizes increase, 
the quantile plot will more closely mimic the underlying population cdf. 

2.1.3.2 Plotting positions 
Variations of quantile plots are used frequently for three purposes:  

1. to compare two or more data distributions (a Q-Q plot), 
2. to compare data to a normal distribution (a probability plot), and  
3. to calculate frequencies of exceedance (a flow-duration curve).   

Unfortunately, different plotting positions have traditionally been used for each of the above 
three purposes.  It would be desirable instead to use one formula that is suitable for all three.  
Numerous plotting position formulas have been suggested, most having the general formula
  p  =  (i  − a) / (n + 1 − 2a) 
where a varies from 0 to 0.5.  Five of the most commonly-used formulas are:  

 Reference  a

Weibull (1939) 0 

Blom (1958) 0.375 


 Cunnane (1978) 0.4 

 Gringorten (1963) 0.44 

 Hazen (1914) 0.5 


Formula 
i / (n + 1) 

(i − 0.375) / (n + 0.25)  
(i − 0.4) / (n + 0.2) 

(i − 0.44) / (n + 0.12)  
(i − 0.5) /  n 

The Weibull formula has long been used by hydrologists in the United States for plotting flow­
duration and flood-frequency curves (Langbein, 1960).  It is used in Bulletin 17B, the standard 
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reference for determining flood frequencies in the United States (Interagency Advisory 
Committee on Water Data, 1982).  The Blom formula is best for comparing data quantiles to 
those of a normal distribution in probability plots, though all of the above formulas except the 
Weibull are acceptable for that purpose (Looney and Gulledge, 1985b).  The Hazen formula is 
used by Chambers and others (1983) for comparing two or more data sets using Q-Q plots. 

Separate formulae could be used for the situations in which each is optimal.  In this book we 
instead use one formula, the Cunnane formula given above, for all three purposes.  We do this 
in an attempt to simplify.  The Cunnane formula was chosen because 

1. 	 it is acceptable for normal probability plots, being very close to Blom. 
2. 	 it is used by Canadian and some European hydrologists for plotting flow­

duration and flood-frequency curves. Cunnane (1978) presents the 
arguments for use of this formula over the Weibull when calculating 
exceedance probabilities. 

For convenience when dealing with small sample sizes, table B1 of the Appendix presents 
Cunnane plotting positions for sample sizes n = 5 to 20. 

2.1.4 Boxplots 
A very useful and concise graphical display for summarizing the distribution of a data set is the 
boxplot (figure 2.5). Boxplots provide visual summaries of  

1) 	the center of the data  (the median--the center line of the box) 
2) 	the variation or spread (interquartile range--the box height) 
3) 	the skewness  (quartile skew--the relative size of box halves) 
4) 	presence or absence of unusual values  ("outside" and "far outside" values). 

Boxplots are even more useful in comparing these attributes among several data sets. 

Compare figures 2.4 and 2.5, both of the Licking R. data.  Boxplots do not present all of the 
data, as do stem-and-leaf or quantile plots.  Yet presenting all data may be more detail than is 
necessary, or even desirable.  Boxplots do provide concise visual summaries of essential data 
characteristics.  For example, the symmetry of the Licking R. data is shown in figure 2.5 by the 
similar sizes of top and bottom box halves, and by the similar lengths of whiskers.  In contrast, 
in figure 2.6 the taller top box halves and whiskers indicate a right-skewed distribution, the most 
commonly occurring shape for water resources data.  Boxplots are often put side-by-side to 
visually compare and contrast groups of data. 

Three commonly used versions of the boxplot are described as follows (figure 2.6 a,b, and c).  
Any of the three may appropriately be called a boxplot. 
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Figure 2.5 Boxplot for the Licking R. data 

2.1.4.1 Simple boxplot 
The simple boxplot was originally called a "box-and-whisker" plot by Tukey (1977).  It consists 
of a center line (the median) splitting a rectangle defined by the upper and lower hinges (very 
similar to quartiles -- see appendix).  Whiskers are lines drawn from the ends of the box to the 
maximum and minimum of the data, as depicted in graph a of figure 2.6. 

2.1.4.2 Standard boxplot 
Tukey's "schematic plot" has become the most commonly used version of a boxplot (graph b in 
figure 2.6), and will be the type of boxplot used throughout this book.  With this standard 
boxplot, outlying values are distinguished from the rest of the plot. The box is as defined above. 
However, the whiskers are shortened to extend only to the last observation within one step 
beyond either end of the box ("adjacent values").  A step equals 1.5 times the height of the box 
(1.5 times the interquartile range).  Observations between one and two steps from the box in 
either direction, if present, are plotted individually with an asterisk ("outside values").  Outside 
values occur fewer than once in 100 times for data from a normal distribution.  Observations 
farther than two steps beyond the box, if present, are distinguished by plotting them with a small 
circle ("far-out values").  These occur fewer than once in 300,000 times for a normal 
distribution.  The occurrence of outside or far-out values more frequently than expected gives a 
quick visual indication that data may not originate from a normal distribution. 
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2.1.4.3 Truncated boxplot 
In a third version of the boxplot (graph c of figure 2.6), the whiskers are drawn only to the 90th 
and 10th percentiles of the data set.  The largest 10 percent and smallest 10 percent of the data 
are not shown. This version could easily be confused with the simple boxplot, as no data appear 
beyond the whiskers, and should be clearly defined as having eliminated the most extreme 20 
percent of data. It should be used only when the extreme 20 percent of data are not of interest. 

In a variation on the truncated boxplot, Cleveland (1985) plotted all observations beyond the 
10th and 90th percentile-whiskers individually, calling this a "box graph".  The weakness of this 
style of graph is that 10 percent of the data will always be plotted individually at each end, and so 
the plot is far less effective than a standard boxplot for defining and emphasizing unusual values.   

Further detail on construction of boxplots may be found in the appendix, and in Chambers and 
others (1983) and McGill and others (1978).  

Figure 2.6  Three versions of the boxplot  (unit well yield data). 

2.1.5 Probability Plots 
Probability plots are used to determine how well data fit a theoretical distribution, such as the 
normal, lognormal, or gamma distributions.  This could be attempted by visually comparing 
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histograms of sample data to density curves of the theoretical distributions such as figures 1.1 
and 1.2. However, research into human perception has shown that departures from straight 
lines are discerned more easily than departures from curvilinear patterns.  By expressing the 
theoretical distribution as a straight line, departures from the distribution are more easily 
perceived. This is what occurs with a probability plot. 

To construct a probability plot, quantiles of sample data are plotted against quantiles of the 
standardized theoretical distribution. In figure 2.7, quantiles from the quantile plot of the 
Licking R. streamflow data (lower scale) are overlain with the S-shaped quantiles of the standard 
normal distribution (upper scale). For a given cumulative frequency (plotting position, p), 
quantiles from each curve are paired and plotted as one point on the probability plot, figure 2.8.  
Note that quantiles of the data are simply the observation values themselves, the pth quantiles 
where p = (i−0.4)/(n+0.2). Quantiles of the standard normal distribution are available in table 
form in most textbooks on statistics. Thus, for each observation, a pair of quantiles is plotted in 
figure 2.8 as one point. For example, the median (p=0.5) equals 0 for the standard normal, and 
4079 cfs for the Licking R. data.  The point (0,4079) is one point included in figure 2.8.  Data 
closely approximating the shape of the theoretical distribution, in this case a normal distribution, 
will plot near to a straight line. 

To illustrate the construction of a probability plot in detail, data on unit well yields (yi) from 
Wright (1985) will be plotted versus their normal quantiles (also called normal scores).  The data 
are ranked from the smallest (i=1) to largest (i=n), and their corresponding plotting positions pi 
= (i − 0.4)/(n + 0.2) calculated. Normal quantiles (Zp) for a given plotting position pi may be 
obtained in one of three ways: 

a. 	 from a table of the standard normal distribution found in most statistics textbooks 
b. 	 from table B2 in the Appendix, which presents standard normal quantiles for the 

Cunnane plotting positions of table B1 
c. 	 from a computerized approximation to the inverse standard normal distribution 

available in many statistical packages, or as listed by Zelen and Severo (1964). 

Entering the table with pi = .05, for example, will provide a Zp = −1.65. Note that since the 
median of the standard normal distribution is 0, Zp will be symmetrical about the median, and 
only half of the Zp values must be looked up: 
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Figure 2.7  Overlay of Licking R. and standard normal distribution quantile plots 

Figure 2.8 Probability plot of the Licking R. data 
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Unit well yields (in gal/min/ft) for valleys without fracturing  (Wright, 1985) 
yi = yield pi = plotting position Zp = normal quantile of p 

i yi pi Zp i yi pi Zp i yi pi Zp 
1 0.001 .05 −1.65 5 0.030 .38 −.31 9 0.10 .70 .52 
2 0.003 .13 −1.13 6 0.040 .46 −.10 10 0.454 .79 .80 
3 0.007 .21 −0.80 7 0.041 .54 .10 11 0.49 .87 1.13 
4 0.020 .30 −0.52 8 0.077 .62 .31 12 1.02 .95 1.65 

For comparison purposes, it is helpful to plot a reference straight line on the plot.  The solid line 
on figure 2.8 is the normal distribution which has the same mean and standard deviation as do 
the sample data.  This reference line is constructed by plotting y as the y intercept of the line 
(Zp=0), so that the line is centered at the point (0, y), the mean of both sets of quantiles.  The 
standard deviation s is the slope of the line on a normal probability plot, as the quantiles of a 
standard normal distribution are in units of standard deviation.  Thus the line connects the 
points (0, y) and (1 , y + s). 

2.1.5.1 Probability paper 
Specialized 'probability paper' is often used for probability plots. This paper simply retransforms 
the linear scale for quantiles of the standard distribution back into a nonlinear scale of plotting 
positions (figure 2.9).  There is no difference between the two versions except for the horizontal 
scale.  With probability paper the horizontal axis can be directly interpreted as the percent 
probability of occurrence, the plotting position times 100.  The linear quantile scale of figure 2.8 
is sometimes included on probability paper as 'probits,' where a probit = normal quantile + 5.0.  
Probability paper is available for distributions other than the normal, but all are constructed the 
same way, using standardized quantiles of the theoretical distribution.   

In figure 2.9 the lower horizontal scale results from sorting the data in increasing order, and 
assigning rank 1 to the smallest value.  This is commonly done in water-quality and low-flow 
studies.  Had the data been sorted in decreasing order, assigning rank 1 to the largest value as is 
done in flood-flow studies, the upper scale would result -- the percent exceedance.  Either 
horizontal scale may be obtained by subtracting the other from 100 percent. 

jkmonson

jkmonson

jkmonson

jkmonson
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Figure 2.9 -- Probability plot of Licking R. data on probability paper 

2.1.5.2 Deviations from a linear pattern 
If probability plots do not exhibit a linear pattern, their nonlinearity will indicate why the data do 
not fit the theoretical distribution.  This is additional information that hypothesis tests for 
normality (described later) do not provide.  Three typical conditions resulting in deviations from 
linearity are: asymmetry or skewness, outliers, and heavy tails of the distribution.  These are 
discussed below. 

Figure 2.10 is a probability plot of the base 10 logarithms of the Licking R. data.  The data are 
negatively (left) skewed.  This is seen in figure 2.10 as a greater slope on the left-hand side of the 
plot, producing a slightly convex shape.  Figure 2.11 shows a right-skewed distribution, the unit 
well yield data. The lower bound of zero, and the large slope on the right-hand side of the plot 
produces an overall concave shape.  Thus probability plots can be used to indicate what type of 
transformation is needed to produce a more symmetric distribution.  The degree of curvature 
gives some indication of the severity of skewness, and therefore the degree of transformation 
required. 
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Outliers appear on probability plots as departures from the pattern of the rest of the data.  
Figure 2.12 is a probability plot of the Licking R. data, but the two largest observations have 
been altered (multiplied by 3). Compare figures 2.12 and 2.8.  Note that the majority of points 
in figure 2.12 still retain a linear pattern, with the two outliers offset from that pattern.  Note 
that the straight line, a normal distribution with mean and standard deviation equal to those of 
the altered data, does not fit the data well.  This is because the mean and standard deviation are 
inflated by the two outliers. 

The third departure from linearity occurs when more data are present in both tails (areas furthest 
from the median) than would be expected for a normal distribution.  Figure 2.13 is a probability 
plot of adjusted nitrate concentrations in precipitation from Wellston, Michigan (Schertz and 
Hirsch, 1985).  These data are actually residuals (departures) from a regression of log of nitrate 
concentration versus log of precipitation volume.  A residual of 0 indicates that the 
concentration is exactly what would be expected for that volume, a positive residual more than 
what is expected, and negative less than expected.  The data in figure 2.13 display a 
predominantly linear pattern, yet one not fit well by the theoretical normal shown as the solid 
line. Again this lack of fit indicates outliers are present.  The outliers are data to the left which 
plot below the linear pattern, and those above the pattern to the right of the figure.  Outliers 
occur on both ends in greater numbers than expected from a normal distribution.  A boxplot for 
the data is shown in figure 2.14 for comparison.  Note that both the box and whiskers are 
symmetric, and therefore no power transformation such as those in the "ladder of powers" 
would produce a more nearly normal distribution.  Data may depart from a normal distribution 
not only in skewness, but by the number of extreme values.  Excessive numbers of extreme 
values may cause significance levels of tests requiring the normality assumption to be in error.  
Therefore procedures which assume normality for their validity when applied to data of this type 
may produce quite inaccurate results. 
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Figure 2.10 -- Probability plot of a left-skewed distribution (logs of Licking R. data) 

Figure 2.11 -- Probability plot of a right-skewed distribution (unit well yields) 



33 Graphical Data Analysis 

Figure 2.12 -- Probability plot of data with high outliers 

Figure 2.13 -- Probability plot of a heavy-tailed data set 
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Figure 2.14 -- Boxplot of a heavy-tailed data set 

2.1.5.3 Probability plots for comparing among distributions 
In addition to comparisons to a normal distribution, quantiles may be computed and probability 
plots constructed for any two-parameter distribution.  The distribution which causes data to be 
most like a straight line on its probability plot is the one which most closely resembles the 
distributional shape of the data.  Data may be compared to a two-parameter lognormal 
distribution by simply plotting the logarithms of the data as the data quantiles, as was done in 
figure 2.10. Vogel (1986) demonstrated the construction of probability plots for the Gumbel 
(extreme-value) distribution, which is sometimes employed for flood-flow studies.  Vogel and 
Kroll (1989) cover the use of probability plots for the two-parameter Weibull distribution, used 
in fitting low-flow data.  Again, the best fit is obtained with the distribution which most closely 
produces a linear plot.  In both references, the use of a test of significance called the probability 
plot correlation coefficient augmented the visual determination of linearity on the plot.  This test 
will be covered in detail in Chapter 4. 

Use of three-parameter distributions can also be indicated by probability plots.  For example, if 
significant right-skewness remains after logarithms are taken, the resulting concave shape on a 
lognormal probability plot indicates that a log-Pearson III distribution would better fit the data.  
Vogel and Kroll (1989) demonstrate the construction of a probability plot for the log-Pearson 
III distribution using a Wilson-Hilferty transformation. 
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2.2 Graphical Comparisons of Two or More Data Sets 

Each of the graphical methods discussed thus far can be, and have been, used for comparing 
more than one group of data. However, each is not equally effective.  As the following sections 
show, histograms are not capable of providing visual comparisons between data sets at the same 
level of detail as boxplots or probability plots. Boxplots excel in clarity and easy discrimination 
of important distributional characteristics, even for comparisons between many groups of data.  
A newer type of plot, the quantile-quantile (Q-Q) plot, provides additional information about 
the relationship between two data sets. 

Each graphic will be developed for the same data set, a comparison of unit well yields in Virginia 
(Wright, 1985). These are small data sets: 13 wells are from valleys underlain by fractured rocks, 
and 12 wells from valleys underlain by unfractured rocks. 

2.2.1 Histograms 
Figure 2.15 presents histograms for the two sets of well yield data.  The right-skewness of each 
data set is easily seen, but it is difficult to discern whether any differences exist between them.  
Histograms do not provide a good visual picture of the centers of the distributions, and only a 
slightly better comparison of spreads.  Positioning histograms side-by-side instead of one above 
the other provide even less ability to compare data, as the data axes would not be aligned.  
Unfortunately, this is commonly done.  Also common are overlapping histograms, such as in 
figure 2.16.  Overlapping histograms provide poor visual discrimination between multiple data 
sets. 

2.2.2 Dot and Line Plots of Means, Standard Deviations 
Figure 2.17 is a "dot and line" plot often used to represent the mean and standard deviation (or 
standard error) of data sets. Each dot is the mean of the data set.  The bars extend to plus and 
minus either one standard deviation (shown), or plus and minus one or more standard errors 

n ), beyond the mean. This plot displays differences in mean yields, but little else.  
No information on the symmetry of the data or presence of outliers is available.  Because of this, 
there is not much information given on the spread of the data, as the standard deviation may 
describe the spread of most of the data, or may be strongly influenced by skewness and a few 
outliers. 

(s.e. = s/ 
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Figure 2.15 Histograms of the unit well yield data 

Figure 2.16 Overlapping histograms of the unit well yield data 



37 Graphical Data Analysis 

Figure 2.17 Dot and line plot for the unit well yield data 

To emphasize the deficiencies of dot and line plots such as these, figure 2.18 presents three data 
sets with very different characteristics.  The first is a uniform distribution of values between 0 
and 20. It is symmetric.  The second is a right-skewed data set with outliers.  The third is a 
bimodal distribution, also symmetric.  All three have a mean of 10 and standard deviation of 
6.63. Therefore each of the three would be represented by the same dot and line plot, shown at 
the right of the figure. 

Dot and line plots are useful only when the data are actually symmetric.  If skewness or outliers 
are present, as with data set 2, neither the plots (or a table of means and standard deviations) 
indicate their presence.  Even for symmetric distributions, differences such as those between 
data sets 1 and 3 will not be evident.  Far better graphical methods are available. 
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Figure 2.18 Number lines of 3 dissimilar groups of data, all having 
an identical dot and line plot (shown at right). 

2.2.3 Boxplots 
Figure 2.19 presents boxplots of the well yield data.  The median well yield is seen to be higher 
for the areas with fractures.  The IQR of wells with fractures is slightly larger than that for wells 
without, and the highest value for each group is similar.  Both data sets are seen to be right­
skewed.  Thus a large amount of information is contained in this very concise illustration.  The 
mean yield, particularly for wells without fractures, is undoubtedly inflated due to skewness, and 
differences between the two groups of data will in general be larger than indicated by the 
differences in their mean values. 
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Figure 2.19 Boxplots of the unit well yield date 

In figure 2.20, boxplots of the three data sets given in figure 2.18 are presented.  The skewness 
of data set 2 is clear, as is the symmetry of 1 and 3.  The difference in shape between 1 and 3 is 
evident. The minute whiskers of data set 3 illustrate that over 25 percent of the data are located 
essentially at the upper and lower quartiles -- a bimodal distribution.   

The characteristics which make boxplots useful for inspecting a single data set make them even 
more useful for comparing multiple data sets.  They are valuable guides in determining whether 
central values, spread, and symmetry differ among groups of data.  They will be used in later 
chapters to guide whether tests based on assumptions of normality may be employed.  The 
essential characteristics of numerous groups of data may be displayed in a small space.  For 
example, the 20 boxplots of figure 2.21 were used by Holtschlag (1987) to illustrate the source 
of ammonia nitrogen on a section of the Detroit River.  The Windmill Point Transect is 
upstream of the U. S. city of Detroit, while the Fermi Transect is below the city.  Note the 
marked changes in concentration (the median lines of the boxplots) and variability (the widths of 
the boxes) on the Michigan side of the river downstream of Detroit.  A lot of information on 
streamwater quality is succinctly summarized in this relatively small figure. 
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Figure 2.20 Boxplots of the 3 dissimilar groups of data shown in figure 2.18 

2.2.4 Probability Plots 
Probability plots are also useful graphics for comparing groups of data.  Characteristics evident 
in boxplots are also seen using probability plots, though in a different format.  Comparisons of 
each quantile, not just the boxplot quartiles, can be made.  The straightness of each data set also 
allows quick comparisons to conformity with the theoretical distribution. 

Figure 2.22 is a probability plot of the two well yield data sets.  The right-skewness of each data 
set is shown by their concave shapes.  Wells without fractures have greater skewness as shown 
by their greater concavity on the plot.  Quantiles of the wells with fractures are higher than those 
without, indicating generally higher yields.  Figure 2.22 shows that the lowest yields in each 
group are similar, as both data sets approach zero yield.  Also seen are the similarity in the 
highest yield for each group, due to the outlier for the without fractures group.  Comparisons 
between median values are simple to do -- just travel up the normal quantile = 0 line.  
Comparisons of spreads are more difficult -- the slopes of each data set display their spread. 

In general, boxplots summarize the differences between data groups in a manner more quickly 
discerned by the viewer.  When comparisons to a particular theoretical distribution such as the 
normal are important, or comparisons between quantiles other than the quartiles are necessary, 
probability plots are useful graphics.  Either have many advantages over histograms or dot and 
line plots. 
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Figure 2.21 Boxplots of total ammonia nitrogen concentrations (mg/L as N) at two transects 
on the Detroit River (from Holtschlag, 1987) 

2.2.5 Q-Q Plots 
Direct comparisons can be made between two data sets by graphing the quantiles (percentiles) 
of one versus the quantiles (percentiles) of the second.  This is called a quantile-quantile or Q-Q 
plot (Chambers et al., 1983). If the two data sets came from the same distribution, the quantile 
pairs would plot along a straight line with Yp = Xp, where p is the plotting position and Yp is 
the pth quantile of Y. In this case it would be said that the median, the quartiles, the 10th and 
90th percentiles, etc., of the two data sets were equal.  If one data set had the same shape as the 
second, differing only by an additive amount (each quantile was 5 units higher than for the other 
data set, for example), the quantile pairs would fall along a line parallel to but offset from the 
Yp=Xp line, also with slope =1.  If the data sets differed by a multiplicative constant  
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(Yp = 5 • Xp, for example), the quantile pairs would lie along a straight line with slope equal to 
the multiplicative constant.  More complex relationships will result in pairs of quantiles which do 
not lie along a straight line. The question of whether or not data sets differ by additive or 
multiplicative relationships will become important when hypothesis testing is conducted. 

Figure 2.22 Probability plot of the unit well yield data 

Figure 2.23 is a Q-Q plot of the well yield data.  Several aspects of the relationship between the 
two data sets are immediately seen.  First, the lowest 9 quantile pairs appear to fall along a 
straight line with a slope greater than 1, not parallel to the Yp = Xp line shown as a 
reference.  This indicates a multiplicative relation between the data, with Y ≅ 4.4•X, where 4.4 is 
the slope of those data on the plot.  Therefore, the yields with fractures are generally 4.4 times 
those without fractures for the lowest 75 percent of the data.  The 3 highest quantile pairs return 
near to the Y = X line, indicating that the higher yields in the two data sets approach being 
equal. The hydrologist might be able to explain this phenomenon, such as higher yielding wells 
are deeper and less dependent on fracturing, or that some of the wells were misclassified, etc.  
Therefore the Q-Q plot becomes a valuable tool in understanding the relationships between data 
sets prior to performing any hypothesis tests. 
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Figure 2.23 Q-Q plot of the unit well yield data 

2.2.5.1 Construction of Q-Q plots 
Q-Q plots are similar to probability plots.  Now instead of plotting data quantiles from one 
group against quantiles of a theoretical distribution such as the normal, they are plotted against 
quantiles of a second data group. 

When sample sizes of the two groups are identical, the x's and y's can be ranked separately, and 
the Q-Q plot is simply a scatterplot of the ordered data pairs (x1 , y1).....(xn, yn). When 
sample sizes are not equal, consider n to be the sample size of the smaller data set and m to be 
the sample size of the larger data set.  The data values from the smaller data set are its pth 
quantiles, where p = (i−0.4)/(n+0.2). The n corresponding quantiles for the larger data set are 
interpolated values which divide the larger data set into n equally-spaced parts.  The following 
example illustrates the procedure. 

For the well yield data, the 12 values without fractures designated xi, i = 1,....n are themselves 
the sample quantiles for the smaller data set.  Repeating the without fractures data given earlier 
in the chapter: 
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Unit well yields, in gal / min / ft (Wright, 1985) 

xi = yield without fractures pi = plotting position yi = yields with fractures

i xi pi yj i xi pi yj i xi pi yj 
1 0.001 .05 - 5 0.030 .38 - 9 0.10 .70 -
2 0.003 .13 - 6 0.040 .46 - 10 0.454 .79 -
3 0.007 .21 - 7 0.041 .54 - 11 0.49 .87 -
4 0.020 .30 - 8 0.077 .62 - 12 1.02 .95 -

The .05 quantile (5th percentile) value of 0.001, for example, is to be paired on the Q-Q plot 
with the .05 quantile of the yields with fractures.  To compute the corresponding y quantiles for 
the second data set, p = (j − 0.4)/(m + 0.2), and therefore j must be: 

(j - 0.4) 
= 

(i - 0.4) 
(n + 0.2)  , or(m + 0.2)

 j = 
(m + 0.2) • (i - 0.4) 

(n + 0.2)  + 0.4 [2.1] 

If j is an integer, the data value yj itself is plotted versus xi. Usually, however, j will lie between 
two integers, and the y quantile must be linearly interpolated between the y data corresponding 
to the ranks on either side of j: 

yj = yj ' + ( j - j' ) • ( y(j'+1) - yj ') [2.2] 
where j' = integer ( j ) 

For example, the well yield data with fractures are the following: 

0.020 0.031 0.086 0.130 0.160 0.160 0.180 0.300 0.400 0.440 0.510 0.720 0.950 .


Therefore  n = 12 m = 13 and from eq. 2.1, j = 1.08i − 0.03 . 
The first of the 12 quantiles to be computed for the data with fractures is then: 

i = 1 j =1 .05 j' = 1 yj = y1 + 0.05 • (y2 − y1) 
  0.020 + 0.05 • (.031 − .020) 

= 0.021 
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All 12 quantiles are similarly interpolated: 

i j  interpolated yj i j yj
 1 1.05 0.021 7 7.53 0.245 
2 2.13 0.038 8 8.61 0.362 
3 3.21 0.095 9 9.69 0.428 
4 4.29 0.139 10 10.77 0.495 
5 5.37 0.160 11 11.85 0.692 
6 6.45 0.169 12 12.93 0.939 

These interpolated values are added to the table of quantiles given previously: 

xi = yields without fractures pi = plotting position yj = yields with fractures 
i xi pi yj i xi pi yj i xi pi yj 
1 0.001 .05 0.021 5 .030 .38 0.160 9 0.10 .70 0.428 
2 0.003 .13 0.038 6 .040 .46 0.169 10 0.454 .79 0.495 
3 0.007 .21 0.095 7 .041 .54 0.245 11 0.49 .87 0.692 
4 0.020 .30 0.139 8 .077 .62 0.362 12 1.02 .95 0.939 

These (xi ,yj) pairs are the circles which were plotted in figure 2.23.  

2.3 Scatterplots and Enhancements 

The two-dimensional scatterplot is one of the most familiar graphical methods for data analysis.  
It illustrates the relationship between two variables.  Of usual interest is whether that 
relationship appears to be linear or curved, whether different groups of data lie in separate 
regions of the scatterplot, and whether the variability or spread is constant over the range of 
data. In each case, an enhancement called a "smooth" enables the viewer to resolve these issues 
with greater clarity than would be possible using the scatterplot alone.  The following sections 
discuss these three uses of the scatterplot, and the enhancements available for each use. 

2.3.1 Evaluating Linearity 
Figure 2.24 is a scatterplot of the mass load of transported sand versus stream discharge for the 
Colorado R. at Lees Ferry, Colorado, during 1949-1964.  Are these data sufficiently linear to fit a 
linear regression to them, or should some other term or transformation be included in order to 
account for curvature?  In Chapters 9 and 11, other ways to answer this question will be 
presented, but many judgements on linearity are made solely on the basis of plots.  To aid in this 
judgement, a "smooth" will be superimposed on the data. 

The human eye is an excellent judge of the range of data on a scatterplot, but has a difficult time 
accurately judging the center -- the pattern of how y varies with x.  This results in two difficulties 
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with judging linearity on a scatterplot as evident in figure 2.24.  Outliers such as the two lowest 
sand concentrations may fool the observer into believing a linear model may not fit.  
Alternatively, true changes in slope are often difficult to discern from only a scatter of data  To 
aid in seeing central patterns without being strongly influenced by outliers, a resistant center line 
can be fit to the data whose direction and slope varies locally in response to the data themselves.  
Many methods are available for constructing this type of center line -- probably the most familiar 
is the (non-resistant) moving average. All such methods may be called a "middle smooth", as 
they smooth out variations in the data into a coherent pattern through the middle.  We discuss 
computation of smooths in Chapter 10.  For now, we will merely illustrate their use as aids to 
graphical data analysis.  The smoothing procedure we prefer is called LOWESS, or LOcally 
WEighted Scatterplot Smoothing (Cleveland and McGill, 1984b; Cleveland, 1985). 

Figure 2.24 Suspended sand transport at Lees Ferry, Arizona, 1949-1952 

Figure 2.25 presents the Lees Ferry sediment data of figure 2.24, with a superimposed middle 
smooth. Note the nonlinearity now evident by the curving smooth on the left-hand side of the 
plot. The rate of sand transport slows above 6600 (e8.8) cfs.  This curvature is easier to see with 
the superimposed smooth. It is important to remember that no model, such as a linear or 
quadratic function, is assumed prior to computing a smooth.  The smoothed pattern is totally 
derived by the pattern of the data, and may take on any shape.  As such, smooths are an 
exploratory tool for discerning the form of relationship between y and x.  Seeing the pattern of 
figure 2.25, a quadratic term might be added, a piecewise linear fit used, or a transformation 
stronger than logs used prior to performing  a linear regression of concentration versus 
discharge (see Chapter 9). 
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Middle smooths should be regularly used when analyzing data on scatterplots, and when 
presenting those data to others.  As no model form is assumed by them, they let the data 
describe the pattern of dependence of y on x.  Smooths are especially useful when large amounts 
of data are to be plotted, and several groups of data are placed on the same plot.  For example, 
Welch and others (1988) depicted the dependence of log of arsenic concentration on pH for 
thousands of groundwater samples throughout the western United States (figure 2.26).  By using 
middle smooths, data from one physiographic province was seen to differ from the other three 
provinces in its relationship between pH and  arsenic. 

2.3.2 Evaluating Differences in Location on a Scatterplot 
Figure 2.27 is a scatterplot of conductance versus pH for samples collected at low-flow in small 
streams within the coal mining region of Ohio (data from Helsel, 1983).  Each stream was 
classified by the type of land it was draining -- unmined land, lands mined and later reclaimed, 
and lands mined and then abandoned without reclamation.  These three types of upstream lands 
are plotted with different symbols in figure 2.27. 

To see the three locations more clearly, a smooth can be constructed for each group which 
encloses either 50 or 75 percent of the data.  This type of smooth is called a polar smooth 
(Cleveland and McGill, 1984b), and its computation is detailed in Chapter 10.  Briefly, the data 
are transformed into polar coordinates, a middle or similar smooth computed, and the smooth is 
re-transformed back into the original units.  In figure 2.28. a polar smooth enclosing 75 percent 
of the data in each of the types of upstream land is plotted.  These smooths are again not limited 
to a prior shape or form, such as that of an ellipse.  Their shapes are determined from the data. 

Polar smooths can be a great aid in exploratory data analysis.  For example, the irregular pattern 
for the polar smooth of data from abandoned lands in figure 2.28 suggests that two separate 
subgroups are present, one with higher pH than the other.  Using different symbols for data 
from each of the two geologic units underlying these streams shows indeed that the basins 
underlain by a limestone unit have generally higher pH than those underlain by a sandstone.  
Therefore the type of geologic unit should be included in any analysis or model of the behavior 
of chemical constituents for these data. 

Polar smooths are especially helpful when there is a large amount of data to be plotted on a 
scatterplot.  In such situations, the use of different symbols for distinguishing between groups 
will be ineffective, as the plot will be too crowded to see patterns in the locations of symbols. 
Indeed, in some locations it will not be possible to distinguish which symbol is plotted.  Plots 
presenting small data points and the polar smooths as in figure 2.28, or even just the polar 
smooths themselves, will provide far greater visual differentiation between groups. 
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Figure 2.25 Data of figure 2.24 with superimposed lowess smooth  

Figure 2.26 Dependence of log(As) on pH for 4 areas in the western U.S.  
(Welch and others, 1988) 



49 Graphical Data Analysis 

Figure 2.27 Scatterplot of water-quality draining three types of upstream land use 

Figure 2.28  Polar smooths for the three groups of data in figure 2.27 
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2.3.3 Evaluating Differences in Spread 
In addition to understanding where the middle of data lie on a scatterplot, it is often of interest 
to know something about the spread of the data as well.  Homoscedasticity (constant variance) is 
a crucial assumption of ordinary least-squares regression, as we will see later.  Changes in 
variance also invalidate parametric hypothesis test procedures such as analysis of variance.  From 
a more exploratory point of view, changes in variance may be as important or more important 
than changes in central value.  Differences between estimation methods for flood quantiles, or 
between methods of laboratory analysis of some chemical constituent, are often differences in 
repeatability of the results and not of method bias.  Graphs again can aid in judging differences 
in data variability, and are often used for this purpose. 

A major problem with judgements of changing spread on a scatterplot is again that the eye is 
sensitive to seeing the range of data.  The presence of a few unusual values may therefore 
incorrectly trigger a perception of changing spread.  This is especially a problem when the 
density of data changes across a scatterplot, a common occurrence.  Assuming the distribution 
of data to be identical across a scatterplot, and that no changes in variablility or spread actually 
occur, areas where data are more dense are more likely to contain outlying values on the plot, 
and the range of values is likely to be larger.  This leads to a perception that the spread has 
changed. 

One graphical means of determining changes in spread has been given by Chambers et al. 
(1983). First, a middle smooth is computed, as in figure 2.25.  The absolute values of differences 
|di| between each data point and the smooth at its value of x is a measure of spread.   

|di| = |yi − li| where li is the value for the lowess smooth at xi [2.3] 

By graphing these absolute differences |di| versus xi, changes in spread will show as changes in 
absolute differences. A middle smooth of these differences should also be added to make the 
pattern more clear.  This is done in figure 2.29, a plot of the absolute differences between sand 
concentration and its lowess smooth for the Lees Ferry data of figure 2.25.  Note that there is a 
slight decrease in |di|, indicating a small decrease of variability or spread in concentration with 
increasing discharge at that site. 
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Figure 2.29 Absolute residuals show whether the spread changes with changing x -- sediment 
concentrations at Lees Ferry, Arizona 

2.4 Graphs for Multivariate Data 

Boxplots effectively illustrate the characteristics of data for a single variable, and accentuate 
outliers for further inspection.  Scatterplots effectively illustrate the relationships between two 
variables, and accentuate points which appear unusual in their x-y relationship.  Yet there are 
numerous situations where relationships between more than two variables should be considered 
simultaneously.  Similarities and differences between groups of observations based on 3 or more 
variables are frequently of interest.  Also of interest is the detection of outliers for data with 
multiple variables.  Graphical methods again can provide insight into these relationships.  They 
supplement and enhance the understanding provided by formal hypothesis test procedures.  
Two multivariate graphical methods already are widely used in water-quality studies -- Stiff and 
Piper diagrams. These and other graphical methods are outlined in the following sections.  For 
more detailed discussions on multivariate graphical methods, see Chambers et al. (1983), or the 
textbook by Everitt (1978). 

2.4.1 Profile Plots 
Profile plots are a class of graphical methods which assign each variable to a separate and 
parallel axis.  One observation is represented by a series of points, one per axis, which are 
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connected by a straight line forming the profile.  Each axis is scaled independently, based on the 
range of values in the entire data set.  Comparisons between observations are made by 
comparing profiles. 

As an example, assume that sediment loads are to be regionalized.  That is, mean annual loads 
are to be predicted at ungaged sites based on basin characteristics (physical and climatic 
conditions) at those sites.  Of interest may be the interrelationships between sites based on their 
basin characteristics, as well as which characteristics are associated with high or low annual 
values. Profile plots such as the one of site basin characteristics in figure 2.30 would effectively 
illustrate those relationships. 

Figure 2.30 Profile plot of selected basin characteristcs, Cow Creek near Lyons, Kansas (data 
from Jordan, 1979). 

2.4.1.1 Stiff diagrams 
Stiff diagrams (Hem, 1985) are the most familiar application of profile plots in water resources.  
In a Stiff diagram, the milliequivalents of major water-quality constituents are plotted for a single 
sample, with the cation profile plotted to the left of the center line, and anion profile to the right 
(figure 2.31).  Comparisons between several samples based on multiple water-quality 
constituents is then easily done by comparing shapes of the Stiff diagrams.  Figure 2.32 shows 
one such comparison for 14 groundwater samples from the Fox Hills Sandstone in Wyoming 
(Henderson, 1985). 
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Figure 2.31  Stiff diagram for a groundwater sample from the Columbia River Basalt aquifer, 
Oregon (data from Miller and Gonthier, 1984). 

2.4.2 Star Plots 
A second method of displaying multiple axes is to have them radiate from a central point, rather 
than aligned parallel as in a profile plot.  Again, one observation would be represented by a point 
on each axis, and these points are connected by line segments.  The resulting figures resemble a 
star pattern, and are often called star plots.  Angles between rays of the star are 360o/k, where k 
is the number of axes to be plotted.  To provide the greatest visual discrimination between 
observations, rays measuring related characteristics should be grouped together.  Unusual 
observations will stand out as a star looking quite different than the other data, perhaps having 
an unusually long or short ray.  In figure 2.33, the basalt water-quality data graphed using a Stiff 
diagram in figure 2.31 is displayed as a star plot.  Note that the cations are grouped together on 
the top half of the star, with anions along the bottom. 

2.4.2.1 Kite diagrams 
A simplified 4-axis star diagram, the "kite diagram", has been used for displaying water-quality 
compositions, especially to portray compositions of samples located on a map (Colby, 1956).  
Cations are plotted on the two vertical axes, and anions on the two horizontal axes.  The 
primary advantage of this plot is its simplicity. Its major disadvantage is also its simplicity, in 
that the use of only four axes may hide important characteristics of the data.  One might need to 
know whether calcium or magnesium were present in large amounts, for example, but that could 
not be determined from the kite diagram.  There is no reason why a larger number of axes could 
not be employed to give more detail, making the plot a true star diagram.  Compare for example 
the basalt data plotted as a star diagram in figure 2.33 and as a kite diagram in figure 2.34. 
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Figure 2.32 Stiff diagrams to display areal differences in water quality 
(from Henderson, 1985) 
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Figure 2.33 Star diagram of the basalt water-quality data 

Figure 2.34 Kite diagram of the basalt water-quality data 

One innovative use of the kite diagram was made by Davis and Rogers (1984).  They plotted the 
quartiles of all observations taken from each of several formations, and at different depth ranges, 
in order to compare water quality between formations and depths (figure 2.35).  The kite plots in 
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this case are somewhat like multivariate boxplots.  There is no reason why the other multivariate 
plots described here could not also present percentile values for a group of observations rather 
than descriptions of individual values, and be used to compare among groups of data.  

Figure 2.35 Kite diagram of quartiles of composition from an alluvial formation in Montana  

(from Davis and Rogers, 1984). 


2.4.3 Trilinear Diagrams 
Trilinear diagrams have been used within the geosciences since the early 1900's.  When three 
variables for a single observation sum to 100 percent, they can be represented as one point on a 
triangular (trilinear) diagram. Figure 2.36 is one example -- three major cation axes upon which 
is plotted the cation composition for the basalt data of figure 2.31.  Each of the three cation 
values, in milliequivalents, is divided by the sum of the three values, to produce a new scale in 
percent of total cations: 

ci  = mi / (m1 + m2 + m3) [2.4] 
where the ci is in percent of total cations, and mi are the milliequivalents of cation i. 

For the basalt data, Ca = 0.80 meq, Mg = 0.26 meq, and Na+K = 0.89 meg.  Thus 
%Ca = 41, %Mg = 13, and %[Na + K] = 46.  As points on these axes sum to 100 percent, only 
two of the variables are independent.  By knowing two values c1 and c2, the third is also known: 
c3 = (100 − c1 − c2). 
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Figure 2.36 Trilinear diagram for the basalt cation composition 
(units are percent milliequivalents). 

2.4.3.1 Piper diagrams 
Piper (1944) applied these trilinear diagrams to both cation and anion compositions of water 
qualtiy data. He also combined both trilinear diagrams into a single summary diagram with the 
shape of a diamond (figure 2.37). This diamond has four sides, two for cations and two for 
anions. However, it also has only two independent axes, one for a cation (say Ca + Mg), and 
one for an anion (say Cl + SO4). If the (Ca + Mg) percentage is known, so is the (Na + K) 
percentage, as one is 100% minus the other, and similarly for the anions.  The collection of these 
three diagrams in the format shown in figure 2.37 is called a Piper diagram. 

Piper diagrams have the advantage over Stiff and star diagrams that each observation is shown 
as only one point.  Therefore, similarities and differences in composition between numerous 
observations is more easily seen with Piper diagrams.  Stiff and star diagrams have two 
advantages over Piper diagrams:  1) they may be separated in space and placed on a map or 
other graph, and 2) more than four independent attributes (two cation and two anion) can be 
displayed at one time.  Thus the choice of which to use will depend on the purpose to which 
they are put. 

Envelopes have been traditionally drawn by eye around a collection of points on a Piper diagram 
to describe waters of "similar" composition.  Trends (along a flow path, for example) have 
traditionally been indicated by using different symbols on the diagram for different data groups, 
such as for upgradient and downgradient observations, and drawing an arrow from one group to 
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the other.  Recently, both of these practices have been quantified into significance tests for 
differences and trends associated with Piper diagrams (Helsel, 1992).  Objective methods for 
drawing envelopes (a smoothed curve) and trend lines on a Piper diagram were also developed.  
The envelope drawn on figure 2.37 is one example.  Smoothing procedures are discussed in 
more detail in Chapter 10. 

Figure 2.37  Piper diagram of groundwaters from the Columbia River Basalt aquifer in Oregon   
(data from Miller and Gonthier, 1984) 

2.4.4 Plots of Principal Components 
One method for viewing observations on multiple axes is to reduce the number of axes to two, 
and then plot the data as a scatterplot.  An important dimension reduction technique is principal 
components analysis, or PCA (Johnson and Wischern, 1982). 

Principal components are linear combinations of the p original variables which form a new set 
of variables or axes.  These new axes are uncorrelated with one another, and have the property 
that the first principal component is the axis that explains more of the variance of the data than 
any other axis. The second principal component explains more of the remaining variance than 
any other axis which is uncorrelated with (orthogonal to) the first.  The resulting p axes are thus 
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new "variables", the first few of which often explain the major patterns of the data in 
multivariate space. The remaining principal components may be treated as residuals, measuring 
the "lack of fit" of observations along the first few axes. 

Each observation can be located on the new set of principal component (pc) axes.  For example, 
suppose principal components were computed for four original variables, the cations Ca, Mg, 
Na and K. The new axes would be linear combinations of these variables, such as: 

pc1 = 0.75 Ca + 0.8 Mg +0.1 Na +0.06 K  a "calcareous" axis ? 
pc2 = 0.17 Ca + 0.06 Mg +0.6 Na + 0.8 K a "Na + K" axis? 
pc3 = 0.4 Ca − 0.25 Mg − 0.1 Na + 0.1 K a "Ca vs. Mg" axis? 
pc4 = 0.05 Ca − 0.1 Mg + 0.1 Na + 0.2 K residual noise 

An observation which had milliequivalents of  Ca = 1.6, Mg = 1.0, Na = 1.3 and K = 0.1 would 
have a value on pc1 equal to (0.6 •1.6 + 0.8 •1.0 + 0.1 •1.3 + 0.06 •0.1) = 1.9, and similarly for 
the other new "variables". At this point no reduction in dimensions has taken place, as each 
observation still has values along the p=4 new pc axes, as they did for the 4 original axes. 

Now, however, plots can be made of the locations of observations oriented along the new 
principal components axes. Most notably, a scatterplot for the first two components (pc1 vs. 
pc2) will show how the observations group together along the new axes which now contain the 
most important information about the variation in the data.  Thus groupings in multivariate 
space have been simplified into groupings along the two most important axes, allowing those 
groupings to be seen by the data analyst. Waters with generally different chemical compositions 
should plot at different locations on the pc scatterplot.  Data known to come from two different 
groups may be compared using boxplots, probability plots, or Q-Q plots, but now using the first 
several pc axes as the measurement "variables".  Additionally, plots can be made of the last few 
pc axes, to check for outliers.  These outliers in multivariate space will now be visible by using 
the "lack of fit" principal components to focus attention at the appropriate viewing angle.  
Outliers having unusually large or small values on these plots should be checked for 
measurement errors, unusual circumstances, and the other investigations outliers warrant.  
Examples of the use of plots of components include Xhoffer et al. (1991), Meglen and Sistko 
(1985), and Lins (1985). 

2.4.5 Other Multivariate Plots 

2.4.5.1 3-Dimensional rotation 
If three variables are all that are under consideration, several microcomputer packages now will 
plot data in pseudo-3 dimensions, and allow observations to be rotated in space along all three 
axes.  In this way the inter-relationships between the three variables can be visually observed, 
data visually clustered into groups of similar observations, and outliers discerned.  In figure 2.38 
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two of the many possible orientations for viewing a data set were output from MacSpin 
(Donoho et al., 1985), a program for the Apple Macintosh.  The data are water qualtity variables 
measured at low flow in basins with and without coal mining and reclamation (Helsel, 1983) 

Figure 2.38 Two 3-dimensional plots of a water-quality data set 

Note the u-shaped pattern in the data seen in the right-hand plot.  There is some suggestion of 
two separate groups of data, the causes of which can be checked by the analyst.  This pattern is 
not evident in the left-hand orientation. By rotating data around their three axes, patterns may 
be seen which would not be evident without a 3-dimensional perspective, and greater insight 
into the data is obtained. 

2.4.5.2 Scatterplot matrix 
Another method for inspecting data measured by p variables is to produce a scatterplot for each 
of the p•(p−1)/2 possible pairs of variables.  These are then printed all on one screen or page.  
Obviously, little detail can be discerned on any single plot within the matrix, but variables which 
are related can be grouped, linear versus nonlinear relationships discerned, etc.  Chambers et al. 
(1983) describe the production and utility of scatterplot matrices in detail. 

Figure 2.39 is a scatterplot matrix for 5 water-quality variables at low-flow from the coal mining 
data of Helsel (1983).  On the lowest row are histograms for each individual variable.  Note the 
right skewness for all variables except pH.  All rows above the last contain scatterplots between 
each pair of varables.  For example, the single plot in the first row is the scatterplot of 
conductance (cond) versus pH. Note the two separate subgroups of data, representing low and 
high pH waters.  Evident from other plots are the linear association between conductance and 
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sulfate (SO4), the presence of high total iron concentrations (TFe) for waters of low alkalinity 
(ALK) and pH, and high TFe for waters of high sulfate and conductance. 

Figure 2.39  Scatterplot matrix showing the relationships between 
5 water-quality variables 

2.4.5.3 Methods to avoid 
Two commonly-used methods should usually be avoided, as they provide little ability to 
compare differences between groups of data.  These are stacked bar charts and pie charts.  Both 
allow only coarse discrimination to be made between segments of the plot.  Figure 2.40, for 
example, is a stacked bar chart of the basalt water-quality data previously shown as a Stiff (figure 
2.31) and star (figure 2.33) plot.  Note that only large differences between categories within a bar 
are capable of being discerned.  For example, it is much easier to see that chloride (Cl) is larger 
than sulfate (SO4) on the Stiff diagram than on the stacked bar chart.  In addition, stacked bar 
charts provide much less visual distinction when comparing differences among many sites, as in 
figure 2.32. Stiff or star diagrams allow differences to be seen as differences in shape, while 
stacked bar charts require judgements of length without a common datum, a very difficult type 
of judgement. Multiple pie charts require similarly imprecise and difficult judgements.  Further 
information on these and other types of presentation graphics is given in the last chapter. 
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Figure 2.40 Stacked bar chart of the basalt data 
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Exercises 

2.1 	 Annual peak discharges for the Saddle River in New Jersey are given in Appendix C1.  
For the peaks occuring from 1968-1989, draw 


a)  a histogram 

b) a boxplot 

c) a quantile plot (using (i − .4)/(n + .2)) 


What transformation, if any, would make these data more symmetric? 

2.2 	 Arsenic concentrations (in ppb) were reported for ground waters of southeastern New 
Hampshire (Boudette and others, 1985).  	For these data, compute  


a) a boxplot 

b) a probability plot 


Based on the probability plot, describe the shape of the data distribution.  What 
transformation, if any, would make these data more symmetric? 
1.3 1.5 1.8 2.6 2.8 3.5 4.0 4.8 
8 9.5 12 14 19 23 41 80 

100 110 120 190 240 250 300 340 
580 

2.3 	 Feth et al. (1964) measured chemical compositions of waters in springs draining differing 
rock types.  Compare chloride concentrations from two of these rock types using a Q-Q 
plot. Also plot two other types of graphs.  Describe the similarities and differences in 
chloride. What characteristics are evident in each graph? 

Chloride concentration, in mg/L 
Granodiorite 6.0 0.5 0.4 0.7 0.8 6.0 

5.0 0.6 1.2 0.3 0.2 0.5 
0.5 10 0.2 0.2 1.7 3.0 

Qtz Monzonite 1.0 0.2 1.2 1.0 0.3 0.1 
0.1 0.4 3.2 0.3 0.4 1.8 
0.9 0.1 0.2 0.3 0.5 
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2.4 	 The following chemical and biological data were reported by Frenzel (1988) above and 
below a waste treatment plant (WTP).  Graph and compare the two sets of multivariate 
data. What effects has the WTP appeared to have?

 Above Below units 
Chironomidae 2500 3200 ave # per substrate 
Simuliidae 3300 230 ave # per substrate 
Baetidae 2700 2700 ave # per substrate 
Hydropsychidae 440 88 ave # per substrate 
Native trout 6.9 7.9 # per 10,760 sq. ft. 
Whitefish 140 100 # per 10,760 sq. ft. 
Nongame fish 54 180 # per 10,760 sq. ft. 
Aluminum in clays 1950 1160 µg/g 
Organic Carbon 4.2 2.1 g/kg 
Ammonia 0.42 0.31 mg/L as N 



Chapter 3

Describing Uncertainty


The mean nitrate concentration in a shallow aquifer under agricultural land was calculated as 5.1 
mg/L. How reliable is this estimate?  Is 5.1 mg/L in violation of a health advisory limit of 5 
mg/L? Should it be treated differently than another aquifer having a mean concentration of 4.8 
mg/L? 

Thirty wells over a 5-county area were found to have a mean specific capacity of 1 gallon per 
minute per foot, and a standard deviation of 7 gallons per minute per foot.  A new well was 
drilled and developed with an acid treatment.  The well produced a specific capacity of 15 
gallons per minute per foot. To determine whether this increase might be due to the acid 
treatment, how likely is a specific capacity of 15 to result from the regional distribution of the 
other 30 wells? 

An estimate of the 100-year flood, the 99th percentile of annual flood peaks, was determined to 
be 10,000 cubic feet per second (cfs).  Assuming that the choice of a particular distribution to 
model these floods (Log Pearson Type III) is correct, what is the reliability of this estimate? 

In chapter 1 several summary statistics were presented which described key attributes of a data 
set.  They were sample estimates (such as x and s2) of true and unknown population parameters 
(such as µ and σ2). In this chapter, descriptions of the uncertainty or reliability of sample 
estimates is presented.  As an alternative to reporting a single estimate, the utility of reporting a 
range of values called an "interval estimate" is demonstrated.  Both parametric and 
nonparametric interval estimates are presented.  These intervals can also be used to test whether 
the population parameter is significantly different from some pre-specified value. 

jkmonson
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3.1   Definition of Interval Estimates 

The sample median and sample mean estimate the corresponding center points of a population.  
Such estimates are called point estimates. By themselves, point estimates do not portray the 
reliability, or lack of reliability (variability), of these estimates.  For example, suppose that two 
data sets X and Y exist, both with a sample mean of 5 and containing the same number of data.  
The Y data all cluster tightly around 5, while the X data are much more variable.  The point 
estimate of 5 for X is much less reliable than that for Y because of the greater variability in the X 
data. In other words, more caution is needed when stating that 5 estimates the true population 
mean of X than when stating this for Y.  Reporting only the sample (point) estimate of 5 fails to 
give any hint of this difference. 

As an alternative to point estimates, interval estimates are intervals which have a stated 
probability of containing the true population value.  The intervals are wider for data sets having 
greater variability. Thus in the above example an interval between 4.7 and 5.3 may have a 95% 
probability of containing the (unknown) true population mean of Y.  It would take a much wider 
interval, say between 2.0 and 8.0, to have the same probability of containing the true mean of X.  
The difference in the reliability of the two estimates is therefore clearly stated using interval 
estimates.  Interval estimates can provide two pieces of information which point estimates 
cannot: 

1. 	 A statement of the probability or likelihood that the interval contains the true population 
value (its reliability).   

2. 	 A statement of the likelihood that a single data point with specified magnitude comes 
from the population under study. 

Interval estimates for the first purpose are called confidence intervals; intervals for the second 
purpose are called prediction intervals.  Though related, the two types of interval estimates are 
not identical, and cannot be interchanged. 

In sections 3.3 and 3.4, confidence intervals will be developed for both the median and mean.  
Prediction intervals, both parametric and nonparametric, will be used in sections 3.5 and 3.6 to 
judge whether one new observation is consistent with existing data.  Intervals for percentiles 
other than the median will be discussed in section 3.7. 
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If interest is in: 

Center of 
the data 

One new 
observation 

Percentiles (low 
or high values) 

Sections Sections Section 
3.3 and 3.4 3.5 and 3.6 3.7 

3.2 Interpretation of Interval Estimates 

Suppose that the true population mean µ of concentration in an aquifer was 10. Also suppose 
that the true population variance σ2 equals 1.  As these values in practice are never known, 
samples are taken to estimate them by the sample mean x and sample variance s2. Sufficient 
funding is available to take 12 water samples (roughly one per month) during a year, and the 
days on which sampling occurs are randomly chosen.  From these 12 samples x and s2 are 
computed. Although in reality only one set of 12 samples would be taken each year, using a 
computer 12 days can be selected multiple times to illustrate the concept of an interval estimate.  
For each of 10 independent sets of 12 samples, a confidence interval on the mean is computed 
using equations given later in section 3.4.1.  The results are shown in table 3.1 and figure 3.1. 

N Mean St. Dev. 90 %  Confidence Interval
 1 12 10.06 1.11 (9.49 to 10.64) 

2 12 10.60 0.81 *(10.18 to 11.02) 
3 12 9.95 1.26 (9.29 to 10.60) 
4 12 10.18 1.26 (9.52 to 10.83) 
5 12 10.17 1.33 (9.48 to 10.85) 
6 12 10.22 1.19 (9.60 to 10.84) 
7 12 9.71 1.51 (8.92 to 10.49) 
8 12 9.90 1.01 (9.38 to 10.43) 
9 12 9.95 0.10 (9.43 to 10.46) 

10 12 9.88 1.37 (9.17 to 10.59) 
Table 3.1 Ten 90% confidence intervals around a true mean of 10.  Data follow a normal 

distribution.  The interval with the asterisk does not include the true value. 

These ten intervals are "90% confidence intervals" on the true population mean.  That is, the 
true mean will be contained in these intervals an average of 90 percent of the time.  So for the 
10 intervals in the table, nine are expected to include the true value while one is not.  This is in 
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fact what happened. Of course when a one-time sampling occurs, the computed interval will 
either include or not include the true, unknown population mean.  The probability that the 
interval does include the true value is called the confidence level of the interval. The 
probability that this interval will not cover the true value, called the alpha level (α), is computed 
as 

α = 1 − confidence level. [3.1] 

The width of a confidence interval is a function of the shape of the data distribution (its 
variability and skewness), the sample size, and of the confidence level desired.  As the 
confidence level increases the interval width also increases, because a larger interval is more 
likely to contain the true value than is a shorter interval.  Thus a 95% confidence interval will be 

l

10 

wider than a 90% interva  for the same data. 

Figure 3.1  Ten 90% confidence intervals for normally-distributed data 
with true mean = 10 

Symmetric confidence intervals on the mean are commonly computed assuming the data follow 
a normal distribution (see section 3.4.1).  If not, the distribution of the mean itself will be 
approximately normal as long as sample sizes are large (say 50 observations or greater).  
Confidence intervals assuming normality will then include the true mean (1−α)% of the time. In 
the above example, the data were generated from a normal distribution, so the small sample size 
of 12 is not a problem.  However when data are skewed and sample sizes below 50 or more, 
symmetric confidence intervals will not contain the mean (1−α)% of the time. In the example 
below, symmetric confidence intervals are incorrectly computed for skewed data (figure 3.2).  
The results (figure 3.3 and table 3.2) show that the confidence intervals miss the true value of 1 
more frequently than they should.  The greater the skewness, the larger the sample size must be 
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before symmetric confidence intervals can be relied on.  As an alternative, asymmetric 
confidence intervals can be computed for the common situation of skewed data.  They are also 
presented in the following sections. 

N Mean St. Dev. 90 %  Confidence Interval
 1 12 0.784 0.320 *(0.618 to 0.950) 

2 12 0.811 0.299 *(0.656 to 0.966) 
3 12 1.178 0.700 (0.815 to 1.541) 
4 12 1.030 0.459 (0.792 to 1.267) 
5 12 1.079 0.573 (0.782 to 1.376) 
6 12 0.833 0.363 (0.644 to 1.021) 
7 12 0.789 0.240 *(0.664 to 0.913) 
8 12 1.159 0.815 (0.736 to 1.581) 
9 12 0.822 0.365 *(0.633 to 0.992) 

10 12 0.837 0.478 (0.589 to 1.085) 
Table 3.2 Ten 90% confidence intervals around a true mean of 1.  Data do not follow a normal 

distribution. Intervals with an asterisk do not include the true value. 
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Figure 3.2  Histogram of skewed example data.  µ = 1.0 σ = 0.75. 
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1.0 
(True Value) 

Figure 3.3  Ten 90% confidence intervals for skewed data with true mean = 1.0 

3.3 Confidence Intervals for the Median  

A confidence interval for the true population median may be computed either without assuming 
the data follow any specific distribution (section 3.3.1), or assuming they follow a distribution 
such as the lognormal (section 3.3.2). 

Confidence Intervals for the 
Center of Data 

Interest in median Interest in mean 
"typical value" "center of mass" 

Nonparametric 
interval 

Sec. 3.3.1 

Symmetric 
interval 

Sec. 3.4.1 

Asymmetric 
interval 

Sec. 3.4.2 

Parametric 
interval 

Sec. 3.3.2 

3.3.1 Nonparametric Interval Estimate for the Median 
A nonparametric interval estimate for the true population median is computed using the 
binomial distribution. First, the desired significance level α is stated, the acceptable risk of not 
including the true median.  One-half (α/2) of this risk is assigned to each end of the interval 
(figure 3.4). A table of the binomial distribution provides lower and upper critical values x' and 
x at one-half the desired alpha level (α/2). These critical values are transformed into the ranks 
Rl and Ru corresponding to data points Cl and Cu at the ends of the confidence interval.   
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/α 95% = 1 
PROBABILITY OF 
INCLUDING THE 
TRUE MEDIAN 

Interval estimate 

2α/2 − α 

0 Cl 
C u 

DATA VALUE 
Figure 3.4 Probability of containing the true median P.50 in a 2-sided interval estimate. P.50 

will be below the lower interval bound (Cl) α/2% of the time, and above the upper 
interval bound (Cu) α/2% of the time. 

For small sample sizes, the binomial table is entered at the p=0.5 (median) column in order to 
compute a confidence interval on the median.  This column is reproduced in Appendix Table B5 
-- it is identical to the quantiles for the sign test (see chapter 6).  A critical value x' is obtained 
from Table B5 corresponding to α/2, or as close to α/2 as possible.  This critical value is then 
used to compute the ranks Ru and Rl corresponding to the data values at the upper and lower 
confidence limits for the median.  These limits are the Rlth ranked data points going in from 
each end of the sorted list of n observations.  The resulting confidence interval will reflect the 
shape (skewed or symmetric) of the original data.  

Rl = x' +1 [3.2] 

Ru = n − x' = x for x' and x from Appendix Table B5 [3.3] 

Nonparametric intervals cannot always exactly produce the desired confidence level when 
sample sizes are small.  This is because they are discrete, jumping from one data value to the 
next at the ends of the intervals.  However, confidence levels close to those desired are available 
for all but the smallest sample sizes. 

Example 2 
The following 25 arsenic concentrations (in ppb) were reported for ground waters of 
southeastern New Hampshire (Boudette and others, 1985).  A histogram of the data is shown in 
figure 3.5.  Compute the α=0.05 interval estimate of the median concentration. 

1.3 1.5 1.8 2.6 2.8 3.5 4.0 4.8 8 
9.5 12 14 19 23 41 80 100 110 
120 190 240 250 300 340 580 



72 Statistical Methods in Water Resources

 0
 50


 100

 150


A
rs

en
ic

 C
on

ce
nt

ra
tio

n,
 in

 p
pb

 
200

 250

 300

 350

 400

 450

 500

 550

 600


0.0  4.0  8.0  12.0
Figure 3.5 Histogram of Example 2 arsenic concentrations (in ppb)  

^The sample median concentration C 0.5 = 19, the 13th observation ranked from smallest to 
largest.  To determine a 95% confidence interval for the true median concentration C0.5, the 
tabled critical value with an entry nearest to α/2 = 0.025 is x' = 7 from Table B5.  The entry 
value of 0.022 is quite near 0.025, and is the equivalent to the shaded area at one side of figure 
3.4. From equations 3.2 and 3.3 the rank Rl of the observation corresponding to the lower 
confidence limit is 8, and Ru corresponding to the upper confidence limit is 25 − 7 = 18. 

For this confidence interval the alpha level α = 2•0.022 = 0.044.  This is equivalent to a 1−0.044 
or 95.6% confidence limit for C0.5, and is the interval between the 8th and 18th ranked 
observations (the 8th point in from either end), or

 Cl = 4.8 ≤ C0.5 ≤ 110 = Cu  at α = 0.044 

^
The asymmetry around C 0.5 = 19 reflects the skewness of the data. 

An alternative method for computing the same nonparametric interval is used when the sample 
size n>20.  This large-sample approximation utilizes a table of the standard normal distribution 
available in every basic statistics textbook to approximate the binomial distribution.  By using 
this approximation, only small tables of the binomial distribution up to n=20 need be included 
in statistics texts.  A critical value zα/2 from the normal table determines the upper and lower 
ranks of observations corresponding to the ends of the confidence interval.  Those ranks are 
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n − z 
a/ 2Rl = 

n 
[3.4]

2
n + z 

a / 2Ru = 
n 

+1 [3.5]
2 

The computed ranks Ru and Rl are rounded to the nearest integer when necessary. 

Example 2, cont.

For the n=25 arsenic concentrations, an approximate 95 percent confidence interval on the true 

median C0.5 is computed using zα/2 = 1.96 so that 


25 - 1.96 •  25
Rl = 2 = 7.6 


25 + 1.96 • 25

Ru = 2  +1 = 18.4 

the "7.6th ranked observation" in from either end.  Rounding to the nearest integer, the 8th and 
18th ranked observations are used as the ends of the α=0.05 confidence limit on C0.5, agreeing 
with the exact 95.6% confidence limit computed previously. 

3.3.2 Parametric Interval Estimate for the Median 
As mentioned in chapter 1, the geometric mean of x (GMx) is an estimate of the median in 
original (x) units when the data logarithms y = ln(x) are symmetric.  The mean of y and 
confidence interval on the mean of y become the geometric mean with its (asymmetric) 
confidence interval after being retransformed back to original units by exponentiation (equations 
3.6 and 3.7). These are parametric alternatives to the point and interval estimates of section 
3.3.1. Here it is assumed that the data are distributed as a lognormal distribution.  The 
geometric mean and interval would be more efficient (shorter interval) measures of the median 
and its confidence interval when the data are truly lognormal.  The sample median and its 
interval are more appropriate and more efficient if the logarithms of data still exhibit skewness 
and/or outliers. 

GMx = exp ( y ) where  y = ln(x) and y = sample mean of y. [3.6] 

exp y − t
(α / 2,n−1)( s 

y 

2 / n)≤ GMx ≤  exp y − t
(α / 2,n−1)( s 

y 

2 / n) [3.7] 

 where s 
y 

2= sample variance of y in natural log units. 
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Example 2, cont.

Natural logs of the arsenic data are as follows: 

0.262 0.405 0.588 0.956 1.030 1.253 1.387 1.569 2.079 
2.251 2.485 2.639 2.944 3.135 3.714 4.382 4.605 4.700 
4.787 5.247 5.481 5.521 5.704 5.829 6.363 

The mean of the logs = 3.17, with standard deviation of 1.96.  From figure 3.6 the logs of the 
data appear more symmetric than do the original units of concentration shown previously in 
figure 3.5. 
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Figure 3.6 Histogram of natural logs of the arsenic concentrations of Example 2 

From equations 3.6 and 3.7, the geometric mean and its 95% confidence interval are: 
GMC = exp (3.17) = 23.8 

exp(3.17 - 2.064 • 1.962/25 ) ≤ GMC ≤  exp(3.17 + 2.064 •  1.962/25 )

exp (2.36) ≤ GMC ≤  exp (3.98) 


10.6 ≤ GMC ≤  53.5 


The scientist must decide whether it is appropriate to assume a lognormal distribution.  If not, 
the nonparametric interval of section 3.3.1 would be preferred. 

3.4 Confidence Intervals for the Mean 

Interval estimates may also be computed for the true population mean µ. These are appropriate 
if the center of mass of the data is the statistic of interest (see Chapter 1).  Intervals symmetric 
around the sample mean X are computed most often.  For large sample sizes a symmetric 
interval adequately describes the variation of the mean, regardless of the shape of the data 
distribution.  This is because the distribution of the sample mean will be closely approximated by 
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a normal distribution as sample sizes get larger, even though the data may not be normally 
distributed†. For smaller sample sizes, however, the mean will not be normally distributed unless 
the data themselves are normally distributed.  As data increase in skewness, more data are 
required before the distribution of the mean can be adequately approximated by a normal 
distribution.  For highly skewed distributions or data containing outliers, it may take more than 
100 observations before the mean will be sufficiently unaffected by the largest values to assume 
that its distribution will be symmetric.   

3.4.1 Symmetric Confidence Interval for the Mean 
Symmetric confidence intervals for the mean are computed using a table of the student's t 
distribution available in statistics textbooks and software.  This table is entered to find critical 
values for t at one-half the desired alpha level.  The width of the confidence interval is a 
function of these critical values, the standard deviation of the data, and the sample size.  When 
data are skewed or contain outliers, the assumptions behind the t-interval do not hold.  The 
resulting symmetric interval will be so wide that most observations will be included in it.  It may 
also extend below zero on the lower end.  Negative endpoints of a confidence interval for data 
which cannot be negative are clear signals that the assumption of a symmetric confidence 
interval is not warranted.  For such data, assuming a lognormal distribution as described in 
section 3.4.2 would be more appropriate. 

The student's t statistic t(α/2, n−1) is used to compute the following symmetric confidence 
interval: 

x − t(α/2, n−1) • s2/n ≤ µ ≤ x + t(α/2, n−1) • s2/n [3.8] 

Example 2, cont.

The sample mean arsenic concentration C = 98.4. This is the point estimate for the true 

unknown population mean µ. An α = 0.05 confidence interval on µ is


 98.4 − t(.025, 24) • 144.72/25 ≤ µ ≤  98.4 + t(.025, 24) • 144.72/25 
98.4 − 2.064 • 28.9  ≤ µ ≤  98.4 + 2.064 • 28.9 

38.7 ≤ µ ≤  158.1 

Thus there is a 95% probability that µ is contained in the interval between 38.7 and 158.1 ppb, 
assuming that a symmetric confidence interval is appropriate.  Note that this confidence interval 
is, like C, sensitive to the highest data values.  If the largest value of 580 were changed to 380, 
the median and its confidence interval would be unaffected.  C would change to 90.4, with a 
95% interval estimate for µ from 40.7 to 140.1. 

† This property is called the Central Limit Theorem (Conover, 1980).  It holds for data which follow a distribution 
having finite variance, and so includes most distributions of interest in water resources. 
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3.4.2 Asymmetric Confidence Interval for the Mean (for Skewed Data) 

Means and confidence intervals may also be computed by assuming that the logarithms y = ln(x) 

of the data are symmetric.  If the data appear more like a lognormal than a normal distribution, 

this assumption will give a more reliable (lower variance) estimate of the mean than will 

computation of the usual sample mean without log transformation. 


To estimate the population mean µx in original units, assume the data are lognormal.  One-half 
the variance of the logarithms is added to y (the mean of the logs) prior to exponentiation 
(Aitchison and Brown, 1981).  As the sample variance s2y is only an estimate of the true variance 
of the logarithms, the sample estimate of the mean is biased (Bradu and Mundlak, 1970).  
However, for small s2y and large sample sizes the bias is negligible.  See Chapter 9 for more 
information on the bias of this estimator. 

µ̂ = exp ( y + 0.5 • s2y) where y= ln(x), [3.9]
x 

y = sample mean and s2y = sample variance of y in natural log units. 

The confidence interval around µ̂  is not the interval estimate computed for the geometric mean 
x

in equation 3.7. It cannot be computed simply by exponentiating the interval around y . An 

exact confidence interval in original units for the mean of lognormal data can be computed, 

though the equation is beyond the scope of this book.  See Land (1971) and (1972) for details. 


Example 2, cont.

To estimate the mean concentration assuming a lognormal distribution, 


µ̂ = exp (3.17 + 0.5•1.962) = 162.8 .
c 

This estimate does not even fall within the confidence interval computed earlier for the 
geometric mean (10.6  ≤ GMC ≤  53.5). Thus here is a case where it is obvious that the CI on 
the geometric mean is not an interval estimate of the mean.  It is an interval estimate of the 
median, assuming the data follow a lognormal distribution. 

3.5. Nonparametric Prediction Intervals 

The question is often asked whether one new observation is likely to have come from the same 
distribution as previously-collected data, or alternatively from a different distribution.  This can 
be evaluated by determining whether the new observation is outside the prediction interval 
computed from existing data.  Prediction intervals contain 100•(1−α) percent of the data 
distribution, while 100•α percent are outside of the interval.  If a new observation comes from 
the same distribution as previously-measured data, there is a 100•α percent chance that it will lie 
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outside of the prediction interval.  Therefore being outside the interval does not "prove" the 
new observation is different, just that it is likely to be so.  How likely this is depends on the 
choice of α made by the scientist. 

Prediction intervals are computed for a different purpose than confidence intervals -- they deal 
with individual data values as opposed to a summary statistic such as the mean.  A prediction 
interval is wider than the corresponding confidence interval, because an individual observation is 
more variable than is a summary statistic computed from several observations. Unlike a 
confidence interval, a prediction interval takes into account the variability of single data points 
around the median or mean, in addition to the error in estimating the center of the distribution.  
When the mean ± 2 standard deviations are mistakenly used to estimate the width of a 
prediction interval, new data are asserted as being from a different population more frequently 
than they should. 

In this section nonparametric prediction intervals are presented -- intervals not requiring the data 
to follow any particular distributional shape.  Prediction intervals can also be developed 
assuming the data follow a particular distribution, such as the normal.  These are discussed in 
section 3.6. Both two-sided and one-sided prediction intervals are described. 

Prediction Intervals to 
evaluate one new observation 

Valid only 
Valid only for when logs are 

Valid for all data symmetric data symmetric 

Nonparametric 
interval 
Sec. 3.5 

Symmetric 
interval 

Sec. 3.6.1 

Asymmetric 
interval 

Sec. 3.6.2 

It may also be of interest to know whether the median or mean of a new set of data differs from 
that for an existing group. To test for differences in medians, use the rank-sum test of Chapter 
5. To test for differences in means, the two-sample t-test of Chapter 5 should be performed. 

3.5.1 Two-Sided Nonparametric Prediction Interval 
The nonparametric prediction interval of confidence level α is simply the interval between the 
α/2 and 1−(α/2) percentiles of the distribution (figure 3.7).  This interval contains 100•(1−α) 
percent of the data, while 100•α percent lies outside of the interval.  Therefore if the new 
additional data point comes from the same distribution as the previously measured data, there is 
a 100•α percent chance that it will lie outside of the prediction interval and be incorrectly 
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labeled as "changed".  The interval will reflect the shape of the data it is developed from, and no 
assumptions about the form of that shape need be made. 

PI np  = Xα/2•(n+1) to X[1−(α/2)]•(n+1) [3.10] 

Figure 3.7 Two-sided prediction interval.  A new observation will be below Xl α/2% and 
above Xu α/2% of the time, when the data distribution is unchanged. 

Example 2, cont.

Compute a 90% (α = 0.10) prediction interval for the arsenic data without assuming the data

follow any particular distribution. 


The 5th and 95th percentiles of the arsenic data are the observations with ranks of (.05•26) and 
(.95•26), or 1.3 and 24.7.  By linearly interpolating between the 1st and 2nd, and 24th and 25th 
observations, the α = 0.10 prediction interval is 

X1 + 0.3 • (X2−X1) to X24 + 0.7 • (X25−X24) 
1.3 + 0.3 • 0.2  to 340 + 0.7 • 240 

1.4 to 508 ppb 
A new observation less than 1.4 or greater than 508 can be considered as coming from a 
different distribution at a 10% risk level (α = 0.10). 

3.5.2 One-Sided Nonparametric Prediction Interval 
One-sided prediction intervals are appropriate if the interest is in whether a new observation is 
larger than existing data, or smaller than existing data, but not both.  The decision to use a one­
sided interval must be based entirely on the question of interest.  It should not be determined 
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after looking at the data and deciding that the new observation is likely to be only larger, or only 
smaller, than existing information.  One-sided intervals use α rather than α/2 as the error risk, 
placing all the risk on one side of the interval (figure 3.8). 

 one-sided PI np: 	 new x < Xα•(n+1) , or 
new x > X[1−α]•(n+1) [3.11] 
(but not either, or) 

Figure 3.8 	 Confidence level and alpha level for a 1-sided prediction interval Probability of 
obtaining a new observation greater than Xu when the distribution is unchanged 
is α. 

Example 2, cont. 
An arsenic concentration of 350 ppb is found in a New Hampshire well.  Does this indicate a 
change to larger values as compared to the distribution of concentrations for the example 2 
data? Use α = 0.10. 

As only large concentrations are of interest, the new data point will be considered larger if it 
exceeds the α = 0.10 one-sided prediction interval, or upper 90th percentile of the existing data.  
X0.90•26 = X23.4. By linear interpolation this corresponds to a concentration of 

X23 + 0.4•(X24−X23) = 300 + 0.4•(40) = 316. 

In other words, a concentration of 316 or greater will occur approximately 10 percent of the 
time if the distribution of data has not increased. Therefore a concentration of 350 ppb is 
considered larger than the existing data at an α level of 0.10. 
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3.6 Parametric Prediction Intervals 

Parametric prediction intervals are also used to determine whether a new observation is likely to 
come from a different distribution than previously-collected data.  However, an assumption is 
now made about the shape of that distribution.  This assumption provides more information 
with which to construct the interval, as long as the assumption is valid.  If the data do not 
approximately follow the assumed distribution, the prediction interval may be quite inaccurate. 

3.6.1 Symmetric Prediction Interval 
The most common assumption is that the data follow a normal distribution.  Prediction intervals 
are then constructed to be symmetric around the sample mean, and wider than confidence 
interval

s 2 = s, the standard deviation of individual 
s on the mean.  The equation for this interval differs from that for a confidence interval 

around the mean by adding a term 
observations around their mean: 

PI = X − t (α/2, n−1) • s2 + (s2/n) to X + t (α/2, n−1) • s2 + (s2/n) [3.12] 

One-sided intervals are computed as before, using α rather than α/2 and comparing new data to 

only one end of the prediction interval. 


Example 2, cont.

Assuming symmetry, is a concentration of 350 ppb different (not just larger) than what would be 

expected from the previous distribution of arsenic concentrations?  Use α = 0.10. 


The parametric two-sided α = 0.10 prediction interval is 
98.4 − t (.05, 24) • 144.72 + 144.72/25 to 98.4 + t (.05, 24) • 144.72 + 144.72/25 

98.4 − 1.711 • 147.6  to 98.4 + 1.711 • 147.6 
−154.1 to 350.9 

350 ppb is at the upper limit of 350.9, so the concentration is not declared different at  
α = 0.10. The negative concentration reported as the lower prediction bound is a clear 
indication that the underlying data are not symmetric, as concentrations are non-negative.  To 
avoid an endpoint as unrealistic as this negative concentration, an asymmetric prediction interval 
should be used instead. 

3.6.2 Asymmetric Prediction Intervals 
Asymmetric intervals can be computed either using the nonparametric intervals of section 3.5, 
or by assuming symmetry of the logarithms and computing a parametric interval on the logs of 
the data.  Either asymmetric interval is more valid than a symmetric interval when the underlying 
data are not symmetric, as is the case for the arsenic data of example 2.  As stated in Chapter 1, 
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most water resources data and indeed most environmental data show positive skewness.  Thus 
they should be modelled using asymmetric intervals.  Symmetric prediction intervals should be 
used only when the data are known to come from a normal distribution.  This is because 
prediction intervals deal with the behavior of individual observations.  Therefore the Central 
Limit Theorem (see first footnote in this chapter) does not apply.  Data must be assumed non­
normal unless shown otherwise.  It is difficult to disprove normality using hypothesis tests 
(Chapter 4) due to the small sample sizes common to environmental data sets.  It is also difficult 
to see non-normality with graphs unless the departures are strong (Chapter 10).  It is unfortunate 
that though most water resources data sets are asymmetric and small, symmetric intervals are 
commonly used. 

An asymmetric (but parametric) prediction interval can be computed using logarithms.  This 
interval is parametric because percentiles are computed assuming that the data follow a 
lognormal distribution. Thus from equation 3.12: 

PI = exp (y−t
(a / 2,n−1) 

to exp(y+ t
(a / 2,n−1) 

[3.13] 

s 
y 

2 + s 
y 

2 /n 

y is the mean and s 
y 

2

( ( 

where y = ln(X),  the variance of the logarithms. 

s 
y 

2 + s 
y 

2 / n 

Example 2, cont.

An asymmetric prediction interval is computed using the logs of the arsenic data.  A 90%

prediction interval becomes 


ln(PI): 3.17 − t (0.05, 24) •  1.962 + 1.962/25 

1.962 + 1.962/25 

to 3.17 + t (0.05, 24) • 

3.17 − 1.71 •2.11  to 3.17 + 1.71 • 2.11 
0.44 to 6.78 

which when exponentiated into original units becomes 
1.55 to 880.1 

As percentiles can be transformed directly from one measurement scale to another, the 
prediction interval in log units can be directly exponentiated to give the prediction interval in 
original units.  This parametric prediction interval differs from the one based on sample 
percentiles in that a lognormal distribution is assumed.  The parametric interval would be 
preferred if the assumption of a lognormal distribution is believed.  The sample percentile 
interval would be preferred when a robust interval is desired, such as when a lognormal model is 
not believed, or when the scientist does not wish to assume any model for the data distribution. 
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3.7 Confidence Intervals for Percentiles (Tolerance Intervals) 

Quantiles or percentiles have had the traditional use in water resources of describing the 
frequency of flood events.  Thus the 100-year flood is the 99th percentile (0.99 quantile) of the 
distribution of annual flood peaks. It is the magnitude of flood which is expected to be 
exceeded only once in 100 years.  The 20-year flood is of a magnitude which is expected to be 
exceeded only once in 20 years (5 times in 100 years), or is the 95th percentile of annual peaks.  
Similarly, the 2-year flood is the median or 50th percentile of annual peaks.  Flood percentiles 
are determined assuming that peak flows follow a specified distribution. The log Pearson Type 
III is often used in the United States.  Historically, European countries have used the Gumbel 
(extreme value) distribution, though the GEV distribution is now more common (Ponce, 1989).   

The most commonly-reported statistic for analyses of low flows is also based on percentiles, the 
"7-day 10-year low flow" or 7Q10. The 7Q10 is the 10th percentile of the distribution of annual 
values of Y, where Y is the lowest average of mean daily flows over any consecutive 7-day 
period for that year.  Y values are commonly fit to Log Pearson III or Gumbel distributions in 
order to compute the percentile.  Often a series of duration periods is used to better define flow 
characteristics, ie. the 30Q10, 60Q10, and others (Ponce, 1989). 

Recently, percentiles: water quality of water-quality records appear to be becoming more 
important in a regulatory framework.  Crabtree et al. (1987) among others have reported an 
increasing reliance on percentiles for developing and monitoring compliance with water quality 
standards†. In these scenarios, the median, 95th, or some other percentile should not exceed (or 
be below) a standard. As of now, no distribution is usually assumed for water-quality 
concentrations, so that sample percentiles are commonly computed and compared to the 
standard.  In regulatory frameworks, exceedance of a tolerance interval on concentration is 
sometimes used as evidence of contamination.  A tolerance interval is nothing other than a 
confidence interval on the percentile.  The percentile used is the ‘coverage coefficient’ of the 
tolerance interval. 

In light of the ever increasing use of percentiles in water resources applications, understanding 
of their variability is quite important.  In 3.7.1, interval estimates will be computed without 
assuming a distribution for the data.  Estimates of peak flow percentiles computed in this way 
will therefore differ somewhat in comparison to those computed using a Log Pearson III or 
Gumbel assumption.  Computation of percentile interval estimates when assuming a specific 

†  Data presented by Crabtree et al. (1987) shows that for each of their cases, percentiles of flow 
and water-quality constituents are best estimated by (nonparametric) sample percentiles rather 
than by assuming some distribution. However they come to a different conclusion for two 
constituents (see their Table 2) by assuming that a parametric process is better unless proven 
otherwise.  In those two cases either could be used. 
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distributional shape is discussed in section 3.7.3.  In sections 3.7.2 and 3.7.4, use of interval 
estimates for testing hypotheses is illustrated. 

Confidence Intervals for percentiles 

Valid only when a 
distribution is 

Valid for all data assumed 

Nonparametric 
interval 

Sec. 3.7.1 

Parametric 
interval 

Sec. 3.7.3 

3.7.1 Nonparametric Confidence Intervals for Percentiles 

Confidence intervals can be developed for any percentile analogous to those developed in 
section 3.3 for the median.  First the desired confidence level is stated.  For small sample sizes a 
table of the binomial distribution is entered to find upper and lower limits corresponding to 
critical values at one-half the desired alpha level (α/2). These critical values are transformed 
into the ranks corresponding to data points at the ends of the confidence interval.   

The binomial table is entered at the column for p, the percentile (actually the quantile) for which 
a confidence interval is desired. So for a confidence interval on the 75th percentile, the p=0.75 
column is used.  Go down the column until the appropriate sample size n is found.  The tabled 
probability p* should be found which is as close to α/2 as possible. The lower critical value x  isl
the integer corresponding to this probability p*.  A second critical value xu is similarly obtained 
by continuing down the column to find a tabled probability p' ≅ (1−α/2). These critical values 
xl and xu are used to compute the ranks Rl and Ru corresponding to the data values at the upper 
and lower ends of the confidence limit (equations 3.14 and 3.15).  The resulting confidence level 
of the interval will equal (p'−p*). 

Rl = xl +1 [3.14] 

Ru = xu [3.15] 

Example 2, cont.

For the arsenic concentrations of Boudette and others (1985), determine a 95% confidence 

interval on C0.20, the 20th percentile of concentration (p=0.2). 


^The sample 20th percentile C 0.20 = 2.9 ppb, the 0.20•(26) = 5.2 smallest observation, or two­
tenths of the distance between the 5th and 6th smallest observations.  To determine a 95% 
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confidence interval for the true 20th percentile C0.20, the binomial table from a statistics text 
such as Bhattacharyya and Johnson (1977) is entered at the p = 0.20 column.  The integer xl 
having an entry nearest to α/2 = 0.025 is found to be 1 (p* = 0.027, the error probability for the 
lower side of the distribution). From equation 3.14 the rank Rl = 2. Going further down the 
column, p'= 0.983 for an xu = Ru = 9. Therefore a 95.6% confidence interval (0.983−0.027 = 
0.956) for the 20th percentile is the range between the 2nd and 9th observations, or
 1.5 ≤ C0.20 ≤ 8 at α = 0.044 


^
The asymmetry around C 0.20 = 2.9 reflects the skewness of the data. 

When n>20, a large-sample (normal) approximation to the binomial distribution can be used to 
obtain interval estimates for percentiles.  From a table of quantiles of the standard normal 
distribution, zα/2 and z[1−α/2] (the α/2th and [1−α/2]th normal quantiles) determine the 
upper and lower ranks of observations corresponding to the ends of the confidence interval.  
Those ranks are 

Rl = np + zα/2 • np (1-p) + 0.5 [3.16] 

Ru = np + z[1−α/2] • np (1-p) + 0.5 [3.17] 

The 0.5 terms added to each reflect a continuity correction (see Chapter 4) of 0.5 for the lower

bound and −0.5 for the upper bound, plus the +1 term for the upper bound analogous to 

equation 3.5. The computed ranks Ru and Rl are rounded to the nearest integer. 


Example 2, cont.

Using the large sample approximation of equations 3.16 and 3.17, what is a 95% confidence 

interval estimate for the true 0.2 quantile? 


Using zα/2 = −
−1.96) • 

25•0.2 (1-0.2) +0.5 

1.96, the lower and upper ranks of the interval are 
25•0.2 (1-0.2)  Rl = 25•0.2 + ( +0.5 = 5 − 1.96•2 +0.5 = 1.6 

Ru = 25•0.2 + 1.96•    = 5 + 1.96•2 +0.5 = 9.4 
After rounding, the 2nd and 9th ranked observations are found to be an approximate α=0.05 
confidence limit on C0.2, agreeing with the exact confidence limit computed previously. 

3.7.2 Nonparametric Tests for Percentiles 
Often it is of interest to test whether a percentile is different from, or larger or smaller than, 
some specified value. For example, a water quality standard X0 could be set such that the 
median of daily concentrations should not exceed X0 ppb. Or the 10-year flood (90th percentile 
of annual peak flows) may be tested to determine if it differs from a regional design value X0. 
Detailed discussions of hypothesis tests do not begin until the next chapter.  However, a simple 
way to view such a test is discussed below.  It is directly related to confidence intervals. 
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3.7.2.1 N-P test for whether a percentile differs from X0 (a two-sided test) 
To test whether the percentile of a data set is significantly different (either larger or smaller) 
from a pre-specified value X0, compute an interval estimate for the percentile as described in 
section 3.7.1.  If X0 falls within this interval, the percentile is not significantly different from X0 
at a significance level = α (figure 3.9). If X0 is not within the interval, the percentile 
significantly differs from X0 at the significance level of α. 

Figure 3.9 Interval estimate of pth percentile Xp as a test for whether Xp = X0. 
A. X0 inside interval estimate: Xp not significantly different from X0. 
B. X0 outside interval estimate:  Xp significantly different from X0. 

Example 3 
In Appendix C1 are annual peak discharges for the Saddle R. at Lodi, NJ from 1925 to 1967. 
Of interest is the 5-year flood, the flood which is likely to be equalled or exceeded once every 5 
years (20 times in 100 years), and so is the 80th percentile of annual peaks.  Though flood 
percentiles are usually computed assuming a Log Pearson Type III or Gumbel distribution 
(Ponce, 1989), here they will be estimated by the sample 80th percentile.  Is there evidence that 
the 20-year flood between 1925-1967 differs from a design value of 1300 cfs at an α= 0.05? 

The 80th percentile is estimated from the 43 values between 1925 and 1967 as the  
^0.8•(44) = 35.2 value when ranked from smallest to largest. Therefore Q 0.8 = 1672 cfs, 0.2 
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of the distance between the 35th and 36th ranked peak flow.  A two-sided confidence interval 
on this percentile is (following equations 3.16 and 3.17): 

Rl = np + zα/2 • np (1-p) + 0.5 Ru = np + z[1−α/2] • np (1-p) + 0.5 

Rl = 43(0.8)−1.96• 43•0.8 (0.2)  + 0.5 Ru = 43(0.8)+1.96• 43•0.8 (0.2)  + 0.5 
= 29.8 = 40.0 

The α=0.05 confidence interval lies between the 30th and 40th ranked peak flows, or 
1370 < Q0.8 < 1860 

which does not include the design value X0 = 1300 cfs.  Therefore the 20-year flood does differ 
from the design value at a significance level of 0.05. 

3.7.2.2 N-P test for whether a percentile exceeds X0 (a one-sided test) 

To test whether a percentile Xp significantly exceeds a specified value or standard X0, compute 

the one-sided confidence interval of section 3.7.1.  Remember that the entire error level α is


^placed on the side below the percentile point estimate X p (figure 3.10). Xp will be declared 
significantly higher than X0 if its one-sided confidence interval lies entirely above X0. 

DATA VALUE 

α − α1 
PROBABILITY OF 
INCLUDING THE 

TRUE Xp 
Interval estimate 

A. 

DATA VALUE 

α − α1 
PROBABILITY OF 
INCLUDING THE 

TRUE Xp 
Interval estimate 

B. 

X0 X X0 ^ l p 

X0 X X0 ^ l p 

Figure 3.10 One-sided interval estimate as a test for whether percentile Xp > X0. 
A. X0 inside interval estimate: Xp not significantly greater than X0. 
B. X0 below interval estimate:  Xp significantly greater than X0. 
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Example 2, cont. 
Suppose that a water-quality standard stated that the 90th percentile of arsenic concentrations in 
drinking water shall not exceed 300 ppb.  Has this standard been violated at the α = 0.05 
confidence level by the New Hampshire data of example 2? 

The 90th percentile of the example 2 arsenic concentrations is
Ĉ .90 = (25+1)•0.9th = 23.4th data point = 300 + 0.4 (340−300) 

= 316 ppb. 

Following equation 3.16 but using α instead of α/2, the rank of the observation corresponding 
to a one-sided 95% lower confidence bound on C.90 is

 Rl = np + zα • np (1-p) + 0.5 = 25•0.9 + z0.05 • 25•0.9 (0.1)  + 0.5 
= 22.5 + (−1.64)• 2.25 + 0.5 
= 20.5 

and thus the lower confidence limit is the 20.5th lowest observation, or 215 ppb, halfway 
between the 20th and 21st observations.  This confidence limit is less than X0 =300, and 
therefore the standard has not been exceeded at the 95% confidence level. 

3.7.2.3 N-P test for whether a percentile is less than X0 (a one-sided test) 
To test whether a percentile Xp is significantly less than X0, compute the one-sided confidence 

^interval placing all error α on the side above X p (figure 3.11). Xp will be declared as 
significantly less than X0 if its one-sided confidence interval is entirely below X0. 

DATA VALUE 

α− α1 
PROBABILITY OF 
INCLUDING THE 

TRUE Xp 
Interval estimate 

A. 

DATA VALUE 

α− α1 
PROBABILITY OF 
INCLUDING THE 

TRUE Xp 
Interval estimate 

B. 

X u 0 XX 0 ^ p 

X u 0 XX 0 ^ p 

Figure 3.11 One-sided interval estimate as a test for whether percentile Xp < X0. 
A. X0 inside interval estimate: Xp not significantly less than X0. 
B. X0 above interval estimate:  Xp significantly less than X0. 
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Example 4 
The following 43 values are annual 7-day minimum flows for 1941−1983 on the Little Mahoning 
Creek at McCormick, PA.  Though percentiles of low flows are often computed using a Log 
Pearson Type III distribution, here the sample estimate of the percentile will be computed.  Is 
the 7Q10 low-flow (the 10th percentile of these data) significantly less than 3 cfs at α = 0.05? 

0.69 0.80 1.30 1.40 1.50 1.50 1.80 1.80 2.10 2.50 2.80 
2.90 3.00 3.10 3.30 3.70 3.80 3.80 4.00 4.10 4.20 4.30 
4.40 4.80 4.90 5.70 5.80 5.90 6.00 6.10 7.90 8.00 8.00 
9.70 9.80 10.00 11.00 11.00 12.00 13.00 16.00 20.00 23.00 

^The sample 10th percentile of the data is 4.4th observation, or 7Q .10 = 1.4 cfs.  The upper 95% 
confidence interval for Q.10 is located (following equation 3.17 but using α) at rank Ru: 

Ru = np + z[1−α] • 
= 
= 8.0 

So the upper 95% confidence limit equals 1.8 cfs.  This is below the X0 of 3 cfs, and therefore 
the 7Q10 is significantly less than 3 cfs at an α = 0.05. 

np (1-p) + 0.5 
43•0.1 + 1.64 • + 0.543•0.1 (0.9)  

3.7.3 Parametric Confidence Intervals for Percentiles 
Confidence intervals for percentiles can also be computed by assuming that data follow a 
particular distribution. Distributional assumptions are employed because there are often 
insufficient data to compute percentiles with the required precision.  Adding information 
contained in the distribution will increase the precision of the estimate as long as the 
distributional assumption is a reasonable one. However when the distribution which is assumed 
does not fit the data well, the resulting estimates are less accurate, and more misleading, than if 
nothing were assumed.  Unfortunately, the situation in which an assumption is most needed, 
that of small sample sizes, is the same situation where it is difficult to determine whether the 
data follow the assumed distribution. 

There is little theoretical reason why data should follow one distribution over another.  As stated 
in Chapter 1, most environmental data have a lower bound at zero and may have quite large 
observations differing from the bulk of the data.  Distributions fit to such data must posses 
skewness, such as the lognormal.  But few "first principles" can be drawn on to favor one 
skewed distribution over another.  Empirical studies have found that for specific locations and 
variables certain distributions seem to fit well, and those have become traditionally used.  Thus 
the lognormal, Pearson Type III and Gumbel distributions are commonly assumed in water 
resources applications. 
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Computation of point and interval estimates for percentiles assuming a lognormal distribution 
are straightforward.  First the sample mean y and sample standard deviation sy of the 
logarithms are computed.  The point estimate is then 

X̂ p  = exp (y + zp•sy) [3.18] 

where zp is the pth quantile of the standard normal distribution and y = ln(x). 

The interval estimate for the median was previously given by equation 3.7 assuming that data are 
lognormal. For other percentiles, confidence intervals are computed using the non-central t­
distribution (Stedinger, 1983). Tables of that distribution are found in Stedinger's article, with 
more complete entries online in commercial computer mathematical libraries.  The confidence 
interval on Xp is: 

CI(Xp) = exp (y + ζα/2•sy , y + ζ[1−α/2]•sy) [3.19] 

where ζα/2 is the α/2 quantile of the non-central t distribution for the desired percentile with 

sample size of n.


Example 2, cont.

Compute a 90% interval estimate for the 90th percentile of the New Hampshire arsenic 

concentrations, assuming the data are lognormal. 


The 90th percentile assuming concentrations are lognormal is as given in equation 3.18: 
Ĉ .90 = exp (y + z.90•sy) = exp (3.17 + 1.28•1.96) 

= 292.6 ppb. 
(which is lower than the sample estimate of 316 ppb obtained without assuming the data are 
lognormal). 

The corresponding 90% interval estimate from equation 3.19 is: 
exp (y + ζ0.05•sy ) < C.90 < exp (y + ζ0.95•sy) 

exp (3.17 + 0.898•1.96) < C.90 < exp(3.17 + 1.838•1.96) 
138.4 < C.90 < 873.5 

This estimate would be preferred over the nonparametric estimate if it was believed that the data 
were truly lognormal. Otherwise a nonparametric interval would be preferred.  When the data 
are truly lognormal, the two intervals should be quite similar. 

Interval estimates for percentiles of the Log Pearson III distribution are computed in a similar 
fashion.  See Stedinger (1983) for details on the procedure. 

jkmonson

jkmonson

jkmonson

jkmonson

jkmonson

jkmonson

jkmonson
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3.7.4   Parametric Tests for Percentiles 
Analogous to section 3.7.2, parametric interval estimates may be used to conduct a parametric 
test for whether a percentile is different from (2-sided test), exceeds (1-sided test), or is less than 
(1-sided test) some specified value X0. With the 2-sided test for difference, if X0 falls within the 
interval having α/2 on either side, the percentile is not proven to be significantly different from 
X0. If X0 falls outside this interval, the evidence supports Xp ≠ X0 with an error level of α. 
For the one-sided tests, the error level α is placed entirely on one side before conducting the 
test, and X0 is again compared to the end of the interval to determine difference or similarity.   

Example 2, cont.

Test whether the 90th percentile of arsenic concentrations in drinking water exceeds 300 ppb at 

the α = 0.05 significance level, assuming the data are lognormal. 


The one-sided 95% lower confidence limit for the 90th percentile was computed above as 138.4 
ppb. (note the nonparametric bound was 215 ppb).  This limit is less than the p0 value of 300, 
and therefore the standard has not been exceeded at the 95% confidence level. 

3.8 Other Uses for Confidence Intervals 

Confidence intervals are used for purposes other than as interval estimates.  Three common uses 
are to detect outliers, for quality control charts, and for determining sample sizes necessary to 
achieve a stated level of precision. Often overlooked are the implications of data non-normality 
for the three applications.  These are discussed in the following three sections. 

3.8.1 Implications of Non-Normality for Detection of Outliers 
An outlier is an observation which appears to differ in its characteristics from the bulk of the 
data set to which it is assigned. It is a subjective concept -- different people may define specific 
points as either outliers, or not.  Outliers are sometimes deleted from a data set in order to use 
procedures based on the normal distribution. One of the central themes of this book is that this 
is a dangerous and unwarranted practice.  It is dangerous because these data may well be totally 
valid. There is no law stating that observed data must follow some specific distribution, such as 
the normal. Outlying observations are often the most important data collected, providing 
insight into extreme conditions or important causative relationships.  Deleting outliers is 
unwarranted because procedures not requiring an assumption of normality are both available 
and powerful.  Many of these are discussed in the following chapters. 

In order to delete an outlier, an observation must first be declared to be one.  Rules or "tests" 
for outliers have been used for years, as surveyed by Beckman and Cook (1983).  The most 
common tests are based on a t-interval, and assume that data follow a normal distribution.  
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Usually equation 3.12 for a normal prediction interval is simplified by assuming the (s2/n) terms 
under the square root sign are negligable compared to s2 (true for large n).  Points beyond the 
simplified prediction interval are declared as outliers, and dropped. 

Real world data may not follow a normal distribution.  As opposed to a mean of large data sets, 
there is no reason to assume that they should.  Rejection of points by outlier tests may not 
indicate that data are in any sense in error, but only that they do not follow a normal distribution 
(Fisher, 1922). For example, below are 25 observations from a lognormal distribution.  When 
the t-prediction interval is applied with α=0.05, the largest observation is declared to be an 
outlier. Yet it is known to be from the same non-normal distribution as generated the remaining 
observations. 

0.150 0.244 0.339 0.408 0.434 
0.595 0.728 0.776 0.832 0.836 
0.900 0.924 1.074 1.136 1.289 
1.709 1.889 2.217 2.755 2.886 
2.919 2.939 3.166 4.282 7.049 

0.0  3.0  6.0  9.0

 0
 1
 2
 3
 4
 5
 6
 7 

DATA 
VALUE 

NO. OF OBSERVATIONS 

OUTLIER 

Table 3.3 Lognormal data set with "outlier" more than +2 sd above the mean. 

Multiple outliers cause other problems for outlier tests that are based on normality (Beckman 
and Cook, 1983). They may so inflate the estimated standard deviation that no points are 
declared as outliers.  When several points are spaced at increasingly larger distances from the 
mean, the first may be declared an outlier upon using the test once, but re-testing after deletion 
causes the second largest to be rejected, and so on.  Replication of the test may eventually 
discard a substantial part of the data set.  The choice of how many times to apply the test is 
entirely arbitrary.   

3.8.2 Implications of Non-Normality for Quality Control 
A visual presentation of confidence intervals used extensively in industrial processes is a control 
chart (Montgomery, 1991). A small number of products are sampled from the total possible at 
a given point in time, and their mean calculated.  The sampling is repeated at regular or random 
intervals, depending on the design, resulting in a series of sample means.  These are used to 
construct one type of control chart, the xbar chart.  This chart visually detects when the mean of 
future samples become different from those used to construct the chart.  The decision of 
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difference is based on exceeding the parametric confidence interval around the mean given in 
section 3.4.1. 

Suppose a chemical laboratory measures the same standard solution at several times during a day 
to determine whether the equipment and operator are producing consistent results.  For a series 
of n measurements at m time intervals, the total sample size N=n•m.  The best estimate of the 
concentration for that standard is the overall mean 

N 
Xi 

X N = ∑ 
i=1 

X  is plotted as the center line of the chart.  A confidence interval on that mean is described by 
equation 3.8, using the sample size n available for computing each individual mean value.  Those 
interval boundaries are also plotted as parallel lines on the quality control chart.  Mean values 
will on average plot outside of these boundaries only α•100% of the time if the means are 
normally distributed.  Points falling outside the boundaries more frequently than this are taken 
to indicate that something in the process has changed. 

If n is large (say 30 or more) the Central Limit Theorem states that the means will be normally 
distributed even though the underlying data may not be.  However if n is much smaller, as is 
often the case, the means may not follow this pattern.  In particular, for skewed data (data with 
outliers on only one side), the distribution around the mean may still be skewed.  The result is a 
large value for the standard deviation, and wide confidence bands.  Therefore the chart will have 
lower power to detect departures or drifts away from the expected mean value than if the data 
were not skewed. 

Control charts are also produced to illustrate process variance.  These either use the range (R 
chart) or standard deviation (S chart).  Both charts are even more sensitive to departures from 
normality than is the X chart (Montgomery, 1991). Both will have a difficult time in detecting 
changes in variance when the underlying data are non-normal, and the sample size n for each 
mean is small. 

In water quality studies the most frequent application of control charts is to laboratory chemical 
analyses.  As chemical data tend to be positively skewed, control charts on the logs of the data 
are usually more applicable than those in the original units.  Otherwise large numbers of samples 
must be used to determine mean values.  Use of logarithms results in the center line estimating 
the median in original units, with multiplicative variation represented by the confidence bands of 
section 3.3.2.   
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Nonparametric control charts may be utilized if sample sizes are sufficiently large.  These could 
use the confidence intervals for the median rather than the mean, as in section 3.3.  
Alternatively, limits could be set around the mean or median using the "F-psuedosigma" of 
Hoaglin (1983). This was done by Schroeder et al. (1987).  The F-psuedosigma is the 
interquartile range divided by 1.349.  It equals the standard deviation for a normal distribution, 
but is not as strongly affected by outliers.  It is most useful for characterizing symmetric data 
containing outliers at both ends, providing a more resistant measure of spread than does the 
standard deviation. 

3.8.3 Implications of Non-Normality for Sampling Design 
The t-interval equations are also used to determine the number of samples necessary to estimate 
a mean with a specified level of precision.  However, such equations require the data to 
approximately follow a normal distribution.  They must consider power as well as the interval 
width. Finally, one must decide whether the mean is the most appropriate characteristic to 
measure for skewed data. 

To estimate the sample size sufficient for determining an interval estimate of the mean with a 
specified width, equation 3.8 is solved for n to produce 

 t s 2
α / 2,n−1 n =   [3.20]

 ∆  
where s is the sample standard deviation and ∆ is one-half the desired interval width.  Sanders et 
al. (1983) and other authors have promoted this equation.  As discussed above, for sample sizes 
less than 30 to 50 and even higher with strongly skewed data, this calculation may have large 
errors.  Estimates of s will be inaccurate, and strongly inflated by any skewness and/or outliers.  
Resulting estimates of n will therefore be large.  For example, Hakanson (1984) estimated the 
number of samples necessary to provide reasonable interval widths for mean river and lake 
sediment characteristics, including sediment chemistry.  Based on the coefficients of variation 
reported in the article, the data for river sediments were quite skewed, as might be expected.  
Necessary sample sizes for rivers were calculated at 200 and higher. 

Before using such simplistic equations, skewed data should be transformed to something closer 
to symmetry, if not normality.  For example, logarithms will drastically lower estimated sample 
sizes for skewed data, equivalent to equation 3.13.  Samples sizes would result which allow the 
median (geometric mean) to be estimated within a multiplicative tolerance factor equal to ±2∆ 
in log units. 

A second problem with equations like 3.20 for estimating sample size, even when data follow a 
normal distribution, is pointed out by Kupper and Hafner (1989).  They show that eq. 3.20 
underestimates the true sample size needed for a given level of precision, even for estimates of 
n ≥ 40. This is because eq. 3.20 does not recognize that the standard deviation s is only an 
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estimate of the true value σ.  They suggest adding a tolerance probability to eq. 3.20, akin to a 
statement of power.  Then the estimated interval width will be at least as small as the desired 
interval width for some stated percentage (say 90 or 95%) of the time.  For example, when n 
would equal 40 based on equation 3.20, the resulting interval width will be less than the desired 
width 2∆ only about 42% of the time! The sample size should instead be 53 in order to insure 
the interval width is within tolerance range 90% of the time.  They conclude that eq. 3.20 and 
similar equations which do not take power into consideration "behave so poorly in all instances 
that their future use should be strongly discouraged".  

Sample sizes necessary for interval estimates of the median or to perform the nonparametric 
tests of later chapters may be derived without the assumption of normality required above for t­
intervals.  Noether (1987) describes these more robust sample size estimates, which do include 
power considerations and so are more valid than equation 3.20.  However, neither the normal­
theory or nonparametric estimates consider the important and frequently-observed effects of 
seasonality or trend, and so may never provide estimates sufficiently accurate to be anything 
more than a crude guide. 
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Exercises 

3.1 	 Compute both nonparametric and parametric 95% interval estimates for the median of 
the granodiorite data of exercise 2.3.  Which is more appropriate for these data?  Why? 

3.2 	 Compute the symmetric 95% interval estimate for the mean of the quartz monzonite 
data of exercise 2.3.  Compute the sample mean, and the mean assuming the data are 
lognormal. Which point estimate is more appropriate for these data?  Why? 

3.3 	 A well yield of 0.85 gallons/min/foot was measured in a well in Virginia.  Is this yield 
likely to belong to the same distribution as the data in exercise 1.1, or does it represent 
something larger? Answer by computing 95% parametric and nonparametric intervals.  
Which interval is more appropriate for these data? 

3.4 	 Construct the most appropriate 95 percent interval estimates for the mean and median 
annual streamflows for the Conecuh River at Brantley, Alabama (data in Appendix C2). 

3.5 	 Suppose a water intake is to be located on the Potomac River at Chain Bridge in such a 
way that the intake should not be above the water surface more than 10 percent of the 
time. Data for the design year (365 daily flows, ranked in order) are given in Appendix 
C3. Compute a 95% confidence interval for the daily flow guaranteed by this placement 
during the 90% of the time the intake is below water.  





Chapter 4

Hypothesis Tests


Scientists collect data in order to learn about the processes and systems those data represent.  
Often they have prior ideas, called hypotheses, of how the systems behave.  One of the primary 
purposes of collecting data is to test whether those hypotheses can be substantiated, with 
evidence provided by the data.  Statistical tests are the most quantitative ways to determine 
whether hypotheses can be substantiated, or whether they must be modified or rejected outright. 

One important use of hypothesis tests is to evaluate and compare groups of data.  Water 
resources scientists have made such comparisons for years, sometimes without formal test 
procedures.  For example, water quality has been compared between two or more aquifers, and 
some statements made as to which are different.  Historic frequencies of exceeding some critical 
surface-water discharge have been compared with those observed over the most recent 10 years.  
Rather than using hypothesis tests, the results are sometimes expressed as the author's educated 
opinions -- "it is clear that development has increased well yield."  Hypothesis tests have at least 
two advantages over educated opinion: 

1) they insure that every analyst of a data set using the same methods will arrive at 
the same result. Computations can be checked on and agreed to by others. 


2) they present a measure of the strength of the evidence (the p-value).  The 

decision to reject an hypothesis is augmented by the risk of that decision being 
incorrect.  

In this chapter hypothesis tests are classified based on when each is appropriate for use.  The 
basic structure of hypothesis testing is introduced.  The rank-sum test is used to illustrate this 
structure, as well as to illustrate the origin of tables of test statistic quantiles found in most 
statistics textbooks. Finally, tests for normality are discussed.  Concepts and terminology found 
here will be used throughout the rest of the book. 
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4.1 Classification of Hypothesis Tests 

The numerous varieties of hypothesis tests often cause unnecessary confusion to scientists.  
Tests can be classified into the five major types shown in figure 4.1, based on the measurement 
scales of the data being tested.  Within these types, the distributional shape of the data determine 
which of two major divisions of hypothesis tests, parametric or nonparametric, are appropriate 
for use.  Thus the data, along with the objectives of the study, determine which test procedure 
should be employed. 

The terms response variable and explanatory variable are used in the following discussion.  A 
response variable is one whose variation is being studied.  In the case of regression, for example, 
the response variable is sometimes called the "dependent variable" or "y variable".  An 
explanatory variable is one used to explain why and how the magnitude of the response variable 
changes.  With a t-test, for example, the explanatory variable consists of the two categories of 
data being tested. 

4.1.1 Classification Based on Measurement Scales 
In figure 4.1, five groupings of test procedures are represented by the five boxes.  Each differs 
only in the measurement scales of the response and explanatory variables under study.  The 
scales of measurement may be either continuous or categorical.  Both parametric and 
nonparametric tests may be found within a given box. 

Tests represented by the three boxes in the top row of figure 4.1 are all similar in that the 
response variable is measured on a continuous scale.  Examples of variables having a continuous 
scale are concentration, streamflow, porosity, and many of the other items measured by water 
resources scientists.  Tests represented by the two boxes along the bottom of figure 4.1, in 
contrast, have response variables measured only on a categorical or grouped measurement scale.  
These variables can only take on a finite, usually small, number of values.  They are often 
designated as letters or integer values.  Categorical variables used primarily as explanatory 
variables include aquifer type, month, land use group, and station number.  Categorical variables 
used as response variables include above/below a reporting limit (perhaps recorded as 0 or 1), 
presence or absence of a particular species, and low/medium/high risk of contamination. 

The top left box represents the two- and multi-sample hypothesis tests such as the rank-sum and 
t-tests.  The subject of Chapters 5 through 7, these tests determine whether a continuous 
response variable (such as concentration) differs in its central value among two or more grouped 
explanatory variables (such as aquifer unit). 

The top right box represents two often-used methods -- linear regression and correlation.  Both 
relate a continuous response variable (the dependent or y variable) to a continuous explanatory 
variable (the independent or x variable).  Examples include regression of the 100-year flood 
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magnitude versus basin characteristics, and correlations between concentrations of two chemical 
constituents.  Analysis of trends over time is a special case of this class of methods, where the 
explanatory variable of primary interest is time. 

The top center box is a blend of these two approaches, called analysis of covariance.  A 
continuous response variable is related to several explanatory variables, some of which are 
continuous and some categorical. This is discussed in Chapter 11. 

The bottom left box represents a situation similar to that for use of t-tests or analysis of 
variance, except that the response variable is categorical.  Examples include determining whether 
the probability of finding a volatile organic above the reporting limit varies by land-use grouping.  
Contingency tables appropriately measure the association between two such categorical 
variables.  Further information is found in Chapter 14. 

The bottom right box shows that a regression-type relationship can be developed for the case of 
a categorical response variable.  Perhaps the proportion of pesticide or other data below the 
reporting limit exceeds fifty percent, and it makes little sense to try to model mean or median 
concentrations.  Instead, the probability of finding a detectable concentration can be related to 
continuous variables such as population density, percent of impervious surface, irrigation 
intensities, etc.  This is done through the use of logistic regression, one subject of Chapter 15.  
Logistic regression can also incorporate categorical explanatory variables in a multiple regression 
context, making it the equivalent of analysis of covariance for categorical response variables. 

4.1.2  Classification Based on the Data Distribution 
Hypothesis tests which assume that the data have a particular distribution (usually a normal 
distribution, as in Fig. 1.2) are called parametric tests. This is because the information 
contained in the data is summarized by parameters, usually the mean and standard deviation, and 
the test statistic is computed using these parameters.  This is an efficient process if the data truly 
follow the assumed distribution. When they do not, however, the parameters may only poorly 
represent what is actually occurring in the data.  The resulting test can then reach an incorrect 
conclusion, usually because it lacks sensitivity (power) to detect real effects. 

Hypothesis tests not requiring the assumption that data follow a particular distribution  are 
called distribution-free or nonparametric tests. Information is extracted from the data by 
comparing each value with all others (ranking the data) rather than by computing parameters.  A 
common misconception is that nonparametric tests "lose information" in comparison to 
parametric tests because nonparametric tests "discard" the data values.  Bradley (1968, p.13) 
responded to this misconception:  "Actually, the utilization of the additional sample information 
[in the parameters] is made possible by the additional population 'information' embodied in the 
parametric test's assumptions.  Therefore, the distribution-free test is discarding information 
only if the parametric test's assumptions are known to be true."  Rather than discarding 
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information, nonparametric tests efficiently extract information on the relative magnitudes 
(ranks) of data without collapsing the information into only a few simple statistics.  Both 
parametric and nonparametric tests will be presented in the upcoming chapters for each category 
of hypothesis tests. 

4.2 Structure of Hypothesis Tests 

Hypothesis tests are performed by following the structure discussed in the next six sections: 

STRUCTURE OF HYPOTHESIS TESTS 
1) Choose the appropriate test. 

2) Establish the null and alternate hypotheses. 

3) Decide on an acceptable error rate α. 

4) Compute the test statistic from the data. 

5) Compute the p-value. 

6) Reject the null hypothesis if p ≤ α. 


4.2.1 Choose the Appropriate Test 
Test procedures are selected based on the data characteristics and study objectives.  Figure 4.1 
presented the first selection criteria -- the measurement scales of the data.  The second criteria is 
the objective of the test.  Hypothesis tests are available to detect differences between central 
values of two groups, three or more groups, between spreads of data groups, and for covariance 
between two or more variables, among others.  For example, to compare central values of two 
independent groups of data, either the t-test or rank-sum test might be selected (see figure 4.2).  
Subsequent chapters are organized by test objectives, with several alternate tests discussed in 
each. 

The third selection criteria is the choice between parametric or nonparametric tests.  This should 
be based on the expected distribution of the data involved.  If similar data in the past were 
normally distributed, a parametric procedure would usually be selected.  If data were expected to 
be non-normal, or not enough is known to assume any specific distribution, nonparametric tests 
would be preferred.  The power of parametric tests to reject H0 when H0 is false can be quite 
low when applied to non-normal data, and type II errors commonly result (Bradley, 1968).  This 
loss of power is the primary concern when using parametric tests.   

Sometimes the choice of test is based on a prior test of normality for that particular data set.  If 
normality is rejected a nonparametric test is chosen.  Otherwise, a parametric test is used.  This 
can lead to two problems.  First, with small data sets it is difficult to reject the null hypothesis of 
normality because there is so little evidence on which to base a decision.  Tests based on little 
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data have little power.  Thus a parametric test might easily be used when the underlying data are 
actually non-normal. Nonparametric tests are particularly appropriate for small data sets unless 
experience supports the assumption of normality.  Second, small departures from normality not 
large enough to detect with a test may be sufficiently large to weaken the power of parametric 
tests.  An example is given in Chapter 10.  For nearly-normal data, such as produced by power 
transformations to near-symmetry, the two classes of methods will often give the same result. 

Test procedures should be selected that have greater power for the types of data expected to be 
encountered.  Comparisons of the power of two test procedures, one parametric and one 
nonparametric, can be based on the tests' asymptotic relative efficiencies (ARE), a property of 
their behavior with large sample sizes (Bradley, 1968, p.58).  A test with larger ARE will have 
generally greater power. For non-normal data the ARE of nonparametric tests can be many 
times those of parametric tests(Hollander and Wolfe, 1973).  Thus their power to reject H0 
when it is truly false is generally much higher in this case.  When data are produced by a normal 
distribution, nonparametric tests have generally lower (5-15%) ARE than parametric tests 
(Hollander and Wolfe, 1973). Thus nonparametric tests are, in general, never much worse than 
their parametric counterparts in their ability to detect departures from the null hypothesis, and 
may be far, far better.  As an example, the rank-sum test has a larger ARE (more power) than 
the t-test for distributions containing outliers (Conover, 1980, p.225).  Kendall and Stuart (1979, 
p.540) show that for the gamma distribution (a skewed distribution commonly used in water 
resources) a moderate skew of 1.15 produces an ARE of greater than 1.25 for the rank-sum 
versus the t test.  As skewness increases, so does the ARE.  Therefore in the presence of 
skewness and outliers, precisely the characteristics commonly shown by water resources data, 
nonparametric tests exhibit greater power than do parametric tests. 

One question which always arises is how non-normal must a distribution be in order for 
nonparametric tests to be preferred?  Blair and Higgins (1980) gave insight into this question.  
They mixed data from two normal distributions, 95 percent from one normal distribution and 5 
percent from a second normal distribution with quite different mean and standard deviation.  
Such a situation could easily be envisioned when data result from low to moderate discharges 
with occasional storm events, or from a series of wells where 5 percent are affected by a 
contaminant plume, etc. A difference of 5 percent from truly normal may not be detectable by a 
graph or test for normality. Yet when comparing two groups of this type, they found that the 
rank-sum test exhibited large advantages in power over the t-test.  As a result, data groups 
correctly discerned as different by the rank-sum test could be found "not significantly different" 
by the t-test.  Their paper is recommended for further detail and study. 

The greatest strengths of parametric procedures are in modeling and estimation, such as 
performed with regression. Relationships among multiple variables can be described and tested 
which are difficult, if not nearly impossible, with nonparametric methods.  Statistical practice has 
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historically been dominated by parametric procedures, due largely to their computational 
elegance. 

Transformations are sometimes used to make data more normally distributed, prior to 
performing a parametric test.  There is no guarantee that a given transformation, such as taking 
logarithms, will produce data sufficiently close to a normal distribution.  Often several attempts 
to find a suitable transformation are required before the data appear approximately normal.  The 
primary pitfall in using transformations is that when two or more groups are to be compared, no 
single transformation may provide nearly-normal data simultaneously for all groups.  Groups 
whose right-skewness was solved by transformation may be offset by relatively symmetric 
groups which are now left-skewed.  When several tests are performed, such as trend tests at 
numerous locations, parametric tests might be appropriate in some cases but not in others.  
Comparisons of results across sites are more difficult when test procedures and/or 
transformations vary for each case.  Nonparametric tests allow the freedom to use the identical 
test procedure in all cases, without the requirement that the many individual data sets follow the 
same distribution. Finally, transformations may produce nearly-symmetric data, but cannot 
compensate for a heavy-tailed distribution -- the presence of more data near the extremes than 
found in a normal distribution. 

It should be noted that there are actually three versions of most nonparametric tests: 
1. 	 Exact test. Exact versions of nonparametric tests provide results (in the form of  

p-values, defined soon) which are exactly correct .  They are computed by comparing the 
test statistic to a table of quantiles that is specific for the sample sizes present.  Therefore an 
extensive set of tables is required, one for every possible combination of sample sizes. 
When sample sizes are small, only the exact version will provide accurate results. 

2. 	 Large sample approximation. To avoid the necessity for large books filled with tables of 
test statistic quantiles, approximate p-values are obtained by assuming that the distribution 
of the test statistic can be approximated by some common distribution, such as the normal.  
This does not mean the data themselves follow that distribution, but only that the test 
statistic does.  For large sample sizes (30 or more observations per group, but sometimes 
less) this approximation is very accurate.  The test statistic is modified if necessary (often 
standardized by subtracting its mean, and dividing by its standard deviation), and then 
compared to a table of the common distribution to determine the p-value. 

 WARNING: Computer software predominantly uses large sample approximations when 
reporting p-values, whether or not the sample sizes are sufficient to warrant using them.  For 
small sample sizes, p-values should be taken from exact tables rather than from the 
computer printout. 

3. 	 Rank transformation test. In this approximation, parametric procedures are computed not 
on the data themselves, but on the ranks of the data (smallest observation has rank=1, 
largest has rank=N). Conover and Iman (1981) have shown this to adequately approximate 
many exact nonparametric tests for large samples sizes.  The rank-sum test would be 
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approximated in this fashion by computing a t-test on joint ranks of the data.  In fact, Iman 
and Conover (1983) use the name "rank-sum test" for just this procedure.  We would call 
this version a  
"t-test on ranks", reserving the traditional name for the first or second versions of the test 
and more accurately describing what was done.  Rank approximations are most useful when 
performing nonparametric tests using statistics packages which contain only parametric 
procedures.  They are also very useful for situations where there is no equivalent 
nonparametric analog, such as for multiple-factor analysis of variance. 

In figure 4.2, exact and rank transform tests are aligned with their parametric counterparts, as a 
guide to the use of hypothesis tests. 

4.2.2 Establish the Null and Alternate Hypotheses 
The null and alternate hypotheses should be established prior to collecting data.  These 
hypotheses are a concise summary of the study objectives, and will keep those objectives in 
focus during data collection. 

The null hypothesis (H0) is what is assumed to be true about the system under study 
prior to data collection, until indicated otherwise. It usually states the "null" situation -- no 
difference between groups, no relation between variables.  One may "suspect", "hope", or "root 
for" either the null or alternate hypothesis, depending on one's vantage point.  But the null 
hypothesis is what is assumed true until the data indicate that it is likely to be false.  For example, 
an engineer may test the hypothesis that wells upgradient and downgradient of a hazardous 
waste site have the same concentrations of some contaminant.  They may "hope" that 
downgradient concentrations are higher (the company gets a new remediation project), or that 
they are the same (the company did the original site design!).  In either case, the null hypothesis 
assumed to be true is the same:  concentrations are similar in both groups of wells.   

The alternate hypothesis (H1) is the situation anticipated to be true if the evidence (the 
data) show that the null hypothesis is unlikely.  It is in some cases just the negation of H0, 
such as "the 100-year flood is not equal to the design value."  H1 may also be more specific than 
just the negation of H0 -- "the 100-year flood is greater than the design value."  Alternate 
hypotheses come in two general types:  one-sided, and two-sided.  Their associated hypothesis 
tests are called one-sided and two-sided tests.  These are often confused and misapplied. 

Two-sided tests occur when evidence in either direction from the null hypothesis (larger or 
smaller, positive or negative) would cause the null hypothesis to be rejected in favor of the 
alternate hypothesis.  For example, if evidence that "the 100-year flood is smaller than the design 
value" or "the 100-year flood is greater than the design value" would both cause doubt about the 
null hypothesis, the test is two-sided.  Most tests in water resources are of this kind. 
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PARAMETRIC NONPARAMETRIC RANK TRANSFORM 
[exact] [approximation] 

Two Independent Data Groups  (Chapter 5) 
two-sample t-test rank sum test t-test on ranks 

or  Mann-Whitney 
or  Wilcoxon-Mann-Whitney 

Matched Pairs of Data  (Chapter 6) 
paired t-test (Wilcoxon) t-test on signed ranks 

signed-rank test 

More than Two Independent Data Groups  (Chapter 7) 
1-way  Analysis Of Variance Kruskal-Wallis test 1-way ANOVA on ranks 

(ANOVA) 

More than Two Dependent Data Groups  (Chapter 7) 
Analysis Of Variance Friedman test 2-way ANOVA on ranks 
without replication 

Correlation between Two Continuous Variables  (Chapter 8) 
Pearson's r Kendall 's tau Spearman's rho 

or linear correlation (Pearson's r on ranks) 

Relation between Two Continuous Variables  (Chapters 9, 10) 
Linear Regression Mann-Kendall regression on ranks: 
test for slope = 0 test for slope = 0 test for monotonic 

change 

Figure 4.2   Guide to the classification of some hypothesis tests 

One-sided tests occur when departures in only one direction from the null hypothesis 
would cause the null hypothesis to be rejected in favor of the alternate hypothesis. With 

ejswibas
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one-sided tests, it is considered supporting evidence for H0 should the data indicate differences 
opposite in direction to the alternate hypothesis.  For example, suppose only evidence that the 
100-year flood is greater than the previous design value is of interest, as only then must the 
culvert be replaced.  The null hypothesis would be stated as "the 100-year flood is less-than or 
equal to the design flood", while the alternate hypothesis is that "the 100-year flood exceeds the 
design value." Any evidence that the 100-year flood is smaller than the design value is 
considered evidence for H0. 

If it cannot be stated prior to looking at any data that departures from H0 in only one 
direction are of interest, a two-sided test should be performed. If one simply wants to look 
for differences between two streams or two aquifers or two time periods, then a two-sided test is 
appropriate. It is not appropriate to look at the data, find that group A is considerably larger in 
value than group B, and perform a one-sided test that group A is larger.  This would be ignoring 
the real possibility that had group B been larger there would have been interest in that situation 
as well.  Examples in water resources where one-sided tests would be appropriate are: 

1.	 testing for decreased annual floods or downstream sediment loads after 
completion of a flood-control dam, 

2. 	 testing for decreased nutrient loads or concentrations due to a new sewage 
treatment plant or best management practice, 

3. 	 testing for an increase in concentration when comparing a suspected 

contaminated site to an upstream or upgradient control site. 


4.2.3 Decide on an Acceptable Error Rate α 
The α-value, or significance level, is the probability of incorrectly rejecting the null hypothesis 
(rejecting H0 when it is in fact true, called a "Type I error").  Figure 4.3 shows that this is one of 
four possible outcomes of an hypothesis test. The significance level is the risk of a Type I error 
deemed acceptable by the decision maker.  It is a "management tool" dependent not on the data, 
but on the objectives of the study.  Statistical tradition uses a default of 5% (0.05) for α, but 
there is no reason why other values should not be used.  Suppose that an expensive cleanup 
process will be mandated if the null hypothesis of "no contamination" is rejected, for example.  
The α-level for this test might be set very small (such as 1%) in order to minimize the chance of 
needless cleanup costs. On the other hand, suppose the test was simply a first cut at classifying 
sites into "high" and "low" values prior to further analysis of the "high" sites. In this case the α-
level might be set to 0.10 or 0.20, so that all sites with high values would likely be retained for 
further study. 
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Unknown True Situation 
H0 is true H0 is false 

 Fail to 
Reject Correct decision Type II error
 H0 Prob(correct decision) = 1−α Prob(Type II error) = β 

D
ec

is
io

n

Reject Type I error Correct decision 
H0 Prob (Type I error) = α Prob (correct decision) = 1−β 

Significance level Power 

Figure 4.3  Four possible results of hypothesis testing. 

Since α represents one type of error, why not keep it as small as possible?  One way to do this 
would be to never reject H0 -- α would then equal zero. Unfortunately this would lead to large 
errors of a second type -- failing to reject H0 when it was in fact false.  This second type of error 
is called a Type II error, or lack of power (Fig. 4.3).  Both errors are of concern to practitioners, 
and both will have some finite probability of occurrence unless decisions to "always reject" or 
"never reject" are made.  Once a decision is made as to an acceptable Type I risk α, two steps 
can be taken to concurrently reduce the risk of Type II error β: 

1.  Increase the sample size n. 
2. Use the test procedure with the greatest power for the type of data being analyzed. 

For water quality applications, null hypotheses are usually of "no contamination".  Situations 
with low power mean that actual contamination may not be detected.  This happens with 
simplistic formulas for determining sample sizes (Kupper and Hafner, 1989). Instead, 
probabilities of Type II errors should be considered when setting sample size.  Power is also 
sacrificed when data having the characteristics outlined in Chapter 1 are analyzed with tests 
requiring a normal distribution. Power loss increases as skewness and the number of outliers 
increase. 

4.2.4 Compute the Test Statistic from the Data 
Test statistics summarize the information contained in the data.  If the test statistic is not 
unusually different from what is expected to occur if the null hypothesis is true, the null 
hypothesis is not rejected. However, if the test statistic is a value unlikely to occur when H0 is 
true, the null hypothesis is rejected. The p-value measures how unlikely the test statistic is when 
H0 is true. 
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4.2.5 Compute the p-Value 
The p-value is the probability of obtaining the computed test statistic, or one even less likely, 
when the null hypothesis is true. It is derived from the data, concisely expressing the evidence 
against the null hypothesis contained in the data.  It measures the "believability" of the null 
hypothesis.  The smaller the p-value, the less likely is the observed test statistic when H0 is true, 
and the stronger the evidence for rejection of the null hypothesis.  The p-value is also called the 
"attained significance level", the significance level attained by the data.   

How do p-values differ from α levels? The α-level does not depend on the data, but states the 
risk of making a Type I error that is acceptable a priori to the scientist or manager.  The α-level is 
the critical value which allows a "yes/no" decision to be made -- the treatment plant has 
improved water quality, nitrate concentrations in the well exceed standards, etc..  The p-value 
provides more information -- the strength of the scientific evidence.  Reporting the p-value 
allows someone with a different risk tolerance (different α) to make their own yes/no decision. 

For example, consider a test of whether upgradient and downgradient wells have the same 
expected contaminant concentrations.  If downgradient wells show evidence of higher 
concentrations, some form of remediation will be required.  Data are collected, and a test 
statistic calculated.  A decision to reject at α=0.01 is a statement that "remediation is warranted 
as long as there is less than a 1 percent chance that the observed data would occur when 
upgradient and downgradient wells actually had the same concentration."  This level of risk was 
settled on as acceptable, so that 1 percent of the time remediation would be performed when in 
fact it is not required. Reporting only "reject" or "not reject" would prevent the audience from 
distinguishing a case that is barely able to reject (p=0.009) from one in which H0 is virtually 
certain to be untrue (p=0.0001).  Reporting a p-value of 0.02, for example, would allow a later 
decision by someone with a greater tolerance of unnecessary cleanup (α = 5 percent, perhaps) to 
decide for remediation. 

4.2.6 Make the Decision to Reject H0 or Not 

Reject H0 when: p-value < α-level. 

When the p-value is less than the decision criteria (the α-level), H0 is rejected. When the p­
value is greater than α, H0 is not rejected. The null hypothesis is never "accepted", or proven 
to be true. It is assumed to be true until proven otherwise, and is "not rejected" when there is 
insufficient evidence to do so. 
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4.3 The Rank-Sum Test as an Example of Hypothesis Testing 

Suppose that aquifers X and Y are sampled to determine whether the concentrations of a 
contaminant in the aquifers are similar or different.  This is a test for differences in location or 
central value, and will be covered in detail in Chapter 5.  Two samples xi are taken from aquifer 
X (n=2), and 5 samples yi from aquifer Y (m=5) for a total of 7 samples (N = n+m = 7).  Also 
suppose that there is a prior reason to believe that X values tend to be lower than Y values:  
aquifer X is deeper, and is likely to be uncontaminated.  The null hypothesis (H0) and alternative 
hypothesis (H1) of this one-sided test are as follows:   

H0: xi and yi are samples from the same distribution, or  
H0: Prob (xi ≥ yi ) = 0.5. 

H1: xi is from a distribution which is generally lower that of yi, or 
H1: Prob (xi ≥ yi ) < 0.5. 

Remember that with one-sided tests such as this one, data indicating differences opposite in 
direction to H1 (xi frequently larger than yi) are considered supporting evidence for H0. With 
one-sided tests we can only be interested in departures from H0 in one direction. 

Having established the null and alternate hypotheses, an acceptable error rate α must be set. As 
in a court of law, innocence is assumed (i.e. concentrations are identical) unless evidence is 
collected to show "beyond a reasonable doubt" that aquifer Y has higher concentrations (i.e. that 
differences observed are not likely to have occurred by chance alone).  The "reasonable doubt" 
is set by α, the significance level. 

If the t-test were to be considered as the test procedure, each data group should be tested for 
normality.  However, sample sizes of 2 and 5 are too small for a reliable test of normality.  Thus 
the nonparametric rank-sum test is appropriate.  This test procedure entails ranking all 7 values 
(lowest concentration has rank=1, highest has rank=7) and summing the ranks of the 2 values 
from the population with the smaller sample size (X).  This rank-sum is the statistic W used in 
the exact test.   

Next, W would be computed and compared to a table of test statistic quantiles to determine the 
p-value. Where do these tables come from?  We will derive the table for sample sizes 2 and 5 as 
an example. 

What are the possible values W may take, given that the null hypothesis is true?  The collection 
of all of the possible outcomes of W defines its distribution, and therefore composes the table of 
rank-sum test statistic quantiles.  Shown below are all the possible combinations of ranks of the 
two x values. 
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1,2 1,3 1,4 1,5 1,6 1,7 
2,3 2,4 2,5 2,6 2,7 

3,4 3,5 3,6 3,7 
4,5 4,6 4,7 

5,6 5,7 
     6,7  

If H0 is true, each of the 21 possible outcomes must be equally likely.  That is,  it is just as likely 
for the two x's to be ranks 1 and 2, or 3 and 5, or 1 and 7, etc.  Each one of the outcomes results 
in a value of W, the sum of the two ranks.  The 21 W values corresponding to the above 
outcomes are 

3 4 5 6 7 8 
5 6 7 8 9 

7 8 9 10 
9 10 11 

    11  12
     13  

The expected value of W is the mean (and median) of the above values, or 8.  Given that each 
outcome is equally likely when H0 is true, the probability of each possible W value is:  

W 3 4 5 6 7 8 9 10 11 12 13 
Prob(W) 1/21 1/21 2/21 2/21 3/21 3/21 3/21 2/21 2/21 1/21 1/21 

What if the data collected produced 2 x values having ranks 1 and 4?  Then W would be 5, lower 
than the expected value E [W] = 8. If H1 were true rather than H0, W would tend toward low 
values.  What is the probability that W would be as low as 5 or lower if H0 were true?  It is the 
sum of the probabilities for W = 3, 4, and 5, or 4/21 = 0.190 (see figure 4.4).  This number is 
the p-value for the test statistic of 5. It says that the chance of a departure from E [W] of at 
least this magnitude occurring when H0 is true is 0.190, which is not very uncommon (about 1 
chance in 5). Thus the evidence against H0 is not too convincing. If the ranks of the 2 x values 
had been 1 and 2, then W = 3 and the p-value would be 1/21 = 0.048.  This result is much less 
likely than the previous case but is still not extremely rare.  In fact, due to such a small sample 
size the test can never result in a highly compelling case for rejecting H0. Adding more data 
would make it possible to attain lower p-values, providing a stronger case against H0. 
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Figure 4.4 Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5. 
The p-value for a one-sided test equals the area shaded. 

This example has considered only the one-sided p-value, which is appropriate when there is 
some prior notion that x should be smaller than y (or the reverse).  Quite often the situation is 
that there is no prior notion of which should be lower.  In this case a two-sided test must be 
done.  The two-sided test has the same null hypothesis as was stated above, but H1 is now that 
xi and yi are from different distributions, or 

H1: Prob (xi ≥ yi ) ≠ 0.5. 

Suppose that W for the two-sided test were found to be 5.  The p-value equals the probability 
that W will differ from E [W] by this much or more, in either direction.  It is
 Prob (W ≤ 5) + Prob (W ≥ 11). (see figure 4.5) 
Where did the 11 come from?  It is just as far from E [W] = 8 as is 5.  The two-sided 
p-value therefore equals 8/21 = 0.381, twice the one-sided p-value.  Symbolically we could state:  

Prob ( W− E [W] ≥ 3) = 8/21. 

To summarize the subject of p-values:  they describe how "far" the observed test statistic is from 
that expected to occur if the null hypothesis were true.  They are the probability of being that far 
or farther given that the null hypothesis is true.  The lower the p-value the stronger is the 
case against the null hypothesis. 

Now, lets look at an α-level approach.  Return to the original problem, the case of a one-sided 
test.  Assume α is set equal to 0.1. This corresponds to a critical value for W, call it W*, such 
that Prob (W ≤ W*) = α. Whenever W≤W*, H0 is rejected with no more than a 0.1 frequency 
of error if H0 were always true.  However, because W can only take on discrete, in fact integer, 
values as seen above, a W* which exactly satisfies the equation is not usually available.  Instead 
the largest possible W* such that Prob (W ≤ W*) ≤ α is used. 
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Figure 4.5 Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5. 
The p-value for a two sided-test equals the area shaded. 

Searching the above table of possible W values and their probabilities, W* = 4 because Prob (W 
≤ 4) = 0.095 ≤ 0.1. Note the "lumpiness" of the relationship between α and W*. If α =0.09 
had been selected then W* would be 3.  This lumpiness can be avoided by reporting p-values 
rather than only "reject" or "not reject". 

For a two-sided test a pair of critical values WU* and WL* is needed, where  
 Prob (W ≤ WL*) + Prob (W ≥ WU*) ≤ α  and WU*− E [W] = E [W] − WL*. 
These upper and lower critical values of W are symmetrical around E [W] such that the 
probability of W falling on or outside of these critical levels is as close as possible to α, without 
exceeding it, under the assumption that H0 is true. In the case at hand, if 
α = 0.1, then WL*= 3 and WU*= 13 because  
 Prob (W ≤ 3) + Prob (W ≥ 13) = 0.048 + 0.048 = 0.095 ≤ 0.1. 
Note that for a two-sided test, the critical values are farther from the expected value than in a 
one-sided test at the same α level. 

It should be recognized that p-values are also influenced by sample size.  For a given magnitude 
of difference between the x and y data, and a given amount of variability in the data, p values 
will tend to be smaller when the sample size is large.  In the extreme case where vast amounts of 
data are available, it is a virtual certainty that p values will be small even if the differences 
between x and y are what might be called "of no practical significance." 

Most statistical tables are set up for one-sided tests.  That is, the rejection region α or the p­
value is given in only one direction. When a two-sided test at significance level α is 
performed, the tables must be entered using α/2.  In this way rejection can occur with a 
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probability of α/2 on either side, and an overall probability of α. Similarly, tabled p-values 
must be doubled to get p-values for a two-sided test.  Modern statistical software often 
reports p-values with its output, eliminating the need for tables.  Be sure to know whether it is 
one-sided or two-sided p-values being reported. 

4.4 Tests for Normality 

The primary reason to test whether data follow a normal distribution is to determine if  
parametric test procedures may be employed.  The null hypothesis for all tests of normality is 
that the data are normally distributed.  Rejection of H0 says that this is doubtful. Failure to 
reject H0, however, does not prove that the data do follow a normal distribution, especially for 
small sample sizes. It simply says normality cannot be rejected with the evidence at hand.  Use 
of a larger α-level (say 0.1) will increase the power to detect non-normality, especially for small 
sample sizes, and is recommended when testing for normality.  

The test for normality used in this book is the probability plot correlation coefficient (PPCC) 
test discussed by Looney and Gulledge (1985a).  Remember from Chapter 2 that the more 
normal a data set is, the closer it plots to a straight line on a normal probability plot.  To test for 
normality, this linearity is tested by computing the linear correlation coefficient between data 
and their normal quantiles (or "normal scores", the linear scale on a probability plot).  Samples 
from a normal distribution will have a correlation coefficient very close to 1.0.  As data depart 
from normality, their correlation coefficient will decrease below 1.  To perform a test of H0: the 
data are normal versus H1: they are not, the correlation coefficient (r) between the data and 
their normal quantiles is tested to see if it is significantly less than 1.  For a sample size of n, if r 
is smaller than the critical value r* of table B3 for the desired α-level, reject H0. Looney and 
Gulledge (1985b) have shown this table, developed using the Blom plotting position, is also 
valid for other plotting positions except the Weibull position i/(n+1).  In order to use one 
plotting position for all functions in this book, the Cunnane plotting position was adopted as 
explained in Chapter 2. 

To illustrate this test, probability plots of the unit well yield data from Chapter 2 are shown in 
figures 4.6 and 4.7.  For the valleys without fracturing, r = 0.805, the correlation coefficient 
between yi and Zp in the left-hand side of Table 4.1. 

From table B3 with n=12, if r is below the α = 0.05 critical value of r* = .928, normality is 
rejected.  Therefore normality is rejected for the yields without fractures at α = 0.05. A p-value 
for this test would be <0.005, as r=0.805 is less than the tabled r* of 0.876 for α=0.005. Note 
the nonlinearity of the data on the probability plot (figure 4.6).  For the yields with fracturing, 
n=13, r* is 0.932 at α = 0.05, and the PPCC r = 0.943;  therefore fail to reject normality at 
α=0.05. The p-value for the yields with fracturing is just under 0.10 (normality would barely be 
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rejected at α=0.10). The probability plot, figure 4.7, shows a closer adherence to a straight line 
than for figure 4.6. 

Table 4.1.  Unit well yields (in gal/min/ft) in Virginia  (Wright, 1985) 
yi = yield Zp = normal quantile 

yi  Zp yi  Zp yi  Zp yi  Zp yi  Zp yi  Zp 
0.001 −1.65 0.030 −.31 0.10 .52 0.020 −1.69 0.16 −.39 0.40 .39 
0.003 −1.13 0.040 −.10 0.454 .80 0.031 −1.17 0.16 −.19 0.44 .60 
0.007 −0.80 0.041 .10 0.49 1.13 0.086 −0.85 0.18 .00 0.51 .85 
0.020 −0.52 0.077 .31 1.02 1.65 0.13 −0.60 0.30 .19 0.72 1.17 

0.95 1.69 

valleys without fracturing valleys with fracturing 

Computer packages use several methods for testing normality.  Several are based on probability 
plots. The most common is perhaps the Shapiro-Wilk test, as its power to detect non-normality 
is as good or better than other tests (Shapiro et al., 1968).  A table of quantiles for this test 
statistic is available for n < 50 (Conover, 1980).  Shapiro and Francia (1972) developed a 
modification of the Shapiro-Wilk test useful for all sample sizes.  It is essentially identical to the 
PPCC test, as it is the r2 for a regression between the data and their normal scores.  Therefore p­
values and power characteristics for the two tests should be essentially the same. 

Tests for normality not related to probability plots include the Kolmogorov and chi-square tests, 
described in more detail by Conover (1980).  Both are general tests that may be used for data 
which are ordinal (data recorded only as low/medium/high, etc) but do not possess a 
continuous scale.  This makes them less powerful than the probability plot tests, however, for 
the specific purpose of testing continuous data for normality (Shapiro et al., 1968).  

The important advantage of the PPCC test is its graphical analog, the probability plot, which 
visually illustrates its results.  The probability plot itself provides information on how the data 
depart from normality, something not provided by any test statistic.  

To make the PPCC test easy to perform by hand, normal quantiles for the Cunnane plotting 
positions of table B1 are listed in table B2 of the Appendix.  For the n=12 yields without 
fracturing, for example, the upper six quantiles are easily found in the table.  Lower quantiles are 
mirror images around zero of the upper quantiles, and so equal the upper values multiplied by 
−1. Table B2 quantiles were computed by first calculating the Cunnane plotting position to 
more significant digits than found in table B1,  and then looking up the corresponding normal 
quantiles in a table of the normal distribution. 
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Figure 4.6 Probability plot for the yields without fracturing, with PPCC r 

Figure 4.7 Probability plot for the yields with fracturing, with PPCC r 
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Exercises 

4.1 	 The following are annual streamflows for the Green R. at Munfordville, KY.  Beginning 
in 1969 the stream was regulated by a reservoir.  

before after
 1950 4910 1960 2340 1969 1350 

1951 3660 1961 2600 1970 2350 
1952 3910 1962 3410 1971 3140 
1953 1750 1963 1870 1972 3060 
1954 1050 1964 1730 1973 3630 
1955 2670 1965 2730 1974 3890 
1956 2880 1966 1550 1975 3780 
1957 2600 1967 4060 1976 3180 
1958 3520 1968 2870 1977 2260 
1959 1730 1978 3430 

1979 5290 
1980 2870 

Test both before and after data sets for normality using the PPCC test.  If either are non­
normal, transform the data and re-test in order to find a scale which appears to be close 
to a normal distribution. 

4.2	 Test the arsenic data and transformed data of Exercise 2.2 for normality.  



Chapter 5

Differences between Two 
Independent Groups 

Wells upgradient and downgradient of a hazardous waste site are sampled to determine whether 
the concentrations of some toxic organic compound known to reside in drums at the site are 
greater in the downgradient wells.  Are they greater at the α = 0.01 significance level?  If so, the 
ground water is declared to be contaminated, and the site will need to be cleaned up. 

Measurements of a biological diversity index are made on sixteen streams.  Eight of the streams 
represent "natural" conditions, while the other eight have received urban runoff.  Is the 
biological quality of the urban streams worse than that of the "natural" streams? 

Unit well yields are determined for a series of bedrock wells in the Piedmont region.  Some wells 
tap areas where fracturing is prevalent, while other wells are drilled in largely unfractured rock.  
Does fracturing affect well yields, and if so how? 

These are examples of comparisons of two independent groups of data, to determine if one 
group tends to contain larger values than the other.  The data are independent in the sense that 
there is no natural structure in the order of observations across groups -- there are no pairings of 
data between observation 1 of group 1 and observation 1 of group 2, etc.  Where such a pairing 
does exist, methods like those of Chapter 6 should be used.  In some cases it is known ahead of 
time which group is expected to be larger (a one-sided test), and in other cases it is not (a two­
sided test).  This chapter will present and discuss the rank-sum test, a nonparametric procedure 
for determining whether two independent groups differ.  In the special case where the data 
within each group are known to be normally distributed, and the differences between the groups 
are additive, the t-test may also be used.  Graphical presentations of the test results will be 
quickly surveyed.  Finally, methods for estimating the magnitude of the difference between the 
two groups are presented, including the Hodges-Lehmann estimator, one of a class of efficient 
and resistant nonparametric estimators unfamiliar to many water resources scientists. 
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5.1   The Rank-Sum Test 

The rank-sum test goes by many names.  It was developed by Wilcoxon (1945), and so is 
sometimes called the Wilcoxon rank-sum test.  It is equivalent to a test developed by Mann and 
Whitney near the same time period, and the test statistics can be derived one from the other.  
Thus the Mann-Whitney test is another name for the same test.  The combined name of 
Wilcoxon-Mann-Whitney rank-sum test has also been used. 

5.1.1 Null and Alternate Hypotheses 
In its most general form, the rank-sum test is a test for whether one group tends to produce 
larger observations than the second group.  It has as its null hypothesis: 

H0: Prob [x > y] = 0.5 
where the x are data from one group, and the y are from a second group.  In words, this states 
that the probability of an x value being higher than any given y value is one-half.  The alternative 
hypothesis is one of three statements: 

H1: Prob [x > y] ≠ 0.5 (2-sided test -- x might be larger or smaller than y). 
H2: Prob [x > y] > 0.5 (1-sided test -- x is expected to be larger than y) 
H3: Prob [x > y] < 0.5 (1-sided test-- x is expected to be smaller than y). 

Note that no assumptions are made about how the data are distributed in either group.  They 
may be normal, lognormal, exponential, or any other distribution,  They may be uni-, bi- or 
multi-modal. In fact, if the only interest in the data is to determine whether one group tends to 
produce higher observations, the two groups do not even need to have the same distribution! 

Usually however, the test is used for a more specific purpose -- to determine whether the two 
groups come from the same population (same median and other percentiles), or alternatively 
whether they differ only in location (central value or median).  If both groups of data are from 
the same population, about half of the time an observation from either group could be expected 
to be higher than that from the other, so the above null hypothesis applies.  However, now it 
must be assumed that if the alternative hypothesis is true, the two groups differ only in their 
central value, though not necessarily in the units being used. For example, suppose the data 
are shaped like the two lognormal distributions of figure 5.1.  In the original units, the data have 
different sample medians and interquartile ranges, as shown by the two boxplots.  A rank-sum 
test performed on these data has a p-value of <0.001, leading to the conclusion that they do 
indeed differ. But is this test invalid because the variability, and therefore the shape, of the two 
distributions differs?  Changing units by taking logs, the boxplots of figure 5.2 result.  The logs 
of the data appear to have different medians, but similar IQR's, and thus the logs of the data 
appear to differ only in central location.  The test statistic and p-value for a rank-sum test 
computed on these transformed data is identical to that for the original units! Nonparametric 
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tests possess the very useful property of being invariant to power transformations such as those 
of the ladder of powers.  Since only the data or any power transformation of the data need be 
similar except for their central location in order to use the rank-sum test, it is applicable in many 
situations. 

ο 
* * 

Figure 5.1 Boxplots of two lognormal distributions with 
different medians and IQRs. 

Figure 5.2 	 Boxplots of the logarithms of the figure 5.1 data.   
Medians still differ, while IQRs are the same. 

5.1.2 Computation of the Exact Test 
The exact form of the rank-sum test is given below.  It is the only form appropriate for 
comparing groups of sample size 10 or smaller per group.  When both groups have samples 
sizes greater than 10 (n, m > 10), the large-sample approximation may be used.  Remember that 
computer packages report p-values from the large sample approximation regardless of sample 
size. 
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Exact Version of the Rank-Sum test 

Situation 	 Two independent groups of data are to be compared.  The sample size for the 
smaller of the two groups xi, i=1,...n is designated n, while the larger sample size 
yj, j=1,...m is designated m.  

Test Statistic  Compute the joint ranks Rk . 
Rk  = 1 to (N = n + m), using average ranks in case of ties. 

The exact test statistic 
Wrs = sum of ranks for the group having the smaller sample size, 

= ΣRi  i=1,n (use either group when sample sizes are equal: n = m ) 

Decision Rule. To reject H0 : Prob [x > y] = 0.5 
1. 	 H1 : Prob [x > y] ≠ 0.5 (the smaller data set tends to have either higher or lower values 

than the larger data set) 
 Reject H0 if Wrs ≤ x*α/2,n,m  or Wrs ≥ xα/2,n,m  from Table B4 of the 

Appendix; otherwise do not reject H0. 

2. H2 : Prob [x > y] > 0.5 (the smaller data set tends to have higher values than the larger data 
set) 

 Reject H0 if Wrs ≥ xα,n,m from Table B4; otherwise do not reject H0 . 

3. H3 : Prob [x > y] < 0.5 (the smaller data set tends to have lower values than the larger data 
set) 

 Reject H0 if Wrs ≤ x*α,n,m from Table B4; otherwise do not reject H0 . 

Example 1. 
Precipitation quality was compared at sites with different land uses by Oltmann and Shulters 
(1989). A rank-sum test is used to determine if one of the constituents, ammonia plus organic 
nitrogen, significantly differs (α = 0.05) between the industrial and residential sites. 

H0 : median concentration (industrial) = median concentration (residential) 
H3 : median concentration (industrial) ≠ median concentration (residential). 

The 10 observations at each site are assigned ranks from 1 to 20 as follows.  Note that three 
pairs of concentrations (at 0.7, 1.1, and 1.3 mg/L) are tied, and so are assigned tied ranks equal 
to the average of their two individual ranks: 
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Ammonia plus organic nitrogen concentration (in mg/L) in precipitation  
xi, yj = concentrations Rk = joint rank 

industrial site residential site
 xi  Rk xi  Rk  yj  Rk yj  Rk 
0.59 4 1.3 14.5 0.3 1 0.9 8 
0.87 7 1.6 16 0.36 2 0.92 9 
1.1 11.5 1.7 17 0.5 3 1.0 10 
1.1 11.5 3.2 18 0.7 5.5 1.3 14.5 
1.2 13 4.0 19 0.7 5.5 9.7 20 

Wrs = sum of the 10 ranks for the residential site (n=m=10, so either could be used) 
 = 78.5 
For this two-sided test, reject H0 if Wrs ≤ x*α/2,n,m  or Wrs ≥ xα/2,n,m. From Table B4, 
x*.026,10,10 = 79 and x*.022,10,10 = 78. Interpolating halfway between these for Wrs = 78.5, 
the p-value for the two-sided test is 0.024•2 = 0.048, and the decision would be to reject H0 at α 
= 0.05. Reporting the p-value shows how very close the risk of Type I error is to 0.05.  The 
conclusion is therefore that ammonia plus organic nitrogen concentrations from industrial 
precipitation are significantly different than those in residential precipitation at a p-value of 
0.048. 

5.1.3 The Large Sample Approximation 
For the rank sum test, the distribution of the test statistic Wrs closely approximates a normal 
distribution when the sample size for each group is 10 or above (figure 5.3).  With n=m=10, 
there are 184,756 possible arrangements of the data ranks.  The collection of test statistics for 
each of these comprises the exact distribution of Wrs, shown as bars in figure 5.3, with a mean 
of 105. Superimposed on the exact distribution is the normal distribution which closely 
approximates the exact values.  This demonstrates how well the exact distribution of this test 
can be approximated, even for relatively small sample sizes.  The inset shows a magnified view 
of the peak of the distribution, with the normal approximation crossing the center of the exact 
distribution bars. 

This approximation does not imply that the data are or must be normally distributed.  Rather, it 
is based on the near normality of the test statistic at large sample sizes.  If there are no ties, Wrs 
has a mean µW and standard deviation σW when H0 is true of: 

= n•(N+1)/2  [5.1]µW 

σW  =  n•m•(N+1)/12   [5.2] 

where N = n + m. 
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Figure 5.3 Illustration of the distribution of Wrs and its fitted normal distribution. 

The test statistic for the large sample approximation is computed by standardizing Wrs and 
making a continuity correction. The continuity correction occurs because the normal 
distribution fits halfway through the top of the bars of the exact test statistic distribution (figure 
5.3). The correction moves the probability of occurrence from the outer edge of each bar to its 
center prior to using the normal curve.  It therefore equals d/2, where d is the minimum 
difference between possible values of the test statistic (the bar width).  For the rank-sum test 
d=1, as the test statistic values change by units of one.  Zrs, the standardized form of the test 
statistic, is therefore computed as

 Wrs 
d











- - mW2 
if Wrs > mWsW 

Zrs = 0  if Wrs = mW [5.3] 

d
Wrs + 2 - mW 

if Wrs < mWsW 

Zrs is compared to a table of the standard normal distribution for evaluation of the test results. 



123 Differences between Two Independent Groups 

Example 1, cont. 
The large-sample approximation is applied to the precipitation nitrogen data.  Note that this is 
inappropriate because there are three pairs of tied values.  How close is the approximate to the 
exact p-value?  For the exact test above, Wrs = 78.5. 

µW = 10(21)/2 = 105 σW = 10 10 (21)/12 = 13.23 

78.5 + 1/2 -105
Therefore  Zrs = 13.23  = −1.965 

and p ≅ 2•0.025 = 0.05 from a table of the normal distribution such as Table A2 of Iman and 
Conover (1983). This is very close to the exact test results, and errors decrease with increasing 
sample sizes. 

5.1.3.1 Correction for ties 
Conover (1980) presents a further correction to σW when ties occur, and tied ranks are assigned.  
The formula below for σWt should be used for computing the large sample approximation 
rather than σW when more than a few ties occur. 

σWt = 
nm 

N(N − 1) 
R 

k 2 

k=1 

N

∑ − 
nm(N + 1)2 

4(N − 1)
  where N = n+m [5.4] 

Example 1, cont.

The tie correction is applied to the large sample approximation for the precipitation 


100 
2868.5 − 

100(21)2 

nitrogen data. σWt = = 174.61 = 13.21. 
2019 419 

This is essentially identical to the value of 13.23 obtained without the tie correction.  The 
test statistic Zrs and its p-value are unchanged. 

5.1.4 The Rank Transform Approximation 
Another approximation to the exact rank-sum test is to compute the equivalent parametric test, 
in this case the t-test, on the ranks Rk rather than on the original data themselves.  
Computations will be illustrated in detail following the presentation of the t-test in the next 
section.  The rank-transform p-value calculated in that section for the precipitation nitrogen data 
is 0.042, close to but lower than the exact value, and not as close as the large sample 
approximation.  Rank transform approximations are not as widely accepted as are the large 
sample approximations.  This is due to the fact that the rank transform approximations can 
result in a lower p-value than the exact test, while the large sample approximation will not.  In 
addition, the rank approximation is often not as close as the large-sample approximation for the 
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same sample size.  Statisticians prefer that an approximation never result in a lower p-value than 
the exact test, as this means that H0 will be rejected more frequently than it should.  However, 
this problem only occurs for small sample sizes.  For the sample sizes (conservatively, n and m 
both larger than 25) at which the rank approximation should be used, it should perform well. 

5.2 The t-Test 

The t-test is perhaps the most widely used method for comparing two independent groups of 
data. It is familiar to most water resources scientists.  However, there are five often overlooked 
problems with the t-test that make it less applicable for general use than the nonparametric rank­
sum test. These are 1) lack of power when applied to non-normal data, 2) dependence on an 
additive model, 3) lack of applicability for censored data, 4) assumption that the mean is a good 
measure of central tendency for skewed data, and 5) difficulty in detecting non-normality and 
inequality of variance for the small sample sizes common to water resources data.  These 
problems were discussed in detail by Helsel and Hirsch (1988), and will be evaluated here in 
regard to the precipitation nitrogen data. 

5.2.1   Assumptions of the Test 
The t-test assumes that both groups of data are normally distributed around their respective 
means, and that they have the same variance. The two groups therefore are assumed to have 
identical distributions which differ only in their central location (mean).  Therefore the t-test is a 
test for differences in central location only, and assumes that there is an additive difference 
between the two means, if any difference exists.  These are strong assumptions rarely satisfied 
with water resources data.  The null hypothesis is stated as

 H0 : µx = µy  the means for groups x and y are identical. 
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5.2.2 Computation of the t-Test 

Two Sample t-test 

Situation 	 Two independent groups of data are to be compared.  Each group is normally 
distributed around its respective mean value, and the two groups have the same 
variance. The sole difference between the groups is that their means may not be 
the same. 

Test Statistic	 Compute the t-statistic: 

t = 
x − y 

s 1/n + 1/ m 

where  x is the sample mean of data in the first group xi  i=1,n 
y  is the sample mean of data in the second group yj  j=1,m 

and s is the pooled sample standard deviation, estimating the 
standard deviation assumed identical in both groups: 

s = 
( n − 1)s 

x 

2 + (m −1) s 
y 

2 

n + m − 2 
The sample variances of both groups s 2 and s 2 are used to estimate s. 

x x 

Decision Rule. To reject H0 : µx = µy 
1. 	 H1 : µx ≠ µy (the two groups have different mean values, but there is no prior 

knowledge which of x or y might be higher) 
 Reject H0 if t < −t α/2,(n+m−2)  or t > t α/2,(n+m−2)  from a table 

of the t distribution; otherwise do not reject H0. 

2. 	H2 : µx > µy (prior to seeing any data, x is expected to be greater than y) 
 Reject H0 if t > t α,(n+m−2)  from a table of the t distribution; 

otherwise do not reject H0 . 

3. 	H3 : µx < µy (prior to seeing any data, y is expected to be greater than x) 
 Reject H0 if t < −t α,(n+m−2)  from a table of the t distribution; 

otherwise do not reject H0 . 

5.2.3 Modification for Unequal Variances 
When the two groups have unequal variances the degrees of freedom and test statistic t should 
be modified using Satterthwaite's approximation: 
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Two Sample t-test with Unequal Variances 

Situation 	 The mean values of two independent groups of data are to be tested for 
similarity. Each group is normally distributed around its respective mean value, 
and the two groups do not have the same variance. 

Test Statistic	 Compute the t-statistic: 

t = 
x −y 

s 
x 

2 /n + s 
y 

2 / m 

where  	 s 2 is the sample variance of the first group, and 
x 
2 s is the sample variance of the second group. 
y 

Also compute the approximate degrees of freedom df, where 
2( s2 /n + s / m)2 

x ydf = 
(s2 / n)2 

+ 
( s

y 

2 /m)2 

x 

(n −1) ( m −1) 

Decision Rule. To reject H0 : µx = µy 
1. 	 H1 : µx ≠ µy (the two groups have different mean values, but there is no prior 

knowledge which of x or y might be higher) 
 Reject H0 if t < −t α/2,(df)  or t > t α/2,(df)  from a table of the t 

distribution; otherwise do not reject H0. 

2. H2 : µx > µy	 (prior to seeing any data, x is expected to be greater than y) 
 Reject H0 if t > t α,(df)  from a table of the t distribution; 

otherwise do not reject H0 . 

3. 	H3 : µx < µy (prior to seeing any data, y is expected to be greater than x) 
 Reject H0 if t < −t α,(df)  from a table of the t distribution; otherwise 

do not reject H0 . 

Example 1, cont.

The t-test is applied to the precipitation nitrogen data.  Are the means of the two groups of data 

equal?  As the variance for the industrial data is 1.2 while for the residential data it is 8.1, 

Satterthwaite's approximation is used rather than computing an overall variance: 




Differences between Two Independent Groups 127

1.67 - 1.64 (1.17/10 + 8.12/10)2 
1.17/10 + 8.12/10 t = = 0.03, and df = 

(1.17/10)2 (8.12/10)2 = 11.5. 

9  + 9
Therefore from a table of the t-distribution, the p-value is 0.98. The conclusion: fail to reject 
H0. There is essentially no evidence that the means differ using the t-test. 

The "t-test on ranks" approximation to the rank-sum test is also computed.  This t-test is 
computed using the joint ranks Rk rather than the original data themselves:  

13.15 - 7.85
 = 2.19trank = 5.4 1/10 + 1/10

where 13.15 is the mean rank of the x data, etc.  Comparing this to t.025,18 = 2.10, H0 is 
rejected with a p-value of 0.042.  The medians are declared different. 

5.2.4 Consequences of Violating the t-Test's Assumptions 
Computing the probability plot correlation coefficient to test for normality of the two groups of 
precipitation nitrogen data, the industrial group had a PPCC of 0.895, while the residential group 
had a PPCC of 0.66. From Table B3 of the Appendix, both correlation coefficients are below 
the critical value of 0.918 for an α of 0.05, and so both groups must be considered non-normal 
(see Chapter 4 for details on the PPCC test).  A t-test should not have been used on these data.  
However, if the normality test results are ignored, the t-test declares the group means to be 
similar, which is commonly interpreted to mean that the two groups are similar.  The rank-sum 
test finds the two groups to be significantly different.  This has the following consequences: 

1. This example demonstrates the lack of power encountered when a t-test is applied to 
non-normal data. When parametric tests are applied to non-normal data, their power to 
detect differences which are truly present is much lower than that for the equivalent 
nonparametric test (Bradley, 1968).  Thus the t-test is not capable of discerning the difference 
between the two groups of precipitation nitrogen.  The skewness and outliers in the data inflate 
the sample standard deviation used in the t-test.  The t-test assumes it is operating on normal 
distributions having this standard deviation, rather than on non-normal data with smaller overall 
spread.  It then fails to detect the differences present. 

2. As shown by the Q-Q plot of figure 5.5, these data do not exhibit an additive difference 
between the data sets.  A multiplicative model of the differences is more likely, and logs of the 
data should be used rather than the original units in a t-test.  Of course, this is not of concern to 
the rank-sum test, as the test results will in either units be identical. 

3. A t-test cannot be easily applied to censored data, such as data below the detection limit.  
That is because the mean and standard deviation of such data cannot be computed without 
either substituting some arbitrary values, or making a further distributional assumption about the 
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data. This topic is discussed further in Chapter 13.  It will only be noted here that all data below 
a single detection limit can easily be assigned a tied rank, and a rank-sum test computed, without 
making any distributional assumptions or assigning arbitrary values to the data. 

4. The t-test assumes that the mean is a good measure of central tendency for the  data 
being tested.  This is certainly not true for skewed data such as the precipitation nitrogen data.  
The mean of the residential data is greatly inflated by the one large outlier (figure 5.4), making it 
similar to the mean at the industrial site. The mean is neither resistant to outliers, nor near the 
center (50th percentile) of skewed data.  Therefore tests on the mean often make little sense. 

5. When prior tests for normality are used to decide whether a nonparametric test is 
warranted, departures from normality must be large before they are detected for the small 
sample sizes (n<25 or 30) commonly investigated.  In this example, departures were sufficiently 
drastic that normality was rejected.  For lesser departures from normality, computing both the 
rank sum and t-test would protect against the potential loss of power of the t-test for non­
normal data.  Alternatively, just the rank sum test could be used for analysis of small data sets. 

5.3 Graphical Presentation of Results 

In Chapter 2 a detailed discussion of graphical methods for comparisons of two or more groups 
of data was presented. Overlapping and side-by-side histograms, and dot and line plots of 
means and standard deviations, inadequately portray the complexities commonly found in water 
resources data.  Probability plots and quantile plots allow complexity to be shown, plotting a 
point for every observation, but often provide too much detail for a visual summarization of 
hypothesis test results.  Two methods, side-by-side boxplots and Q-Q plots, are very well suited 
to describing both the results of hypothesis tests, and visually allowing a judgement of whether 
data fit the assumptions of the test being employed.  This is illustrated by the precipitation 
nitrogen data below. 

5.3.1 Side-by-Side Boxplots 
The best method for illustrating results of the rank-sum test is side-by-side boxplots.  With 
boxplots only a few quantiles are compared, but the loss of detail is compensated for by greater 
clarity. In figure 5.4 are boxplots of the precipitation nitrogen data.  Note the difference in 
medians is clearly displayed, as well as the similarity in spread (IQR).  The rejection of normality 
by PPCC tests is seen in the presence of skewness (industrial) and an outlier (residential).  Side-
by-side boxplots are an effective and concise method for illustrating the basic characteristics of 
data groups, and of differences between those groups.  
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Figure 5.4 Boxplots of the precipitation nitrogen data.  Note the skewness and outliers. 

5.3.2 Q-Q Plots 
Another method for illustration of rank-sum results is the quantile-quantile (Q-Q) plot described 
in Chapter 2. Quantiles from one group are plotted against quantiles of the second data group.  
Chapter 2 has shown that when sample sizes of the two groups are identical, the x's and y's can 
be ranked separately, and the Q-Q plot is simply a scatterplot of the ordered data pairs (x1 , 
y1).....(xn, yn). When sample sizes are not equal (n<m), the quantiles from the smaller data set 
are used as is, and the n corresponding quantiles for the larger data set are interpolated.  

It is always helpful in a Q-Q plot comparing two groups to plot the y = x line.  Figure 5.5 is a Q­
Q plot of the precipitation nitrogen data. Two important data characteristics are apparent.  
First, the data are not parallel to the y = x line, and therefore quantiles do not differ by an 
additive constant.  Instead, they increasingly depart from the line of equality indicating a 
multiplicative relationship.  Note that the Q-Q plot shows that a t-test would not be applicable 
without a transformation, because it assumes an additive difference between the two groups.  
The rank-sum test does not make this assumption, and is directly applicable to groups differing 
by a multiplicative constant (rank procedures will not be affected by a power transformation).   

The magnitude of this relationship between two sets of quantiles on a Q-Q plot can be 
estimated using the median of all possible ratios (yj/xi), i=1,n and j=1,n. This is a type of 
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Hodges-Lehmann estimator, as discussed in the next section. The median ratio equals 0.58, and 
the line residential = 0.58•industrial is drawn in figure 5.5.  Note the resistance of the median 
ratio to the one large outlier. 

Figure 5.5 Q-Q plot of the precipitation nitrogen data. 

Second, the data are crowded together at low concentrations while spread further apart at higher 
concentrations -- a pattern indicating right-skewness.  To remedy both skewness and non­
additivity, a power transformation with θ < 1 was chosen, the base 10 log transform (θ = 0). A 
Q-Q plot of data logarithms is shown in figure 5.6.  Note that the data are now spread more 
evenly from low to high concentrations, indicating skewness has decreased.  The slope of the 
quantiles is now parallel to the y = x line.  Thus a multiplicative relationship in original units has 
become an additive relationship in log units, with the Hodges-Lehmann estimate (see next 

^ ^ section) of the difference between log(x) and log(y) ∆  equal to −0.237. Note that ∆  is the log 
of the Hodges-Lehmann estimate of the ratios in the original units, log10(0.58) = −0.237. The 
line parallel to y=x, log(residential) = −0.237•log(industrial), is plotted on figure 5.6.  A t-test 
would now be appropriate for the logarithms, assuming each group's transformed data were 
approximately normal. 

In summary, Q-Q plots of the quantiles of two data groups illustrate the reasonableness of 
hypothesis tests (t-test or rank-sum), while providing additional insight that the test procedures 
do not provide. Q-Q plots can demonstrate skewness, the presence of outliers, and inequality of 
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variance to the data analyst. Perhaps most importantly, the presence of either an additive or 
multiplicative relationship between the two groups can easily be discerned.  Since the t-test 
requires an additive difference between two groups, Q-Q plots can signal when transformations 
to produce additivity are necessary prior to using the t-test. 

Figure 5.6 Q-Q plot of the logs of the precipitation nitrogen data. 

5.4 Estimating the Magnitude of Differences Between Two Groups 

After completion of an hypothesis test comparing two groups of data, the logical next step is to 
determine by how much the two groups differ.  The most well-known approach, related to the 
two-sample t-test, is to compute the difference between the two group means ( x −y ). A more 
robust alternative, related to the rank-sum test, is one of a class of nonparametric estimators 
known as Hodges-Lehmann estimators.  These two estimators are compared in the following 
sections. 

5.4.1 The Hodges-Lehmann Estimator 
One nonparametric estimate of the difference between two independent groups is a Hodges-
Lehmann estimator ∆̂ (Hodges and Lehmann, 1963; Hollander and Wolfe, 1973, p. 75-77). 
This estimator is the median of all possible pairwise differences  between the x values and y 
values 

∆̂ = median [xi − yj] for xi, i=1,...n and yj, j=1,..m. [5.5] 

jkmonson
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There will be n•m pairwise differences.   

Example 2 
For the following x's and y's , compute 15 − 8 = 7, 15 − 27 = −12, etc: 

xi 
15 

yj 
8 

All Possible Differences (xi − yj) 
7 9 17 

17 27 −12 −10 −2 
25 3 12 14 22 

5 10 12 20 

Ranked in order from smallest to largest, the 3•4 = 12 pairwise differences are 
−12, −10, −2, 7, 9, 10, 12, 12, 14, 17, 20, 22. 

The median of these is the average of the 6th and 7th smallest values, or ∆̂ = 11. Note that the 
unusual y value of 27 could have been any number greater than 14 and the estimator ∆̂ would 
be unchanged. Thus ∆̂ is resistant. 

The ∆̂  estimator is related to the rank-sum test, in that if ∆̂  were subtracted from each of the x 
observations, the rank-sum statistic Wrs would provide no evidence for rejection of the null 
hypothesis. In other words, a shift of size ∆̂  makes the data appear devoid of any evidence of 
difference between x and y when viewed by the rank-sum test. 

∆̂  is a median unbiased estimator of the difference in the medians of populations x and y.  That 
is, the probability of underestimating or overestimating the difference between the median of x 
and the median of y is exactly one-half. If the populations were both normal, it would be a 
slightly less efficient estimator of differences in medians (or means) than would the parametric 
estimator x − y . However, when one or both populations is substantially non-normal, it is a 
more efficient (lower variance) estimator of this difference.  

There is another logical nonparametric estimator of the difference in population medians -- the 
difference between the sample medians (xmed − ymed). For example 2, (xmed − ymed) = 10.5. 
Note that the difference in sample medians is not necessarily equal to the median of the 
differences ∆̂ . In addition, (xmed − ymed) is always somewhat more variable (less efficient) 
than is ∆̂ and so is less desirable. 

A modified version of the ∆̂  statistic is used as the estimate of the magnitude of the step trend 
in the seasonal rank-sum test procedure described by Crawford, Slack, and Hirsch (1983, p. 74). 

ˆ Confidence Interval for ∆ 
A nonparametric interval estimate for ∆̂  illustrates how variable the difference between the 
medians might be. No distribution is assumed for the pairwise differences.  The interval is 

5.4.2   
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computed by a process similar to that for the confidence interval on the median described 
earlier.  The tabled distribution of the test statistic is entered to find upper and lower critical 
values at one-half the desired alpha level.  These critical values are transformed into ranks.  After 
ordering the n•m pairwise differences from smallest to largest, the differences corresponding to 
those ranks are the ends of the confidence interval.   

For small sample sizes, table B4 for the rank-sum test is entered to find the critical value x* 
having a p-value nearest to α/2. This critical value is then used to compute the ranks Ru and Rl 
corresponding to the pairwise differences at the upper and lower confidence limits for ∆̂ . These 
limits are the Rlth ranked data points going in from either end of the sorted list of N=n•m 
pairwise differences. 

Rl = x* − 
n•(n+1) 

[5.6]2 

Ru = N − Rl + 1 for N = n•m [5.7] 

Example 2, cont.

The N=12 possible pairwise differences between x and y were: 


−12, −10, −2, 7, 9, 10, 12, 12, 14, 17, 20, 22. 
The median of these ( ∆̂ ) was 11. To determine an α ≅ 0.10 confidence interval for ∆̂ , the 
tabled critical value x* nearest to α/2 = 0.05 is 7 (p=0.057).  The rank Rl of the pairwise 
difference at the lower end of the confidence interval is therefore 

Rl = 7 − 
(3•4) 

= 1 for n=3 and m=4. 2 
Ru, the rank of the pairwise difference at the upper end of the confidence interval is

 Ru = 12. 

With such a small data set, the α = 2•0.057 = 0.014 confidence limit for ∆̂  is the range of the 
entire data set (the 1st difference in from either end), or 

−12≤ ∆̂ ≤ 22. 

When the large-sample approximation to the rank-sum test is used, a critical value zα/2 from 
the table of standard normal quantiles determines the upper and lower ranks of the pairwise 
differences corresponding to the ends of the confidence interval.  Those ranks are 
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 Rl = 
N - za/2 • 

N (n+m+1) 
3 

2 [5.8] 

Ru = 
N + za/2 • 

N (n+m+1) 
3 

2  + 1 [5.9] 

= N − Rl + 1 

Example 1 cont.

For the precipitation nitrogen data there were N = (10)(10) = 100 possible pairwise differences. 

∆̂ would be the average of the 50th and 51st ranked differences.  For a 95 percent confidence 

interval on ∆̂ , zα/2 = 1.96 and 


100 (10+10+1) 

Rl = 
100 - 1.96 • 

2 
3 

= 24.1 

Ru = 100 − 24.1 +1 = 76.9 

the 24.1st ranked slope from either end.  Rounding to the nearest integer, the 24th and 77th 
ranked slopes are used as the ends of the α ≅ 0.05 confidence limit on ∆̂ . Note that using the 
exact formula, from Table B4 the exact α level is determined to be 2•0.026 = 0.052. 

5.4.3 Difference Between Mean Values 
As noted above, in the situation where the t-test is appropriate, the difference between the 
means of both groups x − y  is the most efficient estimator of the difference between the two 
groups of data. Perhaps obvious is that when x and y are transformed prior to performing the t­
test, ( x − y ) does not estimate the difference between group means in their original units.  Less 
obvious is that a re-transformation of ( x − y ) back to original units also does not estimate the 
difference between group means, but is closer to a function of group medians.  For the log 
transformation as an example, x − y  retransformed would equal the ratio of geometric means of 
the two groups. How close such a re-transformation comes to estimating the ratio of group 
medians depends on how close the data are to being symmetric in their transformed units.   

5.4.4 Confidence Interval for x − y 
An interval estimate for the difference in means x − y  is also available.  It is appropriate in 
situations where the t-test may be used -- when both data groups closely follow a normal 
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distribution. When the variances of the two groups are similar and the pooled standard 
deviation s is used in the test, the confidence interval is

 CI = x − y ± tα/2,(n+m−2) • s 1/n + 1/m  ) 	 [5.10] 

When the standard deviations of the two groups are dissimilar and cannot be pooled, the 
confidence interval becomes 

CI =  x − y ± tα/2,(df) • s 2 n + s 2 m	 [5.11]
x	 y 

where df is the approximate degrees of freedom used in the t-test. 

Exercises 

5.1 	 For the precipitation nitrogen data of Example 1, what would Wrs have been had the 
industrial site been used rather than the arbitrary choice of the residential site.  What is 
the effect on the p-value? 

5.2 	 Historical ground-water quality data for a shallow aquifer underlying agricultural land 
shows the following nitrate concentrations (mg/L): 

pre-1970 post-1970 
1 2 4 1 5 14 
1 3 5 2 8 15 
1 3 5 2 10 18 
2 4 10 4 11 23 

Given that we wish to test for a change in concentration between the two periods, 
should this be a one-sided or two-sided test? 

5.3 	 Annual streamflows for the Green R. at Munfordville, KY were listed in Exercise 4.1.  
Beginning in 1969 the stream was regulated by a reservoir.   
a. 	 Construct a Q-Q plot, and indicate whether the flows exhibit an additive or 

multiplicative relationship, or neither. 
b. 	 Does there appear to be a relationship between (after−before) or (after/before) and 

the magnitude of annual flow itself?  If so, explain why this might occur. 
a. 	 Test whether flows after the reservoir came onstream are different. 
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5.4 Consider the following small data set    
X: 1.0, 2.0, 3.0, 4.0 
Y: 1.5, 2.5, 3.5, 4.5, 5.5, 7.0, 10.0, 20.0, 40.0, 100.0 

Using the Table B4, determine the two-sided p value for an additive difference between 
the X and Y data using the exact rank-sum test.  Then compute it using the large-sample 
approximation. Then compute it using the t-test on ranks.  Compute the expected 
difference ∆̂  between X and Y. 

5.5 	 Unit well yields, in gallons per minute per foot of water-bearing material, were contrasted 
for wells within valleys containing fracturing versus valleys with no fracturing (Wright, 
1985). For the PPCC test for normality, r(with)=0.943 and r(without)=0.805.  Perform the 
appropriate α = 0.05 test to discern whether fracturing is associated with higher mean unit 
well yield 

Yields with fracturing	 Yields without 
0.95 0.16 	 1.02 0.040 
0.72 0.16 	 0.49 0.030 
0.51 0.13 	 0.454 0.020 
0.44 0.086 	 0.10 0.007 
0.40 0.031 	 0.077 0.003 
0.30 0.020 	 0.041 0.001 
0.18 

5.6 	 Assume that the unit well yield data are now trace organic analyses from two sampling 
sites and that all values below 0.050 were reported as "< 0.05."  Retest the hypothesis that 
H0 : µx= µy versus H1 : µx > µy  using the rank-sum test. By how much does the test 
statistic change?  Are the results altered by presence of a detection limit?  Could a t-test be 
used in this situation? 



Chapter 6

Matched-Pair Tests


To determine the effectiveness of an acid solution in developing wells in carbonate rock, yields 
of twenty wells were measured both before and after treatment of the wells with acid.  Factoring 
out the differences in yield between wells, have the yields changed as a result of using the acid? 
What is the magnitude of this change? 

Annual sediment loads are measured at two sites over a period of twenty-four years.  Both 
drainage basins are of essentially the same size, and have the same basin characteristics. 
However, logging has occurred in one basin during the period, but not in the other.  Can the 
year to year variation in load (due to differences in precipitation) be compensated for, to 
determine whether the site containing logging produced generally higher loads than the other? 

Two laboratories are compared in a quality assurance program.  Each lab is sent one of a pair of 
30 samples split into duplicates in the field, to determine if one lab consistently over- or under­
estimates the concentrations of the other.  If no difference between the labs is seen, their data 
may be combined prior to interpretation.  The differences between labs must be discerned above 
the sample to sample differences. 

As with the tests of Chapter 5, we wish to determine if one group tends to contain larger values 
than the other.  However, now there is a logical pairing of the observations within each group.  
Further, there may be a great deal of variability between these pairs, as with the year-to-year 
pairs of sediment data in the second example above.  Both basins exhibit low yields in dry years, 
and higher yields in wet years.  This variability between pairs of observations is noise which 
would obscure the differences between the two groups being compared if the methods of 
Chapter 5 were used.  Instead, pairing is used to block out this noise by performing tests on the 
differences between data pairs.  Two nonparametric tests are presented for determining whether 
paired observations differ, the sign test and the signed-rank test.  Also presented is the paired t­
test, the parametric equivalent which may be used when the differences between pairs are 
known to be normally distributed.  After surveying graphical methods to illustrate the test 
results, estimators for the difference between the two groups are discussed. 
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For paired observations (xi,yi), i=1,2,...n, their differences Di = xi − yi are computed.  The tests 
in this chapter determine whether xi and yi are from the same population -- the null hypothesis ­
- by analyzing the Di. If there are differences, the null hypothesis is rejected. 

When the Di's have a normal distribution, a paired t-test can be employed.  The paired t-test 
determines whether the mean of the Di's equals 0.  This is equivalent to stating that the mean of 
the xi and the yi are the same.  If the Di's are symmetric, but not necessarily normal, a signed­
rank test can be used.  The signed-rank test determines whether the median of the the Di's is 
equal to 0.  The assumption of symmetry made by the signed-rank test is much less restrictive 
than that of normality, as there are many non-normal distributions which are symmetric.  As a 
result, the signed-rank test is a more generally applicable method than the t-test.  If the 
differences are asymmetric, the sign test may be used.  The sign test does not require an 
assumption of symmetry or normality.  It tests a more general hypothesis than comparisons of 
means or medians -- does x tend to be higher (or lower, or different) than y?  The sign test is the 
most generally applicable of the three methods.  It is also appropriate when the magnitude of the 
paired differences cannot be computed but one observation can be determined to be higher than 
the other, as when comparing a <1 to a 3.  (Analysis of data below the detection limit is 
discussed in detail in Chapter 13. See also exercises 6.4 and 6.5 at the end of this chapter.) 

6.1 The Sign Test 

For data pairs (xi,yi) i=1,...n, the sign test determines whether x is generally larger (or smaller, or 
different) than y, without regard to whether that difference is additive.  The sign test may be 
used regardless of the distribution of the differences, and thus is fully nonparametric.   

6.1.1 Null and Alternate Hypotheses 
The null and alternative hypotheses may be stated as follows: 

H0: Prob [x > y] = 0.5, 
versus one of the three possible alternative hypotheses: 

H1: Prob [x > y] ≠ 0.5 (2-sided test -- x might be larger or smaller than y). 
H2: Prob [x > y] > 0.5 (1-sided test -- x is expected to be larger than y) 
H3: Prob [x > y] < 0.5 (1-sided test-- x is expected to be smaller than y). 

6.1.2 Computation of the Exact Test 
If the null hypothesis is true, about half of the differences Di will be positive (xi > yi) and about 
half negative (xi < yi). If one of the alternate hypotheses is true instead, more than half of the 
differences will tend to be either positive or negative. 

The exact form of the sign test is given below.  It is the form appropriate when comparing 20 or 
fewer pairs of samples.  With larger sample sizes the large-sample approximation may be used.  



139 Matched-Pair Tests 

Remember that computer packages usually report p-values from the large sample approximation 
regardless of sample size. 

Exact form of the sign test 
Situation Two paired groups of data are to be compared, to determine if one group tends 

to produce larger (or different) values than the other group.  No assumptions 
about the distribution of the differences Di = xi − yi, i = 1,...N are required. 
This means that no assumption is made that all pairs are expected to differ by 
about the same amount.  Numerical values for the data are also not necessary, as 
long as their relative magnitudes may be determined. 

Tied data Ignore all tied data pairs (all Di =0). Reduce the sample size of the test to the 
number of nonzero differences n. 

Computation Delete all Di= 0 (xi = yi). The test uses the n nonzero differences 
n= N−[number of Di=0]. Assign a + for all Di > 0, and a − for all Di < 0. 

Test Statistic S+ = the number of +'s, the number of times xi > yi, i = 1,...n. 

Decision Rule To reject H0: Prob [x > y] = 0.5, 
1. H1: Prob [x > y] ≠ 0.5 (the x measurement tends to be either larger or smaller than the y 

measurement). 

 Reject H0 if S+ ≥ xα/2,n  or S+ ≤ x'α/2,n  from Table B5; otherwise do not reject 
H0. 

2. H2: Prob [x > y] > 0.5 (the x measurement tends to be larger than the y measurement). 

 Reject H0 if S+ ≥ xα,n from Table B5; otherwise do not reject H0 . 
3. H3: Prob [x > y] < 0.5 (the x measurement tends to be smaller than the y measurement). 

 Reject H0 if S+ ≤ x'α,n from Table B5; otherwise do not reject H0 . 

Example 1. 
Counts of mayfly nymphs were recorded in 12 small streams at low flow above and below 
industrial outfalls.  The mayfly nymph is an indicator of good water quality.  The question to be 
considered is whether effluents from the outfalls decreased the number of nymphs found on the 
streambeds of that region.  A Type I risk level α of 0.01 is set as acceptable.  Figure 6.1a 
presents a separate boxplot of the counts for the above and below groups.  Both groups are 
positively skewed.  There is a great deal of variability within these groups due to the differences 
from one stream to another, though in general the counts below the outfalls appear to be 
smaller.  A rank-sum test as in Chapter 5 between the the two groups would be inefficient, as it 
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would not block out the stream to stream variation (no matching of the pair of above and below 
counts in each stream).  Variation in counts among the streams could obscure the difference 
being tested for. The natural pairing of observations at the same stream can be used to block 
out the stream to stream variability by computing the above−below differences in counts for 
each stream (figure 6.1b).  A test is then performed on these differences.  Note the asymmetry of 
the paired differences.  They do not appear to all be of about the same magnitude. 

Figure 6.1 a) above and below counts. b) above − below differences. 

Table 6.1 Mayfly nymph data. 
xi = counts above outfalls,  yi = counts below outfalls 

Di. = difference xi − yi. 

xi yi  Di  xi yi  Di  xi yi  Di
 12 9 3 106 48 58 20 14 6 

15 9 6 63 17 46 110 60 50 
11 38 −27 296 11 285 429 53 376 
41 24 17 53 41 12 185 124 61 
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The null hypothesis H0 is that the counts above the outfalls are equally likely to be higher or 
lower than counts below the outfalls.  The one-sided alternate hypothesis H2 is that the counts 
below the outfalls are expected to be lower, in which case S+ would be large. 

Of the 12 pairs, 11 are increases, so S+ = 11. Note that this statistic is very resistant to outliers, 
as the magnitudes of the differences are not used in computing the test statistic.  From Table B5 
of the Appendix, the one-sided p-value for S+ = 11 is 0.003.  Therefore reject that counts above 
and below the outfall are the same at α = 0.01. 

6.1.3 The Large Sample Approximation 
For sample sizes n>20 the exact sign test statistic can be modified so that its distribution closely 
follows a standard normal distribution. Again, this does not mean that the data or their 
differences require normality.  It is only the modified test statistic which follows a normal 
distribution. 

The large sample approximation for the sign test takes the standardized form 

 S+ −  2
 1

− µS+
 σS+ if S+ > µS+ 

 
Z+ =  0 if S+ = µS+ 

 1

 S+ + 2 − µS+ 
if S+ < µS+ σS+ 

n 1
where  µS+ = 2  , and σS+ = 2  n . 

The 1/2 in the numerator of Z+ is again a continuity correction (see Chapter 5).  Z+ is 
compared to a table of the standard normal distribution to obtain the approximate  
p-value. Using the mayfly data of Example 1, the approximate p-value of p = 0.005 is obtained 
below. This is very close to the true (exact) p=0.003, and both are sufficiently small that the 
decision to reject H0 would not be altered by their difference.  

Therefore, if accurate p-values are of primary concern, such as when p is close to the agreed­
upon risk α, and the sample size is 20 or smaller, perform the exact test to get accurate p-values.  
Regardless of sample size, if p-values are not the primary interest and one must simply decide to 
reject H0 or not, when p-values are much smaller (such as 0.001) or much larger (such as 0.50) 
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than α the decision whether to reject H0 will be sufficiently clear from the approximate 
procedure.  

Example 1, cont.
1

 For S+ = 11, µS+ = 
12 

= 6 σS+ =2  12 = 1.732
11− 1 − 62Z+ = = 2.60 

1.73
And from a table of the normal distribution, the approximate one-sided p-value = 0.005. 

6.2 The Signed-Rank Test 

The signed-rank test was developed by Wilcoxon (1945), and is sometimes called the Wilcoxon 
signed-rank test.  It is used to determine whether the median difference between paired 
observations equals zero. It may also be used to test whether the median of a single data set is 
significantly different from zero. 

6.2.1 Null and Alternate Hypotheses 
For Di = xi − yi, the null hypothesis for the signed-rank test is stated as:

 H0: median[D] = 0 . 
The alternative hypothesis is one of three statements: 

H1: median[D] ≠ 0 (2-sided test -- x might be larger or smaller than y). 
H2: median[D] > 0 (1-sided test -- x is expected to be larger than y) 
H3: median[D] < 0 (1-sided test-- x is expected to be smaller than y). 

The signed-rank test is usually stated as a determination of whether the x's and y's come from 
the same population (same median and other percentiles), or alternatively that they differ only in 
location (central value or median). If both groups are from the same population, regardless of 
the shape, about half of the time their difference will be above 0, and half below 0.  In addition, 
the distribution of data above 0 will on average mirror that below 0, so that given a sufficient 
sample size the differences will be symmetric.  They may not be anything like a normal 
distribution, however.  If the alternative hypothesis is true, the differences will be symmetric 
when x and y come from the same shaped distribution (whatever the shape), differing only in 
central value (median). This is called an additive difference between the two groups, meaning 
that the variability and skewness within each group is the same for both.  Boxplots for the two 
groups would look very similar, with the only difference being an offset of one from the other.  
The signed-rank test determines whether this "offset",  the magnitude of difference between 
paired observations, is significantly different from zero.  For additive differences (the 
assumption of symmetric differences is valid), the signed-rank test has more power to detect 
differences than does the sign test. 
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In addition, the signed-rank test is also appropriate when the differences are not symmetric in 
the units being used, but a logarithmic transformation of both data sets will produce 
differences which are symmetric. In such a situation a multiplicative relationship is made into 
an additive relationship in the logarithms.  For example, figure 6.2 displays the differences 
between two positively skewed distributions.  A multiplicative relationship between x and y is 
suspected, ie. x = c•y, where c is some constant.  This is a common occurrence with water 
resources data; data sets having higher median values also often have higher variances than 
"background" sites with low median values.  In the original units the Di from such data are 
asymmetric.  Changing units by taking the logarithms of the data prior to calculating differences, 
the boxplot of figure 6.3 results. The log transformation (θ = 0) changes a multiplicative 
relationship to an additive one:  log x = log c + log y. The variances of the logs are often made 
similar by the transformation, so that the logs differ only in central value.  The Dli, the 
differences in log units, are therefore much more symmetric than the differences in the original 
units.  The median difference in the logs can then be re-transformed to estimate the median 
ratio of the original units, ĉ  = median [y/x] = exp (median [Dl] ). 

Figure 6.2 Boxplot of asymmetric Di = xi − yi 

Figure 6.3 Boxplot of symmetric Dli = log(xi) − log(yi) 

6.2.2 Computation of the Exact Test 
If the null hypothesis is true, the median [D] will be close to zero, and the differences will be 
symmetric around zero.  If one of the alternate hypotheses is true instead, the differences will 
not have a median near zero, but show a symmetric distribution around a nonzero median.  
Therefore more than half will be either positive or negative.  The signed-rank test uses both the 
signs of the differences as in the sign test, along with the ranks of the absolute values of those 
differences.  This latter information makes sense to use only when the differences are symmetric. 

The exact form of the signed-rank test is given below.  It is the only form appropriate for 
comparing 15 or less pairs of samples.  With larger sample sizes either large-sample or rank 
transform approximations may be used. 
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Exact form of the Wilcoxon signed-ranks test 
Situation Two paired groups of data are to be compared, to determine if their differences 

Di  = xi − yi are significantly different from zero. The Di are assumed to be 
symmetric.  This implies that the two groups differ only in central location. 

Computation	 Compute the absolute value of the differences |Di|, i = 1...N. Rank the 
|Di| from smallest to largest. The test uses only nonzero differences,  so 
sample size n= N−[number of Di=0]. Compute the signed rank  
Ri, i = 1,...n 

Ri	 = rank of |Di| for Di > 0, and 
= − (rank of |Di|) for Di < 0. 

Tied data	 If Di= 0, delete. When two nonzero differences Di's are tied, assign the average 
of the ranks involved to all tied values.  

Test Statistic  The exact test statistic W+ is then the sum of all signed ranks Ri having a 
positive sign: 

n
 W+ = ∑ (Ri&Ri>0) where  signifies "given that". 

i=1 

Decision Rule To reject H0: median[D] = 0 
1. H1: median[D] ≠ 0 (the x measurement tends to be either larger or smaller than the y 

measurement). 

 Reject H0 if W+ ≥ xα/2,n  or W+ ≤ x'α/2,n  from Table B6; otherwise do not 
reject H0. 

2. H2: median[D] > 0 (the x measurement tends to be larger than the y measurement). 

 Reject H0 if W+ ≥ xα,n from Table B6; otherwise do not reject H0 . 

3. H3: median[D] < 0 (the x measurement tends to be smaller than the y measurement). 

 Reject H0 if W+ ≤ x'α,n from Table B6; otherwise do not reject H0 . 
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Example 1, cont.

The differences Di result in the signed-ranks Ri of table 6.2. From these 


W+ = the sum of the positive Ri's
 = 72. 

From Table B6, the one-sided p-value for n=12 and W+ = 72 is 0.003.  This is strong evidence 
against the null hypothesis being true. However, the Di are asymmetric, violating one of the 
test's assumptions, and indicating that the differences between the two groups may not be an 
additive one. Asymmetry can be expected to occur when large values tend to produce large 
differences, and smaller values smaller differences. This indicates that a multiplicative 
relationship between the data pairs is more realistic.  So projecting that a multiplicative 
relationship may have produced the skewed distribution of Di's, the base 10 logs of the data 
were calculated, and a new set of differences
 Dli = log(xi) − log(yi) 
are computed and presented in table 6.2 and figure 6.4.  Comparing figures 6.4 and 6.1b, note 
that these Dli are much more symmetric than those in the original units.  Using the Dli, 

W+ = the sum of the positive Rli's
 = 69 

and the exact p-value from Table B6 is 0.008.  This should be considered more correct than the 
results for the untransformed data, as the differences are more symmetric, meeting the 
requirements of the test procedure.  Note that the p-values are not drastically changed, however, 
and the conclusion to reject H0 was not affected by the lack of a transformation. 

Table 6.2 Mayfly nymph data. 
Di = difference xi − yi  Ri = signed ranks of Di

 Dli = difference of logs Rli = signed ranks of Dli

 Di Ri Dli Rli Di Ri Dli Rli  Di Ri Dli Rli 
3 1 0.125 2 58 9 0.344 8 6 2.5 0.155 3 
6 2.5 0.222 5 46 7 0.569 10 50 8 0.263 7 

−27 −6 −0.538 −9 285 11 1.430 12 376 12 0.908 11 
17 5 0.233 6 12 4 0.111 1 61 10 0.174 4 

6.2.3 The Large Sample Approximation 
To avoid requiring a large table of exact signed-rank test statistics for all possible sample sizes, 
the exact test statistic is standardized by subtracting its mean and dividing by its standard 
deviation so that its distribution closely follows a standard normal distribution.  This 
approximation is valid for sample sizes of n>15. 
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 

Figure 6.4 Boxplot for the differences of the base 10 logarithms of the mayfly data. 

The large sample approximation for the signed-ranks test takes the standardized form 

W+ −  2
 1

− µW+
 σW+ if W+ > µW+ 

 
Zsr+ =  0 if W+ = µW+ 

 1

 W+ + 2 − µW+ 
if W+ < µW+ σW+ 

n•(n+1)
where  µW+ = 4  , and σW+ = 

n•(n+1)•(2n+1) 
24  . 

The 1/2 in the numerator of Zsr+ is the continuity correction.  Zsr+ is compared to a table of 
the standard normal distribution to obtain the approximate p-value for the signed-rank test.  For 
the logarithms of the mayfly data of Example 1, the approximate p-value of p = 0.01 is obtained 
below. This is close to the exact value of 0.008, considering that the sample size of 12 is too 
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small for use of the approximation. When the sample size is 15 or smaller, perform the exact 
test to get accurate p-values.  

Example 1, cont. 
12•(13)•(25)

For W+ = 69, µW+ = 
12•(13) 

= 39 σW+ = 24  = 12.754
69 − 1 − 392Zsr+ = = 2.31 

12.75
And from a table of the normal distribution, the approximate one-sided p-value = 0.010. 

6.2.4 The Rank Transform Approximation 
The rank transform approximation for the signed-rank test is computed by performing a paired 
t-test on the signed ranks Ri (or Rli, if the differences of the logs are more symmetric) rather 
than on the original data.  For this approximation the zero differences Di = 0 are retained prior 
to computing the test so that there are N, not n, signed ranks.  This approximation should be 
called a "t-test on signed ranks" rather than a signed-ranks test for the sake of clarity.  
Computations will be given in detail following the presentation of the paired t-test in the next 
section.  The rank-transform p-value calculated in that section for the logs of the mayfly data is 
0.005, close to the exact p-value of 0.008. The rank transform approximation should be 
acceptable for sample sizes greater than 15. 

6.3 The Paired t-Test 

The paired t-test is the most commonly used test for evaluating matched pairs of data.  
However, it should not be used without expecting the paired differences Di to follow a normal 
distribution. Only if the Di are normal should the t-test be used.  As with the signed-ranks test, 
logarithms may be taken prior to testing for normality if a multiplicative relationship is 
suspected.  In contrast, all symmetric data, or data which would be symmetric after taking 
logarithms, may be tested using the signed-ranks test regardless of whether they follow a normal 
distribution. 

6.3.1   Assumptions of the Test 
The paired t-test assumes that the paired differences Di are normally distributed around their 
mean. The two groups of data are assumed to have the same variance and shape.  Thus if they 
differ, it is only in their mean (central value).  The null hypothesis can be stated as 

H0 : µx = µy the means for groups x and y are identical,  or
 H0 : µ [D] = 0 the mean difference between groups x and y equals 0. 

When the Di are not normal, and especially when they are not symmetric, the p-values obtained 
from the t-test will not be accurate.  When the Di are asymmetric, the mean will not provide a 
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good estimate of the center, as discussed in Chapter 1.  Therefore µ [D] will not be a good 
estimate of the additive difference between x and y. 

6.3.2 Computation of the Paired t-Test 

Paired t-test 

Situation Two paired groups of data are to be compared, to determine if their differences 
Di  = xi − yi are significantly different from zero.  These differences must be 
normally distributed. Both x and y follow the same distribution (same variance), 
except that µx and µy might not be equal. 

Test Statistic	 Compute the paired t-statistic: tp = 
D n 

s 
n

∑D 
i 

where D is the sample mean of the differences Di D = i=1 , 
n 

n 

∑ (D −D )2 

i 
i=1and s = , the sample standard deviation of the Di's. 

n −1 

Decision Rule. To reject H0 : µx = µy 
1. H1 : µx ≠ µy	 (the two groups have different mean values, but there is no prior 

knowledge which of x or y might be higher) 
 Reject H0 if tp < −t (1−α/2),(n−1)  or tp > t (1−α/2),(n−1)  from a 

table of the t distribution; otherwise do not reject H0. 

2. H2 : µx > µy	 (prior to seeing any data, x is expected to be greater than y) 
 Reject H0 if tp > t (1−α),(n−1)  from a table of the t distribution; 

otherwise do not reject H0 . 

3. 	H3 : µx < µy (prior to seeing any data, y is expected to be greater than x) 
 Reject H0 if tp < −t (1−α),(n−1)  from a table of the t distribution; 

otherwise do not reject H0 . 

Example 1, cont.

Paired t-test on the mayfly data:   The PPCC test for normality on the paired differences Di

has r = 0.82, with an associated p-value of <0.005.  Therefore it is highly unlikely that these data 
come from a normal distribution, and the t-test cannot validly be run.  In an attempt to obtain a 
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distribution closer to normal, the logs of the data are computed.  Again as with the signed-rank 
test, this implies that a multiplicative rather than an additive relationship exists between x and y.  
The PPCC test for normality of the differences between the logarithms Dli has r = 0.92, and a 
p-value of 0.036. Therefore normality of the logarithms would still be rejected at α = 0.05, and 
the t-test should still not be performed.  One could try a series of power transformations, 
selecting the one whose PPCC test coefficient is closest to 1.0.  Howver, it may be difficult to 
translate the results back into original units -- "the negative square root of differences is 
statistically different". If the t-test performed on the logs, the following would result: 

1.59 2
Dl = 0.333,    s = 11  = 0.479, so tp = 2.41. 

Reject H0 in favor of H2 if tp > t 0.95, 11 = 1.80. Therefore reject that µx = µy. The one­
sided p-value for tp is about 0.02.  Note that this is higher than the signed-rank test's 
p-value of 0.008, reflecting a probable slight loss in power for the t-test as computed on the 
(non-normal) logarithms of the data. 

Rank approximation to the signed-rank test (t-test on signed-ranks): The t-test is performed 
on the signed-ranks of Dli, (see Table 6.2).  

18.71 2
Rl = 5, s = 11  = 5.64, and tr = 3.07. 

Reject H0 in favor of H2 if tr > t 0.95, 11 = 1.80. Therefore reject H0. The one-sided  

p-value equals 0.005, close to the exact p-value of 0.008.  Note that the t-test on signed-ranks, as 
a nonparametric test, ably overlooks the non-normality of the data. The paired t-test does not, 
and is less able to distinguish the differences between the data logarithms (as shown by its higher 
p-value) because those differences are non-normal. 

6.4 Consequences of Violating Test Assumptions  

6.4.1 Assumption of Normality (t-Test) 
The primary consequence of overlooking the normality assumption underlying the  
t-test is a loss of power to detect differences which may truly be present.  The second 
consequence is an unfounded assumption that the mean difference is a meaningful description 
of the differences between the two groups. 

For example, suppose a t-test was blindly conducted on the mayfly data without checking for 
normality of the differences.  The test statistic of t=2.08 has a one-sided p-value of 0.03.  This is 
one order of magnitude above the exact p-value for the (nonparametric) sign test of 0.003.  Had 
an α of 0.01 been chosen, the t-test would be unable to reject H0 while the sign test would easily 
reject. The non-normality of the differences "confuses" the t-test by inflating the estimate of 
standard deviation s, and making deviations from a zero difference difficult to discern.  
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The mean difference D of 74.4 counts for the mayfly data is larger than 10 of the 12 paired 
differences listed in table 6.1. It has little usefulness as a measure of how many more mayfly 
nymphs are found above outfalls than below.  The lack of resistance of the mean to skewness 
and outliers heavily favors the general use of the median or Hodges-Lehmann estimator.  
Another drawback to the mean is that when transformations are used prior to computing a t­
test, re-transforming the estimate of the mean difference back into the original units does not 
provide an estimate of the mean difference in the original units. 

6.4.2 Assumption of Symmetry (Signed-Rank Test) 

When the signed-rank test is performed on asymmetric differences, it rejects H0 slightly more 

often than it should. The null hypothesis is essentially that symmetric differences have a median 
of zero, and asymmetry favors rejection as does a nonzero median. Some authors have in fact 
stated that it is a test for asymmetry.  However, asymmetry must be severe before a substantial 
influence is felt on the p-value.  While only one outlier can disrupt the t-test's ability to detect 
differences between two groups of matched pairs, most of the negative differences must be 
smaller in absolute value than are the positive differences before a signed-rank test rejects H0 
due solely to asymmetry.  One or two outliers will have little effect on the signed-rank test, as it 
uses their rank and not their value itself for the computation.  Therefore violation of the 
symmetry assumption of the signed-rank test produces p-values only slightly lower than they 
should be, while violating the t-test's assumption of normality can produce p-values much larger 
than what is correct.  Add to this the fact that the assumption of symmetry is less restrictive than 
that of normality, and the signed-rank test is seen to be relatively insensitive to violation of its 
assumptions as compared to the t-test. 

Inaccurate p-values for the signed-rank test is therefore not the primary problem caused by 
asymmetry.  The p-values for the mayfly data, for example, are not that different (p = 0.003 for 
the original units and 0.008 for the logs) before and after a transformation to achieve symmetry.  
Both are similar to the p-value for the sign test, which does not require symmetry.  However, 
inappropriate estimates of the magnitude of the difference between data pairs will result from 
estimating an additive difference when the evidence points towards a multiplicative relationship.  
Therefore symmetry is especially important to check if the magnitude of the difference between 
data pairs is to be estimated.  Equally as important to check is the form of the relationship 
between x and y, using the scatterplots of the next section. 

6.5 Graphical Presentation of Results 

Methods for illustrating matched-pair test results are those already given in Chapter 2 for 
illustrating a single data set, as the differences between matched pairs constitute a single data set.  
A probability plot of the paired differences, for example, will show whether or not the data 
follow a normal distribution. Of the methods in Chapter 2, the boxplot is the single graphic 
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which best illustrates both the test results and the degree of conformity to the test's assumptions.  
The equivalent graphic to a Q-Q plot for paired data is a scatterplot of the data pairs.  The 
addition of the x=y line and a smooth of the paired data will help illustrate the test results. 

6.5.1 Boxplots 
The best method for directly illustrating the results of the sign, signed-rank or paired t-tests is a 
boxplot of the differences, as in figure 6.1b. The number of data above and below zero and the 
nearness of the median difference to zero are clearly displayed, as is the degree of symmetry of 
the Di. Though a boxplot is an effective and concise way to illustrate the characteristics of the 
differences, it will not show the characteristics of the original data.   This can be better done 
with a scatterplot. 

6.5.2 Scatterplots With X=Y Line 
Scatterplots illustrate the relationships between the paired data (figure 6.5).  Each (x,y) pair is 
plotted as a point.  Similarity between the two groups of data is illustrated by the closeness of the 
data to the x=y line. If x is generally greater than y, most of the data will fall below the line.  
When y exceeds x, the data will lie largely above the x=y line.  This relationship can be made 
clearer for large data sets by superimposing a lowess smooth (see Chapter 10) of the paired data 
onto the plot. 

Data points (or their smooth) generally parallel to the x=y line on the scatterplot would indicate 
an additive difference between the (x,y) data pairs.  Therefore the line x = y + d could be plotted 
on the figure to illustrate the magnitude of the difference between x and y, where d is the 
appropriate estimate of the difference between x and y as described in the next section.  In 
figure 6.6 the line x = y + 31.5 is plotted, where 31.5 is the median difference.  For an additive 
relationship the data points would scatter around this line.  Obviously the differences do not 
appear to be additive. 

Figure 6.5 Scatterplot of the example 1 mayfly data. 
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X = Y +31.5 

Figure 6.6 Mayfly data with ill-fitting additive relationship  x = y+31.5. 

Figure 6.7 Mayfly data with multiplicative relationship  x = y•1.76. 

Alternatively, an increasing difference between the data and the x=y reference line indicates that 
there is a multiplicative difference between x and y, requiring a logarithmic transformation prior 
to the signed-rank or t-test.  For a multiplicative relation the line x = y•f−1(d) can be plotted as 
an aid in visualizing the relation between x and y.  For base 10 logs, f−1(d) = 10d while for 
natural logs it is exp(d).  The mayfly data of example 1 exhibit such a multiplicative relationship, 

^as shown in figure 6.7. There d = ∆ , the Hodges-Lehmann estimate in log units, resulting in the 
line x = y•1.76. 
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6.6 Estimating the Magnitude of Differences Between Two Groups 

After testing for differences between matched pairs, a measure of the magnitude of that 
difference is usually desirable.  If outliers are not present, and the differences can be considered 
normal, an efficient estimator is the mean difference D
the paired t-test is valid. When outliers or non-normality are suspected, a more robust estimator 
is necessary.  The estimator associated with the signed-rank test is a Hodges-Lehmann estimator 

 . This estimator is appropriate whenever 

∆̂
(Hollander and Wolfe, 1973) . ∆̂
  is the median of all possible pairwise averages of the 
differences.  When the Di are not symmetric and the sign test is used, the associated estimate of 
difference is simply the median of the differences Dmed. 

6.6.1 The Median Difference (Sign Test) 
For the mayfly data of example 1, the median difference in counts is 31.5.  As these data are 
asymmetric, there is no statement that the two groups are related in an additive fashion.  But 
subtracting this median value from the x data (the sites above the outfalls) would produce data 
having no evidence for rejection of H0 as measured by the sign test.  Therefore the median is 
the most appropriate measure of how far from "equality" the two groups are in their original 
units. Half of the differences are larger, and half smaller, than the median. 

A confidence inteval on this difference is simply the confidence interval on the median 
previously presented in Chapter 4. 

6.6.2 The Hodges-Lehmann Estimator (Signed-Rank Test) 

Hodges-Lehmann estimators are computed as the median of all possible appropriate 

combinations of the data. They are associated with many nonparametric test procedures.  For 

the matched-pairs situation, ∆̂
  is the median of the n•(n+1)/2 possible pairwise averages: 

∆̂ = median [Aij] [6.1]
  where Aij = [(Di+Dj)/2] for all i ≤ j 

∆̂
  is related to the signed-rank test in that subtracting ∆̂
 from all paired differences (or 
equivalently, from the x's or y's, whichever is larger) would cause the signed-rank test to have 
W+ close to 0, and find no evidence of difference between x and y.  For the cases of symmetric 
differences where the signed-rank test is appropriate, the Hodges-Lehmann estimator more 
efficiently measures the additive difference between two data groups than does the sample 
median of the differences Dmed. For the mayfly data, ∆̂
  of the logs = 0.245.  The log of 
upstream counts minus 0.245 estimates the log of the counts below the outfalls.  Thus the 
counts above the outfalls divided by 10 0.245 = 1.76 best estimates the counts below the outfalls 
(the line X = 1.76 Y in figure 6.7). 



154 Statistical Methods in Water Resources 

^ 6.6.2.1 Confidence interval on ∆
A nonparametric interval estimate of the difference between paired observations is computed by 
a process similar to that for the confidence interval for other Hodges-Lehmann estimators.  The 
tabled distribution of the test statistic is entered to find upper and lower critical values at one­
half the desired alpha level.  These critical values are transformed into ranks.  The pairwise 
differences Aij are ordered from smallest to largest, and those corresponding to the computed 
ranks are the ends of the confidence interval.   

For small sample sizes, table B6 for the signed-rank test is entered to find the critical value x' 
having a p-value nearest to α/2. This critical value is then used to compute the ranks Ru and Rl 

^corresponding to the pairwise averages Aij at the upper and lower confidence limits for ∆ . 
These limits are the Rlth ranked Aij going in from either end of the sorted list of n(n+1)/2 
differences. 

Rl = x' for x' = (α/2)th quantile of signed-rank test statistic [6.2] 

Ru = x + 1 for x = (1−α/2)th quantile of signed-rank test statistic [6.3] 

Example 1, cont. 
For the n=12 logarithms of the mayfly data, there are N=78 pairwise averages.  For an  
α ≅ 0.05 confidence interval, x'=14 and x=64 from table B6 (α =2•0.026 = 0.052).  The 
confidence interval is composed of the 14th and 65th ranked averages (the 14th average in from 
either end. 

For larger sample sizes where the large-sample approximation is used, a critical value zα/2 from 
the table of standard normal quantiles determines the upper and lower ranks of the pairwise 
averages Aij corresponding to the ends of the confidence interval.  Those ranks are 

Rl = 
N − zα/2 • 

n (n+1) (2n+1) 
6 

2 [6.4] 

Ru = 
N + zα/2 • 

n (n+1) (2n+1) 
6 

2  + 1 [6.5] 

= N − Rl + 1 where N = n(n+1)/2 
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Example 1 cont.

For the mayfly data with N=78 and n=12, an approximate α=0.05 confidence interval is

between the 14th and 65th ranked averages, as computed below: 


12 (13) (25)
78 − 1.96 • 6


Rl  = 2 = 14.0 


Ru = 78 − 14 +1 = 65. 

6.6.3 Mean Difference (t-Test) 

For the situation where the differences are not only symmetric but normally distributed and the 

t-test is used, the most efficient estimator of the difference between the two groups is the mean 


^difference D . However, D  is only slightly more efficient than is ∆ , so that when the data 
depart from normality even slightly the Hodges-Lehmann estimator is just as efficient as D . 
This mirrors the power characteristics of their associated tests, as the signed-rank test is as 
efficient as the t-test for only slight departures from normality (Lehmann, 1975).  Therefore 
when using "real data" which is never "exactly normal" the mean difference has little advantage 

^ ^over ∆ , while ∆  is more appropriate in a wider number of situations -- for data which are 
symmetric but not normal. 

6.6.3.1 Confidence interval on the mean difference 
A confidence interval on the mean difference D  is computed exactly like any confidence 
interval for a mean: 

s
CI = D  ± tα/2,(n−1) [6.6]n

where s is the standard deviation of the differences Di. 
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Exercises 

6.1 	 Test the null hypothesis that the median of annual flows for the Conecuh R. at Brantley, 
Ala. (data in Appendix C2) is 683 cfs for 1941 - 1960.  The alternate hypothesis is that it 
is less than 683 cfs, and alpha = 0.05.  

6.2 	 Which of the following are not matched pairs? 
a. analyses of same standard solutions sent to two different laboratories 
b. daily sediment discharges above and below a reservoir 
c. nitrate analyses from randomly selected wells in each of two aquifers 
d. all of the above are matched pairs. 

6.3 	 The following values of specific conductance were measured on the two forks of the 
Shenandoah River in Virginia (D. Lynch, personal communication).   
a. 	 State the appropriate null and alternate hypotheses to see if conductance values are 

the same in the two forks. 
b. 	 Determine whether a parametric or nonparametric test should be used. 
c. 	Compute an α = .05 test and report the results. 
d. 	 Illustrate and check the results with a plot. 
e. 	 Estimate the amount by which the forks differ in conductance, regardless of the test 

outcome. 

Date South Fork North Fork Date South Fork North Fork
 5-23-83 194 255 2-22-84 194 295 

8-16-83 348 353 4-24-84 212 199 
10-05-83 383 470 6-04-84 320 410 
11-15-83 225 353 7-19-84 340 346 
1-10-84 266 353 8-28-84 310 405 

6.4 	 Atrazine concentrations in shallow groundwaters were measured by Junk et al. (1980) 
before (June) and after (September) the application season.  The data are given in 
Appendix C4. Determine if concentrations of atrazine are higher in groundwaters 
following surface application than before. 

6.5 	 Try performing the comparison of atrazine concentrations in 6.4 using a t-test, setting all 
values below the detection limit to zero.  Compare the results with those of 6.4.  Discuss 
why the results are similar or different. 



Chapter 7

Comparing Several

Independent Groups


Concentrations of volatile organic compounds are measured in shallow ground waters across a 
several county area.  The wells sampled can be classified as being contained in one of seven 
land-use types: undeveloped, agricultural, wetlands, low-density residential, high-density 
residential, commercial, and industrial/transportation.  Do the concentrations of volatiles differ 
between these types of surface land-use, and if so, how? 

Alkalinity, pH, iron concentrations, and biological diversity are measured at low flow for small 
streams draining areas mined for coal.  Each stream drains either unmined land, land strip-mined 
and then abandoned, or land strip-mined and then reclaimed.  The streams also drain one of two 
rock units, a sandstone or a limestone formation.  Do drainages from mined and unmined lands 
differ in quality?  What affect has reclamation had?  Are there differences in chemical or 
biological quality due to rock type separate and distinct from the effects due to mining history? 

Three methods for field extraction and concentration of an organic chemical are to be compared 
at numerous wells.  Are there differences among concentrations produced by the extraction 
processes?  These must be discerned above the well-to-well differences in concentration which 
contribute considerable noise to the data. 

The methods of this chapter can be used to answer questions such as those above.  These 
methods are extensions of the ones introduced in Chapters 5 and 6, where now more than two 
groups of data are to be compared.  The classic technique in this situation is analysis of variance.  
More robust nonparametric techniques are also presented for the frequent situations where data 
do not meet the assumptions of analysis of variance. 
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Suppose a set of continuous data, such as concentration or water levels, is collected.  It is 
suspected that one or more influences on the magnitude of these data comes from grouped 
variables, variables whose values are simply "from group X".  Examples include season of the 
year ("from summer","winter", etc.), aquifer type, land-use type, and similar groups.  Each 
observation will be classified into one of these groups.   

First consider the effect of only one grouped variable, calling it an explanatory variable 
because it is believed to explain some of the variation in magnitude of the data at hand.  This 
variable is also called a factor. It consists of a set of k groups, with each data point belonging in 
one of the k groups. For example, the data could be calcium concentrations from wells in one 
of k aquifers, and the objective is to determine whether the calcium concentrations differ among 
the k aquifers.  Within each group (aquifer) there are nj observations (the sample size of each 
group is not necessarily the same).  Observation yij is the ith of nj observations in group j, so 
that i=1,...nj for the jth of k groups j=1,...k . The total number of observations N is thus 

k

 N = ∑ nj , which simplifies to  N = k•n 


j=1 
when the sample size nj = n for all k groups (equal sample sizes). 

The tests in this chapter determine if all k groups have the same central value (median or mean, 
depending on the test), or whether at least one of the groups differs from the others.  When data 
within each of the groups are normally distributed and possess identical variances, an analysis of 
variance (ANOVA) can be used.  Analysis of variance is a parametric test, determining whether 
each group's mean is identical.  When there are only two groups, the ANOVA becomes identical 
to a t-test.  Thus ANOVA is like a t-test between three or more groups of data, and is restricted 
by the same types of assumptions as was the t-test.  When every group of data cannot be 
assumed to be normally distributed or have identical variance, a nonparametric test should be 
used instead.  The Kruskal-Wallis test is much like a rank-sum test extended to more than two 
groups.  It compares the medians of groups differentiated by one explanatory variable (one 
factor).  

When the effect of more than one factor is to be evaluated simultaneously, such as both rock 
type and mining history in one of the examples which began this chapter, the one-way tests can 
no longer be used. For data which can be assumed normal, several factors can be tested 
simultaneously using multi-factor analysis of variance.  However, the requirements of normality 
and equal variance now apply to data grouped by each unique combination of factors.  This 
becomes quite restrictive and is rarely met in practice.  Therefore nonparametric alternatives are 
also presented. 

The following sections begin with tests for differences due to one factor.  Subsequent sections 
discuss tests for effects due to more than one factor.  All of these have as their null hypothesis 
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that each group median (or mean) is identical, with the alternative that at least one is different.  
However, when the null hypothesis is rejected, these tests do not tell which group or groups are 
different!  Therefore sections also follow on multiple comparison tests -- tests performed after 
the ANOVA or Kruskal-Wallis null hypothesis has been rejected, for determining which groups 
differ from others. A final section on graphical display of results finishes the chapter. 

7.1 Tests for Differences Due to One Factor 

7.1.1 The Kruskal-Wallis Test 
The Kruskal-Wallis test, like other nonparametric tests, may be computed by an exact method 
used for small sample sizes, by a large-sample approximation (a chi-square approximation) 
available on statistical packages, and by ranking the data and performing a parametric test on the 
ranks.  Tables for the exact method give p-values which are exactly correct.  The other two 
methods produce approximate p-values that are only valid when sample sizes are large, but do 
not require special tables.  Tables of exact p-values for all sample sizes would be huge, as there 
are many possible combinations of numbers of groups and sample sizes per group.  Fortunately, 
large sample approximations for all but the smallest sample sizes are very close to their true 
(exact) values.  Thus exact computations are rarely required.  All three versions have the same 
objective, as stated by their null and alternate hypotheses. 

7.1.1.1 Null and alternate hypotheses 
In its most general form, the Kruskal-Wallis test has the following null and alternate hypotheses: 

H0: All of the k groups of data have identical distributions, versus
 H1: At least one group differs in its distribution. 

No assumptions are required about the shape(s) of the distributions.  They may be normal, 
lognormal, or anything else. If the alternate hypothesis is true, they may have different 
distributional shapes. In this form, the only interest in the data is to determine whether all 
groups are identical, or whether some tend to produce observations different in value than the 
others.  This difference is not attributed solely to a difference in median, though that is one 
possibility.  Thus the Kruskal-Wallis test, like the rank-sum test, may be used to determine the 
general equivalence of groups of data.   

In practice, the test is usually performed for a more specific purpose -- to determine whether all 
groups have the same median, or whether at least one median is different.  This form requires 
that all other characteristics of the data distributions, such as spread or skewness, are identical -­
though not necessarily in the original units. Any data for which a monotonic transformation, 
such as in the ladder of powers, produces similar spreads and skewness are also valid.  This 
parallels the rank-sum test (see Chapter 5).  As a test for difference in medians, the Kruskal-
Wallis null and alternate hypotheses are: 
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 H0: The medians of the k groups are identical,   
H1: At least one median differs from the others. (a 2-sided test). 

As with the rank-sum test, the Kruskal-Wallis test statistic and p-value computed for data that 
are transformed using any monotonic transformation are identical to the test statiistic and p­
value using the original units.  Thus there is little incentive to search for transformations (to 
normality or otherwise) -- the test is applicable in many situations. 

7.1.1.2 Computation of the exact test 
The exact form of the Kruskal-Wallis test is required when comparing 3 groups with sample 
sizes of 5 or less per group, or with 4 or more groups of size 4 or less per group (Lehmann, 
1975). For larger sample sizes the large-sample approximation is sufficiently accurate.  As there 
are few instances where sample sizes are small enough to warrant using the exact test, exact 
tables for the Kruskal-Wallis test are not included in this book.  Refer to either Conover (1980) 
or Lehmann (1975) for those tables. 

Should the exact test be required, compute the exact test statistic K as shown in the large sample 
approximation of the following section.  K is computed identically for both the exact form or 
large sample approximation. When ties occur, the large sample approximation must be used. 

7.1.1.3 The large-sample approximation 
To compute the test, the data are ranked from smallest to largest, from 1 to N.  At this point the 
original values are no longer used; their ranks are used to compute the test statistic.  If the null 
hypothesis is true, the average rank for each group should be similar, and also be close to the 
overall average rank for all N data.  When the alternative hypothesis is true, the average rank for 
some of the groups will differ from others, reflecting the difference in magnitude of its 
observations.  Some of the average group ranks will then be significantly higher than the overall 
average rank for all N data, and some will be lower.  The test statistic K uses the squares of the 
differences between the average group ranks and the overall average rank, to determine if groups 
differ in magnitude. K will equal 0 if all groups have identical average ranks, and will be positive 
if group ranks are different. The distribution of K when the null hypothesis is true can be 
approximated quite well by a chi-square distribution with k−1 degrees of freedom.   

The degrees of freedom is a measure of the number of independent pieces of information used 
to construct the test statistic.  If all data are divided by the overall group mean to standardize the 
data set, then when any k−1 average group ranks are known, the final (kth) average rank can be 
computed from the others as 

 k −1 n 
jRk = n

N
k  • 1 − ∑ 

N 
R

j 
 
 

 j =1 

Therefore there are actually only k−1 independent pieces of information represented by the k 
average group ranks.  From these the kth average rank is fixed. 
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Large Sample Approximation for the Kruskal-Wallis test 
Situation 	Several groups of data are to be compared, to determine if their medians are 

significantly different. For a total sample size of N, the overall average rank 
will equal (N+1)/2. If the average rank within a group (average group rank) 
differs considerably from this overall average, not all groups can be considered 
similar. 

Computation	 All N observations are jointly ranked from 1 to N, smallest to largest.  These 
ranks Rij are then used for computation of the test statistic.  Within each 
group, the average group rank Rj is computed: 

nj

∑ Rij

i=1


Rj = nj  . 

Tied data When observations are tied, assign the average of their ranks to each.  
Test Statistic The average group rank Rj is compared to the overall average rank 

R = (N+1)/2, squaring and weighting by sample size, to form the test 
statistic K: 

12 k  
 K = 	 ∑ n j 

R − 
N + 1

 
2
. 

N(N + 1) j =1	
 j 2  

Decision Rule	 To reject H0: all groups have identical distributions, versus 
H1: at least one distribution differs 

 Reject H0 if K ≥ χ21−α,(k−1)  the 1−α quantile of a chi-square distribution 
with (k−1) degrees of freedom;  otherwise do not reject H0. 

Example 1. 
Fecal coliforms, in organisms per 100 ml, were measured in the Illinois River from 1971 to 1976 
(Lin and Evans, 1980).  A small subset of those data are presented here.  Do all four seasons 
exhibit similar values, or do one or more seasons differ?  Boxplots for the four seasons are 
shown in figure 7.1. 
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Summer Spring 
l00 65 28 22 
220 120 58 53 
300 210 120 110 
430 280 230 140 
640 500 310 320 

1600 1100 500 1300 
0.05 0.06 0.50 0.005 

Table 7.1  Selected fecal coliform data (from Lin and Evans, 1980).  
[counts in organisms per 100 ml] 

Fall Winter

PPCC p-value 

Figure 7.1 Boxplots of Fecal Coliform Data from the Illinois River 
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Should a parametric or nonparametric test be performed on these data?  If even one of the four 
groups exhibits non-normality, the assumptions of parametric analysis of variance are violated.  
The consequences of this violation is an inability to detect differences which are truly present -- 
a lack of power.  The PPCC test for normality rejects normality at α =0.05 for two of the 
seasons, summer and spring (table 7.1).  Outliers and skewness for the fall samples also argue for 
non-normality. Based solely on the skewness and outliers evident in the boxplot, a 
nonparametric test should be used on these data. 

Computation of the Kruskal-Wallis test is shown in table 7.2.  This is compared to a table of the 
chi-square distribution available in many statistics texts, such as Iman and Conover (1983).  We 
conclude that there is not enough evidence in these data to reject the assumption that fecal 
coliform counts are distributed similarly in all four seasons. 

Table 7.2  Kruskal-Wallis test for the fecal coliform data.  

Summer Fall Winter Spring 
Ranks  Rij 6 5 2 1 

12 8.5 4 3 
15 11 8.5 7 
18 14 13 10 
21 19.5 16 17 
24 22 19.5 23 

R
j
 16 13.3 10.5 10.2 R

j 
= 12.5 

K=2.69 χ20.95,(3) = 7.815 p=0.44 so, do not reject equality of distributions. 

7.1.1.4 The rank transform approximation 
The rank transform approximation to the Kruskal-Wallis test is computed by performing a one­
factor analysis of variance on the ranks Rij. This approximation compares the mean rank within 
each group to the overall mean rank, using an F-distribution for the approximation of the 
distribution of K.  The F and chi-square approximations will result in very similar p-values.  The 
rank transform method should properly be called an "analysis of variance on the ranks".   

For the example 1 data, the rank transform approximation results in a p-value of 0.47, essentially 
identical to that for the large sample approximation.  Detailed computations are shown 
following the discussion of ANOVA in the next section. 
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7.1.2 Analysis of Variance (One Factor) 
Analysis of variance is the parametric equivalent to the Kruskal-Wallis test.  It compares the 
mean values of each group with the overall mean for the entire data set.  If the group means are 
dissimilar, some of them will differ from the overall mean, as in figure 7.2.  If the group means 
are similar, they will also be similar to the overall mean, as in figure 7.3. 

Figure 7.2 Hypothetical data for three groups.  
Treatment mean square > Error mean square. 

Why should a test of differences between means be named an analysis of variance?  In order to 
determine if the differences between group means (the signal) can be seen above the variation 
within groups (the noise), the total noise in the data as measured by the total sum of squares is 
split into two parts: 
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Total sum of squares  = Treatment sum of squares + Error sum of squares 
(overall variation) = (group means − overall mean) + (variation within groups) 

k
n

k
n

j k j

∑ ∑ ( y
ij 
− y) 2 = ∑ nj ( y − y ) 2 + ∑ ∑ ( y

ij 
− y

j
) 2 

j

j=1 i=1 j=1 j=1 i=1


If the total sum of squares is divided by N−1, where N is the total number of observations, it 
equals the variance of the yij's.  Thus ANOVA partitions the variance of the data into two parts, 
one measuring the signal and the other the noise. These parts are then compared to determine if 
the means are significantly different. 

7.1.2.1 Null and alternate hypotheses 
The null and alternate hypotheses for the analysis of variance are: 

H0: the k group means are identical µ1= µ2 = ...= µk . 
H1: at least one mean is different. 

Figure 7.3 Hypothetical data for three groups.  
Treatment mean square ≅ Error mean square. 
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7.1.2.2 Assumptions of the test 
If ANOVA is performed on two groups, the F statistic which results will equal the square of the 
two-sample t-test statistic F=t2, and will have the same p-value.  It is not surprising, then, that 
the same assumptions apply to both tests: 
1. All samples are random samples from their respective populations.   
2. All samples are independent of one another. 
3. Departures from the group mean (yij − y j) are normally distributed for all j groups. 
4. All groups have equal population variance σ2 estimated for each group by sj2

n 
j

∑ (y
ij 

−yj )
2 

i=1sj2 = 
n -1 

j 

Violation of either the normality or constant variance assumption results in a loss of ability to 
see differences between means (a loss of power).  The analysis of variance suffers from the same 
five problems as did the t-test: 1) lack of power when applied to non-normal data, 2) 
dependence on an additive model, 3) lack of applicability for censored data, 4) assumption that 
the mean is a good measure of central tendency for skewed data, and 5) difficulty in assessing 
whether the normality and equality of variance assumptions are valid for small sample sizes.  See 
Chapter 5 for a detailed discussion of these problems.   

Difficulties arise when using prior tests of normality to "prove" non-normality before allowing 
use of the nonparametric Kruskal-Wallis test.  Small samples sizes may inhibit detecting non­
normality, as mentioned above. Second, transformations must be done on more than two 
groups of data. It is usually quite difficult to find a single transformation which when applied to 
all groups will result in each becoming normal with constant variance.  Even the best 
transformation based on sample data may not alleviate the power loss inherent when the 
assumptions of ANOVA are violated. Finally, if all groups are actually from a normal 
distribution, one or more may be "proven" non-normal simply by chance (there is an α% 
chance for each group).  Thus the results of testing for normality can be quite inconclusive prior 
to performing ANOVA. The value of nonparametric approaches here is that they are relatively 
powerful for a wide range of situations. 

7.1.2.3 Computation 
Each observation yij can be written as a sum of the overall true mean µ, plus the difference αj 
between µ and the true mean of the jth group µj, plus the difference εij between the individual 
observation yij and the jth group mean µj: 

yij = µ + αj + εij, 
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where: 	yij is the ith individual observation in group j, j=1,...k;  
µ is the overall mean (over all groups); 
αj is the "group effect", or (µj − µ), and 
εij are the residuals or "error" within groups.  

If H0 is true, all j groups have the same mean equal to the overall mean µ, and thus 
αj = 0 for all j. If group means differ, αj ≠ 0 for some j. In order to detect a difference 
between means, the variation within a group around its mean due to the εij's must be sufficiently 
small in comparison to the difference between group means so that the group means may be 
seen as different (see figure 7.2).  The variation within a group is estimated by the within-group 
or error mean square (MSE), computed from the data.  The variation between group means is 
estimated by the treatment mean square (MST).  Their computation is shown below. 

Sum of Squares 
The error or within-group sum of squares  

k
n

j

 SSE = ∑ ∑	 (y
ij 

− y
j
) 2 

j=1 i=1 

estimates the total within-group noise using departures from the sample group mean 
y j. Error in this context refers not to a mistake, but to the inherent variability within a group.  
The treatment (between-group) sum of squares

k

 SST = ∑ n
j
(y − y ) 2 

j 
j=1 

estimates the treatment effect using differences between group means and the overall mean of 
the sample, weighted by sample size. 

Degrees of freedom 
Each of the sums of squares has an associated degrees of freedom, the number of independent 
pieces of information used to calculate the statistic.  For the treatment sum of squares this equals 
k−1, as when k−1 of the group means are known, the kth group mean can be calculated.  The 
total sum of squares has N−1 degrees of freedom, the denominator of the formula for the 
variance of yij. The error sum of squares has degrees of freedom equal to the difference 
between the above two, or N−k. 

Mean Squares and the F-test 
Dividing the sums of squares by their degrees of freedom produces the total variance, and the 
mean squares for treatment (MST) and error (MSE).  These mean squares are also measures of 
the variance of the data.   

jkmonson
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 Mean Square Formula Estimates: 
Variance of yij = Total SS / N−1 Total variance of the data 

MST = SST / k−1 Variance within groups +  
variance between groups. 

MSE = SSE / N−k Variance within groups. 

If H0 is true, there is no variance between group means (no difference between means), and the 
MST will on average equal the MSE (figure 7.3).  As αj = 0, all variation is simply around the 
overall mean µ, and the MST and MSE both estimate the total variance.  However when H1 is 
true, the MST is larger on average than the MSE (figure 7.2), as most of the noise is that 
between groups.  Therefore a test is constructed to compare these two estimates of variance, 
MST and MSE.  The F-ratio  

F = MST / MSE 
is computed and compared to quantiles of an F distribution.  If MST is sufficiently larger than 
MSE, F is large and H0 is rejected.  When H0 is true and there is no evidence for differences in 
group means, F is expected to equal 1 (µF = 1 when H0 is true). In other words, an F = 1 has a 
p-value near 0.50, varying with the degrees of freedom.  If F were below 1, which could happen 
due to random variation in the data, generally p > 0.50 and no evidence exists for differences 
between group means. 

The computations and results of an ANOVA are usually organized into an ANOVA table.  For 
a one-way ANOVA, the table looks like: 

Source df SS MS F p-value 
Treatment (k−1) SST MST MST/MSE p 
Error (N−k) SSE MSE 
Total N−1 Total SS 

Example 1, cont. 
For the fecal coliform data from the Illinois River, the ANOVA table is given below.  The F 
statistic is quite small, indeed below 1.  At α=0.05 or any reasonable α-level, the mean counts 
would therefore not be considered different between seasons.  

Source df SS MS F p-value 
Season 3 361397 120466 0.67 0.58 
Error 20 3593088 179654 
Total 23 3954485 

However, this ANOVA has been conducted on non-normal data.  Without knowing the results 
of the Kruskal-Wallis test, concern should be expressed that the result of "no difference" may be 
an artifact of the lack of power of the ANOVA, and not of a true equivalence of means.  Some 
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statisticians have recommended performing both tests.  This may be unnecessary if the data 
exhibit sufficient non-normality to suspect an inability of ANOVA to reject.  Also assumed by 
performing ANOVA is that group means are an appropriate data summary.  For the obviously 
skewed distributions found for all but the winter season, means will make little sense as 
estimates of the values which might be expected to occur.  Means would be useful when 
estimating the mass of bacteria transported per season, but not in the hypothesis testing realm. 

One factor analysis of variance 
Situation 	 Several groups of data are to be compared, to determine if their means are 

significantly different. Each group is assumed to have a normal distribution 
around its mean. All groups have the same variance. 

Computation	 The treatment mean square and error mean square are computed as their sum 
of squares divided by their degrees of freedom (df). When the treatment mean 
square is larger than the error mean square as measured by an F-test, the group 
means are significantly different. 

k 

∑ n
j 
(y 

j 
−y)2 

MST= j=1	 where  k−1 = treatment degrees of freedom 
k − 1 

k 
n

j

∑ ∑ (y
ij 

− y j )
2 

 MSE = j=1 i=1	  where N−k = error degrees of freedom 
N − k

Tied data	 No alterations necessary.  

Test Statistic	 The test statistic F: 
F = MST / MSE 

Decision Rule	 To reject H0: the mean of every group is identical, versus 
H1: at least one mean differs . 

 Reject H0 if F ≥ F1−α, k−1, N−k the 1−α quantile of an F distribution with 
k−1 and N−k degrees of freedom;  otherwise do not reject H0. 

7.2 Tests for the Effects of More Than One Factor 

It is quite common that more than one factor is suspected to be influencing the magnitudes of 
observations.  In these situations it is desirable to measure the influence of all factors 
simultaneously.  Sequential one-factor tests are an inadequate alternative to a single multi-factor 
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test.  Even when only one factor is actually influencing the data and a one-way ANOVA for that 
factor soundly rejects H0, a second one-way test for a related factor may erroneously reject H0 
simply due to the association between the two factors.  The test for the second factor should 
remove the effect of the first before establishing that the second has any influence.  By 
evaluating all factors simultaneously, the influence of one can be measured while compensating 
for the others.  This is the objective of a multi-factor analysis of variance, and of the 
nonparametric analogue. 

7.2.1 Nonparametric Multi-Factor Tests 
For two-factor and more complex ANOVA's where the data within one or more treatment 
groups are not normally distributed and may not have equal variances, there are two possible 
approaches for analysis.  The first is a class of tests which include the Kruskal-Wallis and 
Friedman tests as simpler cases.  These tests, described by Groggel and Skillings (1986), do not 
allow for interactions between factors.  The tests reformat multiple factors into two factors, one 
the factor being tested, and the other the collection of all other treatment groups for all 
remaining factors.  The data are then ranked within treatment groups for analysis, much as in a 
Friedman test.  The reader is referred to their paper for more detail. 

The second procedure is a rank transformation test (Conover and Iman, 1981).  All data are 
ranked from 1 to N, and an ANOVA computed on the ranks.  This procedure is far more 
robust to departures from the assumptions of normality and constant variance than is an 
ANOVA on the original data. The rank transformation produces values which are much closer 
to meeting the two critical assumptions than are the original values themselves.  The tests 
determine whether the mean rank differs between treatment groups, rather than the mean.  The 
mean rank is interpreted as an estimate of the median.  Multiple comparison procedures on the 
ranks can then differentiate which groups differ from others. 

Examples of the computation and performance of these rank transformation tests will be 
delayed until after discussion of parametric factorial ANOVA. 

7.2.2 Multi-Factor Analysis of Variance -- Factorial ANOVA 
The effects of two or more factors may be simultaneously evaluated using a factorial ANOVA 
design. A factorial ANOVA occurs when none of the factors is a subset of the others.  If 
subsetted factors do occur, the design includes "nested" factors and the equations for computing 
the F test statistics will differ from those here (nested ANOVA is briefly introduced in a later 
section).  A two-factor ANOVA will be fully described -- more than two factors can be 
incorporated, but are beyond the scope of this book.  See Neter, Wasserman and Kutner (1985) 
for more detail on higher-way and nested analysis of variance. 
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For a two-factor ANOVA, the influences of two explanatory variables are simultaneously tested.  
The first page of this chapter presented a two-factor ANOVA, the determination of chemical 
concentrations among basins at low flow.  The objective was to determine whether 
concentrations differed as a function of mining history (whether or not each basin was mined, 
and if so whether it was reclaimed) and of rock type. 

7.2.2.1 Null and alternate hypotheses 
Call the two factors A and B.  There are i=1,...a ≥ 2 categories of factor A, and j=1,...b ≥ 2 
categories of factor B.  Treatment groups are defined as all the possible combinations of factors 
A and B, so there are a•b treatment groups.  Within each treatment group there are nij 
observations.  The test determines whether mean concentrations are identical among all the 
a•b treatment groups, or whether at least one differs. 

H0 : all a•b treatment group means µij are equal µ11= µ12 = ...= µab
 H1 : at least one µij differs from the rest. 

The magnitude of any observation yijk can be affected by several possible influences: 
yijk = µ + αi + βj + αβij + εijk , where 

αi = influence of the ith category of A 
βj = influence of the jth category of B 

αβij = interaction effect between A and B beyond those of αi and βj 
separately for the ijth treatment group, and 

εijk = residual error, the difference between the kth observation (k=1,...nij) 
and the treatment group mean µij. 

The null hypothesis states that treatment group means µij all equal the overall mean µ. 
Therefore αi βj and αβij all equal 0 -- there are no effects due to any of the factors or to their 
interaction. If any one of αi, βj, or αβij are nonzero, the null hypothesis is rejected, and at least 
one treatment group evidences a difference in its mean. 

7.2.2.2 Interaction between factors 
If αβij = 0 in the equation above, there is no interaction present.  Without interaction, the effect 
of factor B is identical for all groups of factor A, and the effect of factor A is identical for all 
groups of factor B. Suppose there are 3 groups of factor A (a1, a2, and a3) and 2 groups of 
factor B (b1 and b2), resulting in six treatment groups overall.  Lack of interaction can be 
visualized by plotting the means for all treatment groups as in figure 7.4.  The parallelism of the 
lines shows that no interaction is present.  The effect of A going from a1 to a2 to a3 is identical 
regardless of which B group is involved.  The increase going from b1 to b2 for factor B is 
identical for every group of factor A. 

When interaction is present (αβij ≠ 0) the treatment group means are not determined solely by 
the additive effects of factors A and B alone.  Some of the groups will have mean values larger 
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or smaller than those expected just from the results of the individual factors.  The effect of 
factor A can no longer be discussed without reference to which group of factor B is  of interest, 
and the effect of factor B can likewise not be stated apart from a knowledge of the group of 
factor A. In a plot of the treatment group means, the lines are no longer parallel (figure 7.5).  
The pattern of differences going from a1 to a2 to a3 depends on which group of factor B is of 
interest, and likewise for the differences between b1 and b2 -- the pattern differs for the three A 
groups. 
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Figure 7.4 Six treatment group means with no interaction present 
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Figure 7.5  Six treatment group means with interaction present 
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Interaction can result from a synergistic or antagonistic effect.  As an example, fish may not die 
instream due only to higher water temperatures, or to slightly higher copper concentrations, but 
combine the two and the result could be deadly.  This type of interrelation between factors 
results in a significant interaction effect.  For k factors there are (k−1) possible interaction terms 
between the factors.  Unless it is known ahead of time that interactions are not possible, 
interaction terms should always be included and tested for in multi-factor ANOVA models. 

7.2.2.3 Assumptions for factorial ANOVA 
Assumptions are the same as for a one-way ANOVA.  Departures from each treatment group 
mean µij (every combination of factors A and B) are assumed normally distributed with identical 
variance. This is a consequence of the εij, which are normally distributed and of variance σ2, 
being randomly distributed among the treatment groups.  The normality and constant variance 
assumptions can be checked by inspecting boxplots of the data for each treatment group. 

7.2.2.4 Computation 
The influences of factors A, B, and their interaction are evaluated separately by again 
partitioning the total sums of squares into component parts due to each factor.  After dividing 
by their respective degrees of freedom, the mean squares for factors A, B, and interaction are 
produced.  As with a one-way ANOVA, these are compared to the error mean square (MSE) 
using F-tests to determine their significance. 

Sum of Squares 
The equations for the sums of squares for factor A (SSA), factor B (SSB), interaction (SSI), and 
error, assuming constant sample size n per treatment group, are: 
 due to 

b

∑
a 

∑ 
b 

∑ 
n 

∑ 2)y
n

∑ 2)y (
−

(a

∑SSA = − µµi
bn abn 

b 

∑ 
n 

∑ 2)y
n

∑ 2)y
a

∑
a 

∑(b

∑ (
−SSB =   − µµj

abnan 

SSI = Total SS − SSA − SSB − SSE µij − (µi + µj ) + µ 
n

∑ 2)y

n 

(b

∑
a

∑
n

2∑ −( )y
b

∑
a

∑SSE = yijk − µij 
n 

∑ 2)y
b 

∑ 
a 

∑ 
abn 

Total SS =   
n

∑ 2( )y
b

∑
a

∑ (
− yijk − µ 



174 Statistical Methods in Water Resources 

Mean Squares and the F-test 
Dividing the sums of squares by their degrees of freedom produces the mean squares for factors 
A, B, interaction, and error as in the ANOVA table below.  If H0 is true and αi, βj, and αβij all 
equal 0, all variation is simply around the overall mean µ. The MSA, MSB, and MSI will then all 
be measures of the error variance, as is the MSE, and all three F-tests will have ratios not far 
from 1.  However when H1 is true, at least one of the mean squares in the numerators should be 
larger than the MSE, and the resulting F-ratio will be larger than the appropriate quantile of the 
F distribution. When F is large, H0 can be rejected, and that influence be considered to 
significantly affect the magnitudes of the data at a level of risk equal to α. 

The two-factor ANOVA table is as follows when there is an equal number of observations for 
each treatment (all nij = n). 
Source df SS MS F p-value 
Factor A (a−1) SSA SSA/(a-1) MSA/MSE 
Factor B (b−1) SSB SSB/(b-1) MSB/MSE 
Interaction (a−1) (b−1) SSI SSI/(a-1)(b-1) MSI/MSE 
Error  ab(n−1) SSE SSE/[ab(n-1)] 
Total abn−1 Total SS 

Multi-factor analysis of variance 
Situation 	 Two or more influences are to be simultaneously tested, to determine if either 

cause significant differences between treatment group means.  Each group is 
assumed to have a normal distribution around its mean.  All groups have the 
same variance. 

Computation	 Compute the sums of squares and mean squares as above. 

Tied data No alterations necessary.  

Test Statistic To test factor A: To test factor B: To test for interaction: 
FA = MSA / MSE FB = MSB / MSE FI = MSI / MSE 

with degrees of freedom for the numerator of: 
dfn = (a−1) dfn = (b−1) dfn = (a−1)(b-1) 

Decision Rule  To reject H0: the mean of every group is identical (no treatment effects 
for either factor or interaction), versus 

H1: at least one mean differs. 
 Reject H0 if F ≥ F1−α, dfn, ab(n−1) the 1−α quantile of an F distribution 

with dfn and ab(n−1) degrees of freedom;  otherwise do not reject H0. 
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Example 2 
Iron concentrations were measured at low flow in numerous small streams in the coal-producing 
areas of eastern Ohio (Helsel, 1983).  Each stream drains either an unmined area, a reclaimed 
coal mine, or an abandoned coal mine.  Each site is also underlain by either a sandstone or 
limestone formation. Are iron concentrations influenced by upstream mining history, by the 
underlying rock type, or by both? 

There are several scenarios which would cause H0 to be rejected.  Factor A (say mining history) 
could be significant (αi≠ 0), but factor B insignificant. Or factor B (rock type) could be 
significant (βj≠ 0), but not A. Both factors could be significant (αi, βj ≠ 0). Both factors could 
be significant, plus an additional interaction effect because one or more treatment groups (say 
unreclaimed sandstone basins) exhibited much different iron concentrations than those expected 
from either influence alone (αi, βj, αβij ≠ 0). Finally, both factor A and B could be not 
significant (αi, βj = 0) but concentrations be elevated for one specific treatment group (αβij ≠ 
0). This would be interpreted as no overall mining  or rock type effect, but one combination of 
mining history and rock type would have differing mean concentrations. 

Boxplots for a subset of the iron concentration data from Helsel (1983) are presented in figure 
7.6. Note the skewness, as well as the differences in variance as depicted by differing box 
heights. A random subset was taken in order to produce equal sample sizes per treatment 
group, yet preserving the essential data characteristics.  The subset data are listed in Appendix 
C5. In the section 7.2.2.5, analysis of unequal sample sizes per treatment group will be 
presented and the entire iron data set analyzed.   

There are six treatment groups, combining the three possible mining histories (unmined, 
abandoned mine, and reclaimed mine) and the two possible rock types (sandstone and 
limestone).  An analysis of variance conducted on this subset which has n=13 observations per 
treatment group produced the following ANOVA table.  Tested was the effect of mining history 
alone, rock type alone, and their interaction (Mine*Rock).  A*B is a common abbreviation for 
the interaction between A and B. 

ANOVA table for the subset of iron data 
Source df SS MS F p-value 
Rock 1 15411 15411 2.38 0.127 
Mine 2 32282 16141 2.49 0.090 
Rock*Mine 2 25869 12934 2.00 0.143 
Error 72 466238 6476 
Total 77 539801 

None of the three possible influences is significant at the α = 0.05 level, as their  p-values are all 
larger than 0.05. However, the gross violation of the test's assumptions of normality and equal 
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variance shown in the boxplots must be considered.  Perhaps the failure to reject H0 is due not 
to a lack of an influence evidenced in the data, but of the parametric test's lack of power to 
detect these influences because of the violation of test assumptions.  To determine whether this 
is so, the equivalent rank transformation test is performed. 

Figure 7.6 A subset of the iron concentrations at low flow from Helsel (1983) 

To compute the rank transformation test, the data are ranked from smallest to largest, 1 to 
n=78. An analysis of variance is then performed on the ranks of the data.  The ANOVA table is 
below, while a boxplot of data ranks is shown in figure 7.7. 

ANOVA table for the ranks of the subset of iron data 
Source df SS MS F p-value 
Rock 1 4121.7 4121.7 13.38 0.000 
Mine 2 10933.9 5467.0 17.74 0.000 
Rock*Mine 2 2286.2 1143.1 3.71 0.029 
Error 72 22187.2 308.2 
Total 77 39529.0 
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Results for the rank transformation tests are startlingly different than those for the parametric 
ANOVA. All three influences, mining history, rock type, and their interaction, are significant at 
α = 0.05. Gross violations of the assumptions of ANOVA by these data have clearly inhibited 
the parametric test from detecting the influences of these factors.  The rejection of H0 for the 
rank test indicates that the median iron concentrations differ between treatment groups.  Mean 
concentrations will be distorted by the skewness and outliers present in most of the treatment 
groups. 

Analysis of variance on data ranks is an "asymptotically distribution-free" technique.  That is, for 
sufficiently large sample sizes it tests hypotheses which do not require the assumption of data 
normality. For the cases where equivalent, truly nonparametric techniques exist such as the 
Kruskal-Wallis and Friedman tests, the rank transformation procedures have been shown to be 
large-sample approximations to the test statistics for those techniques.  Where no equivalent 
nonparametric methods have yet been developed such as for the two-way design, rank 
transformation results in tests which are more robust to non-normality, and resistant to outliers 

Figure 7.7 

and non-constant variance, than is ANOVA without the transformation.   

Boxplots of the ranks of the iron data shown in Figure 7.6 

A third option for analysis of the two-way design is ANOVA on data transformed by a power 
transformation. The purpose of the power transformation is to produce a more nearly-normal 
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and constant variance data set.  As water resources data are usually positively skewed, the log 
transformation is often employed.  Using logarithms for ANOVA implies that the influences of 
each factor are multiplicative in the original units, as the influences of the logarithms are 
additive. The primary difficulty in using a power transformation is in producing a normally 
distributed error structure for every treatment group.  Groups which are skewed may be greatly 
aided by a transformation, but be side-by-side with a group which was symmetric in the original 
units, and is now asymmetric after transformation!  Boxplots for each treatment group should be 
inspected prior to performing the ANOVA to determine if each group is at least symmetric.  
When only some of the treatment groups exhibit symmetry, much less normality, concerns over 
the power of the procedure remain.  F tests which appear to be not significant are always 
suspect. 

In figure 7.8, boxplots of the base 10 logarithms of the low-flow iron concentrations are 
presented.  Most of the treatment groups still remain distinctly right-skewed even after the 
transformation, while the unmined limestone group appears less symmetric following 
transformation! There is nothing magic in the log transformation -- any other transformation 
going down the ladder of powers might also remedy positive skewness.  It may also alter a 
symmetric group into one that is left-skewed.  The search for a transformation which results in 

Inall groups being symmetric is often fruitless.  

Figure 7.8 Boxplots of the base 10 logarithms of the iron data shown in Figure 7.6 
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addition, the "best" power transformation will likely change going from one data set to another, 
one location to another, and one time period to another.  In comparison, the rank 
transformation has simplicity, comparability among locations and time periods, and general 
validity as being asymptotically distribution-free.  When the assumptions of normality and 
constant variance are questionable, the rank transformation is the most generally appropriate 
alternative. 

7.2.2.5   Unequal sample sizes 
Equations presented in the previous section are appropriate only when the number of data per 
treatment group is identical for each group.  This is also called a "balanced" design.  
Computations for unequal sample sizes ("unbalanced" designs) are more complex.  Smaller 
statistics software packages often encode tests valid only for balanced designs, though that is not 
always obvious from their output.  Yet water resources data rarely involve situations when all 
sample sizes are equal.  Sample bottles are broken, floods disrupt the schedule, etc.  When data 
are unbalanced, the sums of squares for the above equations no longer test   

H0: µ1 = µ2 = ... = µk 
but test instead an hypothesis involving weighted group means, where the weights are a function 
of treatment group sample sizes.  This is of little use to the practitioner.  Some software will 
output the (useless and incorrect) results valid only for equal sample sizes even when unbalanced 
data are provided as input, with no warnings of their invalidity.  Be sure that when unequal 
sample sizes occur, tests which can incorporate them are performed. 

To perform ANOVA on unbalanced data, a regression approach is necessary.  This is done on 
larger statistical packages such as Minitab or SAS.  SAS's "type I" sums of squares (called 
"sequential sums of squares" by Minitab) are valid only for balanced cases, but SAS's "type III" 
sums of squares (Minitab's "adjusted sums of squares") are valid for unbalanced cases as well. 
Unbalanced ANOVAs are computed in the same fashion as nested F-tests for comparing 
regression models in analysis of covariance, discussed in Chapter 11.  Because the equations for 
the sums of squares are "adjusted" for unequal sample sizes, they do not sum to the total sum of 
squares as for balanced ANOVA.  See Neter, Wasserman and Kutner (1985) for more detail on 
the use of regression models for performing unbalanced ANOVA. 

Example 2, continued 
The complete 241 observations (Appendix C6) from Helsel (1983) are analyzed with an 
unbalanced ANOVA. Boxplots for the six treatment groups are shown in figure 7.9.  They are 
quite similar to those in figure 7.6, showing that the subsets adequately represented all the data.  
An ANOVA table for the complete iron data set is as follows.  Note that the sums of squares do 
not add together to equal the total sum of squares for this unbalanced ANOVA.  Results for 
these data would be incorrect if performed by software capable only of balanced ANOVA.  
Conclusions reached (do not reject for all tests) agree with those previously given for ANOVA 
on the data subset. 
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ANOVA table for the complete (unbalanced) iron data 
Source df SS MS F p-value 
Rock 1 71409 71409 0.51 0.476 
Mine 2 262321 131160 0.93 0.394 
Rock*Mine 2 178520 89260 0.64 0.530 
Error 235 32978056 140332 

240 34062640Total 

Figure 7.9 Iron concentrations at low flow from Helsel (1983) 

7.2.2.6 Fixed and random factors 
An additional requirement for the F tests previously given is that both factors are fixed.  With a 
fixed factor, the inferences to be made from the results extend only to the treatment groups 
under study.  For example, the influences of unmined, abandoned, and reclaimed mining 
histories were previously compared.  Differences in resulting chemical concentrations between 
these three specific mining histories are of interest, and hence this is a fixed factor.  A random 
factor would result from a random selection of several groups out of a larger possible set to 
represent the overall factor.  Inferences from the test results would be extended beyond the 
specific groups being tested to the generic factor itself.  Thus there is little or no interest in 
attributing test results to a specific individual group, but only in ascertaining a generic effect due 
to that factor. 
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As an example, suppose soil concentrations of a trace metal are to be compared between three 
particle size fractions all across the state, to determine which of the three fractions is most 
appropriate as a reconnaissance medium.  Particle size is a fixed effect -- there is interest in those 
specific sizes.  However, there is only enough funding to sample sparsely if done all across the 
state, so instead a random factor is incorporated to determine whether spatial differences occur.  
Several counties are selected at random, and intensive sampling occurs within those counties.  
No sampling is done outside of those counties.  The investigator will determine not only which 
size fraction is best, but whether this is consistent among the counties (the random effect), 
which by inference is extended to the entire state.  There is no specific interest in the counties 
selected, but only as they represent spatial variability. 

If every factor were random, F tests would use the mean squares for interaction as denominators 
rather than the mean square for error.  If a mix of random and fixed factors occurs (called a 
"mixed effects" design) as in the example above, there would be a mixture of mean squares used 
as denominators. In general the fixed factors in the design use the interaction mean squares as 
denominators, and the random factors the error mean square, the reverse of what one might 
intuitively expect! However, the structure of mixed effects F tests can get much more 
complicated, especially for more than two factors, and texts such as Neter, Wasserman and 
Kutner (1985) or Sokal and Rohlf (1981) should be consulted for the correct setup of F tests 
when random factors are present.  Note that computer software uses the MSE in the 
denominator unless otherwise specified, and thus assumes that all factors are fixed. Therefore F 
tests automatically produced will not be correct when random factors are present, and the 
correct F ratio must be specifically requested and computed. 

7.3 Blocking -- The Extension of Matched-Pair Tests 

In Chapter 6, tests for differences between matched-pairs of observations were discussed.  Each 
pair of observations had one value in each of two groups, such as "before" versus "after".  The 
advantage of this type of design is that it "blocks out" the differences from one matched-pair to 
another that is contributing unwanted noise.  Such noise may mask the differences between the 
two groups (the treatment effect being tested) unless matched-pairs are used. 

Similar matching schemes can be extended to test more than two treatment groups.  Background 
noise is eliminated by applying the treatment to blocks (rather than pairs) of similar or identical 
individuals. Only one observation is usually available for each combination of treatment and 
block. This is called a "randomized complete block design", and is a common design in the 
statistical literature. 

The third example at the beginning of this chapter, detecting differences between three 
extraction methods used at numerous wells, is an example of this design.  The treatment effect is 
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the extraction method, of which there are three types (three groups).  The blocking effect is the 
well location; the well-to-well differences are to be "blocked out".  One sample is analyzed for 
each extraction method at each well. 

Four methods for analysis of a randomized complete block design will be presented.  Each of 
them attempts to measure the same influences.  To do this, each observation yij is broken down 
into the effects of four influences: 

yij = µ + αj + βi + εij, 
where yij is the individual observation in block i and group j;  

µ is the overall mean or median (over all groups), 
αj is the "jth group effect", j=1,k  
βi is the "ith block effect", i=1,n  
εij is the residual or "error" between the individual observation and the 

combined group and block effects. 

Median polish provides resistant estimates of the overall median, of group effects and block 
effects.  It is an exploratory technique, not an hypothesis test procedure.  Related graphical tools 
determine whether the two effects are additive or not, and whether the εij are normal, as 
assumed by an ANOVA. If not, a transformation should be employed to achieve additivity and 
normality before an ANOVA is performed.  The Friedman and median aligned ranks tests are 
nonparametric alternatives for testing whether the treatment effect is significant in the presence 
of blocking. 

7.3.1 Median Polish 
Median polish (Hoaglin et al., 1983) is an iterative process which provides a resistant estimate m 
of the overall median µ, as well as estimates aj of the group effects αj and bi of the block effects 
βi.  Its usefulness lies in its resistance to effects of outliers.  The polishing is begun by 
subtracting the medians of each row from the data table, leaving the residuals.  The median of 
these row medians is then computed as the first estimate of the overall median, and subtracted 
from the row medians.  The row medians are now the first estimates of the row effects.  Then 
the median of each column is subtracted from the residual data table and set aside.  The median 
of the column medians is subtracted from the column medians, and added to the overall median.  
The column medians now become the first estimates of the column effects.  The entire process 
is repeated a second time, producing an estimated overall median m, row and column departures 
from the overall median (estimates aj and bi), and a data table of residuals eij estimating the εij. 

Example 3

Mercury concentrations were measured in periphyton at six stations along the South River, 

Virginia, above and below a large mercury contamination site (Walpole and Myers, 1985).  

Measurements were made on six different dates.  Of interest is whether the six stations differ in 

mercury concentration.  Is this a one-way ANOVA setup?  No, because there may be 
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differences among the six dates -- the periphyton may not take up mercury as quickly during 
some seasons as others, etc.  Differences caused by sampling on six different dates are unwanted 
noise which should be blocked out, hence date is a blocking effect.  The data are presented in 
table 7.3, and boxplots by station in figure 7.10.  There appears to be a strong increase in 
mercury concentration going downstream from station 1 to station 6, reflecting an input of 
mercury along the way. 

Table 7.3  Mercury Concentrations in Periphyton (Walpole and Myers, 1985) 
Station: 1 2 3 4 5 6 

Date 
1 0.45 3.24 1.33 2.04 3.93 5.93 
2 0.10 0.10 0.99 4.31 9.92 6.49 
3 0.25 0.25 1.65 3.13 7.39 4.43 
4 0.09 0.06 0.92 3.66 7.88 6.24 
5 0.15 0.16 2.17 3.50 8.82 5.39 
6 0.17 0.39 4.30 2.91 5.50 4.29 

iverFigure 7.10  Periphyton Mercury Upstream (1) to Downstream (6) of Input to R

The first step in median polish is to compute the median of each row (date), and subtract it from 
that row's data.  The residuals remain in the table. 
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Table 7.4 Table 7.3 data aligned by subtraction of row medians 
Station: 1 2 3 4 5 6 row med 

Date ( bi ) 
1 -2.190 0.600 -1.310 -0.600 1.290 3.290 2.64 
2 -2.550 -2.550 -1.660 1.660 7.270 3.840 2.65 
3 -2.140 -2.140 -0.740 0.740 5.000 2.040 2.39 
4 -2.200 -2.230 -1.370 1.370 5.590 3.950 2.29 
5 -2.685 -2.675 -0.665 0.665 5.985 2.555 2.84 
6 -3.430 -3.210 0.700 -0.690 1.900 0.690 3.60 

Next the median of the row medians (2.64) is computed as the first estimate of the overall 
median m. This is subtracted from each of the row medians: 

Station: 
Date 

1 
2 
3 
4 
5 
6 

1 

-2.19 
-2.55 
-2.14 
-2.20 
-2.69 
-3.43 

2 

0.60 
-2.55 
-2.14 
-2.23 
-2.68 
-3.21 

3 

-1.31 
-1.66 
-0.74 
-1.37 
-0.67 
0.70 

4 

-0.60 
1.66 
0.74 
1.37 
0.67 
-0.69 

5 

1.29 
7.27 
5.00 
5.59 
5.99 
1.90 

6 

3.29 
3.84 
2.04 
3.95 
2.56 
0.69 

row med 
( bi ) 
0.00 
0.01 

-0.25 
-0.35 
0.20 
0.96 

m=2.64 

The median of each column (station) is then computed and subtracted from that column's data.  
The residuals from the subtractions remain in the table. 

Station: 
Date 

1 

0.19 
-0.17 
0.24 
0.18 

-0.31 
-1.05 

2 

2.99 
-0.16 
0.25 
0.16 

-0.29 
-0.82 

3 

-0.29 
-0.64 
0.28 

-0.35 
0.35 
1.72 

4 

-1.31 
0.95 
0.03 
0.66 

-0.04 
-1.40 

5 

-4.01 
1.97 

-0.30 
0.29 
0.69 

-3.40 

6 

0.37 
0.92 

-0.88 
1.03 

-0.36 
-2.23 

row med 
( bi ) 
0.00 
0.01 

-0.25 
-0.35 
0.20 
0.96 

aj col med: -2.38 -2.39 -1.02 0.71 5.30 2.92 m=2.64 

Then the median of the column medians (-0.16) is subtracted from each of the column medians, 
and added to the overall median: 
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Station: 
Date 

1 
2 
3 
4 
5 
6 

1 

0.19 
-0.17 
0.24 
0.18 

-0.31 
-1.05 

2 

2.99 
-0.16 
0.25 
0.16 

-0.29 
-0.82 

3 

-0.29 
-0.64 
0.28 

-0.35 
0.35 
1.72 

4 

-1.31 
0.95 
0.03 
0.66 

-0.04 
-1.40 

5 

-4.01 
1.97 

-0.30 
0.29 
0.69 

-3.40 

6 

0.37 
0.92 

-0.88 
1.03 

-0.36 
-2.23 

row med 
( bi ) 
0.00 
0.01 

-0.25 
-0.35 
0.20 
0.96 

aj col med: -2.22 -2.23 -0.86 0.87 5.46 3.08 m=2.48 

This table now exhibits the first "polish" of the data.  Usually two complete polishes are 
performed in order to produce more stable estimates of the overall median and row and column 
effects.  For the second polish, the above process is repeated on the table of residuals from the 
first polish.  After a second complete polish, little change in the estimates is expected from 
further polishing. The table then looks like: 

Station: 
Date 

1 
2 
3 
4 
5 
6 

1 

0.22 
-0.57 
0.08 

-0.08 
-0.17 
0.15 

2 

3.02 
-0.56 
0.09 

-0.09 
-0.14 
0.38 

3 

-0.19 
-0.97 
0.19 

-0.54 
0.56 
2.99 

4 

-1.26 
0.57 

-0.11 
0.42 
0.11 

-0.18 

5 

-3.77 
1.78 

-0.24 
0.24 
1.04 

-1.98 

6 

0.31 
0.43 

-1.12 
0.69 

-0.31 
-1.11 

row med 
( bi ) 
0.03 
0.47 

-0.03 
-0.03 
0.12 

-0.18 
aj col med: -2.18 -2.19 -0.89 0.89 5.29 3.20 m=2.38 

The above table shows that 
1) 	 The station effects are large in comparison to the date effects (the aj are much larger in 

absolute magnitude than the bi ). 
2) 	 There is a clear progression from smaller to larger values going downstream (aj generally 

increases from stations 1 to 6), with the maximum at station 5. 
3) A large residual occurs for station 5 at date 1 (smaller concentration than expected). 

7.3.1.1 Plots related to median polish for checking assumptions 
Median polish can be used to check the assumptions behind an analysis of variance.  The first 
assumption is that the residuals εij are normally distributed. Boxplots of the residuals eij in the 
table provide a look at the distribution of errors after the treatment and block effects have been 
removed.  Figure 7.11 shows that for the periphyton mercury data the residuals are probably not 
normal due to the large proportion of outliers, but at least are relatively symmetric: 
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Figure 7.11 Residuals from the median smooth of periphyton mercury data 

In addition, the additivity of the table can be checked.  An ANOVA assumes that the treatment 
and block effects are additive. In other words, if being in group 1 adds -2.18 units of 
concentration to the overall mean or median, and if being at time 1 adds 0.03 units, these add 
together for treatment group 1 at time 1.  If this is not the case, a transformation of the data 
prior to ANOVA must be performed to produce additivity.  To check additivity, the 
"comparison value" cij (Hoaglin et al., 1983) is computed for each combination ij of block and 
treatment group, where  

cij = ai • bj / m . 
A residuals plot of the tabled residuals eij versus cij will appear to have a random scatter around 
0 if the data are additive. If not, the pattern of residuals will lead to an appropriate 
transformation to additivity -- for a nonzero slope s, the data should be raised to the (1−s) 
power in the ladder of powers. In figure 7.12, a residuals plot for the mercury median polish 
indicate no clear nonzero slope (most of the data are clustered in a central cloud), and therefore 
no transformation is necessary. 

Figure 7.12 Median polish residuals plot showing random scatter around eij=0 
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7.3.2   The Friedman Test 
The Friedman test is the most common nonparametric test used for the randomized complete 
block design. It computes the ranks of the data only within each block, not making cross­
comparisons between blocks.  Treatment effects are determined from the within-block ranks 
each treatment has received.  The Friedman test is an extension of the sign test, and reduces to 
the sign test when comparing only two treatment groups.  Its advantages and disadvantages in 
comparison to the analysis of variance are the same as that of the sign test to the t-test.  When 
the errors εij can be considered normal, the ANOVA should be preferred.  For the many 
situations where the errors are not normal, the Friedman test will generally have equal or greater 
power to detect differences between treatment groups, and should be performed.  The 
Friedman test is especially useful when the data can be ranked but differences between 
observations cannot be computed, such as when comparing a <1 to a 5. 

7.3.2.1 Null and alternate hypotheses 
The Friedman test is used to determine whether

 H0: the median values for k groups of data are identical, or  
H1: at least one median is significantly different. 

As with the Kruskal-Wallis test, the test does not provide information on which medians are 
significantly different from others. That information must come from a multiple comparison 
test. 

7.3.2.2 Computation of the exact test 
Rank the data within each block from 1 to k, from smallest to largest.  If the null hypothesis is 
true, the ranks within each block will vary randomly with no consistent pattern.  Summing across 
blocks, the average rank for each treatment group will be similar for all groups, and also be close 
to the overall average rank.  When the alternative hypothesis is true, the ranks in most of the 
blocks for one or more of the groups will be consistently higher or lower than others.  The 
average group rank for those groups will then differ from the overall average rank.  A test 
statistic Xf is constructed which uses the square of the differences between the average group 
ranks and the overall rank, to determine if groups differ in magnitude. 

The exact test statistic for the Friedman test is a function of both the number of blocks and 
treatments. Iman and Davenport (1980) state that the exact test should be used for all cases 
where the number of treatment groups plus the number of blocks (k + n) is 
≤ 9. For larger sample sizes a large sample approximation is sufficiently accurate for use.  When 
the number of blocks n is small, the F approximation should be preferred over the chi-square 
approximation (see the next section). 

Should the exact test be required, compute the exact test statistic Xf as shown for the large 
sample approximation of the following section.  Xf is computed identically for both the exact 
form and large sample approximation. When ties occur,  either a corrected large sample 
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approximation must be used, or the rank transform (F approximation) calculated.  The rank 
transform may be easier to compute. 

7.3.2.3 Large sample approximation 
For years the Friedman test statistic was approximated using a chi-square distribution with k−1 
degrees of freedom.  This is the approximation used by statistics packages, and is presented here 
because of its common use.  However, it does not take into account the number of blocks in the 
data set, and can be in serious error for small n and small α (α < 0.1) (Iman and Davenport, 
1980). An F approximation which is more accurate for small n is also available.  It can be 
computed from the chi-square approximation, or directly from the data as a rank transform 
method (an analysis of variance on the within-block ranks Rij). 

The box on the next page outlines the computation process for the large sample approximation 

to the Friedman test statistic. 


Example 3, continued.

The Friedman test is used to determine if the median concentration of periphyton mercury 

differs for the 6 stations along the South River of Virginia.  The boxplots of this data were 

shown in figure 7.10, and the data given in table 7.3.  The within-block ranks are given below.  

For 6 blocks (date) and 6 stations, sample sizes are large enough to employ an approximation, 

so the preferred F approximation is computed. 


Table 7.5 Within-Block Ranks of the Table 7.3 data 
Station: 1 2 3 4 5 6 

Date 
1 1 4 2 3 5 6 
2 1.5 1.5 3 4 6 5 
3 1.5 1.5 3 4 6 5 
4 2 1 3 4 6 5 
5 1 2 3 4 6 5 
6 1 2 5 3 6 4 
Rj 1.33 2.0 3.17 3.67 5.83 5.0 

overall median = (k+1)/2 = 3.5 

jkmonson
`
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The Friedman test 
Situation 	 Measurements of k treatment groups are performed on the same or related sets 

of subjects, called blocks.  There are n blocks.  One observation is made on 
each group-block combination (N = k•n). 

Computation	 Within each block, observations are ranked from 1 to k, smallest to largest.  
These within-block ranks Rij are then used to compute the average group rank 
Rj for each of the j=1,k treatment groups: 


n

∑ Rij

i=1

Rj  = .n

Test Statistic	 The average group rank Rj is compared to the overall average rank 
R = (k+1)/2 in the test statistic Xf: 

12 n k	 k+1 2 
. Xf = k (k+1) ∑ 

Rj - 2  
j=1 

Xf is compared either to an exact table or approximated by a chi-square 
distribution with (k−1) degrees of freedom.  However, a better approximation 
is available which is compared to an F distribution (Iman and Davenport, 
1980). This form is more accurate for small n. 

(n-1) Xf 
. f = n (k-1) - Xf

Tied data	 When observations are tied within a block, assign the average of their ranks to 
each. Xf must be corrected when more than a few ties occur.  

1 
12 n

n k ∑ 
Rj 2  

2k k+1 Xf = 	 - . 
k (k+1) - n(k-1) ∑ ∑ (tij (j3-j)) j=1 

i=1 j=1 
where  tij equals the number of ties of extent j in row i.  The test statistic f is 
then computed from this corrected Xf as above.  An alternative to computing 
Xf and then f is the rank transform ANOVA (next section). 

Decision Rule	 To reject H0: the median of every group is identical, versus 
H1: at least one median differs 

 Exact test:  Reject H0 if Xf > xα, the (1-α)th quantile of the Friedman test 
statistic distribution from table B7 of the Appendix;  otherwise do not reject 
H0. 
F-approximation:  Reject H0 if f ≥ F1−α, k−1, (n−1)(k−1)  the 1−α quantile 
of an F distribution with k−1 and (n−1)(k−1) degrees of freedom;  otherwise 
do not reject H0. 

jkmonson


`

jkmonson

jkmonson
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There are only two ties, so ignoring the formula for the tie correction to the variance, 
12 6 6  7 12

Xf = 
( )∑ R

j 
−  

2 

= ∑ (−2.17) 2 + (-1.5)2 + (-0.33)2 + (0.17)2 + (2.33)2 + (1.5)2. 
6( 7) j =1 

 2  7 
12 

= 7   • 14.78 

= 25.33 . This can be compared to a chi-square distribution having k−1 = 5 df. 

To be more exact, the tie correction will be computed.  For rows i=1,4,5,6 there are no ties.  So 
for j=1, tij = 6 (there are 6 "ties" of extent 1), and for j=2 to 6, tij = 0 (no true ties). For these 
four rows 

k
∑ (tij (j3-j)) = 6(1−1)+0(8−2)+0(27−3)+0(64−4)+0(125−5)+0(216−6) = 0. 

j=1 

Rows without ties will always add to zero.  Also note that "ties" of extent 1 will always 
contribute 0 to the sum, as 13−1 = 0. For rows i=2 and 3 there is one pair of tied values per 
row. Thus for j=1, tij = 4 (4 single values); for j=2, tij = 1 (1 tie of extent 2), and for j=3 to 6, 
tij = 0 (no triplicates, etc.).  For each of these two rows 

k
∑ (tij (j3-j)) = 4(1−1)+1(8−2)+0(27−3)+0(64−4)+0(125−5)+0(216−6) = 6. 

j=1 
n k

Therefore ∑ ∑ (tij (j3-j)) = 0+6+6+0+0+0 = 12, and 
i=1 j=1 

12•6 
Xf = 1    • 14.78 = 25.58 


6 (7) - 6(5)•12


which can be compared to a chi-square distribution with 5 degrees of freedom. 

The better approximation is the F approximation, or 
(5) 25.58

= 28.94 , which is compared to F0.95, 5, 25 = 4.5f = 6 (5) - 25.58 

Therefore reject H0 that the medians are the same with a p-value of <0.0001. 

7.3.2.4 Rank transform approximation:  analysis of variance: on within-block ranks 
Again an approximation to the exact test statistic may be computed by performing the 
parametric two-factor ANOVA on the ranks.  For the Friedman test, the appropriate ranks are 
the within-block ranks of table 7.5.  Ties are automatically corrected for by assigning the average 
rank to all ties within a block.  A two-factor ANOVA on the within-block ranks has an 
ANOVA table as in section 7.3.4.  The resulting F statistic, the ratio of the MST for the 
treatment group over the MSE, is the same as the statistic f derived from the chi-square 
approximation above. Thus the ANOVA on within-block ranks gives a better approximation 
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than does Xf for the cases (α < 0.1 and small n) where the chi-square approximation is

inaccurate (Groggel, 1987). 


Example 3, continued.

The ANOVA table for the within-block ranks of table 7.5 is: 

Source df SS MS F p-value 
Date (block) 5 0.000 0.000 
Station 5 88.667 17.733 28.93 <0.0001 
Error 25 15.333 0.613 
Total 35 104.000 

Note that all differences between blocks have been nullified by transforming the data to the 
identical within-block ranks, 1 to k.  As the blocks all have the same values within them, the 
block sum of squares equals 0.  Also note that the F statistic is identical to that previously 
calculated from the large-sample approximation after tie correction.  Therefore the ANOVA on 
within-block ranks provides a convenient way to avoid the complicated tie correction to the 
Friedman statistic. 

7.3.3 Median Aligned-Ranks ANOVA 
The Friedman test is the multi-treatment equivalent of the sign test.  In Chapter 6 the signed­
rank test was presented in addition to the sign test, and was favored over the sign test when the 
differences between the two treatments were symmetric.  In this section a multi-treatment 
equivalent to the signed-rank test is presented, called the Median Aligned-Ranks ANOVA 
(MARA).  MARA is one of several possible extensions of the signed-rank test; others include 
Quade's test (Conover, 1980).  Groggel (1987) and Fawcett and Salter (1984) have shown that an 
aligned-rank method has substantial advantages in power over other possible signed-rank 
extensions. 

Friedman's test avoids any comparisons across blocks, just as the sign test avoids comparisons of 
the magnitudes of paired differences across blocks.  This avoids the confusion produced by 
block-to-block differences, but does not take advantage of the information contained in such 
comparisons.  MARA allows comparisons between blocks by first subtracting the within-block 
median from all of the data within that block. This "aligns" the data across blocks to a common 
center.  It is equivalent to the ranking of block-to-block differences done in the signed-ranks 
test. To derive the benefits of cross-block comparisons, a cost is incurred.  This is an 
assumption that the residuals εij are symmetric. Symmetry can be evaluated by estimating the 
residuals using median polish, and producing a boxplot as in figure 7.11. 

Note that just as for the Friedman's test and two-way ANOVA without replication there are 
(k−1)(n−1) error degrees of freedom, (n−1) less than a one-way ANOVA. MARA is a two­
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factor analysis, with alignment contributing the block effect.  However, MARA is computed 
using a one-way ANOVA on the aligned ranks, so the correct F-test will differ from that 
performed automatically by a computerized analysis.  The error degrees of freedom must be 
(k−1)(n−1), not k(n−1) as for a one-way ANOVA.  MARA is identical to the aligned ranks 
procedure of Fawcett and Salter (1984), except that the block median is used for alignment 
rather than the block mean. 

The Median Aligned-Ranks ANOVA test 
Situation 	 Measurements of k treatment groups are performed on the same or related sets 

of subjects, called blocks.  There are n blocks.  One observation is made on 
each group-block combination (N = k•n). 

Computation Within each of the n blocks, the observations are aligned by subtracting the 
block median, forming the aligned oij. 

oij = (yij − bi), where block median bi = [median(yij), j=1,...k] 
 The oij are then ranked from 1 to N, forming aligned ranks ARij: 

ARij = rank (oij) . 

Test Statistic	 One-way analysis of variance is computed on the ARij  However, the F statistic 
is  F = MST/MSE, where the error degrees of freedom are (n−1) less than in a 
one-way ANOVA because of the alignment procedure.  The ANOVA table is: 
Source df SS MS F 

 Treatment (k−1) SST SST/(k−1) MST/MSE

 Error (k−1)(n−1) SSE SSE/[(k−1)(n−1)] 


Total n(k−1) Total SS 


Tied data	 Average ranks are assigned to all tied oij. 

Decision Rule	 To reject H0: the median of every group is identical, versus 
H1: at least one median differs 

 Reject H0 if F ≥ F1−α, k−1, (n−1)(k−1)  the 1−α quantile of an F distribution 
with k−1 and (n−1)(k−1) degrees of freedom;  otherwise do not reject H0. 

7.3.3.1 Null and alternate hypotheses 
The null and alternate hypotheses are identical to those of the Friedman test  

H0: the median values for k groups of data are identical, or  
H1: at least one median is significantly different. 

Here, however, it is assumed that the residuals εij are symmetric. MARA does not provide 
information on which medians are significantly different from others.  That must come from a 
multiple comparison test. 
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7.3.3.2 Computation 
MARA is a rank transform approximation test;  p-values for an exact test have not been 
computed. 

Example 3, continued 
The aligned oij for the periphyton mercury data were computed during the first step of the 
median polish, and listed in table 7.4. These oij are then ranked from 1 to N=36 to form aligned 
ranks, which are presented in table 7.6: 

Table 7.6  Aligned Ranks of the Table 7.4 data 
Station: 1 2 3 4 5 6 

Date 
1 9 19 14 18 24 30 
2 5.5 5.5 12 26 36 31 
3 10.5 10.5 15 23 33 28 
4 8 7 13 25 34 32 
5 3 4 17 20 35 29 
6 1 2 22 16 27 21 

A one-way analysis of variance is conducted on these aligned ranks.  However, the computerized 
F-test is ignored, as the error degrees of freedom used were n(k−1)=30, and do not reflect the 
alignment process. The appropriate ANOVA table and F-test are below, and the p-value shows 
that H0 is to be rejected.  Significant differences are found between treatment group medians: 
Source df SS MS F p-value 
Station 5 3290.3 658.1 27.71 <0.0001 
Error 25 593.7 23.8 
Total 30 3884.0 

7.3.4 Parametric Two-Factor ANOVA Without Replication 
The traditional parametric test for the randomized complete block design is again an analysis of 
variance -- a two-factor ANOVA without replication.  One factor is the contrast between 
treatment groups while the second is the block effect.  There is one observation (no replicates) 
per treatment-block combination. The block effect is of no interest except to remove its 
masking of the treatment effect, so no test for its presence is required.   
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7.3.4.1 Null and alternate hypotheses 
The hypotheses are similar to those of the Friedman and MARA tests, except that treatment 
group means, rather than medians, are being tested. 

H0: the k treatment group means are identical,  µ1 = µ2 = ... = µk, versus
 H1: at least one mean is significantly different. 

The ANOVA model is identical to that for all of the tests of this section: 
yij = µ + αj + βi + εij, 

where yij is the individual observation in block i and group j;  
µ is the overall mean, 

αj is the "jth group effect", j=1,k  
βi is the "ith block effect", i=1,n  
εij is the residual or "error" between the individual observation and the 

combined group and block effects. 
Here, however, it is assumed that the residuals εij follow a normal distribution. ANOVA does 
not provide information on which means differ from others.  That must come from a multiple 
comparison test. 

7.3.4.2 Computation 
As with other analysis of variance procedures, the treatment and error mean squares are 
computed, and their ratio forms the F statistic to be compared to a table of the F distribution for 
evaluation of its significance. Again there are k treatment groups and n blocks. 

In comparison to a one-way ANOVA without blocking, the error sum of squares SSE is split 
into two parts, the SSE and the sum of squares for the block effect SSB.  The variation due to 
differences between blocks is thereby removed from the background noise (MSE).  If there is an 
appreciable block effect, removal of the SSB lowers the SSE and MSE in comparison to their 
values for a one-way ANOVA.  This produces a higher F statistic, allowing the treatment effect 
to be more easily discerned. 

Example 3, continued 
An analysis of variance is calculated directly on the periphyton mercury data.  The ANOVA 
table is: 
Source df SS MS F p-value 
Date 5 3.26 0.65 
Station 5 230.13 46.03 26.15 <0.0001 
Error 25 44.02 1.76 
Total 35 277.40 
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The null hypothesis is again soundly rejected. The treatment group means are declared different 
at any reasonable alpha level. As in all of the tests applied to this data set, the block effect 
(Date) is minimal. 

n 

n 

k 

k 

Two-factor ANOVA without replication 
Situation Measurements of k treatment groups are performed on the same or related sets 

y 

of subjects, called blocks.  There are n blocks.  One observation is made on 

n

k 

k 

n 

∑ 

Computation	 Sums of squares for treatment, block and error are computed using the 
following formula.  These are divided by their appropriate degrees of freedom 
to form mean squares. 

2 2	 2 2   	     
   	 ∑ y ∑ ∑ y
   	     

 SST = − 	  SSB = − 
kn	 kn 

2  

n 

∑ y 

∑ ∑ y  

k 

∑ 

∑ −Total SS = SSE = Total SS − SST − SSB	 2 

kn 

Test Statistic	 The F statistic is computed as F = MST/MSE,.  The ANOVA table is: 

n 

∑ y 

n 

Source df SS MS 	 F p-value

each group-block combination (N = k•n). 	

k

∑ 

 Treatment 	k−1 SST SST/(k−1) MST/MSE

k 

∑ 

Block n−1 SSB SSB/(n−1) 

 Error (k−1)(n−1) SSE SSE/[(k−1)(n−1)] 


Total N−1 Total SS 


Tied data	 No corrections necessary. 

Decision Rule	 To reject H0: the mean of every group is identical, versus 
H1: at least one mean differs 

 Reject H0 if F ≥ F1−α, k−1, (n−1)(k−1)  the 1−α quantile of an F distribution 
with k−1 and (n−1)(k−1) degrees of freedom;  otherwise do not reject H0. 

7.4 Multiple Comparison Tests 

In most cases the analyst is interested not only in whether group medians or means differ, but 
which differ from others. This is information not supplied by the tests presented in the previous 
sections, but by methods called multiple comparison tests (MCTs).  MCTs compare all possible 
pairs of treatment group medians or means, and are performed only after the null hypothesis of 



196 Statistical Methods in Water Resources 

"all medians or means identical" has been rejected.  Of interest is the "pattern" of group medians 
or means: 
 group A ≅ group B < < group C, 
etc. MCT's are not efficient methods for contrasting specific sets of groups known to be of 
interest before an ANOVA or Kruskal-Wallis test is done, such as a treatment versus a control.  
Other tests are available for making specific contrasts.  Instead, MCTs compare all possible 
combinations of treatment group centers, ranking the centers in order and indicating which are 
similar or different from others.  

Stoline (1981) reviews the many types of parametric multiple comparison tests.  Campbell and 
Skillings (1985) discuss nonparametric multiple comparisons. 

7.4.1 Parametric Multiple Comparisons 
Parametric MCTs compare treatment group means.  They often calculate a "least significant 
range" or LSR, the distance between any two means which must be exceeded in order for the 
two groups to be considered significantly different at a significance level α. 

If y
1 

− y
2 

> LSR = R s2 n  , y
1 and y

2 
are significantly different. 

The statistic R is analogous to the t-statistic in a t-test.  R depends on the test used (is some 
function of either a t- or studentized range statistic q), the error degrees of freedom from the 
ANOVA, and on α. The variance s2 is just the MSE from the ANOVA.  Parametric MCTs can 
be classified into four types, based on their method of computation and on whether a pairwise 
or overall α level is used (figure 7.13).   

α pairwise α overall 

MST 
Duncans Multiple Range test REGWQ * 

(equal n only) SNK REGWF * 

SIM 
(equal or Fisher's t-tests (LSD) Tukey 

Scheffe 
* 

unequal n) Bonferroni 

Figure 7.13 Types of Parametric Multiple Comparison Tests 

Methods with an asterisk * in figure 7.13 have the most power to detect differences between 
group means of those methods using the overall error rate.  The REGW methods are the most 
powerful (have the smallest LSR) for equal sample sizes, though Tukey's test is close in power.  
For unequal sample sizes, Tukey's method is the most powerful of those listed.  Therefore 
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Tukey's method is a generally applicable and powerful multiple comparison test for a variety of 
situations. 

Multiple-stage tests, MST, are valid only when group sample sizes are equal.  Examples are the 
Duncan's, Student-Newman-Keuls (SNK), and REGW tests.  Their R statistic varies for each 
pairwise comparison as a function of the number of group means in between the two being 
compared.  A new least significant range (y1 − y ) must then be computed for each pairwise 2
comparison of means. If sample sizes were unequal, test results could be non-intuitive, as in:   
A > B,  B > C, but A = C where "A > B" means that A is larger and significantly different from 
B, and "A = C" means A is not significantly different from C.  This could arise if B had a large 
sample size so that comparisons involving it had a lower LSR than those not involving B.  Thus 
MSTs are valid only for equal sample sizes within all groups. 

Simultaneous inference methods, SIM, are valid for both equal and unequal group sample sizes.  
Examples are Tukey's, Sheffe's, and Fisher's t-tests.  These tests use one R value to calculate a 
single least significant range for all pairwise comparisons.  The harmonic mean 

2 n1 n2
harmonic mean of n1 and n2 = n1 + n2 

is substituted for n in the case of unequal group sample sizes.  So for unequal sample sizes a SIM 
should be used. 

The second classification criteria for MCTs is based on the type of error rate α used for 
comparisons (figure 7.13).  One class of tests uses the stated α level for each pairwise 
comparison (αp= pairwise error rate).  When there are multiple comparisons each having a 
pairwise error rate of α, the overall probability of declaring at least one false difference (the 
overall error rate αo) is much greater than αp. This overall error rate is the error rate for the 
"pattern" of group means, and is more often of interest than a pairwise error rate in water 
resources applications.  For example, when comparing six group means, there are (6•5)/2 = 15 
pairwise comparisons. If αp = 0.05 is used for each test, then there will be an overall error rate 
αo = 1− (1− αp)15  = 0.54 of making at least one error in the overall comparisons of the six 
group means. 

Unfortunately, the distinction between the overall and pairwise error rates is often not 
understood, and pairwise rates are presented as if they were overall rates.  The pairwise rate is 
much like the probability of being robbed today, while the overall rate is like the probability of 
ever being robbed in your lifetime.  To claim that the (very small) probability of being robbed 
today is actually the probability of ever being robbed leads to a false sense of security.  Similarly, 
citing that according to a Duncan's multiple range test, A > B = C = D > E = F with an error 
rate of α = 0.05 when in fact 0.05 was used for each test, also presents a false sense of security 
in the results. 
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Duncan's test is often used in this incorrect fashion.  Individual paired differences found at the 
α = 0.05 level results in the overall rate of at least one error in the pattern of group means at 
something higher, such as the 0.54 chance for the 6 groups above.  When the primary interest is 
in the overall pattern and its accuracy, methods which set the error rate equal to the overall α, 
such as Tukey's test, should be performed. 

Some authors report only results of a MCT, usually Duncan's multiple range test, skipping the 
required prior ANOVA F-tests.  NEVER DO THIS!  The likely reason that this has been done 
is that ANOVA did not find significant differences at a true (overall) significance level of 0.05, 
but the Duncan's test did find differences. Why does this occur?  Duncan's test was performed 
at a pairwise significance level of 0.05, but at an overall level of something much higher (0.54 for 
the six means above).  An overall error level of 0.54 states there a 54 percent chance that two 
means will be declared significantly different when in fact they are not.  An ANOVA at α = 0.54 
would also be "significant" (the p-value is somewhere below 0.54), but a test having this large an 
error rate is essentially useless!  ANOVA should always be performed first as the appropriate 
test for determining whether any differences occur between group means.  If they do not, stop 
there. By performing only a MCT, an α=0.54 test is conducted while declaring it to be an α = 
0.05 test of whether differences occur.  This is quite misleading. 

7.4.1.1 Assumptions 
All MCTs discussed thus far have the same assumptions as does ANOVA -- data within each 
treatment group are normally distributed, and each treatment group has equal variance.  
Violations of these assumptions will result in a loss of power to detect differences which are 
actually present. 

7.4.1.2 Computation of Tukey's test 
Two group means yi and yj can be considered different if 

y
i 
− y MSE / n

j 
> q (1−α), k, N−k • 

where q is the studentized range statistic from Neter, Wasserman and Kutner 
(1985), 

α is the overall significance level, 
k is the number of  treatment group means compared, 
N−k are the degrees of freedom for the MSE, and 
n is the sample size per group. 

For unequal sample sizes 
ni + nj

y
i 
− y  MSE • 

j 
> q (1−α), k, N−k • 2 ni nj 

where n has been replaced with the harmonic mean of the unequal sample sizes for the two 
groups being compared, ni and nj. For only two groups, q becomes the student's t statistic, and 
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Tukey's test is identical to Fisher's all-possible t-tests.   Formulas for other MCTs can be found 
in SAS Institute (1985). 

Example 4 
Knopman (1990) tested wells located in the Appalachian mountains of Pennsylvania to see if 
their specific capacities differed among four rock types -- dolomites, limestones, siliciclastics 
(sandstones, shales, etc.), and metamorphic plus igneous rocks.  To make the data more nearly 
normal, the natural log of specific capacity was used.  A subset of 200 observations across the 
four rock types were randomly selected from the over 4000 original observations.  This subset is 
presented in Appendix C7. Boxplots are shown in figure 7.14.  The ANOVA table below 
indicates that the log specific capacities differed significantly between the four rock types. 

Source df SS MS F p-value 
Rock type 3 54.03 18.010 4.19 0.007 
Error 196 842.15 4.297 
Total 199 896.18 

Figure 7.14  Natural logs of specific capacity of wells in four rock types, Pennsylvania 

Since the null hypothesis is rejected, Tukey's test can be computed.  The four group means are : 
y [dolomite] = y d  = 0.408 y  [limestone] = y l  = −0.688 
y  [siliciclastic] = y s  = −0.758 y [metamorphic] = y m  = −0.894 
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The least significant range LSR is computed as: 
• 4.297/50 ≅ q(0.95, 4, ∞) •  4.297 / 50 = 3.63•0.293 LSR  = q(0.95, 4, 196) 

= 1.06 
Therefore, any group means of log specific capacity which differ by more than 1.06 are 
significantly different by the Tukey's multiple comparison test.  yd is then seen to be 
significantly different and larger than the other three groups, which are not significantly different 
from each other, or: 

y d  > y l = y s = y m 

REGWQ could also be computed because sample sizes in each subset group are equal.  The 
choice of REGWQ versus Tukey's would largely depend on which were available. First the k 
group means are ordered by magnitude ( y d , y l , y s , y m). The first comparison is made 
between the extremes, y d versus y m. The studentized range is again used, accounting for the 
number of means between and including the two being compared; k=4 in this first case.  If this 
test proves to be significant, the two possible comparisons with p =k−1 intervening group 
means are made -- y d versus y s and y l versus y m. Continue working inward until an 
insignificant difference is found.  No comparisons of group means contained between means 
already found to be insignificant need be made. 

For REGWQ, two group means differ at an overall significance level α if : 
y i − y j  > q αp, p, N−p • MSE / n 

 where αp  = 1 − (1−α) p/k for p < (k−1) 
= α for p ≥ (k−1). 

Using the log specific capacity data, comparing y d versus y m using αp  = α = 0.05: 
the least significant range = q 0.05, 4, 196 • 4.297 / 50 = 1.06, identical to Tukey's LSR.  
Therefore y d > y m.  Next, compare y d versus y s and y l versus y m. Both of these have 
p=3 and an LSR of q 0.05, 3, 197 • 4.297 / 50 = 3.31•0.293 = 0.97.  Therefore  
y d > y s and y l = y m. Since the limestone and metamorphic group means are not 
significantly different there is no reason to test the siliciclastic versus the metamorphic group 
means. For the final comparison, y d is compared to y l. The LSR is based on p=2 and  

αp  = 1 − (0.95) 2/4 = 0.025. Therefore LSR = q 0.025, 2, 198 • 4.297 / 50 = 3.31•0.293 = 
0.97. So y d > y l and the overall pattern is again: 

y d  > y l = y s = y m 

7.4.2 Nonparametric Multiple Comparisons 
Statisticians are actively working in this area (see Campbell and Skillings, 1985).  The simplest 
procedures for performing nonparametric multiple comparisons are rank transformation tests.  
Ranks are substituted for the original data, and a multiple comparison test such as Tukey's is 
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performed on the ranks.  These are logical follow-ups to the rank transform approximation 
approaches to the Kruskal-Wallis, Friedman, and two-way ANOVA tests previously presented. 

For the one-way situation, Campbell and Skillings (1985) recommend a multiple-stage test using 
the Kruskal-Wallis (KW) statistic.  The process resembles the REGWQ test above.  After a 
significant KW test occurs for k groups, place the groups in order of ascending average rank.  
Perform new KW tests for the two possible comparisons between p = (k−1) groups, noting that 
this involves re-ranking the observations each time.  If significant results occur for one or both 
of these tests, continue attempting to find differences in smaller subsets of p < (k−1). In order 
to control the overall error rate, follow the pattern of REGWQ for the critical alpha values: 

αp = 1 − (1−α)p/k for p < (k−1) 
= α   for  p  ≥ (k−1) 

Example 4 continued 
First, Tukey's test will be performed on the ranks of the Pennsylvania log specific capacity data.  
Then a second nonparametric MCT, the multiple-stage Kruskal-Wallis (MSKW) test using 
REGWQ alpha levels, is performed. 

The ANOVA table for testing data ranks shows a strong rejection of H0: 
Source df SS MS F p-value 
Rock type 3 38665 12888 4.02 0.008 
Error 196 627851 3203 
Total 199 666515 

The four group mean ranks are : 
R [dolomite] = R d   = 124.11 R  [limestone] = R l  = 94.67 
R  [siliciclastic] = R s  = 95.06 R  [metamorphic] = R m  = 88.16 

The least significant range LSR for a Tukey's test on data ranks is computed as:
•  3203/50 ≅ q

(0.95, 4, ∞) 
•  3203/50 = 3.63•8.00 LSR = q

(0.95, 4, 196) 
= 29.06 

Pairs of group mean ranks which are at least 29.06 units apart are significantly different.  
Therefore (within 0.01)      R d > R s = R l = R m. 

To compute the MSKW test, the first step is merely the Kruskal-Wallis test on the four groups.  
The overall mean rank R equals 100.5.  Then 

K=11.54 χ2 = 7.815 p=0.009 so, reject equality of group medians. 
0.95,(3)
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Proceeding, new Kruskal-Wallis tests are performed between the two sets of three contiguous 
treatment groups: R d vs. R l vs. R s and R l vs. R s vs. R m . This requires that the 
data all be re-ranked each time.  Their respective test statistics are denoted Kdls and Klsm. The 
significance level is as in REGWQ, so for (k−1) = 3 groups, αp = α = 0.05. 

Kdls = 8.95 χ2 = 5.99 p=0.012 so, reject equality of group medians. 
0.95,(2)


 Klsm = 0.61 p=0.74 group medians not significantly different. 


Finally, the k−2 = 2 group comparisons are performed.  There is no need to do these for the 
limestone versus siliciclastic and siliciclastic versus metamorphic comparisons, as the 3-group 
Kruskal-Wallis test found no differences among those group medians.  Therefore the only 
remaining 2-group comparison is for dolomite versus limestone.  The 2-group Kruskal-Wallis 
test is performed at a significance level of  
αp  = 1 − (0.95) 2/4 = 0.025. 

Kdl = 5.30 χ2 = 5.02 p=0.021 so, reject equality of group medians. 
0.975,(1)

The pattern is the same as for the other MCT's,  
mediand > medianl = medians = medianm. 

7.5 Presentation of Results 

Following the execution of the tests in this chapter, results should be protrayed in an easily­
understandable manner. This is best done with figures.  A good figure provides a visual 
confirmation of the outcome of the hypothesis test.  Differences between groups are clearly 
portrayed. A poor figure gives the impression that the analyst has something to hide, and is 
hiding it effectively!  The following sections provide a quick survey of good and bad figures for 
illustrating differences between three or more treatment groups. 

7.5.1 Graphical Comparisons of Several Independent Groups 
Perhaps the most common method used to  report comparisons between groups is a table, and 
not a graph. Table 7.7a is the most common type of table in water resources, one which 
presents only the mean and standard deviations.  As has been shown several times, the mean and 
standard deviation alone do not capture much of the important information necessary to 
compare groups, especially when the data are skewed.  Table 7.7b provides much more 
information -- important percentiles such as the quartiles are listed as well. 

Table 7.7a  A simplistic table comparing the four groups of log specific capacity data 
 Mean Std.Dev. 
Dolomite 0.408 2.557 
Limestone -0.688 2.360 
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Siliciclastics -0.758 1.407 
Metamorphic -0.894 1.761 

Table 7.7b  A more complete table for the log specific capacity data 
N Mean Median Std.Dev. Min Max P25 P75 

Dolomite 50 0.408 0.542 2.557 -4.605 5.298 -1.332 2.264 
Limestone 50 -0.688 -0.805 2.360 -4.605 5.649 -2.231 0.728 
Siliciclastics 50 -0.758 -0.777 1.407 -3.507 1.723 -1.787 0.381 
Metamorphic 50 -0.894 -1.222 1.761 -3.912 4.317 -2.060 0.178 

However, neither table provides quick intuitive insight into the data structure.  Neither 
sufficiently illustrates the differences between groups found by the hypothesis tests in example 4, 
or how they differ. 

Histograms are commonly used to display the distribution of one or more data sets, and have 
been employed to attempt to illustrate differences between three or more groups of data.  They 
are not usually successful.  The many crossing lines, coupled with an artificial division of the data 
into categories, results in a cluttered and confusing graph.  Figure 7.15 displays four overlapping 
histograms, one for each of the data groups.  It is impossible to discern anything about the 
relative characteristics of any of the data groups from this figure.  Overlapping histograms 
should be avoided unless one is purposefully trying to confuse the audience!  In figure 7.16, side-
by-side bar charts display the same information.  This too is confusing and difficult to interpret.  
From the graph one could not easily say which group had the highest mean or median, much 
less anything about the groups' variability or skewness.  Many business software packages allow 
speedy production of such useless graphs as these. 

Figure 7.17 shows a quantile plot of the same four data groups.  The quantile plot far exceeds 
the histogram and bar chart in clarity and information content.  The dolomite group stands apart 
from the other three throughout most of its distribution, illustrating both the ANOVA and 
multiple comparison test results.  An experienced analyst can look for differences in variability 
and skewness by looking at the slope and shapes of each group's line.  A probability plot of the 
four groups would have much the same content, with the additional ability to look for 
departures from a straight line as a visual clue for non-normality. 
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Figure 7.15  Overlapping histograms fail to differentiate between four groups of data 
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Figure 7.16  Side-by-side bars fail to clearly differentiate between four groups of data 
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Compare figures 7.15 to 7.17 with boxplots of the log specific capacity data shown previously in 
figure 7.14.  Boxplots clearly demonstrate the difference between the dolomite and other group 
medians.  Variability is also documented by the box height, and skewness by the heights of the 
top and bottom box halves.  See Chapter 2 for more detail on boxplots.  Boxplots illustrate the 
results of the tests of this chapter more clearly than commonly-used alternate methods such as 
histograms. 
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Figure 7.17  Quantile plots differentiate between four groups of data 

7.5.2 Presentation of Multiple Comparison Tests 
Suppose a multiple comparison test resulted in the following:  

y 1 = y 2 y 1 ≠ y 3 y 1 ≠ y 4 (= : not significantly different) 
y 2 = y 3 y 2 ≠ y 4  (≠ : significantly different) 
y 3 = y 4 

for four treatment groups having y 1 > y 2  > y 3 > y 4 . 
The results are often presented in one of the two following formats: 

1. 	Letters 
y 1 y 2 y 3 y 4

 A AB BC C 
Treatment group means are ordered, and those having the same letter underneath them are not 
significantly different.  The convenience of this presentation format is that letters can easily be 
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positioned somewhere within side-by-side boxplots, illustrating the results of a MCT as well as 

MCT results: Boxes with same letter are 
not significantly different. 

A 

AB 

BC 

C 

the overall test for equality of all means or medians (see figure 7.18). 

Figure 7.18 Boxplots with letters showing the results of a MCT. 

2. 	Lines 
y 1 y 2 y 3 y 4 

In this presentation format, group means connected by a single unbroken line are not 
significantly different. This format is suited for inclusion in a table listing group means or 
medians. 

A third method is somewhat more visual: 

3.	  Shaded Boxes 
y 1 y 2 y 3 y4 
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These shaded boxes can be thought of as thick versions of the lines presented above.  Group 
means with boxes shaded along the same row are not significantly different.  Shaded boxes 
allow group means to be ordered by something other than mean or median value.  For example, 
the order of stations going upstream to downstream might be 3,1,2,4.  Boxes put in that order 
show a significant increase in concentration between 3 and 1 and a significant drop off again 
between 2 and 4. So in addition to displaying multiple comparison test results, the shaded 
boxes below also illustrate the pattern of concentration levels of the data.  

Downstream > 
y 3 < y 1 = y 2 > y 4 

Figure 7.19 Shaded boxes for illustration of a multiple comparison test. 

Station means not significantly different have boxes shaded within the same row. 
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Exercises 

7.1 	 Discharge from pulp liquor waste may have contaminated shallow groundwater with 
caustic, high pH effluent (Robertson, et al., 1984).  Determine whether the pH of 
samples taken from three sets of piezometers are all identical -- one piezometer group is 
known to be uncontaminated. If not, which groups are different from others?  Which 
are contaminated? 

pH of samples taken from piezometer groups 
BP-1 7.0 7.2 7.5 7.7 8.7 7.8 
BP-2 6.3 6.9 7.0 6.4 6.8 6.7 
BP-9 8.4 7.6 7.5 7.4 9.3 9.0 

7.2 	 In addition to the waters from granitic terrain given in Exercise 2.3, Feth et al. (1964) 
measured chloride concentrations of ephemeral springs.  These additional data are listed 
below (use the zero value as is).  Test whether concentrations in the three groups are all 
identical. If not, which differ from others? 

Chloride concentration, in mg/L 
Ephemeral Springs 0.0 0.9 0.1 0.1 0.5 0.2 

0.3 0.2 0.1 2.0 1.8 0.1 
0.6 0.2 0.4 

7.3 	 The number of Corbicula (bottom fauna) per square meter for a site on the Tennessee 
River was presented by Jensen (1973).  The data are found in Appendix C8.  Perform a 
median polish for the data of strata 1.  Graph the polished estimates of year and seasonal 
effects.  Is any transformation suggested by the residuals? 

7.4 	 Test the Corbicula data of strata 1 to determine whether season and year are significant 
determinants of the number of organisms. 

7.5 	 Test for significant differences in the density of Corbicula between seasons and strata for 
the 1969 data. 



Chapter 8

Correlation


Concentrations of atrazine and nitrate in shallow groundwaters are measured in wells over a 
several county area.  For each sample, the concentration of one is plotted versus the 
concentration of the other. As atrazine concentrations increase, so do nitrate.  How might the 
strength of this association be measured and summarized? 

Streams draining the Sierra Nevada mountains in California usually receive less precipitation in 
November than in other months. Has the amount of November precipitation significantly 
changed over the last 70 years, showing a gradual change in the climate of the area?  How might 
this be tested? 

The above situations require a measure of the strength of association between two continuous 
variables, such as between two chemical concentrations, or between amount of precipitation and 
time. How do they co-vary?  One class of measures are called correlation coefficients, three of 
which are discussed in this chapter. Also discussed is how the significance of that association 
can be tested for, to determine whether the observed pattern differs from what is expected due 
entirely to chance.  For measurements of correlation between grouped (non-continuous) 
variables, see Chapter 14. 

Whenever a correlation coefficient is calculated, the data should be plotted on a scatterplot.  No 
single numerical measure can substitute for the visual insight gained from a plot.  Many different 
patterns can produce the same correlation coefficient, and similar strengths of relationships can 
produce differing coefficients, depending on the curvature of the relationship.  In Chapter 2, 
figure 2.1 presented eight plots all with a linear correlation coefficient of 0.70.  Yet the data were 
radically different! Never compute correlation coefficients and assume the data look like those 
in h of figure 2.1. 
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8.1 Characteristics of Correlation Coefficients 

Correlation coefficients measure of the strength of association between two continuous 
variables.  Of interest is whether one variable generally increases as the second increases, 
whether it decreases as the second increases, or whether their patterns of variation are totally 
unrelated.  Correlation measures observed co-variation.  It does not provide evidence for causal 
relationship between the two variables.  One may cause the other, as precipitation causes runoff.  
They may also be correlated because both share the same cause, such as two solutes measured at 
a variety of times or a variety of locations.  (Both are caused by variations in the source of the 
water). Evidence for causation must come from outside the statistical analysis -- from the 
knowledge of the processes involved. 

Measures of correlation (here designated in general as ρ) have the characteristic of being 
dimensionless and scaled to lie in the range −1 ≤ ρ ≤ 1. When there is no correlation between 
two variables, ρ = 0. When one variable increases as the second increases, ρ is positive.  When 
they vary in opposite directions, ρ is negative.  The significance of the correlation is evaluated 
using a hypothesis test: 

H0: ρ = 0 versus H1: ρ ≠ 0. 
When one variable is a measure of time or location, correlation becomes a test for temporal or 
spatial trend. 

8.1.1 Monotonic Versus Linear Correlation 
Data may be correlated in either a linear or nonlinear fashion.  When y generally increases or 
decreases as x increases, the two variables are said to possess a monotonic correlation. This 
correlation may be nonlinear, with exponential patterns, piecewise linear patterns, or patterns 
similar to power functions when both variables are non-negative.  Figure 8.1 illustrates a non­
linear monotonic association between two variables -- as x increases, y generally increases by an 
ever-increasing rate.  This nonlinearity is evidence that a measure of linear correlation would be 
inappropriate. The strength of a linear measure will be diluted by nonlinearity, resulting in a 
lower correlation coefficient and less significance than a linear relationship having the same 
amount of scatter. 

Three measures of correlation are in common use -- Kendall's tau, Spearman's rho, and 
Pearson's r. The first two are based on ranks, and measure all monotonic relationships such as 
that in figure 8.1.  They are also resistant to effects of outliers.  The more commonly-used 
Pearson's r is a measure of linear correlation (figure 8.2), one specific type of monotonic 
correlation. None of the measures will detect nonmonotonic relationships, where the pattern 
doubles back on itself, like that in figure 8.3. 
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Figure 8.1 Monotonic (nonlinear) correlation between x and y. 
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Figure 8.2 Linear correlation between X and Y. 
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Figure 8.3 Non-monotonic relationship between X and Y. 
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8.2 Kendall's Tau 

Tau (Kendall, 1938 and Kendall, 1975) measures the strength of the monotonic relationship 
between x and y. Tau is a rank-based procedure and is therefore resistant to the effect of a small 
number of unusual values.  It is well-suited for variables which exhibit skewness around the 
general relationship. 

Because tau (τ) depends only on the ranks of the data and not the values themselves, it can be 
implemented even in cases where some of the data are censored, such as concentrations known 
only as less than the reporting limit.  This is an important feature of the test for applications to 
water resources.  See Chapter 13 for more detail on analysis of censored data. 

Tau will generally be lower than values of the traditional correlation coefficient r for linear 
associations of the same strength (figure 8.2). "Strong" linear correlations of 0.9 or above 
correspond to tau values of about 0.7 or above.  These lower values do not mean that tau is less 
sensitive than r, but simply that a different scale of correlation is being used.  Tau is easy to 
compute by hand, resistant to outliers, and measures all monotonic correlations (linear and 
nonlinear). Its large sample approximation produces p-values very near exact values, even for 
small sample sizes. As it is a rank correlation method, tau is invariant to monotonic power 
transformations of one or both variables.  For example, τ for the correlation of log(y) versus 
log(x) will be identical to that of y versus log(x), and of y versus x. 

8.2.1 Computation 
Tau is most easily computed by first ordering all data pairs by increasing x.  If a positive 
correlation exists, the y's will increase more often than decrease as x increases.  For a negative 
correlation, the y's will decrease more often than increase.  If no correlation exists, the y's will 
increase and decrease about the same number of times.   

A two-sided test for correlation will evaluate the following equivalent statements for the null 
hypothesis H0, as compared to the alternate hypothesis H1: 

H0: a) no correlation exists between x and y (τ = 0), or 
b) x and y are independent, or 
c) the distribution of y does not depend on x, or

 d) Prob (yi < yj  for i < j ) = 1/2. 

H1: a) x and y are correlated (τ ≠ 0), or 
b) x and y are dependent, or 
c) the distribution of y (percentiles, etc.) depends on x, or

 d) Prob (yi < yj  for i < j ) ≠ 1/2. 
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The test statistic S measures the monotonic dependence of y on x.  Kendall's S is calculated by 
subtracting the number of "discordant pairs" M, the number of (x,y) pairs where y decreases as 
x increases, from the number of "concordant pairs" P, the number of (x,y) pairs where y 
increases with increasing x: 

S = P – M [8.1] 

where P =  "number of pluses", the number of times the y's increase as the x's increase,  
or the number of yi < yj for all i < j, 

M =  "number of minuses," the number of times the y's decrease as the x's increase, or 
the number of yi > yj for i < j . 

for all i = 1,....(n − 1) and j = (i+1),.....n. 

Note that there are n(n−1)/2 possible comparisons to be made among the n data pairs.  If all y 
values increased along with the x values, S = n(n−1)/2. In this situation, the correlation 
coefficient τ should equal +1.  When all y values decrease with increasing x, S = −n(n−1)/2 and 
τ should equal −1. Therefore dividing S by n(n−1)/2 will give a value always falling between −1 
and +1. This then is the definition of τ, measuring the strength of the monotonic association 
between two variables: 

Kendall’s tau correlation coefficient 
Sτ = [8.2]

n(n − 1)/2 

To test for significance of τ, S is compared to what would be expected when the null hypothesis 
is true.  If it is further from 0 than expected, H0 is rejected.  For n ≤ 10 an exact test should be 
computed. The table of exact critical values is found in table B8 of the Appendix.   

8.2.2 Large Sample Approximation 
For n > 10 the test statistic can be modified to be closely approximated by a normal distribution.  
This large sample approximation ZS is the same form of approximation as used in Chapter 5 for 
the rank-sum test, where now  

d 	 = 2 (S can vary only in jumps of 2), 

= 0, and
µS 

σS = (n/18)•(n-1)•(2n+5) . 
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S − 1 

σ 
S 

 
 
 
 

if S > 0 


ZS  =  

 
0 if S = 0 [8.3] 

 
S + 1 

σ 
S 

 

 

if S < 0 

The null hypothesis is rejected at significance level α if |ZS| > Zcrit where Zcrit is the value of 
the standard normal distribution with a probability of exceedance of α/2. In the case where 
some of the x and/or y values are tied the formula for σS must be modified, as discussed in the 
next section. 

Example 1: 10 pairs of x and y are given below, ordered by increasing x: 

y 1.22 2.20 4.80 1.28 1.97 1.46 2.64 2.34 4.84 2.96 
x 2 24 99 197 377 544 632 3452 6587 53,170 

Figure 8.4 Example 1 data showing one outlier present. 

To compute S, first compare y1= 1.22 with all subsequent y's  ( y
j 

, j>1). 
2.20 > 1.22, so score a + 
4.80 > 1.22, score a + 
1.28 > 1.22, score a + 
1.97 > 1.22, score a + etc. 

All subsequent y's are larger, so there are 9 +'s for i=1. 

Move on to i=2, and compare y2 =2.20 to all subsequent y's. 
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 4.80 > 2.20,  so score a + 
1.28 < 2.20,  score a −

 1.97 < 2.20,  score a − 
1.46 < 2.20, score a −  etc. 

There are 5 +'s and 3 −'s for i=2.  Continue in this way, until the final comparison of yn−1 = 
4.84 to yn. It is convenient to write all +'s and −'s below their respective y

i
, as below: 

y
i 

1.22 2.20 4.80 1.28 1.97 1.46 2.64 2.34 4.84 2.96 
+ + − + − + − + −
 + − − + + + + + 
+ − − + + + + 
+ − − + + + 

+ + − + + 

+ + + + 

+ + −


 + + 

+


In total there are 33 +'s (P = 33) and 12 −'s (M = 12).  Therefore S = 33 − 12 = 21. 

There are 10•9/2 = 45 possible comparisons, so τ = 21/45 = 0.47. 

Turning to table B8, for n=10 and S=21, the exact p-value is 2•0.036 = 0.072. 


The large sample approximation is
 ZS = (21−1) / (10/18)•(10-1)•(20+5) 

= 20/(11.18) = 1.79. 
From a table of the normal distribution, the 1-sided quantile for 1.79 = 0.963 
so that p ≅ 2 • (1−.963) = 0.074 

8.2.3 Correction for Ties 
To compute τ when ties are present, tied values of either x or y produce a 0 rather than + or − . 
Ties do not contribute to either P or M. S and τ are computed exactly as before.  An adjustment 
is required for the large sample approximation ZS , however, by correcting the σS formula. 

In order to compute σS in the presence of ties, both the number of ties and the number of 
values involved in each tie must be counted.  Consider for example a water quality data set (in 
units of µg/L) of 17 values (n=17) shown here in ascending order. 

<1, <1, <1, <1, <1, 2, 2, 2, 3, 5, 5, 7, 9, 10, 10, 14, 18. 

There are a total of 4 tied groups in the data set.  The largest tied group in the data set is of 5 
values (tied at <1 µg/L), there are no tied groups of 4, there is 1 tied group of 3 (at 2 µg/L), and 
there are 2 tied groups of 2 (at 5 and 10 µg/L).  For completeness note that there are 5 "ties" of 
extent 1 (untied values at 3, 7, 9, 14, and 18 µg/L).  These appropriately never add to the 



216 Statistical Methods in Water Resources 

correction because (i−1) always equals zero.  Kendall (1975) defined the variable ti as the 
number of ties of extent i.  For this data set t5 = 1 (1 tie of extent 5), t4 = 0 (no ties of extent 4), 
t3 = 1 (1 tie of extent 3), t2 = 2 (2 ties of extent 2) and t1 = 5 (5 "ties" of extent 1).  For i>5, ti 
= 0. Kendall's correction to σS in the presence of ties is:  

n
[n (n - 1) (2n + 5) - ti (i) (i - 1) (2i + 5) ]∑ 

i=1
σS = 18 [8.4] 

So for the example water quality data: 

σS = [17•16•39 - 5•1•0•7 - 2•2•1•9 - 1•3•2•11 - 1•5•4•15] / 18  

or σS = 567 = 23.81. Notice that if the data set could have been measured with sufficient 
precision (including a lower detection limit) so that no ties existed, then  
σS = 589.333 = 24.28. Thus the ties here represent a rather small loss of information. 

Example 2: 
The example 1 data are modified to include ties, as follows: 

y 1.22 2.20 4.80 1.28 1.97 1.97 2.64 2.34 4.84 2.96 
x 2 24 99 99 377 544 632 3452 6587 53,170 

Using a 0 to denote a tie, the comparisons used to compute P, M, and S are: 
+ + 0x + 0y + − + −
 + − − + + + + + 
+ − − + + + + 
+ − − + + + 
+ + − + + 0x : tie in x 
+ + + + 0y : tie in y 
+ + −

 + + 
+ 

In total there are 33 +'s (P=33) and 10 −'s (M=10).  Therefore S = 33−10 = 23, and 
τ = 23/45 = 0.51. The exact two-sided p-value from table B8 is  2•0.023 = 0.046.  For the 
large sample approximation, there are 2 ties of extent 2, so that  

σS = = 123 = 11.09[10•9•25 - 2•2•1•9] / 18  
whereas without the tie σS was 11.18.  Computing Zs,  

ZS = (23−1) / 123 
= 22/(11.09) = 1.98. 

From a table of the normal distribution, the 1-sided quantile for 1.98 = 0.976 
so that p ≅ 2 • (1−.976) = 0.048 . 
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8.3 Spearman's Rho 

Spearman's rho is an alternative rank correlation coefficient to Kendall's tau.  Kendall's tau is 
related to the sign test -- all positive differences between data pairs are assigned a +1 without 
regard to the magnitude of those differences.  With Spearman's rho, differences between data 
values ranked further apart are given more weight, similar to the signed-rank test.  Rho is 
perhaps easiest to understand as the linear correlation coefficient computed on the ranks of the 
data. Thus rho can be computed as a rank transform method.  Rho and tau use different scales 
to measure the same correlation, much like Centigrade and Fahrenheit measures of temperature.   
Though tau is generally lower than rho in magnitude, their p-values for significance should be 
quite similar when computed on the same data.   

To compute rho, the data for the two variables are ranked independently among themselves. For 
the ranks of x (Rxi) and ranks of y (Ryi), rho can be computed from the equation: 

n 2 

∑ (Rx Ry
i)− n 


 

n + 1


i  2 
i=1 rho = 

n(n 2 − 1)/12
 [8.5] 

where (n+1)/2 is the mean rank of both x and y.  Ties in x or y are assigned average ranks.  This 
equation can be derived from substituting Rxi and Ryi for xi and yi in equation 8.6 for Pearson's 
r, and simplifying.  If there is a positive correlation, the higher ranks of x will be paired with the 
higher ranks of y, and their product will be large.  For a negative correlation the higher ranks of 
x will be related to lower ranks of y, and their product will be small.  When there is no 
correlation, there will be nothing other than a random pattern in the association between x and y 
ranks, and their product will be similar to the product of their average rank, the second term in 
the numerator of equation 8.5. Thus rho will be close to zero.  

Bhattacharyya and Johnson (1977) present the exact and large sample approximation versions of 
the hypothesis test for Spearman's rho. However, it is easiest to rank the two variables and 
compute the hypothesis test for Pearson's r -- the rank transform method.  It is important to 
note that the large sample and rank approximations for rho do not fit the distribution of the test 
statistic well for small sample sizes (n<20), in contrast to Kendall's tau.  This is one reason tau is 
often preferred over rho. 

Example 1, continued 
For the example 1 data, the data ranks are  

Ry 1 5 9 2 4 3 7 6 10 8 
Rx 1 2 3 4 5 6 7 8 9 10 

Solving for rho, multiplying the ranks above gives, 
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 (Rxi • Ryi) 1 10 27 8 20 18 49 48 90 80, Σ = 351 
351 −10 (5.5)2 

= 
48.5

 Rho  = 
1099/12 82.5 

= 0.588, exact p-value = 0.04 from table 13 of Bhattacharyya and Johnson (1977). 

The approximate significance test for Pearson's r on the data ranks (as described in the next 
section) has a p-value = 0.074, not too close to the exact value.  Whenever using Spearman's rho 
for sample sizes less than 20, exact p-values should be used. 

8.4 Pearson's r 

The most commonly-used measure of correlation is Pearson's r.  It is also called the linear 
correlation coefficient because r measures the linear association between two variables.  If the 
data lie exactly along a straight line with positive slope, then r = 1.  This assumption of linearity 
makes inspection of a plot even more important for r than for rho or tau because a non­
significant value of r may be due to curvature or outliers as well as to independence.  As in figure 
8.1, x and y may be strongly related in a nonlinear fashion, while the resulting r may be small and 
insignificantly different from zero. 

Pearson's r is not as resistant to outliers as was tau and rho because it is computed using non­
resistant measures -- means and standard deviations.  It assumes that the data follow a bivariate 
normal distribution. With this distribution, not only do the individual variables x and y follow a 
normal distribution, but their joint variation also follows a specified pattern.  This assumption 
rules out the use of r when the data have increasing variance, as in figure 8.1.  Skewed variables 
often demonstrate outliers and increasing variance.  Thus r is often not useful for describing the 
correlation between untransformed hydrologic variables. 

Pearson's r is invariant to scale changes, as in converting streamflows in cubic feet per second 
into cubic meters per second, etc.  This dimensionless property is obtained by standardizing, 
dividing the distance from the mean by the sample standard deviation, as shown in the formula 
for r, below.

 
1 n  x − x  y − y 

 r = ∑  i 
 

i 

s 
 [8.6]n − 1 i=1 

 s 
x  y  

The significance of r can be tested by determining whether r differs from zero.  The test statistic 
tr is computed by equation 8.7, and compared to a table of the t distribution with n−2 degrees of 
freedom. 

r n − 2 
tr = [8.7]

21− r
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Example 1, continued 
For the example 1 data, means and standard deviations are: 

x y 
mean 6508.6 2.57 

s 16531.6 1.31 

9

i
Then r = 

1 ∑ 

 

x − 6508.6 
 
 

 
 y

i 
− 2.57 

 
 

= 0.174 
9 i=1  16531.6   1.31  

To test for whether r is significantly different from zero, and therefore y is linearly dependent on 
x, 

0.174 8 
tr = = 0.508, 

1− (0.174)2 

with a p-value of 0.63 from a table of the t-distribution. Therefore H0: r=0 is not rejected, and y 
is not linearly dependent (or related) to x as measured by r. This differs from the results using 
rho and tau, whose p-values of 0.04 and 0.07 respectively did indicate an association between y 
and x. Figure 8.4 provides an intuitive explanation of why r differs from rho and tau -- r is 
strongly affected by the one outlying observation, even though the overall trend is a linear one. 
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Exercises 

8.1 	 Are uranium concentrations correlated with total dissolved solids in the following 
groundwater samples?  If so, describe the strength of the relationship. 

Uranium conc. TDS,  Uranium conc. TDS,  
in ppb  in mg/L  in ppb  in mg/L 

682.65 0.9315 1240.81 6.8559 
819.12 1.9380 538.35 0.4806 
303.76 0.2919 607.75 1.1452 

1151.40 11.9042 705.89 6.0876 
582.42 1.5674 1290.57 10.8823 

1043.39 2.0623 526.09 0.1473 
634.84 3.8858 784.68 2.6741 

1087.25 0.9772 953.14 3.0918 
1123.51 1.9354 1149.31 0.7592 
688.09 0.4367 1074.22 3.7101 

1174.54 10.1142 1116.59 7.2446 
599.50 0.7551 

8.2 	 Compute the other two correlation coefficients not chosen in Exercise 8.1.  Are all 
coefficients equally appropriate? 

8.3 	 For the data on Corbicula densities in the Tennesse River found in Appendix C8, 
compute Kendall's tau for all pairs of data in the same strata and season, but one year 
apart. Is this correlation significant? How should this result be interpreted? 



Chapter 9

Simple Linear Regression


The relationship between two continuous variables, sediment concentration and stream 
discharge, is to be investigated.  Of interest is the quantification of this relation into a model 
form for use as a predictive tool during days in which discharge was measured but sediment 
concentration was not. Some measure of the significance of the relationship is desired so that 
the analyst can be assured that it is in fact composed of more than just background noise.  A 
measure of the quality of the fit is also desired. 

Sediment concentrations in an urban river are investigated to determine if installation of 
detention ponds throughout the city have decreased instream concentrations.  Linear regression 
is first performed between sediment concentration and river discharge to remove the variation in 
concentrations which are due to flow variations.  After subtracting this linear relation from the 
data, the residual variation before versus after the installation of ponds can be compared to 
determine their effect. 

Regression of sediment concentration versus stream discharge is performed to obtain the slope 
coefficient for the relationship.  This coefficient is tested to see if it is significantly different than 
a value obtained 5 years before using a rainfall-runoff model of the basin. 

The above examples all perform a linear regression between the same two variables, sediment 
concentration and water discharge, but for three different objectives.  Regression is commonly 
used for at least these three objectives.  This chapter will present the assumptions, computation 
and applications of linear regression, as well as its limitations and common misapplications by 
the water resources community. 
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Ordinary Least Squares (OLS), commonly referred to as linear regression, is a very important 
tool for the statistical analysis of water resources data.  It is used to describe the covariation 
between some variable of interest and one or more other variables.  Regression is performed 
to 
1) learn something about the relationship between the two variables, or 
2) remove a portion of the variation in one variable (a portion that is not of interest) in 

order to gain a better understanding of some other, more interesting, portion of the 
variation, or 

3) estimate or predict values of one variable based on knowledge of another variable, for 
which more data are available. 

This chapter deals with the relationship between one continuous variable of interest, called the 
response variable, and one other variable -- the explanatory variable. The name "simple 
linear regression" is applied because one explanatory variable is the simplest case of regression 
models.  The case of multiple explanatory variables is dealt with in Chapter 11 -- multiple 
regression. 

9.1 The Linear Regression Model 

The model for simple linear regression is: 
yi = β0 + β1xi + εi i=1,2,....,n 

where 
yi is the ith observation of the response (or dependent) variable 
xi is the ith observation of the explanatory (or independent) variable 
β0 is the intercept 
β1 is the slope 
εi is the random error or residual for the ith observation, and 
n is the sample size. 

The error around the linear model εi is a random variable.  That is, its magnitude is not 
controlled by the analyst, but arises from the natural variability inherent in the system.  εi has a 
mean of zero, and a constant variance σ2 which does not depend on x. Due to the latter, εi is 
independent of xi. 

Regression is performed by estimating the unknown true intercept and slope β0 and β1 with b0 
and b1, estimates derived from the data.  As an example, in figure 9.1 the true linear relationship 
between an explanatory variable x and the response variable y is represented by a solid line.  
Around the line are 10 observed data points which result from that relationship plus the random 
error εi inherent in the natural system and the process of measurement.  In practice the true line 
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is never known -- instead the analyst measures the 10 data points and estimates a linear 
relationship from those points.  The OLS estimate developed from the 10 measurements is 
shown as the dashed line in figure 9.2. 

Figure 9.1  True linear relation between x and y, and 10 resultant measurements. 

Figure 9.2  True and estimated linear relation between x and y. 
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If 10 new data points resulting from the same true (solid line) relationship are measured and 
their OLS line computed, slightly different estimates of b0 and b1 result.  If the process is 
repeated several times, the results will look like figure 9.3.  Some of the line estimates will fall 
closer to the true linear relationship than others.  Therefore a regression line should always be 
considered as a sample estimate of the true, unknown linear relationship. 

Figure 9.3  True and several estimated linear relations between x and y. 

Another way of describing the linear regression model is as an estimate of the mean of y, given 
some particular value for x.  This is called a conditional distribution.  If x takes on the value x0, 
then y has a conditional mean of β0 + β1x0 and conditional variance σ2. The mean is 
"conditioned", or depends on, that particular value of x.  It is the value expected for y given that 
x equals x0. Therefore:  

the "expected value" of y given x0 E [y|x0] = β0 + β1x0 
the variance of y given x0 Var [y|x0] = σ2 

9.1.1 Assumptions of Linear Regression 
There are five assumptions associated with linear regression. These are listed in table 9.1.  The 
necessity of satisfying them is determined by the purpose to be made of the regression equation.  
Table 9.1 indicates for which purposes each is needed. 
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Purpose 

Assumption 

Predict y 
given x 

Predict y and 
a variance for 
the 
prediction 

Obtain best 
linear 
unbiased 
estimator of 
y 

Test hypotheses, 
estimate 
confidence or 
prediction 
intervals

 (1) 
Model form is correct:  y is 
linearly related to x 

+ + + +

 (2) 
Data used to fit the model 
are representative of data of 
interest. 

+ + + +

 (3) 
Variance of the residuals is 
constant (is homoscedastic). 
It does not depend on x or 
on anything else (e.g. time). 

+ + +

 (4) 
The residuals are 
independent. 

+ +

 (5) 
The residuals are normally 
distributed. 

+ 

Table 9.1   Assumptions necessary for the purposes to which OLS is put. 
+: the assumption is required for that purpose. 

The assumption of a normal distribution is involved only when testing hypotheses, requiring the 
residuals from the regression equation to be normally distributed.  In this sense OLS is a 
parametric procedure. No assumptions are made concerning the distributions of either the 
explanatory or response variables.  The most important hypothesis test in regression is whether 
the slope coefficient is significantly different from zero.  Normality of residuals is required for 
this test, and should be checked by a boxplot or probability plot.  The regression line, as a 
conditional mean, is sensitive to the presence of outliers in much the same way as a sample 
mean is sensitive to outliers.   
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9.2 Computations 

Linear regression estimation is nothing more than a minimization problem.  It can be stated as 
follows: find two numbers b0 and b1 such that 

n 

∑ ( y
i 
−y i ) 

2 is minimized, where ŷ 
1 is the OLS estimate of y: 

i=1 

^ y i = b0 + b1xi. 
This can be solved for b0 and b1 using calculus.  The solution is referred to as the normal 
equations.  From these come an extensive list of expressions used in regression: 

Formula  Name 
n xi 

x = ∑ n mean x 
i=1 

n yi 
y = ∑ n mean y 

i=1 

n n
SSy = ∑ (y

i 
−y) 2  = ∑ yi2 − n( y )2 sums of squares y  = Total SS 

i=1 i=1 

n n
SSx = ∑ (x −x) 2  = ∑ xi2 − n( x )2 sums of squares x 

i

i=1 i=1


n n
Sxy = ∑ (x

i 
− x)( y

i 
− y) = ∑ (xiyi) − n x y sums of x y cross products 

i=1 i=1 

b1 = Sxy / SSx the estimate of β1 (slope) 

b0 = y − b1 x the estimate of β0 (intercept) 

^ y i = b0 + b1xi the estimate of y given xi 
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Formula	  Name 

ei = yi −  ̂y i	 the estimated residual for obs. i 

n
SSE = ∑ ei2 error sum of squares 

i=1 

s2 = (SSy − b1 Sxy) / (n−2) The estimate of σ2, also called 
n

 = ∑ ei2 / (n−2) mean square error (MSE). 
i=1 

s2 	 standard error of the regression or 
standard deviation of residuals 

s =

SE(β1) = s /  SSx	 standard error of β1 

1 x 2 

SE(β0) = s +	 standard error of β0 n SS 
x 

r = Sxy / SS SS	 the correlation coefficient 
x y 

 = b1  SSx / SSy 

R2 = [SSy − s2 (n−2)] / SSy	 coefficient of determination, or
 = 1 − ( SSE / SSy ) 	 fraction of the variance explained 
 = r2	 by regression 

9.2.1 Properties of Least Squares Solutions 
1) If assumptions 1 through 4 are all met, then the estimators b0 and b1 are the minimum 

variance unbiased estimators of β0 and β1. 
2) The mean of the residuals (ei's) is exactly zero. 
3) The mean of the predictions ( ŷ i's) equals the mean of the observed responses (yi's). 
4) The regression line passes through the centroid of the data ( x , y ). 
5) The variance of the predictions ( ŷ i's) is less than the variance of the observed responses 

(yi's) unless  R2 = 1.0. 
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9.3 Building a Good Regression Model 

A common first step in performing regression is to plug the data into a statistics software 
package and evaluate the results using R2. Values of R2 close to 1 are often incorrectly deemed 
an indicator of a good model. This is a dangerous, blind reliance on the computer software.  An 
R2 near 1 can result from a poor regression model; lower R2 models may often be preferable.  
Instead of the above, performing the following steps in order will generally lead to a good 
regression model. 

The following sections will use the total dissolved solids (TDS) concentrations from the 
Cuyahoga River at Independence, Ohio, 1974-1985 as an example data set.  The data are found 
in Appendix C9. These concentrations will be related to stream discharge (Q). 
1) First step -- PLOT THE DATA! 

Plot y versus x and check for two things 
1a) does the relationship look non-linear? 
1b) 

Figure 9.4 

does the variability of y look markedly different for different levels of x? 

Scatterplot of the Cuyahoga R. TDS data 

If the problem is curvature only (1a), then try to identify a new x which is a better linear 
predictor (a transform of the original x or another variable altogether).  When possible, use the 
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best physically-based argument in choosing the right x.  It may be appropriate to resort to 
empirically selecting the x which works best (highest R2) from among a set of reasonable 
explanatory variables. 

If the problem is non-constant variance, (also called heteroscedasticity, 1b above) or both 
curvature and heteroscedasticity, then transforming y, or x and y, may be called for.  Mosteller 
and Tukey (1977) provided a guide to selecting power transformations using plots of y versus x 
called the "bulging rule". Going "up" the ladder of powers means θ >1 (x2, etc.) and "down" 

θ <1 (log x, 1/x, x , etc.). 

x up 

x up x down 

x down 

y down y down 

y upy up 

the ladder of powers means 

Figure 9.5  The bulging rule for transforming curvature to linearity. 
(after Mosteller and Tukey, 1977). 

The non-linearity of the TDS data is obvious from figure 9.4, and some type of transformation 
of the x variable (discharge, denoted Q) is necessary.  The base 10 log of Q is chosen, as the plot 
has the shape of the lower left quadrant of the bulging rule, and so θ <1. Figure 9.6 presents the 
TDS data versus the log of Q.  Linearity is achieved.  There is some hint of greater variance 
around the line at the lower Q's, but notice that there are also far more data at lower discharges.  
The range of values can be expected to be greater where there is more data, so non-constant 
variance is not proven.  Therefore this transformation appears acceptable based on the first set 
of plots. 

2) 	 Having selected an appropriate x and y, compute the least squares regression statistics, 
saving the values of the residuals for further examination.  In the regression results, 
focus on these things: 

2a) 	The coefficients, b0 and b1: Are they reasonable in sign and magnitude?  Do they lead to 
predictions of unreasonable values of y for reasonable values of x (e.g., negative flows or 
concentrations)? 
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Figure 9.6 Scatterplot with regression line after transformation of x 

The Cuyahoga TDS data have the following regression results: 

TDS = 1125 − 242 log10 Q 

n = 80 s = 75.55 R2 = 0.57 SSx = 10.23 
Parameter Estimate Std.Err(β) t-ratio p 
Intercept β0 1125.5 66.9 16.8 0.000 
Slope β1 −241.6 23.6 −10.2 0.000 

Table 9.2  Regression statistics for the Cuyahoga TDS data 

It appears reasonable that TDS concentrations should be diluted with increasing stream 
discharge, producing a negative slope.  No negative concentrations result from 
reasonable values for Q at this site. 

2b) The R2: Does the regression explain much variance?  Is the amount of variance 
explained substantial enough to make it worthwhile to use the regression, given the risk 
that the form of the model is likely to be imperfect?  There is no general rule for what is 
too low an R2 for a useful regression equation. 
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For the Cuyahoga data, 57% of the variance of total dissolved solids is explained by the 
effect of log Q. 

2c) 	Look at the t-ratio (or t-statistics) on the two coefficients.  These are the test statistics 
needed for testing the null hypothesis that the coefficient is equal to zero.  In particular, 
look at the t-ratio on β1. If |t|>2, reject β1=0 at α=0.05 for reasonably large sample 
sizes and therefore assert there is a statistically significant linear relationship between x 
and y. If the t-ratio is between −2 and +2, the observed relationship is no stronger than 
what is likely to arise by chance alone in the absence of any real linear relationship.  If 
this is the case one should go back to step 1 or give up on the use of regression with this 
data set.  (The formalities of these hypothesis tests are given in a later section). 
Both the intercept and slope of the TDS regression are significant at any reasonable α, as 
shown by the large t-statistics and small p-values of table 9.2. 

3) 	 Examine adherence to the assumptions of regression using residuals plots.  Three types 
of residuals plots will clearly present whether or not the regression model adheres 
sufficiently to the assumptions to be used. 

3a) 	Residuals versus predicted (e vs. ŷ ). Look for two possible problems: curvature and 
heteroscedasticity.  These are exactly the same problems described in step 1.  However, 
plotting residuals enhances the opportunity to see these problems as compared to 
plotting the original data. The solutions to the problems are the same.  Figure 9.7 
presents an example of a good residuals plot, one where the residuals show no curvature 
or changing variance. Figure 9.8, on the other hand, is a residuals plot which shows both 
curvature and changing variance, producing the typical "horn" pattern which is often 
correctable by taking the logarithms of y. 

It is possible to read too much into these plots, however.  Beware of "curvature" 
produced by a couple of odd points or of error variance seeming to both grow and 

^shrink one or more times over the range of y . Probably neither of these can or should 
be fixed by transformation but may indicate the need for the robust procedures of 
Chapter 10. 

In figure 9.9, the residuals from the Cuyahoga TDS regression are plotted versus its 
predicted values.  There is an indication of heteroscedasticity, though again there are 
more data for the larger predicted values.  There also appears to be a bow in the data, 
from + to − and back to + residuals.  Perhaps a transformation of the TDS 
concentrations are warranted, or the incorporation of additional variables into the 
regression equation. 
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Figure 9.7  Example of a residuals plot for a good regression model 

Figure 9.8 Residuals plot showing curvature and changing variance. 
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Figure 9.9 Residuals plot of the Cuyahoga data. 

3b) 	Residuals versus time (e vs. t). If there is any time or space order to the observations 
(relating to time of collection, time of measurement, or map location), plot the residuals 
versus time or season or time of day, or versus the appropriate 1- or 2-dimensional space 
coordinate to see if there is a pattern in the residuals.  A good residuals pattern, one with 
no relation between residuals and time, will look similar to figure 9.7 --  random noise.  
If on the other hand structure in the pattern over time is evident, seasonality, long-term 
trend, or correlation in the residuals may be the cause.  Trend or seasonality suggest 
adding a new term to the regression equation (see Chapter 12).  Correlation between 
residuals over time or space require one of the remedies listed in section 9.5.4. 

Correlation between residuals over time or space may not be evident from the ei versus 
ŷ residuals plot (figure 9.10a), but will stand out on a plot of ei versus time (9.10b).  The 
nonrandomness is evident in that positive residuals clump together, as do negative -- a 
positive correlation. Plotting the ith versus the (i−1)th residual shows this pattern more 
strongly (9.10c). If time or space are measured as categorical variables (month, etc.), plot 
boxplots of residuals by category and look for patterns of regularity.  Where no 
differences occur between boxes, the time or space variable has no effect on the 
response variable. 
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Figure 9.10 a) Residual ei ^vs y   plot shows no hint of correlation over time 
b) Time series of residuals shows ei related to time 
c) Correlation of ei vs. e(i−1) 

In figure 9.11, boxplots of TDS residuals by month show a definite seasonality, with generally 
high residuals occurring in the winter months, low residuals in the summer, and unusually high 
values in September.  Thus the regression equation will underpredict concentrations in the  
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winter and overpredict in the summer.  This pattern may be due to washoff of road de-icing salts 
in the winter.  The unknown cause of the September anomalies should be investigated further.  
To better mimic the seasonal variation, other explanatory variables must be added.  This will be 
discussed in Chapter 12. 

Figure 9.11 Residual of TDS concentrations by month.  Note the seasonality. 

3c) 	Normality of residuals.  Examine the distribution of residuals using a boxplot, stem and 
leaf, histogram, or normal probability plot. If they depart very much from a normal 
distribution, then the various confidence intervals, prediction intervals, and tests 
described below will be inappropriate.  Specifically, 
(i) hypothesis tests will have low power (slopes or explanatory variables will falsely be 
declared insignificant), and  
(ii) confidence or prediction intervals will be too wide, as well as giving a false 
impression of symmetry. 

A boxplot of residuals from the TDS-logQ regression shown in figure 9.12 is mildly 
right-skewed, with several outliers present.  A probability plot of the residuals (figure 
9.13) shows a slight departure from normality.  If these were the only problems, 
transformation of the y variable might not be warranted.  But combined with the 
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problems already noted above of curvature and heteroscedasticity, further work is 
required. 

Figure 9.12   Boxplot of the TDS regression residuals 

For further attempts to find an appropriate transformation of the Cuyahoga data,  
see problem 9.1 at the end of this chapter. 

Figure 9.13 Probability plot of the TDS regression residuals 

3d) Residuals versus other explanatory variables.  To determine whether other explanatory 
variables should be included into a multiple regression model, boxplots of residuals by 
categorical explanatory variables or scatterplots versus continuous variables should be 
plotted. If something other than a random pattern occurs, that variable or one like it 
may be appropriate for adding to the regression equation.  Figure 9.14 for example might 
result from plotting residuals from a regression of radon concentrations in water versus 
uranium content of rocks. using different symbols for wells and springs.  The residuals 
for wells tend to be larger than those for springs, as also shown by the boxplots at the 
side. Incorporating an additional explanatory variable for "water source" into the 



237 Simple Linear Regression 

data, improving the model. 
regression equation using the techniques of Chapter 11 explains more of the noise in the 

Figure 9.14 Residuals plotted by an additional explanatory variable. 

4) 	 Use the regression diagnostics of section 9.5 to ensure that one or two observations are 
not strongly influencing the values of the coefficients, and to determine the quality of 
predicted values.  These diagnostics duplicate much of what can be seen with plots for a 
single explanatory variable, but become much more important when performing multiple 
regression. 

9.4 Hypothesis Testing in Regression 

9.4.1 Test for Whether the Slope Differs from Zero 

The hypothesis test of greatest interest in regression is the test for a significant slope (β1). 

Typically, the null hypothesis is 


H0: β1= 0 
versus the alternative hypothesis 

H1: β1≠ 0. 

The null hypothesis also states that the value of y does not vary as a linear function of x.  Thus 
for the case of a single explanatory variable this also tests for whether the regression model has 
statistical significance.  A third interpretation is as a test for whether the linear correlation 
coefficient significantly differs from zero.  The latter two interpretations are not applicable for 
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multiple explanatory variables.  The test statistic computed is the t-ratio (the fitted coefficient 
divided by its standard error): 

t = 
b1 

s /  SSx 
= 

r n-2 
2 1-r

H0 is rejected if |t|> tcrit , where tcrit is the point on the Student's t distribution with n−2 
degrees of freedom, and with probability of exceedance of α/2. 
Note that when α=0.05 and n>30 tcrit ≅ 2.0 
and when α=0.01 and n>30 tcrit ≅ 2.6. 

For the Cuyahoga TDS example the t-statistic for β1 was much greater than 2, and indeed was 
significant at the α = 0.0001 level. Therefore a strong linear correlation exists between TDS and 
log10 of Q. 

This test for nonzero slope can also be generalized to testing the null hypothesis that β1=β1* 

where β1* is some pre-specified value.  For this test the statistic is defined as 
b1 - b1* 

t = SSxs /

9.4.2 Test for Whether the Intercept Differs from Zero 
Tests on the intercept b0 can also be computed.  The test for

 H0: b0 = 0 
is usually the one of interest.  	The test statistic is 

b0 
t = 


1 x2


s +n SSx 

H0 is rejected if |t|> tcrit where tcrit is defined as in the previous test.  From table 9.2 the 
intercept for the TDS data is seen to be highly significantly different from 0. 

It can be dangerous to delete the intercept term from a regression model.  Even when the 
intercept is not significantly different from zero, there is little benefit to forcing it to equal zero, 
and potentially great harm in doing so.  Regression statistics such as R2 and the t-ratio for β1 lose 
their usual meaning when the intercept term is dropped (set equal to zero).  Recognition of a 
physical reason why y must be zero when x is zero is not a sufficient argument for setting b0 = 
0. Probably the only appropriate situation for fitting a no-intercept model is when all of the 
following conditions are met: 

jkmonson
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1) the x data cover several orders of magnitude, 

2) the relationship clearly looks linear from zero to the most extreme x values, 

3) the null hypothesis that β 0 = 0 is not rejected, and 

4) there is some economic or scientific benefit to dropping the intercept. 


9.4.3 Confidence Intervals on Parameters 
Confidence intervals for the individual parameters β 0, β 1, and σ 2 indicate how well these can be 
estimated. The meaning of the (1−α )•100% confidence interval is that, in repeated collection of 
new data and subsequent regressions, the frequency with which the true parameter value would 
fall outside the confidence interval is α . For example, α = 0.05 confidence intervals around the 
estimated slopes of the regression lines in figure 9.3 would include the true slope 95% of the 
time. 

For the slope β	1 the confidence interval (C.I.) is 
t s

b1 - SSx 
, 	b1 + 

t s  
SSx 


 

where t is the point on the student's t-distribution having n− 2 degrees of freedom with a 
probability of exceedance of α /2. 

For the intercept β 0 the C.I. is 
 

1 x 2 
 
 

 b 0 
− ts 

1 
+ 

x 2
,b

0 
+ ts + 

SS
x 


 n SS n 

x 

where t is defined as above. 

For the variance σ 2 (also called the mean square error MSE), the C.I. is 
  

2 ( n − 2)s (n − 2) s2  
 
 χ 2

,	 2 
 

χ 
 1− a / 2  a / 2  


where χ 2p is the quantile of the chi-square distribution having n− 2 degrees of freedom with 
exceedance probability of p. 

As an example, the 95% confidence intervals for the Cuyahoga TDS data are: 

1.99• 75.6
For β 1: 


 -241.6 	-

1.99• 75.6
 , -241.6 + 


 = (− 288.6 , − 194.6)10.23	  10.23 

 1 2.812	 1
For β 0: 

1125.5 - 1.99•75.6 80 + 10.23  , 1125.5 + 1.99•75.6 80 + 
2.812 


10.23 

= (991.8 , 1258.7) 
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For σ2:  
(78) 5708 (78) 5708  

104.3  , 55.5  = (4269 , 8022) 

9.4.4 Confidence Intervals for the Mean Response 
There is also a confidence interval for the conditional mean of y given any value of x.  If x0 is a 
specified value of x, then the estimate of the expected value of y at x0 is 
ŷ = b0 +b1 x0, the value predicted from the regression equation.  But there is some uncertainty 
to this, associated with the uncertainty for the true parameters β0 and β1. The (1−α)•100% 
confidence interval for the mean y is then 

 
 1 (x −x)2

, ŷ + ts 
1 (x − x)2 

+ 0 + 0 
ŷ − ts

n SS n SS
x  x 

where t is the quantile of the students' t-distribution having n−2 degrees of freedom with 
probability of exceedance of α/2. Note that the confidence interval is two-sided, requiring a  
t-statistic of α/2 for either side. Also note from the formula that the farther x0 is from x the 
wider the interval becomes.  That is, the model is always "better" near the middle of the x values 
than at the extremes.  

To continue the Cuyahoga TDS example, the confidence interval for the mean y is calculated for 
two values of x0, 3.0 (near x ) and 3.8 (far from x ): 

 1 1 (3.0-2.81)2 
for x0 = 3.0: 

 399 - 1.99•75.6 80 + 
(3.0-2.81)2 

  , 399 + 1.99•75.6 80 +10.23 10.23 
= (380 , 418) 
 1 1 (3.8-2.81)2 

for x0 = 3.8: 
205.4 - 1.99•75.6 80 + 

(3.8-2.81)2 
  , 205.4 + 1.99•75.6 80 +10.23 10.23 

= (155.9, 254.9) 
a confidence interval of width 38 at x0 = 3.0, and a width of 99 at x0 = 3.8. 

When the confidence interval for each logQ value is connected together, the characteristic 
"bow" shape of regression confidence intervals can be seen (figure 9.15).  Note that this shape 
agrees with the pattern seen in figure 9.3 for randomly generated regression lines, where the 
positions of the line estimates are more tightly controlled near the center than near the ends. 
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Figure 9.15  Confidence intervals for mean TDS for the Cuyahoga River data. 

9.4.5 Prediction Intervals for Individual Estimates of y 
The prediction interval, the confidence interval for prediction of an estimate of an individual y, 
is often confused with the confidence interval for the mean. This is not surprising, as the best 
estimate for both the mean of y given x0 and for an individual y given x0 are the same -- ŷ . 
However, their confidence intervals differ.  The formulas are identical except for one very 
important term. The prediction interval incorporates the unexplained variability of y (σ2) in 
addition to uncertainties in the parameter estimates β1 and β2. The (1−α)•100% prediction 
interval for a single response is 

 
1 1 0  1+ + 

(x 
0 
− x)2 

, ŷ + ts 1+ + 
(x − x )2  

ŷ − ts
n SS n SS

x  x 

where all of the terms are as defined previously.  Note that these intervals widen as x0 departs 
from x, but not nearly as markedly as the confidence intervals do.  In fact, a simple rough 

^approximation to the prediction interval is just ( ŷ  − ts, y  + ts), two parallel straight lines.  This 
is because the second and third terms inside the square root are negligible in comparison to the 
first, provided the sample size is large.  These prediction intervals should contain approximately 
1−α•(100)% of the data within them, with α/2•(100)% of the data beyond each side of the 
intervals.  They will do so if the residuals are approximately normal. 



242 Statistical Methods in Water Resources 

The prediction intervals for the Cuyahoga TDS data are plotted in figure 9.16.  They are 
computed below for x0 = 3.0 and 3.8. 

for x0 = 3.0: 



 



 

1+ 
1 
80 + 

(3.0-2.81)2 
10.23 1 + 

1 
80 + 

(3.0-2.81)2 
10.23399 -1.99•75.6   , 399 + 1.99•75.6 

= (247.4 , 550.6) 

for x0 = 3.8: 



 



 

1+ 
1 
80 + 

(3.8-2.81)2 
10.23 1 + 

1 
80 + 

(3.8-2.81)2 
10.23205.4-1.99•75.6   , 205.4 + 1.99•75.6 

= (47.0, 363.8) 

a prediction interval of width = 303 at x0 = 3.0, and a width of 317 at x0 = 3.8. Note that the 
prediction intervals are much wider than the confidence intervals, and that there is only a small 
difference in width between the two prediction intervals as x0 changes. Also note from figure 
9.16 that the data appear skewed, with all of the values found beyond the prediction intervals 
falling above the upper interval. 

Figure 9.16  Prediction intervals for an individual TDS estimate -- Cuyahoga River. 
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9.4.5.1 Nonparametric prediction interval 
There is also a nonparametric version of the prediction interval.  This might be used when the 
x,y data display a linear relationship and residuals have constant variance (homoscedastic), but 
the distribution of the residuals appears non-normal.  Typically, such departures from normality 
take the form of skewness or an excessive number of outside or far outside values (as seen in a 
boxplot). The nonparametric prediction interval is  

^( ŷ + e(L), y + e(U)) 
where e(L) and e(U) are the 1−α/2 and α/2th quantiles of the residuals. 

In other words, e(L) is the Lth ranked residual and e(U) is the Uth ranked residual, where  
L = (n+1)•α/2 and U = (n+1)•(1−α/2). When L and U are not integers either the integer 
closest to L and U can be chosen, or e(L) and e(U) can be interpolated between adjacent 
residuals. 

For the Cuyahoga TDS data, L= 81•.025 = 2.025 and U= 81•.975 = 78.975.  Either the 2nd and 
79th ranked residual can be selected, or values interpolated between the 2nd and 3rd, and the 
78th and 79th residual. These are then added to the regression line ( ŷ ). In figure 9.17 the 
nonparametric prediction interval is compared to the one previously developed assuming 
normality of residuals. Note that the nonparametric interval is asymmetric around the central 

ion line, reflecregress ting the asymmetry of the data. 

Figure 9.17 Nonparametric and parametric prediction intervals for the TDS data. 
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9.5 Regression Diagnostics 

One common mistake in regression analysis is to base decisions about model adequacy solely on 
the regression summary statistics--principally R2, s and the F- or t-test results.  R2 is a measure 
of the percent of the variation in the response (y) variable that is accounted for by the variation 
in the explanatory variables.  The s (standard error of the regression or standard deviation of the 
residuals) is a measure of the dispersion of the data around the regression line.  Most regression 
programs also perform an overall F-test to determine if the regression relationship is statistically 
significant, ie. that the apparent relationship between y and x is not likely to arise due to chance 
alone. Some programs also do a t-test for each explanatory variable to determine if the 
coefficient for that variable is significantly different from zero. 

These statistics provide substantial information about regression results.  An equation that 
accounts for a large amount of the variation in the response variable and has coefficients that are 
statistically significant is highly desirable.  However, decisions about model adequacy cannot 
be made on the basis of these criteria alone.  A large R2 or significant F-statistic does not 
guarantee that the data have been fitted well. Figure 9.18 (Anscombe, 1973) illustrates this 
point. 

The data in the four graphs have exactly the same summary statistics and regression line (same 
b0, b1, s, R2). In 9.18a is a perfectly reasonable regression model, an evidently linear 
relationship having an even distribution of data around the least-squares line.  The strong 
curvature in 9.18b suggests that a linear model is highly inadequate and that some 
transformation of x would be a better explanatory variable, or that an additional explanatory 
variable is required.  With these improvements perhaps all of the variance could be explained.  
Figure 9.18c illustrates the effect of a single outlier on regression.  The line mis-fits the data, and 
is drawn towards the outlier.  Such an outlier must be recognized and carefully examined to 
verify its accuracy if possible.  If it is impossible to demonstrate that the point is erroneous, a 
more robust procedure than regression should be utilized (see Chapter 10).  The regression slope 
in 9.18d is strongly affected by a single point (the high x value), with the regression simply 
connecting two "points", a single point plus a small cluster of points.  Such situations often 
produce R2 values close to 1, yet may have little if any predictive power.  Had the outlying point 
been in a different location, the resulting slope would be totally different.  For example, the only 
difference between the data of figure 9.19a and 9.19b is the rightmost data point.  Yet the slopes 
are entirely different!  Regression should not be used in this case because there is no possible 
way to evaluate the assumptions of linearity or homoscedasticity without collecting more data in 
the gap between the point and cluster.  In addition, the slope and R2 are totally controlled by the 
position of one point, an unstable situation. 
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Figure 9.18 Three key pathologies in regression (after Anscombe, 1973).   
 American Statistical Association.  Used with permission. 

The three key pathologies can be referred to by simple names: curvature (9.18b), outlier or large 
residual (9.18c), and high influence and leverage (9.18d).  They are generally easy to identify 
from plots (y vs. x, or e vs. ŷ ) in a linear regression with one explanatory variable.  However, in 
multiple linear regression they are much more difficult to visualize or identify, requiring plots in 
multi-dimensional space.  Thus numerical measures of their occurrence, called "regression 
diagnostics", have been developed. 

Equations for diagnostics useful in identifying points of leverage, influence, or outliers are given 
here in terms of the two dimensions (x,y) applicable to simple linear regression (SLR).  Each can 
be generalized using matrix notation to a larger number of dimensions for multiple linear 
regression (MLR).  Further references on regression diagnostics are Belsley, Kuh, and Welsch 
(1980), Draper and Smith (1981), and Montgomery and Peck (1982). 
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9.5.1 Measures of Outliers in the x Direction 

9.5.1.1 Leverage 
Leverage is a measure of an "outlier" in the x direction, as in graph 9.18a. It is a function of the 
distance from the ith x value to the middle (mean) of the x values used in the regression. 
Leverage is usually denoted as hi, the ith diagonal term of the "hat" matrix X (X'X)-1 X', or for 
SLR 

1 (x − x )2 

ihi = n  + 
SS 
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Figure 9.19 Influence of location of a single point on the regression slope. 

A high leverage point is one where hi > 3p/n where p is the number of coefficients in the model 
(p=2 in SLR, b0 and b1). Though leverage is concerned only with the x direction, a high 
leverage point has the potential for exerting a strong influence on the regression slope. If the 
high leverage point falls far from the regression line that would be predicted if it were absent 
from the data set, then it is a point with high influence as well as high leverage (figure 9.19b). 

9.5.2 Measures of Outliers in the y Direction 

9.5.2.1 Standardized residual 
One measure of outliers in the y direction is the standardized residual esi. It is the actual 
residual ei = yi −  ̂y i  standardized by its standard error. 
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ei 
esi = s 1 - hi 

An extreme outlier is one for which |esi|>3. There should be only an average of 3 of these in 
1,000 observations if the residuals are normally distributed.  |esi|>2 should occur about 5 times 
in 100 observations if normally distributed.  More than this number indicates that the residuals 
do not have a normal distribution. 
9.5.2.2 Prediction residuals and the PRESS statistic 
A very useful form of residual computation is the prediction residual e(i). These are computed 

^ as e(i) = yi - y(i)  where ŷ(i)  is the regression estimate of yi based on a regression equation 
computed leaving out the ith observation. The (i) symbolizes that the ith observation is left out 
of the computation.  These are easily calculated using leverage statistics without having to 
perform n separate regressions:

 e(i) = ei / (1 − hi) . 

One of the best measures of the quality of a regression equation is the "PRESS" statistic, the 
"PRediction Error Sum of Squares."

n
 PRESS = ∑ e(i)2 

i=1 

PRESS is a validation-type estimator of error.  Instead of splitting the data set in half, one-half 
to develop the equation and the second to validate it, PRESS uses n−1 observations to develop 
the equation, then estimates the value of the one left out.  It then changes the observation left 
out, and repeats the process for each observation.  The prediction errors are squared and 
summed. Minimizing PRESS means that the equation produces the least error when making 
new predictions.  In multiple regression it is a very useful estimate of the quality of possible 
regression models. 

9.5.2.3 Studentized residuals 
Studentized residuals (TRESIDs) are used as an alternate measure of outliers by some texts and 
computer software.  They are often confused with standardized residuals.

ei e(i) 1-hi
 TRESIDi = s(i)  1-hi

 = s(i) 
where 

(n-p) s2 - [ e(i)2 / (1 - hi) ] 
s2(i) = n - p - 1 
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TRESIDs are often similar to the standardized residuals esi, but are computed using a variance 
s2(i) which does not include their own observation.  Therefore an unusually large observation 
does not inflate the estimate of variance used to determine whether that observation is unusual, 
and outliers are more easily detected.  Under a correct model with normal residuals, TRESIDs 
have the theoretical advantage that they should follow a t-distribution with n−p−1 degrees of 
freedom. 

9.5.3 Measures of Influence 
Observations with high influence are those which have both high leverage and large outliers 
(figure 9.19b). These exert a stronger influence on the position of the regression line than other 
observations. 

9.5.3.1 Cook's D 
One of the most widely used measures of influence is "Cook's D" (Belsley et al., 1980). 

ei2 hi e(i)2 hi 
=Di = 

ps2 (1 - hi)2 ps2 

The ith observation is considered to have high influence if Di > F(p+1,n−p) at α=0.1 where p is 
again the number of coefficients.  Note that, for SLR with more than about 30 observations, the 
critical value for Di would be about 2.4, and for MLR with several explanatory variables the 
critical value would be in the range of 1.6 to 2.0.  Finding an observation with high Cook's D 
should lead to a very careful examination of the data value for possible errors or special 
conditions which might have prevailed at the time it occurred.  If it can be shown that an error 
occurred, the point should be corrected if possible, or deleted if the error can't be corrected.  If 
no error can be proven, two options can be considered.  A more complex model which fits the 
point better is one option. The second option is to use a more robust procedure such as that 
based on Kendall's τ (for one x variable) or weighted least squares (for more than one x 
variable).  These methods for "robust regression" are discussed in Chapter 10. 

9.5.3.2 DFFITS 
The second influence diagnostic, related to TRESIDs, is the DFFITS: 

ei hi e(i) hi
DFFITSi = s(i) ( 1-hi )  = s(i) 

An observation is considered to have high influence if |DFFITSi| ≥ 2 p/n . 

The identification of outliers can be done with either standardized or studentized residuals, and 
the identification of highly influential points can be done with either DFFITS or Cook's D.  The 
leverage statistic identifies observations unusual in x.  PRESS residuals are rarely used except to 
sum into the PRESS statistic, in order to compare competing multiple regression models.  
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Example 1 
The data of figure 9.19a were analyzed by regression, and the above diagnostics calculated.  
These data exhibit high leverage but low influence, as removal of the one outlier in the x 
direction will not appreciably alter the slope of the regression line.  The regression results are 
given in Table 9.3.  The only unusual value is the leverage statistic hi for the last point, the one 
which plots to the right on the graph. A value of 
3p/n = 0.6, so the 0.919 for this point shows it to be one of high leverage. 

y = 2.83 + 0.60 x 

n = 10 s = 0.43 R2 = 0.94 
Parameter Estimate Std.Err(β) t-ratio p 
Intercept β0 2.828 0.195 14.51 0.000 
Slope β1 0.596 0.054 10.98 0.000 

OBS# ei  hi  e(i) e std e stud DFFITS Di
 1 −0.377 0.188 −0.465 −0.974 −0.970 −0.467 0.110 

2 0.085 0.131 0.098 0.213 0.200 0.077 0.003 
3 0.804 0.126 0.920 1.997 2.640 1.005 0.289 
4 −0.219 0.122 −0.249 −0.543 −0.518 −0.193 0.020 
5 −0.484 0.104 −0.541 −1.189 −1.226 −0.419 0.082 
6 0.204 0.104 0.228 0.501 0.476 0.162 0.014 
7 0.380 0.101 0.423 0.931 0.922 0.309 0.048 
8 0.059 0.100 0.066 0.146 0.136 0.045 0.001 
9 −0.462 0.101 −0.514 −1.132 −1.156 −0.388 0.072 

10 0.010 0.919 0.132 0.087 0.081 0.276 0.043 

Table 9.3   Regression statistics for the data of Figure 9.19a 

Table 9.4 presents the analysis of the data for figure 9.19b.  Note that the equation and ensuing 
R2 are quite different.  Only y for the 10th observation was changed from its previous value.  
Note also that the influence statistics DFFITS and Di are large.  The 10th observation is one of 
high influence, showing that the line computed with this point deleted is quite different than the 
one with it included. This is also demonstrated by the prediction residual e(i), whose absolute 
value is also large.  The leverage statistic is unchanged from 9.19a, as the x position has not 
changed. 

It is also quite important to note the values for the 10th observation which are not large -- the 
residual itself (ei) and the standardized residual (e std).  These statistics do not indicate the 
magnitude of the problem.  Therefore residuals plots which use ei or 
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e std may not display influential observations as such, because the line has been so drawn near to 
the outlier that its residual does not appear unusual. 

9.5.4 Measures of Serial Correlation 
One of the assumptions of regression is that the residuals ei are independent. Many hydrologic 
data sets on which regression is performed are actually pairs of time series -- precipitation and 
flow, flow and concentration, concentration of one constituent versus concentration of another.  
These series often exhibit serial correlation, the dependence or correlation in time sequence 
between residuals, violating the assumption of independence (figure 9.10).  If the sampling 
frequency is high enough, serial correlation of the residuals is virtually certain to exist.  If serial 
correlation occurs, the following two problems ensue:  
1) The estimates of the regression coefficients are no longer the most efficient estimates 

possible, though they remain unbiased, and 
2) 	 The value of s2 may seriously underestimate the true σ2. 

This means that all of the hypothesis tests are wrong (H0 is rejected too easily) and that 
confidence and prediction intervals are too narrow. 

y* = 3.65 + 0.11 x* 

n = 10 s = 0.60 R2 = 0.21 
Parameter Estimate Std.Err(β) t-ratio p 
Intercept β0 3.648 0.270 13.53 0.000 
Slope β1 0.111 0.075 1.48 0.000 

OBS# ei  hi  e(i) e std e stud DFFITS Di
 1 −1.096 0.188 −1.350 −2.042 −2.761 −1.330 0.483 

2 −0.166 0.131 −0.192 −0.300 −0.282 −0.109 0.006 
3 0.599 0.126 0.687 1.077 1.090 0.415 0.084 
4 −0.370 0.122 −0.421 −0.663 −0.638 −0.238 0.030 
5 −0.325 0.104 −0.363 −0.576 −0.551 −0.188 0.019 
6 0.373 0.104 0.417 0.662 0.637 0.217 0.025 
7 0.680 0.101 0.757 1.204 1.245 0.417 0.081 
8 0.534 0.100 0.594 0.945 0.938 0.313 0.049 
9 0.099 0.101 0.110 0.176 0.165 0.055 0.001 

10 −0.329 0.919 −4.117 −1.955 −2.531 −8.579 21.961 

Table 9.4  Regression statistics for the data of Figure 9.19b 

One can search for the presence of serial correlation in two ways.  The first is graphical:  plotting 
ei versus i or a measure of time (figure 9.10b).  If there is a tendency for the data to "clump," 
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positives follow positives, negatives follow negatives, this may mean there is dependence.  The 
clumping could arise for four different reasons:  long-term trend, seasonality, dependence on 
some other serially correlated variable which was not used in the model, serial dependence of 
residuals, or some combination of these. Examination of a graph of ei versus time should help 
to reveal trend or seasonality if they exist.  If there is reason to believe it is trend or seasonality 
(or both), then steps should be taken to remove these features from the residuals by adding 
additional explanatory variables.  Similarly, if there is an important variable missing from the 
model, plots of ei versus this variable should show it, and incorporating this new variable may 
remove the clumpiness of the residuals.  This is particularly likely if this new explanatory variable 
exhibits serial dependence, seasonality, or trend.  The residuals from these new regressions can 
be plotted again to see what effect this had. 

9.5.4.1 Durbin-Watson statistic 
There are also statistics for evaluating the dependence of residuals.  The standard one is the 
Durbin Watson statistic (Durbin and Watson, 1951).  It is very closely related to a serial 
correlation coefficient.  The statistic is 

n


∑ [ei - e(i-1)]2


i=2

d = n


∑ ei2


i=1


A small value of d is an indication of serial dependence. The H0 that the ei are independent is 
rejected in favor of serial correlation when d<dL which is tabled in time-series texts.  The value 
of dL depends on the size of the data set, the number of explanatory variables, and α. However, 
a low value of d will not give any clue as to its cause.  Thus, the graphical approach is vital, and 
the test is only a check.  The Durbin Watson statistic requires data to be evenly spaced in time 
and with few missing values. 

9.5.4.2 Serial correlation coefficient 
Serial correlation can also be measured by the correlation coefficient between a data point and 
its adjacent point.  As a linear relationship between pairs of points cannot be assumed, the 
Kendall's or Spearman's coefficients will provide robust measures of serial dependence.  To 
compute whether this serial dependence is in fact significant, 

1) Compute the regression between y and x. 

2) Order the resulting residuals by the relevant time or space variable t1 to tn. 
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3)	 Offset or "lag" the vector of residuals to form a second vector, the lagged residuals.  The 
residuals pairs then consist of (ei, ei−1) for all i from t2 to tn. Figure 9.10c plots one such 
set of data pairs, illustrating their correlation. 

4) Compute Kendall's tau (or Spearman's rho) between the pairs (ei, ei−1). If the 

correlation is significant, the residuals are serially correlated.


9.5.4.3 What to do if serial correlation is present 
If serial dependence cannot be removed by adding new variables, and one wants to make 
inferences about parameters, then these three options are available. 

1) 	 Sample from the data set.  For example, if the data set is quite large and the data are 
closely spaced in time (say less than a few days apart), then simply discard some of the 
data in a regular pattern.  The dependence that exists is an indication of considerable 
redundancy in the information, so not a great deal is lost in doing this. 

2) 	 Group the data into time periods (e.g., weeks, months) and compute a summary statistic 
for the period such as a time-weighted mean or median, a volume-weighted mean or 
median, and then use these summary statistics in the regression.  This should only be 
done when the sampling frequency has remained unchanged over the entire period of 
analysis. 

3) Use much more sophisticated estimation methods, specifically Box and Jenkins (1976) 
transfer function models, or regression with autoregressive errors Johnston (1984). 

9.6 Transformations of the Response (y) Variable 

The primary reason to transform the response variable is because the data are heteroscedastic -- 
the variance of the residuals is a function of x. This situation is very common in hydrology. For 
example, suppose a rating curve between stage (x) and discharge (y) at a stream gage has a 
standard error of 10 percent.  This means that whatever the estimated discharge, the standard 
error is 10 percent of that value.  The absolute magnitude of the variance around the regression 
line between discharge and stage therefore increases as estimated discharge increases.  The ideal 
variance stabilizing transformation in these cases is the logarithm because a multiplicative 
relationship, such as standard error = 0.10•estimate, becomes a constant additive relationship 
after log transformation.  This satisfies the regression assumptions.  The two topics that require 
careful attention when transforming y are:  

1) deciding if the transformation is appropriate, and  

2) interpreting resulting estimates. 


9.6.1   To Transform or Not to Transform? 

The decision to transform y should generally be based on graphs.  First develop the best possible 

non-transformed model. This should entail considering all sorts of transformations of x (or 
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multiple x variables) to get a good and reasonable fit.  Then plot ei vs. ŷ i to check for 
heteroscedasticity, do a probability plot for ei to check for normality, and examine the function 
for unreasonable results (i.e., predictions of negative values for variables that can't go negative).  
If serious problems arise for any of these reasons, transform y and repeat the process.  If both 
the transformed and untransformed scales have problems, then either look for a different 
transformation or accept the lesser of two evils. 

Two methods are available to numerically judge whether or not to transform y.  The first is to 
perform a series of transformations, perform regressions, and choose the transformation which 
maximizes the probability plot correlation coefficient (PPCC) for the regression residuals.  This 
optimizes the normality of residuals.  The second method is similar, optimizing for linearity. It 
searches for the minimum sum of squared errors SSE from a series of regressions using 
transformed and scaled y variables (Montgomery and Peck, 1982, p.94).  The transformations 
used are scaled versions of the ladder of powers called "Box-Cox transformations".  Scaling is 
required in order to compare the errors among models with differing units of y.  Either 
numerical method can be a useful guide to selecting several candidate transformations from 
which to choose. However, the final choice should be made only after looking at residuals plots. 

The key thing to note here is that comparisons of R2, s, or F statistics between transformed 
and untransformed models cannot easily be used to choose among them. Each model is 
attempting to predict a different variable (y, log(y), 1/y, etc.).  The above statistics therefore 
measure how well different variables are predicted, and so cannot be directly compared.  
Instead, the appropriate response variable is one which fits the assumptions of regression well -- 
linear and homoscedastic, having a good residuals plot.  Once a hydrologist has developed some 
experience with certain kinds of data sets, it is quite reasonable to go directly to the appropriate 
transformation without a lot of investigation. One helpful generalization is that any y variable 
that covers more than an order of magnitude of values in the data set, as sediment discharge or 
bacterial densities typically do, probably needs to be transformed. 

9.6.2 Consequences of Transformation of y 
Let's take a particular, but rather common, case of a transformed regression problem.  The 
model is
 ln(L) = β0 + β1 ln Q + ε 

where ln is the natural log, L is constituent load (tons/day), and Q is discharge (cubic feet per 
second). Let us further assume that the ε values are normal with mean zero and variance σ2. 

Figure 9.20 illustrates a data set typical of such L vs. Q data, shown here as a log-log plot.  The 
lines results from a SLR done in log units. The middle line is the regression line and the 50% 
and 95% prediction intervals are shown. Note that, because of the normality assumption, the 
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prediction intervals are symmetric about the regression line.  For any given Q value the five lines 
on the graph represent five different percentage points on the conditional distribution of ln(L).  
They are the 2.5, 25, 50 (median), 75, and 97.5 percentage points.  The median also happens to 
be the conditional mean for ln(L) because when normality is assumed the median = mean.  So 
the regression line falls on both the conditional median and mean value for ln(L). 

Figure 9.21 takes each of these data points and lines and replots them in the original units (L 
versus Q).  The five curves remain the 2.5, 25, 50, 75, and 97.5 percentage points on the 
conditional distribution. Now however this distribution of L conditional on Q is lognormal, not 
a normal distribution. Note the asymmetry of the curves around the regression line.  For a 
lognormal distribution the mean is not equal to the median.  While the central line remains the 
conditional median following transformation, the conditional mean of L will always lie 

ion line.somewhere above the regress

Figure 9.20 Prediction intervals and log-log regression in log units. 
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Figure 9.21 Prediction intervals and log-log regression re-expressed in original units. 

9.6.3 Computing Predictions of Mass (Load) 

9.6.3.1 Median or "rating curve" estimate of mass 
When the objective is estimating the mass of sediment (or nutrient or contaminant) entering a 
lake, reservoir, or estuary, the mean for each of many short time periods can be estimated by 
regression and summed to estimate the total (or mean) mass over a longer time period. This is 
appropriate because the sum of the means equals the mean of the sum.  However, simply 
transforming estimates from a log-regression equation back into the original units for y provides 
a median estimate of L, not a mean. Unfortuantely, this has been the traditionally-used method 
since Miller (1951).  The sum of these medians provides an estimate of the mean of L which is 
biased low.  As the sum of the medians is not the median of the sum, it is difficult to state what 
the sum of these median values represents, except that it underestimates the long-term mean 
load. 

Ferguson (1986) points out for some very realistic cases that using the median or rating curve 
estimate for loads: 

^ L m = exp [b0 + b1 ln(Q0)] 
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will result in underestimates of the mean by as much as 50%.  The question then is how to 
compensate for this bias.  The following two methods, one assuming a normal distribution of 
the logs and the other a nonparametric method, attempt to correct for this bias of the median 
estimate. 

9.6.3.2 Parametric or "MLE" estimate of mass 
If the residuals in natural log units were known to be normal and the parameters of the model 
(β0, β1, σ2) were known without error, the theory of the lognormal distribution (Aitchison and 
Brown, 1981) provides the following results: 

Median of L given Q0	 = exp [β0 + β1 ln(Q0)] = Lm

= exp [β0] • Q0β1


Mean of L given Q0 = E [L|Q0] = exp [β0 + β1 ln(Q0) + 0.5 σ2] 
= Lm • exp [0.5 σ2] 

Variance of L given Q0 = V [L|Q0] = [Lm • exp(0.5 σ2)]2 • [exp(σ2) − 1] 

These equations would differ if base 10 logarithms were used (Ferguson, 1986). 

Unfortunately the true population values β0, β1, and σ2 are never known in practice. All that is 
available are the estimates b0, b1, and s2. Ferguson (1986) assumed these estimates were the true 
values for the parameters.  His estimate of the mean is then 

^ L MLE = exp [b0 + b1 ln(Q0) + 0.5 s2] 

^ When n is large (>30) and σ is small (<0.5), L MLE is a very good approximation. However, 
when n is small or σ is large, it can overestimate the true mean -- it overcompensates for the 
bias.  There is an exact unbiased solution to this problem which was developed by Bradu and 
Mundlak (1970). It is not given here due to the complexity of the formula.  Its properties are 
discussed in Cohn (1988). Even so, the validity of Bradu and Mundlak's solution depends on 
the normality of the residuals which can never be assured in practice. 

9.6.3.3 Nonparametric or "smearing" estimate of mass 
There is an alternative approach which only requires the assumption that the residuals are 
independent and homoscedastic.  They may follow any distribution.  This is the "smearing" 
estimate of Duan (1983).  In the case of the log transform it is

n
 exp [ei]∑ 

^	 i=1
L D = exp [b0 + b1 ln(Q0)] • n 
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The smearing estimator is based on each of the residuals being equally likely, and "smears" their 
magnitudes in the original units across the range of x.  This is done by re-expressing the residuals 
from the log-log equation into the original units, and computing their mean.  This mean is the 
"bias-correction factor" to be multiplied by the median estimate for all x0. Even when the 
residuals in log units are normal, the smearing estimate performs very nearly as well as Bradu 
and Mundlak's unbiased estimator. It avoids the overcompensation of Ferguson's approach.  As 
it is robust to the distribution of residuals, it is the most generally-applicable approach. 
The smearing estimator can also be generalized to any transformation.  If Y = f(y) where y is the 
response variable in its original units and f is the transformation function (e.g., square root, 
inverse, or log), then 

n

∑ f -1 (b0 + b1 X0 + ei) 

^ i=1 
y = D n 

where b0 and b1 are the coefficients of the fitted regression and ei are the residuals 
(Yi = b0 + b1 X0 + ei) , f −1 is the inverse of the selected transformation (e.g., square, inverse, 
or exponential, respectively) and X0  is the specific value of X for which we want to estimate y. 

9.6.4 An Example 
Total phosphorus loads are to be estimated for the Illinois River at Marseilles, Illinois, drainage 
area 8259 square miles, for the period 1972-1985.  The data are contained in Appendix C10. 
The 96 measurements of load are plotted in figure 9.22 as a function of discharge.  As loads 
were not sampled for each day during this time period, estimates of load for unsampled days are 
to be obtained from a regression equation as a function of discharge. 
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Figure 9.22 Total phosphorous load and stream discharge for the Illinois River 

The first question is whether a log transform of load is necessary to develop a good prediction 
equation. From figure 9.22, the variance appears to greatly increase as discharge increases.  
Therefore a log transformation of phosphorus is attempted.  This results in a curvilinear pattern, 
so the log of discharge is computed and used as the explanatory variable.  As seen in figure 9.23, 
the transformation of both load and discharge results in a linear, homoscedastic relationship.  A 
residuals plot in figure 9.24 shows little evidence of structure, indicating that the units are 
appropriate.  Therefore these units are used for the regression. Table 9.5 gives the relevant 
regression statistics. 

ln(L) = 0.80 + 0.76 ln(Q) 

n = 96 s = 0.339 R2 = 0.68 
Parameter Estimate Std.Err(β) t-ratio p 
Intercept β0 0.799 0.114 7.03 0.000 
Slope β1 0.761 0.054 14.10 0.000 

Table 9.5  Regression statistics for the Illinois River phosphorus data 
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Figure 9.23  Log-log relation between phosphorous and discharge for the Illinois River 

Figure 9.24 Residuals plot for ln(phosphorous) versus ln(discharge) 

To illustrate the bias in phosphorus loads for the rating curve method, and the bias correction 
capabilities of the other two methods, estimates of all three will be computed here for the 96 
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days for which data exist.  These values can then be compared to the "true" loads computed 
from the observed data. 

The results from this regression are these Mean Load Error 
true = 12.64 
median estimate = 11.72 -7.3% 
MLE estimate  = 12.41 -1.8% 
smearing estimate = 12.44 -1.6% 

The median estimate is biased low, while the MLE and smearing estimates are close to each 
other and to the true value (figure 9.25).  The MLE and smearing estimates should be expected 
to be similar here, as the residuals are fairly symmetric, n is large and s is small.  These are the 
conditions under which the MLE works well. Had s been large (>1) or n small (<30) the MLE 
would probably have had a positive bias, and only the smearing estimate would have come close 
to the true value. 

Figure 9.25  Load estimate curves with and without bias correction for Illinois R. data 
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9.7 Summary Guide to a Good SLR Model 

1) 	 "Should x be transformed, and if so, how?"  Considerable help can come from a statistic 
such as R2 (maximize it), or s (minimize it), but these numbers alone do not insure a good 
model. Many transformations can be rapidly checked with such statistics, but always look at 
a residual versus predicted plot before making a final decision.  Transform x if the residuals 
plot appears non-linear but constant in variance, always striving for a linear relation between 
y and x. 

2) "Should y be transformed, and if so, how?"  Visually compare the transformed-y model to 
the untransformed-y model using their residuals plots (residual versus predicted).  The better 
model will be more: 
1) linear, 
2) homoscedastic, and 
3) normal in its residuals. 

The statistics R2, s, t-statistics on β1, etc. will not provide correct information for deciding if 
a transformation of y is required. 

Should estimates of mass (loads) be developed using an equation having transformed-y units, 
the transformation bias inherent in the process must be compensated for by use of the 
smearing estimate, or MLE estimate when appropriate. 

When there are multiple explanatory variables, more guidelines are required to choose between 
the many possible combinations of adding, deleting and transforming the various x variables.  
These are discussed in Chapter 11. 
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Exercises 

9.1 	 Bedinger (1961) graphically related median grain size of alluvial aquifer materials in the 
Arkansas River Valley to their yield, in gallons per day per square foot.  This enabled 
estimates of yield to be made at other locations based on measured grain-size analyses.  
Compute a regression equation to predict yield, based on the data in Appendix C11. 

9.2 	 Estimate the mean yield in gallons per day per square foot available from four wells 
which together compose the public supply of a small town in the Arkansas River Valley.  
The wells have screens with identical cross-sectional areas.  Median grain sizes for the 
units they draw from are:  0.1, 0.2, 0.4 and 0.6 millimeters. 

9.3	 Find a transformation of discharge for the Cuyahoga River TDS example which might 
improve on the log10 transformation used throughout the chapter.  The data are found 
in Appendix C9. Obvious candidates include the ladder of power transformations.  
Another class of transformations that has been shown to work well for surface-water 
chemistry is the hyperbolic transformations (see Johnson, et al., 1969).  The form of this 
transformation is x=1/(1+kQ) where k is some constant supplied by the hydrologist.  
Some general advice about selecting k is that it's not worth the effort to try and get it 
"right" to a precision better than 
about half an order of magnitude.	 A good range to work in is 

 1/(100(Q) < k < 100/(Q)

where (Q ) is the mean discharge. 


The questions you should answer are: 
a) What is a good transformation of Q to use in estimating TDS?  (There is no "best" 

transformation, but there are several good ones.) 
b) Describe your preferred model and indicate some reasons you might be concerned 

about it and might want to take steps to "fix" it in some fashion.  (You will get a 
chance to later.) 

c) What does it tell you about TDS behavior in the Cuyahoga River? 
d) A question for the mathematically inclined.  If k is set to some very large value (say 

around 100/Q ), what other model does the hyperbolic approximate?  If b is set to 
some very small value (say around 1/100Q ), what other model does it approximate? 

jkmonson

jkmonson


jkmonson


jkmonson

jkmonson
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9.4	 Objections have been raised to regressions such as load (L) versus stream discharge (Q) 
because Q is used to calculate L.  This "spurious correlation" between Q and L can be 
avoided by using concentration (C) instead of load as the dependent variable.  Loads 
would then be predicted from the estimated C.  What do you think?  How will the 
results using C compare to those using L as the regression's response variable?  To 
answer this, perform the regression for the Illinois phosphorus data of section 9.6.4 and 
produce the 96 load estimates using ln(C in mg/L) instead of ln(L in tons per day).  The 
data are found in Appendix C10. Note that the units of Q (thousands of cfs) mean that 
L = 2.7 Q•C.  What happens to the regression coefficients and the associated statistics 
such as R2, s, t-ratios, etc., when ln(C) rather than ln(L) is used?  What is the appropriate 
conclusion to this controversy? 





Chapter 10

Alternative Methods for Regression


Concentrations appear linearly related to distance down-dip in an aquifer.  OLS regression 
shows the residuals to be of generally constant variance.  However, several outliers in the data 
set inflate the standard error, and what appears graphically as a strong linear relationship tests as 
being insignificant due to the outliers' influence.  How can a more robust linear fit be obtained 
which is not overly sensitive to a few outliers, and describes the linear relation between 
concentration and distance? 

A water supply intake is to be located in a stream so that water elevation (stage) is below the 
intake only 5 percent of the time.  Monitoring at the station is relatively recent, so OLS relating 
this and a nearby site having a 50 year record is used to generate a pseudo 50-year stage record 
for the intake station. The 5th percentile of the pseudo record is used as the intake elevation.  
Given that OLS estimates are reduced in variance compared to actual data, this elevation 
estimate will not be as extreme as it should be.  What alternatives to OLS would provide better 
estimates? 

The mass of a radionuclide present within the aquifer of one county was computed by 
performing a regression of concentration versus log of the hydraulic conductivity measured at 20 
wells.  This equation was used to generate estimates at 100 locations of known hydraulic 
conductivity, which are then multiplied by the volumes of water, and summed.  However, the 
regression equation shows a marked increase in variance of concentration with increasing 
conductivity, even though the relationship is linear.  Transformations may produce a nonlinear 
relationship, with probable transformation bias.  An alternative to OLS is therefore required to 
account for heteroscedasticity without employing a transformation. 

Situations such as the above frequently arise where the assumptions of constant variance and 
normality of residuals required by OLS regression are not satisfied, and transformations to 
remedy this are either not possible, or not desirable.  In addition, the inherent reduction in 
variance of OLS estimates is not appropriate when extending records.  In these situations, 
alternative methods are better for fitting lines to data.  These include nonparametric rank-based 
methods, lines which minimize other than the squared residuals, and smooths. 
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10.1   Kendall-Theil Robust Line 

The significance of a linear dependence between two continuous variables Y and X or their 
transforms may be tested by determining whether the regression slope coefficient for the 
explanatory variable is significantly different from zero.  This is equivalent to the test for 
significance of the linear correlation coefficient r between Y and X.  In a similar fashion, 
Kendall's rank correlation coefficient tau (see Chapter 8) may be used to test for any monotonic, 
not just linear, dependence of Y on X. Related to tau is a robust nonparametric line applicable 
when Y is linearly related to X.  This line will not depend on the normality of residuals for 
validity of significance tests, and will not be strongly affected by outliers, in contrast to OLS 
regression. 

The robust estimate of slope for this nonparametric fitted line was first described by Theil 
(1950). An estimate of intercept is also available (Conover, 1980, p. 267).  Together these define 
an estimate of a complete linear equation of the form:  

^ ^ ^ Y = b0 + b1 • X 
This line is closely related to Kendall's tau, in that the significance of the test for  
H0: slope β1=0 is identical to the test for H0: tau=0. 

10.1.1 	 Computation of the Line 
^The Theil slope estimate b1   is computed by comparing each data pair to all others in a pairwise 

fashion.  A data set of n (X,Y) pairs will result in n(n−1)/2 pairwise comparisons.  For each of 
these comparisons a slope ∆Y/∆X is computed (figure 10.1).  The median of all possible 
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pairwise slopes is taken as the nonparametric slope estimate b
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Figure 10.1 A. All possible pairwise slopes between six data points.   

B.	 All possible slopes rearranged to meet at a common origin 
The thick line is the median of the 15 slopes. 
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^ (Yj - Yi)

b1 = median (Xj - Xi) for all i < j and i=1,2,...(n−1) j=2,3,...n. [10.1] 


Example 1 
For example, given the following seven (X,Y) data pairs: 

Y: 1 2 3 4 5 16 7 
X: 1 2 3 4 5 6 7 

Slopes:	 +1 +1 +1 +1 +11 −9 There are (7)(6)/2 = 21 pair-
+1 +1 +1 +6 +1 wise slopes. Comparing 
+1 +1 +4.3 +1 points 2 and 1, slope = +1. 
+1 +3.5 +1 Going down the column 
+3 +1 under point 1, comparing 
+1 points 3 and 1, slope = +1. 

For points 4 and 5 vs 1, slopes = +1. Comparing points 6 and 1, slope = (15/5) = +3, etc.  
After computing all possible slopes, they are put into ascending order: 

−9, +1, +1, +1 +1 +1 +1 +1 +1 +1 +1 
+1 +1 +1 +1 +1 +3 +3.5 +4.3 +6 +11 

^The median of these 21 values is the 11th smallest, or +1, so that b1 = +1. 

The intercept is defined as follows
^ ^ b0 = Ymed − b1 • Xmed	 [10.2] 

where Xmed and Ymed are the medians of X and Y respectively.  This formula assures that the 
fitted line goes through the point (Xmed ,Ymed). This is analogous to OLS, where the fitted line 
always goes through the point ( x , y ). For the Example 1 data above, Xmed = 4 and Ymed= 4, 

^so that b0 = 4 − 1•4 = 0. 

Other estimates of intercept have been suggested.  One is the median of all possible intercepts 
computed by solving the Kendall line using b̂ 

1 
and each data point (Dietz, 1989). However, the 

estimate of intercept produced by placing the line through the data medians was found by Dietz 
to be efficient in the presence of outliers and non-normal residuals, while also being simple to 
compute. It is the estimate recommended here, due to its robustness and efficiency, simplicity, 
and analogy to OLS. 

10.1.2 Properties of the Estimator 
OLS regression for the example 1 data would produce a slope b1 of 1.71. This differs 

^substantially from the Theil estimate b1 of 1, due to the strong effect on the regression slope of 
the one outlying Y value of 16.  This effect can be seen by changing the 6th Y value from 16 to 

^6.  The regression slope would change from 1.71 to 1, but b1 would be unchanged. Similarly, if 
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^the data value were changed from 16 to 200, b1 would be greatly inflated while b1 would again
^remain at 1.  The estimator b1 is clearly resistant to outliers. It responds to the bulk of the data. 

b̂1   is an unbiased estimator of the slope of a linear relationship, and b1 from OLS is also an 
unbiased estimator.  However, the variance of the estimators differ.  When the departures from 
the true linear relationship (true residuals) are normally distributed, OLS is slightly more efficient 
(has lower variance) than the Kendall-based line.  When residuals depart from normality (are 

^skewed or prone to outliers), then b1   can be much more efficient than the OLS slope.  The 
efficiency of the Theil estimate to the OLS slope is the same as that for the Hodges-Lehmann 
estimator in comparison to the mean (Sen, 1968), as the Theil estimate is one of the class of 
Hodges-Lehmann estimators. The Kendall-Theil line has the desirable properties of a 
nonparametric estimator: almost as "good" (efficient) as the parametric estimator when all 
assumptions of normality are met, and much better when those assumptions are not met. 

One commonly-asked question is "how much of a departure from a normal distribution is 
necessary before a nonparametric test has an advantage over its parametric counterpart?".  In 
the case of the Theil and OLS slope estimates, how non-normal must residuals be before the 
Theil estimate should be used?  Are there advantages even in cases where the departure from 
normality is so small that visual inspection of the data distribution, or formal tests of normality, 
are unlikely to provide evidence for the lack of normality?  Hirsch et al. (1991) tested the two 
slope estimators under one type of departure from normality, a mixture of two normal 
distributions. The predominant distribution had a mean of 10 and a standard deviation of 1;  
the second distribution had a mean of 11 and a standard deviation of 3.  Figure 10.2 displays the 
two individual distributions and figure 10.3 displays a mixture of 95 percent from the first 
distribution and 5 percent from the second. Visual examination of figure 10.3 reveals only the 
slightest departure from symmetry.  Given sampling variability that would exist in an actual data 
set it would be exceedingly unlikely that samples from this distribution would be identified as 
non-normal. Figure 10.4 displays a more substantial departure from normality, a mixture of 80 
percent of the first distribution and 20 percent of the second.  There is a difference in the shape 
of the two tails of the distribution, but again the non-normality is not highly noticeable. 

Random samples were generated from each of several different mixture distributions containing 
between 0 and 20 percent of the second distribution.  Data from each mixture were treated as a 
separate response variable in a regression versus a random order x.  The true population slope is 
therefore zero.  Both OLS and the Theil slope estimators were computed, and their standard 
deviations around zero recorded as root mean square error (RMSE).  The results are given in 
figure 10.5 as the ratio of RMSE for the Theil estimator to the RMSE of the regression 
estimator (Hirsch et al., 1991). A value larger than 1 shows an advantage to OLS;  smaller than 
1 indicates the Theil estimate to be superior.  For the larger sample size (n=36) the OLS 
estimator was more efficient (by less than 10 percent) when the data are not mixed and 
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therefore normal.  With even small amounts of mixtures the Theil estimator quickly becomes 
more efficient.  At a 20 percent mixture the Theil estimator was almost 20 percent more 
efficient.  When the sample size was very small (n=6, smaller than typically used in a case study), 
efficiencies of the two methods were virtually identical. 

These results reinforce that when the data or their transforms exhibit a linear pattern, constant 
variance and near-normality of residuals, the two methods will give nearly identical results.  The 
advantages of familiarity and availability of diagnostics, etc. favor using OLS regression.  
However, when residuals are not normally distributed, and especially when they contain outliers, 
the Kendall method will produce a line with greater efficiency (lower variability and bias) than 
does OLS. Only small departures from normality (not always sufficient to detect with a test or 
histogram of residuals) favor using a robust approach.  Certainly one should check all outliers 
for error, as discussed in Chapter 1.  Do these represent a condition different from the rest of 
the data?  If so, they may be the most important points in the data set.  Perhaps another 
transformation will make the data more linear and residuals near-normal.  But outliers cannot 
automatically be deleted, and often no error can be found.  Robust methods like Kendalls or 
weighted least squares (discussed in sections 10.3 and 10.4) provide protection against 
disproportionate influence by these distinctive, but perhaps perfectly valid, data points. 

For analysis of a small number of data sets, detailed searches for transformations to meet the 
assumptions of OLS are feasible.  OLS is particularly informative in more complex applications 
requiring incorporation of exogenous effects using multiple regression (see Chapter 11).  Cases 
aren't unusual, however, where no power transformations can produce near-normality due to 
heavy tails of the distribution. Perhaps the two greatest uses for Kendall's robust fit are 1) in a 
large study where multiple variables are tested for linear fits at multiple locations without the 
capability for exhaustive checking of distributional assumptions or evaluations of the sensitivity 
of results to outliers, and 2) by practitioners not trained in residuals plots and use of 
transformations to stabilize skewness and heteroscedasticity.  A third use is for fitting lines to 
data which one does not wish to transform. 
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Figure 10.2. Two normal distributions, the first with mean = 10 and standard deviation = 1;  

the second with mean = 11 and standard deviation = 3 


(from Hirsch et al., 1991). 
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Figure 10.3. A mixture of data from distribution 1 (95 percent) and distribution 2 (5 percent) 
shown in figure 10.2  (from Hirsch et al., 1991).   
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Figure 10.4. A mixture of data from distribution 1 (80 percent) and from distribution 2 (20 

percent) shown in figure 10.2  (from Hirsch et al., 1991).   
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Figure 10.5. Relative efficiency of the Theil slope estimator as compared with the OLS slope.  
Efficiency is the ratio of the Theil RMSE to the OLS RMSE, expressed as a function of 

population mixture and record length (from Hirsch et al., 1991).   
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Example 2 
Figure 10.6 shows an OLS and Kendall-Theil fit to trends in total phosphorus concentrations 
from 1975 to 1989 in the St. Louis R. at Scanlon, MN.  The outliers are accurate values from 
floods, and therefore cannot be ignored or deleted.  The question is whether there is a significant 
linear trend in concentration over this 14 year period. Here linear fits of concentration versus 
time are used to test for trend (see Chapter 12 for more on trend tests).  The OLS slope is 
affected by the outliers present.  Although the magnitude of the OLS estimate is similar to the 
Theil slope, the OLS slope does not test as significantly different from zero (p=0.43).  This is 
due to inflation of the standard error by outliers in violation of the assumed normality of 
residuals.  The Theil slope is highly significantly different from zero (p<0.0001).  The Kendall-
Theil line is not dependent on assumptions of normality which the data strongly violate. 

10.1.3 Test of Significance 
The test for significance of the Kendall-Theil linear relationship is the test for H0: τ = 0. This 
involves computation of Kendall's S statistic (equation 8.1 of Chapter 8).  For n>10, the large

^sample approximation (equation 8.3 of Chapter 8) may be used.  The Theil slope estimator b1 is 
closely related to Kendall's S and τ in the following ways.   

1. S is the sum of the algebraic signs of the possible pairwise slopes. 
2. If the amount (b̂ 

1 
X) is subtracted from every Y value, the new Y values will have an S 

and τ very close to zero, indicating no correlation.   

If X is a measure of time, as it is for a trend test, subtracting ( b̂ 
1 
X) yields a trend-free version of 

the Y data set. 

Figure 10.6. Total phosphorus concentrations with OLS and Kendall-Theil fitted lines for the 
St. Louis River at Scanlon, MN, 1975-1989. 
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Example 1, cont. 
For the example 1 data set, the test of significance is computed as follows.  S equals the sum of 
the signs of pairwise slopes already computed.  There are n(n−1)/2 =21 slopes, 20 of which are 
positive and 1 negative, so that S = 20−1 = 19. Tau = 19/21 = 0.90.  Using table B8 of the 
Appendix due to the small sample size, the exact two-sided p-value for an S of 19 and n=7 is 
2•0.0014 = 0.003.  (Inappropriately using the large sample approximation for such a small data 
set, the approximate p-value is 0.007.)  Thus Y is significantly related to X in a linear fashion. 

10.1.4 	 Confidence Interval for Theil Slope 
^Confidence intervals may be computed for the Theil slope b1   with procedures parallel to those 

used for other Hodges-Lehmann type estimators of earlier chapters.  As before, the tabled 
distribution of the test statistic, in this case table B8 for the exact Kendall's test statistic or a table 
of standard normal quantiles for the large-sample approximation, is entered to find upper and 
lower limits corresponding to critical values at one-half the desired alpha level.  These critical 
values are transformed into the ranks corresponding to data points at the ends of the confidence 
interval. 

For small sample sizes, table B8 is entered to find the critical value Xu having a p-value nearest 
to α/2. This critical value is then used to compute the ranks Ru and Rl corresponding to the

^slope values at the upper and lower confidence limits for b1 . These limits are the Rlth ranked 
data points going in from either end of the sorted list of N = n•(n−1)/2 pairwise slopes.  The 
resulting confidence interval will reflect the shape (skewed or symmetric) of the original data.  

(N + Xu )
Ru = 2 [10.3] 

(N - Xu )
Rl = 2  + 1 [10.4] 

Example 1, cont. 
The N=21 possible pairwise slopes between the n=7 data pairs for example 1 were: 

−9, +1, +1, +1 +1 +1 +1 +1 +1 +1 +1 
+1 +1 +1 +1 +1 +3 +3.5 +4.3 +6 +11. 

^	 ^b1   was the median or 11th largest slope.  To determine a confidence interval for b1 with 
α ≅ 0.05, the tabled critical value Xu nearest to α/2= 0.025 is found to be 15 (p=0.015).  The 
rank Ru of the pairwise slope corresponding to the upper confidence limit is therefore 

(21 + 15)
Ru = 2 = 18 for N=21 and Xu=15. 

The rank Rl of the pairwise slope corresponding to the lower confidence limit is 
(21 - 15)

Rl = 2  +1 = 4. 
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^So an α = 2•0.015 = 0.03 confidence limit for b1   is the interval between the 4th and 18th 
ranked pairwise slope (the 4th slope in from either end), or 

^ +1≤ b1 ≤ +3.5 . 

^
The asymmetry around the estimate b1  = 1 reflects the low probability that the slope is less than 

1, based on the data. 

When the large-sample approximation is used, the critical value zα/2 from a table of standard 
normal quantiles determines the upper and lower ranks of the pairwise slopes corresponding to 
the ends of the confidence interval.  Those ranks are 

n( n − 1)(2n + 5)
N + z

 Ru = 
α / 2  18 +1 [10.5]

2

n(n −1)(2 n + 5)
N − z

 Rl = 
α / 2  18 [10.6]

2

As an example, for n=20 pairs of data there would be N=(20)(19)/2 = 190 possible pairwise 
^slopes.  b1   is the average of the 95th and 96th ranked slopes.  For a 95 percent confidence 

^interval on b1 , zα/2 = 1.96 and 

190 + 1.96 • 950
Ru = 2  +1 = 126.2 

190 - 1.96 •  950
Rl = 2 = 64.8 

the 64.8th ranked slope from either end.  Rounding to the nearest integer, the 126th and 65th 
^ranked slopes are used as the ends of the α=0.05 confidence limit on b1 . 

Further discussion of these equations is in Hollander and Wolfe (1973), pp. 207-208. 

10.2  Alternative Parametric Linear Equations 

Hirsch and Gilroy (1984) described additional methods for fitting straight lines to data whose 
slopes and intercepts are computed using moment statistics.  These lines differ from the OLS 
line of Chapter 9, and are more appropriate than that line for certain situations.  For example, 
when X is to be predicted from Y using OLS, the resulting line differs from the OLS line 
predicting Y from X. This has implications for calibration.  When many predictions are to be 
made and the distribution of those predictions is important (percentiles or spreads are of 
interest, as well as the mean), the Line of Organic Correlation (LOC) should be used instead of 
OLS.  When describing a functional relationship between two variables without trying to predict 
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one from the other, LOC is again more appropriate than OLS.  When some geographic 
trajectory is to be computed, the Least Normal Squares (LNS) line should be used. 

10.2.1 OLS of X on Y 
The OLS regression of Chapter 9 considered the situation where a response variable Y was to be 
modeled, enabling estimates of Y to be predicted from values of an explanatory variable X. 
Estimates of slope and intercept for the equation were obtained by minimizing the sum of 
squares of residuals in units of Y.  Thus its purpose was to minimize errors in the Y direction 
only, without regard to errors in the X direction.  The equation may be written as: 

s 
yYi = Y + r − X )  [10.7](X

is 
x 

where r is Pearson's linear correlation coefficient, sy and sx are the standard deviations of the Y 
and X variables, and (r sy/sx) = (r SSy / SSx ) = b1, the OLS estimate of slope (see Chapter 
9). Assuming the linear form of the model is correct and that X and Y are measured without 
error, OLS will lead to estimates of Yi for any given Xi which are unbiased and have minimum 
variance.  This means that OLS is the preferred method of estimating a single value of Y given a 
value of X, where X is measured without error.   

In contrast, situations occur where it is just as likely that X should be predicted from Y, or that 
the two variables are equivalent in function.  One classic example is in geomorphology, where 
relations between the depth and width of a stream channel are to be related.  It is as reasonable 
to perform a regression of depth on width as it is of width on depth.  A second example is the 
relation between dissolved solids concentration and "residue on evaporation" or ROE, an 
alternate measure of the amount of dissolved material in a water sample.  Either could be chosen 
to model as a function of the other, and usually a description of their relationship is what is of 
most interest. 

It is easy to show, however, that the two possible OLS lines (Y on X and X on Y) differ in slope 
and intercept. Following equation [10.7], reversing the usual order and setting X as the response 
variable, the resulting OLS equation will be  

s 
xXi = X + r (Y

i 
−Y )  [10.8] 

s 
y 

which when solved for Y becomes
s 

Yi = Y + 
1 y (X

i 
−X )  [10.9] 

r s 
x 

Let b1' = (1/r • sy/sx), the slope of X on Y re-expressed to compare with slope b1. Contrasting 
[10.7] and [10.9], the slope coefficients b1≠ b1'. Thus the two regression lines will differ unless 



276	 Statistical Methods in Water Resources 

the correlation coefficient r equals 1.0.  In figure 10.7, these two regression lines are plotted for 
the dissolved solids and ROE data of Appendix C12. 

The choice of which, if either, of the OLS lines to use follows a basic guideline.  If one is to be 
predicted from the other, the predicted variable should be assigned as the response variable Y.  
Errors in this variable are being minimized by OLS.  However, when only a single line 
describing the functional relationship between the two variables is of interest, neither OLS line is 
the appropriate approach. Neither OLS line uniquely or adequately describes that relationship.  
A different linear model having a unique solution should be used instead -- the line of organic 
correlation. 

10.2.2 Line of Organic Correlation 
The line of organic correlation (LOC) was proposed as a linear fitting procedure in hydrology by 
Kritskiy and Menkel (1968) and applied to geomorphology by Doornkamp and King (1971).  Its 
theoretical properties were discussed by Kruskal (1953).  The line also has been called the 
"geometric mean functional regression" (Halfon, 1985), the "reduced major axis" (Kermack and 
Haldane, 1950), the "allometric relation" (Teisser, 1948) and "Maintenance of Variance -
Extension" or MOVE (Hirsch, 1982).  It possesses three characteristics preferable to OLS in 
specific situations: 

a) LOC minimizes errors in both X and Y directions. 
b) It provides a unique line identical regardless of which variable, X or Y, is used as 

the response variable, and 
c) 	 The cumulative distribution function of the predictions, including the variance 

and probabilities of extreme events such as floods and droughts, estimates those 
of the actual records they are generated to represent. 
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Figure 10.7  Three straight lines fit to the same data. 
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The LOC minimizes the sum of the areas of right triangles formed by horizontal and vertical 
lines extending from observations to the fitted line (figure 10.8).  By minimizing errors in both 
directions it lies between the two OLS lines on a plot of Y versus X (see figure 10.7).  The slope 
of the LOC line equals the geometric mean of the Y on X and X on Y OLS slopes: 

b1'' = b1 b1'  = sign[r] • s
s
x
y 

where b1'' is the slope of the LOC line 

Yi  = b0 '' + sign[r] • s
s
x
y 

• Xi	 [10.10] 

So the correlation coefficient in the equation for OLS slope is replaced by the algebraic sign  
(+ or −) of the correlation coefficient with LOC.  The magnitude of the LOC slope b1'' is 
determined solely by the ratio of standard deviations sy/sx. Performing LOC of X on Y will 
give the identical line as does the LOC of Y on X . 

LOC is therefore used for two purposes, corresponding to the three above attributes: 
a , b) to model the correct functional relationship between two variables, both of which 

are measured with error. 
^ c) 	 to produce a series of estimates Y i from observed Xi whose distributional 

properties are similar to those expected had the Yi been measured.  Such 
estimates are important when the probability distribution (variance or percentiles) 
of the estimates, and not just the mean or an individual estimate, are to be 
interpreted and used. 

Examples of the first use for LOC include the geomorphic relationships cited above, 
describing the relation between bioaccumulation and octanol-water partition coefficients 
(Halfon, 1985), or other applications where the slope is to take on physical meaning rather 
than interest in prediction of values of one variable. 

One example of the second use for LOC is the extension or fill-in of missing observations.  
This use for record extension has been the major application of LOC to water resources thus 
far. As an example, suppose two nearby sites overlap in their gaged record.  The streamflow 
for the site with the shorter record is related to that at the longer (the "base") site during the 
overlap period. Using this relationship, a series of streamflow data at the shorter site is 
estimated during an ungaged period based on flows at the base site.  If the OLS equation 
were used to estimate streamflows, the variance of the resulting estimates would be smaller 
by a factor of R2 than it should be.  OLS reduces the variance of estimates because the OLS 
slope is a function not only of the ratio of the standard deviations sy/sx, but also of the 
magnitude of the correlation coefficient r.  Only when |r| = 1 do OLS estimates posses the 
same variance as would be expected based on the ratio of variances for the original data.  To 
see this more clearly, take the extreme case where r=0, and there is no relationship between 
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Y and X. The slope then equals 0, and all OLS estimates would be identical and equal to Y . 
The variance of the estimates is also zero.  As R2 decreases from 1 to 0, the variance of OLS 
estimates is proportionately reduced.  This variance reduction is eliminated from LOC by 
eliminating the correlation coefficient from the equation for slope.  The estimates resulting 
from the LOC have a variance in proportion to the ratio of the variances sy2/sx2 from the 
original data. 

When multiple estimates are to be generated and statements made about probabilities of 
exceedance, such as flood-flow probabilities, probabilities of low-flows below a water supply 
intake, or probabilities of exceeding some water-quality standard, inferences are made which 
depend on the probability distribution of the estimated data.  In these cases LOC, rather than 
OLS, should be used to generate data.  OLS estimates would substantially underestimate the 
variance because they do not include the variability of individual values around the regression 
line (Hirsch, 1982).  As a consequence, the frequency of extreme events such as floods, 
droughts, or exceedance of standards would be underestimated by OLS. 

Variations on using LOC for hydrologic record extension have been published by Vogel and 
Stedinger (1985) and Grygier et al. (1989). 

All three of the lines discussed thus far have two identical characteristics.  They are invariant to 
scale changes, so that changing the Y or X scale (from English to metric units, for example) will 
not change the estimates of slope or intercept after re-expressing them back into their original 
scales.  However, if the X and Y axes are rotated and lines re-computed, the second set of 
estimates will differ from the first following re-expression into the original orientation. This 
second property is not desirable when the original axes are of arbitrary orientation, such as for 
latitude and longitude. The line discussed in the next section can be fit when invariance to 
spatial orientation is desired. 

10.2.3 Least Normal Squares 
Least normal squares is the line which minimizes the squared distances between observed points 
and the line, where distances are measured perpendicular (normal) to the line.  The slope can be 
expressed as in figure 10.8 

 s s 
b = −A + 

r 2 + A2 

where A = 
1  x − y  

 . [10.11] 
r 2 

 s
y 

s
x  
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Method Slope Scale Change 
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Figure 10.8  Characteristics of four parametric methods to fit straight lines to data 

An appealing property of LNS is its invariance to rotation of axes.  This is desirable when the 
coordinate system in which the data are measured is arbitrary.  The most common example of 
this is where X and Y are physical locations, such as latitude and longitude.  If the axes are 
rotated, the X and Y coordinates of the data recomputed, and the LNS line recomputed, it will 
coincide exactly with the LNS line for the data prior to rotation.  This is not so with OLS or 
LOC.  However, the LNS line is not invariant to scale changes.  The LNS line expressed in any 
scale will differ depending on the scale in which the calculations were made.  For example, the 
LNS line relating concentration in mg/L to streamflow in cubic feet per second will differ from 
the LNS line for the same data using  streamflow in cubic meters per second.  This attribute 
makes LNS poorly suited to describe the relation between most common water resources 
variables.  Where LNS is appropriate is in computing trajectories minimizing distances between 
observed points in space.  Kirby (1974) thus used LNS to compute the straight line traverse of a 
ship from a set of coordinate locations taken along its trip. 
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10.2.4 Summary of the Applicability of OLS, LOC and LNS 
To summarize the application of each of the above parametric procedures: 
1. 	 To estimate individual values of one variable from another variable, use OLS (assuming 

the data are linear and homoscedastic).  This holds regardless of causality, and regardless 
of whether there are errors in measurement of the explanatory variable. 

2. 	 To estimate multiple values of one variable from another variable in order to make 
statements about the probability distribution, use LOC.  This preserves the 
characteristics of the entire distribution, avoiding the downward bias in variance of the 
OLS estimates. 

3. 	 To describe the functional relationship between two variables with the primary interest 
in the slope coefficient, use LOC.   

4. 	 To determine the geographic trajectory which minimizes the differences from observed 
data, use LNS. 

10.3  Weighted Least Squares 

Data may exhibit a linear pattern yet have non­
constant variance (heteroscedasticity -- see 
figure 10.9). Corrections for non-constant 
variance involving a power transformation will 
often alter the linear pattern to one which is ei 
curved. Also, transformation into differing 0 
units may not be desirable, due to 
retransformation bias of the estimates (see 
Chapter 9). Finally, the data may have known 
inherent differences in their variances, such as 
when means or other summary statistics based Ŷ 
on unequal-sized data sets are used as the i 

explanatory variable.  When the constant Figure 10.9 Heteroscedastic data. 

variance assumption of OLS is violated, an alternate method called weighted least squares (WLS) 
should instead be employed. 

With WLS, each squared residual (Yi − Ŷ i)
2 is weighted by some weight factor wi in such a way 
that observations with greater variance have lesser weight.  Thus "less reliable" observations 
have less influence on the resulting linear equation than "more reliable" observations.  The fitted 
WLS equation minimizes the squares of the weighted residuals. To evaluate whether this 
weighting has corrected for heteroscedasticity, a weighted residuals plot should be drawn.  In 

^this plot the weighted residuals, ei  wi  are plotted versus Y i  wi  . The pattern of 
weighted residuals can be interpreted as with any other residuals plot. 
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One common use of WLS in water resources arises when basin characteristics are used to 
estimate flood percentiles (Tasker, 1980).  For example, estimates of the 100-year flood at 
ungaged sites can be made from a log-log regression of sample estimates of 100-year floods for 
gaged sites within a region versus drainage area.  The flood flows used to construct the 
regression will have differing variances for different sites, depending on their record lengths n.  
Sample estimates based on longer records are more reliable, and will have lower variance, than 
for stations with less data.  Therefore estimates from longer records should be given a stronger 
effect on the regression line. If all original observations are assumed to have constant variance 
σ 2, then the weights wi for the weighted regression will be proportional to the record lengths ni 
at each station. 

Further weighting could reflect any spatial correlation between the sites.  This is called 
generalized least squares, and is applied to hydrology by Stedinger and Tasker (1985).  An 
example of weighting in response to differential sampling within a stratified sampling design is 
given by DuMouchel and Duncan (1983). 

A more empirical method of weighting occurs by setting weights inversely proportional to the 
sample variance of the response variable at that location.  This variance is rarely known ahead of 
time, so that weights are computed based on residuals from an ordinary least squares regression 
(OLS) in the following manner: 

^1) OLS regression is computed for Y versus X.  Residuals are plotted against Y , and 
nonconstant variance is seen. 

2) Observations with similar X's are grouped, and the variance of the observations in each 
group sy2 is calculated.  These variances are plotted versus Xi for each group. 

3) Assign sy2 to each observation in group i. Weights wi = 1/sy2 . 

Weighted least squares can be computed using software for unweighted multiple regression by 
employing a data transformation Yi' = ci Yi , where each observation Yi is multiplied by the 
square root of the weight for that point (c  wi

A weighted intercept term must also be included as a new "variable" I
i = =1/sy). The Xi must also be weighted as 

Xi' = ci Xi. i', consisting 
of a vector of ci's, one per observation.  The transformed Yi' are then related by multiple 
regression to Xi' and Ii' using the "no intercept" option (the I' column is the weighted intercept).  
The resulting coefficients are the coefficients of the weighted least squares line. 

Example 3 
Total dissolved solids (TDS) from Appendix C12 are plotted versus time, and an increasing 
variance is seen (figure 10.10).  Regression of TDS versus time produces: 
 TDS = −1627 + 0.844•Time, t-statistic = 4.62 p = <0.001 
where Time is in years.  A residuals plot would also show increasing variance. 
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However, this equation puts undue emphasis on the more recent data, which have the largest 
variability. The variability seems to increase after 1985, therefore the data are split into two 
periods, and the variance of TDS is computed separately for each period. 

Figure 10.10 TDS data with non-constant variance (heteroscedasticity). 

The variance for the pre-1985 period is 24.18, while after 1985 it is 71.80.  The reciprocal of 
these values is assigned as the weight function for each observation in the respective groups, and 
a weighted least squares regression is performed.  This results in:
 TDS = −1496 + 0.778 • Time. t-statistic = 4.10 p = <0.001 

Figure 10.11 Weighted residuals plot of the TDS data. 

A plot of the weighted residuals versus predicted values is shown in figure 10.11.  The 
weighted residuals have constant variance.  Thus the weighted least squares line should be 
preferred to the unweighted line, because it more closely conforms to one of the assumptions of 
least squares regression -- constant variance of residuals. 
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10.4 Iteratively Weighted Least Squares 

OLS regression can be thought of as a "linear mean", with both desirable and undesirable 
properties similar to a mean. One undesirable property is that outliers can "pull" the location of 
the line (estimates of slope and intercept) in their direction, much in the same fashion as the 
sample mean is affected by an outlier. The resulting residuals corresponding to the outlying 
point may be small, making that point difficult to discern as unusual.  Such outliers must be 
detected using influence statistics (see Chapter 9).  In addition to detecting outliers, it may be 
desirable to limit their influence on the regression line, similar in objective to the Kendall-Theil 
method given in section 10.1. A second method for doing so, somewhat analogous to a 
trimmed mean, is a robust regression method called iteratively weighted least squares (IWLS).  
Unlike Kendall-Theil, IWLS is applicable in the multiple regression context. 

The goal of any robust regression is to fit a line not strongly influenced by outliers.  This leaves 
large residuals for the outliers, but a better fit to most other points.  IWLS produces models 
similar to OLS when the underlying residuals distribution is normal, where OLS would have 
been reasonable to use. Alternate methods of robust regression to IWLS include "least median 
of squares" and "least absolute value" (Rousseeuw and Leroy, 1987), both of which minimize a 
more robust measure of error than least squares. 

With IWLS, weights are derived from the data.  An OLS is first computed -- all weights are 
initially set equal to one.  Points nearest the OLS line are then given weights near one, while 
points further away have lesser weight.  A weighted least squares is computed, and the process 
repeated. After about two iterations the weights become stabilized, and the final iteratively 
weighted least squares line results.   

There are several weight functions which have been used to compute weights.  A common and 
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useful one is the bisquare weight function (Mosteller and Tukey, 1977): 

(1 - ui2) 2 for |ui| ≤ 1
 



wi = 
0 for |ui| > 1 

^Yi  - Yi
where  ui = c•S 

c = constant, and 
S = some robust measure Figure 10.12 Bisquare Weight Function 

^− Yof spread of the residuals (Y ).i i
The purpose of the divisor c•S is to make ui invariant to scale changes. 
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Common choices for c and S are 
a. c = 3 and S = the IQR of the residuals.  For a normal distribution IQR ≅ 4/3 σ, so that 

when c = 3, c•S ≅ 4σ. This is a margin sufficiently wide to include most or all 
observations when the distribution is near-normal, and yet protect against outliers when 
the distribution is markedly non-normal. 

b. c = 6 and S = the MAD, the median absolute deviation from the previous line, or 
median |residuals|.  Again c•S ≅ 4σ  (MAD ≅ 2/3 σ for a normal distribution). 

Note that since the sample standard deviation is strongly distorted by outliers, it would be a poor 
choice as the measure of spread S.  This highlights the failing of all parametric tests for outliers:  
if the criteria for declaring a value as an outlier is strongly influenced by those same outliers, it 
will be inflated to the point of declaring too few data as outliers.  Either the MAD or IQR are 
more appropriate than the standard deviation for this purpose. 

After calculating the IQR or MAD of residuals from an OLS, the first set of weights are 
produced.  These weights are used in the first weighted least squares, from which new residuals 
are used to compute new weights.  The process is repeated until the weights stabilize -- in most 
cases only two iterations are required. 

Example 3 
TCE concentrations were measured in wells from the Upper Glacial Aquifer, Long Island, NY., 
and related to population density (Eckhardt et al., 1989).  Below are listed the percent of wells 
with TCE concentrations above the detection limit (%DET), by population density of the 
surrounding land (POPDEN). Compute the robust regression equation (2 iterations) to predict 
detection percentage from population density. 

%DET 0.64 4.80 10.20 22.50 25.00 25.00 67.00 38.00 31.30 
POPDEN 1 2 3 5 6 8 9 11 

Figure 10.13 TCE concentrations on Long Island (Eckhardt, 1989) 

13 
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The OLS (unweighted) regression equation is   %DET = 2.00 + 3.56 • POPDEN 
with a t-statistic of 2.86.  This line is pulled up by the one outlier at a population density of 9 
which doesn't fit the rest of the data very well (figure 10.13).  The residuals ei from this OLS line 
are used to establish bisquare weights for the first WLS line.   
ei: −0.414 −0.345 −0.191 0.199 0.120 −0.404 2.478 −0.253 −1.545 
wi: 0.929 0.945 0.982 0.978 0.992 0.913 0.000 0.971 0.326 

The outlying point is sufficiently far from the line that it receives a weight of zero.  The first 
weighted regression equation is then  %DET = 0.93 + 3.23•POPDEN, with a  
t-statistic of 6.93.  This is shown as "1st WLS" in figure 10.13.  Again, residuals are computed 
from this equation, and a new set of weights computed:  
wi: 0.945 0.970 0.999 0.872 0.903 0.986 0.000 0.989 0.489 

The 2nd iteration weighted regression equation is then  %DET = 1.24 + 3.10•POPDEN, 
similar to the previous iteration, with a t-statistic of 6.63.  Figure 10.13 shows this line as "2nd 
WLS".  The residual for the outlying point remains large, while the line fits the majority of the 
data quite well. This is the objective of a robust regression. 

10.5 Smoothing 

Smoothing differs in purpose and form from the previous methods.  It is an exploratory 
technique, having no simple equation or significance tests associated with it.  The most common 
smooths estimate the center of the data -- the conditional mean or median of Y as X changes. 
The lack of an equation is a strength in the sense that a smooth is not constrained by some prior 
assumption as to the mathematical function of the relationship.  Rarely are there theoretical 
grounds for choosing one function over another in modeling Y versus X.  For large data sets it is 
common to visually identify departures from a simple function which could only be modelled by 
incorporating several high order terms.  This can cause instability near or beyond the range of 
the data. The shape of a smooth is not specified a priori, but is determined solely by the data. 

Middle smooths allow the data to dictate the location of a smooth curve which goes through the 
middle of the data.  They are used to highlight trends or patterns in the data on a scatterplot.  
These patterns are often difficult to see.  The human eye only poorly follows the central 
tendency of a scatterplot;  the range of data dominates visual impression.  Adding a line through 
the middle draws attention to the center of the plot, aiding judgement of whether the pattern is 
linear, indicating where breaks in slope occur, etc.    

10.5.1 Moving Median Smooths 
The simplest smooths are moving averages or medians.  Data are smoothed by calculating the 
mean or median of a portion of the total data within some 'window' of influence around a given 
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X0. This is repeated while setting X0 equal to nearly every X value in the data set.  As before, 
outliers will influence moving averages (means) more strongly than medians, so that moving 
averages are more erratic than medians in the vicinity of outliers.  Moving medians therefore are 
more resistant to outliers than are moving averages.  

Suppose a 5-point moving median is to be computed.  A 'window' of width equal to 5 data 
points is begun at the left of the X-Y plot. The median of the 5 Y values within the window is 
computed, and plotted at the center of the window (X0 = 3rd point from the left) to form the 
first value of the smooth.  Data outside the window have no influence on the smoothed value.  
The X window is shifted to the right by one data point, a new median of the 2nd through 6th 
points calculated, and this value plotted at the new X0 = 4th point from the left. This shifting 
and computation progressively continues through the final window, composed of the rightmost 
5 points.  All medians are then connected by straight lines to form the moving-median smooth. 

Figure 10.14 shows an 11-point moving median smooth for sand concentrations in the Colorado 
River at Lees Ferry, Arizona.  Moving medians are convenient for hand computation, but 
produce a "rough" pattern unless the window size is quite large.  Large windows result in the 
undesirable characteristic that data far from X0 influence the resulting value as much as data 
nearby. To avoid this, more complex smoothing routines are now performed by computer.   

Figure 10.14 11 point moving median of sand concentrations in the Colorado River 
at Lees Ferry, Arizona, 1949-1970. 
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Figure 10.15 11 point moving median and LOWESS smooths of the Lees Ferry data 

These allow the data nearer the center of the window to influence the smoothed value more 
than those further away.  They also allow the smoothness of the final fit to be adjusted to the 
needs of the data analyst.  One of the most flexible and useful smoothing algorithms is called 
LOWESS. In figure 10.15 the 11 point moving median smooth is compared to a LOWESS 
smooth for the Lees Ferry data. 

10.5.2 LOWESS 
LOWESS, or LOcally WEighted Scatterplot Smoothing (Cleveland et al., 1979) is 
computationally intensive.  It involves fitting at least 2n weighted least squares equations.  At 

^every X0, a Y  is computed from a WLS regression whose weights are a function of both the 
distance from X0 and the magnitude of the residual from the previous regression (an iterative 
procedure).  The robust regression weights wi are computed by  

wi = wx  • wrii
where wxi, the distance weight, is a function of the distance between the center of the window 
Xi and all other X. The residuals weight wri is a function of |Yi −Ŷ i|, the distance in the Y 
direction between the observed Yi and the value predicted from the previous WLS equation.  A 

^point will receive a small weight, and therefore have little influence on the smoothed Y , if it is 
either far from the center of the window in the X direction or has a large residual in the Y 
direction.  The measure of how quickly weights decrease as distances increase in the X and Y 
directions is determined by the weight function.  For a point at (Xi,Yi), the bisquare weight is 
determined as 
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(1 - ui2) 2 for |ui| ≤ 1 
wri = 


 

 0 for |ui| > 1 

^Yi - Yi
where ui = ^6 • median of all |Yi -Yi| 

(1 - vi2) 2 for |vi| ≤ 1 
wxi = 


 

 0 for |vi| > 1 

Xi - X 
where  vi = dx 

where dx = half width of window = mth largest |Xi − X| 
  m = Nf 

N = sample size 
f = smoothness factor specified at outset. 

Smoothness of LOWESS is varied by altering the window width, as controlled by the 
smoothness factor f (figure 10.16).  As f is increased, the window size is increased, and more 

^points influence the magnitude of Y . Selection of an appropriate f is determined subjectively 
according to the purpose for which the smooth is used. 
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Figure 10.16 Three smooths of the same data with differing smoothness factors f. 

Three examples of situations in which LOWESS smooths greatly aid data analysis are: 
1. 	 To emphasize the shape of the relationship between two variables on a scatterplot of 

moderate to large sample size.  Adding a line through the middle draws attention to the 
center of the plot, aiding judgement of how the two variables are related. 

2. 	 To compare and contrast multiple large data sets.  Plotting all data points with differing 
symbols per group does not provide the clarity necessary to distinguish similarities and 
differences between groups.  Instead, computing and plotting LOWESS smooths without 
the data may give great insight into group characteristics.  For example, Welch et al. (1988) 
used LOWESS to describe the relationship between arsenic and pH in four physiographic 
regions of the Western United States (figure 2.26 in Chapter 2).  Thousands of data points 
were involved; a scatterplot would have shown nothing but a blob of data.  The smooths 
clearly illustrated that in three regions arsenic concentrations increased with increasing pH, 
while in the fourth no increase was observed.  Smooths were also used by Schertz and 
Hirsch (1985) to illustrate regional patterns in atmospheric precipitation chemistry.  They 
used one smooth per station to display simultaneous changes in sulfate and other chemical 
concentrations occuring over broad regions of the country (figure 10.17).  These 
relationships would have gone unnoticed using scatterplots -- the underlying patterns would 
have been obscured by the proliferation and scatter of the data. 
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Figure 10.17 Smooths of sulfate concentrations at 19 stations, 1978-83 
(from Schertz and Hirsch, 1985). 

3. 	 To remove the effect of an explanatory variable without first assuming the form of the 
relation (linear, etc.). In situations equivalent to multiple regression where several variables 
may affect the magnitude of a response variable (Y), removal of one variable's (X) effects 
may be accomplished by computing a LOWESS smooth of Y versus X and using the 
residuals from the smooth in subsequent analyses.  An example is when removing the effects 
of discharge or precipitation volume from chemical concentration data prior to performing a 
trend analysis (see Chapter 12).  LOWESS allows the analyst to be unconcerned as to 
whether the relation between Y and X is linear or nonlinear.  In contrast, linearity would 
have to be established prior to using regression. 
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Two additonal lines are sometimes plotted along with the LOWESS middle smooth.  These are 
upper and lower smooths (Cleveland and McGill, 1984b), which function as smoothed versions 
of upper and lower quartiles of the conditional distribution of Y as a function of X.  They are 
constructed by computing additional LOWESS smooths on the positive residuals and negative 
residuals, respectively, from the middle LOWESS smooth.  These values are then added to the 
middle smooth, and connected with straight line segments.  Upper and lower smooths are useful 
for showing how the spread and/or symmetry of the conditional distribution of Y changes as a 
function of X. Figure 10.18 is one example. It shows how the spread of nitrate concentrations 
changes with depth for groundwaters under Long Island, NY.  The spread or "running IQR" is 
indicated by the distance between the upper and lower smooths, shown as dashed lines in the 
plot. 

Figure 10.18  Nitrate concentrations versus depth in the upper Glacial Aquifer, Long Island NY  
(data from Eckhardt et al., 1989). 

10.5.3 Polar Smoothing 
Polar smooths (Cleveland and McGill, 1984b) are variations on lowess smooths.  They are 
polygons describing the two-dimensional locations of data groups on a scatterplot (see figure 
2.28 in Chapter 2). Comparisons of differences in location of several data groups is made much 
easier by comparing polar smooths rather than comparing symbols for each data point on a 
scatterplot, as in figure 2.27.  Polar smooths are used as a visual 'discriminant analysis' in two 
dimensions. 
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To compute a polar smooth, first center the data at the median of X and median of Y.  All data 
points are then described in terms of their angle and radius from this center, placing the data 
into polar coordinates. A lowess smooth is computed while in polar coordinates, and then is re­
transformed back into original units.  The smooth, which while in polar coordinates had 50 
percent of the data below it, upon re-transformation envelops those same 50 percent within it  
An analogous 'upper smooth' which in polar coordinates had 75 percent of the data below it 
becomes an 'outer smooth' containing 75 percent of the data in original units. 

Polar smooths can be a great aid to exploratory data analysis.  They are not constrained a priori 
to be an ellipse or any other shape, but take on the characteristics of the data.  This can lead to 
new insights difficult to see by plotting the original observations.  For example, in figure 2.28 
smooths enclosing 75% of the conductance versus pH data for three types of upstream land use 
are plotted.  The irregular pattern for the smooth of abandoned mine data suggests that two 
separate subgroups are present, one with higher pH than the other. 
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Exercises 

10.1 	 For the data below, 
a) compute the Kendall slope estimator, 
b) compute Kendall's τ, 
c) compute the non-parametric regression equation. 
d) compute the significance level of the test. 

Y 10 40 30 55 62 56 
X 1 2 3 4 5 6 

10.2 	 One value has been altered from the 10.1 exercise.  Again compute the slope estimate, 
intercept, τ and significance level. By how much have these changed in response to the 
one (large) change in Y?  Also compute a 95% confidence interval on the slope estimate. 

Y 10 40 30 55 200 56 
X 1 2 3 4 5 6 

10.3 	 Compute the robust IWLS equation (2 iterations) for the Exercise 10.2 data. 

10.4 	 Williams and Wolman (1984) relate the lowering of streambed elevation downstream of 
a major dam to years following its installation.  Calculate a linear least-squares regression 
of bed lowering (L) as the response variable, versus years (Yrs) as the explanatory 
variable, and compute its R2. 

Yrs Lowering (m) Yrs  L  Yrs  L 
0.5 −0.65 8 −4.85 17 −5.05 
1 −1.20 10 −4.40 20 −5.10 
2 −2.20 11 −4.95 22 −5.65 
4 −2.60 13 −5.10 24 −5.50 
6 −3.40 15 −4.90 27 −5.65 

Calculate a 5-point moving median smooth of the data.  Plot the smooth and regression 
line along with a scatterplot of the data.  Describe how well each represents the data. 
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10.5 	Record Extension 

Statistical Methods in Water Resources 

Monthly discharges for September at two rivers are given in Appendix C13 (units of 
million cubic meters per month).  The most recent 20 years are available for "Short" 
(ignore the data in italics), and 50 years at "Base".  The two sites are close enough that 
the data are reasonably well correlated with each other.  Using the 20 years of joint 
record and the additional 30 years of record at "Base", produce a 50-year-long record at 
"Short" for use in a water supply simulation model.   

you estimate 

Short 

Base 

Year 
0 	30  50  

First use regression and then repeat the process using the LOC.  Take the extended 
record (the 30-year estimates plus the known 20 years) produced by the two methods at 
"Short" and plot them to illustrate the differences (a boxplot or probability plot are 
recommended).  Compare these to each other and to a plot of the flows which actually 
occurred (the true flows are given in italics in Appendix C13).  Which technique is 
preferable if the objective is to estimate water supply shortage risks?  Which technique is 
preferable if the objective is to estimate the true September flow in each year?  Quantify 
your conclusion about this. 

10.6 	 The pulp liquor waste contamination of shallow groundwater (see Exercise 7.1) is 
revisited.  Now the relationship between pH and COD in samples taken from the 
piezometers is of interest.  Calculate a straight line which best describes the relationship 
between these two chemical constituents.  Should this line be used by the field 
technician to predict COD from the pH measured on-site? 

pH COD pH COD pH COD 
7.0 51 	 6.3 21 8.4 283 
7.2 60 	 6.9 17 7.6 2170 
7.5 51 	 7.0 34 7.5 6580 
7.7 3600 	 6.4 43 7.4 3340 
8.7 6900 	 6.8 34 9.3 7080 
7.8 7700 	 6.7 43 9.0 10800 



Chapter 11

Multiple Linear Regression


The 100-year flood is to be estimated for locations without streamflow gages using basin 
characteristics at those locations.  A regression equation is first developed relating the 100-year 
flood to several basin characteristics at sites which have a streamflow gage.  Each characteristic 
used is known to influence the magnitude of the 100-year flood, has already been used in 
adjoining states, and so will be included in the equation regardless of whether it is significant for 
any individual data set. Values for the basin characteristics at each ungaged site are then input to 
the multiple regression equation to produce the 100-year flood estimate for that site. 

Residuals from a simple linear regression of concentration versus streamflow show a consistent 
pattern of seasonal variation. To make better predictions of concentration from streamflow, 
additional explanatory variables are added to the regression equation, modeling the pattern seen 
in the data. 

As an exploratory tool in understanding possible causative factors of groundwater 
contamination, data on numerous potential explanatory variables are collected.  Each variable is 
plausible as an influence on nitrate concentrations in the shallowest aquifer.  Stepwise or similar 
procedures are performed to select the "most important" variables, and the subsequent 
regression equation is then used to predict concentrations   The analyst does not realize that this 
regression model is calibrated, but not verified. 

Multiple linear regression (MLR) is the extension of simple linear regression (SLR) to the case of 
multiple explanatory variables.  The goal of this relationship is to explain as much as possible of 
the variation observed in the response (y) variable, leaving as little variation as possible to 
unexplained "noise". In this chapter methods for developing a good multiple regression model 
are explained, as are the common pitfalls such as multi-collinearity and relying on R2. The 
mathematics of multiple regression, best handled by matrix notation, will not be extensively 
covered here. See Draper and Smith (1981) or Montgomery and Peck (1982) for this. 
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11.1 Why Use MLR? 

When are multiple explanatory variables required?  The most common situation is when 
scientific knowledge and experience tells us they are likely to be useful.  For example, average 
runoff from a variety of mountainous basins is likely to be a function both of average rainfall 
and of altitude;  average dissolved solids yields are likely to be a function of average rainfall, 
percent of basin in certain rock types, and perhaps basin population. Concentrations of 
contaminants in shallow groundwater are likely to be functions of both source terms (application 
rates of fertilizers or pesticides) and subsurface conditions (soil permeability, depth to 
groundwater, etc.). 

The use of MLR might also be indicated by the residuals from a simple linear SLR.  Residuals 
may indicate there is a temporal trend (suggesting time as an additional explanatory variable), a 
spatial trend (suggesting spatial coordinates as explanatory variables), or seasonality (suggesting 
variables which indicate which season the data point was collected in).  Analysis of a residuals 
plot may also show that patterns of residuals occur as a function of some categorical grouping 
representing a special condition such as: on the rising limb of a hydrograph, at cultivating time, 
during or after frontal storms, in wells with PVC casing, measurements taken before 10:00 a.m., 
etc. These special cases will only be revealed by plotting residuals versus a variety of variables -- 
in a scatterplot if the variable is continuous, in grouped boxplots if the variable is categorical.  
Seeing these relationships should lead to definition of an appropriate explanatory variable and its 
inclusion in the model if it significantly improves the fit. 

11.2 MLR Model 

The MLR model will be denoted: 
 y = β0 + β1 x1 + β2 x2 + .... + βk xk + ε 
where y is the response variable 

β0 is the intercept 
β1 is the slope coefficient for the first explanatory variable 
β2 is the slope coefficient for the second explanatory variable 
βk is the slope coefficient for the kth explanatory variable, and 
ε is the remaining unexplained noise in the data (the error). 

To simplify notation the subscript i, referring to the i=1,2,..,n observations, has been omitted 
from the above.  There are k explanatory variables, some of which may be related or correlated 
to each other (such as the previous 5-day's rainfall and the the previous 1-day rainfall).  It is 
therefore best to avoid calling these "independent" variables.  They may or may not be 
independent of each other. Calling them explanatory variables describes their purpose:  to 
explain the variation in the response variable. 
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11.3 Hypothesis Tests for Multiple Regression 

11.3.1   Nested F Tests 
The single most important hypothesis test for MLR is the F test for comparing any two nested 
models. Let model "s" be the "simpler" MLR model 

ys = β0 + β1 x1 + β2 x2 + .... + βk xk + εs . 
It has k+1 parameters including the intercept, with degrees of freedom (dfs) of n−(k+1). Again, 
the degrees of freedom equals the number of observation minus the number of parameters 
estimated, as in SLR. Its sum of squared errors is SSEs. 

Let model "c" be the more complex regression model  
yc = β0 + β1 x1 + β2 x2 + .... + βk xk + βk+1 xk+1 + .... + βm xm + εc . 

It has m+1 parameters and residual degrees of freedom (dfc) of n−(m+1).  Its sum of squared 
errors is SSEc. 

The test of interest is whether the more complex model provides a sufficiently better 
explanation of the variation in y than does the simpler model.  In other words, do the extra 
explanatory variables xk+1 to xm add any new explanatory power to the equation?  The models 
are "nested" because all of the k explanatory variables in the simpler model are also present in 
the complex model, and thus the simpler model is nested within the more complex model.  The 
null hypothesis is 

H0: βk+1 = βk+2 = ... = βm = 0 versus the alternative 
H1: at least one of these m−k coefficients is not equal to zero. 

If the slope coefficients for the additional explanatory variables are all not significantly different 
from zero, the variables are not adding any explanatory power in comparison to the cost of 
adding them to the model. This cost is measured by the loss in the degrees of freedom = m−k, 
the number of additional variables in the more complex equation. 

The test statistic is
(SSEs - SSEc ) / (dfs - dfc) 

where (dfs − dfc) = m−k. F = (SSEc / dfc) 

If F exceeds the tabulated value of the F distribution with (dfs − dfc) and dfc degrees of 
freedom for the selected α (say α=0.05), then H0 is rejected.  Rejection indicates that the more 
complex model should be chosen in preference to the simpler model.  If F is small, the 
additional variables are adding little to the model, and the simpler model would be chosen over 
the more complex. 
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Note that rejection of H0 does not mean that all of the K+1 to m variables have coefficients 
significantly different from zero.  It merely states that some of the coefficients in the more 
complex model are significant, making that model better than the  simpler model tested.  Other 
simpler models having different subsets of variables may need to be compared to the more 
complex model before choosing it as the "best". 

11.3.2 Overall F Test 
There are two special cases of the nested F test.  The first is of limited use, and is called the 
overall F test. In this case, the simpler model is

 ys = β0 + εs , where β0 = y . 
The rules for a nested F test still apply:  the dfs = n−1 and SSEs equals (n−1) times the sample 
variance of y.  Many computer packages give the results of this F-test.  It is not very useful 
because it tests only whether the complex regression equation is better than no regression at all.  
Of much greater interest is which of several regression models is best. 

11.3.3 Partial F Tests 
The second special case of nested F tests is the partial F test, which is called a Type III test by 
SAS. Here the complex model has only 1 additional explanatory variable over the simpler 
model, so that m=k+1. The partial F test evaluates whether the mth variable adds any new 
explanatory power to the equation, and so ought to be in the regression model, given that all the 
other variables are already present.  Note that the F statistics on a coefficient will change 
depending on what other variables are in the model.  Thus the simple question "does variable m 
belong in the model?" cannot be answered.  What can be answered is whether m belongs in the 
model in the presence of the other variables. 

With only one additional explanatory variable, the partial F test is identical in results to a t-test 
on the coefficient for that variable.  In fact,  t2 = F, where both are the statistics computed for 
the same coefficient for the partial test.  Some computer packages report the F statistic, and 
some the t-test, but the p-values for the two tests are identical.  The partial t-test can be easily 
performed by comparing the t statistic for the slope coefficient to a students t-distribution with 
n−(m+1) degrees of freedom.  H0 is rejected if |t|> t1−(α/2). For a two-sided test with 
α = 0.05 and sample sizes n of 20 or more, the critical value of t is |t|≅ 2. Larger t-statistics (in 
absolute value) for a slope coefficient indicate significance. Squaring this, the critical partial F 
value is near 4. 

Partial tests guide the evaluation of which variables to include in a regression model, but are not 
sufficient for every decision. If every |t|>2 for each coefficient, then it is clear that every 
explanatory variable is accounting for a significant amount of variation, and all should be 
present.  When one or more of the coefficients has a |t|<2, however, some of the variables 
should be removed from the equation, but the t values are not a certain guide as to which 
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ones to remove. These partial t or F tests are precisely the tests used to make automatic 
decisions for removal or inclusion in "stepwise" procedures:  forward, backward, and stepwise 
multiple regression.  These procedures do not guarantee that some "best" model is obtained, as 
discussed later.  Better procedures are available for doing so. 

11.4  Confidence Intervals 

Confidence intervals can be computed for the regression slope coefficients β k, and for the mean 
response ŷ  at a given value for all explanatory variables.  Prediction intervals can be similarly 
computed around an individual estimate of y. These are entirely analogous to the SLR situation, 
but require matrix manipulations for computation.  A brief discussion of them follows.  More 
complete treatment can be found in many statistics textbooks, such as Montgomery and Peck 
(1982), Draper and Smith (1981), and Walpole and Myers (1985), among others. 

11.4.1 Variance-Covariance Matrix 
In MLR, the values of the k explanatory variables for each of the n observations, along with a 
vector of 1s for the intercept term, can be combined into a matrix X: 

 1 x11 x21 . . x1k

1 x12 x22 . . x2k
 


 X = . . . . . . 
. . . . . . 
1 xn1 xn2 . . xnk 

 
X is used in MLR to compute the variance-covariance matrix  σ 2 • (X'X)− 1 , 
where (X'X)− 1 is the "X prime X inverse" matrix.  Elements of (X'X)− 1 for three explanatory 
variables are as follows: 

 C00 C01 C02 C03



C10 C11 C12 C13

(X'X)− 1  = 


  [11.1]
C20 C21 C22 C23 

C30 C31 C32 C33 

When multiplied by the error variance σ 2 (estimated by the variance of the residuals, s2), the 
diagonal elements of the matrix C00 through C33 become the variances of the regression 
coefficients, while the off-diagonal elements become the covariances between the coefficients.  
Both (X'X)− 1 and s2 can be output from MLR software. 

11.4.2 Confidence Intervals for Slope Coefficients 
Interval estimates for the regression coefficients β 0 through β k are often printed by MLR 
software.  If not, the statistics necessary to compute them are.  As with SLR it must be assumed 
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that the residuals are normally distributed with variance σ2. A 
100•(1−α)% confidence interval on βj is

^ ^ b j − t (α/2, n−p) s2 Cjj ≤ βj ≤  b j + t (α/2, n−p) s2 Cjj [11.2] 

jj −1 corresponding to the jth explanatory variable. 

s2 Cjj . 

where C  is the diagonal element of (X'X)
Often printed is the standard error of the regression coefficient: 

^  se (b j) = [11.3] 

Note that Cjj is a function of the other explanatory variables as well as the jth.  Therefore the 
^ interval estimate, like b j and its partial test, will change as explanatory variables are added to or 

deleted from the model. 

11.4.3 Confidence Intervals for the Mean Response 
A 100•(1−α)% confidence interval for the expected mean response µ(y0) for a given point in 
multidimensional space x0 is symmetric around the regression estimate ŷ 0.  These intervals also 
require the assumption of normality of residuals. 

2 ŷ 
0 

− t s 2 x
0
'(X ' X )−1 x ≤ µ(y0) ≤ ŷ 

0 
+ t s x

0
'(X ' X)−1 x  [11.4]

(α / 2,n− p) 0 (α / 2,  n− p ) 0

The variance of the mean is the term under the square root sign.  It changes with x0, increasing 
as x0 moves away from the multidimensional center of the data.  In fact, the term x0'(X'X)−1x0 
is the leverage statistic hi, expressing the distance that x0 is from the center of the data. 

11.4.4 Prediction Intervals for an Individual y 
A 100•(1−α)% prediction interval for a single response y0, given a point in multidimensional 
space x0, is symmetric around the regression estimate ŷ 0.  It requires the assumption of 
normality of residuals. 

2 ŷ 
0 
− t 2 s 1+ x

0
'(X ' X)−1 x ≤ y0 ≤ ŷ 

0 
+ t s 1+ x

0
'(X ' X)−1 x  [11.5]

(α / 2,n− p) 0 (α / 2,  n− p ) 0

11.5  Regression Diagnostics 

As was the case with SLR, it is important to use graphical tools to diagnose deficiencies in MLR.  
The following residuals plots are very important:  normal probability plots of residuals, residuals 
versus predicted (to identify curvature or heteroscedasticity), residuals versus time sequence or 
location (to identify trends), and residuals versus any candidate explanatory variables not in the 
model (to identify variables, or appropriate transformations of them, which may be used to 
improve the model fit). 
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11.5.1 Partial Residual Plots 
As with SLR, curvature in a plot of residuals versus an explanatory variable included in the 
model indicates that a transformation of that explanatory variable is required.  Their relationship 
should be linear.  To see this relation, however, residuals should not be plotted directly against 
explanatory variables; the other explanatory variables will influence these plots.  For example, 
curvature in the relationship between e and x1 may show up in the plot of e versus x2, 
erroneously indicating that a transformation of x2 is required. To avoid such effects, partial 
residuals plots (also called adjusted variable plots) should be constructed. 

The partial residual is
 ej* = y − ŷ(j) 

where ŷ(j)  is the predicted value of y from a regression equation where xj is left out of the 
model. All other candidate explanatory variables are present.  

This partial residual is then plotted versus an adjusted explanatory variable 
* ^ xj = x − x(j)

^where x(j)  is the xj predicted from a regression against all other explanatory variables.  So xj is 
treated as a response variable in order to compute its adjusted value.  The partial plot (ej* versus 

*xj ) describes the relationship between y and the jth explanatory variable after all effects of the 
other explanatory variables have been removed.  Only the partial plot accurately indicates 
whether a transformation of xj is necessary. 

11.5.2 Leverage and Influence 
The regression diagnostics of Chapter 9 are much more important in MLR than in SLR.  It is 
very difficult when performing multiple regression to recognize points of high leverage or high 
influence from any set of plots.  This is because the explanatory variables are multidimensional.  
One observation may not be exceptional in terms of each of its explanatory variables taken one 
at a time, but viewed in combination it can be very exceptional.  Numerical diagnostics can 
accurately detect such anomalies. 

The leverage statistic hi = x0'(X'X)−1x0  expresses the distance of a given point x0 from the 
center of the sample observations (see also section 11.4.3).  It has two important uses in MLR. 
The first is the direct extension of its use in SLR -- to identify points unusual in value of the 
explanatory variables. Such points warrant further checking as possible errors, or may indicate a 
poor model (transformation required, relationships not linear, etc.). 

The second use of hi is when making predictions.  The leverage value for a prediction should 
not exceed the largest hi in the original data set. Otherwise an extrapolation beyond the 
envelope surrounding the original data is being attempted.  The regression model may not fit 
well in that region. It is sometimes difficult to recognize that a given x0 for which a predicted ŷ 

is attempted is outside the boundaries of the original data.  This is because the point may not be 
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beyond the bounds of any of its individual explanatory variables.  Checking the leverage statistic 
guards against an extrapolation that is difficult to detect from a plot of the data. 

Example 1 
Variations in chemical concentrations within a steeply dipping aquifer are to be described by 
location and depth. The data are concentrations (C) plus three coordinates:  distance east (DE), 
distance north (DN), and well depth (D).  Data were generated using C = 30 + 0.5 D + ε. Any 
acceptable regression model should closely reproduce this true model, and should find C to be 
independent of DE and DN. Three pairwise plots of explanatory variables (figure 11.1) do not 
reveal any "outliers" in the data set.  Yet compared to the critical leverage statistic hi=3p/n=0.6, 
and critical influence statistic DFFITS=2 p/n =0.9, the 16th observation is found to be a 
point of high leverage and high influence (table 11.1).  In figure 11.2 the axes have been rotated, 
showing observation 16 to be lying outside the plane of occurrence of the rest of the data, even 
though its individual values for the three explanatory variables are not unusual. 

 Obs. # DE DN D C hi DFFITS
 1 1 1 4.2122 30.9812 0.289433 -0.30866 

2 2 1 8.0671 33.1540 0.160670 -0.01365 
3 3 1 10.7503 37.1772 0.164776 0.63801 
4 4 1 11.9187 35.3864 0.241083 -0.04715 
5 1 2 11.2197 35.9388 0.170226 0.42264 
6 2 2 12.3710 31.9702 0.086198 -0.51043 
7 3 2 12.9976 34.9144 0.087354 -0.19810 
8 4 2 15.0709 36.5436 0.165040 -0.19591 
9 1 3 12.9886 38.3574 0.147528 0.53418 

10 2 3 18.3469 39.8291 0.117550 0.45879 
11 3 3 20.0328 40.0678 0.121758 0.28961 
12 4 3 20.5083 37.4143 0.163195 -0.47616 
13 1 4 17.6537 35.3238 0.165025 -0.59508 
14 2 4 17.5484 34.7647 0.105025 -0.77690 
15 3 4 23.7468 40.7207 0.151517 0.06278 
16 4 4 13.1110 42.3420 0.805951 4.58558

 17 1 5 20.5215 41.0219 0.243468 0.38314 
18 2 5 23.6314 40.6483 0.165337 -0.08027 
19 3 5 24.1979 42.8845 0.160233 0.17958 
20 4 5 28.5071 43.7115 0.288632 0.09397 

Table 11.1 Data and diagnostics for Example 1 
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Figure 11.1 Scatterplot matrix for the 3 explanatory variables 
(obs. 16 is shown as a square) 

Figure 11.2 Rotated scatterplot showing the position of the high leverage point 
(obs. 16 is shown as a square) 
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The depth value for observation 16 was set as a "typographical error", and should be 23.111 
instead of 13.111. What does this error and resulting high leverage point do to a regression of 
concentration versus the three explanatory variables?  From the t-ratios of table 11.2 it is seen 
that DN and perhaps DE appear to be significantly related to Conc, but that depth (D) is not.  
This is exactly opposite of what is known to be true. 

Conc = 28.9 + 0.991 DE + 1.60 DN + 0.091 D 

n = 20 s = 2.14 R2 = 0.71 
Parameter Estimate Std.Err(β) t-ratio p 
Intercept β0 28.909 1.582 18.28 0.000 
Slopes βk 
DE 0.991 0.520 1.90 0.075 
DN 1.596 0.751 2.13 0.049 
D 0.091 0.186 0.49 0.632 

Table 11.2   Regression statistics for Example 1 

One outlier has had a severe detrimental effect on the regression coefficients and model 
structure.  Points of high leverage and influence should always be examined before accepting a 
regression model, to determine if they represent errors.  Suppose that the "typographical error" 
was detected and corrected.  Table 11.3 shows that the resulting regression relationship is 
drastically changed: 

C = 29.2 − 0.419 DE − 0.82 DN + 0.710 D 

n = 20 s = 1.91 R2 = 0.77 
Parameter Estimate Std.Err(β) t-ratio p 
Intercept β0 29.168 1.387 21.03 0.000 
Slopes βk 
DE −0.419 0.833 −0.50 0.622 
DN −0.816 1.340 −0.61 0.551 
D 0.710 0.339 2.10 0.052 

Table 11.3  Regression statistics for the corrected Example 1 data 

Based on the t-statistics, DE and DN are not significantly related to C, while depth is related.  
The intercept of 29 is close to the true value of 30, and the slope for depth (0.7) is not far from 
the true value of 0.5. For observation 16, hi = 0.19 and DFFITS = 0.48, both well below their 
critical values.  Thus no observations have undue influence on the regression equation.  Since 
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DE and DN do not appear to belong in the regression model, dropping them produces the 
equation of table 11.4, with values very close to the true values from which the data were 
generated. Thus by using regression diagnostics to inspect observations deemed unusual, a poor 
regression model was turned into an acceptable one. 

Conc = 29.0 + 0.511 D 

n = 20 s = 1.83 R2 = 0.77 
Parameter Estimate Std.Err(β) t-ratio p 
Intercept β0 29.036 1.198 24.23 0.000 
Slope D 0.511 0.067 7.65 0.000 

Table 11.4  Final regression model for the corrected Example 1 data 

11.5.3 Multi-Collinearity 
It is very important that practitioners of MLR understand the causes and consequences of multi­
collinearity, and can diagnose its presence.  Multi-collinearity is the condition where at least one 
explanatory variable is closely related to one or more other explanatory variables.  It results in 
several undesirable consequences for the regression equation, including: 

1) Equations acceptable in terms of overall F-tests may have slope coefficients with 
magnitudes which are unrealistically large, and whose partial F or t-tests are found to 
be insignificant. 

2) Coefficients may be unrealistic in sign (a negative slope for a regression of streamflow 
vs. precipitation, (etc).  Usually this occurs when two variables describing 
approximately the same thing are counter-balancing each other in the equation, 
having opposite signs. 

3) 	Slope coefficients are unstable.  A small change in one or a few data values could 
cause a large change in the coefficients. 

4) Automatic procedures such as stepwise, forwards and backwards methods produce 
different models judged to be "best". 

Concern over multi-collinearity should be strongest when the purpose is to make inferences 
about coefficients.  Concern can be somewhat less when only predictions are of interest, 
provided that these predictions are for cases within the observed range of the x data. 

An excellent diagnostic for measuring multi-collinearity is the variance inflation factor (VIF) 
presented by Marquardt (1970).  For variable j the VIF is 
 VIFj = 1/(1−Rj2) [11.6] 

where Rj2 is the R2 from a regression of the jth explanatory variable on all of the other 
explanatory variables -- the equation used for adjustment of xj in partial plots.  The ideal is VIFj 
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≅ 1, corresponding to Rj2 ≅ 0. Serious problems are indicated when  

VIFj > 10 (Rj2 > 0.9). A useful interpretation of VIF is that multi-collinearity "inflates" the 
width of the confidence interval for the jth regression coefficient by the amount 

 VIFj  compared to what it would be with a perfectly independent set of explanatory 
variables. 

11.5.3.1 Solutions for multi-collinearity 
There are four options for working with a regression equation having one or more high VIF 
values. 

1) 	 Center the data. A simple solution which works in some specific cases is to center the 
data. Multi-collinearity can arise when some of the explanatory variables are functions of 
other explanatory variables, such as for a polynomial regression of y against x and x2. When 
x is always of one sign, there may be a strong relationship between it and its square.  
Centering redefines the explanatory variables by subtracting a constant from the original 
variable, and then recomputing the derived variables. This constant should be one which 
produces about as many positive values as negative values, such as the mean or median.  
When all of the derived explanatory variables are recomputed as functions (squares, 
products, etc.) of these centered variables, their multi-collinearity will be reduced. 

Centering is a mathematical solution to a mathematical problem.  It will not reduce multi­
collinearity between two variables which are not mathematically derived one from another. 
It is particularly useful when the original explanatory variable has been defined with respect 
to some arbitrary datum (time, distance, temperature) and is easily fixed by resetting the 
datum to roughly the middle of the data. In some cases the multi-collinearity can be so 
severe that the numerical methods used by the statistical software fail to perform the 
necessary matrix computations correctly.  Such numerical problems occur frequently when 
doing trend surface analysis (e.g., fitting a high order polynomial of distances north of the 
equator and west of Greenwich) or trend analysis (e.g., values are a polynomial of years).  
This will be demonstrated in Example 2. 

2) 	 Eliminate variables.  In some cases prior judgment suggests the use of several different 
variables which describe related but not identical attributes.  Examples of this might be:  air 
temperature and dew point temperature, the maximum 1-hour rainfall, and the maximum 2­
hour rainfall, river basin population and area in urban land use, basin area forested and basin 
area above 6,000 feet elevation, and so on.  Such variables may be strongly related as shown 
by their VIFs, and one of them must eliminated on judgmental grounds, or on the basis of 
comparisons of models fit with one eliminated versus the other eliminated, in order to lower 
the VIF. 
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3) 	 Collect additional data. Multi-collinearity can sometimes be solved with only a few 
additional but strategically selected observations.  Suppose some attributes of river basins are 
being studied, and small basins tend to be heavily forested while large basins tend to be less 
heavily forested. Discerning the relative importance of size versus the importance of forest 
cover will prove to be difficult. Strong multi-collinearity will result from including both 
variables in the regression equation.  To solve this and allow the effects of each variable to 
be judged separately, collect additional samples from a few small less forested basins and a 
few large but heavily-forested basins. This produces a much more reliable model.  Similar 
problems arise in ground-water quality studies, where rural wells are shallow and urban wells 
are deeper. Depth and population density may show strong multi-collinearity, requiring 
some shallow urban and deeper rural wells to be sampled. 

4) 	 Perform ridge regression.  Ridge regression was proposed by Hoerl and Kenard (1970).  
Montgomery and Peck (1982) give a good brief discussion of it.  It is based on the idea that 
the variance of the slope estimates can be greatly reduced by introducing some bias into 
them. It is a controversial but useful method in multiple regression. 

Example 2 -- centering 
The natural log of concentration of some contaminant in a shallow groundwater plume is to be 
related to distance east and distance north of a city.  The city was arbitrarily chosen as a 
geographic datum.  The data are presented in table 11.5. 

Since the square of distance east (DESQ) must be strongly related to DE, and similarly DNSQ 
and DN, and DE•DN with both DE and DN, multi-collinearity between these variables will be 
detected by their VIFs.  Using the rule that any VIF above 10 indicates a strong dependence 
between variables, table 11.6 shows that all variables have high VIFs.  Therefore all of the slope 
coefficients are unstable, and no conclusions can be drawn from the value of 10.5 for DE, or 
15.1 for DN, etc. This cannot be considered a good regression model, even though the R2  is 
large. 
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 Obs. # C ln(C) DE DN
 1 14 2.63906 17 48 

2 88 4.47734 19 48 
3 249 5.51745 21 48 
4 14 2.63906 23 48 
5 29 3.36730 17 49 
6 147 4.99043 19 49 
7 195 5.27300 21 49 
8 28 3.33220 23 49 
9 21 3.04452 17 50 

10 276 5.62040 19 50 
11 219 5.38907 21 50 
12 40 3.68888 23 50 
13 22 3.09104 17 51 
14 234 5.45532 19 51 
15 203 5.31320 21 51 
16 35 3.55535 23 51 
17 15 2.70805 17 52 
18 115 4.74493 19 52 
19 180 5.19296 21 52 
20 16 2.77259 23 52 

DESQ DNSQ DE•DN
289 2304 816 
361 2304 912 
441 2304 1008 
529 2304 1104 
289 2401 833 
361 2401 931 
441 2401 1029 
529 2401 1127 
289 2500 850 
361 2500 950 
441 2500 1050 
529 2500 1150 
289 2601 867 
361 2601 969 
441 2601 1071 
529 2601 1173 
289 2704 884 
361 2704 988 
441 2704 1092 
529 2704 1196 

Table 11.5  Data for Example 2 

DE and DN are centered by subtracting their medians.  Following this, the three derived 
variables DESQ, DNSQ and DEDN are recomputed, and the regression rerun.  Table 11.7 give 
the results, showing that all multi-collinearity is completely removed.  The coefficients for DE 
and DN are now more reasonable in size, while the coefficients for the derived variables are 
exactly the same.  The t-statistics for DE and DN have changed because their uncentered values 
were unstable and t-tests unreliable.  Note that the s and R2 are also unchanged. In fact, this is 
exactly the same model as the uncentered equation, but only in a different and centered 
coordinate system. 
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ln(C) = − 479 + 10.5 DE + 15.1 DN − 0.264 DESQ − 0.151 DNSQ + 0.0014 DEDN 

n = 20 s = 0.27 R2 = 0.96 
Parameter Estimate Std.Err(β) t-ratio p  VIF 
Intercept β0 −479.03 91.66 −5.23 0.000 
Slopes βk 
DE 10.55 1.12 9.40 0.000 1751.0 
DN 15.14 3.60 4.20 0.001 7223.9 
DESQ −0.26 0.015 −17.63 0.000 501.0 
DNSQ −0.15 0.04 −4.23 0.001 7143.9 
DEDN 0.001 0.02 0.07 0.943 1331.0 

Table 11.6   Regression statistics and VIFs for Example 2 

ln(C) = 5.76 + 0.048 DE + 0.019 DN − 0.264 DESQ − 0.151 DNSQ + 0.001 DNDE 

n = 20 s = 0.27 R2 = 0.96 
Parameter Estimate Std.Err(β) t-ratio p  VIF 
Intercept β0 5.76 0.120 48.15 0.000 
Slopes βk 
DE 0.048 0.027 1.80 0.094 1.0 
DN 0.019 0.042 0.44 0.668 1.0 
DESQ −0.264 0.015 −17.63 0.000 1.0 
DNSQ −0.151 0.036 −4.23 0.001 1.0 
DEDN 0.001 0.019 0.07 0.943 1.0 

Table 11.7   Regression statistics and VIFs for centered Example 2 data 

11.6 Choosing the Best MLR Model 

One of the major issues in multiple regression is the appropriate approach to variable selection.  
The benefit of adding additional variables to a multiple regression model is to account for or 
explain more of the variance of the response variable.  The cost of adding additional variables is 
that the degrees of freedom decreases, making it more difficult to find significance in hypothesis 
tests and increasing the width of confidence intervals.  A good model will explain as much of the 
variance of y as possible with a small number of explanatory variables. 

The first step is to consider only explanatory variables which ought to have some effect on the 
dependent variable. There must be plausible theory behind why a variable might be expected to 
influence the magnitude of y.  Simply minimizing the SSE or maximizing R2 are not sufficient 
criteria. In fact, any explanatory variable will reduce the SSE and increase the R2 by some small 
amount, even those irrelevant to the situation (or even random numbers!).  The benefit of 
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adding these unrelated variables, however, is small compared to the cost of a degree of freedom.  
Therefore the choice of whether to add a variable is based on a "cost-benefit analysis", and 
variables enter the model only if they make a significant improvement in the model.  There are 
at least two types of approaches for evaluating whether a new variable sufficiently improves the 
model. The first approach uses partial F or t-tests, and when automated is often called a 
"stepwise" procedure.  The second approach uses some overall measure of model quality.  The 
latter has many advantages. 

11.6.1 Stepwise Procedures 
Stepwise procedures are automated model selection methods in which the computer algorithm 
determines which model is preferred.  There are three versions, usually called forwards, 
backwards, and stepwise.  These procedures use a sequence of partial F or t-tests to evaluate the 
significance of a variable. The three versions do not always agree on a "best" model, especially 
when multi-collinearity is present.  They also do not evaluate all possible models, and so cannot 
guarantee that the "best" model is even tested.  They were developed prior to modern computer 
technology, taking shortcuts to avoid running all possible regression equations for comparison.  
Such shortcuts are no longer necessary. 

Forward selection starts with only an intercept and adds variables to the equation one at a time.  
Once in, each variable stays in the model.  All variables not in the model are evaluated with 
partial F or t statistics in comparison to the existing model.  The variable with the highest 
significant partial F or t statistic is included, and the process repeats until either all available 
variables are included or no new variables are significant.  One drawback to this method is that 
the resulting model may have coefficients which are not significantly different from zero;  they 
must only be significant when they enter.  A second drawback is that two variables which each 
individually provide little explanation of y may never enter, but together the variables would 
explain a great deal.  Forward selection is unable to capitalize on this situation. 

Backward elimination starts with all explanatory variables in the model and eliminates the one 
with the lowest partial-F statistic (lowest |t|).  It stops when all remaining variables are 
significant.  The backwards algorithm does ensure that the final model has only significant 
variables, but does not ensure a "best" model because it also cannot consider the combined 
significance of groups of variables. 

Stepwise regression combines the ideas of forward and backward.  It alternates between adding 
and removing variables, checking significance of individual variables within and outside the 
model. Variables significant when entering the model will be eliminated if later they test as 
insignificant.  Even so, stepwise does not test all possible regression models. 
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Example 3: 
Haan (1977) attempted to relate the mean annual runoff of several streams (ROFF) with 9 other 
variables:  the precipitation falling at the gage (PCIP), the drainage area of the basin (AREA), the 
average slope of the basin (SLOPE), the length of the drainage basin (LEN), the perimeter of 
the basin (PERIM), the diameter of the largest circle which could be inscribed within the 
drainage basin (DI), the "shape factor" of the basin (Rs), the stream frequency -- the ratio of the 
number of streams in the basin to the basin area (FREQ), and the relief ratio for the basin (Rr).  
The data are found in Appendix C14. Haan chose to select a 3-variable model (using PCIP, 
PERIM and Rr) based on a levelling off of the incremental increase in R2 as more variables were 
added to the equation (see figure 11.3). 

What models would be selected if the stepwise or overall methods are applied to this data?  If a 
forwards routine is performed, no single variables are found significant at 
α = 0.05, so an intercept-only model is declared "best".  Relaxing the entry criteria to a larger α, 
AREA is first entered into the equation.  Then Rr, PCIP, and PERIM are entered in that order.  
Note that AREA has relatively low significance once the other three variables are added to the 
model (Model 4). 

Forwards Model 1 
AREA β 0.43 

t 1.77 

Model 2 Model 3 Model 4 
0.81 0.83 −0.62 
4.36 4.97 −1.68 

Rr β 0.013 0.011 0.009 
t 3.95 3.49 4.89 

PCIP β 0.26 0.54 
t 1.91 5.05 

PERIM β 1.02 
t 4.09 

The backwards model begins with all variables in the model.  It checks all partial t or F statistics, 
throwing away the variable which is least significant.  Here the least significant single variable is 
AREA. So while forwards made AREA the first variable to bring in, backwards discarded 
AREA first of all!  Then other variables were also removed, resulting in a model with Rr, PCIP, 
PERIM, DI and FREQ remaining in the model.  Multi-collinearity between measures of 
drainage basin size, as well as between other variables, has produced models from backwards 
and forwards procedures which are quite different from each other.  The slope coefficient for 
DI is also negative, suggesting that runoff decreases as basin size increases.  Obviously DI is 
counteracting another size variable in the model (PERIM) whose coefficient is large. 
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Figure 11.3 Magnitude of σ2, R2, Cp and F as a function of the number of explanatory 
variables, for the best k explanatory variable model. 

Stepwise first enters AREA, Rr, PCIP and PERIM.  At that point, the t-value for AREA drops 
from near 5 to −1.6, so AREA is dropped from the model.  DI and FREQ are then entered, so 
that stepwise results in the same 5-variable model as did backwards. 

Stepwise Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
AREA β 0.43 0.81 0.83 −0.62 

t 1.77 4.36 4.97 −1.68 

Rr β 0.013 0.011 0.009 0.010 0.010 0.011 
t 3.95 3.49 4.89 5.19 5.02 6.40 

PCIP β 0.260 0.539 0.430 0.495 0.516 
t 1.91 5.05 4.62 5.39 6.71 

PERIM β 1.021 0.617 0.770 0.878 
t 4.09 8.24 6.98 8.38 

DI β −1.18 −1.30 
t −1.75 −2.32 

FREQ β 0.36 
t 2.14 
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11.6.2 Overall Measures of Quality 
Three newer statistics can be used to evaluate each of the 2k regressions equations possible from 
k candidate explanatory variables.  These are Mallow's Cp, the PRESS statistic, and the adjusted 
R2. 

Mallow's Cp, is designed to achieve a good compromise between the desire to explain as much 
variance in y as possible (minimize bias) by including all relevant variables, and to minimize the 
variance of the resulting estimates (minimize the standard error) by keeping the number of 
coefficients small.  The Cp statistic is 

(n-p) • (sp2 - σ̂ 2)
Cp = p + 

σ̂  2 [11.7] 

where n is the number of observations, p is the number of coefficients (number of explanatory 
variables plus 1), sp2  is the mean square error (MSE) of this p coefficient model, and σ̂ 2  is the 
best estimate of the true error, which is usually taken to be the minimum MSE among the 2k 
possible models.  The best model is the one with the lowest Cp value.  When several models 
have nearly equal Cp values, they may be compared in terms of reasonableness, multi­
collinearity, importance of high influence points, and cost in order to select the model with the 
best overall properties. 

The second overall measure is the PRESS statistic.  PRESS was defined in Chapter 9 as the sum 
of the squared prediction errors e(i). By minimizing PRESS, the model with the least error in 
the prediction of future observations is selected.  PRESS and Cp generally agree as to which 
model is "best", even though their criteria for selection are not identical. 

A third overall measure is the adjusted R2 (R2a). This is an R2 value adjusted for the number of 
explanatory variables (or equivalently, the degrees of freedom) in the model.  The model with 
the highest R2a is identical to the one with the smallest standard error (s) or its square, the mean 
squared error (MSE).  To see this, in Chapter 9 R2 was defined as a function of the total (SSy) 
and error (SSE) sum of squares for the regression model: 

R2 = 1 − ( SSE / SSy ) [11.8] 

The weakness of R2 is that it must increase, and the SSE decrease, when any additional variable 
is added to the regression. This happens no matter how little explanatory power that variable 
has. R2a is adjusted to offset the loss in degrees of freedom by including as a weight the ratio of 
total to error degrees of freedom: 

R2a = 1 − 
(n-1) SSE MSE
(n-p) SSy 

= 1 − (SSy/(n-1)) [11.9] 



314 Statistical Methods in Water Resources 

As (SSy/(n−1)) is constant for a given data set, R2a increases as MSE decreases.  Either 
maximize R2a or minimize MSE as an overall measure of quality.  However, when p is 
considerably smaller than n, R2a is a less sensitive measure than either PRESS or Cp.  PRESS 
has the additional advantage of being a validation criteria. 

Overall methods use the computer to perform large computations (such as Cp and PRESS for 
many models), letting the scientist judge which model to use.  This allows flexibility in choosing 
between models.  For example, two "best" models may be nearly identical in terms of their Cp, 
R2a and/or PRESS statistics, yet one involves variables that are much less expensive to measure 
than the other. The less expensive model can be selected with confidence.  In contrast, stepwise 
procedures ask the computer to judge which model is best.  Their combination of inflexible 
criteria and inability to test all models often results in the selection of something much less than 
the best model. 

Example 3, continued 
Instead of the stepwise procedures run on Haan's data, models are evaluated using the overall 
statistics Cp and PRESS.  Smaller values of Cp and PRESS are associated with better models.  
Computing PRESS and Cp for the 29 = 512 possible regression models can be done with 
modern statistical software.  A list of these statistics for the two best k-variable models, where 
best is defined as the highest R2, is given in table 11.8. 

Based on Cp, the best model would be the 5 variable model having PCIP, PERIM, DI, FREQ 
and Rr as explanatory variables -- the same model as selected by stepwise and forwards.   
Remember that there is no guarantee that stepwise procedures regularly select the lowest Cp or 
PRESS models.  The advantage of using an overall statistic like Cp is that options are given to 
the scientist to select what is best.  If the modest multi-collinearity (VIF=5.1) between PERIM 
and DI is of concern, with its resultant negative slope for DI, the model with the next lowest Cp 
that does not contain both these variables (a four-variable model with Cp= 3.6) could be 
selected.  If the scientist decided AREA must be in the model, the lowest CP model containing 
AREA (the same four-variable model) could be selected.  Cp and PRESS allow model choice to 
be based on multiple criteria such as prediction quality (PRESS), low VIF, cost, etc.. 
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X: Variable is in the model
 S P 


P A L E F 

C R O L R R 


# of . I E P E I D R E R 

Vars R-sq PRESS C-p Max VIF P A E N M I s Q r 


1 22.2 47.3 64.2 
 --- X 

X 


X 

X 

X 


X 

X 

X 

X 
X 

X 
X 
X 
X 
X 
X 
X 

1 21.6 49.3 64.7 
 ---
2 69.6 20.6 21.6 
 1.4 X 
2 68.1 24.7 23.0 
 1.4 X 
3 90.5 10.0 3.9 
 1.5 X X 
3 80.7 19.3 13.2 
 1.2 X X 
4 93.2 8.0 3.4 
 3.9 X X X 
4 93.0 7.7 3.6 
 19.5 X X X 
5 95.9 6.9 2.9 
 5.1 X X X X 
5 94.7 7.2 4.0 
 21.6 X X X X 
6 96.2 6.3 4.6 
 19.6 X X X X X 
6 96.1 10.0 4.7 
 8.2 X X X X X 
7 96.6 7.5 6.2 
 21.1 X X X X X X 
7 96.6 6.4 6.2 
 127.9 X X X X X X 
8 96.8 53.7 8.0 
 23.4 X X X X X X X 
8 96.7 10.2 8.1 
 200.8 X X X X X X X 
9 96.8 59.7 10.0 
 227.5 X X X X X X X X 

Table 11.8  Statistics for several multiple regression models of Haan's data 

11.7 Summary of Model Selection Criteria 

Rules for selection of linear regression models are summarized in the 5 steps below: 

1) Should y be transformed?  To decide whether to transform the y variable, plot residuals 
versus predicted values for the untransformed data.  Compare this to a residuals plot for the best 
transformed model, looking for three things: 

^1) constant variance across the range of y , 
2) normality of residuals, and 
3) a linear pattern, not curvature. 

The statistics R2, SSE, Cp, and PRESS are not appropriate for comparison of models having 
different units of y. 

2) Should x (or several x's) be transformed?  Transformation of an x variable should be 
made using partial plots.  Check for the same three patterns of constant variance, normality and 
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linearity. Considerable help can be obtained from statistics such as R2 (maximize it), or SSE or 
PRESS (minimize it).  Many transformations can be rapidly checked with such statistics, but a 
residuals plot should always be inspected prior to making any final decision.  

3) Which of several models, each with the same y and with the same number of 
explanatory variables, is preferable?  Use of R2, SSE, or PRESS is appropriate here, but back 
it up with a residuals plot. 

4) Which of several nested models, each with the same y, is preferable?  Use the partial F 
test between any pair of nested models to find which is best.  One may also select the model 
based on minimum Cp or minimum PRESS. 

5) Which of several models is preferable when each uses the same y variable but are not 
necessarily nested?  Cp or PRESS must be used in this situation. 

11.8 Analysis of Covariance 

Often there are factors which influence the dependent variable which are not appropriately 
expressed as a continuous variable.  Examples of such grouped or qualitative variables include 
location (stations, aquifers, positions in a cross section), or time (day & night; winter & summer; 
before & after some event such as a flood, a drought, operation of a sewage treatment plant or 
reservoir). These factors are perfectly valid explanatory variables in a multiple regression 
context. They can be incorporated by the use of binary or "dummy" variables, essentially 
blending regression and analysis of variance into an analysis of covariance. 

11.8.1 Use of One Binary Variable  
To the simple one-variable regression model   
 Y = β0 +β1 X +ε [11.10] 
(again with subscripts i assumed), an additional factor is believed to have an important influence 
on Y for any given value of X. Perhaps this factor is a seasonal one:  cold season versus warm 
season -- where some precise definition exists to classify all observations as either cold or warm.  
A second variable, a binary variable Z, is added to the equation where 

  0 if i is from cold season

Zi  = 


  1 if i is from warm season  
to produce the model 
 Y = β0 +β1 X +β2 Z +ε. [11.11] 

When the slope coefficient β2 is significant, model 11.11 would be prefered to the SLR model 
11.10. This also says that the relationship between Y and X is affected by season. 



317 Multiple Linear Regression 

Consider H0: β2 = 0 versus H1: β2 ≠ 0.  The null hypothesis is tested using a student's t-test 
with (n−3) degrees of freedom.  There are (n−3) because there are 3 betas being estimated.  If 
the partial |t|≥ tα/2, H0 is rejected, inferring that there are two models: 

^ Y 
Y ^ 

= b0 + b1 X 
= b0 + b1 X  + b2 

for the cold season (Z  = 0), and 
for the warm season (Z  = 1), or 

= (b0 +b2) + b1 X . 
Therefore the regression lines differ for the two seasons.   Both seasons have the same slope, 

Y 

X 

Summer 
Winter 

but different intercepts, and will plot as two parallel lines (figure 11.4). 

Figure 11.4  Regression lines for data differing in intercept between two seasons 

Suppose that the relationship between X and Y for the two seasons is suspected not only to 
differ in intercept, but in slope as well.  Such a model is written as: 

Y  = β0 + β1X  +  β2 Z + β3 Z X  + ε [11.12] 
or Y  = (β0 + β2 Z ) + (β1 + β3 Z ) • X  + ε 

The intercept equals β0 for the cold season and β0 +β2 for the warm season;  the slope equals 
β1 for the cold season and β1 + β3 for the warm season. This model is referred to as an 
"interaction model" because of the use of the explanatory variable Z X , the interaction 
(product) of the original predictor X  and the binary variable Z . 

To determine whether the simple regression model with no Z  terms can be improved upon by 
model 11.12, the following hypotheses are tested: 

H0 : β2 = β3 = 0 versus H1 : β2 and/or β3 ≠ 0. 

(SSEs - SSEc ) / (dfs - dfc)
A nested F statistic is computed  F = (SSEc / dfc) 

where s refers to the simpler (no Z terms) model, and c refers to the more complex model.  For 
the two nested models 11.10 and 11.12 this becomes 
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(SSE11.10 - SSE11.12) / 2
 F = MSE11.12 

where MSE11.12 = SSE11.12 /(n−4), rejecting H0 if F > Fα,2, n−4 . 

If H0 is rejected, model 11.12 should also be compared to model 11.11 (the shift in intercept 
only model) to determine whether there is a change in slope in addition to the change in 
intercept, or whether the rejection of model 11.10 in favor of 11.12 was due only to a shift in 
intercept. The null hypothesis H0': β3 = 0 is compared to H1': β3 ≠ 0 using the test statistic 

(SSE11.11 - SSE11.12) / 1
 F = MSE11.12 

rejecting H0' if F > Fα,1, n−4 . 

Assuming H0 and H0' are both rejected, the model can be expressed as the two separate 
equations (see figure 11.5): 

^ Y = b0 + b1 X   cold season 
^ Y = (b0 + b2) + (b1 + b3) X warm season 

Furthermore, the coefficient values in these two equations will be exactly those computed if the 
two regressions were estimated by separating the data, and computing two separate regression 
equations.  By using analysis of covariance, however, the significance of the difference between 
those two equations has been established. 

Y 

X 

Summer 
Winter 

Figure 11.5 Regression lines differing in slope and intercept for data from two seasons 

11.8.2 Multiple Binary Variables 
In some cases, the factor of interest must be expressed as more than two categories:   
4 seasons, 12 months, 5 stations, 3 flow conditions (rising limb, falling limb, base flow), etc.  To 
illustrate, assume there are precise definitions of 3 flow conditions so that all discharge (Xi) and 
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concentration (Yi) pairs are classified as either rising, falling, or base flow.  Two binary variables 
are required to express these three categories -- there is always one less binary variable required 
than the number of categories. 

  1 if i is a rising limb observation
 Let Ri = 


  0 otherwise
 

  1 if i is falling limb observation
 Let Di = 


  0 otherwise
 

so that 	 category

rising

falling 


 base flow 


value of R value of D 
1 0 
0 1 
0 0 

The following model results: 
 Y = β0 + β1 X + β2 R + β3 D + ε 	 [11.13] 

To test  H0: β2 = β3 = 0 versus H1: β2 and/or β3 ≠ 0, F tests comparing simpler and more 
complex models are again performed.  To compare model 11.13 versus the SLR model 11.10 
with no rising or falling terms,

(SSE11.10 - SSE11.13) / 2

 F = MSE11.13 

where MSE11.13 = SSE11.13 / (n−4), 


rejecting H0 if F > F2, n−4, α. 

To test for differences between each pair of categories: 
1. 	 Is rising different from base flow?  This is tested using the t-statistic on the coefficient β2. 

If |t|>tα/2 on n−4 degrees of freedom, reject H0 where H0: β2 = 0. 

2. 	 Is falling different from base flow?  This is tested using the t-statistic on the coefficient β3. 
If |t|>tα/2 with n−4 degrees of freedom, reject H0 where H0: β3 = 0. 

3. 	 Is rising different from falling? There are two ways to determine this.  
(a) the standard error of the difference (b2−b3) must be known. The null hypothesis is 
H0: (β2 − β3) = 0. The estimated variance of b2−b3, 

Var(b2−b3) = Var(b2) + Var(b3) − 2Cov(b2, b3) 
where Cov is the covariance between b2 and b3. To determine these terms, the matrix 

(X'X)−1 and s2 (s2 is the mean square error) are required.  Then 
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^ ^ ^ Var(b2) = C22 • s2, Var(b3) = C33 • s2, and Cov(b2,b3) = C23 • s2 . 
The test statistic is  t = (b2−b3)/  Var (b2-b3) . If |t|>tα/2 with n−4 degrees of 
freedom, reject H0. 

(b) The binary variables can be re-defined so that a direct contrast between rising and 
falling is possible.  This occurs when either is set as the (0,0) "default" case.  This will give 
answers identical to (a). 

Ever greater complexity can be added to these kinds of models, using multiple binary variables 
and interaction terms such as
 Y = β0 + β1 X + β2 R + β3 D + β4 R X + β5 D X +ε. [11.14] 

The procedures for selecting models follow the pattern described above.  The significance of an 
individual β coefficient, given all the other βs, can be determined from the t statistic.  The 
comparison of two models, where the set of explanatory variables for one model is a subset of 
those used in the other model, is computed by a nested F test.  The determination of whether 
two coefficients in a given model differ significantly from each other is computed either by re­
defining the variables, or by using a t test after estimating the variance of the difference between 
the coefficients based on the elements of the (X'X)−1 matrix and s2. 
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Exercises 
11.1	 In Appendix C15 are data from 42 small urban drainage basins located in several cities 

around the United States (Mustard et al., 1987).  The dependent variable is the log of the 
total nitrogen load for the basin -- the y transformation decision has already been made.  
There are eight possible explanatory variables to use for prediction purposes.  The 
definitions of all nine variables are as follows. 

LOGTN log total nitrogen load 
LOGCA  log contributing area 
LOGIMP  log impervious area 
MMJTEMP mean minimum January temperature

 MSRAIN  mean seasonal rainfall 
 PRES   percentage  of area residential 

PNON   percentage of area non-urban 
PCOMM percentage of area commercial 
PIND   percentage of area industrial 

Don't bother with transformations of the x variables either -- use these variables as they 
are. Pay special attention to multi-collinearity.  Try one or more of the approaches 
described in this chapter to select the best model for predicting LOGTN from these 
explanatory variables. 

11.2 	 Analysis of Covariance. The following 10 possible models describe the variation in 
sand-size particles (0.125 − 0.250 mm) in the Colorado River at Lees Ferry, AZ.  Select 
the best model from this set of 10 and interpret its meaning.  The basic model describes 
a quadratic relationship between concentration and discharge (X).  Do intercept and/or 
slope vary with the three seasons (summer S, winter W, or other)?  Use α = 0.05 for all 
hypothesis tests. 

Basic model Y = β0 + β1 X + β2 X2


where Y = ln (concentration of suspended sands)

X = ln (discharge)  


Month 
 Binary Variables 1 2 3 4 5 6 7 8 9 10 11 12 

S 0 0 0 0 0 0 1 1 1 1 0 0 
W 1 1 0 0 0 0 0 0 0 0 1 1 
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Model # Explanatory variables SSE df(error) 
1 X, X2 69.89 124 
2 X, X2 , S 65.80 123 
3 X, X2 , S, SX 65.18 122 
4 X, X2 , S, SX, SX2 64.84 121 
5 X, X2 , W 63.75 123 
6 X, X2 , W, WX 63.53 122 
7 X, X2 , W, WX, WX2 63.46 121 
8 X, X2 , S, W 63.03 122 
9 X, X2 , S, W, SX, WX 62.54 120 
10 X, X2 , S, W, SX, WX, SX2 , WX2 61.45 118 

11.3 	 The Ogallala aquifer was investigated to determine relationships between uranium and 
other concentrations in its waters.  Construct a regression model to relate uranium to 
total dissolved solids and bicarbonate, using the data in Appendix C16.  What is the 
significance of these predictor variables? 

11.4 	 You are asked to estimate uranium concentrations in irrigation waters from the Ogallala 
aquifer for a local area.  Four supply wells pump waters with the characteristics given 
below. The relative amounts of water pumped by each well are also given below.  Using 
this and the regression equation of Exercise 11.3, estimate the mean concentration of 
uranium in the water applied to this area. 

 Well # Relative volume of water used TDS Bicarbonate
 1 2 500 ≤ 50% 

2 1 900 ≤ 50% 
3 1 400 > 50% 
4 2 600 > 50% 



Chapter 12

Trend Analysis


Concentrations and loads of phosphorus have been observed at numerous tributaries to an 
important estuary over a 20-year period.  Have concentrations and/or loads changed over time?  
Have concentrations changed when changing flow conditions are taken into account (the early 
years were during a very dry period), or are all changes simply due to more precipitation in the 
latter years? Is there an observable effect associated with a ban on phosphorus compounds in 
detergents which was implemented in the middle of the period of record? 

Groundwater levels were recorded for many wells in a study area over 14 years.  During the 
ninth year development of the area increased withdrawals dramatically.  Is there evidence of 
decreasing water levels in the region's wells after versus before the increased pumpage? 

Benthic invertebrate and fish population data were collected at twenty stations along one 
hundred miles of a major river.  Do these data change in a consistent manner going 
downstream? What is the overall rate of change in population numbers over the one hundred 
miles? 

Procedures for trend analysis build on those in previous chapters on regression and hypothesis 
testing.  The explanatory variable of interest is usually time, though spatial or directional trends 
(such as downstream order or distance downdip) may also be investigated.  Tests for trend have 
been of keen interest in environmental sciences over the last 10-15 years.  Detection of both 
sudden and gradual trends over time with and without adjustment for the effects of 
confounding variables have been employed. In this chapter the various tests are classified, and 
their strengths and weaknesses compared. 
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12.1   General Structure of Trend Tests 

12.1.1 Purpose of Trend Testing 
A series of observations of a random variable (concentration, unit well yield, biologic diversity, 
etc.) have been collected over some period of time.  We would like to determine if their values 
generally increase or decrease (getting "better" or "worse").  In statistical terms this is a 
determination of whether the probability distribution from which they arise has changed over 
time. We would also like to describe the amount or rate of that change, in terms of changes in 
some central value of the distribution such as a mean or median.  Interest may be in data at one 
location, or all across the country.  Figure 12.1 presents an example of the results of trend tests 
for bacteria at sites throughout the United States. 

Figure 12.1 Trends in flow-adjusted concentrations of fecal streptococcus bacteria,  
1974-1981 (from Smith et al., 1987). 

The null hypothesis: H0 is that there is no trend.  However, any given test brings with it a 
precise mathematical definition of what is meant by "no trend", including a set of background 
assumptions usually related to type of distribution and serial correlation.  The outcome of the 
test is a "decision" -- either H0 is rejected or not rejected.  Failing to reject H0 does not mean 
that it was "proven" that there is no trend.  Rather, it is a statement that the evidence available is 
not sufficient to conclude that there is a trend.  Table 12.1 summarizes the possible outcomes of 
a statistical test in the context of trend analysis. 
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True Situation 
No trend. H0 true. H0

Fail to reject H0. Probability = 
1−α 

) 
β 

Reject H0. ) 
significance level α 

(Power) 
1−β 

Decision Trend exists.   false. 

"No trend" 
(Type II error

"Trend" 
(Type I error

Table 12.1  Probabilities associated with possible outcomes of a trend test. 
α = Prob (reject H0|H0 true) and 1 − β = Prob (reject H0|H0 false) 

The power (1−β) for the test can only be evaluated if the nature of the violation of H0 that 
actually exists is known.  This is never known in reality (if it were we wouldn't need a test), so a 
test must be found which has high power for the kind of data expected to be encountered.  If a 
test is slightly more powerful in one instance but much less powerful than its alternatives in 
some other reasonable cases then it should not be used.  The test selected should therefore be 
robust -- it should have relatively high power over all situations and types of data that might 
reasonably be expected to occur.  Some of the characteristics commonly found in water 
resources data, and discussed in this chapter, are: 

Distribution (normal, skewed, symmetric, heavy tailed) 

Outliers (wild values that can't be shown to be measurement error) 

Cycles (seasonal, weekly, tidal, diurnal) 

Missing values (a few isolated values or large gaps) 

Censored data (less-than values, historical floods) 


 Serial Correlation


12.1.2 Approaches to Trend Testing 
Five types of trend tests are presented in table 12.2.  They are classified based on two factors.  
The first, shown in the rows of the table, is whether the test is entirely parametric, entirely 
nonparametric, or a mixture of procedures.  The second factor (columns) is whether there is 
some attempt to remove variation caused by other associated variables.  The table uses the 
following notation: 

Y = the random response variable of interest in the trend test, 

X = an exogenous variable expected to affect the value of Y,  

R = the residuals from a regression or LOWESS of Y versus X, and 

T = time (often expressed in years). 


Simple trend tests (not adjusted for X) are discussed in section 12.2.  Tests adjusted for X are 
discussed in section 12.3. 
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Not Adjusted for X Adjusted for X 

Nonparametric Mann-Kendall trend test 
on Y 

Mann-Kendall trend test on 
residuals R from LOWESS 

of Y on X 
Mixed Mann-Kendall trend test on 

residuals R from regression 
of Y on X 

Parametric Regression of Y on T  Regression of Y  
on X and T 

Table 12.2 Classification of five types of tests for trend 

If the trend is spatial rather than temporal, T will be downstream order, distance downdip, etc.  
Examples of X and Y include the following:  

•	 For trends in surface water quality, Y would be concentration, X would be streamflow, 
and R would be called the flow-adjusted concentration; 

• 	 For trends in flood flows, Y would be streamflow, X would be the precipitation amount, 
and R would be called the precipitation-adjusted flow (the duration of precipitation used 
must be appropriate to the flow variable under consideration.  For example, if Y is the 
annual flood peak from a 10 square mile basin then X might be the 1-hour maximum 
rainfall, whereas if Y is the annual flood peak for a 10,000 square mile basin then X 
might be the 24-hour maximum rainfall). 

• 	 For trends in groundwater levels, Y would be the change in monthly water level, X the 
monthly precipitation, and R would be called the precipitation-adjusted change in water 
level. 

12.2 Trend Tests With No Exogenous Variable 

12.2.1 Nonparametric Mann-Kendall Test 
Mann (1945) first suggested using the test for significance of Kendall's tau where the X variable 
is time as a test for trend.  This was directly analogous to regression, where the test for 
significance of the correlation coefficient r is also the significance test for a simple linear 
regression. The Mann-Kendall test can be stated most generally as a test for whether Y values 
tend to increase or decrease with T (monotonic change). 

H0: Prob [Yj > Yi] = 0.5, where time Tj > Ti. 

H1: Prob [Yj > Yi] ≠ 0.5 (2-sided test). 
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No assumption of normality is required, but there must be no serial correlation for the resulting 
p-values to be correct. Typically the test is used for a more specific purpose -- to determine 
whether the central value or median changes over time. The spread of the distribution must 
remain constant, though not necessarily in the original units. If a monotonic transformation 
such as the ladder of powers is all that is required to produce constant variance, the test statistic 
will be identical to that for the original units.  For example, in figure 12.2 a lognormal Y variable 
is plotted versus time. The variance of data around the trend is increasing. A Mann-Kendall 
test on Y has a p-value identical to that for the data of figure 12.3 -- the logarithms of the 
figure 12.2 data. The logs show an increasing median with constant variance. Only the central 
location changes. The Mann-Kendall test possesses the useful property of other nonparametric 
tests in that it is invariant to (monotonic) power transformations such as those of the ladder of 
powers. Since only the data or any power transformation of the data need be distributed 
similarly over T except for their central location in order to use the Mann-Kendall test, it is 
applicable in many situations. 
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Figure 12.2 Y versus Time. Variance of Y increases over time. 
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Figure 12.3 Logarithms of Y versus Time. The variance of Y is constant over time. 
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To perform the test, Kendall's S statistic is computed from the Y,T data pairs (see Chapter 8).  
The null hypothesis of no change is rejected when S (and therefore Kendall's τ of Y versus T) is 
significantly different from zero. We then conclude that there is a monotonic trend in Y over 
time. 

An estimate of the rate of change in Y is also usually desired.  If Y or some transformation of Y 
has a linear pattern versus T, the null hypothesis can be stated as a test for the slope coefficient 
β1 = 0. β1 is the rate of change in Y, or transformation of Y, over time.  

12.2.2 Parametric Regression of Y on T 
Simple linear regression of Y on T is a test for trend 
 Y = β0 + β1•T + ε 
The null hypothesis is that the slope coefficient β1 = 0.  Regression makes stronger assumptions 
about the distribution of Y over time than does Mann-Kendall.  It must be checked for 
normality of residuals, constant variance and linearity of the relationship (best done with 
residuals plots -- see Chapter 9).  If Y is not linear over time, a transformation will likely be 
necessary.  If all is ok, the t-statistic on b1 is tested to determine if it is significantly different 
from 0. If the slope is nonzero, the null hypothesis of zero slope over time is rejected, and we 
conclude that there is a linear trend in Y over time.  Unlike Mann-Kendall, the test results for 
regression will not be the same before and after a transformation of Y. 

12.2.3   Comparison of Simple Tests for Trend 
If the model form specified in a regression equation were known to be correct (Y is linear with 
T) and the residuals were truly normal, then fully-parametric regression would be optimal (most 
powerful and lowest error variance for the slope).  Of course we can never know this in any real 
world situation.  If the actual situation departs, even to a small extent, from these assumptions 
then the Mann-Kendall procedures will perform either as well or better (see Chapter 10, and 
Hirsch et. al., 1991, p.805-806). 

There are practical cases where the regression approach is preferable, particularly in the multiple 
regression context (see next section).  A good deal of care needs to be taken to  
insure it is correctly applied and to demonstrate that to the audience.  When one is forced, by 
the sheer number of analyses that must be performed (say a many-station, many-variable trend 
study) to work without detailed case-by-case checking of assumptions, then nonparametric 
procedures are ideal.  They are always nearly as powerful as regression, and the failure to edit 
out or correctly transform a small percentage of outlying data will not have a substantial effect 
on the results. 
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Example 1 
Appendix C10 lists phosphorus loads and streamflow during 1974-1985 on the Illinois River at 
Marseilles, IL.  The Mann-Kendall and regression lines are plotted along with the data in figure 
12.4. Both lines have slopes not significantly different from zero at  
α = 0.05. The large load at the beginning of the record and non-normality of data around the 
regression line are the likely reasons the regression is considerably less significant.  
Improvements to the model are discussed in the next sections. 

Figure 12.4  Mann-Kendall and regression trend lines (data in Appendix C10). 
Regression: Load = 16.8 − 0.46•time t = −1.09 p = 0.28 

Mann-Kendall: Load = 12.2 − 0.33•time tau = −0.12 p = 0.08. 

12.3 Accounting for Exogenous Variables 

Variables other than time trend often have considerable influence on the response variable Y.  
These "exogenous" variables are usually natural, random phenomena such as rainfall, 
temperature or streamflow. By removing the variation in Y caused by these variables, the 
background variability or "noise" is reduced so that any trend "signal" present can be seen.  The 
ability (power) of a trend test to discern changes in Y with T is then increased.  The removal 
process involves modelling, and thus explaining, the effect of exogenous variables with 
regression or LOWESS (for computation of LOWESS, see Chapter 10).  This is the rationale 
for using the methods in the right-hand column of table 12.2. 
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For example, figure 12.5a presents a test for trend in dissolved solids at the James River in 
South Dakota. No adjustment for discharge was employed.  The p-value for the test equals 
0.47, so no trend is able to be seen. The Theil estimate of slope is plotted, showing the line  

DISSOLVED SOLIDS 
JAMES RIVER NEAR SCOTLAND, SD 

SLOPE = 13.8 mg/L / YR, p=0.47 
2500 

a)


b)
 C
O

N
C

E
N

T
R

A
T

IO
N

, 
C

O
N

C
E

N
T

R
A

T
IO

N
, 

m
g/

L 
m

g/
L 

2000


1500


1000


500 

0 
1974 1978 1982 1986 1990 

2500 

2000 

1500 

1000 

YEAR 

FLOW-ADJUSTED DISSOLVED SOLIDS 
JAMES RIVER NEAR SCOTLAND, SD 

SLOPE = 29 mg/L / YR, p=0.0001 

500 

0 
1974 1978 1982 1986 1990 

YEAR 
Figure 12.5 Trend tests a) before adjustment for flow.  b) after adjustment for flow. 

(from Hirsch et al., 1991) 

to be surrounded by a lot of data scatter.  In figure 12.5b, the same data are plotted after using 
regression to remove the variation due to discharge. Note that the amount of scatter has 
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decreased.  The same test for trend now has a p-value of 0.0001; for a given magnitude of flow, 
dissolved solids are increasing over time. 

When removing the effect of one or more exogenous variables X, the probability distribution of 
the Xs is assumed to be unchanged over the period of record. Consider a regression of Y 
versus X (figures 12.6a and 6b). The residuals R from the regression describe the values for the 
Y variable "adjusted for" exogenous variables (figure 12.6c). In other words, the effect of other 
variables is removed by using residuals -- residuals express the variation in Y over and above 
that due to the variation caused by changes in the exogenous variables. A trend in R implies a 
trend in the relationship between X and Y (figure 12.6d). This in turn implies a trend in the 
distribution of Y over time while accounting for X. However, if the probability distribution of 
the Xs has changed over the period of record, a trend in the residuals may not necessarily be 
due to a trend in Y. 
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Figure 12.6a. Log of concentration vs. time. Trend is somewhat difficult to see. 
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Figure 12.6b. Ln of concentration vs. exogenous variable: ln of streamflow (Q). 

Strong linear relation shown by regression line. 

Expect higher concentrations at higher flows. 
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Figure 12.6c. Residuals from 12.6b regression over time. Trend much easier to detect 
than in 12.6a, as effect of Q has been removed by using residuals. 
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Figure 12.6d. 	 Trend in fig. 6c can also be seen as an increase in the lnC vs lnQ relationship 
over time. For a given value of Q, the value for C increases over time. 

What kind of variable is appropriate to select as an exogenous variable? It should be a measure 
of the driving force behind the process of interest, but must be free of changes in human 
manipulation. Thus a streamflow record that spans a major reservoir project, new diversion, or 
new operating policy on an existing system would be unacceptable, due to human alteration of 
the probability distribution of X during the period of interest. A streamflow record which 
reflects some human influence is acceptable, provided that the human influence is consistent 
over the period of record. Where human influence on streamflow records makes them 
unacceptable as X variables, two major alternatives exist. The first is to use flow at a nearby 
unaffected station which could be expected to be correlated with natural flow at the site of 
interest. The other alternative is to use weather-related data: rainfall over some antecedent 
period, or model-generated streamflows resulting from a deterministic watershed model that is 
driven by historical weather data. 
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Where Y is streamflow concentration, a great deal of the variance in Y is usually a function of 
river discharge.  This comes about as a result of two different kinds of physical phenomena.  
One is dilution: a solute may be delivered to the stream at a reasonably constant rate (due to a 
point source or ground-water discharge to the stream) as discharge changes over time.  The 
result of this situation is a decrease in concentration with increasing flow (see figure 12.7).  This 
is typically seen in most of the major dissolved constituents (the major ions).  The other process 
is wash-off: a solute, sediment, or a constituent attached to sediment can be delivered to the 
stream primarily from overland flow from paved areas or cultivated fields, or from streambank 
erosion.  In these cases, concentrations as well as fluxes tend to rise with increasing discharge 
(see fig. 12.8).  Some constituents can exhibit combinations of both of these kinds of behavior.  
One example is total phosphorus.  A portion of the phosphorus may come from point sources 
such as sewage treatment plants (dilution effect), but another portion may be derived from 
surface wash-off and be attached to sediment particles (see fig. 12.9).  The resulting pattern is an 
initial dilution, followed by a stronger increase with flow due to washoff. 
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Figure 12.7 Dilution of dissolved solids with discharge (from Hirsch et al., 1991). 
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SUSPENDED SEDIMENT CONCENTRATION 
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Figure 12.8 Washoff of suspended sediment with discharge (from Hirsch et al., 1991). 
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Figure 12.9 Dilution and subsequent washoff of total phosphorus as discharge increases (from 
Hirsch et al., 1991). 

12.3.1 Nonparametric Approach 
The smoothing technique LOWESS (LOcally WEighted Scatterplot Smooth) describes the 
relationship between Y and X without assuming linearity or normality of residuals.  It is a robust 
description of the data pattern.  Numerous smooth patterns result whose form changes as the 
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smoothing coefficient is altered. The LOWESS pattern chosen should be smooth enough that it 
doesn't have several local minima and maxima, but not so smooth as to eliminate true changes 

^in slope.  Given the LOWESS fitted value Y 
Ŷ 

  the residuals R are computed as 
R = Y − . 

Then the Kendall S statistic is computed from the R,T data pairs, and tested to see if it is 
significantly different from zero.  The test for S is the test for trend. 

12.3.2 Mixed Approach: Mann-Kendall on Regression Residuals 
To remove the effect of X on Y prior to performing the Mann-Kendall test, a linear regression 
could be computed between Y and one or more Xs:   
 Y = β0 + β1•X + ε 
Unlike LOWESS, the adequacy of the regression model (is β1 significant, should X be 
transformed due to lack of linearity or constant variance?) must be checked.  When all is OK, 
the residuals R are computed as observed minus predicted values: 

R = Y − b0 − b1•X . 
Then the Kendall S statistic is computed from the R,T data pairs, and tested to see if it is 
significantly different from zero. 

The Mann-Kendall test on residuals is a hybrid procedure -- parametric removal of effects of 
the exogenous variables, followed by a nonparametric test for trend.  Care must be taken to 
insure that the model of Y versus X is reasonable (residuals should have no extreme outliers, Y 
is linear with X, etc.).  The fully nonparametric alternative using LOWESS given in 12.3.1 
avoids the necessity for close checking of assumptions. 

Alley (1988) showed that this two-stage procedure resulted in lower power than an alternative 
which is analogous to the partial plots of Chapter 9.  His "adjusted variable Kendall test" 
performs the second stage as a Mann-Kendall test of R versus T* rather than R versus T, where 
T* are the residuals from a regression of T versus X: 

T = b0 + b1•X + T* 
In this way the effect of a drift in X over time is removed, so that the R versus T* relationship is 
totally free of the influence of X.  This test is a Mann-Kendall test on the partial plot of Y 
versus T, having removed the effect of all other exogenous variable(s) X from both Y and T by 
regression. 

12.3.3 Parametric Approach 
Consider the multiple regression of Y versus time T and one or more Xs: 

Y = β 0 + β 1•T + β 2•X + ε . 
The null hypothesis for the trend test is that β1 = 0. Therefore the t-statistic for β1 tests for 
trend.  This test simultaneously compensates for the effects of exogenous variables by including 
them in the model. No two-stage process is necessary.  The model must be checked for 
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adequacy – for the correct form of relationship (linear in the Xs and T), normality of residuals, 
and that b2 is significantly different from zero. If b1 is significantly different from zero (based 
on the t-statistic) then the null hypothesis of no trend is rejected, and we conclude that there is a 
linear trend in Y over T. 

12.3.4 Comparison of Approaches 
In general, the power and efficiency of any procedure for detecting and estimating the 
magnitude of trends will be aided if the variance of the data can be decreased (figure 12.5).  This 
can be done by removing discharge effects either simultaneously or in stages.  Simultaneous 
modelling of trend and discharge has a small but distinct advantage over the equivalent 
stagewise method (Alley, 1988).  Thus parametric multiple regression has more power than a 
stagewise regression.  The adjusted Kendall test has a similar advantage over the Mann-Kendall 
test on residuals R versus unadjusted T.  We presume that a Mann-Kendall test of R on T* 
where both are computed using  LOWESS (Y on X and T on X) would have similar advantages 
over the unadjusted method in section 12.3.1, though no data exists on this to date. 

More important is whether the adjustment process should be conducted using a parametric or 
nonparametric method.  The choice between regression and LOWESS should be based on the 
quality of the regression fit. LOWESS and linear regression fits of phosphorus concentration 
and stream discharge are compared for Klamath River in Figure 12.10.  LOWESS would be a 
sensible alternative here due to the nonlinearity of the relationship.  In studies where many data 
sets are being analyzed, and individualized checking of multiple models is impractical, LOWESS 
is the method of choice. It is also valuable when transformation of Y to achieve normality is 
not desirable. Where detailed model checking is practical and where high-quality parametric 
models can be constructed, multiple regression provides a one-step process with maximum 
efficiency.  It and the adjusted Kendall method should be used over stagewise procedures. 

All methods incorporating exogenous X variables discussed thus far assume that the change in 
the X,Y relationship over time is a parallel shift -- a change in intercept, no change in slope (see 
figure 12.6d). Changes in both (a rotation) are certainly possible.  However it will not be 
possible to classify all such changes as uptrends or downtrends.  For example, if the X,Y 
relationship pivots counterclockwise over time, then for high X there is an uptrend in Y and for 
low X there is a downtrend in Y.  There is no simple way to generalize the Mann-Kendall test 
on residuals to identify such situations. 

However, regression could be used as follows: 
Y = β0 + β1•X + β2•T + β3•X•T + ε 

The X•T term is an interaction term describing the rotation.  One could compare this model to 
the "no trend" model (one with no T or X•T terms) using an F test.  It can also be compared to 
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the simple trend model (one with an X and a T term but no X•T term) using a partial F test.  
The result will be selection of one of three outcomes: no trend, trend in the intercept, or trend 
in slope and intercept (rotation). 
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Figure 12.10 Comparison of LOWESS (dashed line) and linear regression (solid line) fits of 
concentration to stream discharge.  From Hirsch, et al. (1991). 

12.4 Dealing With Seasonality 

There are many instances where changes between different seasons of the year are a major 
source of variation in the Y variable. As with other exogenous effects, seasonal variation 
must be compensated for or "removed" in order to better discern the trend in Y over time.  
If not, little power may be available to detect trends which are truly present.  We may also be 
interested in modeling the seasonality to allow different predictions of Y for differing 
seasons. 

Most concentrations in surface waters show strong seasonal patterns.  Streamflow itself almost 
always varies greatly between seasons.  This arises from seasonal variations in precipitation 
volume, and in temperature which in turn affects precipitation type (rain versus snow) and the 
rate of evapotranspiration.  Some of the observed seasonal variation in water quality may be 
explained by accounting for this seasonal variation in discharge.  However, seasonality often 
remains even after discharge effects have been removed (Hirsch et al. 1982).  Possible additional 
causes of seasonal patterns include biological activity, both natural and managed activities such 
as agriculture.  For example, nutrient concentrations vary with seasonal application of fertilizers 
and the natural pattern of uptake and release by plants.  Other effects are due to different 
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sources of water dominant at different times of the year, such as snow melt versus intense 
rainfall. Seasonal rise and fall of ground water can also influence water quality.  A given 
discharge in one season may derive mostly from ground water while the same discharge during 
the another season may result from surface runoff or quick flow through shallow soil horizons.  
The chemistry and sediment content of these sources may be quite different. 

Techniques for dealing with seasonality fall into three major categories (table 12.3).  One is fully 
nonparametric, one is a mixed procedure, and the last is fully parametric.  In the first two 
procedures it is necessary to define a "season".  In general, seasons should be just long enough 
so that there is some data available for most of the seasons in most of the years of record.  For 
example, if the data are primarily collected at a monthly frequency,  the seasons should be 
defined to be the 12 months. If the data are collected quarterly then there should be 4 seasons, 
etc. Tests for trend listed in table 12.2 have analogs which deal with seasonality.  These are 
presented in table 12.3. 

Not Adjusted for X Adjusted for X 

Nonparametric Seasonal Kendall test for 
trend on Y (Method I) 

Seasonal Kendall trend test 
on residuals from LOWESS 

of Y on X (Method I) 
Mixed Regression of deseasonalized 

Y on T (Method II) 
Seasonal Kendall trend test 

on residuals from 
regression of Y on X 

(Method I) 
Parametric Regression of Y on T and 

seasonal terms (Method III) 
Regression of Y on X, T, and 

seasonal terms (Method III) 
Table 12.3  Methods for dealing with seasonal patterns in trend testing 

12.4.1 The Seasonal Kendall Test 
The seasonal Kendall test (Hirsch et al., 1982) accounts for seasonality by computing the Mann-
Kendall test on each of m seasons separately, and then combining the results.  So for monthly 
"seasons", January data are compared only with January, February only with February, etc.  No 
comparisons are made across season boundaries.  Kendall's S statistic Si for each season are 
summed to form the overall statistic Sk. 

m
 Sk = ∑ S i [12.1] 

i=1 
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When the product of number of seasons and number of years is more than about 25, the 
distribution of Sk can be approximated quite well by a normal distribution with expectation 
equal to the sum of the expectations (zero) of the individual Si under the null hypothesis, and 
variance equal to the sum of their variances.  Sk is standardized (eq. 12.2) by subtracting its 
expectation µk = 0 and dividing by its standard deviation σSk. The result is evaluated against a 
table of the standard normal distribution. 

 S − 1
k if S > 0

k σ 
Sk 


ZSk  =  0 if S

k 
= 0 [12.2]

 
 

 S + 1

 k if S < 0
 σ Sk 

k 

 where µSk = 0, 

m 
= ∑(ni/18)•(ni-1)•(2ni+5) , andσSk 


i=1


ni = number of data in the ith season. 
The null hypothesis is rejected at significance level α if |ZSk| > Zcrit where Zcrit is the value 
of the standard normal distribution with a probability of exceedance of α/2. When some of the 
Y and/or T values are tied the formula for σSk must be modified, as discussed in Chapter 8. 
The significance test must also be modified for serial correlation between the seasonal test 
statistics (see Hirsch and Slack, 1984). 

If there is variation in sampling frequency during the years of interest, the data set used in the 
trend test may need to be modified.  If variations in sampling frequency are random (for 
example if there are a few instances where no value exists for some season of some year, and a 
few instances when two or three samples are available for some season of some year) then the 
data can be collapsed to a single value for each season of each year by taking the median of the 
available data in that season of that year.  If, however, there is a systematic trend in sampling 
frequency (monthly for 7 years followed by quarterly for 5 years) then the following type of 
approach is necessary. Define the seasons on the basis of the lowest sampling frequency.  For 
that part of the record with a higher frequency define the value for the season as the 
observation taken closest to the midpoint of the season.  The reason for not using the median 
value in this case is that it will induce a trend in variance, which will invalidate the null 
distribution of the test statistic.   
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An estimate of the trend slope for Y over time T can be computed as the median of all slopes 
between data pairs within the same season (figure 12.11).  Therefore no cross-season slopes 
contribute to the overall estimate of the Seasonal Kendall trend slope. 
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 A. 	 B. 
Figure 12.11	 A.  All pairwise slopes used to estimate the Seasonal Kendall trend slope 

(two seasons -- compare with figure 10.1). 
B. Slopes rearranged to meet at a common origin 

To accommodate and model the effects of exogenous variables, directly follow the methods of 
section 12.3 until the final step.  Then apply the Seasonal Kendall rather than Mann-Kendall test 
on residuals from a LOWESS of Y versus X and T versus X  
(R versus T*). 

12.4.2 Mixture Methods 
The seasonal Kendall test can be applied to residuals from a regression of Y versus X, rather 
than LOWESS. Keep in mind the discussion in the previous section of using adjusted variables 
T* rather than T. Regression would be used only when the relationships exhibit adherence to 
the appropriate assumptions. 

A second type of mixed procedure involves deseasonalizing the data by subtracting seasonal 
medians from all data within the season, and then regressing these deseasonalized data against 
time. One advantage of this procedure is that it produces a description of the pattern of the 
seasonality (in the form of the set of seasonal medians). However, this method has generally 
lower power to detect trend than other methods, and is not prefered over the other alternatives.  
Subtracting seasonal means would be equivalent to using dummy variables for m−1 seasons in a 
fully parametric regression.  Either use up m−1 degrees of freedom in computing the seasonal 
statistics, a disadvantage which can be avoided by using the methods of the next section. 
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12.4.3 Multiple Regression With Periodic Functions

The third option is to use periodic functions to describe seasonal variation.  The simplest case,

one that is sufficient for most purposes, is: 


Y = β0 + β 1•sin(2πT) + β 2•cos(2πT) + β 3•T + other terms + ε [12.3] 

where "other terms" are exogenous explanatory variables such as flow, rainfall, or level of some 
human activity (e.g. waste discharge, basin population, production).  They may be continuous, 
or binary "dummy" variables as in analysis of covariance.  The trend test is conducted by 
determining if the slope coefficient on T ( β 3) is significantly different from zero.  Other terms 
in the equation should be significant and appropriately modeled.  The residuals ε must be 
approximately normal. 

Time is commonly but not always expressed in units of years.  Table 12.4 lists values for 2πT 
for three common time units:  years, months and day of the year. 

The expression 2πT  = 6.2832•t when t is expressed in years. 
 = 0.5236•m when m is expressed in months. 
 = 0.0172•d when d is expressed in day of year. 

Table 12.4  Three values for 2πT useful in regression tests for trend 

To more meaningfully interpret the sine and cosine terms, they can be re-expressed as the 
amplitude A of the cycle (half the distance from peak to trough) and the day of the year Dp at 
which the peak occurs:  

β 1•sin(2πt) + β 2•cos(2πt) = A sin 2π (t + t
0
)] [12.4] 

where  A = β12 + β 22 [12.5] 
-1

[


The phase shift  t  = tan (β2 / β1) ,
0

t ' = t  ± 2π if necessary to get t  within the interval 0 < t < 2π = 6.2832
0 0 0 0

and Dp = 58.019 • (1.5708 − t ' ) [12.6]
0 
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Example 2: Determining peak day and amplitude

 Y 	 - ** * * 

- * * * * 

- * * 


0.60+ * * 

- * * 

- * * 

- * 

-


0.00+ * * * 

-

- * * 

- * 

- * 


-0.60+ * 

- * 

- * * 

- * * 


--------+---------+---------+---------+---------+-------T 

1982.10 1982.40 1982.70 1983.00 1983.30 


Figure 12.12 Data showing seasonal (sine and cosine) pattern. 

The data in figure 12.12 were generated using coefficients  b1 = 0.8 and b2 = 0.5. 
From equations 12.4 through 12.6,  the amplitude A = 0.94, t

0
= 0.559, t

0
' = 0.559, 

and so the peak day = 59 (February 28). 

After including sine and cosine terms in a multiple regression to account for seasonality, the 
residuals may still show a seasonal pattern in boxplots by season, or in a Kruskal-Wallis test by 
season. If this occurs, additional periodic functions with periods of 1/2 or 1/3 or other 
fractions of a year (multiple cycles per year) may be used to remove additional seasonality.  
Credible explanations for why such cycles might occur are always helpful.  For example, the 
following equation may be appropriate: 

Y = β0 + β1•sin(2πt) + β2•cos(2πt) + β3•sin(4πt) + β4•cos(4πt) + other terms + � 

One way to determine how many terms to use is to add them, two at a time, to the regression 
and at each step do an F test for the significance of the new pair of terms.  As a result one may, 
very legitimately, settle on a model in which the t-statistics for one of a pair of coefficients is not 
significant, but as a pair they are significant.  Leaving out just the sine or just the cosine is not a 
sensible thing to do, because it forces the periodic term to have a completely arbitrary phase 
shift, rather than one determined by the data. 

12.4.4 Comparison of Methods 
The Mann-Kendall and mixed approaches have the disadvantages of only being applicable to 
univariate data (either original units or residuals from a previous analysis) and are not amenable 
to simultaneous analysis of multiple sources of variation.  They take at least two steps to 
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compute. Multiple regression allows many variables to be considered easily and simultaneously 
by a single model. 

Mann-Kendall has the usual advantage of nonparametrics:  robustness against departures from 
normality. The mixed method is perhaps the least robust because the individual seasonal data 
sets can be quite small and the estimated seasonal medians can follow an irregular pattern.  In 
general this method has far more parameters than either of the other two methods and fails to 
take advantage of the idea that geophysical processes have some degree of smoothness in the 
annual cycle. That is: it is unlikely that April will be very different from May, even though the 
sample statistics may suggest that this is so. 

Regression with periodic functions takes advantage of this notion of smoothness and thereby 
involves very few parameters.  However, the functional form (sine and cosine terms) can 
become a "straight jacket".  Perhaps the annual cycles really do have abrupt breaks associated 
with freezing and thawing, or the growing season.  Regression can always use binary variables as 
abrupt definitions of season (G=1 for "growing season", G=0 otherwise). Observations can be 
assigned to a season based on conditions which may vary in date from year to year, and not just 
based on the date itself.  Regression could also be modified to accept other periodic functions, 
perhaps ones that are much more squared off.  To do this demands a good physically-based 
definition of the timing of the influential factors, however. 

All three methods provide a description of the seasonal pattern.  Regression and mixed methods 
automatically produce seasonal summary statistics.  However, there is no difficulty in providing 
a measure of seasonality consistent with Mann-Kendall by computing seasonal medians of the 
data after trend effects have been removed.   

12.4.5 Presenting Seasonal Effects 
There are many ways of characterizing the seasonality of a data set (table 12.5).  Any of them 
can be applied to the raw data or to residuals from a LOWESS or regression that removes the 
effects of some exogenous variable.  In general, graphical techniques will be more interpretable 
than tabular, although the detail of tables may sometimes be needed.   
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Boxplots by season, or LOWESS of 
data versus time of year cycle 

NEXT BEST l l 

Plot of seasonal means with 
standard deviation or standard error 

bars around them 

l

GRAPHICAL METHODS TABULAR METHODS 
BEST List the amplitude and peak day of the 

List of seasona  medians and seasona
interquartile ranges, or list of 

distribution percentage points by season 
WORST List of seasona  means, standard 

deviations, or standard errors 

Table 12.5 Rating of methods for dealing with seasonality 

12.4.6 Differences Between Seasonal Patterns 
The approaches described above all assume a single pattern of trend across all seasons.  This 
may be a gross over-simplification and can fail to reveal large differences in behavior between 
different seasons. It is entirely possible that the Y variable exhibits a strong trend in its summer 
values and no trend in the other seasons.  Even worse, it could be that spring and summer have 
strong up-trends and fall and winter have strong down-trends, cancelling each other out and 
resulting in an overall seasonal Kendall test statistic stating no trend.  Another situation might 
arise where the X-Y relationship (e.g. rainfall-runoff, flow-concentration) has a substantially 
different slope and intercept for different seasons.   

No overall test statistic will provide any clue of these differences.  This is not to suggest they are 
not useful. Many times we desire a single number to characterize what is happening in a data 
set.  Particularly when dealing with several data sets (multiple stations and/or multiple 
variables), breaking the problem down into 4 seasons or 12 months simply swamps us with 
more results than can be absorbed.  Also, if the various seasons do show a consistent pattern of 
behavior there is great strength in looking at them in one analysis.  For example in a seasonal 
Kendall analysis each month viewed by itself might show a positive S value, none of which is 
significant, but the overall Seasonal Kendall test could be highly significant.  Yet in detailed 
examinations of individual stations it is often useful to perform and present the full, within­
season analysis on each season.  Figure 12.13 is a good approach to graphically presenting the 
results of such multi-season analyses. 
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Figure 12.13 Illustration of seasonal and annual step trends on the Green River 
(from Liebermann and others, 1989) 

In the approaches using Method I above, one can also examine "contrasts" between the 
different seasonal statistics.  This provides a single statistic which indicates whether the seasons 
are behaving in a similar fashion (homogeneous) or behaving differently from each other 
(heterogeneous).  The test for homogeneity is described by van Belle and Hughes (1984). 

For each season i (i=1,2,...m) compute Zi = Si / Var(Si) . Sum these to compute the "total" 
chi-square statistic,  then compute "trend" and "homogeneous" chi-squares: 

m
χ2(total) = ∑ Zi2 [12.7] 

i=1 
m

 Zi∑ 
χ2(trend) = m• Z2 where Z = 

i=1 
[12.8]m 

χ2(homogeneous) = χ2(total) − χ2(trend) [12.9] 
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The null hypothesis that the seasons are homogeneous with respect to trend  
(τ1 = τ2 = . . . = τm) is tested by comparing χ2(homogeneous) to tables of the chi-square 
distribution with m−1 degrees of freedom.  If it exceeds the critical value for the pre-selected α, 
reject the null hypothesis and conclude that different seasons exhibit different trends. 

12.5 Use of Transformations in Trend Studies 

Water resources data commonly exhibit substantial departures from a normal distribution.  
Surface-water concentration, load, and flow data are often positively skewed, with many 
observations lying close to a lower bound of zero and a few observations one or more orders of 
magnitude above the lower values.  If only a test for trend is of interest, then the decision to 
make some monotonic transformation of the data (to render them more nearly normal) is of no 
consequence provided that a nonparametric test is used.  Nonparametric trend tests are 
invariant to monotonic power transformations (such as the logarithm or square root).  In terms 
of significance levels the test results will be identical whether the test was applied to the raw data 
or the transformed data. 

The decision to transform data is, however, highly important in terms of any of the procedures 
for removing the effects of exogenous variables (X), for computing significance levels of a 
parametric test (figure 12.14), and for computing and expressing slope estimates.  Trends which 
are nonlinear (say exponential or quadratic) will be poorly described by a linear slope coefficient, 
whether from regression or a nonparametric method.  It is quite possible that negative 
predictions may result for some values of time or X.  By transforming the data so that the trend 
is linear, a Mann-Kendall or regression slope can later be re-expressed back into original units. 
The resulting nonlinear trend will better fit the data than the linear expression, even though 
their nonparametric significance tests are identical.  Thus, it may be appropriate to run analyses 
on transformed Y values, even if the analysis is a nonparametric one.  

One way to ensure that the fitted trend line will not predict negative values is to take a log 
transformation of the data prior to trend analysis.  The trend slope will then be expressed in log 
units. A linear trend in log units translates to an exponential trend in original units, which can 
then be re-expressed in percent per year to make the trend easier to interpret.  If b1 is the 
estimated slope of a linear trend in natural log units then the percentage change from the 
beginning of any year to the end of that year will be (eb1 − 1)•100. If slopes in original units 
are preferred, then instead of multiplying by 100, multiply by some measure of central tendency 
in the data (mean or median) to express the slope or step-trend in original units.   
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Figure 12.14  No trend evident in concentration (p=0.432 for regression slope).  After log 

transformation, there is a statistically significant decline (p=0.001). 

Regression on logs shown as solid line.  (from Hirsch et al., 1991). 


In general, more resistant and robust results can be obtained if log transformations are used for 
variables that typically have ranges of more than an order of magnitude.  With variations this 
large, transformations should be used in conjunction with both parametric and nonparametric 
tests.  However, in multiple record analyses the decision to transform should be made on the 
basis of the characteristics of the class of variables being studied, not on a case-by-case basis. 
Variables on which log transforms are typically helpful include: flood flows, low flows, monthly 
or annual flows in small river basins, concentrations of sediment, total concentration (suspended 
plus dissolved) for a constituent when the suspended fraction is substantial (for example 
phosphorus and some metals), concentrations or counts of organisms, concentrations of 
substances that arise from biological processes (such as chlorophyll), and downstream load for 
virtually any constituent. 

Some argue that data should always be transformed to normality, and parametric procedures 
computed on the transformed data.  Transformations to normality are not always possible, as 
some data are non-normal due not to skewness but to heavy tails of the distribution (see Schertz 
and Hirsch, 1985).  The strongest argument for transformations are that regression methods 
allows simultaneous consideration of the effects of multiple exogenous variables along with 
temporal trend. Such simultaneous tests are more difficult with nonparametric techniques.  
Multivariate smoothing methods are available (Cleveland and Devlin, 1988) which at least allow 
removal of multiple exogenous effects in one step, but they are not implemented yet in any 
commercial software. 
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The weakest situations for parametric techniques on transformed data are for analyses of 
multiple data sets.  The transformation appropriate to one data set may not be appropriate to 
another. If different transformations are used on different data sets then comparisons among 
results is difficult, if not impossible. Also, there is an element of subjectivity in the choice of 
transformation. The argument of the skeptic that: "You can always reach the conclusion you 
want if you manipulate the data enough" is not without merit.  The credibility of results is 
enhanced if a single statistical method is used for all data sets in a study, and this is next to 
impossible with the several judgements of model adequacy required for parametric methods.  
Nonparametric procedures are therefore well suited to multi-record trend analysis studies.  In 
analyses of individual records, use of transformations with parametric methods can be very 
appropriate. 

12.6  Monotonic Trend versus Two Sample (Step) Trend 

Study of long term changes in hydrologic variables can be carried out in either of two modes.  
Up to this point "monotonic trends" were discussed, gradual and continuing changes over time.  
The Mann-Kendall test and regression are the two basic tools used in this case.  The other mode 
compares two non-overlapping sets of data, an "early" and "late" period of record.  Changes 
between the periods are called "step trends", as values of Y step up or down from one time 
period to the next.  Testing for differences between these two groups involves procedures 
similar or identical to those described in other chapters, including the rank-sum test, two-sample 
t-tests, and analysis of covariance.  Each of them also can be modified to account for 
seasonality. 

The basic parametric test for step trends is the two-sample t-test.  See Chapter 5 for its 
computation. The magnitude of change is measured by the difference in sample means between 
the two periods. Helsel and Hirsch (1988) discuss the disadvantages of using a t-test for step 
trends on data which are non-normal -- loss of power, inability to incorporate data below the 
detection limit, and an inappropriate measure of the step trend size.  The primary nonparametric 
alternative is the rank-sum test and associated Hodges-Lehmann (H-L) estimator of step-trend 
magnitude (see Chapter 5, and Hirsch, 1988).  The H-L estimator is the median of all possible 
differences between data in the "before" and "after" periods.  Table 12.6 summarizes the step­
trend approaches not considering seasonality and 12.7 summarizes those which consider 
seasonality.  The rank-sum test can be implemented in a seasonal manner just like the Mann-
Kendall test, called the seasonal rank-sum test.  It computes the rank-sum statistic separately for 
each season, sums the test statistics, their expectations and variances, and then evaluates the 
overall summed test statistic.  The H-L estimator can be similarly modified by considering only 
data pairs within a given season. 
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Not Adjusted for X Adjusted for X 

Nonparametric Rank-sum test on Y Rank-sum test on residuals 
from LOWESS of Y on X 

Mixed Rank-sum test on residuals 
from regression of Y on X 

Parametric Two sample t-test Analysis of covariance of Y 
on X and group 

Table 12.6   Step-trend tests (two-sample) which do not consider seasonality 
(note "group" refers to a dummy variable 0 for "before" and 1 for "after") 

Not Adjusted for X Adjusted for X 

Nonparametric Seasonal rank-sum test on Y Seasonal rank-sum test on 
residuals from LOWESS of 

Y on X 
Mixed Two-sample t test on 

deseasonalized Y 
Seasonal rank-sum test on 
residuals from regression of 

Y on X 
Parametric Analysis of covariance of Y 

on seasonal terms and 
group 

Analysis of covariance of Y 
on X, seasonal terms, and 

group 
Table 12.7   Step-trend tests (two-sample) which do consider seasonality 

(note "group" refers to a dummy variable 0 for "before" and 1 for "after") 

Step trend procedures should be used in two situations.  The first is when the record (or 
records) being analyzed are naturally broken into two distinct time periods with a relatively long 
gap between them. There is no specific rule to determine how long the gap should be to make 
this the preferred procedure.  If the length of the gap is more than about one-third the entire 
period of data collection, then the step trend procedure is probably best (see figure 12.15).  In 
general, if the within-period trends are small in comparison to the between-period differences, 
then step-trend procedures should be used. 
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Figure 12.15 Significant (p=0.085) step trend as measured by rank-sum test.   


Solid lines are group medians. Monotonic trend test is not significant (p=0.167).  Modified 

from Hirsch et al., 1991. 


The second situation to test for step-trend is when a known event has occurred at a specific 
time during the record which is likely to have changed water quality.  The record is first divided 
into "before" and "after" periods at the time of this known event.  Example events are the 
completion of a dam or diversion, the introduction of a new source of contaminants, reduction 
in some contaminant due to completion of treatment plant improvements, or the closing of 
some facility (figure 12.16).  It is imperative that the decision to use step-trend procedures not 
be based on examination of the data (i.e. the analyst notices an apparent step but had no prior 
hypothesis that it should have occurred), or on a computation of the time which maximizes the 
difference between periods.  Such a prior investigation biases the significance level of the test, 
finding changes which are not really there.  Step-trend procedures require a highly specific 
situation, and the decision to use them should be made prior to any examination of the data. 

If there is no prior hypothesis of a time of change or if records from a variety of stations are 
being analyzed in a single study, monotonic trend procedures are most appropriate.  In multiple 
record studies, even when some of the records have extensive but not identical gaps, the 
monotonic trend procedures are generally best because comparable periods of time are more 
easily examined among all the records.  In fact, the frequent problem of multiple starting dates, 
ending dates, and gaps in a group of records presents a significant practical problem in trend 
analysis studies. In order to correctly interpret the data, records examined in a multiple station 
study must be concurrent.  For example it is pointless to compare a 1975-1985 trend at one 
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station to a 1960-1980 trend at another. The difficulty arises in selecting a period which is long 
enough to be meaningful but does not exclude too many shorter records. 
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Figure 12.16  A weakly significant (p=0.105) reduction in suspended sediment after completion 
of the Flaming Gorge reservoir (located 93 miles upstream of the station) in late 1962 as 

measured by a rank-sum test.  From Hirsch et al., 1991. 

A further difficulty involves deciding just how complete a record must be to be included in the 
analysis.  For example, if the study is for 1970-1985 and there is a record that runs from 1972 
through 1985 it is probably prudent to include it in the study.  A one- or two-year gap in the 
middle of the record should not disqualify a station from the analysis.  More difficult are 
questions such as inclusion of a 1976-1984 record, or inclusion of a record that covers 1970­
1975 and 1982-1985. One reasonably objective rule for deciding whether to include a record is:   

1) divide the study period into thirds (three periods of equal length),  
2) determine the coverage in each period (e.g. if the record is generally monthly, count 

the months for which there are data),  
3) if any of the thirds has less than 20 percent of the total coverage then the record 

should not be included in the analysis.  See Schertz (1990) for an application of these 
kinds of approaches. 
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12.7  Applicability of Trend Tests With Censored Data 

Censored samples are records in which some of the data are known only to be "less than" or 
"greater than" some threshold (see Chapter 13).  The two most common examples in hydrology 
are constituent concentrations less than the detection limit and floods which are known to be 
less than some threshold of perception (e.g. the annual flood of 1887 was not sufficiently large 
that local record keepers bothered to record the maximum stage).  The existence of censored 
values complicates the use of the previously discussed parametric procedures and all of the 
procedures involving removal of the effect of an exogenous variable.  Any arbitrary choice of a 
value to represent the censored values (e.g., zero or the reporting limit) can give inaccurate 
results for hypothesis tests and biased estimates of trend slopes (Helsel, 1990). 

A parametric approach to the detection of trends in censored data is the estimation of the 
parameters of a linear regression model relating Y to T, or Y to T and X, through the method of 
maximum likelihood estimation (MLE), also referred to as Tobit estimation (Hald, 1949; Cohen, 
1950). These effects can be modeled simultaneously in this approach as can be done in a 
conventional multiple regression. Because the MLE method assumes a linear model with 
normally distributed errors, transformations (such as logarithms) of Y and X are frequently 
required to make the data more nearly normal and improve the fit of the MLE regression.  
Failure of the data to conform to these assumptions will tend to lower the statistical power of 
the test, and give unreliable estimates of the model parameters.  The Type I error of the test is, 
however, relatively insensitive to violations of the normality assumption.   

An extension of the MLE method was developed by Cohen (1976) to provide estimates of 
regression model parameters for data records with multiple censoring levels.  An adjusted MLE 
method for multiply-censored data that is less biased in certain applications than the MLE 
method of Cohen (1976) was also recently developed by Cohn (1988).  The availability of  
multiply-censored MLE methods is noteworthy for the analysis of lengthy water-quality records 
with censored values since these records frequently have multiple reporting limits that reflect 
improvements in the accuracy of analytical methods (and reductions in reporting limits) with 
time. Similarly, the multiply-censored case can arise in flood studies in that some very old 
portion of a flood record may contain estimates of only the very largest floods while a more 
recent part of the record (when flood plain development was more intense and record keeping 
more complete) may contain estimates of floods exceeding a more moderate threshold. 

The Mann-Kendall test can be used without any difficulty when only one censoring threshold 
exists.  Comparisons between all pairs of observations are possible.  All the "less thans" are less 
than the other values and are considered to be tied with each other.  Thus the S statistic and τ 
are easily computed using the tie correction for the standard deviation (see Chapter 8) in the 
large-sample approximation. Equation 8.4 for the corrected standard deviation is repeated here. 
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n
[n (n - 1) (2n + 5) - ti (i) (i - 1) (2i + 5) ]∑ 

i=1
σS = 18 [12.10] 

When more than one detection limit exists, the Mann-Kendall test can not be performed 
without further censoring the data.  Consider the data set:  <1, <1, 3, <5, 7. How can a <1 and 
<5 be compared?  A 3 and a <5?  These ambiguities make the test impossible to compute.  The 
only way to perform a Mann-Kendall test is to censor and recode the data at the highest 
detection limit. Thus, these data would become:  <5, <5, <5, <5, 7.  There is certainly a loss of 
information in making this change, and a loss of power to detect any trends which may exist.  
Other nonparametric tests incorporating multiple detection limits are briefly discussed in 
chapter 13.  None can be performed when the change in detection limits is a function of the 
process being tested for, such as time.  When this occurs, the change in censoring limit over 
time will induce the test to find a change in Y over time more often than it actually occurs (α 
will actually be larger than that which was stated for the test). 

Although the sign of the estimated Theil trend slope is accurate for highly censored data 
records, the magnitude of the slope estimate is likely to be in error.  Substitution of an arbitrarily 
chosen value between zero and the reporting limit for all censored values will likely give biased 
estimates of the trend slope. While the amount of bias cannot be stated precisely, the presence 
of only a few nondetected values in a record (less than about five percent) is not likely to affect 
the accuracy of the trend slope magnitude significantly. 

Table 12.8 classifies monotonic trend tests for data sets with censored data.  

Nonparametric Mann-Kendall test for trend 
on Y 

Tobit regression of Y 
on T 

Tobit regression of Y 
on X and T 

Not Adjusted for X Adjusted for X 

No test yet available 

Fully Parametric 

Table 12.8 Classification of monotonic trend tests for censored data 
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Exercises 
12.1	 During the period 1962-1969 the Green River Dam was constructed about 35 miles 

upstream of a gaging station on the Green River at Munfordville, Kentucky.  It is a 
flood control dam, thus it regulates flow (changes the flow duration curve) but has little 
or no effect on total annual runoff from this 1660 square-mile basin. 

The question is this--over the period of record 1952-1972 (which includes pre-dam, 
transition, and regulated periods) has there been a monotonic trend in sediment 
transport?  The data available in Appendix C17 are the year, suspended sediment load in 
thousands of tons per year, and the annual discharge in cfs-days. 

Using each of the four trend analysis approaches described in the chapter, what would 
you conclude about suspended sediment trends? 

12.2: 	 Seasonal Kendall Test with censored data 
The following data are dissolved lead concentrations (in mg/L) for the Potomac River at 
Chain Bridge at Washington, D.C. 

Winter Spring

 1973 − 4 


1974 − 3 

1975 4 5 

1976 2 3 

1977 16 2 

1978 26 7 

1979 5 3 

1980 <2 <2 

1981 5 <2 

1982 <2 2 

1983 2 3 

1984 3 5 

1985 <2 3 


Summer Fall
3 −
2 6 
5 11 
6 4 
18 17 
4 − 
9 6 

<2 <2 
<2 <2 
− 2 

<2 5 
<2 <2 
− <2 

Compute Kendall's S and Var [S] for each season and perform a Mann-Kendall test for 
each season, reporting p-values.  Then compute the Seasonal Kendall statistic and its 
variance and report the p-value for the Seasonal Kendall test. 
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12.3 	 The Maumee River, Ohio is a major tributary to Lake Erie.  The control of phosphorus 
inputs to the lake has been a major concern since the early 1970's.  In Appendix C18 are 
133 observations of instantaneous load and streamflow for the Maumee River from the 
1972 through 1986. The variables in the date set are TIME (decimal time in years), 
MONTH (month of the year), Q (discharge in thousands of cfs), and LOAD (total 
phosphorus load in tons per day). 

Using the various approaches listed in this chapter, describe the trend in the data set.  
Try each of the approaches listed in table 12.2.  For the nonparametric approaches 
compute the seasonal-Kendall test.  

Then using the model you select as most appropriate, estimate loads for the following 
four cases: 

(Q , TIME) =  (11 , 1972.5), (1 , 1972.5), (11 , 1986.5), (1 , 1986.5). 

12.4 	 Major ion chemistry of groundwater may be altered as it remains in contact with aquifer 
materials. One common alteration is ion exchange of calcium with sodium.  Carbon-14 
can be used as a measure of the age of groundwater, with  
C-14 (modern carbon) decreasing with increasing age.  Compute the p-value and 
determine whether there is a trend to lower calcium concentrations with increasing age 
for the following data: 

%Carbon-14 
(old) 12.4 

19.5 

Calcium, in % meq
20.16 
0.46 

%Carbon-14 
48.9 
52.0 

Calcium, in % meq
16.56 
22.88 

23.9 4.18 55.6 12.64 
25.3 28.95 57.7 14.26 
28.2 20.00 58.1 13.37 
31.5 0.57 66.2 35.22 
33.1 1.84 67.1 24.43 
33.4 
38.6 

13.99 
18.02 

(young) 71.8 60.24 

12.5 	 A well screened in the middle aquifer in New Jersey is investigated to determine if 
groundwater levels have declined over time as a result of pumpage.  The data are given 
in Appendix C19 (A. Pucci, written communication, U.S. Geological Survey, Trenton, 
NJ). Conduct a trend analysis to determine whether a decline has occurred.  Estimate 
the rate of decline over the period of record. 
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Chapter 13

Methods for Data Below 
the Reporting Limit 

To comply with environmental regulations, an industry must show that the daily mean copper 
concentration in its wastewater discharge does not exceed the legal standard.  Yet for many of 
the wastewater samples taken at two hour intervals, concentrations are below the analytical 
reporting limit of the laboratory.  These "less-thans" make it impossible to compute a simple 
mean concentration.  When the industry substitutes a zero for each less-than, the standard is not 
exceeded. When the regulatory agency substitutes a value equal to the reporting limit, the 
standard is exceeded.  Which is correct?  Has the law been violated? 

Ground-water quality is measured both upgradient and downgradient of a waste-disposal site.  
Comparison of the two groups of data is performed to determine whether contamination of the 
ground-water system has occurred.  Usually t-tests are employed for this purpose, and yet the t­
test requires estimates of means and standard deviations which are impossible to obtain unless 
numerical values are fabricated to replace any less-thans present in the data.  By substituting one 
number, the two groups appear the same. Substituting a second number causes H0 to be 
rejected, and the two groups to be declared different.  Which is correct? 

As trace substances in the world's soils, air and waters are increasingly investigated, 
concentrations are more frequently being encountered which are less than limits deemed reliable 
enough to report as numerical values.  These less-than values -- values stated only as "<rl", 
where rl is called the "reporting limit" or "detection limit" or "limit of quantitation" (Keith et al., 
1983) -- present a serious interpretation problem for data analysts.  Estimates of summary 
statistics which best represent the entire distribution of data, both below and above the 
reporting limit, are necessary to accurately analyze environmental conditions.  Also needed are 
hypothesis test and regression procedures that provide valid conclusions and models for such 
data. These needs must be met using the only information available to the data analyst:  
concentrations measured above one or more reporting limits, and the observed frequency of 
data below those limits.  
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This chapter discusses the most appropriate statistical procedures given that data have been 
reported as less-thans. It does not consider the alternative of reporting numerical values for all 
data, including those below reporting limits -- see ASTM (1983), Porter et al. (1988) and Gilliom 
et al. (1984) for discussion of this alternative. 

13.1   Methods for Estimating Summary Statistics 

Methods for estimating summary statistics of data which include less-thans (statisticians call 
these "censored data") can be divided into the three classes discussed below:  simple 
substitution, distributional, and robust methods.  Recent papers have documented the relative 
performance of these methods.  Gilliom and Helsel (1986) and Gleit (1985) compared the 
abilities of several estimation methods in detail over thousands of simulated data sets.  Helsel 
and Gilliom (1986) then applied these methods to numerous water-quality data sets, including 
those which are not similar to the assumed distributions required by the distributional methods.  
A single case study was reported by Newman and Dixon (1990).  Helsel and Cohn (1988) dealt 
with censoring at multiple reporting limits. Large differences were found in these methods' 
abilities to estimate summary statistics for censored data.   

Methods may be compared based on their ability to replicate true population statistics.  
Departures from true values are measured by the root mean squared error (RMSE), which 
combines both bias and lack of precision.  The RMSE of the estimate of the mean x in
comparison to the true population value µ is shown in equation 13.1.  Similar equations would 
be used for estimation of other summary statistics. 

N 2

∑ (x −µ) 
 RMSE = N  [13.1] 

i= 1 µ 

Methods whose estimates x  are closer to the true value µ have lower RMSEs, and are 
considered better. 

13.1.1 Simple Substitution Methods 
Simple substitution methods (Figure 13.1) substitute a single value such as one-half the reporting 
limit for each less-than value.  Summary statistics are calculated using both these fabricated 
numbers along with the values above the reporting limit.  These methods are widely used, but 
have no theoretical basis. As Figure 13.1 shows, the distributions resulting from simple 
substitution methods have large gaps, and do not appear realistic. 
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Figure 13.1.  Histograms for simple substitution methods.  

Studies cited above determined that simple substitution methods performed poorly in 
comparison to other procedures. Substitution of zero produced estimates of mean and median 
which were biased low, while substituting the reporting limit resulted in estimates above the true 
value. Results for the standard deviation and IQR, and for substituting one-half the reporting 
limit, were also far less desirable than alternative methods.  With the advent of powerful desktop 
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computers to perform more complex calculations there appears to be no reason to use simple 
substitution methods. As the choice of value to be substituted is essentially arbitrary without 
some knowledge of instrument readings below the reporting limit, and as large differences may 
occur in the resulting estimates, simple substitution methods are not defensible. 

13.1.2 Distributional Methods 
Distributional methods (Figure 13.2) use the characteristics of an assumed distribution to 
estimate summary statistics.  Data both below and above the reporting limit are assumed to 
follow a distribution such as the lognormal. Given a distribution, estimates of summary statistics 
are computed which best match the observed concentrations above the reporting limit and the 
percentage of data below the limit.  Estimation methods include maximum-likelihood estimation 
or MLE (Cohen, 1959), and probability plotting procedures (Travis and Land, 1990).  MLE 
estimates are more precise (lower RMSE) than probability plotting, and both methods are 
unbiased, when observations fit the assumed distribution exactly and when the sample size is 
large.  However, this is rarely the case in environmental studies.  When data do not match the 
observed distribution, both methods may produce biased and imprecise estimates.  Thus the 
most crucial consideration when using distributional methods is how well the data can be 
expected to fit the assumed distribution.  Even when distributional assumptions are correct, 
MLEs have been shown to produce estimates with large bias and poor precision for the small 
sample sizes of n=5, 10, and 15 (Gleit, 1985).  MLE methods are commonly used in 
environmental disciplines such as air quality (Owen and DeRouen, 1980) and geochemistry 
(Miesch, 1967). 

Assuming a lognormal distribution for concentrations, MLEs for larger (n=25, 50) data sets have 
provided excellent estimates of percentiles (median and IQR) for a variety of data distributions 
realistic for environmental studies, even those which are not lognormal.  However, they have 
not worked as well for estimating the mean and standard deviation (Gilliom and Helsel, 1986).  
There are two reasons why this is so. 

First, the lognormal distribution is flexible in shape, providing reasonable approximations to 
data which are nearly symmetric and to some positively-skewed distributions which are not 
lognormal.  Thus the lognormal can mimic the actual shape of the data over much of the 
distribution, adequately reproducing percentile statistics even though the data were not truly 
lognormal in shape.  However, the moment statistics (mean and standard deviation) are very 
sensitive to values of the largest observations.  Failure of the assumed distribution to fit these 
observations will result in poor estimates of moments. 

Second, there is a transformation bias in lognormal MLE inherent in computing estimates of the 
mean and standard deviation for any transformation -- including logarithms -- and then 
retransforming back to original units. Compensating for this bias often requires an assumption 
about distributional shape. In Chapter 9 transformation bias was discussed in the context of 
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regression.  The same phenomena is present for estimates of the mean.  Indeed, if no 
explanatory variables are significant then a regression model simplifies to estimating the mean.  
Percentiles, however, can be directly transformed between measurement scales without bias. 
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Maximum Likelihood (MLE) -- fits 'best' lognormal distribution to the data, and then  

determines summary statistics of the fitted distribution to represent the data. 
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Figure 13.2. Distributional (MLE) method for computing summary statistics. 

Two less-frequently used distributional methods are a "fill-in with expected values" MLE 
technique (Gleit, 1985) and a probability plot method which estimates the mean and standard 
deviation by the intercept and slope, respectively, of a line fit to data above the reporting limit 
(Travis and Land, 1990).  Probability plot methods are easy to compute with standard statistics 
software, an advantage for practitioners.  Both methods suffer from transformation bias when 
estimates are computed in one scale and then retransformed back into original units.  Thus 



362 Statistical Methods in Water Resources 

Travis and Land (1990) recommended the probability plot for estimating the geometric mean.  
Its use for estimating the mean in original units would have to take transformation bias into 
consideration. Both methods should be somewhat less precise than MLEs. 

13.1.3 Robust Methods 
Robust methods (Figure 13.3) combine observed data above the reporting limit with below-limit 
values extrapolated assuming a distributional shape, in order to compute estimates of summary 
statistics.  A distribution is fit to the data above the reporting limit by either MLE or probability 
plot procedures, but the fitted distribution is used only to extrapolate a collection of values 
below the reporting limit.  These extrapolated values are not considered as estimates for specific 
samples, but only used collectively to estimate summary statistics.  The robustness of these 
methods result primarily from their use of observed data rather than a fitted distribution above 
the reporting limit. They also avoid transformation bias by performing all computations of 
summary statistics in original units. 

Robust methods have produced consistently small errors for all four summary statistics in 
simulation studies (Gilliom and Helsel, 1986), as well as when applied to actual data (Helsel and 
Gilliom, 1986). Robust methods have at least two advantages over distributional methods for 
computation of means and standard deviations.  First, they are not as sensitive to the fit of a 
distribution for the largest observations because actual observed data are used rather than a 
fitted distribution above the reporting limit. Second, estimates of extrapolated values can be 
directly retransformed and summary statistics computed in the original units, avoiding 
transformation bias. 

13.1.4 Recommendations 
In practice, the distributions of environmental data are rarely if ever known, and may vary 
between constituents, time periods, and locations.  Robust methods should therefore be used to 
protect against the possibly large errors of distributional methods when estimating the mean and 
standard deviation.  Either robust probability plot or distributional MLE procedures have been 
shown to perform well for estimating the median and IQR.  Use of these methods rather than 
simple substitution methods for environmental data should substantially lower estimation errors 
for summary statistics. 

As an alternative to estimating percentiles, sample values can sometimes be used. When less than 
50% of the data are below the reporting limit, the sample median is known.  Similarly, when less 
than 25% of the data are censored, the sample IQR is known.  Some information is available 
about percentiles when even larger amounts of data lie below the reporting threshold, as shown 
in the examples below.  Unfortunately no similar process is available for sample estimates of 
mean and standard deviation. 
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B. 
Figure 13.3. Robust (probability plot) method of estimating summary statistics 

A) regression of log of concentration versus normal score is used to extrapolate 
"fill-in" values below the reporting limit. 

B) these "fill-ins" are retransformed back to original units, and combined with data 
above the reporting limit to compute estimates of summary statistics 
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Example 1 
<1 <1 <1 <10 <10 <10 <50. 

The mean and std deviation cannot be estimated by any method, as there are no data above the 
reporting limit. For the median and IQR, a great deal of information is present.  To compute a 
median where all data are below one or more reporting limits and the sample size is odd, remove 
the < sign, compute the sample median, and then restore the < sign. Therefore the median is 
<10. The IQR must equal the sample 75th percentile, as the 25th percentile could equal zero.  
Here the IQR is <10. 

Example 2: 
<1 <1 <1 <10 <20 <20 

When all data are below one or more reporting limits and n is even, again remove the < signs.  
The larger of the two center observations (the ([n/2]+1)th observation) is used as the median, 
rather than the average of the two center observations as for uncensored data.  Restore the < 
sign.  The median of the above 6 points is <10.  The IQR is computed as in example 1, and here 
would be <20. 

Example 3: 
<1 <1 <1  5  7  8  12 16 25 

For data above and below one reporting limit, the sample median is known to be 7, as less than 
50% of the data are censored.  Because more than 25% of the data are censored, the sample 
IQR must be computed as a range.  If all the <1's are actually 0, the IQR = 14 − 0 = 14. If all 
<1's are very close to 1, the IQR = 13.  So the sample IQR could be reported as "13 to 14" if 
that were of sufficient precision.  Otherwise, the probability plot and maximum likelihood 
methods must be used to estimate the moment and percentile statistics. 

13.1.5 Multiple Reporting Limits 
Data sets may contain values censored at more than one reporting limit.  This commonly occurs 
as limits are lowered over time at a single lab, or when data having different reporting limits are 
combined from multiple laboratories.  Estimation methods belonging to the above three classes 
are available for this situation. A comparison of these methods (Helsel and Cohn, 1988) 
concluded that robust methods again provide the best estimates of mean and standard deviation, 
and MLEs for percentiles.  For example, in Figure 13.4 the error rates for six estimation 
methods are compared to the error that would occur had all data been above the reporting limit 
(shown as the 100% line).  Figure 13.5 shows the same information when the data differ 
markedly from a lognormal distribution. The simple substitution methods (ZE, HA and DL: 
substitution of zero, one-half and one times the reporting limit, respectively) have more error in 
most cases than does the robust probability plot method MR.  Where the substitution methods 
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have lower RMSE, it is an artifact of constant, strongly biased estimates, also not a desirable 
result. The maximum likelihood procedure MM and the MLE adjusted for transformation bias 
AM show themselves to be excellent estimation methods for percentiles, but suffer from large 
errors when estimating the mean and standard deviation. 

In summary, use of MLE for estimation of percentiles, and the robust probability plot method 
for estimating the mean and standard deviation, should greatly decrease errors as compared to 
simple substitution methods for data with multiple reporting limits. 
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Figure 13.4. Error rates (RMSE -- root mean square error) of six multiple-detection 

methods divided by error rates for uncensored data estimates, in percent, 


 for data similar to a lognormal distribution  (from Helsel and Cohn, 1988) 
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for data not similar to a lognormal distribution. (from Helsel and Cohn, 1988) 
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Example 4:

For data above and below multiple reporting limits, such as


<1 <1 <1  5  7  8  <10 <10 <10 12 16 25 
it is unclear whether the <10's are below or above 1, or 5, etc.  Therefore ordering the data from 
smallest to largest is impossible.  Instead, the probability plot method is used to compute the 
mean and standard deviation, and the maximum likelihood method for the median and IQR 
(Helsel and Cohn, 1988). These give the following: 

mean = 7.8 median = 2.8 
std dev = 6.9 IQR = 7.5. 

13.2 Methods for Hypothesis Testing 

Methods for hypothesis testing of censored data can also be classified into the three types of 
procedures: simple substitution, distributional or parametric, and robust or nonparametric.  The 
advantages and disadvantages of each are summarized below. 

13.2.1 Simple Substitution Methods 
When censoring is present, values are often fabricated in order to perform parametric tests such 
as t-tests.  Problems caused by such substitution methods are illustrated below.  Investigators 
have also deleted censored data prior to hypothesis testing.  This latter approach is the worst 
procedure, as it causes a large and variable bias in the parameter estimates for each group.  After 
deletion, comparisons made are between the upper X% of one group versus the upper Y% of 
another, where X and Y may be very different.  Such tests have little or no meaning. 

Example 5 
As an example of hypothesis test methods for censored data, tests will be performed to 
determine whether or not means or medians significantly differ between two groups.  Two data 
sets were generated from lognormal distributions having the same variance, but with differing 
mean values.  Sample statistics for the two data sets before and after censoring are given in 
Table 13.1.  Prior to any censoring, group means were found to be different by a t-test (p=0.04, 
Table 13.2).  The data were then censored at a reporting limit of 1 µg/L, so that all data below 
1.0 were recorded as <1.  This produced 14 less-than values (70%) in group A, and 5 less-than 
values (23%) in group B. 

The simple substitution method for comparing two groups of censored data is to fabricate data 
for all less-than values, and include these "data" with detected observations when performing a 
t-test. No a priori arguments for fabrication of any particular value between 0 and the reporting 
limit can be made. Substituting zero for all less-than values, the means are declared significantly 
different (p = 0.01).  Yet when the reporting limit of 1.0 is substituted, the means are not found 
to be different (p = 0.19). The conclusion is thus strongly dependent on the value substituted!  
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Fabrication of data followed by a t-test is an arbitrary process leading to ambiguous conclusions.  
It should be avoided. 

13.2.2  Distributional Test Procedures 
Parametric tests are also available which do not require substitutions for less-thans.  Instead, 
maximum likelihood methods are used to solve the relevant equations.  Where the distributional 
assumptions are appropriate, these relatively unknown tests have great utility. 

The distributional method for a t-test situation is performed using a regression procedure for 
censored data known as tobit regression (Judge et al, 1985).  Tobit regression uses both the data 
values above the reporting limit, and the proportion of data below the reporting limit, to 
compute a slope coefficient by maximum likelihood.  For a two-group test, the explanatory 
variable in the regression equation is the binary variable of group number, so that data in one 
group have a value of 0, and in the other group a value of 1.  The regression slope then equals 
the difference between the two group means, and the t-test for whether this slope differs from 
zero is also a test of whether the group means differ.  Tobit regression is discussed further in 
section 13.3. One advantage to Tobit regression for hypothesis testing is that multiple reporting 
limits may easily be incorporated.  The caution for its use is that proper application does require 
the data in both groups to be normally distributed around their group mean, and for the variance 
in each group to be equal. For large amounts of censoring these restrictions are difficult to 
verify. 

13.2.3 Nonparametric Tests 
With nonparametric tests, no fabrication of data values is required. All censored data are 
represented by ranks which are tied at values lower than the lowest number above the reporting 
limit. The rank-sum test compares the medians of two independent data groups (Chapter 5).   

Prior to censoring, a rank-sum test on the example 5 data produced a much lower p-value 
(p=0.003) than did the t-test (Table 13.2).  This lower p-value is consistent with the proven 
greater power of the nonparametric test to detect differences between groups of skewed data, as 
compared to the t-test.  To compute the rank-sum test on censored data, the 19 less-than values 
are considered tied at the lowest value, with each assigned a rank of 10 (the mean of ranks 1-19).  
The next highest value, the data point just above the reporting limit, obtains a rank of 20.  All 
data above the reporting limit will have ranks identical to those which would have been obtained 
had no censoring been present.  The resulting p-value is 0.002, essentially the same as for the 
uncensored data, and the two groups are easily declared different.  Thus in this example the 
nonparametric method makes very efficient use of the information contained in the less-than 
values, avoids arbitrary assignment of fabricated values, and accurately represents the lack of 
knowledge below the reporting limit. Results do not depend on any distributional assumption. 
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 A B 
20 no. observations 22 
1.00 mean 1.32 
0.57 0.39 
0.65 25th percentile 1.07 
0.85 median 1.25 
1.07 1.66 

14 5 

Hypothesis test used  p 
Uncensored data 

i −2.13 0.04 
−2.17 0.04 

−2.92 0.003 

t-test 
l −2.68 0.01 
l −2.28 0.03 
l −1.34 0.19 

−2.28 0.03 
−3.07 0.002 

TABLE 13.1--Characteristics of Two Lognormal Data Groups (A and B)  

std. deviation 

75th percentile 
no. <rl 

TABLE 13.2--  Significance Tests Between Groups A and B 
 test statistic

t-test (Satterthwa te approx.) 
regression with binary variable 
rank-sum test 

After imposing artificial reporting limit 

ess-thans = 0.0 
ess-thans = 0.5 
ess-thans = 1.0 

tobit regression with binary variable 
rank-sum test 

When severe censoring (near 50% or more) occurs, all of the above tests will have little power to 
detect differences in central values.  The investigator will be inhibited in stating conclusions 
about the relative magnitudes of central values, and other characteristics must be compared.  For 
example, contingency tables (Chapter 14) can test for a difference in the proportion of data 
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above the reporting limit in each group. The test can be used when the data are reported only as 
detected or not detected. It may also be used when response data can be categorized into three 
or more groups, such as: below detection, detected but below some health standard, and 
exceeding standards.  The test determines whether the proportion of data falling into each 
response category differs as a function of different explanatory groups, such as different sites, 
land use categories, etc. 

13.2.4   Hypothesis Testing With Multiple Reporting Limits 
More than one reporting limit is often present in environmental data.  When this occurs, 
hypothesis tests such as comparisons between data groups are greatly complicated.  It can be 
safely said that fabrication of data followed by computation of t-tests or similar parametric 
procedures is at least as arbitrary with multiple reporting limits as with one reporting limit, and 
should be avoided. The deletion of data below all reporting limits prior to testing should also be 
completely avoided. 

Tobit regression can be utilized with multiple reporting limits.  Data should have a normal 
distribution around all group means and equal group variances to use the test.  These 
assumptions are difficult to verify with censored data, especially for small data sets. 

One robust method which can always be performed is to censor all data at the highest reporting 
limit, and then perform the appropriate nonparametric test.  Thus the data set   

<1  <1  <1  5  7  8  <10 <10 <10 12 16 25 
would become <10 <10 <10 <10 <10 <10 <10 <10 <10 12 16 25. 
and a rank-sum test performed to compare this with another data set.  Clearly this produces a 
loss of information which may be severe enough to obscure actual differences between groups 
(a loss of power).  However, for some situations this is the best that can be done. 

Alternatively, nonparametric score tests common in the medical "survival analysis" literature can 
sometimes be applied to the case of multiple reporting limits (Millard and Deverel, 1988).  These 
tests modify uncensored rank test statistics to compare groups of data.  The modifications allow 
for the presence of multiple reporting limits.  In the most comprehensive review of these score 
tests, Latta (1981) found most of them to be inappropriate for the case of unequal sample sizes. 
The Peto-Prentice test with asymptotic variance estimate was found by Latta (1981) to be the 
least sensitive to unequal sample sizes.  Another crucial assumption of score tests is that the 
censoring mechanism must be independent of the effect under investigation (see box).  
Unfortunately, this is often not the case with environmental data. 
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Examples when a score test would be inappropriate. 
Score tests are inappropriate when the censoring mechanism differs for the two groups.  
That is, the probability of obtaining a value below a given reporting limit differs for the 
two groups when the null hypothesis that the groups are identical is true. 

1. Suppose a trend over time was being investigated.  The first five years of data were produced 
with a method having a reporting limit of 10 mg/L; the second five years used an improved 
method with 1 mg/L as its reporting limit. A score test of the first half of the data versus the 
second would not be valid, as the censoring mechanism itself varied as a direct function of time. 
2. Two groups of data are compared as in a rank-sum test, but most of the data from group A 
were measured with a chemical method having 1 as its reporting limit, while most of group B 
were measured with a method having 10 as its reporting limit.  A score test would not yield valid 
results, as the censoring mechanism varies as a function of what is being investigated (the two 
groups). 

Examples when a score test would be appropriate. 
A score test yields valid results when the change in censoring mechanism is not related 
to the effect being measured.  Stated another way, the probability of obtaining data below 
each reporting limit is the same for all groups, assuming the null hypothesis of no trend or no 
difference is true.  Here a score test provides much greater power than artificially censoring all 
data below the highest reporting limit before using the rank-sum test.   

1. Comparisons were made between two groups of data collected at roughly the same times, 
and analyzed by the same methods, even though those methods and reporting limits changed 
over time.  Score tests are valid here. 

2. Differing reporting limits resulted from analyses at different laboratories, but the labs were 
assigned at random to each sample. Censoring is thus not a function of what is being tested, but 
is a random effect, and score tests would be valid. 

13.2.5 Recommendations 
Robust hypothesis tests have several advantages over their distributional counterparts when 
applied to censored data.  These advantages include:  (1) the ability to disregard whether data 
adhere to a normal distribution.  Verifying normality is difficult to do with censored data;  (2) 
greater power for the skewed distributions common to environmental data;  and (3) data below 
the reporting limit are incorporated without fabrication of values or bias.  Information contained 
in less-than values is accurately used, not misrepresenting the state of that information. 

Tests incorporating multiple reporting limits are more problematic, and should be an area of 
future research.  When adherence to a normal distribution can be documented, Tobit regression 
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offers the ability to incorporate multiple reporting limits in a distributional test regardless of a 
change in censoring mechanism. Nonparametric score tests require consistency in censoring 
mechanism with respect to the effect being tested. 

13.3 Methods For Regression With Censored Data 

With censored data the use of ordinary least squares (OLS) for regression is prohibited.  
Coefficients for slopes and intercept cannot be computed without values for the censored 
observations, and substituting fabricated values may produce coefficients strongly dependent on 
the values substituted.  Four alternative methods capable of incorporating censored observations 
are described below. 

The choice of method depends on the amount of censoring present, as well as on the purpose of 
the analysis.  For small amounts of censoring (below 20%), either Kendall's line or the tobit line 
may be used.  Kendall's would be preferred if the residuals were not normally distributed, or 
when outliers are present.  For moderate censoring (20-50%), Tobit or logistic regression must 
be used. With large amounts of censoring, inferences about concentrations themselves must be 
abandoned, and logistic regression employed.  When both the explanatory and response 
variables are censored, tobit regression is applicable for small amounts of censoring.  For larger 
amounts of censoring, contingency tables or rank correlation coefficients are the only option. 

13.3.1 Kendall's Robust Line Fit 
When one censoring level is present, Kendall's rank-based procedure for fitting a straight line to 
data can test the significance of the relationship between a response and explanatory variable 
(Chapter 10).  An equation for the line, including an estimate of the slope, is usually also 
desirable.  This can be computed when the amount of censoring is small.  Kendall's estimate of 
slope is the median of all possible pairwise slopes of the data.  To compute the slope with 
censoring, twice compute the median of all possible slopes, once with zero substituted for all 
less-thans, and once with the reporting limit substituted.  For small amounts of censoring the 
resulting slope will change very little, or not at all, and can be reported as a range if necessary.  If 
the slope value change is of an unacceptable magnitude, tobit or logistic regression must be 
performed. 

Research is underway on methods based on scores similar to those for hypothesis tests with 
multiply-censored data that may allow robust regression fits to data with multiple reporting 
limits (McKean and Sievers, 1989). 

13.3.2 Tobit Regression 
Censored response data can be incorporated along with uncensored observations into a 
procedure called tobit regression (Judge et al., 1985).  It is similar to OLS except that the 
coefficients are fit by maximum-likelihood estimation.  MLE estimates of slope and intercept are 
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based on the assumption that the residuals are normally distributed around the tobit line, with 
constant variance across the range of predicted values.  Again, it is difficult to check these 
assumptions with censored data. Should the data include outliers, these can have a strong 
influence on the location of the line and on significance tests (Figure 13.6), as is true with 
uncensored OLS.  Verification of linearity and constant variance assumptions should be 
attempted when only small amounts of data are censored using residuals plots.  Residuals for 
uncensored observations would be plotted versus predicted values.  For larger percentages of 
less-thans, decisions whether to transform the response variable must often be made based on 
previous knowledge ("metals always need to be log-transformed", etc.).  Tobit regression is also 
applicable when both the response and explanatory variables are censored, such as a regression 
relationship between two chemical constituents.  However, the amount of censoring must be 
sufficiently small that the linearity, constant variance, and normality assumptions of the 
procedure can be checked. Finally, Cohn (1988) as well as others have proven that the tobit 
estimates are slightly biased, and have derived bias corrections for the method. 

13.3.3 Logistic Regression 
Here the response variable is categorical.  No longer is a concentration being predicted, but a 
probability of being in discrete binary categories such as above or below the reporting limit.  
One response (above, for example) is assigned a value of 1, and the second response a 0.  The 
probability of being in one category versus the second is tested to see if it differs as a function of 
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Figure 13.6. Kendall's and tobit MLE lines for censored data with outliers. 
Note the tobit line is strongly influenced by outliers. 
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concentrations of some organic contaminant from continuous variables such as nitrate 
concentrations, population density, percent of some appropriate land use variable, or of  
irrigation intensity.  Predictions from this regression-type relationship will fall between 0 and 1, 
and are interpreted as the probability [p] of observing a response of 1.  Therefore [1−p] is the 
probability of a 0 response. 

Logistic regression may be used to predict the probabilities of more than 2 response categories.  
When there are m>2 ordinal (may be placed in an order) responses possible, (m−1) equations 
must be derived from the data. For example, if 3 responses are possible (concentrations below 
rl =0, above rl but below health standards =1, and above health standards =2), two logistic 
regressions must be computed.  First, an equation must be written for the probability of being 
nonzero (the probability of being above the rl). Next the probability of a 2 (probability of being 
above the health standard) is also modelled. Together, these two equations completely define 
the three probabilities p(y=0), p(y=1), and p(y=2) as a function of the explanatory variables.  See 
Chapter 15 for more detail. 

13.3.4 Contingency Tables 
Contingency tables are useful in the regression context if both explanatory and response 
variables contain censoring.  For example, suppose the relationship between two trace metals in 
soils (such as arsenic and aluminum) is to be described.  The worst procedure would again be to 
throw away the data below the reporting limits, and perform a regression.  Figure 13.7 shows 
that a true linear relationship with negative slope could be completely obscured if censored data 
were ignored, and only data in the upper right quadrant investigated.  Contingency tables 
provide a measure of the strength of the relationship between censored variables -- the phi 
statistic φ (Chapter 14), a type of correlation coefficient.  An equation which describes this 
relationship, as per regression, is not available.  Instead, the probability of y being in one 
category can be stated as a function of the category of x.  For the Figure 13.7 data, the 
probability of arsenic being above the reporting limit is 21/36 = 0.58 when aluminum is above 
reporting limit, and 17/18 = 0.94 when aluminum is below the reporting limit. 

13.3.5 Rank Correlation Coefficients 
The robust correlation coefficients Kendall's tau or Spearman's rho (Chapter 8) could also be 
computed when both variables are censored.  All values below the reporting limit for a single 
variable are assigned tied ranks.  Rank correlations do not provide estimates of the probability of 
exceeding the reporting limit as does a contingency table.  So they are not applicable in a 
regression context, but would be more applicable than contingency tables in a correlation 
context. One such context would be in "chemometrics" (Breen and Robinson, 1985):  the 
computation of correlation coefficients for censored data as inputs to a principal components or 
factor analysis. 
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Figure 13.7.  Contingency table relationship between two censored variables. 
(Ignoring censored data would produce the misleading conclusion that 

no relationship exists between the two variables) 

13.3.6 Recommendations 
Relationships between variables having data below reporting limits can be investigated in a 
manner similar to regression.  Values should not be fabricated for less-thans prior to regression. 
Instead, Table 13.3 summarizes alternative methods appropriate for censored data.  For small 
amounts of censoring and one reporting limit, Kendall's robust line can be fit to the data.  For 
moderate censoring and/or multiple reporting limits, tobit regression can be performed.  For 
more severe censoring of the dependent variable, logistic regression is appropriate.  When both 
response and explanatory variables contain severe censoring, contingency tables and rank 
correlation coefficients can be performed. 
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Estimation of Summary Statistics 
Mean and Standard Deviation Percentiles 

Robust Probability Plot Robust Probability Plot or MLE 

Hypothesis Tests 
One Reporting Limit Several Reporting Limits 

Compare 2 groups: rank-sum test tobit regression 
Compare >2 groups: Kruskal-Wallis test tobit regression 

Severe Censoring (>50%): above tests, or – 
contingency tables 

Regression 
Small % censoring Moderate % censoring Large % censoring 

Kendall’s robust line tobit regression logistic regression 
tobit regression logistic regression contingency tables 
Table 13.3  Recommended Techniques for Interpretation of Censored Data 
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Exercises 

13.1 	 Below are concentrations of triphenyltin (TPT) measured in a sediment core by Fent and 
Hunn (1991). Estimate the mean, standard deviaion, median and interquartile range for 
these data. 

Concentrations of TPT, in �g/kg  dry weight 
51 29 71 69 34 56 83 <2 <2 107 35 <2 
26 4 10 <2 2 <2 

13.2 	 Below are depths (bottom of segment) for the 18 TPT concentrations of exercise 13.1.  

Compute the significance of the relationship between concentration and depth for this

core. 


Depth (cm) of bottom of sediment core 
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
7 8 9 10 11 12 

13.3 	 Silver concentrations in standard solutions were reported by several laboratories in an 
inter-lab comparison [Janzer, 1986].  The 56 analyses included 36 values below one of 12 
detection limits.  One large outlier (a "far outside" value on a boxplot) of 560 µg/L was 
also reported. Compute the mean, standard deviation, median and interquartile range 
for the data presented below: 

0.8 <25 <5 <0.2 <0.5 5.0 <0.3 <0.2 0.1 
2.7 <0.1 <20 1.42.0 <2.5 2.0 2.0 <1 
<10 <1 <0.2 1.0<10 <0.2 0.2 1.2 <1 
1.0 <6 <1 0.7<1 <53.2 2.0 10.0 
1.0 4.4 <1 <1<1 <20 <5 <10 <10 
90 1.5 <1 <2<10 560<5 0.1 <20 
<1 <0.1 



Chapter 14

Discrete Relationships


Three aquifers are sampled to determine whether they differ in their concentrations of copper.  
In all three, over 40 percent of the samples were below the detection limit.  What methods will 
test whether the distribution of copper is identical in the three aquifers while effectively 
incorporating data below the detection limit? 

Counts of three macroinvertebrate species were measured in three stream locations to determine 
ecosystem health.  The three species cover the range of tolerance to pollution, so that a shift 
from dominance of one species to another is an indication of likely contamination.  Do the three 
locations differ in their proportions of the three species, or are they identical? 

This chapter presents methods to evaluate the relationship between two discrete (also called 
categorical) variables.  The tests are analogous to analysis of variance or t-tests where the 
response variable is not continuous -- it is recorded only as a discrete number or category (see 
Figure 4.1). When the response variable is ordinal (possible values can be ordered into a logical 
sequence, such as low, medium and high) the familiar Kruskal-Wallis test can be used.  When 
the response variable is nominal (no ordering to the categories, such as with different species of 
organism), contingency tables can assess association. When both variables are ordinal, Kendall's 
tau can test for significance in association. 
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14.1 Recording Categorical Data 

Categorical variables are those whose possible values are not along a continuous scale (such as 
concentration), but may take on only one of a discrete number of values classed into one of 
several categories.  Examples of categorical variables used in water resources studies are:  
presence or absence of a benthic invertebrate, whether an organic compound is above or below 
the detection limit, soil type, land use group, and location variables such as aquifer unit, gaging 
station, etc.  To easily inspect the relationship between two categorical variables, the data are 
recorded as a matrix of counts (Figure 14.1).  The matrix is composed of two categorical 
variables, one assigned to the columns and one to the rows.  Both variables will take on several 
possible values.  The entries in the cells of the matrix are the number of observations Oij which 
fall into the ith row and jth column of the matrix. 

Variable 2
 Variable 1 Group 1 Group 2 Group 3 

Response 1 O11 O12 O13 
Response 2 O21 O22 O23 

Figure 14.1 Structure of a 2-variable matrix 

14.2  Contingency Tables (Both Variables Nominal) 

Contingency tables measure the association between two nominal categorical variables.  Because 
they are nominal there is no natural ordering of either variable, so that categories may be 
switched in assignment from the first to the second row, etc. without any loss in meaning.  The 
purpose of contingency table analysis is to determine whether the row classification (variable 1, 
here arbitrarily assigned to the response variable if there is one) is independent of the column 
classification (variable 2, here assigned to the location or group-of-origin variable).  The null 
hypothesis Ho is that the two variables are independent -- that is, the distribution of data among 
the categories of the first variable is not affected by the classification of the second variable.   
Evidence may be sufficient to reject Ho in favor of H1: the variables are dependent or related.  
The statement that one variable causes the observed values for the second variable is not 
necessarily implied, analogous to correlation.  Causation must be determined by knowledge of 
the relevant processes, not only mathematical association.  For example, both variables could be 
caused by a third underlying variable. 
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Example 1 
Three streams are sampled to determine if they differ in their macrobiological community 
structure.  In particular, the presence or absence of two species are recorded for each stream, 
one species being pollution tolerant, and one not. If the streams differ in their proportion of 
pollution-tolerant species, it is inferred that they differ in their pollution sources as well.  Test 
whether the streams are identical in (independent of) the proportion of pollution-tolerant 
organisms, or whether they differ in this proportion (proportion is dependent on the stream). 

Ho: the proportion of one species versus the second is the same for (is independent of) all 3 
streams. 

H1: the proportion differs between (is dependent on) the stream. 

Stream 1 Stream 2 Stream 3 
Tolerant O11 O12 O13  A1 = Σ(O11+O12+O13) 

Intolerant O21 O22 O23  A2 = Σ(O21+O22+O23) 
C1= C2= C3= N = (A1+A2) 

Σ(O11+O21) Σ(O12+O22) Σ(O13+O23)  = (C1+C2+C3) 

14.2.1 Performing the Test for Independence 
To test for independence, the observed counts Oij (row i and column j) in each cell are summed 
across rows to produce the row totals Ai, and down columns to produce column totals Cj. 
There are m rows (i=1,m) and k columns (j=1,k).  The total sample size N is the sum of all 
counts in every cell, or  N =ΣAi =ΣCj =ΣOij. The marginal probability of being in a given 
row (ai) or column (cj), can be computed by dividing the row Ai and column Ci totals by N: 

ai = Ai/N cj = Cj/N 
If Ho is true, the probability of a new sample falling into row 1 (species tolerant of pollution) is 
best estimated by the marginal probability a1 regardless of which stream the sample was taken 
from. Thus the marginal probability for a row ignores any influence of the column variable.   

The column variable is important in that the number of available samples may differ among the 
columns.  The probability of being in any column may not be (1/no. columns). Therefore, with 
Ho true, the best estimate of the joint probability eij of being in a single cell in the table equals 
the marginal probability of being in row i times the marginal probability of being in column j 

eij = ai•cj. 

Finally, for a sample size of N, the expected number of observations in each cell given Ho is 
true can be computed by multiplying each joint probability eij by N: 

Eij = N ai cj , or 
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 Eij = 
Ai Cj
 N [14.1] 

To test Ho, a test statistic Xct is computed by directly comparing the observed counts Oij with 
the counts Eij expected when Ho is true.  This statistic is the sum of the squared differences 
divided by the expected counts, summed over all i•j cells:  

m k 
(Oij - Eij)2 

 Xct = ∑ ∑ Eij [14.2] 

i=1 j=1 

If Ho is not true, the observed counts Oij will be very different from the Eij for at least one cell 

and Xct will then be large. If Ho is true, the Oij ≅ Eij for all i•j cells, and Xct will be small.  To

evaluate whether Xct is sufficiently large to reject Ho, the test statistic is compared to the (1−α) 

quantile of a chi-square distribution having (m−1)•(k−1) degrees of freedom.  Tables of the chi­

square distribution are available in most statistics texts.


To understand why there are (m−1)•(k−1) degrees of freedom, when the marginal sums Aij and 

Cij are known, once (m−1)•(k−1) of the cell counts Oij are specified the remainder can be 

computed. Therefore, only (m−1)•(k−1) entries can be "freely" specified. 


Example 1 cont.

For the table of observed counts Oij below, determine whether the streams differ significantly in 

their proportion of pollutant-tolerant species. 


Oij Stream 1 Stream 2 Stream 3 
Tolerant 4 8 12 A1 = 24 

Intolerant 18 12 6 A2 = 36
 C1=22  C2=20 C3=18 N = 60 

To determine whether the proportion of pollutant-tolerant species is significantly different for 
the three streams, a table of expected counts Eij assuming Ho to be true is computed using 
equation 14.1: 
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Eij Stream 1 Stream 2 Stream 3 

Tolerant
 8.8 8.0 7.2 A1 = 24


Intolerant
 13.2 12.0 10.8 A2 = 36
 C1= 22 C2 = 20 C3 = 18 60 

Dividing these expected counts by N results in the table of expected probabilities 
(eij = Eij / N): 

eij Stream 1 Stream 2 Stream 3 
Tolerant .148 .132 .120 a1 = 0.4


Intolerant
 .222 .198 .180 a2 = 0.6
 c1= 0.37 c2 = 0.33 c3 = 0.30 1.0 

To perform the significance test:
(4.0-8.8)2 (8-8.0)2 (12-7.2)2 

+Xct = 8.8 + 8.0 + 7.2


(18-13.2)2 
+ 

(12-12)2 (6-10.8)2

13.2 12 + 10.8


= 9.70 


Ho should be rejected if Xct exceeds the (1−α) quantile of the chi-square distribution with 1•2 = 
2 degrees of freedom.  For α = 0.05, χ2(.95, 2) = 5.99. Therefore, Ho is rejected.  The 
proportion of pollutant-tolerant species is not the same in all three streams.  Thus the overall 
marginal probability of 0.4 is not an adequate estimate of the probability of pollution-tolerant 
species for all three streams. 

14.2.2   Conditions Necessary for the Test 
The chi-square distribution is a good approximation to the true distribution of Xct as long as 

• all Eij>1 and 
• at least 80% of cells have Eij > 5 (Conover, 1980). 

If either condition is not met, 
• combine two or more rows or columns and recompute, or 
• enumerate the exact distribution of Xct.  See Conover (1980) for details. 

A contingency table test is not capable of extracting the information contained in any natural 
ordering of rows or columns. Contingency tables are designed to operate on nominal data 
without this ordering.  The columns or rows can be rearranged without changing the expected 
values Eij, and therefore without altering the test statistic.  When the response variable or both 
variables have a natural scale of ordering, the test statistic should change as the ordinal variable 
is rearranged.  Methods more powerful than contingency tables should be used when one or 
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both variables are ordinal.  When only the response variable is ordinal, the Kruskal-Wallis test of 
the next section will have more power to see differences between groups than will contingency 
tables. When both variables are ordinal, Kendall's tau can measure the relationship as shown in 
section 14.4. 

14.2.3 Location of the Differences 
When a contingency table finds an association between the two variables, it is usually of interest 
to know how the two are related.  Which cells are higher or lower in proportion than would be 
expected had Ho been true?  A guide to this are the individual cell chi-square statistics. 

(Oij - Eij)2 
Cells having large values of Eij   are the cells contributing most to the  

rejection of the null hypothesis.  The sign of the difference between Oij and Eij indicates the 
direction of the departure.  For example, the individual cell chi-square statistics for the species 
data of example 1 are as follows: 

χ2 Stream 1 Stream 2 Stream 3 
Tolerant (4.0-8.8)2 

8.8  = 2.6 
(8-8.0)2 

8.0  = 0 
(12-7.2)2 

7.2  = 3.2 

Intolerant (18-13.2)2 
13.2  = 1.7

 (12-12)2 
12  = 0 

(6-10.8)2 
10.8  = 2.1 

Stream 3 has many more counts of the pollution-tolerant species than the number expected if all 
three streams were alike, and stream 1 has many less.  Therefore stream 1 appears to be the least 
affected by pollution, stream 2 in-between, and stream 3 the most affected. 

14.3 Kruskal-Wallis Test for Ordered Categorical Responses 

In Chapter 5 the Kruskal-Wallis test was introduced as a nonparametric test for differences in 
medians among 3 or more groups.  The response variable in that case was continuous.  In 
Chapter 13 the test was applied to response data whose lower end of a continuous scale was 
below a reporting limit. All censored data were treated as ties.  Now the test will be applied to 
data which are ordinal -- the response variable can only be recorded as belonging to one of 
several ordered categories.  All observations in the same response category (row) are tied with 
each other.  The test takes on its most general form in this situation, as a test for whether a shift 
in the distribution has occurred, rather than as a test for differences in the median of continuous 
data.  The test may be stated as: 
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 Ho: the proportion of data in each response category (row) is the same for each 
group (column). 

H1: the proportion differs among (is dependent on) the groups. 

14.3.1   Computing the Test 
The data are organized in a matrix identical to that for a contingency table, but the computations 
at the margins differ (Figure 14.2).  Once the row sums Ai are computed, ranks Ri are assigned 
to each observation in the table in accord with levels of the response variable.  Ranks for all 
observations in the category with the lowest responses (response row 1 in Figure 14.2) will be 
tied at the average rank for that row, or R 1 = (A1 +1)/2. All observations in the row having 
the next highest response are also assigned ranks tied at the average of ranks within that row, 
and so on up to the highest row of responses.  For response 2 in the Figure 14.2 the average 
rank equals R 2 = A1 + (A2 +1)/2. For any row x of a total of m rows, the average rank will 
equal 

x-1
R x = Ai  + (Ax+1)/2. [14.3]∑ 

i=1 

To determine whether the distribution of proportions differs among the k groups (the k 
columns), the average column ranks Dj are computed as 

m 

∑O R i mij 

D j = i=1  where Cj = ∑ Oij . [14.4]
C 

j i=1 

Group 1 Group 2 Group 3 
response 1 O11 O12 O13  A1 = Σ(O11+O12+O13) 
response 2 O21 O22 O23  A2 = Σ(O21+O22+O23) 

D 1 D 2 D 3 N 

where 

D 1 = 
(O 

11 
R1 + O 

21 
R 2) 

O 
11 

+ O 
21 

D 2 = 
(O 

12 
R 1+ O 

22 
R 2) 

O 
12 

+ O 
22 

D 3 = 
(O 

13 
R 1+ O 

23 
R 2) 

O 
13 

+ O 
23 

Figure 14.2 2x3 matrix for Kruskal-Wallis analysis of an ordered response variable 
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The Kruskal-Wallis test statistic is then computed from these average group ranks.  If Ho is true, 
the average ranks D j will all be about the same, and similar to the overall average rank of 
(N+1)/2. If Ho is not true, the average rank for at least one of the columns will differ.  The 
Kruskal-Wallis test statistic is computed using equation 14.5: 

k 2

2
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j
D ) − N 



N + 1


j  2  

K = (N−1) j=1 [14.5]2
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 where Cj is the number of observations in column j, 
D j is the average rank of observations in column j, 

Ai is the number of observations in row i, and 

R i is the average rank of observations in row i.


To evaluate its significance, K is compared to a table of the chi-square distribution with k−1 
degrees of freedom. 

Example 2 
An organic chemical is measured in 60 wells screened in one of three aquifers.  The 
concentration is recorded only as being either above or below the reporting limit (rl).  Does the 
distribution of the chemical differ among the three aquifers? 

First, ranks are assigned to the response variable.  There are 36 observations in the lower 
category (below rl), each with a rank equal to the mean rank of that group.  The mean of 
numbers 1 to 36 is (36+1)/2 = 18.5.  The higher category contains 24 observations with ranks 
37 to 60, so that their mean rank is 36 + (24+1)/2, or 48.5. 

Aquifer 1 Aquifer 2 Aquifer 3 Ai iR 
below rl 18 12 6 36 18.5 
above rl 4 8 12 24 48.5 

D1  = 527/22 D2 = 610/20 D3 = 693/18 
= 24 = 30.5 = 38.5 

2
61∑ (22•242 + 20•30.52 + 18•38.52) - 60  2 

K = (59) 

∑(24•48.52 + 36•18.52)  - 60  
61

2 
2  

= 9.75 

jkmonson
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The chi-square statistic χ2(.95, 2) = 5.99. Thus Ho is rejected, and the groups are found to have 
differing percentages of data above the reporting limit. 

14.3.2 Multiple Comparisons 
Once differences between the groups (columns) have been found, it is usually of interest to 
determine which groups differ from others.  This is done with multiple comparison tests as 
stated in section 7.4.  Briefly, multiple Kruskal-Wallis tests are performed between pairs of 
columns.  After a significant KW test occurs for k groups, place the groups in order of 
ascending average rank.  Perform new KW tests for the two possible comparisons between 
groups which are p = (k−1) columns apart (the first versus the next-to-last column, and the 
second versus the last).  Note that the observations must be re-ranked for each test.  If 
significant results occur for one or both of these tests, continue attempting to find differences 
between smaller subsets of any groups found to be significantly different.  In order to control 
the overall error rate, set the individual error rates for each KW test at αp, below: 

αp = 1 − (1−α)p/k for p < (k−1) 

= α   for  p  ≥ (k−1) 


14.4  Kendall's Tau for Categorical Data (Both Variables Ordinal) 

When both row and column variables are ordinal, a contingency table would test for differences 
in distribution of the row categories among the columns, but would ignore the correlation 
structure of the data -- do increases in the column variable coincide with increases or decreases 
in the row variable?  This additional information contained in the correlation structure of ordinal 
variables can be evaluated with a rank correlation test such as Kendall's tau. 

14.4.1 Kendall's τ b for Tied Data 
Kendall's correlation coefficient tau (τ) must be modified in the presence of ties.  In Chapter 8 a 
tie modification was given for ties in the response variable only.  Now there are many more ties, 
the ties between all data found in the same row and column of a contingency table.  Kendall 
(1975) called this tie modification τ b (tau-b).   

τ b 1
2 (N2 - SSa) (N2 - SSc)

 S 
= [14.6] 

The numerator S for τ b is P−M, just as in Chapter 8, the number of pluses minus the number of 
minuses. Consider a contingency table structure with the lowest values on the upper left (the  
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rows are ordered from lowest value on the top to the highest value on the bottom, and the 
columns from lowest on the left to highest on the right -- see Figure 14.3).  With this format, the 
number of pluses are the number of comparisons with data in cells to the right and below each 
cell (Figure 14.4).  The number of minuses are the number of comparisons with data in cells to 
the left and below (Figure 14.5). Data in cells of the same row or column do not contribute to 
S. Therefore, summing over each cell of row x and column y, 

S = P − M = ∑O
xy 

( O
southeast 

− ∑O ) , or∑ southwest 
xy 

 S = ∑ ∑ ∑ Oxy•Oij  - ∑ ∑ Oxy•Oij [14.7] 
i>x j>y i<x j<y 

all x y 

The denominator for τb is not (n•n−1)/2 as it was for τ, equal to the total number of 
comparisons. Instead S is divided by the total number of untied comparisons.  To compute this 
efficiently with a contingency table, SSa and SSc (the sums of squares of the row and column 
marginal totals, respectively) are computed as in equation 14.8, and then used in equation 14.6 to 
compute τb. 

low high 

Col 1 Col 2 Col 3 

Row 1 

Row 2 

Row 3 

low 

high 

Figure 14.3 Suggested ordering of rows and columns for computing τ b.

m k
 SSa = ∑ Ai2 SSc = ∑ Cj2 [14.8] 

i=1 j=1 
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x=1 
y=1 

+ + 
+ + 

x=1 
y=2 

+ 
+ 

+ +  + 

x=2 
y=1 

x=2 
y=2 

Figure 14.4 3x3 matrix cells contributing to P (i>x and j>y). 

x=1 
y=2 

x=1 
y=3 

x=2 
y=3 

x=2 
y=2 

Figure 14.5 3x3 matrix cells contributing to M (i<x and j<y). 

Example 3 
Pesticide concentrations in shallow aquifers were investigated to test whether their distribution 
was the same for wells located in three soil classes, or whether concentrations differed with 
increasing soil drainage.  The laboratory reported concentrations for the pesticide when levels 
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were above the reporting limit.  The compound was reported only as "present" when 
concentrations were between the reporting limit and the instrument detection limit (dl), and as 
"<dl" if concentrations were below the detection limit.  Compute Kendall's tau for this data. 

 Soil Drainage 
Concentration Poor Moderate High Ai ai 

< dl 18 12 7 
5 10 8 
2 6 11 

37 0.47 
"present" 23 0.29 

> rl 19 0.24 
Cj 25 28 26 79 
cj 0.32 0.35 0.33 1.0 

The number of pluses P = 18(10+8+6+11) + 12(8+11) + 5(6+11) + 10(11) = 1053 
The number of minuses M = 12(5+2) + 7(5+10+2+6) + 10(2) + 8(2+6) = 329 
So S = 1053 − 322 = 731. 

To compute the denominator of τb, 	SSa = 372 + 232 + 192 = 2259. 
SSc = 252 + 282 + 262 = 2085. 

724
and τ b = 

724	
= = 0.36. 

(792 − 2259)(792 − 2085) 2034 

2

14.4.2 Test of Significance for τ  b 
To determine whether τ b is significantly different from zero, S must be divided by its standard 
error σS and compared to a table of the normal distribution, just as in Chapter 8.  Agresti (1984) 
provides the following approximation to σS which is valid for P and M larger than 100: 

m k
σS ≅ 

1 
• (1-∑ ai3) (1-∑ cj3) • N3 [14.9]9

i=1 j=1 

 where ai and cj are the marginal probabilities of each row and column. 

The exact formula for σS (Kendall, 1975) is much more complicated.  It is the square root of 
equation 14.10: 
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m k
(n(n-1)(2n+5) - ∑ Ai(Ai-1) (2Ai+5) - ∑ Cj(Cj-1) (2Cj+5)) 

σS
2 = 

i=1 
18

j=1 
+ 

m k m k
( -2))( ∑ ) ( -1))( ∑ )
∑Ai(Ai-1)(Ai Cj(Cj-1)(Cj-2) ∑Ai(Ai Cj(Cj-1)
i=1 j=1 i=1 j=1 

[14.10]9•N(N-1)(N-2)  + 2•N(N-1) 

If one variable were continuous and contained no ties, equation 14.10 would simplify to the 
square of equation 8.4. 

To test for significance of τ b, the test statistic ZS is computed as in Chapter 8: 

S − 1 

σ 
S 

 
 
 
 

if S > 0 


ZS  =  

 
0 if S = 0 [14.11] 

 
S + 1 

σ 
S 

 

 

if S < 0 

ZS is compared to the α/2 quantile of the normal distribution to obtain the two-sided p-value 

for the test of significance on τ b. 


Example 3, cont.

Is the value of τ b = 0.36 significantly different from zero?  From equation 14.9 the approximate 

value of σS is


σS ≅ 
1 

• (1-(0.473+0.293+0.243))•(1-(0.323+0.353+0.333))•793
9

≅ 
(0.86)•(0.89)•793 

9 = 42329 = 205.74 

724 − 1
ZS ≅ = 3.51 

205.74 

and from a table of the normal distribution the one-sided p-value is  p = 0.0002. Therefore Ho: 
τ b = 0 is rejected, which means that pesticide concentrations increase (the distribution shifts to 
a greater proportion of higher classes) as soil drainage increases. 
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14.5  Other Methods for Analysis of Categorical Data 

One other method is prominent in the statistical literature for analysis of all three situations 
discussed in this chapter -- loglinear models (Agresti, 1984).  Loglinear models transform the 
expected cell probabilities eij = ai•cj by taking logarithms to produce a linear equation ln(eij) = µ 
+ ln(ai) + ln(cj), where µ is a constant. Models may be formulated for the completely nominal 
case, as well as for one or more ordinal variables.  Detailed contrasts of the probability of being 
in column 2 versus column 1, column 3 versus 2, etc. are possible using the loglinear model.  
Tests for higher dimensioned matrices (such as a 3-variable 3x2x4 matrix) can be formulated.  
Interactions between the variables may be formulated and tested analogous to an analysis of 
variance on continuous variables. Though the computation of such models is not discussed 
here, Agresti (1984) provides ample detail. 
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Exercises 
14.1 Samples of water quality collected at USGS National Stream Quality Accounting Network 

(NASQAN) stations from 1974 to 1981 show more frequent increases in chloride ion than 
decreases.  245 stations were classified by Smith et al. (1987) by their trend analysis results 
at α = 0.1. One reasonable cause for observed trends is road salt applications.  Estimates 
of tons of road salt applied to the 245 basins in 1975 and 1980 are used to place the 
stations into into 3 groups: decreases (1980 is more than 20% less than 1975),  increases 
(1980 is more than 20% greater than 1975),  and little or no change.  The two variables are 
then summarized by this 3x3 table: 

     Trend  in  C1- (1974-81, α=0.1) 
∆ road salt appl.

5 32 9
14 44 25
10 51 55

 Down No trend Up Totals 
Down 46 

No change 83 
Up 116 

Totals 29 	127 89 245 

Test Ho: a basin's trend in chloride ion is independent of its change in road salt 
application, versus the alternative that they are related. 


a) using a contingency table.  Interpret the test result. 

b) using Kendall's tau. Interpret the test result. 

c) which test is more appropriate, and why? 


14.2 Fusillo et al. (1985) sampled 294 wells in New Jersey for volatile organic compounds.	  The 
wells were classified by whether they were located in an outcrop location near the surface, 
or whether they were further downdip and somewhat more protected from direct 
contamination. Determine whether the probability of finding detectable levels of volatile 
compounds differs based on the location of the well. 

 Location Non-detects Detect VOC Totals 
Downdip 106 9 115 
Outcrop 129 50 179 

Totals 235 59 294 
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14.3 Regulation of organo-tin antifouling paints for boats was announced in 1988 in 
Switzerland.  Concentrations of tributyltin (TBT, in ng/L) in unfiltered water samples 
from Swiss marinas were measured in 1988 to 1990 (Fent and Hunn, 1991).  Is there 
evidence of a decrease in TBT concentrations in marina waters as these paints were being 
taken off the market? 

Number of samples
 Year TBT≤ 200 TBT>200 Totals 

1988 
1989 
1990 

Totals 51 

2 7 
9 13 
10 10



Chapter 15

Regression for Discrete Responses


Concentrations of a volatile organic chemical are measured in numerous wells across a large 
study area.  About 75% of the resulting samples are below the laboratory reporting limit.  The 
likelihood of finding concentrations above this limit is suspected to be a function of several 
variables, including population density, industrial activity, and traffic density.  What is the most 
appropriate way to model the probability of being above the reporting limit using a regression­
like relationship? 

Streams can be classified according to whether or not they meet some criteria for use set by a 
regulatory agency.  For example, a stream may be considered "fishable" or "not fishable", 
depending on several concentration and esthetic standards.  What is the probability that a stream 
reach will meet the "fishable" criteria as a function of population density, distance downstream 
from the nearest point source, and percentage of the basin used for crop agriculture? 

The above situations involve fitting a model similar to OLS regression, in that the explanatory 
variables are continuous. However the response variable is discrete -- it can be designated by an 
integer value (see figure 4.1). Discrete (or categorical) response variables are often encountered 
when the measurement process is not sufficiently precise to provide a continuous scale.  Instead 
of an estimate of  concentration, for example, only whether or not a sample exceeds some 
threshold, such as a reporting limit or health standard, is recorded.  In water resources this 
response is usually ordinal.  Logistic regression is the most commonly-used procedure for this 
situation.  The equation predicts the probability of being in one of the possible response groups. 
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Discrete response variables are commonly binary (two categories).  For example, species of 
organism or attribute of an organism are listed as either present or absent.  Analysis of binary 
responses using logistic regression is discussed in the following sections, beginning with 15.1.  
Analysis of multiple response categories is discussed in section 15.4. 

15.1 Regression for Binary Response Variables 

With OLS regression, the actual magnitude of a response variable is modelled as a function of 
the magnitudes of one or more continuous explanatory variables. When the response is a binary 
categorical variable, however, it is the probability p of being in one of the two response groups 
that is modelled. The response variable is coded by setting the larger of the two possible 
responses (above or present) equal to 1, and the lower to 0.  The predicted probability p is then 
the probability of the response being a 1, with 1−p as the probability of the response being a 0.  
The explanatory variables may be either continuous as in OLS regression, or a mixture of 
continuous and discrete variables similar to analysis of covariance. If all explanatory variables 
are discrete, logistic regression provides a multivariate alternative to the test for significance by 
Kendall's tau used in Chapter 14. 

15.1.1 	 Use of Ordinary Least Squares 
^In the case of a binary response, the attempt to predict p  = the probability of a response of 1 

could be done with OLS regression.  This would be a simple but incorrect approach.  There are 
three reasons why this is not appropriate (Judge, et al., 1985): 

^1. Predictions p	 may fall outside of the 0 to 1 boundary. 

^
2. 	 The variance of p   is not constant over the range of x's, violating one of the basic 

assumptions of OLS. Instead, the variance of the binary response variable equals 
p•(1−p), where p is the true probability of a 1 response for that x.  Because this is not 
constant over x, weighted least squares must be used to obtain minimum variance and 
unbiased estimates of slope and intercept. See Draper and Smith (1981, pp. 108-116) for 
the WLS approach. WLS is still not appropriate, however, if estimates go beyond the 0 
to 1 boundary. 

3. 	 Residuals from the regression cannot be normally distributed.  This renders tests on the 
slope coefficients invalid.   

OLS been used with discrete responses when multiple observations occur for all or most 
combinations of explanatory variables. The responses (0 or 1) are first grouped by some range 
of explanatory variable(s). This creates a new continuous y variable, the proportion of responses 
which equal 1. Even so, least-squares regression fails the three criteria above, so that more 
appropriate methods are warranted. 
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15.2 Logistic Regression 

^Logistic regression, also called logit regression, transforms the estimated probabilities p into a 
continuous response variable with values possible from − to + infinity. The transformed 
response is predicted from one or more explanatory variables, and subsequently retransformed 
back to a value between 0 and 1. A plot of estimated probabilities has an S shape (figure 15.1).  
The estimates of probability change most rapidly at the center of the data.  Thus logistic 
regression is most applicable for phenomena which change less rapidly as p approaches its limits 
of 0 or 1. However, when the range of predicted probabilities does not get near its extremes, 
the plot is one of mild curvature (figure 15.2).  Thus the function is a flexible and useful one for 
many situations. A review of this and other categorical response models is given by Amemiya 
(1981). 

Figure 15.1  Logistic regression equations with − and + slopes.  Note that estimates change 
more rapidly in the center than at the extremes. 

15.2.1 Important Formulae 
The odds ratio is defined as the ratio of the probability of obtaining a 1 divided by the 
probability of obtaining a 0: 

p odds ratio = 
 

1 - p  [15.1] 

where p is the probability of a response of 1.   
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The log of the odds ratio or logit transforms a variable constrained between 0 and 1, such as a 
proportion, into a continuous and unbounded variable.  The logit can then be modeled as a 
linear function of one or more explanatory variables to produce logistic regression:

p
log 1 - p  = b0 + bX [15.2]







where b0 is the intercept, X is a vector of k explanatory variable(s), and bX includes the slope 
coefficients for each explanatory variable so that bX = b1X1, b2X2, ... bkXk. 

Thus the odds ratio is modelled as 




p 
1 - p



 = exp (b0 + bX). [15.3] 

To return the predicted values of the response variable to original units, the logistic 
transformation (the inverse of the logit transformation) is used: 

exp (b0 + bX) 
[15.4] p = [1+ exp (b0 + bX)] 

For example, the mutliple logistic regression equation with two explanatory variables would look 
like 

exp (b0 + b1X1 + b2X2)

 p = [1+ exp (b0 + b1X1 + b2X2)]


For a single x variable, the odds of obtaining a 1 response increase multiplicatively by eb1 for 
every unit increase in X.  The inflection point of the curve is at −b0/
b1, which is the median of 
the data. The slope of the estimated probability is greatest at this point.  Equations are 
analogous for multiple explanatory variables. Biologists call the inflection point the median 
lethal dose (LD50) when predicting the probability of death from some concentration (dose) of 
toxicant.  The animal has a 50% chance of survival at this dose. 

15.2.2 Computation by Maximum Likelihood 
Estimates bj of the j=1,...k slope coefficients could physically be computed by WLS when the 
input data are proportions between 0 and 1 (but they should not -- see section 15.1.1).  
However, the original data are most often coded only in the binary form, with replicates not 
available for computing proportions. A more general method for computing slope coefficients, 
valid for both binary and proportions as input data, is maximum likelihood estimation.  
Maximum likelihood optimizes the likelihood that the observed data would be produced from a 
given set of slopes. It is an iterative procedure available in the more complex statistical software 
packages.  A function called the log likelihood (l) of the overall regression model is written as: 
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n 
^ ^l = ∑ ( y •ln[p ] + (1-y )•ln[1-p ]) [15.5]i i i i

i=1 
^for the i=1,n binary observations y   and predicted probabilities p . When y   = 0, the second i i

^term inside the brackets is nonzero, and a p  is desirable which is close to 0. When y
^ ^first term is nonzero and a p  close to 1 is desirable.  The log of either p or [1−p̂ 

i  = 1, the 
] will be 

negative, and therefore l is a negative number which is maximized (brought closest to 0) by 
iteratively substituting estimates of p derived from estimates of slopes and intercept.  The log 
likelihood may be alternately reported as the positive number G2, the −2 log likelihood, which 
is minimized by the MLE procedure: 

−2 log likelihood G2 = −2•l.    [15.6] 

15.2.3   Hypothesis Tests 

15.2.3.1 Test for overall significance 
An overall test of whether a logistic regression model fits the observed data better than an 
intercept-only model (where all slopes bj = 0), analogous to the overall F test in multiple 
regression, is given by the overall likelihood ratio (lro): 

lro = 2•(l−l0) = (G2
0 − G2) [15.7] 

where l is the log likelihood of the full model, l0 is the log likelihood of the intercept-only 
model, and G2

0 is the −2 log likelihood of the intercept only model. 

The overall likelihood ratio lro can be approximated by a chi-square distribution with k degrees 
of freedom, where k is the number of slopes estimated.  If lro > χ2

k,α then the null hypothesis 
that all bj = 0 can be rejected. Should the null hypothesis not be rejected, the best estimate over 
all X of the probability of a 1 is simply the proportion of the entire data set which equals 1. 

15.2.3.2 Testing nested models

To compare nested logistic regression models, similar to the partial F tests in OLS regression,

the test statistic is the partial likelihood ratio lr: 


lr = 2•(lc − ls) = (G2s − G2c) [15.8] 

 where lc is the log likelihood for the more complex model, and 
ls is the log likelihood for the simpler model. 

The partial likelihood ratio is approximated by a chi-square distribution with (kc−ks) degrees of 
freedom, the number of additional coefficients in the more complex model.  For the case where 
only one additional coefficient is added, the chi-square with 1 degree of freedom equals the 
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square of a t-statistic called Wald's t, computed from the estimated coefficient b divided by its 
standard error.  Degrees of freedom for the t-statistic are the number of observations n minus 
the number of estimated slopes, or n−k. As with OLS regression, some computer software will 
report the t-statistic, while others report the t2 = χ2  value; p-values will be essentially the same 
for either form of the test.  

15.2.4 Amount of Uncertainty Explained, R2 

A measure of the amount of uncertainty explained by the model, actually the proportion of log­
likelihood explained, is McFadden's R2, or the likelihood-R2, 

R2 = 1 − l0
l 

[15.9] 

where l and l0 are as before. The likelihood-R2 is uncorrected for the number of coefficients in 
the model. much like R2 in OLS regression. 

A second measure of the amount of uncertainty explained by the model is the R2 between the 
observed and predicted values of p, or Efron's R2

n
^ 2(y - p)∑ i 

 Efron's R2 = 1 − 
i=1 

[15.10]n

∑ (yi - p-)2 

i=1 
where p- = Σ yi/n, the proportion = 1 for the entire data set.  However, this version of R2 is 

^not as appropriate as the likelihood-R2 because the residuals (yi − p  ) are heteroscedastic due to 
the binary nature of the y .i

15.2.5 Comparing Non-Nested Models 
To compare two or more non-nested logistic regression models, partial likelihood ratios are not 
appropriate. This is the situation in OLS regression where Mallow's Cp or PRESS is used.  For 
likelihood ratio tests, a statistic related to Mallow's Cp is Akaike's Information Criteria (AIC). 
AIC includes both a measure of model error (−l) and a penalty for too many variables, the 
number of explanatory variables k.  Better models are those with small AIC.  Akaike's 
information criteria 
 AIC = −l + k [15.11] 

AIC can also be written to expressly include the comparison of each candidate 
model to the full model (the model which includes all possible explanatory 
variables).   
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AIC* 	 = 2 (lf − l) − 2•(kf − k) 

 = (G2 − G2f) − 2•∆df 

 = lr − 2•∆df

where lf is the log likelihood of the full model, kf is the degrees of freedom of the full model, 
∆df is the difference in the degrees of freedom between the model and the full model, and lr is 
the partial likelihood ratio comparing the candidate and full models.  Either form should be 
minimized to find the best model. 

Related to the AIC is an adjusted R2  which adjusts for the degrees of freedom in the model.  It 
penalizes a model which includes too many slope parameters.  The adjusted R2 allows 
comparisons between models with differing number of explanatory variables: 

 adjusted R2  = 1 − 
(l - k)

 l0
 = 1 − 

2•AIC 
G2

0 
[15.12] 

This adjusted R2 should be maximized. 

Example 1 
Eckhardt et al. (1989) reported the pattern of occurrence for several volatile organic compounds 
in shallow groundwaters on Long Island, NY.  TCE detections for 643 samples are listed in table 
15.1 below, where 1 signifies a concentration above the reporting limit of 3 ppb.  Logistic 
regression between occurrence (1) or non-occurrence (0) as a function of population density 
gives the following results:

 Population Density no. 1s no. 0s N %1s
 1 1 148 149 0.7 

2 4 80 84 4.8 
3 10 88 98 10.2 
5 25 86 111 22.5 
6 11 33 44 25.0 
8 8 24 32 25.0 
9 29 14 43 67.4 

11 19 31 50 38.0 
13 6 5 11 54.5 
14 2 11 13 15.4 
17 2 5 7 28.6 
19 0 1 1 0.0

 overall 117 526 643 18.2 
Table 15.1 TCE data in the Upper Glacial Aquifer, Long Island 

The log likelihood for the intercept-only model l0 = −305.0 (G20 = 610.0). To determine the 
significance of population density (POPDEN) as an explanatory variable, the likelihood ratio is 
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computed by subtracting the log likelihood of this one-variable model from that of intercept­
only model, and comparing to a chi-square distribution: 

lr = 610.0 − 533.0 = 77.0 with 1 df resulting in a p-value = 0.0001. 

Table 15.2 gives the important statistics for the model.  A plot of the logistic regression line 
along with bars of ± 2 standard errors are shown in figure 15.2. 

−2 log likelihood = 533.0 
 Explanatory variable Estimate Partial t-statistic p-value
 INTERCEPT −2.80 −13.4 0.0001 

POPDEN 0.226 8.33 0.0001 
Table 15.2 Statistics for the popden model. 

Figure 15.2  Logistic regression line for the TCE data, with percent detections observed for 
each population density. 

The positive slope coefficient for popden means that the probability of a response =1 
(concentration above the reporting limit) increases with increasing population density.  Note that 
the line did not fit the observed data well at popden= 9.  A second variable, a binary indicator of 
whether or not the area around the well was sewered, was added to the model in hopes of 
improving the fit. Does this second variable help explain more of the variation observed?  The 
results are presented in table 15.3. 
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−2 log likelihood = 506.3 
Explanatory variable Estimate Partial t-statistic p-value

 INTERCEPT −3.24 −12.47 0.0001 
POPDEN 0.13 4.07 0.0001 

SEWER 1.54 4.94 0.0001 
Table 15.3  Statistics for the popden + sewer model. 

The likelihood ratio test determines whether this model is better than an intercept-only model  
lro = 610.0 − 506.3 = 103.7 with 2 df resulting in a p-value = 0.0001. 

Thus this logistic regression is significantly better than just estimating the proportion of data 
above the detection limit without regard to the two variables.  The positive slope estimate for 
sewer means that the probability of detection of TCE increases with increasing proportion of 
sewering around the well.  Note that this does not prove that sewering itself is the cause -- this 
could result from sewering as a surrogate for increasing urbanization or industrialization of the 
area.  The usefulness of sewer in comparison to the popden-only model is seen by the 
significance of its partial t-statistic.  It may also be measured by the difference in likelihood ratios 
for the one and two-variable models: 

lr = 533.0 − 506.3 = 26.7 with 1 df resulting in a p-value = 0.0001. 

Next a model with completely different explanatory variables was tried, relating TCE detections 
to the amount of land near the well which was classified as industrial land (indlu), and to the 
depth of the water below land surface.  The results are given in table 15.4.  As the partial t­
statistics are both significant, a logical question is which of the two 2-variable models is 
preferable? 

−2 log likelihood = 557.8 

Explanatory variable Estimate Partial t-statistic p-value


 INTERCEPT −1.07 −5.49 0.0001 

 INDLU 0.092 4.61 0.0001 

 DEPTH 0.008 −4.52 0.0001 


Table 15.4 Statistics for the indlu + depth model. 


As these models are not nested, they must be compared using AIC.  Magnitudes of their partial 
t-statistics will not help decide which to use.  As seen is table 15.5, the AIC for the 
population+sewer model is lower, and therefore is the preferable model between these two 
candidates.  
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 Explanatory variables −l k (# exp. vars.) AIC 
 POPDEN, SEWER 253.2 2 255.2 
 INDLU, DEPTH 278.9 2 280.9 

Table 15.5  AIC for comparing two 2-variable logit models. 

15.3 Alternatives to Logistic Regression 

Two other methods have been used to relate one or more continuous variables to a binary 
variable.-- discriminant function analysis (parametric), and the nonparametric rank-sum test.  In 
the following sections these methods are compared to logistic regression. 

15.3.1 Discriminant Function Analysis 
Discriminant function analysis is used as a multivariate classification tool, to decide in which of 
several groups a response is most likely to belong (Johnson and Wichern, 1982).  Probabilities of 
being in each of the groups is computed as a function of one or more continuous variables.  The 
group having the highest probability is selected as the group most likely to contain that 
observation. An equation (the discriminant function) is computed from data classified into 
known groups, and used to classify additional observations whose group affiliation is unknown.  
As each group is assigned an integer value, these objectives are identical to those of logistic 
regression. 

The primary drawback of discriminant analysis is that it makes two assumptions: 
1) multivariate normality, and 2) that the variance of data within each group is identical for all 
groups.  Thus it requires the same assumptions as does a t-test or analysis of variance, but in 
multiple dimensions when multiple explanatory variables are employed.  It will be slightly more 
efficient than logistic regression if these assumptions are true, but is much less robust (Press and 
Wilson, 1978).  Therefore logistic regression should be preferred when multivariate normality 
and equality of variances cannot be assumed, as is the case for most of the data found in water 
resources. 

15.3.2 Rank-Sum Test 
Dietz (1985) has shown that the rank-sum test is a powerful alternative to the more complicated 
likelihood-ratio test for determining whether a binary response variable is significantly related to 
one continuous explanatory variable. The responses of 0 and 1 are treated as two separate 
groups, and the ranks of the continuous variable are tested for differences among the two 
response groups.  When the probabilities of a 0 or 1 differ as a function of x, the ranks of x will 
differ between the two response variable groups.  A slight modification to the rank-sum test is 
necessary for small sample sizes (see Dietz, 1985).  The rank-sum test is equivalent to the 
significance test for Kendall's tau between the binary y variable and a continuous x. 



Regression for Discrete Responses 403 

When software is not available to perform likelihood-ratio tests, the rank-sum test can be used 
with little loss in power.  However, it only considers the influence of one explanatory variable. 
There also is no slope estimate or equation associated with the rank-sum test when the 
responses are recorded as 0 or 1.  When the responses are proportions between 0 and 1, 
Kendall's robust line may be used to linearly relate logits to the explanatory variable, though 
estimates below 0 or above 1 may result. 

15.4 Logistic Regression for More Than Two Response Categories 

In water resources applications, response variables may often be discretized into more than two 
response categories. Extensions of logistic regression for binary responses are available to 
analyze these situations.  The method of analysis should differ depending on whether the 
response variable is ordinal or simply nominal.  Ordinal responses such as low, medium and high 
are the most common situation in water resources.  Here a common logit slope is computed, 
with multiple thresholds differing by offset intercepts in logit units.  When responses are not 
ordinal, the possible response contrasts -- such as the probabilities of being in group 1 versus 
group 2 and in group 2 versus 3 -- are independent.  In this case independent logit models are fit 
for each threshold. 

15.4.1 Ordered Response Categories 
Categorical response variables sometimes represent an underlying continuous variable which 
cannot be measured with precision sufficient to provide a continuous scale.  For example, 
concentration data may be discretized into above and below a detection limit, or into three 
categories based on two thresholds (see below).  Biologic activity may be categorized as not 
affected, slightly affected or severely affected by pollution.  The resulting multiple responses yi, 
i=1 to m are ordinal, so that y1<y2<...<ym. 

For example, suppose 3 responses are possible:   
0: concentrations are below the reporting limit,  
1: concentrations are above the reporting limit but below a health standard, and  
2: concentrations are above the health standard. 

This corresponds to two thresholds, one below versus above the reporting limit (0 versus not 0) 
and the second below versus above the health standard (not 2 versus 2).  Figure 15.3 shows that 
for y=2, a transformation of the underlying continuous concentration Y* can be developed such 
that y=2 only when X>Y* for one explanatory variable X.  Similarly, y>0 (above the reporting 
limit) only when X>Y*−δ, where δ is the difference between the two thresholds in the 
transformed scale.  Therefore the upper threshold can be modeled as: 
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Prob(y=2) log 
 

Prob(y=0)+Prob(y=0)    = Prob(X >Y*) = b0 + b1X , 	[15.13] 

where b0 is the estimate of intercept and b1 the estimate of slope.  This is a standard logistic 
regression identical to the binary case of not 2 versus 2.  The probability of being above the 
lower threshold (reporting limit) is modelled using 

log  
Prob(y=1)+Prob(y=2)  

Prob(y=0)    = Prob(X >Y*−δ) 	= b0 + b1(X+δ), [15.14] 

= b0' + b1X 

= b0 + λ + b1X 

where λ=b1δ is a shift parameter that must be estimated (McCullagh, 1980).  Because the 
responses are ordered, the slope b1 is common to all thresholds, and represents the proportional 
effect of X on the underlying and unobserved Y*.  The resulting s-shaped curves for each 
threshold are simply offset (figure 15.4).  Unfortunately the method for efficiently estimating 
these parameters is not available on many commercial statistics packages.  McCullagh (1980) 
discusses the mathematics.  As an alternative, separate logistic regressions can be estimated for 
each threshold (see below). This procedure is less efficient for the case of ordered responses, 
being appropriate for nominal responses.  Unfortunately, it is the best that is available to most 
practitioners. 
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 2 
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0 δ 

Y*−δ Y* (transformed continuous Y) 

Explanatory variable X 
Figure 15.3 Diagram of continuous variable Y* underlying a discrete response variable 
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Figure 15.4 Offset logistic curves for an ordered response variable. 

15.4.2 Nominal Response Categories 
For the situation where there is no natural ordering of the possible response categories, an 
independent logistic regression must be performed for each possible contrast.  Thus if there are 
m response categories there must be m−1 logistic regressions performed.  Coefficients of 
intercept and slope are estimated independently for each.  The econometrics literature has 
treated this situation in depth -- see for example Maddala (1983).  Econometrics categories are 
often ones of choice -- to purchase one product or another, etc.  Examples of unordered 
variables for water resources applications are not as obvious.  However, an understanding of the 
equations appropriate for nominal responses is important, because these are used when most 
commercial software is employed to perform logistic regression of ordinal responses.   

When independent logistic regressions are computed to determine the likelihood of being below 
versus above adjacent pairs of categories, no requirement of constant slope across thresholds is 
made. The probabilities employed may take several forms, but the easiest to interpret are logits 
of the cumulative probabilities of being below versus above each of the m−1 thresholds 

log 





∑ Prob (y > i) 

∑ Prob (y ≤ i)





, i =1 to m−1. [15.15] 

These are called cumulative logits, as discussed by Agresti (1984) and Christensen (1990). 
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For the situation of m=3 ordered responses (0, 1, and 2) corresponding to two thresholds 
(reporting limit and health standard), m−1 or two logistic regressions must be performed.  One 
equation determines the probability of being at least 1 -- the probability of being above the 
reporting limit: 

L1 =log  
prob(y=1)+prob(y=2)  

prob(y=0)  = b0 + b1X . [15.16] 

A second equation describes the probability of being at least 2 -- the probability of being above 
the health standard: 

prob(y=2)
L2 =log 

 
prob(y=0)+prob(y=1) 

 = b0' + b2X . [15.17] 

Together, these two equations completely define the three probabilities as a function of the k 
explanatory variables X.  

Example 1, cont. 
Suppose a second threshold at 10 µg/L were important for the TCE data of Eckhardt et al. 
(1989). This could represent an action limit, above which remedial efforts must be taken to 
clean up the water before use.  Separate logistic regressions were performed for the probabilities 
of being above the 3 µg/L reporting limit and the 10 µg/L action limit. A new binary response 
variable, 0 if TCE concentrations were below 10 and 1 if above, was regressed against 
population density. The results are reported in table 15.6, and the curves plotted in figure 15.5.  
Note that the two curves are not simply offsets of one another, but have differing slopes.  This 
situation could be viewed as an interaction, where the rate of increase in probability with unit X 
is not the same for the two thresholds.  

Response category b0  b1 lr0
 Above 3 µg/L report. limit −2.80 0.226 77.0 
 Above 10 µg/L action limit −3.37 0.164 23.9 

Table 15.6 Independent logistic regressions for two TCE thresholds. 
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Figure 15.5 Independent logistic curves for two TCE thresholds. 
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Exercises 

15.1 	 Person and others (1983) evaluated the ability of four factors to predict whether a 
surface impoundment was contaminated or not.  Of particular interest was which of the 
four factors, information for which must be collected in other areas in the future, 
showed ability to predict contamination.  The factors were: 

 Factor Possible scores 
Unsaturated Thickness 0 (favorable) to 9 (unfavorable) 

Yields: aquifer properties 0 (poor) to 6 (good) 
 Groundwater Quality 0 (poor) to 5 (excellent) 

Hazard Rating for Source 1(low) to 9 (high) 

Each impoundment was rated as contaminated or uncontaminated. Using the data in 
Appendix C20, compute a logistic regression to determine which of the four explanatory 
variables significantly affects the probability of contamination.  What is the best 
regression equation using one or more of these variables? 



Chapter 16

Presentation Graphics


The data are collected, the analyses performed, the conclusions drawn, and now the results must 
be presented to one or more audiences.  Whether by oral presentations or written reports, more 
information can be quickly conveyed using graphs than by any other method.  A good figure is 
truly worth a thousand table entries. 

For oral presentations, rarely are tables effective in presenting information.  Listeners are not 
familiar with the data, and have not poured over them for many hours as has the presenter.  
Numbers are often not readable further back than the second row.  Instead, speakers should 
take the time to determine the main points to be illustrated, and construct a figure from the data 
to illustrate those points prior to the presentation.  This both shows courtesy to the listeners, 
and convinces them that the data do provide evidence for the conclusions the speaker has 
reached. 

In a written report, major conclusions are usually listed at the end of the final section, or at the 
front in an executive summary.  A figure illustrating each major conclusion should be contained 
somewhere in the report.  The reader should be able to quickly read an abstract, look at the 
figures, and have a good idea of what the report is about.  Figures should be a "visual abstract" 
of the report, and are one of the best ways to convince someone to take enough time to read 
your work. They again give evidence that the data do support the conclusions you have reached. 

All graphs are not created equal.  Some present quantitative information clearly and precisely.  
Others are not as effective, and may even be misleading. Guidelines to the "level of precision" 
for common types of graphics are presented in this chapter.  Also presented are a collection of 
misleading graphics which should be avoided.  These come largely from experience, driven by 
the impression that their use is becoming more common in graphics software on 
microcomputers. 
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Understanding the strengths and weaknesses of various types of graphs is important when 
choosing the most appropriate way to present data.  Three references stand out in their 
evaluation of graphs for quantitative data:  Cleveland (1985) discusses the ability of the human 
eye-brain system to process information.  Tufte (1983) describes the artistry involved in creating 
graphics. Schmid (1983) is a handbook listing numerous examples of both good and bad 
graphics.  This chapter draws on ideas from these three and others. 

16.1 The Value of Presentation Graphics 

Graphs can clarify complex interrelationships between variables.  They can picture the "signal" 
over and above the "noise", letting the data tell its story.  In Chapter 2, graphs for understanding 
data were discussed.  These same methods which provide insight to an investigator will also 
illustrate important patterns and contrasts to an investigator's audience. 

Tables simply do not allow easy extraction of a data signal.  For example, Exner and Spalding 
(1976) and Exner (1985) determined concentrations of nitrate in about 400 wells in the Central 
Platte region of Nebraska ten years apart -- in 1974 and 1984.  As little information is available 
about changes in groundwater quality over time, these are important studies.  Data were 
displayed with maps and tables for each separate period.  Comparisons between the periods 
were done as narrative text, relying on the tables and maps.  To better illustrate these data, 
lowess smooths of nitrate concentration versus depth for the two time periods are shown in 
Figure 16.1. This concise figure effectively illustrates the increases in nitrate at a given depth 
over the ten year period, and the decrease in concentration with depth.  It shows that increases 
in concentration over the 10 years are much larger at shallow depths.  For a specific nitrate 
"action level" such as 8 mg/L, the increase in depth reached on average by this concentration 
can be calculated. Perhaps the valley of lower concentration for the shallow system evident in 
both time periods can be explained by physical factors, leading to an important new 
understanding.  Or perhaps the wells sampled at these depths were different in some 
characteristic, leading the scientist to sample additional wells more like those at other depths.  A 
good graph will provide much more understanding than a table to the audience, whether they 
are scientists or managers, often leading to new understanding or to better decisions.   
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Figure 16.1  Nitrate concentrations in Nebraska groundwater. 
Data from Exner and Spalding (1976) and Exner (1985). 

16.2 Precision of Graphs 

The purpose of a scientific graph is to display quantitative information in a clear and concise 
manner, illustrating a major concept or finding.  During the 1980s research was conducted to 
determine how easily the human eye-brain system can perform various tasks of perceiving and 
processing graphical information. The purpose was to rank tasks necessary in interpreting 
common graphs, such as bar and pie charts, in order to understand which types of graphs are 
most effective in presenting information.  Prior to this time scientists had no objective means of 
determining which graphs should be preferred over others, and choice was merely a matter of 
preference. 

The primary study was conducted by Cleveland and McGill (1984a).  Their major precept was 
stated as: 

A graphical form that involves elementary perceptual tasks that lead to more 
accurate judgments than another graphical form (with the same quantitative 
information) will result in better organization and increase the chances of a 
correct perception of patterns and behavior (pages 535-6). 
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They then ranked perceptual tasks on the basis of accuracy, as determined by the number of 
correct judgments of identical data displayed by different graphs.  This ranking is given in Table 
16.1. Their concept of accuracy might also be thought of as precision -- smaller trends or 
differences between data groups can be discerned using more "accurate" tasks.  Use of graphs 
employing tasks higher in table 16.1 will allow smaller differences or trends to be seen.  Tasks 
lower in the table are sufficient to display only larger differences.  These lower tasks are those 
most commonly found in "business graphics", newspapers, and other popular illustrations.  Thus 
when deciding which types of graphs to use, both the precision needed and the expected 
audience must be considered.  When scientists are the main audience, graphs using tasks as high 
in the table as possible are preferable.  When less precision is required to illustrate the main 
points and the audience is the general public or managers, some of the less precise business 
graphics may communicate more easily. 

More Precise Position along a common scale 
• Positions along nonaligned scales 
• Length, Slope, Angle 
• Area 
• Volume, Curvature 

Less Precise Shading, Color saturation 
Table 16.1  Precision of perceptual tasks (adapted from Cleveland and McGill, 1984a). 

16.2.1 Color 
Color can both enhance and interfere in the ability to precisely and accurately read graphs.  It 
can interfere in judgments of size between areas of different colors (Cleveland and McGill, 
1983). From color theory it is known that "hotter" colors such as reds and oranges, and colors 
of greater saturation will appear larger than "cooler" colors (blues) and pastels (lesser saturation).  
Therefore areas shaded a bright red on a map, as is commonly done for computer-map output 
of pollution studies, will appear larger than they would if shaded another color or with a pastel 
such as light pink.  The eye is drawn to these areas, and their impression is larger than the 
proportion they would receive by area alone. 

Pastels can therefore be used to minimize the biasing effect of both hotter and brighter colors.  
The low saturation ("washed-out" color) minimizes differences between hotter and cooler 
shades, and therefore put all areas on an equal footing.  Of course this defeats the "newspaper 
graphics" effect of attracting attention to the graph, but enhances the graph's ability to portray 
information. 

Color can also be quite helpful in presenting data when judgments of size are not being made.  
When differentiating groups of data on a graph, for example, each group could be assigned a 
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different color, as opposed to a different symbol or letter.  Circles or dots of differing colors 
allow greater visual discrimination than do differing symbols or letters (Lewandowsky and 
Spence, 1989). Similarly, color lines allow better perception than solid versus patterned lines.  
As color is not yet widely available in scientific publication media, its best use to date is in 
presentations at conferences and lectures.  Here color can greatly aid the viewers' precision in 
differentiating points and lines representing data of different groups. 

16.2.2 Shading 
Figure 16.2 illustrates the most common use of shading -- shaded maps where the density of the 
ink indicates the magnitude of a single variable.  The maps may be of the entire country, a state, 
or a study area.  These "shaded patch maps" or "statistical maps" have inherent difficulties for 
correct interpretation. 

Figure 16.2  Total offstream water withdrawals by state, from Solley et al. (1983). 

The first difficulty is that the impression an area makes on the human brain is a function of both 
the shading and the size of the polygon.  Thus larger areas stand out in comparison to smaller 
areas, though their shading may be equal.  In figure 16.2, Texas stands out not only because it is 
dark, but because it is large.  Of the lightly shaded states, the eye is drawn to Montana (MONT) 
because of its size rather than to New Jersey (NJ). However, an area's importance may not be 
related to its physical size.  If population is important, as it may be for the water withdrawals in 
each state as shown in figure 16.2, a state with a higher population like New Jersey may be far 
more important than is Montana, a state with much smaller population.  The weighting given to 
larger areas on a shaded map is often inappropriate to the data being illustrated. 
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A second limitation is that all variability within areas is totally obscured.  Thus a map is only as 
precise as the size of the areas being shaded.  Water use undoubtedly varies dramatically across 
Texas and other states, but that cannot be shown on a shaded map unless the states are 
subdivided into counties.  Counties vary considerably in size across the country, so that the 
generally larger counties in the Western U. S. will produce greater impressions on the viewer 
than do smaller Eastern counties. 

Third, only a small number of shading levels can be distinguished on a map.  Five shades of grey 
including black and white can usually be portrayed, but more than five is difficult to distinguish.  
Differences degrade as graphs are reproduced on a copier.  In an attempt to augment the 
number of classes shown on a map, patterns of lines and cross-hatching are sometimes used, 
such as the 13.9-16.9 class in figure 16.2.  Such patterns quickly become very confusing, actually 
reducing the eye's ability to distinguish classes of data.  One must also be careful to use a series 
of patterns whose ink density increases along with the data  Figure 16.2 seems to violate this 
rule, as the shade of the second class (8.0-13.8) appears darker than the third striped pattern. 

Two types of alternatives to shaded maps are tried.  The first type continues to display the 
geographic distribution on a map, with symbols depicting data classes within each area (each 
state).  Circles or squares with shading or color according to the classification are one possibility.  
Bars are another possibility (figure 16.3). With bars the perceptual task is a judgment of length 
without a common datum, an increase in precision in that differences between areas may be 
distinguished at more than five levels.  However it is often difficult to place the bars within state 
boundaries.  Framed rectangles (figure 16.4) are another symbol which may be used within each 
state. For these the task is a judgment of length along a non-aligned common scale, an 
improvement in precision over judgments between shadings.   
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Figure 16.3  Withdrawals for offstream use by source and state, from Solley et al. (1983). 

Figure 16.4 Murder rates per 100,000 population, from Cleveland and McGill (1984a). 
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 American Statistical Association.  Used with permission. 

The second alternative to shaded maps is to abandon a map background, and construct bars or 
other ratings for each state.  These can be classed by region, though much of the regional 
perspective is sacrificed for state-by-state precision when abandoning maps. 

16.2.3 Volume and Area 
The most common use of area perception is with pie charts.  These graphics are most often used 
when the sum of data equals 100 percent, so that slices of the pie indicate the relative proportion 
of data in each class (figure 16.5).  However, only large differences can be distinguished with pie 
charts because it is difficult for the human eye to discern differences in area.  In figure 16.5 it is 
only possible to see that the northeast slice in the lower right part of the pie is larger than the 
others. 

Central 

Northeast 

Southeast 

Western 

No other differences are easy to distinguish.   

Figure 16.5 Numbers of students from four regions of the U. S. 

It is always possible to replace a pie chart with a figure using one of the higher perceptive tasks 
in order to improve precision. For the same data of figure 16.5, figure 16.6 presents a "dot 
chart" (Cleveland, 1984), a thin bar graph.  Now the judgment is of location along a common 
scale (the y-axis), and all differences are clearly seen.  The four regions can be ordered and 
estimates of the magnitude for each read from the scale.  The data are displayed with much 
greater precision than with a pie chart.   
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Figure 16.6 Dot chart of the student data of figure 16.5. 

Pie charts have little utility for scientific publications, due to their imprecision.  The comparison 
of water quality at two stations in figure 16.7, for example, would be better done using a more 
precise method, such as two stiff diagrams (see Chapter 2).  The presence of numbers on the 
graph is a clue that the graph is incapable of portraying differences with the necessary precision.  
It is instead a circular table.  Graphs with numbers are often a "red flag", signalling the 
inadequacy of the graph itself. 

Figure 16.7 Water quality at two sites in Hawaii (from Yee and Ewart, 1986). 

16.2.4 Angle and Slope 
Judgements of angle and slope occur when comparing two curves, such as in figure 16.8.  
Differences between the curves are often of interest, and differences are represented as distances 
in the y direction.  However, the human eye sees differences primarily in a direction 
perpendicular to the slope of a curve, much like the least normal squares line of Chapter 10.  We 
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do not naturally see differences as they are plotted.  So in figure 16.8 it appears that differences 
are largest in the center, and smallest at the extremes of X.  However, the bottom figure shows 
the differences directly.  The largest differences are on the left, with a linear decrease as X 
increases! To truly see differences in the top figure a judgment is required about the angles of 
the lines in relation to the y axis, and this is quite difficult.  A good rule of thumb is that if 
differences are of interest, plot the differences directly. 

Figure 16.8 Comparison of two curves.  From Cleveland and McGill (1985). 
 AAAS.  Used with permission. 

Figure 16.9 is a comparison of measured and model logarithms of streamflow.  Which days 
show the poorest predictions? Though it appears that the largest difference in log streamflow 
occurs on May 16 and in latter June, the mismatch is actually much greater on and near May 6.  
If the purpose of the graph is to portray daily differences, the differences themselves should be 
plotted. 
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Figure 16.9 Measured and simulated streamflow.  From Bloyd et al., 1986. 

Another type of graph which uses judgments of slope and angle is a cumulative line graph such 
as figure 16.10.  A quick look at the graph might indicate that x2 and x3 are increasing, simply 
because their baseline is increasing. To determine the magnitude of any variable except the one 
whose base is the x-axis requires compensating for the non-horizontal baseline angle as it 
changes across the range of X.  This is obviously difficult to do.  The determination of which of 
the three items in figure 16.10 is largest in periods 1 and 2 is also quite difficult, for example.  

One justification for cumulative line graphs is that they show the proportion of values against 
the total, which is shown as the top line.  Moving up the table of perceptual tasks results in a 
better solution -- to plot each of the variables separately, and plot the total if it is important.  
This is done in figure 16.11.  Determination that x3 is either equal or greater than the others 
during periods 1 and 2 is much easier here. The cyclic variation of x3 is also easier to spot. 
Comparisons between variables with small magnitudes such as x2 and x3 are not swamped out 
by larger variations in the variable at the base (x1).  Judgements are made using position along a 
common scale (the y-axis), a much easier and more precise task than in 16.10. 
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Figure 16.10 Cumulative line graph. 

Figure 16.11 Variables of figure 16.10 plotted individually. 

16.2.5 Length 
Judgements of length are required when symbols or bars are to be measured which do not have 
a common datum, and where no common scale is available.  Figure 16.12 shows the simplest 
such case, determination of the length of two offset bars.  Which is longer is difficult to visually 
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determine.  An example requiring the use of length judgments are the bars displayed on the map 
of figure 16.3. 

To make these judgments more precise, a common scale can be added to each bar.  This is done 
in figure 16.13 as a framed rectangle.  The rectangle surrounding each bar is of exactly the same 
length, a common reference frame.  It is now easier to see that the first bar is indeed longer than 
the second.  This is because the judgment is made using positions of the white areas within the 
common scale.  Their relative differences are greater than the shaded bars, and so more easily 
seen.  In situations where a common datum is impossible such as multiple stiff or other diagrams 
located on a map, adding a frame of reference will improve the viewer's precision in discerning 
differences. 

Figure 16.12 Judgement of length without a common scale or datum. 

Figure 16.13  Framed rectangles of the figure 16.12 data, adding a common scale. 

16.2 6 Position Along Nonaligned Scales 
Framed rectangles are examples of graphs with a common but nonaligned scale, ie. without a 
common datum. Another graph in this category is a stacked bar chart: stacked (figure 16.14).  
These graphs of segmented bars require judgments of position and/or length.  Only the lowest 
segments of each bar possess a common datum --they are the easiest to compare.  All other 
comparisons between bars, and among segments within a bar, are more difficult without a 
common datum. For example, in figure 16.12 it is difficult to determine which of the top two 
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squares of bar 1 is larger.  How about the top and bottom squares (D vs A) of bar 3?  Or group 
B squares for bars 1 and 3? 

To make comparisons more precise, stacked bars can always be unstacked and placed side-by-
side, producing grouped bar charts (figure 16.15).  These graphs belong in the highest precision 
category -- position along a common scale (common datum).  By using a common datum, 
smaller differences are more easily seen.  For example. in bar 1 it is now easy to see that C is 
larger than D.  Square A is larger than D in bar 3, and the group B square for bar 1 is larger than 
bar 3. The precision with which the graph can be read is greater for the grouped bar chart than 
the stacked chart, a distinct advantage. 

Often bars are stacked so that their totals are easy to compare.  With grouped bar charts this is 
easily accomplished by plotting separate bars of group totals.  As both types of bar charts are 
equally familiar to viewers, it is difficult to see why stacked bars should ever be used over 
grouped bar charts. 
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Figure 16.14 Stacked bar charts. 
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Figure 16.15 Grouped bar charts for the figure 16.14 data. 
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16.2.7 Position Along an Aligned Scale 
Grouped bar charts are one example of graphs where data are shown as a position along an 
aligned (common datum) scale. Also in this category of highest precision are the dot charts of 
Cleveland (1984). These "skinny bar charts" (figure 16.16) remove some of the visual confusion 
of bar charts due to the area and shading of the bars.  The dots highlight the only information 
present -- the position at the top of the bar. Though for simple situations the two graphs are 
equivalent, for complex situations dot charts more clearly show the information.  A final 
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advantage to dot charts are that error bars around each value can easily be added. 

Figure 16.16 Dot chart for the figure 16.15 data. 

Other more-familiar types of graphs also belong in this category, including scatterplots and 
boxplots. Though discussed and used fully throughout this book, the strengths of boxplots bear 
repeating. Many boxes can be placed on a page, allowing precise summaries and comparisons of 
a large amount of information. In figure 16.17 are boxplots for a two-way ANOVA situation.  
Differences in concentration due to both land-use category and to sewering are easily seen, as 
are skewness and outliers, by comparing the boxes. 

16.3   Misleading Graphics to be Avoided 

16.3.1 Perspective 
Figures are often put into perspective, that is tilted to give an impression of three dimensions, in 
newspaper and other popular graphics.  The intent is to make the figure look more "solid". 
Unfortunately by doing so, judgments of area, length and angle used by the viewer to extract 
information become impaired. Numerical values are altered by the tilting so that they no longer 
can be accurately read.  Thus the appearance may be more solid, but the information is less so. 
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Figure 16.17   Boxplots of nitrate concentrations by land use and sewering. 
From Eckhardt et al., 1989. 

One example is given in figure 16.18.  A pie chart is presented on the left with three slices 
(labeled A, B and C) of exactly equal size.  After being put into a perspective view at the right, 
the slices no longer appear equal.  Judgements of angle such as these are impossible to get 
correct once the angles are altered by perspective.  A second example is figure 16.19.  There bar 
charts are placed into perspective so that lots of bars can be crammed into one figure.  A 
resulting problem is that some bars are hidden by others.  A more serious problem is that 
comparisons of bar heights must be done along a sloping plane. The base of the graph is not 
level, but increases towards the back.  This makes judgments between bar heights difficult.  For 
example, which is higher, the thermoelectric withdrawals for 1965 or irrigation withdrawals for 
1970? 

Viewers will tend to see bars towards the back as higher than they should in comparison to bars 
nearer the front when perspective is used to tilt the base.  Thus the front of the "thermoelectric" 
bars must be compared to the back of the "irrigation" bars in order to accurately assess the data 
portrayed by bar heights. Comparisons of heights across non-adjacent rows is even more 
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difficult. The two bars cited above have exactly the same value of 130,000 million gallons per 
day, though the one at the back appears higher. 

A 

B C 

Figure 16.18  Pie chart before and after being placed into perspective view. 

Figure 16.19 Bar chart of water use data, in perspective view (from Solley et al., 1988). 

Perspective should also be avoided when presenting maps.  Figure 16.20 is a perspective map of 
water use in the United States (Solley et al., 1988).  Because the base of the map is tilted, values 
at the back will look higher than those in the front for the same quantity.  Comparisons between 
Montana (at the back) and Louisiana (at the front), for example, are quite difficult.  From a table 
inside the report, Louisiana has a larger value, but it doesn't appear that way on the map.  Note 
also that several states are again partially or totally hidden. 
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Figure 16.20  Map of water use data in perspective view (from Solley et al., 1983). 

Use of perspective solely to attract attention, such as on a cover, is fine.  But its use should be 
avoided within scientific publications.  Only large differences will be able to be distinguished, 
and the inherent distortion of angles will make similar values look dissimilar when on different 
parts of the graph.  Attempts to use perspective to make a graph more "appealing" will only 
make it useless for its primary purpose -- to accurately and precisely convey numerical 
information. 

16.3.2 Graphs With Numbers 
Graphs which include numbers may be a signal that the graph is incapable of doing its job.  The 
graph needs to be made more precise.  See for example figures 16.7 and 16.26.  Tables providing 
the necessary detail for computations can be placed elsewhere in the report if required.  But they 
do not provide the insight needed to quickly comprehend primary patterns of the data.  Adding 
numbers to graphs which also do not portray those patterns does not add up to an effective 
graph. 
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16.3.3 Hidden Scale Breaks 
Breaks in the scale of measurement on a graph can be very misleading to the viewer.  If scale 
breaks are used, it is the job of the presenter to make them as clear as possible.  For example, the 
scale break in figure 16.21 is not very obvious (it is also not necessary).  Bars are drawn right 
through the data, incorrectly implying that no break is present.   

Figure 16.21 Hidden scale break, from Greek (1987) 
 1987 American Chemical Society.  Used with permission. 
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Figure 16.22 Full scale break. 
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To make a scale break more obvious, Cleveland (1984) suggested the use of a "full scale break" 
as in figure 16.22.  There the jump in depth of wells used for sampling is clearly portrayed.  It is 
difficult for the viewer to misinterpret a scale break using this method.  We heartily recommend 
use of full scale breaks when breaks must be used.  Better yet, avoid using scale breaks by 
employing a transformation of the data such as logarithms to make the break unnecessary. 

16.3.4 Overlapping Histograms 
Overlapping histograms are one of the worst graphs for comparing groups of data, and yet are 
quite common. They totally obscure differences and similarities between groups.  With the 
excellent alternative of group boxplots available there is little reason to use them.  Figure 16.23 
shows two sets of overlapping histograms, effective porosity (A) and infiltration capacity (B).  
Three groups are being compared in A, and two groups in B.  There is no way a reader could 
verify or disprove any conclusions reached in the report concerning these variables by looking at 
these histograms.  The use of lines for shading, automatically produced by many graphics 
software programs, only makes matters worse.  In general, avoid using overlapping histograms! 

Figure 16.23 Overlapping histograms of two variables.  From Foster et al. (1985). 
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Exercises 

16.1	 Field and laboratory pH were measured on the same samples by Bachman (1984) to 
determine if values changed over the time it took for shipment to the lab .  The data 
were plotted in the figure below.  How might the graph be improved in order to show 
this comparison? 

Figure 16.24 Field versus lab pH.  From Bachman, 1984. 

16.2	 Seasonal patterns of specific conductance for stations along the Merced River are shown 
below. How might this graph be improved to better show both seasonal and 
downstream differences? 

Figure 16.25  Specific conductance along the Merced River.  From Sorenson, 1982. 
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16.3	 Variations in dissolved oxygen and biochemical oxygen demand (BOD) were 
documented along the Trinity River watershed.  How might the graph be improved in 
order to better show differences between sites? 

Figure 16.26 DO and BOD in the Trinity River, TX.  From Wells et al., 1986. 
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16.4 Ice volumes of several glaciers at differing altitudes are compared in the following figure.  
How might it be changed to better show those differences? 

Figure 16.27 Ice volumes of Mount Hood glaciers.  Each letter represents a different glacier.  
From Drieger and Kennard, 1986. 
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16.5 Water quality (major ions) was displayed for 13 numbered sites below.  What other types 
of plots might have shown this more clearly? 

Figure 16.28 Chemical composition of streamwaters at 13 sites.   
From Liebermann et al., 1989. 
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Appendix A

Construction of Boxplots


The upper and lower limits of the central box are defined using either quartiles or hinges.  These 
definitions are clarified below.  Then the influence of each definition on the position of the 
whiskers is demonstrated.  Definitions used by commercial software packages are listed, including 
one non-conventional form called a "box graph". 

Quartiles 
Quartiles are the 25th, 50th and 75th percentiles of a data set, as defined in chapter 1.  Consider a 
data set Xi, i=1,...n. Computation of percentiles follows the equation 

pj = X(n+1)•j 

where n is the sample size of Xi, 
j is the fraction of data less than or equal to the percentile value (for the  
3 quartiles, j= .25, .50, and .75). 

Non-integer values of (n+1)•j imply linear interpolation between adjacent values of X. 
Computation of quartiles for two small example data sets is illustrated in Table 1. 

Hinges 
Tukey (1977) used values for the ends of the box which, along with the median, divided the data 
into four equal parts. These "fourths" or "hinges" are defined as: 

Lower hinge hL = median of all observations less than or equal to the sample median. 
Upper hinge hU = median of all observations equal to or greater than the overall sample 

median. 

They may also be defined as: 

Lower hinge hL = XL, where L = 
integer [ (n+3)/2 ] 

, and2

Upper hinge hU = XU, where U = (n+1) − L. 

where "integer [ ]" is the integer portion of the number in brackets.  For example, integer [ 5.7 ] = 
5. Again, non-integer values of L and U imply interpolation.  With hinges, however, this will always 
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be halfway between adjacent data points.  Therefore, hinges are always either data values 
themselves, or averages of two data points, and so are easier to compute by hand than are 
percentiles.  Hinges will generally be similar to quartiles for large (n> 30) sample sizes.  For smaller 
data sets, differences will be more apparent.  For example, when n=12 the lower hinge is halfway 
between the 3rd and 4th data points, while the lower quartile is one-quarter of the way between the 
two points (see Table 1) . Both measures split the data into one-fourth below and three fourths 
above their value.  Either are acceptable for use in boxplots. 

Table A1 
A. 	 For the following data Xi of sample size n=11: 

2 3 5 45 46 47 48 50 90 151 208 

= lower quartile = X(n+1)•.25 =X3 = 5.p.25

 = upper quartile = X(n+1)•.75 = X9 = 90.
p.75

 p.50 = median = X(n+1)•.50 = X6	   = 47. 
hl = lower hinge = median [2  3  5  45 46 47] = 25. 
hu = upper hinge = median [47 48 50 90 151 208] = 70. 

B.	   For sample size n=12, and data Xi, i=1,...n equal to: 
2 3 5 45 46 47 48 49 50 90 151 208 

= lower quartile = X(n+1)•.25 = X3.25 = X3 + 0.25•(X4 − X3) = 15. p.25
 = upper quartile = X(n+1)•.75 = X9.75 = X9 + 0.75•(X10 − X9) = 80. p.75

 p.50 = median = X(n+1)•.50 = X6.5  = X6 + 0.50•(X7 − X6) = 47.5. 
hl = lower hinge = median [2  3  5  45 46 47] = 25. 
hu = upper hinge = median [48 49 50 90 151 208] = 70. 

using hinges 

using quartiles 

n =11 data set 

using hinges 

using quartiles 

n =12 data set 

Figure A1. Boxplots for the Table A1 data 
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Figure A1 shows standard boxplots for the Table 1 data using both percentiles and hinges.  Data in 
Table 1 were designed to maximize differences between the two measures.  Real data, and larger 
sample sizes, will evidence much smaller differences.  Note that the definitions of the box 
boundaries directly affect whisker lengths, and also determines which data are plotted as "outside" 
values. 

It would be ideal if all software used the same conventions for drawing boxplots.  However, that 
has not happened. Software written by developers who stick to the original definitions prefer 
hinges; those who want box boundaries to agree with tabled percentiles use quartiles.  The Table 1 
data can be used to determine which convention is used to produce boxplots.   

Non-conventional definitions 
Other statistical software use another (non-conventional) value for the box boundaries (Frigge and 
others, 1989).  They use the next highest data value for the lower box boundary whenever n/4 is 
not an integer. This avoids all interpolation.  Note that n, not n+1, is used. 

StatView uses a percentile-type boxplot similar to the truncated boxplot, except that the upper and 
lower 10 percent of data are plotted as individual points.  The weakness of this scheme is that 10 
percent of the data will always be plotted individually at each end of the plot, and so it is less 
effective for defining and emphasizing unusual values. Also important is that StatView uses yet 
another definition for the box boundaries, X(n+2)•j , in calculating the quartiles. This non­
conventional boxplot was called a "box graph" by Cleveland (1985). 

Therefore some statistical software will produce boxes differing from conventional boxplots, 
particularly for small data sets. 

Boxplots for Censored Data 
Data sets whose values include some observations known only to be below (or above) a limit or 
threshold can also be effectively displayed by boxplots.  First set all values below the threshold to 
some value less than (not equal to) the reporting limit.  The actual value is not important, and could 
be 0, one-half the reporting limit, etc. Produce the boxplot.  Then draw a line across the graph at 
the value of the threshold, and erase all lines below this value from the graph. 

This procedure was used for data in figure A2.  If less than 25 percent of the data are below the 
threshold, this procedure will affect at most only the lower whisker (as in the Hoover Dam through 
Morelos Dam boxplots). If between 25 and 75 percent are below the threshold, the box will be 
partially hidden below the threshold (as in the CO-UT Line and Cisco boxes).  If more than 75 
percent of the data are below the threshold, part of the upper whisker and outside values will be 
visible above the threshold, as in the Lees Ferry box.  In each case, these boxplots accurately and 
fairly illustrate both the distribution of data above the threshold, and the percentage of data below 
the threshold. 
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Figure A2. Dissolved solids concentrations along the Colorado River, artificially censored at a 
threshold of 600 mg/L. 

A second alternative for boxplots of censored data is to estimate the percentiles falling below the 
threshold, and drawing dashed portions of the box below the threshold using these estimates.  
Helsel and Cohn (1988) have compared methods for estimating these percentiles.  When multiple 
thresholds occur, such as thresholds which have changed over time or between laboratories, a solid 
line can be drawn across the plot at the highest threshold. Portions of the boxes above the highest 
threshold will be correct as long as each censored observation is assigned some value below its 
threshold.  Quartiles falling below the highest threshold should be determined by using the 
methods recommended by Helsel and Cohn (1988).  All lines below the highest threshold are only 
estimates, and should be drawn as dashed lines on the plot.   

Displaying confidence intervals 
As an aid for displaying whether two groups of data have different medians, confidence intervals 
for the median as defined in chapter 3 can be added to boxplots.  When boxplots are placed side by 
side, their medians are significantly different if the confidence intervals do not overlap.  Three 
methods of displaying these intervals are shown in figure A3.  In the first method (A), the box is 
"notched" at both upper and lower limits, making the box narrower for all values within the 
interval. In the second (B), parentheses are drawn within the box at each limit.  Shading is used in 
(C) to illustrate interval width.  If displaying differences in medians is not of primary interest, these 
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methods add visual confusion to boxplots and are probably best avoided.  Confusion is 
compounded when the interval width falls beyond the 25th or 75th percentiles.  Of the three, 
shading seems the easiest to visualize and least confusing. 

A B C 

Figure A3.  Methods for displaying confidence interval of median using a boxplot.  
A. Notched boxplots B. Parentheses  C. Shaded boxplot 
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Tables


Table B1 Cunnane plotting positions for n = 1 to 20 

Table B2 Normal quantiles for Cunnane plotting positions of Table B1 

Table B3 Critical values for the PPCC test for normality 

Table B4 Quantiles (p-values) for the rank-sum test 

Table B5 Quantiles (p-values) for the sign test 

Table B6 Critical test statistic values for the signed-rank test 

Table B7 Critical test statistic values for the Friedman test 

Table B8 Quantiles (p-values) for Kendall's tau (τ) 
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Table B1. Cunnane plotting positions for sample sizes n = 1 to 20 
i 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

  N=  5  
.12 .31 .50 .69 .88 

  N=  6  
.10 .26 .42 .58 .74 .90 

  N=  7  
.08 .22 .36 .50 .64 .78 .92 

  N=  8  
.07 .20 .32 .44 .56 .68 .80 .93 

  N=  9  
.07 .17 .28 .39 .50 .61 .72 .83 .93 

  N=  10  
.06 .16 .25 .35 .45 .55 .65 .75 .84 .94 

  N= 11 
.05 .14 .23 .32 .41 .50 .59 .68 .77 .86 .95 

  N=  12  
.05 .13 .21 .30 .38 .46 .54 .62 .70 .79 .87 .95 

  N=  13  
.05 .12 .20 .27 .35 .42 .50 .58 .65 .73 .80 .88 .95 

  N=  14  
.04 .11 .18 .25 .32 .39 .46 .54 .61 .68 .75 .82 .89 .96 

  N=  15  
.04 .11 .17 .24 .30 .37 .43 .50 .57 .63 .70 .76 .83 .89 .96 

  N=  16  
.04 .10 .16 .22 .28 .35 .41 .47 .53 .59 .65 .72 .78 .84 .90 .96 

  N=  17  
.03 .09 .15 .21 .27 .33 .38 .44 .50 .56 .62 .67 .73 .79 .85 .91 .97 

  N=  18  
.03 .09 .14 .20 .25 .31 .36 .42 .47 .53 .58 .64 .69 .75 .80 .86 .91 .97 

  N- 19  
.03 .08 .14 .19 .24 .29 .34 .40 .45 .50 .55 .60 .66 .71 .76 .81 .86 .92 .97 

  N=  20  
.03 .08 .13 .18 .23 .28 .33 .38 .43 .48 .52 .57 .62 .67 .72 .77 .82 .87 .92 .97 
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Table B2. Upper tail normal quantiles for the plotting positions of Table B1 
(for lower tail quantiles, multiply all nonzero quantiles by  −1) 

N=  5 
0.000 0.502 1.198 

N=  6 
0.203 0.649 1.300 

N=  7 
0.000 0.355 0.765 1.383 

N=  8 
0.153 0.475 0.859 1.453 

N= 9 
0.000 0.276 0.575 0.939 1.513 

N= 10 
0.123 0.377 0.659 1.007 1.565 

N=  11 
0.000 0.225 0.463 0.732 1.067 1.611 

N= 12 
0.103 0.313 0.538 0.796 1.121 1.653 

N= 13 
0.000 0.191 0.389 0.604 0.852 1.169 1.691 

N= 14 
0.088 0.267 0.456 0.663 0.904 1.212 1.725 

N= 15 
0.000 0.165 0.336 0.517 0.716 0.950 1.252 1.757 

N= 16 
0.077 0.234 0.397 0.571 0.765 0.992 1.289 1.787 

N= 17 
0.000 0.146 0.295 0.452 0.620 0.809 1.031 1.323 1.814 

N= 18 
0.069 0.208 0.351 0.502 0.666 0.849 1.067 1.354 1.839 

N= 19 
0.000 0.131 0.264 0.402 0.548 0.707 0.887 1.101 1.383 1.864 

N= 20 
0.062 0.187 0.315 0.449 0.591 0.746 0.922 1.133 1.411 1.886 
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Table B3. Critical r* values for the probability plot correlation coefficient test of 
normality (from Looney and Gulledge, 1985a) 

 American Statistical Association.  Used with permission. 

[reject H0: data are normal  when PPCC r < r* ] 

α-level

n .005 .010 .025 .050 .100 .250

3 .867 .869 .872 .879 .891 .924 
4 .813 .824 .846 

5 .807 .826 .856 

6 .820 .838 .866 

7 .828 .850 .877 


.868 .894 .931 

.880 .903 .934 

.888 .910 .939 

.898 .918 .944 
8 .840 .861 .887 .906 .924 .948 
9 .854 .871 .894 .912 .930 .952 
10 .862 .879 .901 
11 .870 .886 .907 
12 .876 .892 .912 
13 .885 .899 .918 
14 .890 .905 .923 
15 .896 .910 .927 
16 .899 .913 .929 
17 .905 .917 .932 
18 .908 .920 .935 
19 .914 .924 .938 
20 .916 .926 .940 
21 .918 .930 .943 

.918 .934 .954 

.923 .938 .957 

.928 .942 .960 

.932 .945 .962 

.935 .948 .964 

.939 .951 .965 

.941 .953 .967 

.944 .954 .968 

.946 .957 .970 

.949 .958 .971 

.951 .960 .972 

.952 .961 .973 
22 .923 .933 .945 .954 .963 .974 
23 .925 .935 .947 
24 .927 .937 .949 
25 .929 .939 .951 
26 .932 .941 .952 
27 .934 .943 .953 
28 .936 .944 .955 
29 .939 .946 .956 
30 .939 .947 .957 
31 .942 .950 .958 
32 .943 .950 .959 
33 .944 .951 .961 
34 .946 .953 .962 
35 .947 .954 .962 
36 .948 .955 .963 
37 .950 .956 .964 
38 .951 .957 .965 
39 .951 .958 .966 
40 .953 .959 .966 

.956 .964 .975 

.957 .965 .976 

.959 .966 .976 

.960 .967 .977 

.961 .968 .978 

.962 .969 .978 

.963 .970 .979 

.964 .971 .979 

.965 .972 .980 

.966 .972 .980 

.967 .973 .981 

.968 .974 .981 

.969 .974 .982 

.969 .975 .982 

.970 .976 .983 

.971 .976 .983 

.971 .977 .983 

.972 .977 .984 
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Table B3. Cont.  


α-level 
n .005 .010 .025 .050 .100 .250 
41 .953 .960 .967 
42 .954 .961 .968 
43 .956 .961 .968 
44 .957 .962 .969 
45 .957 .963 .969 
46 .958 .963 .970 
47 .959 .965 .971 
48 .959 .965 .971 
49 .961 .966 .972 
50 .961 .966 .972 
55 .965 .969 .974 
60 .967 .971 .976 
65 .969 .973 .978 
70 .971 .975 .979 
75 .973 .976 .981 
80 .975 .978 .982 
85 .976 .979 .983 

.973 .977 .984 
.973 .978 .984 
.974 .978 .984 
.974 .979 .985 
.974 .979 .985 
.975 .980 .985 
.976 .980 .986 
.976 .980 .986 
.976 .981 .986 
.977 .981 .986 
.979 .982 .987 
.980 .984 .988 
.981 .985 .989 
.983 .986 .990 
.984 .987 .990 
.985 .987 .991 
.985 .988 .991 

90 .977 .980 .984 .986 .988 .992 
95 .979 .981 .984 .987 .989 .992 
100 .979 .982 .985 .987 .989 .992 
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Table B4. Quantiles (p-values) for the rank-sum test statistic Wrs 
p = Prob [Wrs ≥ x] = Prob [Wrs ≤ x*] 

n [smaller sample size] = 3 
m=4 m=5 m=6 m=7 m=8 m=9 m=10 

x p x* x p x* x p x* x p x* x p x* x p x* x p x* 
16 .114 8 18 .125 9 20 .131 10 22 .133 11 24 .139 12 27 .105 12 29 .108 13 
17 .057 7 19 .071 8 21 .083 9 23 .092 10 25 .097 11 28 .073 11 30 .080 12 
18 .029 6 20 .036 7 22 .048 8 24 .058 9 26 .067 10 29 .050 10 31 .056 11 
19 0 5 21 .018 6 23 .024 7 25 .033 8 27 .042 9 30 .032 9 32 .038 10 

22 0 5 24 .012 6 26 .017 7 28 .024 8 31 .018 8 33 .024 9 
25 0 5 27 .008 6 29 .012 7 32 .009 7 34 .014 8 

28 0 5 30 .006 6 33 .005 6 35 .007 7 
n [smaller sample size] = 4 

m=4 m=5 m=6 m=7 m=8 m=9 m=10 
x p x* x p x* x p x* x p x* x p x* x p x* x p x* 
22 .171 14 25 .143 15 28 .129 16 31 .115 17 34 .107 18 36 .130 20 39 .120 21 
23 .100 13 26 .095 14 29 .086 15 32 .082 16 35 .077 17 37 .099 19 40 .094 20 
24 .057 12 27 .056 13 30 .057 14 33 .055 15 36 .055 16 38 .074 18 41 .071 19 
25 .029 11 28 .032 12 31 .033 13 34 .036 14 37 .036 15 39 .053 17 42 .053 18 
26 .014 10 29 .016 11 32 .019 12 35 .021 13 38 .024 14 40 .038 16 43 .038 17 
27 0 9 30 .008 10 33 .010 11 36 .012 12 39 .014 13 41 .025 15 44 .027 16 

31 0 9 34 .005 10 37 .006 11 40 .008 12 42 .017 14 45 .018 15 
38 .003 10 41 .004 11 43 .010 13 46 .012 14 

44 .006 12 47 .007 13 
n [smaller sample size] = 5 

m=5 m=6 m=7 m=8 m=9 m=10 
x p x* x p x* x p x* x p x* x p x* x p x* 
34 .111 21 37 .123 23 41 .101 24 44 .111 26 47 .120 28 51 .103 29 
35 .075 20 38 .089 22 42 .074 23 45 .085 25 48 .095 27 52 .082 28 
36 .048 19 39 .063 21 43 .053 22 46 .064 24 49 .073 26 53 .065 27 
37 .028 18 40 .041 20 44 .037 21 47 .047 23 50 .056 25 54 .050 26 
38 .016 17 41 .026 19 45 .024 20 48 .033 22 51 .041 24 55 .038 25 
39 .008 16 42 .015 18 46 .015 19 49 .023 21 52 .030 23 56 .028 24 
40 .004 15 43 .009 17 47 .009 18 50 .015 20 53 .021 22 57 .020 23 

44 .004 18 48 .005 17 51 .009 19 54 .014 21 58 .014 22 
52 .005 18 55 .009 20 59 .010 21 

56 .006 19 60 .006 20 
n [smaller sample size] = 6 

m=6 m=7 m=8 m=9 m=10 
x p x* x p x* x p x* x p x* x p x* 
47 .120 31 51 .117 33 55 .114 35 59 .112 37 63 .110 39 
48 .090 30 52 .090 32 56 .091 34 60 .091 36 64 .090 38 
49 .066 29 53 .069 31 57 .071 33 61 .072 35 65 .074 37 
50 .047 28 54 .051 30 58 .054 32 62 .057 34 66 .059 36 
51 .032 27 55 .037 29 59 .041 31 63 .044 33 67 .047 35 
52 .021 26 56 .026 28 60 .030 30 64 .033 32 68 .036 34 
53 .013 25 57 .017 27 61 .021 29 65 .025 31 69 .028 33 
54 .008 24 58 .011 26 62 .015 28 66 .018 30 70 .021 32 

59 .007 25 63 .010 27 67 .013 29 71 .016 31 
68 .009 28 72 .011 30 

73 .008 29 



 x 
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TABLE B4 continued 

n [smaller sample size] = 7 n [smaller sample size] 
= 9 

m=7 m=8 m=9 m=10  m=9 m=10
p x* x p x* x p x* x p x*  x p x* x p x* 

61 .159 44 65 .168 47 70 .150 49 74 .15752  98 .149 73 104 .13976 
62 .130 43 66 .140 46 71 .126 48 75 .13551  99 .129 72 105 .12175 
63 .104 42 67 .116 45 72 .105 47 76 .11550 100 .111 71 106 .10674 
64 .082 41 68 .095 44 73 .087 46 77 .09749 101 .095 70 107 .09173 
65 .064 40 69 .076 43 74 .071 45 78 .08148 102 .081 69 108 .07872 
66 .049 39 70 .060 42 75 .057 44 79 .06747 103 .068 68 109 .06771 
67 .036 38 71 .047 41 76 .045 43 80 .05446 104 .057 67 110 .05670 
68 .027 37 72 .036 40 77 .036 42 81 .04445 105 .047 66 111 .04769 
69 .019 36 73 .027 39 78 .027 41 82 .03544 106 .039 65 112 .03968 
70 .013 35 74 .020 38 79 .021 40 83 .02843 107 .031 64 113 .03367 
71 .009 34 75 .014 37 80 .016 39 84 .02242 108 .025 63 114 .02766 
72 .006 33 76 .010 36 81 .011 38 85 .01741 109 .020 62 115 .02265 

77 .007 35 82 .008 37 86 .01240 110 .016 61 116 .01764 
83 .006 36 87 .009 39 111 .012 60 117 .01463 

112 .009 59 118 .01162 
113 .007 58 119 .00961 

m=8 
n [smaller sample size] = 8 

m=9 m=10
n [smaller sample size] = 10

 m=10
 x p x* x p x* x p x* x p x* 
79 .13957 84 .138 60 89 .137 63 119 .157 91 
80 .11756 85 .118 59 90 .118 62 120 .140 90 
81 .09755 86 .100 58 91 .102 61 121 .124 89 
82 .08054 87 .084 57 92 .086 60 122 .109 88 
83 .06553 88 .069 56 93 .073 59 123 .095 87 
84 .05252 89 .057 55 94 .061 58 124 .083 86 
85 .04151 90 .046 54 95 .051 57 125 .072 85 
86 .03250 91 .037 53 96 .042 56 126 .062 84 
87 .02549 92 .030 52 97 .034 55 127 .053 83 
88 .01948 93 .023 51 98 .027 54 128 .045 82 
89 .01447 84 .018 50 99 .022 53 129 .038 81 
90 .01046 95 .014 49 100 .017 52 130 .032 80 
91 .00745 96 .010 48 101 .013 51 131 .026 79 
92 .00544 97 .008 47 102 .010 50 132 .022 78 

133 .018 77 
134 .014 76 
135 .012 75 
136 .009 74 
137 .007 73 
138 .006 72 

Table generated by D. Helsel 
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Table B5. -- Quantiles (p-values) for the sign test statistic S+


Quantiles for the sign test are identical to quantiles of the binomial distribution with 
percentile p=0.5. The approximation given in chapter 6 and used by most statistical 
software packages can be used for n ≥ 20. Statistics textbooks that contain a table 
of exact quantiles for the binomial distribution for sizes below 20 include Hollander 
and Wolfe (1999) and Zar (1999). 

An online table of exact quantiles for the binomial distribution can be found as of 
5/2002 at: http://faculty.vassar.edu/lowry/binomial01.html 

An example of using this online table: 
Enter n (the number of data pairs) and p (=0.5).  An exact table will be printed. P­
values are cumulative probabilities, or values of the cumulative distribution function 
(cdf).  For small values of the test statistic S+ (called k in the online table) – values 
below n/2, use the “Down” column to read off a one-sided p-value for the sign test.  
For S+  larger than n/2, use the “Up” column.  The example output below is for 
n=13. A one-sided p-value for S+ = 4 (the probability of getting an S+ ≤4) is 0.133. 
The p-value for S+ = 9 (the probability of getting an S+ ≥9) also equals 0.133. For a 
two-sided test, p = 0.266. 

     Cumulative Probability

k Exact Probability Down  Up

0 0.000122070313 0.000122070313 1.0 

1 0.001586914063 0.001708984375 0.999877929688 

2 0.009521484375 0.01123046875 0.998291015625 

3 0.034912109375 0.046142578125 0.98876953125 

4 0.087280273438 0.133422851563 0.953857421875 

5 0.157104492188 0.29052734375 0.866577148438 
6 0.20947265625 0.5 0.70947265625 
7 0.20947265625 0.70947265625 0.5 
8 0.157104492188 0.866577148438 0.29052734375 

9 0.087280273438 0.953857421875 0.133422851563 

10 0.034912109375 0.98876953125 0.046142578125 

11 0.009521484375 0.998291015625 0.01123046875 

12 0.001586914063 0.999877929688 0.001708984375 

13 0.000122070313 1.0 


0.000122070313 
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Figure B1.  Two-sided critical region (p-values), shaded, 

for the sign test.  n=13, S+= 4 or 9. 
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Table B6 – Critical test statistic values for the signed-rank statistic W+ 

(from McCornack, 1965) 
 American Statistical Association.  Used with permission. 

The approximation given in chapter 6, used by most statistics software packages, can 
be used for n > 15 and α ≥ 0.025. For α < 0.025, see exact tables in the 
McCornack paper or a textbook such as Hollander and Wolfe (1999), even for large 
sample sizes. 

[ reject H0: at one-sided α when [ reject H0: at one-sided α when 

W+ ≤ table entry (small W) ] W+ ≥ table entry  (large W) ] 


α-level α-level 
n .005 .010 .025 .050 n .005 .010 .025 .050
 5 0 
6 0 2 
7 0 2 3 
8 0 1 3 5 
9 1 3 5 8 
10 3 5 8 10 
11 5 7 10 13 
12 7 9 13 17 
13 9 12 17 21 
14 12 15 21 25 
15 15 19 25 30 
16 19 23 29 35 
17 23 27 34 41 
18 27 32 40 47 
19 32 37 46 53 
20 37 43 52 60 

5 15 
6 21 19 
7 28 26 25 
8 36 35 33 31 
9 44 42 40 37 
10 52 50 47 45 
11 61 59 56 53 
12 71 69 65 61 
13 82 79 74 70 
14 93 90 84 80 
15 105 101 95 90 
16 117 113 107 101 
17 130 126 119 112 
18 144 139 131 124 
19 158 153 144 137 
20 173 167 158 150 



466 Statistical Methods in Water Resources 

Table B7 – Critical test statistic values for the Friedman statistic Xf 
(from Martin, Leblanc and Toan, 1993) 

 The Canadian Journal of Statistics.  Used with permission. 

The chi-square approximation given in chapter 7 is used by most statistics software 
packages. For comparing 3 to 5 groups of data with sample sizes (blocks) n <10 in 
each group, an exact table should be used. 

[reject H0: at α when Xf ≥ table entry] 

k = 3 groups α-level 
n .005 .010 .025 .050 .10 
3 6.00 6.00 
4 8.00 8.00 8.00 6.50 6.00 
5 10.00 8.40 7.60 6.40 5.20 
6 10.33 9.00 8.33 7.00 5.33 
7 10.29 8.86 7.71 7.14 5.43 
8 9.75 9.00 7.75 6.25 5.25 
9 10.67 8.67 8.00 6.22 5.56 

10 10.40 9.60 7.80 6.20 5.00 

k = 4 groups α-level 
n .005 .010 .025 .050 .10 
2 6.00 6.00 
3 9.00 9.00 8.20 7.40 6.60 
4 10.20 9.60 8.40 7.80 6.30 
5 10.92 9.96 8.76 7.80 6.36 
6 11.40 10.20 8.80 7.60 6.40 
7 11.40 10.37 9.00 7.80 6.43 
8 11.85 10.50 9.00 7.65 6.30 
9 12.07 10.87 9.13 7.80 6.47 

10 12.00 10.80 9.12 7.80 6.36 

k = 5 groups α-level 
n .005 .010 .025 .050 .10 
2 8.00 

3 10.67 10.13 

4 12.00 11.20 

5 12.48 11.68 

6 13.07 11.87 

7 13.26 12.11 

8 13.50 12.30 

9 13.69 12.44 


10 13.84 12.48 

8.00 7.60 7.20 
9.60 8.53 7.47 
9.80 8.80 7.60 

10.24 8.96 7.68 
10.40 9.07 7.73 
10.51 9.14 7.77 
10.60 9.30 7.80 
10.67 9.24 7.73 
10.72 9.28 7.76 
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Table B8 -- Quantiles (p-values) for Kendall's S statistic and tau correlation 
coefficient 

For N>10 use the approximation given in section 8.2.2 

One-sided p = Prob [S ≥ x] = Prob [S ≤ −x] 

N = Number of data pairs N = Number of data pairs 
4 5 8 9 3 6 7 10 

x x 
0 0.625 0.592 0.548 0.540 1 0.500 0.500 0.500 0.500 
2 0.375 0.408 0.452 0.460 3 0.167 0.360 0.386 0.431 
4 0.167 0.242 0.360 0.381 5 0.235 0.281 0.364 
6 0.042 0.117 0.274 0.306 7 0.136 0.191 0.300 
8 0.042 0.199 0.238 9 0.068 0.119 0.242 

10 0.0083 0.138 0.179 11 0.028 0.068 0.190 
12 0.089 0.130 13 0.0083 0.035 0.146 
14 0.054 0.090 15 0.0014 0.015 0.108 
16 0.031 0.060 17 0.0054 0.078 
18 0.0156 0.038 19 0.0014 0.054 
20 0.0071 0.022 21 0.0002 0.036 
22 0.0028 0.0124 23 0.023 
24 0.0009 0.0063 25 0.0143 
26 0.0002 0.0029 27 0.0083 
28 <0.0001 0.0012 29 0.0046 
30 0.0004 31 0.0023 
32 0.0001 33 0.0011 
34 <0.0001 35 0.0005 
36 <0.0001 37 0.0002 

39 <0.0001 
41 <0.0001 
43 <0.0001 
45 <0.0001 

Table generated by D. Helsel 
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Data Sets


Data Set C1 

Data Set C2 

Data Set C3 

Data Set C4 

Data Set C5 

Data Set C6 

Data Set C7 

Data Set C8 

Data Set C9 

Data Set C10 

Data Set C11 

Data Set C12 

Data Set C13 

Data Set C14 

Data Set C15 

Data Set C16 

Data Set C17 

Data Set C18 

Data Set C19 

Data Set C20 

Chapter cited

Annual peak discharges for the Saddle River, NJ 2, 3 


Annual streamflows for the Conecuh River, AL 3, 6 


Daily streamflow for the Potomac River, Wash. D.C. 3 


Atrazine concentrations 6 


Subset of iron concentrations at low flow 7 


Complete set of iron concentrations 7 


Specific capacities of wells in Pennsylvania 7 


Corbicula on the Tennessee River 7 


TDS concentrations for the Cuyahoga River, Ohio 9 


Phosphorus transport, Illinois River at Marseilles 9 


Grain size and permeability of alluvial aquifers 9 


ROE and TDS data,  


Rappahannock R. near Fredericksburg, Virginia 10 


Streamflow data used for record extension 10 


Mean annual runoff and basin characteristics 11


Urban total nitrogen loads 11 


Uranium and TDS in groundwaters 11 


Green River, Kentucky sediment transport data 12 


Maumee River, Ohio total P trends data 12 


Water levels, P-R-M system middle aquifer, NJ 12 


Factors affecting contamination from impoundments 15 


Data sets are available in both ASCII and MS Excel formats.  See the online location from which 
you obtained this book for the data files  HhappC.dat and HhappC.xls . 
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Answers to Selected Exercises


Chapter  1 

1.1 	 For the well yield data: 
a) mean = 0.19 
b) trimmed mean = 0.05 
c) geometric mean = 0.04 
d) median = 0.04 
e) They differ because the data are skewed.  The estimates which are more 

robust are similar, while the mean is larger. 

1.2 	 a) standard deviation = 0.31 
b) interquartile range = 0.36 
c) MAD = 0.04 
d) skew  = 2.07. quartile skew = 0.83. 

Because the data are asymmetric, the median difference is small, but the IQR and 
standard deviation are not. 

1.3 mean = 1.64 std. dev. = 2.85 
median = 0.80 IQR = 0.61 
geometric mean = 0.04 MAD = 0.25 
skew = 3.09 quartile skew = −0.10 

The largest observation is an outlier.  Though the skew appears to be strongly positive, 

and the standard deviation large, this is due only to the effect of that one point.  The 

majority of the data are not skewed, as shown by the more resistant quartile skew 

coefficient. 

a) assuming the outlying observation is accurate, representing some high-nitrogen 


location which is important to have sampled, the mean must be used to compute the 
mass of nitrogen falling per square mile.  It would probably be computed by 
weighting concentrations by the surface area represented by each environment.  The 
median would under-represent this mass loading. 

b)	 the median would be a better "typical" concentration, and the IQR a better "typical" 
variability, than the mean and standard deviation.  This is due to the strong effect of 
the one unusual point on these traditional measures. 
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Chapter 2 


2.1 a) 
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c) 

Either a cube root or logarithmic transform would increase symmetry. 
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2.2 a) 

b) 

Conc 
0  200  400  600

 0

 300

 600 

Conc 

-1.5  0.0  1.5 

Normal Scores 

The data are strongly right-skewed.  A log transformation makes these data more 
symmetric. 

2.3 Q-Q plot. 
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lots:
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 Boxp

The granodiorite shows higher chloride concentrations than does the quartz monzonite.  
This can be seen with any of the three graphs, but most easily with the boxplot.  From 
the Q-Q plot, the relationship does not look linear. 
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2.4 	 There appears to be no effect of the waste treatment plant. 

Chapter 3 

3.1 	 nonparametric: x' = 4  (α/2 = .0154). Rl = 5, Ru = 14. 
    0.4  ≤ Cl0.5 ≤  3.0 at α = 0.031. 

This is as close to 0.05 as the table allows. 

parametric: Using the natural logs of the data, 
exp(-0.045 - 2.11 •  1.63/18 ) ≤ GMx ≤  exp(-0.045 + 2.11 •  1.63/18 ) . 
    0.51  ≤ GMx ≤  1.80. 
Either of intervals is reasonable.  The logs of the data still retain some skewness, so the 
nonparametric interval may be more realistic.  The parametric interval might be 
preferred to obtain an alpha of 0.05.  The choice would depend on whether the 
assumption of lognormality was believed. 

3.2 symmetric: 0.706 − 2.12 •  0.639/17 ≤ µ ≤  0.706 + 2.12 •  0.639/17 
0.30 ≤ µ ≤  1.12 

Point estimates: mean = 0.705  (assuming normal distribution). 
    mean  =  exp(−0.849+0.5•1.067)  

= 0.73 (assuming a lognormal distribution). 
As the logs of the data are more symmetric than the data prior to transformation, the 
lognormal (2nd) estimate is preferred. 

3.3 	Parametric 95% prediction interval: 
0.19 − 2.20 •  0.0975 + (0.0975/12) to 0.19 + 2.20 • 0.0975 + (0.0975/12) 
or −0.53 to 0.91 gallons/min/foot.  Includes 0.85, so same distribution. 

 Nonparametric 95% prediction interval: 
X[0.025•13] to X[0.975•13] X0.325 to X12.675 
The sample size is too small to produce such a wide (95%) nonparametric prediction 
interval.  Therefore a parametric interval must be used.  However, the negative lower 
end of the parametric prediction interval indicates that a symmetric interval is not 
appropriate. So an asymmetric interval resulting from taking logarithms should be used 
instead of the one above. 

3.4 	 The data look relatively symmetric, so no logs taken. 
mean: 683 ± 126, or 557->809 α = .05. 
median: Rl=6, Ru=15 524->894 α = .041. 
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3.5 	 The 90th percentile = 2445 cfs.  A one-sided 95% confidence interval for the 90th 
percentile (an upper confidence limit to insure that the intake does not go dry) is found 
using the large-sample approximation of equation 3.17:   

Ru = 365•0.1 + z[0.95] • 365•0.1•(0.9)  + 0.5 

= 36.5 + 1.645•5.73 +0.5  = 46.4 


The 46th ranked point is the upper CI, or 2700 cfs. 


Chapter 4 

4.1 	 For the before-1969 data, PPCC r=0.986. For the after-1969 data, PPCC r=0.971. 
Critical values of r are 0.948 and 0.929, respectively. Therefore normality cannot be 
rejected for either period at α = 0.05. 

4.2 	 For the arsenic data, PPCC r=0.844.  The critical r* from Appendix table B3 is  
r*=0.959. Therefore reject normality.  For log-transforms of the data, PPCC  
r=0.973. Normality of the transformed data is not rejected.   

Chapter 5 

5.1 	 The p-value remains the same. 

5.2 	 Given that we wish to test for a change in concentration, but the direction of the change 
is not specified in the problem, this should be a two-sided test.  If it had stated we were 
looking for an increase, or a decrease, the test would have been a one-sided test. 

5.3 	 a. Quantiles are the 12 "after" data, and 12 quantiles computed from the 19 "before" 
data : 

i j "after" "before"
 1 1.34 	1350.00 1222.13 

2 2.92 	2260.00 1715.25 
3 4.49 	2350.00 1739.84 
4 6.06 	2870.00 1900.82 
5 7.64 	3060.00 2506.23 
6 9.21 3140.00 2614.92 
7 10.79 3180.00 2717.21 
8 12.36 3430.00 2873.61 
9 13.93 3630.00 3375.24 

10 15.51 3780.00 3591.15 
11 17.08 3890.00 3922.29 
12 18.66 5290.00 4617.37 
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The relationship appears additive.  The Hodges-Lehmann estimate (median of all 
possible after−before differences) = 480 cfs. 

b. 	 After regulation, the reservoir appears to be filling.  Any test for change in flow 
should omit data during the transition period of 1969-1970.  Plots of time series are 
always a good idea.  They increase the investigator's understanding of the data.  Low 
flows after regulation are not as low as those before.  This produces the pattern seen 
in the Q-Q plot of the low quantiles being lower after regulation. while the upper 
quantiles appear the same, as shown by the drift closer to the x=y line for the higher 
values. 
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c. 	 With 1969 and 70 included, Wrs = 273.5 p=0.22. The after flows are not 
significantly different. With 1969 and 70 excluded, Wrs = 243.5 p=0.06. The after 
flows are close to being significantly different -- more data after regulation is needed. 
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5.4 	 Exact test
 X  Y R(Y) R(X)

 1 1 
1.5 2 


2 3 

2.5 4 


3 5 

3.5 6 


4 7 

4.5 8 
5.5 9 
7.0 10 
10.0 11 
20.0 12 
40.0 13 
100.0 14 

n = 4 m = 10 Wrs = ΣRx = 16 
From table B4, Prob(Wrs ≤ 16) = .027. The two-sided exact p-value = 0.054 

Large-sample approximation 

The mean is µW = 
n•(N+1) 

= 
4•15 

= 302 2

The standard deviation is given by σ = 
n•m•(N+1) 

W 12  = 7.0711 

16 - µW +1/2

Zrs = σW

 = −1.909 


Using linear interpolation between −1.9110 and −1.8957 in a table of the standard 
normal distribution gives the one-tail probability of 0.028.  So the two-sided approximate 
p-value is 0.056. 

t-test on the ranks

Replacing variable values by ranks gives

 x = 4 	 S x = 2.582 = 6.667 n = 4S2x
 y = 8.9 S y = 3.928 S2y = 15.429 m = 10 

The pooled variance is : 

3S2x + 9S2y


= 13.2386
S2 = 12


S = 3.639 


jkmonson

jkmonson
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x −y
 t = = −2.27610 

S (1/n + 1/ m) 

Linear interpolation for a student's t with 12 degrees of freedom gives

 .975 + 
(2.27610 - 2.1788) 

1.0 − .97791 = .022(2.6810 - 2.1788)   •.015 = .97791 


The two-sided rank transform p-value is .044. 


Summary
 Approach p-value
 Rank-Sum Exact 0.054 
 Rank-Sum Approx. 0.056 

t test on ranks 0.044 

 To compute ∆̂ , the (n•m)=40 differences (Xi−Yj =Dj) are: 
(Y1) 0.5 1.5 2.5 3.5 4.5 6 9 19 39 99 
(Y2) −0.5 0.5 1.5 2.5 3.5 5 8 18 38 98 
(Y3) −1.5 −0.5 0.5 1.5 2.5 4 7 17 37 97 
(Y4) −2.5 −1.5 −0.5 0.5 1.5 3 6 16 36 96 

D̂  = median of 40 Dj's (Drank 20 + Drank 21 )/2 = 3.75 

5.5 	 Yields with fracturing Yields without
 rcrit = .932, accept normality rcrit =.928, reject normality 

Because one of the groups is non-normal, the rank-sum test is performed. 
Wrs = ΣRwithout = 121.5. The one-sided p-value from the large-sample approximation  
p= 0.032. Reject equality. The yields from fractured rocks are higher. 

5.6 	 The test statistic changes very little (Wrs = 123), indicating that most information 
contained in the data below detection limit is extracted using ranks.  Results are the same 
(one-sided p-value = 0.039.  Reject equality).  A t-test could not be used without 
improperly substituting some contrived values for less-thans which might alter the 
conclusions. 

Chapter 6 

6.1 	 The sign test is computed on all data after 683 cfs is subtracted.  S+ = 11. From table 
B5, reject if S+ ≥ 14 (one-sided test). So do not reject. p > 0.25. 
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6.2 	 c is not a matched pair. 

6.3 	a. H0: µ (South Fork) − µ (North Fork) = 0. 
H1: µ (South Fork) − µ (North Fork) ≠ 0. 

b. 	 A boxplot of the differences shows no outliers, but the median is low.  Conductance 
data are usually not skewed, and the PPCC r=0.941, with normality not rejected.  So 

diffs 
-100  -50  0 

a t-test on the differences is computed (parametric). 

c. t = −4.24 p = 0.002 Reject H0. 

d. 
once: 
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Along with the boxplot above, a scatterplot shows that the South Fork is higher only 

e. 	 The mean difference is −64.7. 

6.4 	 Because of the data below the reporting limit, the sign test is performed on the 
differences Sept−June.  The one-sided p-value = 0.002.  Sept atrazine concentrations are 
significantly larger than June concs before application. 

6.5 	 For the t-test, t=1.07 with a one-sided p-value of 0.15.  The t-test cannot reject equality 
of means because one large outlier in the data produces violations of the assumptions of 
normality and equal variance. 
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Chapter 7 

7.1 See the 
following boxplots: 

6.0  7.0  8.0  9.0 
pH 

BP-1 

BP-2 

BP-9 

As a log-transformed variable, pH often closely follows a normal distribution.  

pH for three piezometer groups (from Robertson et al., 1984) 

The PPCC for the three groups (0.955 for BP-1, 0.971 for BP-2, and 0.946 for BP-9) 
cannot disprove this assumption.  Therefore ANOVA will be used to test the similarity of 
the three groups. 

Anova Table: 
Source df SS MS F p-value

 Piez Gp 2 7.07 3.54 9.57 0.002 
 Error 15 5.54 0. 37 
 Total 17 12.61 

The groups are declared different.  Statistics for each are: 
GP N Mean Std. Dev. Pooled Std. Dev = 0.608 
BP-1 6 7.65 0.596 
BP-2 6 6.68 0.279 
BP-9 6 8.20 0.822 

A Tukey's test on the data is then computed to determine which groups are different.  The 
least significant range for Tukey's test is
 LSR = q(0.95, 2, 15)•  0.37/6 = 3.01•0.248 

= 0.75 
Any group mean pH which differs by more than 0.75 is significantly different by the 
Tukey's multiple comparison test.  Therefore two piezometer groups are contaminated, 
significantly higher than the uncontaminated BP-2 group: 

BP-9 ≅  BP-1 >  BP-2 
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Since the sample sizes are small (n=6 for each group) one might prefer a Kruskal-Wallis 
test to protect against any hidden non-normality: 

GP N MEDIAN Rj 
BP-1 6 7.60 11.3 
BP-2 6 6.75 3.6 
BP-9 6 8.00 13.6 
Overall Median = 9.5 

K = 11.59 χ20.95,(2) = 5.99. Reject H0, with p = 0.003. 
ANOVA and Kruskal-Wallis tests give identical results. 

7.2 	 Boxplots of the data indicate skewness.  Therefore the Kruskal-Wallis test is computed: 
K = 7.24 Corrected for ties, K = 7.31. p = 0.027 

0.0  2.5  5.0  7.5  10.0 

Chloride Conc 

granodiorite 

qtz monzonite 

ephemeral 

Reject that all groups have the same median chloride concentration. 

The medians are ranked as   granodiorite > qtz monzonite > ephemeral.  Individual

K-W tests are computed for adjacent pairs at α = 0.05: 

granodiorite ≅ qtz monzonite (p = 0.086) 

qtz monzonite ≅ ephemeral (p = 0.27). So: 


granodiorite  qtz monzonite  	 ephemeral 

7.3 Median polish for the data of strata 1: 
Winter Spring Summer Fall Year median 

1969 25.25 11.25 10.25 10.75 8.75 
1970 16.5 2.5 1.5 2 0.00 
1971 15 1 0 0.5 −1.50 

Season median 14.25 0.25 −0.75 −0.25 2.25 
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Corbicula densities were 14 units higher in winter than in other seasons, and 9 to 10 
units higher in 1969 than 1970 or 1971. Those effects dominated all others. This is 
shown by a plot of the two-way polished medians: 

0.0

 8.0

 16.0

 24.0 

Winter Spring  Summer  Fall 

1969 
1970 
1971 

The residuals are skewed, as shown in a boxplot: 

residuals 

-10  0  10  20  30 

However, a residuals plot of cell residuals versus the comparison value shows outliers, but an 
overall slope of zero, stating that no power transformation will improve the situation very much. 
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7.4 	 Due to the outliers noted above, ranks of the Corbicula data were used to test the effects 
of season and year on the number of organisms. 
Source df SS MS F p-value 
Year 2 1064.7 532.33 13.78 0.000 
Season 3 1300.7 433.57 11.23 0.000 
Year*Season 6 560.8 93.46 2.42 0.057 
Error 24 926.8 38.62 
Total 35 3853.0 

A two-way ANOVA on the ranks indicates that both season and year are significant 
influences on the density of Corbicula, and that there is no interaction.  This is illustrated 
well by the plot of polished medians above. 

7.5 	Not answered. 

Chapter 8 

8.1 	 The plot of uranium versus total dissolved solids looks like it could be nonlinear near the 
0 TDS boundary.  So Spearman's rho was computed, and  
rho = 0.72 with tr = 4.75 and p<0.001. 

500

 1000 

uranium 

TDS 
0.0  3.5  7.0  10.5 

8.2 	 Pearson's r = 0.637 with tr = 3.79 and p<0.001. Kendall's tau = 0.53 with p<0.001.  
The suggestion of nonlinearity would favor either rho or tau, though the nonlinearity is 
not serious in this case. 

8.3 	Not answered. 
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Chapter 9 

9.1	 A residuals plot for the untransformed variables shows strong curvature.  A log-log 
regression gives an acceptable plot, with one outlier not influencing the line: 

log(Yield) = 6.74 + 1.39•log(Grain Size) t= 8.14 p < 0.001 

9.2 	 The overall mean yield will be the average of estimates of mean yield for the four wells 
from the regression equation.  Applying the 1/2 s2 correction factor to obtain the mean 
yield rather than the median, the estimated mean yields are: 
46.104 120.830 316.669 556.380 with overall mean = 260 gal/day/ft2. 

9.3	 Here are some possible transformations, including the log.  Can logQ be improved on? 
 explanatory variable  R2


 Q 40.8% 

Q 0.5 51.1% 

log Q 57.3% 

Q -0.25 57.4% 

Q -0.5 55.4% 

Q -1 47.9% 


1/(1+0.00001Q) 41.8% 

1/(1+0.0001Q) 47.6% 

1/(1+0.001Q) 58.5% 

1/(1+0.01Q) 52.4% 

1/(1+0.1Q) 48.5% 


There are perhaps two other good candidate explanatory variables on this list,  
Q-0.25, and 1/(1+0.001Q). Neither improve significantly over logQ, based on R2 or on 
residuals plots.  A residuals plot and probability plot of residuals for the hyperbolic 
transformation having b=0.001 are below. 

When b=0.00001 or smaller, the model is virtually identical to the linear model TDS = 
b0+b1Q [a power transformation with θ =1]. When b=0.1 or larger, the model is virtually 
identical to the inverse model TDS = b0+b1(1/Q) [a power transformation with θ =−1]. 
Values of b in between these provide functions similar to moving down the ladder of 
powers from θ =1 to θ =−1. The advantage of using the hyperbolic function is its 
interpretability as a mixing of ground and surface waters (Johnson et al., 1969). 

9.4 	 If the objective is to predict LOAD, then that (or its transform) should be the dependent 
variable. The regression statistics (especially PRESS) will then tell how well the predictions 
will do. If ln(C) is used as the dependent variable, the standard error s = 0.3394, exactly 
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the same as in the equation for ln(LOAD), but R2=17.3 % rather than 67.9 % for 
ln(LOAD). The t statistic on β1 is −4.43, also significant but not as much as when y = 
ln(LOAD).  In other words, the error of the ln(C) values is exactly the same magnitude as 
the errors of ln(LOAD).  The percent variation explained drops from 67.9 % to 17.3 %, 
the difference being the strong effect of Q on variation in LOAD.  Note the changes in 
regression coefficients.  The previous model was ln(LOAD) = 0.789 + 0.761 ln(Q).  This 
one is ln(C) = −.194 − .239 ln(Q). The intercept decreased by an amount equal to ln(2.7) 
(the log of the unit conversion coefficient) and the slope decreased by exactly 1 because Q 
is removed from both sides. The standard errors of the coefficients are both unchanged. 

If LOAD were computed by using the regression for ln(C) and then multiplying that result 
by 2.7 Q, exactly the same estimates would result as when using the equation for 
ln(LOAD). This is true regardless of which estimation method is employed (median, 
MLE, or Smearing), and will always be true for log-log regression estimation.  The moral 
of the story is:  if your boss thinks that you shouldn't use ln(LOAD) as the dependent 
variable and you can't convince him or her otherwise, go ahead and predict ln(C), and 
from that ln(LOAD), and you will still get the results you got doing it the simple way. 

Chapter 10 

10.1 	 X Y Slopes 
1 10 30 10 15 13 9.2 
2 40 −10 7.5 7.33 4 
3 30 25 16 8.67 
4 55 7 0.5 
5 62 −6 
6 56 

Ranked slopes:  −10, −6, 0.5, 4, 7, 7.33, 7.55, 8.67, 9.2, 10, 13, 15, 16, 25, 30 

^ a) 	 Median slope  = 

Median X 

Median Y  

S = P −M 


8.67 = Theil slope estimator b1 
= 3.5 
= 47.5 
= 13 − 2 = 11 

S 11 
= = 0.73b) τ	 = n(n-1)/2 6•5/2 

^ ^c) 	intercept b0 = Ymed − b1 • Xmed = 47.5 − 8.67• 3.5  = 17.17 
Y = 17.17 + 8.67• X is the Kendall-Theil equation 
(Y = 10.07 + 9.17• X  is the OLS equation for the same data) 
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d) from table B8, for S=11 and n=6, two-sided p-value = 2•0.028 = 0.056. 
10.2 	 X Y Slopes 

1 10 30 10 15 47.5 9.2 
2 40 −10 7.5 53.33 4 
3 30 25 85 8.67 
4 55 145 0.5 
5 200 −144 
6 56 

Ranked slopes  −144, −10, 0.5, 4, 7.5, 8.67, 9.2, 10, 15, 25, 30, 47.5, 53.33, 85, 145 

^a) 	 Median slope = 10 = Theil slope estimator b1

 Median X  = 3.5 

 Median Y  = 47.5 


b) 	S and τ are unchanged 

^ c) 	b0 = 47.5 − 10 • 3.5  = 12.5 
Y = 12.5 + 10 • X the Kendall-Theil equation is similar to ex. 10.1. 
(Y = −8.33 + 21 • X the OLS slope has changed a lot from ex. 10.1) 

d) 	 the p-value is unchanged. 

e)  for a 95% confidence interval, the closest entry in table B8 to α/2=0.025 is 
p=0.028 for Xu=11. From eqs. 10.3 and 10.4,  

(15 + 11)
Ru	 = 2 = 13 for N=15 and Xu=11. 

The rank Rl of the pairwise slope corresponding to the lower confidence limit is 
(15 - 11)

Rl	 = 2  +1 = 3. 

So an α = 0.054 confidence limit for β̂ is the interval between the 3rd and 13th ranked 
1 

pairwise slope (the 3rd slope in from either end), or
 0.5 ≤ β̂ ≤ 53.3 .

1 

10.3	 The unweighted OLS regression equation is
 Y = − 8.3 + 21.0•X t = 1.41 p = 0.23 
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The residuals are then divided by 6•(MAD), where the MAD is the median of the absolute 
values of the residuals.  Bisquare weights are computed for each data point: 

pt # 1 2 3 4 5 6 
weight 0.999 0.996 0.935 0.954 0.179 0.631 

A first weighted least squares is then computed: 
Y = 3.1 + 13.1 X t = 1.49 p = 0.21 

Bisquare weights are again computed for each data point, using residuals from the first 
WLS: 

pt # 1 2 3 4 5 6 
weight 0.984 0.952 0.938 1.000 0.000 0.746 

A second WLS is then computed: 
Y = 10.4 + 8.80 X t = 2.73 p = 0.07 

Though the slope has diminished from the OLS line, the significance has greatly 
increased due to the lower weight of the outlier.  Note the similarity between this WLS 
and the Kendall's robust line.  A residuals plot shows that the WLS line fits most of the 
data much better than with OLS.  The outlier's influence on the slope has diminished, 
and its residual remains large. 
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Some object: "Isn't this WLS line the same as throwing away the outlier -- it has a weight 
of zero?" The difference is that the outlier was determined to be downweighted to zero 
by the data itself, not an arbitrary decision by the data analyst.  Weighted least squares 
also allows outliers to have partial weights, not simply a zero or one weight as with 
discarding the outlier.  So WLS is far less arbitrary and far more consistent in its 
assignment of weights to all data points than is throwing away outliers. 

10.4 r2 = 0.76 

-6.0

 -3.0 

Lowering 

0.0  6.0  12.0  18.0  24.0 

Smooth 

OLS 

i − 2.07 − 

Years

Lower ng = 0.167 •Years 

OLS does not follow the data as well as the smooth because the data are nonlinear. 

10.5 	 Plotting the 20 years of joint data shows that curvature and heteroscedasticity exist, and 
transformation is required before regression.  Thus the natural logs of both are taken.  A 
linear relation results, as shown in the following plot. 
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Regression between the 20 year joint record at the two stations is: 
Ln(Short) = 1.095 + 0.507•Ln(Base) t = 6.00 p <0.001 R2 = 0.67 

Using this equation and the 30 additional years of record at Base, 30 years of simulated 
flows at Short are generated. Now the LOC is used to generate estimates of the "Short" 
30-year record.  Summary statistics for the 20 years of joint Ln(Base) and Ln(Short) 
records are as follows: 

n Mean Stdev Median P25 P75 
Ln(Short) 20 2.319 0.524 2.160 1.862 2.850 
Ln(Base) 20 2.414 0.844 2.190 1.802 3.200 

From equation 10.10, 
Yi = Y + sign[r]• 

sy 
•(Xi − X),  orsx

Ln(Short) = 2.319 + (.524/.844) • (Ln(Base) − 2.414) 
= 0.820 + .621 • Ln(Base) 

Note how the slope and intercept for LOC differ from the regression coefficients.  
Summary statistics for the estimated flows at "Short" by the two methods are compared 
to the true 30-year record from Appendix C13 in the following table. 

n Mean Stdev Median P25 P75 
OLS est. 30 2.2087 0.4975 2.0228 1.7731 2.6249 
LOC est. 30 2.184 0.609 1.956 1.651 2.694 
true values 30 2.079 0.613 1.930 1.630 2.290 
The standard deviation for the regression estimate is too small, as expected. 

jkmonson
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Boxplots are presented below for three groups: the 30-year estimates using regression 
and LOC combined with the 20-year record at Short, and the actual 50-year record.  
LOC comes closer to correctly estimating the lowest and highest flows.  The regression 
estimates are too low for high flows, and too high for low flows.  They "regress" toward 
the mean more than the actual data because the standard deviation of the estimates is 
too small, as R2 <1. 

* 

* 

* ** O O

 0  12  24  36  48 
Flow at Short 

OLS est 

LOC est 

actual 

10.6 Not answered. 

Chapter 11 

11.1	 The full multiple regression model contains strong multi-collinearity.  The VIFs among 
the four percentage variables are huge: 
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LOGTN = − 1.3 + 0.596 LOGDA + 0.346 LOGIMP + 0.0314 MMJTEMP 
− 0.0494 MSRAIN + 0.040 PRES + 0.035 PNON + 0.037 PCOMM + 
0.024 PIND 

n = 42 s = 0.61 R2 = 0.59 
Parameter Estimate Std.Err(β) t-ratio p  VIF 
Intercept β0 −1.28 24.60 −0.05 0.959 
Slopes βk 
LOGDA 0.596 0.121 4.94 0.000 1.8 
LOGIMP 0.346 0.228 1.52 0.138 3.8 
MMJTEMP 0.031 0.019 1.65 0.107 10.1 
MSRAIN −0.049 0.021 −2.32 0.026 9.1 
PRES 0.040 0.245 0.16 0.873 9227.2 
PNON 0.035 0.246 0.14 0.888 3062.2 
PCOMM 0.037 0.245 0.15 0.882 8311.4 
PIND 0.024 0.246 0.10 0.922 2026.2 

Table 11.9   Regression statistics and VIF's for Exercise 11.1 

To determine why the multi-collinearity is so strong, the correlation matrix is computed. 

LOG MMJ MS

 LOGTN LOGDA IMP TEMP RAIN PRES PNON PCOMM 
LOGDA 0.565 
LOGIMP  0.058 -0.382 
MMJTEMP -0.205 -0.188 0.094 
MSRAIN -0.259 -0.083 0.018 0.915 
PRES 0.294 0.210 -0.246 0.040 0.003 
PNON -0.042 0.319 -0.639 0.066 0.065 -0.321 
PCOMM -0.218 -0.441 0.589 -0.027 0.039 -0.747 -0.206 
PIND -0.131 0.060 0.114 -0.111 -0.164 -0.226 -0.124 -0.180 

Surprisingly, the percentage terms do not have large pair-wise correlation coefficients.  
Instead, they are strongly related in that the four of them add to 100%, except for 
rounding error.  This is why the VIFs are so large.  Therefore at least one of them should 
be dropped. The variable with the smallest partial F (PIND) could be chosen.  This 
brings the VIF down from over 9000 to 10, still large.  In order to save much time the 
Cp and PRESS statistics can be computed for all possible models.  The results below 
show that the best 5-variable model, containing LOGDA, LOGIMP, MMJTEMP, 
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MSRAIN, and PIND, is the best in terms of prediction errors (PRESS) and model 
bias/standard error (Cp).  VIFs are below 10 (R2 < 0.9) and so are acceptable. 

X: Variable is in the model
 M 


L M M 


L O J S P 


O G T R P P C P 


G I E A R N O I 

# of . D M M I E O M N 


Vars R-sq PRESS C-p Max VIF A P P N S N M D 


1 32.0 22.9 17.0 ---- X 


1 8.6 30.0 35.8 
 ---- X 


X 

X 


X 


X 


X 


X 

2 40.7 21.2 11.9 
 1.2 X 

2 37.5 22.2 14.5 
 1.1 X 

3 46.4 20.2 9.3 
 1.2 X X 

3 45.2 19.8 10.3 
 1.2 X X 

4 51.2 18.9 7.4 
 1.2 X X X 

4 50.9 19.8 7.7 
 1.2 X X X 

* 5 	 57.0 17.8 4.7 
 6.8 X X X X X 


X 


X 


X 


X 

X 

X 

5 56.2 18.0 5.4 
 7.5 X X X X 

6 59.1 18.2 5.1 
 7.1 X X X X X 

6 58.6 18.9 5.4 
 7.1 X X X X X 

7 59.1 19.4 7.0 
 10.0 X X X X X X 

7 59.1 19.4 7.0 
 13.2 X X X X X X 

8 59.1 20.1 9.0 
 9227 X X X X X X X 

A residuals plot from the minimum PRESS and Cp model shows no hint of curvature or 
increasing variance. Therefore this model is preferred. 
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Residuals plot for the regression of Exercise 11.1 

11.2 First compare those models which have equal numbers of parameters and eliminate the 
ones with higher SSE. 


Compare 4 to 7 , eliminate 4 

Compare 3 to 6 , eliminate 3 

Compare 2 to 5 , eliminate 2 

Compare 6 to 8 , eliminate 6 


Now, for the remaining models (1, 5, 7, 8, 9. 10) perform F tests between pairs of nested 
models. The order in which to proceed is arbitrary. 
Compare F dfnumdfdenom Fcrit conclusion 
Models  1 to 5 11.18 1 123 3.9 reject H0,eliminate model 1 
Models  5 to 7 0.28 2 121 3.1 do not reject eliminate model 7 
Models  5 to 8 1.39 1 122 3.9 do not reject eliminate model 8 
Models  5 to 9 0.77 3 120 2.68 do not reject eliminate model 9 
Models  5 to 10 0.88 5 118 2.29 do not reject eliminate model 10 
Model 5 is the preferred model. 
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Another possible approach is to use either PRESS or Mallows Cp. 
Model p s2  Cp

 1 3 0.5636 14.29 
2 4 0.5350 8.37 
3 5 0.5343 9.17 
4 6 0.5359 10.51 
5 4 0.5183 4.41 
6 5 0.5207 5.98 
7 6 0.5245 7.84 
8 5 0.5166 5.00 
9 7 0.5212 8.06 
10 9 0.5208 9.95 

The results are interpreted as:  the transport curve is quadratic with a shift in intercept 
for the winter months. Only two seasons (not three) can be distinguished.  The slope of 
the curve does not change with season. 

11.3 Not answered. 

11.4 Not answered. 

Chapter 12 

12.1	 Regression
  load = 25,250 − 12.6 year r2 = 10.6% 

(t) (1.53) 	 (−1.50) two-sided p value = 0.134 
Multiple regression

  load = 28,152 − 14.4 year + 0.696 q r2 = 88.3% 


(t) (4.69) (−4.60) (10.91) two-sided p value ≅ 0.0001 
Mann-Kendall
  load = 11,800 − 5.8 year two-sided p value = 0.415 
Mann-Kendall on Residuals 
Regression model is load = −110 + 0.681 q r2  = 74.5% 

(t) (−1.24) (7.44) 

Kendall fit: 	 residual = 28,250 − 14.4 year two-sided p value = 0.0001 
therefore  load 	 = −110 + 0.681q + residual 


= −110 + 0.681q + 28,250 − 14.4 year 

= 28,140 − 14.4 year + 0.681q 
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12.2	 Winter: P = 16,  M = 34,  S = -18 
1 tie of 3, 2 ties of 2 
Var[S] = 159.33 
Z = −1.347 
p = 0.18 very little evidence of downtrend in winter lead 

Spring: P = 27, M = 38, S = −11 

3 ties of 2,  1 tie of 5 

Var[S] = 249 

Z = 0.633 

p = 0.53 no evidence of downtrend in spring lead 


Summer: P= 16, M = 33, S = −17 
1 tie of 4 
Var[S] = 156.33 
Z = −1.28 
p = 0.20 very little evidence of downtrend in summer lead 

Fall:  P = 11,  M = 37,  S = −26 
1 tie of 4, 1 tie of 2 
Var[S] = 155.33 
Z = 2.005 
p = 0.045 fairly strong evidence of downtrend in fall lead 

Seasonal Kendall:  S = −72 

VAR[S] = 720 

Z = −2.646 

p (2-sided)= 0.008 


Thus, even though the evidence from no individual season was highly conclusive, the 
data from all seasons taken together provides highly conclusive evidence of a down­
trend in lead. 

12.3	 Maumee River Trends in Total Phosphorus 

12.3.1 	 Parametric analysis first:  LOAD vs TIME 
Simple linear regression: 	  LOAD = 444 − 0.221 TIME 


t = -0.42 p = 0.673 

s = 20.59 R-sq = 0.1% R-sq(adj) = 0.0% 
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A boxplot of the residuals shows them to be terribly skewed.  A transformation is

required.  Try logarithms.  Then the regression equation is: 

ln(LOAD) = 117 − 0.0592 TIME 

  t  =  −1.32 p = 0.189 

s = 1.770 R-sq = 1.3% R-sq(adj) = 0.6% 

There is a fairly normal distribution of residuals, so a test based on regression seems 
legitimate. Very weak evidence of trend --  (two-sided) p-value of  0.189. But are there 
strong flow and/or seasonal effects?  A plot of the residuals versus log of streamflow 
(LQ) shows a strong dependence on flow. Removing this should greatly enhance the 
power to detect any trend which is present.

 - * * 

2.4+ * * 


-

RESID - ** * 


- * 

- 2* 2 


1.2+ 26 *** 

- * *2* 

- * * 22 2 *** 

- * ** * 2* 

- ** *2* 2 * 


0.0+ ***3***2 

- * * *2* ** 2 

- * 33*2 *2* 

- * * ** 2 2 * 

- 2 43* * 


-1.2+ **2**4** * 

- *2 2 ** * 

- * 


--------+---------+---------+---------+---------+-------­

lnQ 


-1.2 0.0 1.2 2.4 3.6 


Boxplots of residuals by month also show a strong seasonal cycle, high in the winter & 
spring, low in summer.  The best model we could find includes time, ln(Q), ln(Q)2, and 
sine and cosine of 2πT:

 LLOAD = 83.3 − 0.0425 TIME + 1.08 lnQ + 0.0679 ln(Q)2 − 0.0519 SIN + 0.141 COS 

Predictor Coef Stdev t-ratio p


 Constant 83.32 22.06 3.78 0.000 


TIME -0.04250 0.01115 -3.81 0.000 


lnQ 1.08175 0.04947 21.87 0.000 


ln(Q)2  0.06789 0.01868 3.63 0.000 


SIN -0.05190 0.06252 -0.83 0.408 


COS 0.14058 0.05441 2.58 0.011 


s = 0.4398 R-sq = 94.1% R-sq(adj) = 93.9% 
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This is interpreted as a strong evidence of downtrend, with a p-value  <.001 The slope 
(in log units) = −0.0425 per year.  All coefficients are significant at α = 0.05 except for 
sine(2πT).  The sine must either be left in, or both it and the cosine taken out.  To test 
whether together they are significant, an F test is performed.  The model without these 
terms, with the standard error s = 0.449, is: 

LLOAD = 85.1 − 0.0434 TIME + 1.06 LQ + 0.0748 LQSQ 

Predictor Coef Stdev t-ratio p


 Constant 85.09 22.51 3.78 0.000 


TIME -0.04340 0.01138 -3.81 0.000 


lnQ 1.05921 0.04518 23.44 0.000 


ln(Q)2  0.07481 0.01865 4.01 0.000 


s = 0.4490 R-sq = 93.7% R-sq(adj) = 93.6% 


So the F test to compare these two models is: 


 F = 
(26.01 - 24.57) / 2.0


 0.193  = 3.73 

Comparing to an F distribution with 2 and 127 degrees of freedom, the two-sided p­
value is 0.027.  Therefore reject the simpler model in favor of including the seasonal sine 
and cosine terms. 

To predict estimates of load for the two times and two flow conditions above, natural 
logs of these values are input to the regression equation.  The third column below 
reports the predicted logs of Load from the regression equation. 

lnQ Time Predicted lnL Bias-Corrected L


 2.4 1972.5 2.3356 11.3852 


0.0 1972.5 -0.6516 0.574136 


2.4 1986.5 1.7406 6.27963 


0.0 1986.5 -1.2467 0.316640 


These predicitons must be transformed and corrected for bias.  Using the Ferguson 
(MLE) bias correction, 0.5•s2 = 0.5•(0.4398)2 = 0.097 . So the bias correction equals 
exp(0.097), or about 10%. The four predicted total phosphorus loads are given above in 
the fourth column. 

Therefore the percent change at high flow over the 14-year time period is: 
(6.2763 − 11.3852) / 11.3852 = −0.448732 


The change in percent per year is

−0.448732 • 100 / 14 = −3.205 . That is a −3.2% change in total P per year. 
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The same analysis at lower flow over the 14 years is: 
(0.31664 − 0.574136) / 0.574136 = −0.4485, the same amount as at high flow. 

Re-expressing the slope estimate in original units as a percent change, the average 
change equals −4.2% per year: 

100 • [exp (−0.0425) − 1.0] = −4.16096 

12.3.2 The nonparametric approach 
The seasonal-Kendall test on the original observations, using 12 seasons (months):  Tau 
= −0.06 with a p-value of 0.3835. 

log(Load) = 0.505 − 0.046 •time ,  
where time = 0 at the begining of the first year of the record (typically a water year), and 
time is in units of years. 

Residuals from a regression of log(Load) versus logQ and logQ2 removes the effect of 
flow: 
 log(Load) = −0.745 + 1.06 logQ + 0.0758 logQ2 
The S-K test on the regression residuals: tau = −0.25 with p = 0.0002 
and log(Load) = 0.312 − 0.048 •time  

So, if flow is not first removed, the significant trend would be missed.  Both the 
Seasonal Kendall on the residuals and multiple regression give a highly significant p­
value. The S-K slope is 4.8% rather than 4.16% because of the effect of the low 
residuals during 1972-1977. 

Residuals plot from regression with logQ and logQ2
 -
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12.4 	Not answered. 

12.5 	Nat answered. 

Chapter 13 

13.1 	Not answered 

13.2 	 Because there is only one reporting limit, Kendall's tau can easily be computed for this 
data: tau =  −0.40 with p = 0.023. There is a significant decrease in TPT 
concentrations with depth. 

13.3 	 Estimates of the four descriptive statistics for each of 5 multiple-threshold methods (see 
Helsel and Cohn, 1988) are: 

Method MEAN ST.DEV. MEDIAN IQR 
ZE (substitute zero) 12.36 75.48 0.00 1.10 
HA (substitute 1/2 dl) 13.91 75.28 1.10 3.30 
DL (substitute the dl) 15.45 75.19 1.30 4.10 
MR (prob plot regression) 12.57 75.44 0.29 1.54 
MM (lognormal MLE) 8.30 61.52 0.34 1.62 

Because of the outlier at 560 µg/L the data have more skewness than a lognormal 
distribution, and methods which assume a lognormal distribution for all the data (MM) 
would not be expected to estimate moment statistics well.  It is not surprising therefore 
that the MLE method produces moment estimates dissimilar to the other methods.  We 
generally select the MR moment estimates and the MM quantile estimates (those printed 
in bold), due to the results of Helsel and Cohn (1988). 

Chapter 14 

14.1 	 a) Contingency table 
Expected values  Eij 

     Trend  in  C1- (1974-81, α=0.1) 
∆ road salt appl.

5.44 23.84 16.71 
9.82 43.02 30.15 
13.73 60.13 42.14 

Down No trend Up Totals 
Down 46 

No change 83 
Up 116 

Totals 29 	127 89 245 
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(0-E)2 
Table of E

    Trend  in  C1- (1974-81, α=0.1) 
∆ road salt appl. Down No trend Up Totals 

Down 

No change 


Up 


0.04 2.79 3.56 
1.78 0.02 0.88 
1.01 1.39 3.93 

χ2 = 15.39 df = 4 p = 0.004 
The results indicate that the category of chloride trends is dependent on the category of 
salt applications, with a p-value of 0.004. Where increases in road salt occurred, there 
are more up trends and fewer down trends than would be expected from the marginal 
distributions of up trends and down trends.  Where decreases in road salt occurred, there 
are fewer up trends than would be expected.  

b) Kendall's tau 
P = no. pluses  = 5(44+25+51+55) + 32(25+55) + 14(51+55) + 44(55) = 7339 
M = no. minuses = 32(14+10) + 9(14+44+10+51) + 44(10) + 25(10+51) = 3804 
S = 7339 - 3804 = 3535. 

3535 
=τ b (2452 - (462+ 832+ 1162)) (2452 - (292+ 1272+ 892)) 

2 
= 3535 /18164 = 0.19 

To test for significance, 

* 1− (.193 + .343 + .473))* 1−(.123 + .523 + .363))σS ≅ 
1	 ( (
9 

(0.85 * 0.81*2453)
= 	 = 1061 

9 

and so ZS = 3534/ 1061 = 3.33 and two-sided p= 0.0008.   
The two variables are significantly and positively related. 

c) 	Kendall's tau is more appropriate because 
1. 	It includes the information that the variables are ordinal into the test.  The p-value for 

Kendall's tau is lower than that for the contingency table, reflecting this additional 
information. 

2. 	It provides a measure of the direction of association τ b. Since τ  is positive, the 
trends in Cl- increase with increasing trends in road salt application. 
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14.2 	 Based on the tables below, there is a significant association between location of the well 
and the probability of detecting volatiles.  The more protected downdip wells indeed 
have less chance of being contaminated than do the outcrop wells. 

Expected values  Eij 
 Location Non-detects Detect VOC Totals 

Downdip 91.92 23.08 115 
Outcrop 143.08 35.92 179 

Totals 235 59 294 

(0-E)2 
Table of E

 Location Non-detects Detect VOC 
Downdip 2.16 8.59 
Outcrop 1.39 5.52 

χ2 = 17.647 df = 1 p = <0.0001 

14.3	 To test for association, Kendall's tau-b is used because both time and concentration 
variables are ordinal.  Computations are shown in the boxes below. 
 TBT Concentration

 Year ≤ 200 > 200 Ai ai 
1988 2 7 

9 13 
10 10 

9 0.18 
1989 22 0.43 
1990 20 0.39 

Cj 21 30 51 
cj 0.41 0.59 1.0 

The number of pluses P = 2(13+10) + 9(10) = 136 

The number of minuses M = 7(9+10) + 13(10) = 263 

So S = 136 − 263 = −127. 


To compute the denominator of τb, SSa = 92 + 222 + 202 = 965. 
SSc = 212 + 302 = 1341. 

-127
and τ b = 

-127


(512 - 965) (512 - 1341) 
= 717.9 = −0.18. 


2


From equation 14.9 the approximate value of σS is 
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σS ≅ 
1 
9 • (1-(0.183+0.433+0.393))•(1-(0.413+0.593)) 3 

≅ 
(0.86)•( 3 

9 = 9253 = 96.2 

•51

0.73)•51

-127+1 
= −1.31ZS ≅ 96.2 

and from a table of the normal distribution the one-sided p-value is  p = 0.095. 
Therefore Ho: τ b = 0 is not rejected at α=0.05, but is for α = 0.10. Thus there is weak 
evidence of a downtrend in TBT concentrations based on a split at 200 ng/L.  Stronger 
evidence could be obtained by collecting data for subsequent years, or by obtaining 
better resolution of the data (the original data reported concentration values rather than 
a split at 200 ng/L). 

Chapter 15 

15.1 Logistic regression for the full model with four explanatory variables gives: 

 Variable Parameter 
Name Estimate

 Constant −13.20539 

 Thick 0.51527 


Yields 0.42909 

 GW Qual 0.03035 


Hazard 1.08952 


Standard 
 Error Wald's t p-value

3.55770 −3.71 0.0002 
0.15093 3.41 0.0004 
0.27484 1.56 0.0607 
0.32460 0.09 0.4642 
0.29860 3.65 0.0002 

with a likelihood ratio lro = 49.70 and p<0.000 as compared to the intercept-only 
model. However, two of the variables (Yields and GW Qual) have insignificant t­
statistics. In the following model they are dropped, and lro recomputed: 

 Variable Parameter 
Name Estimate


 Constant −10.89039 

 Thick 0.46358 


Hazard 1.07401 


Standard 
 Error Wald's t p-value

2.43434 −4.47 <0.0001 
0.13575 3.41 0.0004 
0.28301 3.80 0.0001 

with a likelihood ratio lro = 52.54 and p<0.000 as compared to the intercept-only 
model. The partial likelihood ratio to test whether the first model is significantly better 
than the simpler second model is: 

lr = lro(simple) − lro(complex) = 52.54 − 49.70 = 2.84 
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which for a chi-square distribution with 2 degrees of freedom gives: 
p = 0.242. 

Therefore the two additional variables (Yields and GW Qual) do not appreciably add to 
the explanatory power of the model. 
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3-dimensional rotation, 60 

7-day 10-year low flow, 83 

additive relation, 42, 142 


checking for, 186 

adjacent values, 26 

adjusted R2, 399 

adjusted variable Kendall test, 336 

adjusted variable plots, 301 

AIC, 399 

Akaike's information criteria, 399 

aligned-ranks, 192 

alpha level, 107 

alpha level, 68 

alternate hypothesis, 104 

analysis of variance, 158 


ANOVA table, 168 

assumptions of, 166 

multi-factor, 170 

on the ranks, 163 

on within-block ranks, 191 

one-factor, 164 

two-factor ANOVA table, 174 

two-way rank tests, 170 

unbalanced design, 179 


angles, judgment of on graphs, 417 

ANOVA. see analysis of variance 

area, judgment of on graphs, 416 

assumption of independence, 252 

asymmetric confidence intervals, 69 


for the mean, 76 

attained significance level, 108 

autocorrelation.  see serial correlation 


bar chart, 62, 206 

grouped, 422 

stacked, 421 


bias correction, 258 

bisquare weight function, 284 

block effect, 196 

blocking, 181, 197 

Blom plotting position, 24 

boxplots, 24, 39, 423 


side-by-side, 129 

boxplots, 128, 207 

bulging rule, 230 

business graphics, 412 

categorical variables


Kruskal-Wallis test for, 382 

categories, 19 

censored data, 3, 124, 128 


guidelines for use, 373 

in trend tests, 353 

nonparametric tests, 366 

parametric tests, 366 

regression, 370 


characteristics of data, 2

chemometrics, 372 

coefficient of determination, 228 

coefficient of skewness, 11 

Cohen's method, 353, 360 

color, use of in graphs, 412 

comparing among distributions, 35 

comparison value, 186 

compliance with water quality standards, 83 

confidence intervals, 66 


for percentiles, 82 

for percentiles (nonparametric), 84 
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confidence intervals, cont. 

for percentiles (parametric), 90 

for regression line, 242 

for skewed data, 69 

for the mean, 75 

for the median, 70 


confidence level, 68 

constant variance assumption, 255 

contingency tables, 378 


for censored data, 372 

continuity correction, 122, 141, 147 

control chart, 93 

Cook's D, 250 

correction for ties


Kendall's tau;, 215 

rank-sum test, 123 


correlation, 209 

monotonic, 210 


correlation coefficient, 210 

linear, 218 

nonparametric, 212 


critical values

lower, 113 

upper, 113 


cumulative distribution function, 23 

cumulative line graph, 419 

cumulative logits, 406 

Cunnane plotting position, 22, 24, 114 

degrees of freedom, 160, 167, 297, 310, 380 

detection limit, 3, 128 


guidelines for use of data, 373 

more than one, 354 

trend tests for data below, 353 


DFFITS, 250 

difference between group means, 135 


confidence interval for, 135 

differences between groups


estimators, 132 

discriminant function analysis, 402 

dot and line plot, 36, 38 
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dot charts, 423 

Duncan's multiple range test, 199, 200 

Durbin-Watson statistic, 253 

efficiency 


asymptotic relative, 102 

Kendall vs. OLS, 268 


equal variance, 124 

error rate, 107, 110 


overall, 199 

pairwise, 199 


error sum of squares, 167, 196 

exogenous variables in trend tests, 330

expected value, 224 

explanatory variable, 99, 158, 222 

extension of records, 278 

factor, 158 

factorial ANOVA, 170 


assumptions of, 173 

far-out values, 26 

fixed effects, 180 

flood-frequency, 24 

flow-duration, 24 

framed rectangle, 421 

Friedman test, 170, 187, 192 


large sample approximation, 188 

F-test, 168, 174 

geometric mean, 7, 73 


estimation for censored data, 361 

geometric mean functional regression, 276 

graphical analysis, 19 

graphical comparisons, 35 

graphical methods, 128 

graphics, 205 

graphs 


pie chart, 416 

angle and slope, 417 

boxplots, 423 

cumulative line graphs, 419 

dot charts, 423 

framed rectangles, 421 
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graphs, cont.

grouped bar charts, 422 

hidden scale breaks, 428 

judgments of length, 420 

misleading, 424 

overlapping histograms, 429 

precision of, 411 

stacked bar charts, 422 

use of color, 412 

use of numbers on, 427 

use of perspective, 424 

use of shading, 413 


Gringorten plotting position, 24 

Gumbel distribution, 90 

harmonic mean, 199 

Hazen plotting position, 24 

heavy tails, 2 

heteroscedasticity, 124, 230, 255, 280 

hinges, 25 

histograms, 206, 429 

histograms, 19, 36 

Hodges-Lehmann estimator, 132, 155 


confidence interval for, 133, 155 

for step trend, 349 


homoscedasticity, 51 

homoscedasticity, 13 

hypothesis tests, 97, 109


choice of, 101 

classification, 99 

classification of, 106 

exact, 103 

with censored data, 365 


independent groups, 117 

inequality of variance, 124 

influence, 4, 248, 250 

interaction, 172 

intercept, 226 


confidence interval for, 240 

deletion of, 240 

nonparametric, 268 


interquartile range, 9, 24 

interval estimates, 66 

invariance to rotation, 280 

IQR, 9

iteratively weighted least squares, 283 

joint probability, 379 

Kendall's nonparametric line;, 370 

Kendall's nonparametric line; .i.Sen slope 

estimate; .regression 


nonparametric;, 266 

Kendall's S statistic, 272 

Kendall's tau, 326 


for categorical variables., 386 

for censored data, 372 

large sample approximation;, 213 

tie correction;, 215 


Kendall's tau; .i.tau;, 212 

Kendall's tau-b;)., 386 

kite diagram, 54 

Kruskal-Wallis test, 158, 159 


for categorical variables, 382 

large sample approximation, 160 

rank transform approximation, 163 


ladder of powers, 14, 15, 31, 119, 230 

large sample approximation, 103, 121 

least normal squares, 279 

least significant range, 198 

least squares, 228 

length, judgment of on graphs, 420 

leverage, 248 

likelihood ratio, 397 

likelihood-R2, 398 

line of organic correlation, 276 

linear regression. see regression 

linearity, 13 

linearity, 46 

LOC, 276 

log likelihood, 397 
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logistic regression, 395

for censored data, 371 

for multiple responses, 403 


logistic transformation, 396 

logit, 396 

loglinear models, 390 

lognormal, 2 

lognormal distribution, 73 

LOWESS, 47, 288 


use in trend tests, 335 

LOWESS, 325 

MAD, 10, 284 

Mann-Kendall trend test, 326 


with censored data, 354 

Mann-Whitney test, 118 

MARA, 192 

marginal probability, 379 

mass transport, 258

matched-pair tests 


graphical presentation of, 152 

maximum-likelihood, 360 


tobit regression, 370 

mean 


asymmetric confidence interval for, 76 

confidence interval for, 75 


mean difference, 157 

mean square error, 228 

mean squares, 167, 174 

measures of location, 3 

median, 6 


confidence interval for, 70 

test for differences in, 118, 159 


Median Aligned-Ranks ANOVA, 192 

median difference, 154 

median polish, 182 

mixed effects, 181 

MLE, 360 


tobit regression, 370 

mode, 7 

monotonic correlation, 210 
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monotonic trend, 327 

MOVE, 276 

moving average, 286 

moving medians, 286 

multiple comparison test


graphical display of, 208 

multiple comparison tests, 197 


for categorical variables, 385 

nonparametric, 198, 203 


multiple regression, 237 

use as a trend test, 337 


multiplicative relation, 43 

multiply-censored data, 353 


hypothesis tests for, 368

nonparametric tests for, 368 


multivariate graphical methods, 52 

nominal response variables, 406 

non-normality, 92, 124 

nonparametric interval estimate, 70 

nonparametric prediction intervals, 77 

nonparametric test for percentiles, 86 

nonparametric tests, 101 


comparison to parametric, 102 

for censored data, 366 


normal distribution, 2, 26, 31, 113 

normal probability plot, 24, 114 

normal quantiles, 28, 114 

normal scores, 114 

normality 


of test statistics, 121 

test of, 102, 113, 166 


normality assumption, 150 

null hypothesis, 104, 107, 108 


not rejecting, 109 

rejecting, 109 


odds ratio, 396 

OLS, 222 

one-sided p-value, 112 

one-sided tests, 105, 109 

ordinal variables, 386 
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ordinary least squares, 222 
outliers, 12, 92 

tests for, 92 
outliers, 2, 31, 38, 127, 250 
outside values, 26 
overall error rate, 199 
paired observations, 138 
paired t-test, 148 

assumptions of, 148 
computation, 149 

pairwise comparisons, 199 
pairwise error rate, 199 
parametric c. i. for the median, 73 
parametric prediction intervals, 80 
parametric tests, 100 

comparison with nonparametric, 102 
with censored data, 365, 366 

partial likelihood ratio, 398 
Pearson Type III distribution,, 90 
Pearson's r, 218 
percent exceedance, 30 
percentiles 

confidence interval for, 83 
parametric tests for, 91 
water quality, 83 

percentiles, 9 
perceptual tasks for interpreting graphs, 412 
perspective, use of in graphs, 424 
pie chart, 62 
pie charts, 416 
Piper diagram, 58, 59 
Piper smooth, 59 
plotting position, 22, 23, 30, 114 
point estimates, 66 
polar smooth, 48, 292 
population, 2 
positive skewness, 10 
power, 95, 100, 107 

lack of, 124, 127 
loss of, 102, 150 

power, 102 
power transformation 

effect on paired t-test, 151 
effect on rank-sum test, 118 
effect on signed-rank test, 144 

power transformations, 177 
avoiding, 265 
effect on t-test, 128 
invariance to, 327 
WLS as an alternative, 282 

PPCC test, 113 
precision of graphs, 411 
prediction interval, 66, 243 

asymmetric, 81 
nonparametric, 77, 79, 81, 244 
one-sided, 79 
parametric, 80, 81 
symmetric, 81 
two-sided, 78 

prediction residual, 249 
PRESS statistic, 249 
principal components analysis, 59 
probability paper, 29 
probability plot, 27, 31, 35, 41 
probability plot correlation coefficient, 35 
probability plot correlation coefficient, 113 
profile plot, 53 
p-value, 108, 111 

one-sided, 113 
two-sided, 112, 113 

Q-Q plot, 42, 43, 128, 129 
construction, 45 

quality control, 93 
quantile plot, 22, 206 
quantile-quantile plot, 129 
quantiles, 22, 83 
quantiles, 42 
quartile, 9 
quartile skew coefficient, 11 
r squared, 228 
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random effects, 180 

randomized complete block design, 182, 187 

rank transform test, 194 

rank transformation test, 123, 170, 203 

ranks, 7 

ranks, 104 

rank-sum test, 110, 118 


an alternative to logistic regression, 402 

as a test for trend, 349 


rating curve, 258 

record extension, 278 

regression, 221


for censored data, 369 

regression 


as a test for trend, 328 

assumptions, 224

confidence interval on mean response, 

242 

diagnosing problems, 232 

guide to model selection, 263, 316 

hypothesis testing, 238 

non-normal residuals, 268 

nonparametric, 266 

normality assumption, 236 

robust, 269, 283 

validation of equation, 249 


regression diagnostics, 238, 246 

rejection region, 113 

reliability, 66 

replicates, 194 

replication 


ANOVA without, 194 

residuals, 31, 226 


prediction, 249 

standardized, 249 

studentized, 249 

testing for normality, 236 

use in trend tests, 332 


residuals plot, 187, 232 

trend, 234 
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resistant, 6

response variable, 99, 222 

rho, 217 

risk tolerance, 108 

RMSE, 358 

robust, 11 

robust regression, 269 

root mean squared error, 358 

sample, 2 

sample size, estimating, 95 

sampling design, 95

Satterthwaite's approximation, 126 

scale breaks, 428 

scatterplot matrix, 61 

scatterplots, 46, 423 

schematic plot, 26 

seasonal Kendall test, 339 

seasonal rank-sum test, 350 

seasonal variation, 234 


differences among seasons, 345 

graphics for display of, 344 

modeling, 338 

use of periodic functions, 342 


Sen slope estimate, 266 

serial correlation, 252 


remedies, 254 

shading on graphs, 413 

Shapiro-Wilk test, 115 

sign test, 138, 187 


computation, 138 

large sample approximation, 141 


signed-rank test, 142, 192 

large sample approximation, 146 

rank transform approximation, 148 


significance level, 107, 110 

simple boxplot, 25 

skew, 10 

skewed data, 124 

skewness, 2, 31, 69

skewness, 38, 40, 127 
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slope, 226 tails of the distribution, 10, 31 
confidence interval for, 240 target population, 2 
judgment of on graphs, 417 tau, 212 
test of significance, 238 t-distribution 

smearing estimator, 259 noncentral, 90 
smooth, 46, 47, 48 test statistic, 108 

lower, 292 Theil slope estimate 
LOWESS, 286 computation, 266 
middle, 286 confidence interval for, 273 
outer, 293 efficiency, 268 
upper, 292 for trends, 330 

smooth, 47 with censored data, 354 
smoothing, 286 tie correction 
smoothness factor, 289 for tests with censored data, 354 
spatial trend, 326 tobit regression, 366, 370 
Spearman's rho, 217 tolerance intervals, 83 
spread, 8, 51 tolerance probability, 96 
stacked bar chart, 62 transformation bias 
standard deviation, 9, 36 in regression, 258 
standard error, 36, 228 of MLE, 360 
standardized residual, 249 transformations, 31, 103, 166, 177, 255 
star diagram, 54, 58 consequences in regression, 256 
statistical maps, 413 transformations, 13, 230 
statistical tables, 113 t-ratio, 232 
stem and leaf diagram, 20 trend 
step trend, 349 exponential change, 347 

when to test for, 351 trend analysis 
Stiff diagram, 53, 58 including exogenous variables, 330 
studentized range, 198 nonparametric, 335 
student's t statistic, 75 step trends, 349 
sum of squares, 196 use of transformations, 347 
summary statistics, 10 with censored data, 353 

for censored data, 358 trend slope, 330 
with multiple reporting limits, 364 seasonal, 341 

sums of squares, 173 trilinear diagram, 57 
symmetric confidence intervals, 68, 75 trimmed mean, 7 
symmetry, 13 truncated boxplot, 26 

assumption of, 151 
table of test statistic quantiles, 110 
tables, deficiencies of, 410 
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t-test, 103, 124 

as a test for trend, 349 

assumptions of, 124 

computation of, 125 

for multiple comparisons, 199 

on ranks, 127 

problems with, 124 

violation of assumptions, 127 


Tukey's multiple comparison test, 199, 201 

two-factor ANOVA, 193, 194 

two-sided tests, 105, 111 

Type I error, 107 

Type II error, 107 
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unequal sample sizes, 179

unequal variances, 126 

variance, 9 


confidence interval for, 240 

violation of test assumptions, 150 

Wald's t-statistic;, 398 

Weibull plotting position, 24 

weight function, 288 

weighted least squares, 281 

whisker, 25 

WLS, 281 
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