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Preface

This book began as class notes for a course we teach on applied statistical methods to
hydrologists of the Water Resources Division, U. S. Geological Survey (USGS). It reflects our
attempts to teach statistical methods which are appropriate for analysis of water resources data.
As interest in this course has grown outside of the USGS, incentive grew to develop the material
into a textbook. The topics covered are those we feel are of greatest usefulness to the practicing
water resources scientist. Yet all topics can be directly applied to many other types of
environmental data.

This book is not a stand-alone text on statistics, or a text on statistical hydrology. For example,
in addition to this material we use a textbook on introductory statistics in the USGS training
course. As a consequence, discussions of topics such as probability theory required in a general
statistics textbook will not be found here. Derivations of most equations are not presented.
Important tables included in all general statistics texts, such as quantiles of the normal
distribution, are not found here. Neither are details of how statistical distributions should be
fitted to flood data -- these are adequately covered in numerous books on statistical hydrology.

We have instead chosen to emphasize topics not always found in introductory statistics
textbooks, and often not adequately covered in statistical textbooks for scientists and engineers.
Tables included here, for example, are those found more often in books on nonparametric
statistics than in books likely to have been used in college courses for engineers. This book
points the environmental and water resources scientist to robust and nonparametric statistics,
and to exploratory data analysis. We believe that the characteristics of environmental (and
perhaps most other 'real’) data drive analysis methods towards use of robust and nonparametric
methods.

Exercises are included at the end of chapters. In our course, students compute each type of
analysis (t-test, regression, etc.) the first time by hand. We choose the smaller, simpler examples
for hand computation. In this way the mechanics of the process are fully understood, and
computer software is seen as less mysterious.

We wish to acknowledge and thank several other scientists at the U. S. Geological Survey for
contributing ideas to this book. In particular, we thank those who have served as the other
instructors at the USGS training course. Ed Gilroy has critiqued and improved much of the
material found in this book. Tim Cohn has contributed in several areas, particularly to the
sections on bias correction in regression, and methods for data below the reporting limit.
Richard Alexander has added to the trend analysis chapter, and Charles Crawford has
contributed ideas for regression and ANOVA. Their work has undoubtedly made its way into
this book without adequate recognition.



xii

Professor Ken Potter (University of Wisconsin) and Dr. Gary Tasker (USGS) reviewed the
manuscript, spending long hours with no reward except the knowledge that they have improved
the work of others. For that we are very grateful. We also thank Madeline Sabin, who carefully
typed original drafts of the class notes on which the book is based. As always, the responsibility
for all errors and slanted thinking are ours alone.

Dennis R. Helsel

Robert M. Hirsch

Reston, VA USA
June, 1991

Citations of trade names in this book are for reference purposes only, and do not reflect endorsement by the

authors or by the U. S. Geological Survey



Summarizing Data

When determining how to appropriately analyze any collection of data, the first consideration
must be the characteristics of the data themselves. Little is gained by employing analysis
procedures which assume that the data possess characteristics which in fact they do not. The
result of such false assumptions may be that the interpretations provided by the analysis are
incorrect, or unnecessarily inconclusive. Therefore we begin this book with a discussion of the
common characteristics of water resources data. These characteristics will determine the

selection of appropriate data analysis procedures.

One of the most frequent tasks when analyzing data is to describe and summarize those data in
forms which convey their important characteristics. "What is the sulfate concentration one
might expect in rainfall at this location"? "How variable is hydraulic conductivity"? "What is
the 100 year flood" (the 99th percentile of annual flood maxima)? Estimation of these and
similar summary statistics are basic to understanding data. Characteristics often described
include: a measure of the center of the data, a measure of spread or variability, a measure of the
symmetry of the data distribution, and perhaps estimates of extremes such as some large or small

percentile. This chapter discusses methods for summarizing or describing data.

This first chapter also quickly demonstrates one of the major themes of the book -- the use of
robust and resistant techniques. The reasons why one might prefer to use a resistant measure,

such as the median, over a more classical measure such as the mean, are explained.



2 Statistical Methods in Water Resources

The data about which a statement or summary is to be made are called the population, or
sometimes the target population. These might be concentrations in all waters of an aquifer or
stream reach, or all streamflows over some time at a particular site. Rarely are all such data
available to the scientist. It may be physically impossible to collect all data of interest (all the
water in a stream over the study period), or it may just be financially impossible to collect them.
Instead, a subset of the data called the sample is selected and measured in such a way that
conclusions about the sample may be extended to the entire population. Statistics computed
from the sample are only inferences or estimates about characteristics of the population, such as
location, spread, and skewness. Measures of location are usually the sample mean and sample
median. Measures of spread include the sample standard deviation and sample interquartile
range. Use of the term "sample" before each statistic explicitly demonstrates that these only
estimate the population value, the population mean or median, etc. As sample estimates are far
more common than measures based on the entire population, the term "mean" should be
interpreted as the "sample mean", and similatly for other statistics used in this book. When

population values are discussed they will be explicitly stated as such.

1.1 Characteristics of Water Resources Data

Data analyzed by the water resources scientist often have the following characteristics:

1. Alower bound of zero. No negative values are possible.

2. Presence of 'outliers', observations considerably higher or lower than most of the data,
which infrequently but regularly occur. outliers on the high side are more common in water
resources.

3. Positive skewness, due to items 1 and 2. An example of a skewed distribution, the
lognormal distribution, is presented in figure 1.1. Values of an observation on the
horizontal axis are plotted against the frequency with which that value occurs. These
density functions are like histograms of large data sets whose bars become infinitely narrow.
Skewness can be expected when outlying values occur in only one direction.

4. Non-normal distribution of data, due to items 1 - 3 above. Figure 1.2 shows an important
symmetric distribution, the normal. While many statistical tests assume data follow a
normal distribution as in figure 1.2, water resources data often look more like figure 1.1. In
addition, symmetry does not guarantee normality. Symmetric data with more observations
at both extremes (heavy tails) than occurs for a normal distribution are also non-normal.

5. Data reported only as below or above some threshold (censored data). Examples include
concentrations below one or more detection limits, annual flood stages known only to be
lower than a level which would have caused a public record of the flood, and hydraulic
heads known only to be above the land surface (artesian wells on old maps).

6. Seasonal patterns. Values tend to be higher or lower in certain seasons of the year.
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7. Autocorrelation. Consecutive observations tend to be strongly correlated with each other.
For the most common kind of autocorrelation in water resources (positive autocorrelation),
high values tend to follow high values and low values tend to follow low values.

8. Dependence on other uncontrolled variables. Values strongly covary with water discharge,

hydraulic conductivity, sediment grain size, or some other variable.

Methods for analysis of water resources data, whether the simple summarization methods such
as those in this chapter, or the more complex procedures of later chapters, should recognize

these common characteristics.

1.2 Measures of Location

The mean and median are the two most commonly-used measures of location, though they are
not the only measures available. What are the properties of these two measures, and when

should one be employed over the other?

1.2.1 Classical Measure -- the Mean
The mean ()_( ) is computed as the sum of all data values X, divided by the sample size n:

- X

X=37 [1.1]

i=1

For data which are in one of k groups, equation [1.1] can be rewritten to show that the overall
mean depends on the mean for each group, weighted by the number of observations n; in each
group:

— & — N

X= 2 X [1.2]

where X, is the mean for group i. The influence of any one observation Xj on the mean can be

seen by placing all but that one observation in one "group", or

= = (n—-1 1
X= X(j)( )+Xj.H'
_ ¥ T .l
= Xyt X=X g [1.3]

where X (j)is the mean of all observations excluding XJ Each observation's influence on the
overall mean X is (X] — X)), the distance between the observation and the mean excluding

that observation. Thus all observations do not have the same influence on the mean. An
'outlier' observation, either high or low, has a much greater influence on the overall mean X
than does 2 more 'typical’ observation, one closer to its X .
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Another way of illustrating this influence is to realize that the mean is the balance point of the
data, when each point is stacked on a number line (figure 1.3a). Data points further from the
center exert a stronger downward force than those closer to the center. If one point near the
center were removed, the balance point would only need a small adjustment to keep the data set
in balance. But if one outlying value were removed, the balance point would shift dramatically
(figure 1.3b). This sensitivity to the magnitudes of a small number of points in the data set
defines why the mean is not a "resistant" measure of location. It is not resistant to changes in

the presence of, or to changes in the magnitudes of, a few outlying observations.

When this strong influence of a few observations is desirable, the mean is an appropriate
measure of center. This usually occurs when computing units of mass, such as the average
concentration of sediment from several samples in a cross-section. Suppose that sediment
concentrations closer to the river banks were much higher than those in the center. Waters
represented by a bottle of high concentration would exert more influence (due to greater mass
of sediment per volume) on the final concentration than waters of low or average concentration.
This is entirely appropriate, as the same would occur if the stream itself were somehow

mechanically mixed throughout its cross section.

0 10 20 a0 40

Figure 1.3a The mean (triangle) as balance point of a data set.

Figure 1.3b  Shift of the mean downward after removal of outlier.

1.2.2 Resistant Measure -- the Median

The median, or 50th percentile P, ., is the central value of the distribution when the data are
ranked in order of magnitude. For an odd number of observations, the median is the data point
which has an equal number of observations both above and below it. For an even number of

observations, it is the average of the two central observations. To compute the median, first
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rank the observations from smallest to largest, so that X is the smallest observation, up to X ,

the largest observation. Then
median (P ) = X(n+1)/2 when n is odd, and

median (P ) = % (X(n/Z) + X(n/2)+1) when n is even. [1.4]

The median is only minimally affected by the magnitude of a single observation, being
determined solely by the relative order of observations. This resistance to the effect of a change
in value or presence of outlying observations is often a desirable property. To demonstrate the
resistance of the median, suppose the last value of the following data set (a) of 7 observations
were multiplied by 10 to obtain data set (b):

Example 1:
(a) 24891111 12 X= 81 P55=9
(b) 248911 11 120 X = 236 P5o=9

. : (7+1) .
The mean increases from 8.1 to 23.6. The median, the N th or 4th lowest data point,

is unaffected by the change.

When a summary value is desired that is not strongly influenced by a few extreme observations,
the median is preferable to the mean. One such example is the chemical concentration one
might expect to find over many streams in a given region. Using the median, one stream with
unusually high concentration has no greater effect on the estimate than one with low
concentration. The mean concentration may be pulled towards the outlier, and be higher than

concentrations found in most of the streams. Not so for the median.

1.2.3 Other Measures of Location

Three other measures of location are less frequently used: the mode, the geometric mean, and
the trimmed mean. The mode is the most frequently observed value. It is the value having the
highest bar in a histogram. It is far more applicable for grouped data, data which are recorded
only as falling into a finite number of categories, than for continuous data. It is very easy to
obtain, but a poor measure of location for continuous data, as its value often depends on the

arbitrary grouping of those data.

The geometric mean (GM) is often reported for positively skewed data sets. It is the mean of
the logarithms, transformed back to their original units.

GM = exp (Y), where Yj = In (Xj) [1.5]
(in this book the natural, base e logarithm will be abbreviated In, and its inverse e* abbreviated
exp(x) ). For positively skewed data the geometric mean is usually quite close to the median. In

fact, when the logarithms of the data are symmetric, the geometric mean is an unbiased estimate
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of the median. This is because the median and mean logarithms are equal, as in figure 1.2. When
transformed back to original units, the geometric mean continues to be an estimate for the

median, but is not an estimate for the mean (figure 1.1).

Compromises between the median and mean are available by trimming off several of the lowest
and highest observations, and calculating the mean of what is left. Such estimates of location are
not influenced by the most extreme (and perhaps anomalous) ends of the sample, as is the mean.
Yet they allow the magnitudes of most of the values to affect the estimate, unlike the median.
These estimators are called "trimmed means", and any desirable percentage of the data may be
trimmed away. The most common trimming is to remove 25 percent of the data on each end -
the resulting mean of the central 50 percent of data is commonly called the "trimmed mean", but
is more precisely the 25 percent trimmed mean. A "0% trimmed mean" is the sample mean
itself, while trimming all but 1 or 2 central values produces the median. Percentages of trimming
should be explicitly stated when used. The trimmed mean is a resistant estimator of location, as
it is not strongly influenced by outliers, and works well for a wide variety of distributional shapes

(normal, lognormal, etc.). It may be considered a weighted mean, where data beyond the cutoff

'window' are given a weight of 0, and those within the window a weight of 1.0 (see figure 1.4).

25% trimmed

data within window off

Data Value

Figure 1.4. Window diagram for the trimmed mean

1.3 Measures of Spread

It is just as important to know how variable the data are as it is to know their general center or

location. Variability is quantified by measures of spread.

1.3.1 Classical Measures
The sample variance, and its square root the sample standard deviation, are the classical

measures of spread. Like the mean, they are strongly influenced by outlying values.
5 (X -X)*
2 =3 Y

- (=D

sample variance [1.6]
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s =\/s 2 sample standard deviation [1.7]

They are computed using the squares of deviations of data from the mean, so that outliers
influence their magnitudes even more so than for the mean. When outliers are present these
measures are unstable and inflated. They may give the impression of much greater spread than
is indicated by the majority of the data set.

1.3.2 Resistant Measures

The interquartile range (IQR) is the most commonly-used resistant measure of spread. It
measures the range of the central 50 percent of the data, and is not influenced at all by the 25
percent on either end. Itis therefore the width of the non-zero weight window for the trimmed

mean of figure 1.4.

The IQR is defined as the 75th percentile minus the 25th percentile. The 75th, 50th (median)
and 25th percentiles split the data into four equal-sized quatters. The 75th percentile (P -¢), also
called the upper quartile, is a value which exceeds no more than 75 percent of the data and is
exceeded by no more than 25 percent of the data. The 25th percentile (P 55) or lower quartile is
a value which exceeds no more than 25 percent of the data and is exceeded by no more than 75
percent. Consider a data set ordered from smallest to largest: Xj, 1 =1,..n. Percentiles (P]) are

computed using equation [1.8]
Pj = X(n+1)ej [1.8]

where n is the sample size of Xj, and
j is the fraction of data less than or equal to the percentile value (for the 25th, 50th
and 75th percentiles, j= .25, .50, and .75).

Non-integer values of (n+1)¢j imply linear interpolation between adjacent values of X. For the
example 1 data set given earlier, n=7, and therefore the 25th percentile is X(7+1)._2 5 or Xy =4,
the second lowest observation. The 75th percentile is X , the 6th lowest observation, or 11.
The IQR is therefore 11-4 = 7.

One resistant estimator of spread other than the IQR is the Median Absolute Deviation, or

MAD. The MAD is computed by first listing the absolute value of all differences |d| between

each observation and the median. The median of these absolute values is then the MAD.
MAD (Xj) = median |dj], where dj = Xj — median (Xj) [1.9]

Comparison of each estimate of spread for the Example 1 data set is as follows. When the last
value is changed from 12 to 120, the standard deviation increases from 3.8 to 42.7. The IQR
and the MAD remain exactly the same.
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data 2 4 8 9 11 11 12 IQR=11-4=7
Xi-X)2 372 168 001 081 841 841 152 2 =(3.8)>

|di =X;-Ps5q| 7 5 1 0 2 2 3 MAD=median | dj| =2
data 2 4 8 9 11 11 120 IQR=11-4=7
Xi— X2 372 168 001 081 841 841 12522 2 = @42.7)>
|di=X~Psy| 7 5 1 0 2 2 111  MAD=median|d;j|=2

1.4 Measures of Skewness

Hydrologic data are typically skewed, meaning that data sets are not symmetric around the mean
or median, with extreme values extending out longer in one direction. The density function for
a lognormal distribution shown previously as figure 1.1 illustrates this skewness. When extreme
values extend the right tail of the distribution, as they do with figure 1.1, the data are said to be
skewed to the right, or positively skewed. Left skewness, when the tail extends to the left, is

called negative skew.

When data are skewed the mean is not expected to equal the median, but is pulled toward the
tail of the distribution. Thus for positive skewness the mean exceeds more than 50 percent of
the data, as in figure 1.1. The standard deviation is also inflated by data in the tail. Therefore,
tables of summary statistics which include only the mean and standard deviation or variance are
of questionable value for water resources data, as those data often have positive skewness. The
mean and standard deviation reported may not describe the majority of the data very well. Both
will be inflated by outlying observations. Summary tables which include the median and other
percentiles have far greater applicability to skewed data. Skewed data also call into question the
applicability of hypothesis tests which are based on assumptions that the data have a normal
distribution. These tests, called parametric tests, may be of questionable value when applied to
water resources data, as the data are often neither normal nor even symmetric. Later chapters

will discuss this in much detail, and suggest several solutions.

1.4.1 Classical Measure of Skewness
The coefficient of skewness (g) is the skewness measure used most often. It is the adjusted third
moment divided by the cube of the standard deviation:

& (x X))’

. n
5 (n—l)(n—2>§ 5 10
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A right-skewed distribution has positive g; a left-skewed distribution has negative g. Again, the
influence of a few outliers is important -- an otherwise symmetric distribution having one outlier
will produce a large (and possibly misleading) measure of skewness. For the example 1 data, the
g skewness coefficient increases from —0.5 to 2.6 when the last data point is changed from 12 to
120.

1.4.2 Resistant Measure of Skewness
A more resistant measure of skewness is the quartile skew coefficient qs (Kenney and Keeping,
1954):
~(P75-P50)-P50-P2s)
* P75-P s

the difference in distances of the upper and lower quartiles from the median, divided by the

[1.11]

IQR. A right-skewed distribution again has positive qs; a left-skewed distribution has negative
gs. Similar to the trimmed mean and IQR, gs uses the central 50 percent of the data. For the
example 1 data, gs = (11-9) — (9-4) / (11-4) = —=0.43 both before and after alteration of the
last data point. Note that this resistance may be a liability if sensitivity to a few observations is

important.

1.5 Other Resistant Measures

Other percentiles may be used to produce a series of resistant measures of location, spread and
skewness. For example, the 10 percent trimmed mean can be coupled with the range between

the 10th and 90th percentiles as a measure of spread, and a corresponding measure of skewness:

Po9p-P50)-P50-P10)
Pop-P10

qS.10 = [112]

to produce a consistent series of resistant statistics. Geologists have used the 16th and 84th
percentiles for many years to compute a similar series of robust measures of the distributions of
sediment particles (Inman, 1952). However, measures based on quartiles have become generally
standard, and other measures should be clearly defined prior to their use. The median, IQR, and
quartile skew can be easily summarized graphically using a boxplot (see Chapter 2) and are

familiar to most data analysts.
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1.6 Outliers

Obutliers, observations whose values are quite different than others in the data set, often cause
concern or alarm. They should not. They are often dealt with by throwing them away prior to
describing data, or prior to some of the hypothesis test procedures of later chapters. Again, they
should not. Outliers may be the most important points in the data set, and should be

investigated further.

It is said that data on the Antarctic ozone "hole", an area of unusually low ozone concentrations,
had been collected for approximately 10 years prior to its actual discovery. However, the
automatic data checking routines during data processing included instructions on deleting
"outliers". The definition of outliers was based on ozone concentrations found at mid-latitudes.
Thus all of this unusual data was never seen or studied for some time. If outliers are deleted, the

risk is taken of seeing only what is expected to be seen.

Outliers can have one of three causes:
1. ameasurement or recording error.
2. an observation from a population not similar to that of most of the data,
such as a flood caused by a dam break rather than by precipitation.

3. arare event from a single population that is quite skewed.

The graphical methods of the Chapter 2 are very helpful in identifying outliers. Whenever
outliers occur, first verify that no copying, decimal point, or other obvious error has been made.
If not, it may not be possible to determine if the point is a valid one. The effort put into
verification, such as re-running the sample in the laboratory, will depend on the benefit gained
versus the cost of verification. Past events may not be able to be duplicated. If no error can be
detected and corrected, outliers should not be discarded based solely on the fact that they
appear unusual. Outliers are often discarded in order to make the data nicely fit a prel
conceived theoretical distribution such as the normal. There is no reason to suppose that they
should! The entire data set may arise from a skewed distribution, and taking logarithms or some
other transformation may produce quite symmetrical data. Even if no transformation achieves
symmetry, outliers need not be discarded. Rather than eliminating actual (and possibly very
important) data in order to use analysis procedures requiring symmetry or normality, procedures
which are resistant to outliers should instead be employed. If computing a mean appears of little
value because of an outlier, the median has been shown to be a more appropriate measure of
location for skewed data. If performing a t-test (described later) appears invalidated because of

the non-normality of the data set, use a rank-sum test instead.

In short, let the data guide which analysis procedures are employed, rather than altering the data

in order to use some procedure having requirements too restrictive for the situation at hand.
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1.7 Transformations

Transformations are used for three purposes:
1. to make data more symmetric,
2. to make data more linear, and

3.  to make data more constant in variance.

Some water resources scientists fear that by transforming data, results are derived which fit
preconceived ideas. Therefore, transformations are methods to 'see what you want to see' about
the data. But in reality, serious problems can occur when procedures assuming symmetry,
linearity, or homoscedasticity (constant variance) are used on data which do not possess these
required characteristics. Transformations can produce these characteristics, and thus the use of
transformed variables meets an objective. Employment of a transformation is not merely an

arbitrary choice.

One unit of measurement is no more valid a priori than any other. For example, the negative
logarithm of hydrogen ion concentration, pH, is as valid a measurement system as hydrogen ion
concentration itself. Transformations like the square root of depth to water at a well, or cube
root of precipitation volume, should bear no more stigma than does pH. These measurement
scales may be more appropriate for data analysis than are the original units. Hoaglin (1988) has
written an excellent article on hidden transformations, consistently taken for granted, which are
in common use by everyone. Octaves in music are a logarithmic transform of frequency. Each
time a piano is played a logarithmic transform is employed! Similarly, the Richter scale for
earthquakes, miles per gallon for gasoline consumption, f-stops for camera exposures, etc. all
employ transformations. In the science of data analysis, the decision of which measurement
scale to use should be determined by the data, not by preconceived criteria. The objectives for
use of transformations are those of symmetry, linearity and homoscedasticity. In addition, the
use of many resistant techniques such as percentiles and nonparametric test procedures (to be
discussed later) are invariant to measurement scale. The results of a rank-sum test, the
nonparametric equivalent of a t-test, will be exactly the same whether the original units or

logarithms of those units are employed.

1.7.1 'The Ladder of Powers

In order to make an asymmetric distribution become more symmetric, the data can be
transformed or re-expressed into new units. These new units alter the distances between
observations on a line plot. The effect is to either expand or contract the distances to extreme
observations on one side of the median, making it look more like the other side. The most
commonly-used transformation in water resources is the logarithm. Logs of water discharge,

hydraulic conductivity, or concentration are often taken before statistical analyses are performed.
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Transformations usually involve power functions of the form y = 0, where x is the
untransformed data, y the transformed data, and 0 the power exponent. In figure 1.5 the values
of 0 are listed in the "ladder of powers" (Velleman and Hoaglin, 1981), a useful structure for

determining a proper value of 6.

As can be seen from the ladder of powers, any transformations with 0 less than 1 may be used
to make right-skewed data more symmetric. Constructing a boxplot or Q-Q plot (see Chapter 2)
of the transformed data will indicate whether the transformation was appropriate. Should a
logarithmic transformation overcompensate for right skewness and produce a slightly left' |
skewed distribution, a 'mildet’ transformation with 0 closer to 1, such as a square-root or cubel
root transformation, should be employed instead. Transformations with 6 > 1 will aid in

making left-skewed data more symmetric.

Figure 1.5
"LADDER OF POWERS"
(modified from Velleman and Hoaglin, 1981)

Use 0 Transformation Name Comment
- . higher powers can be used
for (=) .
skewness 3 x3 cube
2 x2 square
1 X original units ————  no transformation ——
1/2 ’\/_X square root commonly used
1/3 '%/_X cube root commonly used
0 log(x) logarithm commonly used. Holds the
for (+) place of x0
skewness
-1/2 -1 /’\/_X reciprocal root the minus sign preserves
order of observations
-1 -1/x reciprocal
-2 —1/x2

. lower powers can be used
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However, the tendency to search for the 'best' transformation should be avoided. For example,
when dealing with several similar data sets, it is probably better to find one transformation which
works reasonably well for all, rather than using slightly different ones for each. It must be
remembered that each data set is a sample from a larger population, and another sample from
the same population will likely indicate a slightly different 'best' transformation. Determination

of 'best' in great precision is an approach that is rarely worth the effort.
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Exercises

1.1

1.2

1.3

Yields in wells penetrating rock units without fractures were measured by Wright (1985),
and are given below. Calculate the

a) mean

b) trimmed mean

€) geometric mean

d) median

e) compare these estimates of location. Why do they differ?

Unit well vields (in gal/min/ft) in Virginia (Wright, 1985)
0.001 0.030 0.10 0.003 0.040 0.454

0.007 0.041 0.49 0.020 0.077 1.02

For the well yield data of exercise 1.1, calculate the
a) standard deviation
b) interquartile range
c) MAD
d) skew and quartile skew.

Discuss the differences between a through c.

Ammonia plus organic nitrogen (in mg/L) was measured in samples of precipitation by
Oltmann and Shulters (1989). Some of their data are presented below. Compute
summary statistics for these data. Which observation might be considered an outlier?
How should this value affect the choice of summary statistics used

a) to compute the mass of nitrogen falling per square mile.

b) to compute a "typical" concentration and variability for these data?

0.3 0.9 0.36 0.92 0.5 1.0
0.7 9.7 0.7 1.3






Graphical Data Analysis

Perhaps it seems odd that a chapter on graphics appears at the front of a text on statistical
methods. We believe this is very appropriate, as graphs provide crucial information to the data
analyst which is difficult to obtain in any other way. For example, figure 2.1 shows eight
scatterplots, all of which have exactly the same correlation coefficient. Computing statistical
measures without looking at a plot is an invitation to misunderstanding data, as figure 2.1
illustrates. Graphs provide visual summaries of data which more quickly and completely

describe essential information than do tables of numbers.

Graphs are essential for two purposes:
1. to provide insight for the analyst into the data under scrutiny, and

2. to illustrate important concepts when presenting the results to others.

The first of these tasks has been called exploratory data analysis (EDA), and is the subject of this
chapter. EDA procedures often are (or should be) the 'first look' at data. Patterns and theories
of how the system behaves are developed by observing the data through graphs. These are
inductive procedures -- the data are summarized rather than tested. Their results provide

guidance for the selection of appropriate deductive hypothesis testing procedures.

Once an analysis is complete, the findings must be reported to others. Whether a written report
or oral presentation, the analyst must convince the audience that the conclusions reached are
supported by the data. No better way exists to do this than through graphics. Many of the same
graphical methods which have concisely summarized the information for the analyst will also

provide insight into the data for the reader or audience.

The chapter begins with a discussion of graphical methods for analysis of a single data set. Two
methods are particularly useful: boxplots and probability plots. Their construction is presented
in detail. Next, methods for comparison of two or more groups of data are discussed. Then
bivariate plots (scatterplots) are presented, with an especially useful enhancement called a

smooth. The chapter ends with a discussion of plots appropriate for multivariate data.
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Figure 2.1 Eight scatterplots all with correlation coefficient r = 0.70

(Chambers and others, 1983).
© PWS-Kent Pub. Used with permission.
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Throughout sections 2.1 and 2.2 two data sets will be used to compare and contrast the
effectiveness of each graphical method. These are annual streamflow (in cubic feet per second,
or cfs) for the Licking River at Catawba, Kentucky, from 1929 through 1983, and unit well yields
(in gallons per minute per foot of water-bearing material) for valleys without fracturing in
Virginia (Wright, 1985).

2.1 Graphical Analysis of Single Data Sets

2.1.1 Histograms

Histograms are familiar graphics, and their construction is detailed in numerous introductory
texts on statistics. Bats are drawn whose height is the number nj, or fraction n;j/n, of data falling
into one of several categories or intervals (figure 2.2). Iman and Conover (1983) suggest that,

for a sample size of n, the number of intervals k should be the smallest integer such that 2k > q,

Histograms have one primary deficiency -- their visual impression depends on the number of
categories selected for the plot. For example, compare figure 2.2a with 2.2b. Both are
histograms of the same data: annual streamflows for the Licking River. Comparisons of shape
and similarity among these two figures and the many other possible histograms of the same data
depend on the choice of bar widths and centers. False impressions that these are different
distributions might be given by characteristics such as the gap around 6,250 cfs. Itis seen in
2.2b but not in 2.2a.

Histograms are quite useful for depicting large differences in shape or symmetry, such as
whether a data set appears symmetric or skewed. They cannot be used for more precise
judgements such as depicting individual values. Thus from figure 2.2a the lowest flow is seen to
be larger than 750 cfs, but might be as large as 2,250 cfs. More detail is given in 2.2b, but this
lowest observed discharge is still only known to be somewhere between 500 to 1,000 cfs.

For data measured on a continuous scale (such as streamflow or concentration), histograms are
not the best method for graphical analysis. The process of forcing continuous data into discrete
categories may obscure important characteristics of the distribution. However, histograms are
excellent when displaying data which have natural categories or groupings. Examples of such
data would include the number of individual organisms found at a stream site grouped by
species type, or the number of water-supply wells exceeding some critical yield grouped by

geologic unit.
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Figure 2.2a. Histogram of annual streamflow for the Licking River
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Figure 2.2b. Second histogram of same data, but with different interval divisions.
2.1.2 Stem and Leaf Diagrams

Figure 2.3 shows a stem and leaf (S-L) diagram for the Licking River streamflow data with the

same divisions as in figure 2.2b. Stem and leaf diagrams are like histograms turned on their side,
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with data magnitudes to two significant digits presented rather than only bar heights. Individual
values are easily found. The S-L profile is identical to the histogram and can similarly be used to
judge shape and symmetry, but the numerical information adds greater detail. One S-L could

function as both a table and a histogram for small data sets.

An S-L is constructed by dividing the range of the data into roughly 10 intervals, and placing the
first digit corresponding to these intervals to the left of the vertical line. This is the 'stem’,
ranging from 0 to 7 (0 to 7000+ cfs) in figure 2.3. Each observation is then represented by one
digit to the right of the line (the 'leaves'), so that the number of leaves equals the number of
observations falling into that interval. To provide more detail, figure 2.3 has two lines for each
stem digit, split to allow 5 leaf digits per line (0-4 and 5-9). Here an asterisk (*) denotes the stem
for leaves less than 5, and a period (.) for leaves greater than or equal to 5. For example, in
figure 2.3 four observations occur between 2000 and 2500 cfs, with values of 2000, 2200, 2200
and 2400 cfs.

The lowest flow is now seen to be between 900 and 1,000 cfs. The gap between 6,000 to 6,500
cfs is still evident, and now the numerical values of the three highest flows are presented.
Comparisons between distributions still remain difficult using S-L plots, however, due to the

required arbitrary choice of group boundaries.

range in cfs)

(

( 500- 999) +0.]9
(1000-1499) 1*| 2
(1500-1999) 1.|59
(2000-2499) 2% 0224
(2500-2999) 2. 66889
(3000-3499) 3% 01122
(3500-3999) 3./55678889
(4000-4499) 4% 000124
(4500-4999) 4./ 5566777
(5000-5499) 5% 01123334
(5500-5999) 5./ 56899
(6000-6499) 6*
(6500-6999) 6.8
(7000-7499) 7*| 2
(7500-7999) 7.7

Figure 2.3 Stem and Leaf Plot of Annual Streamflow
(Leaf digit unit = 100 1|2 represents 1200)
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2.1.3 Quantile Plots
Quantile plots visually portray the quantiles, or percentiles (which equal the quantiles times 100)
of the distribution of sample data. Quantiles of importance such as the median are easily
discerned (quantile, or cumulative frequency = 0.5). With experience, the spread and skewness
of the data, as well as any bimodal character, can be examined. Quantile plots have three
advantages:

1. Arbitrary categories are not required, as with histograms or S-L's.

2. All of the data are displayed, unlike a boxplot.

3. Every point has a distinct position, without overlap.

Figure 2.4 is a quantile plot of the streamflow data from figure 2.2. Attributes of the data such
as the gap between 6000 and 6800 cfs (indicated by the nearly horizontal line segment) are
evident. The percent of data in the sample less than a given cfs value can be read from the

graph with much greater accuracy than from a histogram.
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Figure 2.4 Quantile plot of the Licking R. annual streamflow data

2.1.3.1 Construction of a quantile plot

To construct a quantile plot, the data are ranked from smallest to largest. The smallest data
value is assigned a rank i=1, while the largest receives a rank i=n, where n is the sample size of
the data set. The data values themselves are plotted along one axis, usually the horizontal axis.
On the other axis is the "plotting position", which is a function of the rank i and sample size n.

As discussed in the next section, the Cunnane plotting position p; = (i-0.4)/(n+0.2) is used in
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this book. Below are listed the first and last 5 of the 55 data pairs used in construction of figure
2.4. When tied data values are present, each is assigned a separate plotting position (the plotting

ositions are not averaged). In this way tied values are portrayed as a vertical "cliff" on the plot.
p g y p Yy p

q; = Licking R. streamflow, in cfs pi = plotting position
i CTI o' i i i i CTH o1
1 994.3 .01 5 2006.0 .08 52 59373 .93
2 1263.1 .03 . 53 6896.0 .95
3 1504.2 .05 . 54 7270.1 .97
4 1949.5 .07 51 5907.0 .92 55 7730.7 .99

Quantile plots are sample approximations of the cumulative distribution function (cdf) of a
continuous random variable. The cdf for a normal distribution is shown in figure 2.7. A second
approximation is the sample (or empirical) cdf, which differs from quantile plots in its vertical
scale. The vertical axis of a sample cdf is the probability i/n of being less than or equal to that
observation. The largest observation has i/n = 1, and so has a zero probability of being
exceeded. For samples (subsets) taken from a population, a nonzero probability of exceeding
the largest value observed thus far should be recognized. This is done by using the plotting
position, a value less than i/n, on the vertical axis of the quantile plot. As sample sizes increase,

the quantile plot will more closely mimic the underlying population cdf.

2.1.3.2 Plotting positions
Variations of quantile plots are used frequently for three purposes:
1. to compare two or more data distributions (a Q-Q plot),
2. to compare data to a normal distribution (a probability plot), and

3. to calculate frequencies of exceedance (a flow-duration curve).

Unfortunately, different plotting positions have traditionally been used for each of the above

three purposes. It would be desirable instead to use one formula that is suitable for all three.

Numerous plotting position formulas have been suggested, most having the general formula
p=(@G-2)/(n+1-2a)

where a varies from 0 to 0.5. Five of the most commonly-used formulas are:

Reference a Formula
Weibull (1939) 0 i /(n+1)
Blom (1958) 0.375 (i-0.375) / (n + 0.25)
Cunnane (1978) 0.4 i-04) / (n+0.2)
Gringorten (1963) 0.44 i-0.44) / (n+0.12)
Hazen (1914) 0.5 i-0.5) / n

The Weibull formula has long been used by hydrologists in the United States for plotting flowl
duration and flood-frequency curves (Langbein, 1960). It is used in Bulletin 17B, the standard
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reference for determining flood frequencies in the United States (Interagency Advisory
Committee on Water Data, 1982). The Blom formula is best for comparing data quantiles to
those of a normal distribution in probability plots, though all of the above formulas except the
Weibull are acceptable for that purpose (Looney and Gulledge, 1985b). The Hazen formula is
used by Chambers and others (1983) for comparing two or more data sets using Q-Q plots.

Separate formulae could be used for the situations in which each is optimal. In this book we
instead use one formula, the Cunnane formula given above, for all three purposes. We do this
in an attempt to simplify. The Cunnane formula was chosen because
1. itis acceptable for normal probability plots, being very close to Blom.
2. itis used by Canadian and some European hydrologists for plotting flow! |
duration and flood-frequency curves. Cunnane (1978) presents the
arguments for use of this formula over the Weibull when calculating

exceedance probabilities.

For convenience when dealing with small sample sizes, table B1 of the Appendix presents

Cunnane plotting positions for sample sizes n = 5 to 20.

2.1.4 Boxplots
A very useful and concise graphical display for summarizing the distribution of a data set is the
boxplot (figure 2.5). Boxplots provide visual summaries of

1) the center of the data (the median--the center line of the box)

2) the variation or spread (interquartile range--the box height)

3) the skewness (quartile skew--the relative size of box halves)

4) presence or absence of unusual values ("outside" and "far outside" values).

Boxplots are even more useful in comparing these attributes among several data sets.

Compare figures 2.4 and 2.5, both of the Licking R. data. Boxplots do not present all of the
data, as do stem-and-leaf or quantile plots. Yet presenting all data may be more detail than is
necessary, or even desirable. Boxplots do provide concise visual summaries of essential data
characteristics. For example, the symmetry of the Licking R. data is shown in figure 2.5 by the
similar sizes of top and bottom box halves, and by the similar lengths of whiskers. In contrast,
in figure 2.6 the taller top box halves and whiskers indicate a right-skewed distribution, the most
commonly occurring shape for water resources data. Boxplots are often put side-by-side to

visually compare and contrast groups of data.

Three commonly used versions of the boxplot are described as follows (figure 2.6 a,b, and c).

Any of the three may appropriately be called a boxplot.



Graphical Data Analysis 25

8000
LARGEST PT WITHIN 1 STEP ABOVE BOX

¢y 6000 |

[

Q

pr 75th PERCENTILE

g 4000 MEDIAN (50th PCTILE)

T

=

< 25th PERCENTILE

L

o

@ 2000 |
SMALLEST PT WITHIN 1 STEP BELOW BOX

0 -

LICKING RIVER

Figure 2.5 Boxplot for the Licking R. data

2.1.4.1 Simple boxplot

The simple boxplot was originally called a "box-and-whisker" plot by Tukey (1977). It consists
of a center line (the median) splitting a rectangle defined by the upper and lower hinges (very
similar to quartiles -- see appendix). Whiskers are lines drawn from the ends of the box to the

maximum and minimum of the data, as depicted in graph a of figure 2.6.

2.1.4.2 Standard boxplot

Tukey's "schematic plot" has become the most commonly used version of a boxplot (graph b in
tigure 2.6), and will be the type of boxplot used throughout this book. With this standard
boxplot, outlying values are distinguished from the rest of the plot. The box is as defined above.
However, the whiskers are shortened to extend only to the last observation within one step
beyond either end of the box ("adjacent values"). A step equals 1.5 times the height of the box
(1.5 times the interquartile range). Observations between one and two steps from the box in
cither direction, if present, are plotted individually with an asterisk ("outside values"). Outside
values occur fewer than once in 100 times for data from a normal distribution. Observations
farther than two steps beyond the box, if present, are distinguished by plotting them with a small
circle ("far-out values"). These occur fewer than once in 300,000 times for a normal
distribution. The occurrence of outside or far-out values more frequently than expected gives a

quick visual indication that data may not originate from a normal distribution.
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2.1.4.3 Truncated boxplot

In a third version of the boxplot (graph c of figure 2.6), the whiskers are drawn only to the 90th
and 10th percentiles of the data set. The largest 10 percent and smallest 10 percent of the data
are not shown. This version could easily be confused with the simple boxplot, as no data appear
beyond the whiskers, and should be clearly defined as having eliminated the most extreme 20

percent of data. It should be used only when the extreme 20 percent of data are not of interest.

In a variation on the truncated boxplot, Cleveland (1985) plotted all observations beyond the
10th and 90th percentile-whiskers individually, calling this a "box graph". The weakness of this
style of graph is that 10 percent of the data will always be plotted individually at each end, and so

the plot is far less effective than a standard boxplot for defining and emphasizing unusual values.

Further detail on construction of boxplots may be found in the appendix, and in Chambers and
others (1983) and McGill and others (1978).

a b c

0.8+

0.6+

0.4~

WELL YIELD, IN GAL/MIN/FT.

0.21

SIMPLE STANDARD TRUNCATED

Figure 2.6 Three versions of the boxplot (unit well yield data).

2.1.5 Probability Plots
Probability plots are used to determine how well data fit a theoretical distribution, such as the

normal, lognormal, or gamma distributions. This could be attempted by visually comparing
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histograms of sample data to density curves of the theoretical distributions such as figures 1.1
and 1.2. However, research into human perception has shown that departures from straight
lines are discerned more easily than departures from curvilinear patterns. By expressing the
theoretical distribution as a straight line, departures from the distribution are more easily

perceived. This is what occurs with a probability plot.

To construct a probability plot, quantiles of sample data are plotted against quantiles of the
standardized theoretical distribution. In figure 2.7, quantiles from the quantile plot of the
Licking R. streamflow data (lower scale) are overlain with the S-shaped quantiles of the standard
normal distribution (upper scale). For a given cumulative frequency (plotting position, p),
quantiles from each curve are paired and plotted as one point on the probability plot, figure 2.8.
Note that quantiles of the data are simply the observation values themselves, the pth quantiles
where p = (i-0.4)/(n+0.2). Quantiles of the standard normal distribution ate available in table
form in most textbooks on statistics. Thus, for each observation, a pair of quantiles is plotted in
figure 2.8 as one point. For example, the median (p=0.5) equals O for the standard normal, and
4079 cfs for the Licking R. data. The point (0,4079) is one point included in figure 2.8. Data
closely approximating the shape of the theoretical distribution, in this case a normal distribution,

will plot near to a straight line.

To illustrate the construction of a probability plot in detail, data on unit well yields (yi) from
Wright (1985) will be plotted versus their normal quantiles (also called normal scores). The data
are ranked from the smallest (i=1) to largest (i=n), and their corresponding plotting positions pj
= (i-0.4)/(n + 0.2) calculated. Normal quantiles (Zp) for a given plotting position pj may be
obtained in one of three ways:

a. from a table of the standard normal distribution found in most statistics textbooks

b. from table B2 in the Appendix, which presents standard normal quantiles for the

Cunnane plotting positions of table B1
c. from a computerized approximation to the inverse standard normal distribution

available in many statistical packages, or as listed by Zelen and Severo (1964).

Entering the table with pj = .05, for example, will provide a Zp = -1.65. Note that since the
median of the standard normal distribution is 0, Zp will be symmetrical about the median, and
only half of the Zp values must be looked up:
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Figure 2.7 Overlay of Licking R. and standard normal distribution quantile plots
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Figure 2.8 Probability plot of the Licking R. data
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Unit well yields (in gal/min/ft) for valleys without fracturing (Wright, 1985)

yi = yield pi = plotting position Zp = normal quantile of p
iy pi 4p iy  p Zp iy p Zp
1 0001 .05 -1.65 5 0.030 .38 -.31 9 0.10 .70 .52
2 0.003 .13 -1.13 6 0.040 .46 -.10 10  0.454 .79 .80
3 0.007 .21 -0.80 7 0.041 .54 10 11 0.49 .87 1.13
4 0.020 .30 -0.52 8 0.077 .62 31 12 1.02 .95 1.65

For comparison purposes, it is helpful to plot a reference straight line on the plot. The solid line
on figure 2.8 is the normal distribution which has the same mean and standard deviation as do
the sample data. This reference line is constructed by plotting y as the y intercept of the line
(Zp=0), so that the line is centered at the point (0, ¥), the mean of both sets of quantiles. The
standard deviation s is the slope of the line on a normal probability plot, as the quantiles of a
standard normal distribution are in units of standard deviation. Thus the line connects the
points (0,y) and (1,7+ s).

2.1.5.1 Probability paper

Specialized 'probability papet' is often used for probability plots. This paper simply retransforms
the linear scale for quantiles of the standard distribution back into a nonlinear scale of plotting
positions (figure 2.9). There is no difference between the two versions except for the horizontal
scale. With probability paper the horizontal axis can be directly interpreted as the percent
probability of occurrence, the plotting position times 100. The linear quantile scale of figure 2.8
is sometimes included on probability paper as 'probits,' where a probit = normal quantile + 5.0.
Probability paper is available for distributions other than the normal, but all are constructed the

same way, using standardized quantiles of the theoretical distribution.

In figure 2.9 the lower horizontal scale results from sorting the data in increasing order, and
assigning rank 1 to the smallest value. This is commonly done in water-quality and low-flow
studies. Had the data been sorted in decreasing order, assigning rank 1 to the largest value as is
done in flood-flow studies, the upper scale would result -- the percent exceedance. Either

horizontal scale may be obtained by subtracting the other from 100 percent.
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Figure 2.9 -- Probability plot of Licking R. data on probability paper

2.1.5.2 Deviations from a linear pattern

If probability plots do not exhibit a linear pattern, their nonlinearity will indicate why the data do
not fit the theoretical distribution. This is additional information that hypothesis tests for
normality (described later) do not provide. Three typical conditions resulting in deviations from
linearity are: asymmetry or skewness, outliers, and heavy tails of the distribution. These are

discussed below.

Figure 2.10 is a probability plot of the base 10 logarithms of the Licking R. data. The data are
negatively (left) skewed. This is seen in figure 2.10 as a greater slope on the left-hand side of the
plot, producing a slightly convex shape. Figure 2.11 shows a right-skewed distribution, the unit
well yield data. The lower bound of zero, and the large slope on the right-hand side of the plot
produces an overall concave shape. Thus probability plots can be used to indicate what type of
transformation is needed to produce a more symmetric distribution. The degree of curvature
gives some indication of the severity of skewness, and therefore the degree of transformation

required.
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Outliers appear on probability plots as departures from the pattern of the rest of the data.
Figure 2.12 is a probability plot of the Licking R. data, but the two largest observations have
been altered (multiplied by 3). Compare figures 2.12 and 2.8. Note that the majority of points
in figure 2.12 still retain a linear pattern, with the two outliers offset from that pattern. Note
that the straight line, a normal distribution with mean and standard deviation equal to those of
the altered data, does not fit the data well. This is because the mean and standard deviation are

inflated by the two outliers.

The third departure from linearity occurs when more data are present in both tails (areas furthest
from the median) than would be expected for a normal distribution. Figure 2.13 is a probability
plot of adjusted nitrate concentrations in precipitation from Wellston, Michigan (Schertz and
Hirsch, 1985). These data are actually residuals (departures) from a regression of log of nitrate
concentration versus log of precipitation volume. A residual of 0 indicates that the
concentration is exactly what would be expected for that volume, a positive residual more than
what is expected, and negative less than expected. The data in figure 2.13 display a
predominantly linear pattern, yet one not fit well by the theoretical normal shown as the solid
line. Again this lack of fit indicates outliers are present. The outliers are data to the left which
plot below the linear pattern, and those above the pattern to the right of the figure. Outliers
occur on both ends in greater numbers than expected from a normal distribution. A boxplot for
the data is shown in figure 2.14 for comparison. Note that both the box and whiskers are
symmetric, and therefore no power transformation such as those in the "ladder of powers"
would produce a more nearly normal distribution. Data may depart from a normal distribution
not only in skewness, but by the number of extreme values. Excessive numbers of extreme
values may cause significance levels of tests requiring the normality assumption to be in error.
Therefore procedures which assume normality for their validity when applied to data of this type

may produce quite inaccurate results.
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Figure 2.10 -- Probability plot of a left-skewed distribution (logs of Licking R. data)
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Figure 2.11 -- Probability plot of a right-skewed distribution (unit well yields)
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Figure 2.12 -- Probability plot of data with high outliers
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Figure 2.13 -- Probability plot of a heavy-tailed data set
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Figure 2.14 -- Boxplot of a heavy-tailed data set

2.1.5.3 Probability plots for comparing among distributions

In addition to comparisons to a normal distribution, quantiles may be computed and probability
plots constructed for any two-parameter distribution. The distribution which causes data to be
most like a straight line on its probability plot is the one which most closely resembles the
distributional shape of the data. Data may be compared to a two-parameter lognormal
distribution by simply plotting the logarithms of the data as the data quantiles, as was done in
figure 2.10. Vogel (1986) demonstrated the construction of probability plots for the Gumbel
(extreme-value) distribution, which is sometimes employed for flood-flow studies. Vogel and
Kroll (1989) cover the use of probability plots for the two-parameter Weibull distribution, used
in fitting low-flow data. Again, the best fit is obtained with the distribution which most closely
produces a linear plot. In both references, the use of a test of significance called the probability
plot correlation coefficient augmented the visual determination of linearity on the plot. This test

will be covered in detail in Chapter 4.

Use of three-parameter distributions can also be indicated by probability plots. For example, if
significant right-skewness remains after logarithms are taken, the resulting concave shape on a
lognormal probability plot indicates that a log-Pearson III distribution would better fit the data.
Vogel and Kroll (1989) demonstrate the construction of a probability plot for the log-Pearson
III distribution using a Wilson-Hilferty transformation.
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2.2 Graphical Comparisons of Two or More Data Sets

Each of the graphical methods discussed thus far can be, and have been, used for comparing
more than one group of data. However, each is not equally effective. As the following sections
show, histograms are not capable of providing visual comparisons between data sets at the same
level of detail as boxplots or probability plots. Boxplots excel in clarity and easy discrimination
of important distributional characteristics, even for comparisons between many groups of data.
A newer type of plot, the quantile-quantile (Q-Q) plot, provides additional information about
the relationship between two data sets.

Each graphic will be developed for the same data set, a comparison of unit well yields in Virginia
(Wright, 1985). These are small data sets: 13 wells are from valleys underlain by fractured rocks,

and 12 wells from valleys underlain by unfractured rocks.

2.2.1 Histograms

Figure 2.15 presents histograms for the two sets of well yield data. The right-skewness of each
data set is easily seen, but it is difficult to discern whether any differences exist between them.
Histograms do not provide a good visual picture of the centers of the distributions, and only a
slightly better comparison of spreads. Positioning histograms side-by-side instead of one above
the other provide even less ability to compare data, as the data axes would not be aligned.
Unfortunately, this is commonly done. Also common are overlapping histograms, such as in
figure 2.16. Overlapping histograms provide poor visual discrimination between multiple data

sets.

2.2.2 Dot and Line Plots of Means, Standard Deviations

Figure 2.17 is a "dot and line" plot often used to represent the mean and standard deviation (or
standard error) of data sets. Each dot is the mean of the data set. The bars extend to plus and
minus either one standard deviation (shown), or plus and minus one or more standard errors
(s.e. = s/ \/;1 ), beyond the mean. This plot displays differences in mean yields, but little else.
No information on the symmetry of the data or presence of outliers is available. Because of this,
there is not much information given on the spread of the data, as the standard deviation may
describe the spread of most of the data, or may be strongly influenced by skewness and a few

outliers.
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Figure 2.15 Histograms of the unit well yield data
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Figure 2.16 Overlapping histograms of the unit well yield data
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Figure 2.17 Dot and line plot for the unit well yield data

To emphasize the deficiencies of dot and line plots such as these, figure 2.18 presents three data
sets with very different characteristics. The first is a uniform distribution of values between 0
and 20. Itis symmetric. The second is a right-skewed data set with outliers. The third is a
bimodal distribution, also symmetric. All three have a mean of 10 and standard deviation of
0.63. Therefore each of the three would be represented by the same dot and line plot, shown at
the right of the figure.

Dot and line plots are useful only when the data are actually symmetric. If skewness or outliers
are present, as with data set 2, neither the plots (or a table of means and standard deviations)
indicate their presence. Even for symmetric distributions, differences such as those between

data sets 1 and 3 will not be evident. Far better graphical methods are available.
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Figure 2.18 Number lines of 3 dissimilar groups of data, all having

an identical dot and line plot (shown at right).

2.2.3 Boxplots

Figure 2.19 presents boxplots of the well yield data. The median well yield is seen to be higher

for the areas with fractures. The IQR of wells with fractures is slightly larger than that for wells

without, and the highest value for each group is similar. Both data sets are seen to be right'|

skewed. Thus a large amount of information is contained in this very concise illustration. The

mean yield, particularly for wells without fractures, is undoubtedly inflated due to skewness, and

differences between the two groups of data will in general be larger than indicated by the

differences in their mean values.
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Figure 2.19 Boxplots of the unit well yield date

In figure 2.20, boxplots of the three data sets given in figure 2.18 are presented. The skewness
of data set 2 is clear, as is the symmetry of 1 and 3. The difference in shape between 1 and 3 is
evident. The minute whiskers of data set 3 illustrate that over 25 percent of the data are located

essentially at the upper and lower quartiles -- a bimodal distribution.

The characteristics which make boxplots useful for inspecting a single data set make them even
more useful for comparing multiple data sets. They are valuable guides in determining whether
central values, spread, and symmetry differ among groups of data. They will be used in later
chapters to guide whether tests based on assumptions of normality may be employed. The
essential characteristics of numerous groups of data may be displayed in a small space. For
example, the 20 boxplots of figure 2.21 were used by Holtschlag (1987) to illustrate the source
of ammonia nitrogen on a section of the Detroit River. The Windmill Point Transect is
upstream of the U. S. city of Detroit, while the Fermi Transect is below the city. Note the
marked changes in concentration (the median lines of the boxplots) and variability (the widths of
the boxes) on the Michigan side of the river downstream of Detroit. A lot of information on

streamwater quality is succinctly summarized in this relatively small figure.
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Figure 2.20 Boxplots of the 3 dissimilar groups of data shown in figure 2.18

2.2.4 Probability Plots

Probability plots are also useful graphics for comparing groups of data. Characteristics evident
in boxplots are also seen using probability plots, though in a different format. Comparisons of
each quantile, not just the boxplot quartiles, can be made. The straightness of each data set also

allows quick comparisons to conformity with the theoretical distribution.

Figure 2.22 is a probability plot of the two well yield data sets. The right-skewness of each data
set is shown by their concave shapes. Wells without fractures have greater skewness as shown
by their greater concavity on the plot. Quantiles of the wells with fractures are higher than those
without, indicating generally higher yields. Figure 2.22 shows that the lowest yields in each
group are similar, as both data sets approach zero yield. Also seen are the similarity in the
highest yield for each group, due to the outlier for the without fractures group. Comparisons
between median values are simple to do -- just travel up the normal quantile = 0 line.

Comparisons of spreads are more difficult -- the slopes of each data set display their spread.

In general, boxplots summarize the differences between data groups in a manner more quickly
discerned by the viewer. When comparisons to a particular theoretical distribution such as the
normal are important, or comparisons between quantiles other than the quartiles are necessary,
probability plots are useful graphics. Either have many advantages over histograms or dot and

line plots.
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Figure 2.21 Boxplots of total ammonia nitrogen concentrations (mg/L as N) at two transects
on the Detroit River (from Holtschlag, 1987)

2.25 Q-Q Plots

Direct comparisons can be made between two data sets by graphing the quantiles (percentiles)
of one versus the quantiles (percentiles) of the second. This is called a quantile-quantile or Q-Q
plot (Chambers et al., 1983). If the two data sets came from the same distribution, the quantile
pairs would plot along a straight line with Yp = Xp, where p is the plotting position and Yp is
the pth quantile of Y. In this case it would be said that the median, the quartiles, the 10th and
90th percentiles, etc., of the two data sets were equal. If one data set had the same shape as the
second, differing only by an additive amount (each quantile was 5 units higher than for the other
data set, for example), the quantile pairs would fall along a line parallel to but offset from the
Yp=Xp line, also with slope =1. If the data sets differed by a multiplicative constant
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(Yp = 5 * Xp, for example), the quantile pairs would lie along a straight line with slope equal to
the multiplicative constant. More complex relationships will result in pairs of quantiles which do
not lie along a straight line. The question of whether or not data sets differ by additive or

multiplicative relationships will become important when hypothesis testing is conducted.
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Figure 2.22 Probability plot of the unit well yield data

Figure 2.23 is a Q-Q plot of the well yield data. Several aspects of the relationship between the
two data sets are immediately seen. First, the lowest 9 quantile pairs appear to fall along a
straight line with a slope greater than 1, not parallel to the Yp = Xp line shown as a
reference. This indicates a multiplicative relation between the data, with Y = 4.4¢X, where 4.4 is
the slope of those data on the plot. Therefore, the yields with fractures are generally 4.4 times
those without fractures for the lowest 75 percent of the data. The 3 highest quantile pairs return
near to the Y = X line, indicating that the higher yields in the two data sets approach being
equal. The hydrologist might be able to explain this phenomenon, such as higher yielding wells
are deeper and less dependent on fracturing, or that some of the wells were misclassified, etc.
Therefore the Q-Q plot becomes a valuable tool in understanding the relationships between data

sets prior to performing any hypothesis tests.
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Figure 2.23  Q-Q plot of the unit well yield data

2.2.5.1 Construction of Q-Q plots
Q-Q plots are similar to probability plots. Now instead of plotting data quantiles from one
group against quantiles of a theoretical distribution such as the normal, they are plotted against

quantiles of a second data group.

When sample sizes of the two groups are identical, the x's and y's can be ranked separately, and
the Q-Q plot is simply a scatterplot of the ordered data pairs (x1 , y1).....Xp, Yn)- When
sample sizes are not equal, consider n to be the sample size of the smaller data set and m to be
the sample size of the larger data set. The data values from the smaller data set are its pth
quantiles, where p = (i-0.4)/(n+0.2). The n corresponding quantiles for the larger data set are
interpolated values which divide the larger data set into n equally-spaced parts. The following

example illustrates the procedure.

For the well yield data, the 12 values without fractures designated xj, 1 = 1,....n are themselves
the sample quantiles for the smaller data set. Repeating the without fractures data given earlier

in the chapter:
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Unit well yields, in gal / min / ft (Wright, 1985)

xj = yield without fractures pi = plotting position yi = yields with fractures
i X Py i X PP Y S < o <
1 0001 .05 - 5 0.030 .38 - 9 0.10 .70 -
2 0.003 .13 - 6 0.040 .46 - 10 0.454 .79 -
3 0.007 .21 - 7 0.041 54 - 11 049 .87 -
4 0.020 .30 - 8 0.077 .62 - 12 1.02 .95 -

The .05 quantile (5th percentile) value of 0.001, for example, is to be paired on the Q-Q plot
with the .05 quantile of the yields with fractures. To compute the corresponding y quantiles for
the second data set, p = (j — 0.4)/(m + 0.2), and therefore j must be:

(G-04 i-0.4)

m+02 ~ (n+02 *°F

+0.2) ¢ (i-04
= (n—BO.(Zl) L+ 04 [2.1]

If j is an integer, the data value yj itself is plotted versus xj. Usually, however, j will lic between

two integers, and the y quantile must be linearly interpolated between the y data corresponding
to the ranks on either side of j:

N =N A oy [2.2]
where j' = integer (j)

For example, the well yield data with fractures are the following:
0.020 0.031 0.086 0.130 0.160 0.160 0.180 0.300 0.400 0.440 0.510 0.720 0.950.

Therefore n =12 m=13 and from eq. 2.1, = 1.081 - 0.03 .
The first of the 12 quantiles to be computed for the data with fractures is then:
i=1 j=1.05 i'= Vi = v1 +0.05¢ (y -y1)

0.020 + 0.05 =+ (.031 - .020)
= 0.021
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All 12 quantiles are similarly interpolated:

i i interpolated Vi i 1 Vi
1 1.05 0.021 7 7.53 0.245
2 213 0.038 8 8.61 0.362
3 3.21 0.095 9 9.69 0.428
4 4.29 0.139 10 10.77 0.495
5 5.37 0.160 11 11.85 0.692
6 6.45 0.169 12 12.93 0.939

These interpolated values are added to the table of quantiles given previously:

xj = yields without fractures pi = plotting position yj = yields with fractures

i X pi Yj- i X pi Yj- i X pi Yj-
1 0001 .05 0.021 5 .030 .38 0.160 9 010 .70 0.428
2 0.003 .13 0.038 6 .040 46 0.169 10 0.454 .79  0.495
3 0.007 .21 0.095 7 .041 54 0.245 11 049 .87 0.692
4 0.020 .30 0.139 8 .077 .62  0.362 12 1.02 .95 0.939

These (xj ,yj) pairs are the circles which were plotted in figure 2.23.

2.3 Scatterplots and Enhancements

The two-dimensional scatterplot is one of the most familiar graphical methods for data analysis.
It illustrates the relationship between two variables. Of usual interest is whether that
relationship appears to be linear or curved, whether different groups of data lie in separate
regions of the scatterplot, and whether the variability or spread is constant over the range of
data. In each case, an enhancement called a "smooth" enables the viewer to resolve these issues
with greater clarity than would be possible using the scatterplot alone. The following sections

discuss these three uses of the scatterplot, and the enhancements available for each use.

2.3.1 Evaluating Linearity

Figure 2.24 is a scatterplot of the mass load of transported sand versus stream discharge for the
Colorado R. at Lees Ferry, Colorado, during 1949-1964. Are these data sufficiently linear to fit a
linear regression to them, or should some other term or transformation be included in order to
account for curvature? In Chapters 9 and 11, other ways to answer this question will be
presented, but many judgements on linearity are made solely on the basis of plots. To aid in this

judgement, a "smooth" will be superimposed on the data.

The human eye is an excellent judge of the range of data on a scatterplot, but has a difficult time

accurately judging the center -- the pattern of how y varies with x. This results in two difficulties
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with judging linearity on a scatterplot as evident in figure 2.24. Outliers such as the two lowest
sand concentrations may fool the observer into believing a linear model may not fit.
Alternatively, true changes in slope are often difficult to discern from only a scatter of data To
aid in seeing central patterns without being strongly influenced by outliers, a resistant center line
can be fit to the data whose direction and slope varies locally in response to the data themselves.
Many methods are available for constructing this type of center line -- probably the most familiar
is the (non-resistant) moving average. All such methods may be called a "middle smooth", as
they smooth out variations in the data into a coherent pattern through the middle. We discuss
computation of smooths in Chapter 10. For now, we will merely illustrate their use as aids to
graphical data analysis. The smoothing procedure we prefer is called LOWESS, or LOcally
WEighted Scatterplot Smoothing (Cleveland and McGill, 1984b; Cleveland, 1985).
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Figure 2.24 Suspended sand transport at Lees Ferry, Arizona, 1949-1952

Figure 2.25 presents the Lees Ferry sediment data of figure 2.24, with a superimposed middle
smooth. Note the nonlinearity now evident by the curving smooth on the left-hand side of the
plot. The rate of sand transport slows above 6600 (€8-8) cfs. This curvature is easier to see with
the superimposed smooth. It is important to remember that no model, such as a linear or
quadratic function, is assumed prior to computing a smooth. The smoothed pattern is totally
derived by the pattern of the data, and may take on any shape. As such, smooths are an
exploratory tool for discerning the form of relationship between y and x. Seeing the pattern of
figure 2.25, a quadratic term might be added, a piecewise linear fit used, or a transformation
stronger than logs used prior to performing a linear regression of concentration versus
discharge (see Chapter 9).
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Middle smooths should be regularly used when analyzing data on scatterplots, and when
presenting those data to others. As no model form is assumed by them, they let the data
describe the pattern of dependence of y on x. Smooths are especially useful when large amounts
of data are to be plotted, and several groups of data are placed on the same plot. For example,
Welch and others (1988) depicted the dependence of log of arsenic concentration on pH for
thousands of groundwater samples throughout the western United States (figure 2.26). By using
middle smooths, data from one physiographic province was seen to differ from the other three

provinces in its relationship between pH and arsenic.

2.3.2 Evaluating Differences in Location on a Scatterplot

Figure 2.27 is a scatterplot of conductance versus pH for samples collected at low-flow in small
streams within the coal mining region of Ohio (data from Helsel, 1983). Each stream was
classified by the type of land it was draining -- unmined land, lands mined and later reclaimed,
and lands mined and then abandoned without reclamation. These three types of upstream lands

are plotted with different symbols in figure 2.27.

To see the three locations more clearly, a smooth can be constructed for each group which
encloses either 50 or 75 percent of the data. This type of smooth is called a polar smooth
(Cleveland and McGill, 1984b), and its computation is detailed in Chapter 10. Briefly, the data
are transformed into polar coordinates, a middle or similar smooth computed, and the smooth is
re-transformed back into the original units. In figure 2.28. a polar smooth enclosing 75 percent
of the data in each of the types of upstream land is plotted. These smooths are again not limited

to a prior shape or form, such as that of an ellipse. Their shapes are determined from the data.

Polar smooths can be a great aid in exploratory data analysis. For example, the irregular pattern
for the polar smooth of data from abandoned lands in figure 2.28 suggests that two separate
subgroups are present, one with higher pH than the other. Using different symbols for data
from each of the two geologic units underlying these streams shows indeed that the basins
underlain by a limestone unit have generally higher pH than those underlain by a sandstone.
Therefore the type of geologic unit should be included in any analysis or model of the behavior

of chemical constituents for these data.

Polar smooths are especially helpful when there is a large amount of data to be plotted on a
scatterplot. In such situations, the use of different symbols for distinguishing between groups
will be ineffective, as the plot will be too crowded to see patterns in the locations of symbols.
Indeed, in some locations it will not be possible to distinguish which symbol is plotted. Plots
presenting small data points and the polar smooths as in figure 2.28, or even just the polar

smooths themselves, will provide far greater visual differentiation between groups.
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Figure 2.25 Data of figure 2.24 with superimposed lowess smooth
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Figure 2.26 Dependence of log(As) on pH for 4 areas in the western U.S.
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Figure 2.27 Scatterplot of water-quality draining three types of upstream land use
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2.3.3 Evaluating Differences in Spread

In addition to understanding where the middle of data lie on a scatterplot, it is often of interest
to know something about the spread of the data as well. Homoscedasticity (constant variance) is
a crucial assumption of ordinary least-squares regression, as we will see later. Changes in
variance also invalidate parametric hypothesis test procedures such as analysis of variance. From
a more exploratory point of view, changes in variance may be as important or more important
than changes in central value. Differences between estimation methods for flood quantiles, or
between methods of laboratory analysis of some chemical constituent, are often differences in
repeatability of the results and not of method bias. Graphs again can aid in judging differences

in data variability, and are often used for this purpose.

A major problem with judgements of changing spread on a scatterplot is again that the eye is
sensitive to seeing the range of data. The presence of a few unusual values may therefore
incorrectly trigger a perception of changing spread. This is especially a problem when the
density of data changes across a scatterplot, a common occurrence. Assuming the distribution
of data to be identical across a scatterplot, and that no changes in variablility or spread actually
occur, areas where data are more dense are more likely to contain outlying values on the plot,
and the range of values is likely to be larger. This leads to a perception that the spread has
changed.

One graphical means of determining changes in spread has been given by Chambers et al.
(1983). First, a middle smooth is computed, as in figure 2.25. The absolute values of differences
|di| between each data point and the smooth at its value of x is a measure of spread.

[di| = |vi-li] where lj is the value for the lowess smooth at xj [2.3]

By graphing these absolute differences |dj| versus xj, changes in spread will show as changes in
absolute differences. A middle smooth of these differences should also be added to make the
pattern more clear. This is done in figure 2.29, a plot of the absolute differences between sand
concentration and its lowess smooth for the Lees Ferry data of figure 2.25. Note that there is a
slight decrease in |dj|, indicating a small decrease of variability or spread in concentration with

increasing discharge at that site.
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Figure 2.29 Absolute residuals show whether the spread changes with changing x -- sediment

concentrations at Lees Ferry, Arizona

2.4 Graphs for Multivariate Data

Boxplots effectively illustrate the characteristics of data for a single variable, and accentuate
outliers for further inspection. Scatterplots effectively illustrate the relationships between two
variables, and accentuate points which appear unusual in their x-y relationship. Yet there are
numerous situations where relationships between more than two variables should be considered
simultaneously. Similarities and differences between groups of observations based on 3 or more
variables are frequently of interest. Also of interest is the detection of outliers for data with
multiple variables. Graphical methods again can provide insight into these relationships. They
supplement and enhance the understanding provided by formal hypothesis test procedures.
Two multivariate graphical methods already are widely used in water-quality studies -- Stiff and
Piper diagrams. These and other graphical methods are outlined in the following sections. For
more detailed discussions on multivariate graphical methods, see Chambers et al. (1983), or the
textbook by Everitt (1978).

2.4.1 Profile Plots
Profile plots are a class of graphical methods which assign each variable to a separate and

parallel axis. One observation is represented by a series of points, one per axis, which are



52 Statistical Methods in Water Resources

connected by a straight line forming the profile. Each axis is scaled independently, based on the
range of values in the entire data set. Comparisons between observations are made by

comparing profiles.

As an example, assume that sediment loads are to be regionalized. That is, mean annual loads
are to be predicted at ungaged sites based on basin characteristics (physical and climatic
conditions) at those sites. Of interest may be the interrelationships between sites based on their
basin characteristics, as well as which characteristics are associated with high or low annual
values. Profile plots such as the one of site basin characteristics in figure 2.30 would effectively

illustrate those relationships.
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Figure 2.30 Profile plot of selected basin characteristcs, Cow Creek near Lyons, Kansas (data
from Jordan, 1979).

2.4.1.1 Stiff diagrams

Stiff diagrams (Hem, 1985) are the most familiar application of profile plots in water resources.
In a Stiff diagram, the milliequivalents of major water-quality constituents are plotted for a single
sample, with the cation profile plotted to the left of the center line, and anion profile to the right
(figure 2.31). Comparisons between several samples based on multiple water-quality
constituents is then easily done by comparing shapes of the Stiff diagrams. Figure 2.32 shows
one such comparison for 14 groundwater samples from the Fox Hills Sandstone in Wyoming
(Henderson, 1985).
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Figure 2.31 Stiff diagram for a groundwater sample from the Columbia River Basalt aquifer,
Oregon (data from Miller and Gonthier, 1984).

2.4.2 Star Plots

A second method of displaying multiple axes is to have them radiate from a central point, rather
than aligned parallel as in a profile plot. Again, one observation would be represented by a point
on each axis, and these points are connected by line segments. The resulting figures resemble a
star pattern, and are often called star plots. Angles between rays of the star are 360°/k, where k
is the number of axes to be plotted. To provide the greatest visual discrimination between
observations, rays measuring related characteristics should be grouped together. Unusual
observations will stand out as a star looking quite different than the other data, perhaps having
an unusually long or short ray. In figure 2.33, the basalt water-quality data graphed using a Stiff
diagram in figure 2.31 is displayed as a star plot. Note that the cations are grouped together on
the top half of the star, with anions along the bottom.

2.4.2.1 Kite diagrams

A simplified 4-axis star diagram, the "kite diagram", has been used for displaying water-quality
compositions, especially to portray compositions of samples located on a map (Colby, 1956).
Cations are plotted on the two vertical axes, and anions on the two horizontal axes. The
primary advantage of this plot is its simplicity. Its major disadvantage is also its simplicity, in
that the use of only four axes may hide important characteristics of the data. One might need to
know whether calcium or magnesium were present in large amounts, for example, but that could
not be determined from the kite diagram. There is no reason why a larger number of axes could
not be employed to give more detail, making the plot a true star diagram. Compare for example

the basalt data plotted as a star diagram in figure 2.33 and as a kite diagram in figure 2.34.
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Figure 2.32 Stiff diagrams to display areal differences in water quality
(from Henderson, 1985)
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Figure 2.33 Star diagram of the basalt water-quality data
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Figure 2.34 Kite diagram of the basalt water-quality data
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One innovative use of the kite diagram was made by Davis and Rogers (1984). They plotted the

quartiles of all observations taken from each of several formations, and at different depth ranges,

in order to compare water quality between formations and depths (figure 2.35). The kite plots in
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this case are somewhat like multivariate boxplots. There is no reason why the other multivariate
plots described here could not also present percentile values for a group of observations rather

than descriptions of individual values, and be used to compare among groups of data.
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Figure 2.35 Kite diagram of quartiles of composition from an alluvial formation in Montana
(from Davis and Rogers, 1984).

2.4.3 Trilinear Diagrams
Trilinear diagrams have been used within the geosciences since the early 1900's. When three
variables for a single observation sum to 100 percent, they can be represented as one point on a
triangular (trilinear) diagram. Figure 2.36 is one example -- three major cation axes upon which
is plotted the cation composition for the basalt data of figure 2.31. Each of the three cation
values, in milliequivalents, is divided by the sum of the three values, to produce a new scale in
percent of total cations:

ci =mj/ (m] + m2 + m3)

where the ¢j is in percent of total cations, and mj are the milliequivalents of cation i.

For the basalt data, Ca = 0.80 meq, Mg = 0.26 meq, and Na+K = 0.89 meg. Thus

%Ca = 41, %Mg = 13, and %[Na + K] = 46. As points on these axes sum to 100 percent, only
two of the variables are independent. By knowing two values c1 and c2, the third is also known:
c3 = (100 - c1 - c2).
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Figure 2.36 Trilinear diagram for the basalt cation composition

(units are percent milliequivalents).

2.4.3.1 Piper diagrams

Piper (1944) applied these trilinear diagrams to both cation and anion compositions of water
qualtiy data. He also combined both trilinear diagrams into a single summary diagram with the
shape of a diamond (figure 2.37). This diamond has four sides, two for cations and two for
anions. However, it also has only two independent axes, one for a cation (say Ca + Mg), and
one for an anion (say Cl + SO4). If the (Ca + Mg) percentage is known, so is the (Na + K)
percentage, as one is 100% minus the other, and similarly for the anions. The collection of these

three diagrams in the format shown in figure 2.37 is called a Piper diagram.

Piper diagrams have the advantage over Stiff and star diagrams that each observation is shown
as only one point. Therefore, similarities and differences in composition between numerous
observations is more easily seen with Piper diagrams. Stiff and star diagrams have two
advantages over Piper diagrams: 1) they may be separated in space and placed on a map or
other graph, and 2) more than four independent attributes (two cation and two anion) can be
displayed at one time. Thus the choice of which to use will depend on the purpose to which
they are put.

Envelopes have been traditionally drawn by eye around a collection of points on a Piper diagram
to describe waters of "similar" composition. Trends (along a flow path, for example) have
traditionally been indicated by using different symbols on the diagram for different data groups,

such as for upgradient and downgradient observations, and drawing an arrow from one group to
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the other. Recently, both of these practices have been quantified into significance tests for
differences and trends associated with Piper diagrams (Helsel, 1992). Objective methods for
drawing envelopes (a smoothed curve) and trend lines on a Piper diagram were also developed.
The envelope drawn on figure 2.37 is one example. Smoothing procedures are discussed in
more detail in Chapter 10.

80

Figure 2.37 Piper diagram of groundwaters from the Columbia River Basalt aquifer in Oregon
(data from Miller and Gonthier, 1984)

2.4.4 Plots of Principal Components
One method for viewing observations on multiple axes is to reduce the number of axes to two,
and then plot the data as a scatterplot. An important dimension reduction technique is principal

components analysis, or PCA (Johnson and Wischern, 1982).

Principal components are linear combinations of the p original variables which form a new set

of variables or axes. These new axes are uncorrelated with one another, and have the property
that the first principal component is the axis that explains more of the variance of the data than
any other axis. The second principal component explains more of the remaining variance than

any other axis which is uncorrelated with (orthogonal to) the first. The resulting p axes are thus
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new "variables", the first few of which often explain the major patterns of the data in
multivariate space. The remaining principal components may be treated as residuals, measuring

the "lack of fit" of observations along the first few axes.

Each observation can be located on the new set of principal component (pc) axes. For example,
suppose principal components were computed for four original variables, the cations Ca, Mg,

Na and K. The new axes would be linear combinations of these variables, such as:

pcl =0.75 Ca + 0.8 Mg +0.1 Na +0.06 K a "calcareous" axis ?
pc2 =0.17 Ca + 0.06 Mg +0.6 Na + 0.8 K a "Na + K" axis?
pc3 =0.4Ca-0.25Mg-0.1 Na+0.1K a "Ca vs. Mg" axis?
pc4 =0.05Ca-0.1 Mg+ 0.1 Na+ 02K residual noise

An observation which had milliequivalents of Ca = 1.6, Mg = 1.0, Na = 1.3 and K = 0.1 would
have a value on pcl equal to (0.6 1.6 + 0.8 #1.0 + 0.1 #1.3 + 0.06 *0.1) = 1.9, and similarly for
the other new "variables". At this point no reduction in dimensions has taken place, as each

observation still has values along the p=4 new pc axes, as they did for the 4 original axes.

Now, however, plots can be made of the locations of observations oriented along the new
principal components axes. Most notably, a scatterplot for the first two components (pcl vs.
pc2) will show how the observations group together along the new axes which now contain the
most important information about the variation in the data. Thus groupings in multivariate
space have been simplified into groupings along the two most important axes, allowing those
groupings to be seen by the data analyst. Waters with generally different chemical compositions
should plot at different locations on the pc scatterplot. Data known to come from two different
groups may be compared using boxplots, probability plots, or Q-Q plots, but now using the first
several pc axes as the measurement "variables". Additionally, plots can be made of the last few
pc axes, to check for outliers. These outliers in multivariate space will now be visible by using
the "lack of fit" principal components to focus attention at the appropriate viewing angle.
Outliers having unusually large or small values on these plots should be checked for
measurement errors, unusual circumstances, and the other investigations outliers warrant.
Examples of the use of plots of components include Xhoffer et al. (1991), Meglen and Sistko
(1985), and Lins (1985).

2.4.5 Other Multivariate Plots

2.4.5.1 3-Dimensional rotation

If three variables are all that are under consideration, several microcomputer packages now will
plot data in pseudo-3 dimensions, and allow observations to be rotated in space along all three
axes. In this way the inter-relationships between the three variables can be visually observed,

data visually clustered into groups of similar observations, and outliers discerned. In figure 2.38
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two of the many possible orientations for viewing a data set were output from MacSpin
(Donoho et al., 1985), a program for the Apple Macintosh. The data are water qualtity variables

measured at low flow in basins with and without coal mining and reclamation (Helsel, 1983)

Conductance
Conductance
T ' _ Suifate -
Sulfake

Figure 2.38 Two 3-dimensional plots of a water-quality data set

Note the u-shaped pattern in the data seen in the right-hand plot. There is some suggestion of
two separate groups of data, the causes of which can be checked by the analyst. This pattern is
not evident in the left-hand orientation. By rotating data around their three axes, patterns may
be seen which would not be evident without a 3-dimensional perspective, and greater insight

into the data is obtained.

2.4.5.2 Scatterplot matrix

Another method for inspecting data measured by p variables is to produce a scatterplot for each
of the p*(p-1)/2 possible pairs of variables. These ate then printed all on one screen or page.
Obviously, little detail can be discerned on any single plot within the matrix, but variables which
are related can be grouped, linear versus nonlinear relationships discerned, etc. Chambers et al.
(1983) describe the production and utility of scatterplot matrices in detail.

Figure 2.39 is a scatterplot matrix for 5 water-quality variables at low-flow from the coal mining
data of Helsel (1983). On the lowest row are histograms for each individual variable. Note the
right skewness for all variables except pH. All rows above the last contain scatterplots between
each pair of varables. For example, the single plot in the first row is the scatterplot of

conductance (cond) versus pH. Note the two separate subgroups of data, representing low and

high pH waters. Evident from other plots are the linear association between conductance and
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sulfate (SO4), the presence of high total iron concentrations (TFe) for waters of low alkalinity
(ALK) and pH, and high TFe for waters of high sulfate and conductance.
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Figure 2.39 Scatterplot matrix showing the relationships between
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2.4.5.3 Methods to avoid

Two commonly-used methods should usually be avoided, as they provide little ability to
compare differences between groups of data. These are stacked bar charts and pie charts. Both
allow only coarse discrimination to be made between segments of the plot. Figure 2.40, for
example, is a stacked bar chart of the basalt water-quality data previously shown as a Stiff (figure
2.31) and star (figure 2.33) plot. Note that only large differences between categories within a bar
are capable of being discerned. For example, it is much easier to see that chloride (Cl) is larger
than sulfate (SO4) on the Stiff diagram than on the stacked bar chart. In addition, stacked bar
charts provide much less visual distinction when comparing differences among many sites, as in
figure 2.32. Stiff or star diagrams allow differences to be seen as differences in shape, while
stacked bar charts require judgements of length without a common datum, a very difficult type
of judgement. Multiple pie charts require similarly imprecise and difficult judgements. Further

information on these and other types of presentation graphics is given in the last chapter.
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Figure 2.40 Stacked bar chart of the basalt data
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Exercises

2.1

2.2

2.3

Annual peak discharges for the Saddle River in New Jersey are given in Appendix C1.
For the peaks occuring from 1968-1989, draw

a) a histogram

b) a boxplot

¢) a quantile plot (using (i-.4)/(n + .2))
What transformation, if any, would make these data more symmetric?

Arsenic concentrations (in ppb) were reported for ground waters of southeastern New
Hampshire (Boudette and others, 1985). For these data, compute

a) a boxplot

b) a probability plot

Based on the probability plot, describe the shape of the data distribution. What

transformation, if any, would make these data more symmetric?

1.3 1.5 1.8 2.6 2.8 3.5 4.0 4.8

8 9.5 12 14 19 23 41 80
100 110 120 190 240 250 300 340
580

Feth et al. (1964) measured chemical compositions of waters in springs draining differing
rock types. Compare chloride concentrations from two of these rock types using a Q-Q
plot. Also plot two other types of graphs. Describe the similarities and differences in

chloride. What characteristics are evident in each graph?

Chloride concentration, in mg /L

Granodiorite 6.0 0.5 0.4 0.7 0.8 6.0
5.0 0.6 1.2 0.3 0.2 0.5
0.5 10 0.2 0.2 1.7 3.0
Qtz Monzonite 1.0 0.2 1.2 1.0 0.3 0.1
0.1 0.4 3.2 0.3 0.4 1.8

0.9 0.1 0.2 0.3 0.5
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The following chemical and biological data were reported by Frenzel (1988) above and
below a waste treatment plant (WTP). Graph and compare the two sets of multivariate
data. What effects has the WTP appeared to have?

Above Below units
Chironomidae 2500 3200 ave # per substrate
Simuliidae 3300 230 ave # per substrate
Baetidae 2700 2700 ave # per substrate
Hydropsychidae 440 88 ave # per substrate
Native trout 6.9 7.9 # per 10,760 sq. ft.
Whitefish 140 100 # per 10,760 sq. ft.
Nongame fish 54 180 # per 10,760 sq. ft.
Aluminum in clays 1950 1160 ug/g
Organic Carbon 4.2 2.1 g/kg

Ammonia 0.42 0.31 mg/L as N
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The mean nitrate concentration in a shallow aquifer under agricultural land was calculated as 5.1
mg/L. How reliable is this estimate? Is 5.1 mg/L in violation of a health advisoty limit of 5
mg/L? Should it be treated differently than another aquifer having a mean concentration of 4.8
mg/L?

Thirty wells over a 5-county area were found to have a mean specific capacity of 1 gallon per
minute per foot, and a standard deviation of 7 gallons per minute per foot. A new well was
drilled and developed with an acid treatment. The well produced a specific capacity of 15
gallons per minute per foot. To determine whether this increase might be due to the acid
treatment, how likely is a specific capacity of 15 to result from the regional distribution of the
other 30 wells?

An estimate of the 100-year flood, the 99th percentile of annual flood peaks, was determined to
be 10,000 cubic feet per second (cfs). Assuming that the choice of a particular distribution to
model these floods (Log Pearson Type III) is correct, what is the reliability of this estimate?

In chapter 1 several summary statistics were presented which described key attributes of a data
set. They were sample estimates (such as  and s2) of true and unknown population parameters
(such as (L and 62). In this chapter, descriptions of the uncertainty or reliability of sample
estimates is presented. As an alternative to reporting a single estimate, the utility of reporting a
range of values called an "interval estimate" is demonstrated. Both parametric and
nonparametric interval estimates are presented. These intervals can also be used to test whether

the population parameter is significantly different from some pre-specified value.
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3.1 Definition of Interval Estimates

The sample median and sample mean estimate the corresponding center points of a population.
Such estimates are called point estimates. By themselves, point estimates do not portray the
reliability, or lack of reliability (variability), of these estimates. For example, suppose that two
data sets X and Y exist, both with a sample mean of 5 and containing the same number of data.
The Y data all cluster tightly around 5, while the X data are much more variable. The point
estimate of 5 for X is much less reliable than that for Y because of the greater variability in the X
data. In other words, more caution is needed when stating that 5 estimates the true population
mean of X than when stating this for Y. Reporting only the sample (point) estimate of 5 fails to
give any hint of this difference.

As an alternative to point estimates, interval estimates are intervals which have a stated
probability of containing the true population value. The intervals are wider for data sets having
greater variability. Thus in the above example an interval between 4.7 and 5.3 may have a 95%
probability of containing the (unknown) true population mean of Y. It would take a much wider
interval, say between 2.0 and 8.0, to have the same probability of containing the true mean of X.
The difference in the reliability of the two estimates is therefore clearly stated using interval
estimates. Interval estimates can provide two pieces of information which point estimates
cannot:
1. A statement of the probability or likelihood that the interval contains the true population
value (its reliability).
2. A statement of the likelihood that a single data point with specified magnitude comes
from the population under study.

Interval estimates for the first purpose are called confidence intervals; intervals for the second
purpose are called prediction intervals. Though related, the two types of interval estimates are

not identical, and cannot be interchanged.

In sections 3.3 and 3.4, confidence intervals will be developed for both the median and mean.
Prediction intervals, both parametric and nonparametric, will be used in sections 3.5 and 3.6 to
judge whether one new observation is consistent with existing data. Intervals for percentiles

other than the median will be discussed in section 3.7.
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If interest is in:

I

Sections Sections Section
3.3and 3.4 3.5 and 3.6 3.7

3.2 Interpretation of Interval Estimates

Suppose that the true population mean [ of concentration in an aquifer was 10. Also suppose
that the true population variance o2 equals 1. As these values in practice are never known,
samples are taken to estimate them by the sample mean X and sample variance s2. Sufficient
funding is available to take 12 water samples (roughly one per month) during a year, and the
days on which sampling occurs are randomly chosen. From these 12 samples X and s2 are
computed. Although in reality only one set of 12 samples would be taken each year, using a
computer 12 days can be selected multiple times to illustrate the concept of an interval estimate.
For each of 10 independent sets of 12 samples, a confidence interval on the mean is computed

using equations given later in section 3.4.1. The results are shown in table 3.1 and figure 3.1.

N Mean St. Dev. 90 % Confidence Interval
1 12 10.06 1.11 (9.49 to  10.64)
2 12 10.60 0.81 *(10.18 to  11.02)
3 12 9.95 1.26 (9.29 to  10.60)
4 12 10.18 1.26 (9.52 to  10.83)
5 12 10.17 1.33 (9.48 to  10.85)
6 12 10.22 1.19 (9.60 to  10.84)
7 12 9.71 1.51 (8.92 to  10.49)
8 12 9.90 1.01 (9.38 to 10.43)
9 12 9.95 0.10 (9.43 to  10.46)
10 12 9.88 1.37 (9.17 to  10.59)

Table 3.1 Ten 90% confidence intervals around a true mean of 10. Data follow a normal

distribution. The interval with the asterisk does not include the true value.

These ten intervals are "90% confidence intervals" on the true population mean. That is, the
true mean will be contained in these intervals an average of 90 percent of the time. So for the

10 intervals in the table, nine are expected to include the true value while one is not. This is in
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fact what happened. Of course when a one-time sampling occurs, the computed interval will
either include or not include the true, unknown population mean. The probability that the
interval does include the true value is called the confidence level of the interval. The
probability that this interval will not cover the true value, called the alpha level (00, is computed
as

o = 1 — confidence level.

The width of a confidence interval is a function of the shape of the data distribution (its
variability and skewness), the sample size, and of the confidence level desired. As the
confidence level increases the interval width also increases, because a larger interval is more
likely to contain the true value than is a shorter interval. Thus a 95% confidence interval will be

wider than a 90% interval for the same data.

10

Figure 3.1 Ten 90% confidence intervals for normally-distributed data

with true mean = 10

Symmetric confidence intervals on the mean are commonly computed assuming the data follow
a normal distribution (see section 3.4.1). If not, the distribution of the mean itself will be
approximately normal as long as sample sizes are large (say 50 observations or greater).
Confidence intervals assuming normality will then include the true mean (1-0)% of the time. In
the above example, the data were generated from a normal distribution, so the small sample size
of 12 is not a problem. However when data are skewed and sample sizes below 50 or more,
symmetric confidence intervals will not contain the mean (1-0)% of the time. In the example
below, symmetric confidence intervals are incorrectly computed for skewed data (figure 3.2).
The results (figure 3.3 and table 3.2) show that the confidence intervals miss the true value of 1

more frequently than they should. The greater the skewness, the larger the sample size must be

3.1]
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before symmetric confidence intervals can be relied on. As an alternative, asymmetric
confidence intervals can be computed for the common situation of skewed data. They are also

presented in the following sections.

N Mean St. Dev. 90 % Confidence Interval
1 12 0.784 0.320 *(0.018 to  0.950)
2 12 0.811 0.299 *(0.656 to  0.960)
3 12 1.178 0.700 (0.815 to  1.541)
4 12 1.030 0.459 (0.792 to  1.267)
5 12 1.079 0.573 (0.782 to  1.376)
6 12 0.833 0.363 (0.644 to  1.021)
7 12 0.789 0.240 *(0.664 to  0.913)
8 12 1.159 0.815 (0.736 to  1.581)
9 12 0.822 0.365 *(0.633 to  0.992)
10 12 0.837 0.478 (0.589 to  1.085)

Table 3.2 Ten 90% confidence intervals around a true mean of 1. Data do not follow a normal

distribution. Intervals with an asterisk do not include the true value.

o

O © 00 NO o A WOWDN =

—

Frequency of Occurrence

Figure 3.2 Histogram of skewed example data. Lt =1.0 o =0.75.
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N g

N

~/

1.0
(True Value)

Figure 3.3 Ten 90% confidence intervals for skewed data with true mean = 1.0

3.3 Confidence Intervals for the Median

A confidence interval for the true population median may be computed either without assuming
the data follow any specific distribution (section 3.3.1), or assuming they follow a distribution

such as the lognormal (section 3.3.2).

Confidence Intervals for the
Center of Data

Interest in median Interest in mean
“typical value" "center of mass"

Sec. 3.4.1

Sec. 3.3.2 Sec. 3.4.2

3.3.1 Nonparametric Interval Estimate for the Median

A nonparametric interval estimate for the true population median is computed using the
binomial distribution. First, the desired significance level o is stated, the acceptable risk of not
including the true median. One-half (01/2) of this risk is assigned to each end of the interval
(figure 3.4). A table of the binomial distribution provides lower and upper critical values x' and
x at one-half the desired alpha level (0./2). These critical values are transformed into the ranks

Rj and Ry, corresponding to data points Cj and C; at the ends of the confidence interval.
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PROBABILITY OF
INCLUDING THE
TRUE MEDIAN

o 95% = 1—-«

| Interval estimate I

0 ¢ C,
DATA VALUE

Figure 3.4  Probability of containing the true median P 5 in a 2-sided interval estimate. P 5

will be below the lower interval bound (CJ) 0./2% of the time, and above the upper
interval bound (Cy) 01/2% of the time.

For small sample sizes, the binomial table is entered at the p=0.5 (median) column in order to
compute a confidence interval on the median. This column is reproduced in Appendix Table B5
-- it is identical to the quantiles for the sign test (see chapter 6). A critical value x' is obtained
from Table B5 corresponding to 0/2, or as close to 0./2 as possible. This critical value is then
used to compute the ranks Ry and Rj corresponding to the data values at the upper and lower
confidence limits for the median. These limits are the Rjth ranked data points going in from
each end of the sorted list of n observations. The resulting confidence interval will reflect the

shape (skewed or symmetric) of the original data.

R = x'+1 [3.2]

Ry = n—x'=x for x' and x from Appendix Table B5 [3.3]

Nonparametric intervals cannot always exactly produce the desired confidence level when
sample sizes are small. This is because they are discrete, jumping from one data value to the
next at the ends of the intervals. However, confidence levels close to those desired are available

for all but the smallest sample sizes.

Example 2
The following 25 arsenic concentrations (in ppb) were reported for ground waters of

southeastern New Hampshire (Boudette and others, 1985). A histogram of the data is shown in
figure 3.5. Compute the 00=0.05 interval estimate of the median concentration.

1.3 1.5 1.8 2.6 2.8 3.5 4.0 4.8 8

9.5 12 14 19 23 41 80 100 110

120 190 240 250 300 340 580
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100
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200
250
300
350
400
450
500
550
600

Arsenic Concentration, in ppb

0.0 4.0 8.0 12.0

Figure 3.5 Histogram of Example 2 arsenic concentrations (in ppb)

The sample median concentration C 0.5 = 19, the 13th observation ranked from smallest to
largest. To determine a 95% confidence interval for the true median concentration Co s, the
tabled critical value with an entry nearest to o/2 = 0.025 is x' = 7 from Table B5. The entry
value of 0.022 is quite near 0.025, and is the equivalent to the shaded area at one side of figure
3.4. From equations 3.2 and 3.3 the rank Rj of the observation corresponding to the lower
confidence limit is 8, and Ry, corresponding to the upper confidence limitis 25—7 = 18.

For this confidence interval the alpha level o0 = 2¢0.022 = 0.044. This is equivalent to a 1-0.044
or 95.6% confidence limit for Cg 5, and is the interval between the 8th and 18th ranked
observations (the 8th point in from either end), or

C1=48=Cp5=110=Cy ato =0.044
The asymmetry around 6 0.5 = 19 reflects the skewness of the data.

An alternative method for computing the same nonparametric interval is used when the sample
size n>20. This large-sample approximation utilizes a table of the standard normal distribution
available in every basic statistics textbook to approximate the binomial distribution. By using
this approximation, only small tables of the binomial distribution up to n=20 need be included
in statistics texts. A critical value zg /2 from the normal table determines the upper and lower

ranks of observations corresponding to the ends of the confidence interval. Those ranks are
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n—z n

R = . [3.4]
n+ < /ZJZ
0= i [3.5]

The computed ranks Ry and Rj are rounded to the nearest integer when necessary.

Example 2, cont.
For the n=25 arsenic concentrations, an approximate 95 percent confidence interval on the true

median Cp 5 is computed using zg /2 = 1.96 so that

25-1.96+~[25
- 2

25 + 1.96 *~[25
Ry = > \/_+1

the "7.6th ranked observation" in from either end. Rounding to the nearest integer, the 8th and

Ry =76

=18.4

18th ranked observations are used as the ends of the 0=0.05 confidence limit on Cy 5, agreeing

with the exact 95.6% confidence limit computed previously.

3.3.2 Parametric Interval Estimate for the Median

As mentioned in chapter 1, the geometric mean of x (GMy) is an estimate of the median in
original (x) units when the data logarithms y = In(x) are symmetric. The mean of y and
confidence interval on the mean of y become the geometric mean with its (asymmetric)
confidence interval after being retransformed back to original units by exponentiation (equations
3.6 and 3.7). These are parametric alternatives to the point and interval estimates of section
3.3.1. Here it is assumed that the data are distributed as a lognormal distribution. The
geometric mean and interval would be more efficient (shorter interval) measures of the median
and its confidence interval when the data are truly lognormal. The sample median and its
interval are more appropriate and more efficient if the logarithms of data still exhibit skewness

and/or outliers.

GMx =exp (¥) where y =1In(x) and y= sample mean ofy. [3.6]

exp (y “larna )v Si /n )S GM = exp (y “larna N Si /n) =7

2 . . .
where §'= sample variance of y in natural log units.
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Example 2, cont.
Natural logs of the arsenic data are as follows:

0.262 0.405 0.588 0.956 1.030 1.253 1.387 1.569 2.079
2.251 2.485 2.639 2.944 3.135 3.714 4.382 4.605 4.700
4.787 5.247 5.481 5.521 5.704 5.829 6.363

The mean of the logs = 3.17, with standard deviation of 1.96. From figure 3.6 the logs of the
data appear more symmetric than do the original units of concentration shown previously in
tigure 3.5.

In of arsenic
concentration
OO R WN—=2O

0.0 2.0 4.0 6.0

Figure 3.6 Histogram of natural logs of the arsenic concentrations of Example 2

From equations 3.6 and 3.7, the geometric mean and its 95% confidence interval are:
GMe =exp (3.17) =238

exp(3.17 - 2,064 +\[1.962/25) < GM < exp(3.17 + 2,064 + [ 1.962/25)
exp (2.36) < GM¢ < exp (3.98)
10.6 < GMg < 53.5

The scientist must decide whether it is appropriate to assume a lognormal distribution. If not,

the nonparametric interval of section 3.3.1 would be preferred.

3.4 Confidence Intervals for the Mean

Interval estimates may also be computed for the true population mean U. These are appropriate
if the center of mass of the data is the statistic of interest (see Chapter 1). Intervals symmetric
around the sample mean X are computed most often. For large sample sizes a symmetric
interval adequately describes the variation of the mean, regardless of the shape of the data

distribution. This is because the distribution of the sample mean will be closely approximated by
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a normal distribution as sample sizes get larger, even though the data may not be normally
distributedf. For smaller sample sizes, however, the mean will not be normally distributed unless
the data themselves are normally distributed. As data increase in skewness, more data are
required before the distribution of the mean can be adequately approximated by a normal
distribution. For highly skewed distributions or data containing outliers, it may take more than
100 observations before the mean will be sufficiently unaffected by the largest values to assume

that its distribution will be symmetric.

3.4.1 Symmetric Confidence Interval for the Mean

Symmetric confidence intervals for the mean are computed using a table of the student's t
distribution available in statistics textbooks and software. This table is entered to find critical
values for t at one-half the desired alpha level. The width of the confidence interval is a
function of these critical values, the standard deviation of the data, and the sample size. When
data are skewed or contain outliers, the assumptions behind the t-interval do not hold. The
resulting symmetric interval will be so wide that most observations will be included in it. It may
also extend below zero on the lower end. Negative endpoints of a confidence interval for data
which cannot be negative are clear signals that the assumption of a symmetric confidence
interval is not warranted. For such data, assuming a lognormal distribution as described in

section 3.4.2 would be more appropriate.

The student's t statistic t(o/2, n—1) 18 used to compute the following symmetric confidence
b

interval:

X=ta/2,n-1) N s¥/n S WS X+ g2 n-1)*\ $¥/n [3.8]

Example 2, cont.

The sample mean arsenic concentration C = 98.4. This is the point estimate for the true

unknown population mean . An ¢ = 0.05 confidence interval on W is

98.4 — t(,025, 24) * \144.72/25 <u < 984 + €025, 24) * \/144.72/25

98.4 —2.064+289 =u= 984+ 2.064 *28.9
38.7 =u = 158.1

Thus there is a 95% probability that |l is contained in the interval between 38.7 and 158.1 ppb,
assuming that a symmetric confidence interval is appropriate. Note that this confidence interval
is, like C, sensitive to the highest data values. If the largest value of 580 were changed to 380,
the median and its confidence interval would be unaffected. C would change to 90.4, with a
95% interval estimate for W from 40.7 to 140.1.

T This property is called the Central Limit Theorem (Conover, 1980). It holds for data which follow a distribution
having finite variance, and so includes most distributions of interest in water resources.
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3.4.2 Asymmetric Confidence Interval for the Mean (for Skewed Data)

Means and confidence intervals may also be computed by assuming that the logarithms y = In(x)
of the data are symmetric. If the data appear more like a lognormal than a normal distribution,
this assumption will give a more reliable (lower variance) estimate of the mean than will

computation of the usual sample mean without log transformation.

To estimate the population mean [lx in original units, assume the data are lognormal. One-half
the variance of the logarithms is added to ¥ (the mean of the logs) prior to exponentiation
(Aitchison and Brown, 1981). As the sample variance szy is only an estimate of the true variance
of the logarithms, the sample estimate of the mean is biased (Bradu and Mundlak, 1970).
However, for small 52y and large sample sizes the bias is negligible. See Chapter 9 for more

information on the bias of this estimatot.

ft, =exp (y+05e szy) where y= In(x), [3.9]
y

= sample mean and 52y = sample variance of y in natural log units.

The confidence interval around fI_is not the interval estimate computed for the geometric mean
in equation 3.7. It cannot be computed simply by exponentiating the interval around y. An

exact confidence interval in original units for the mean of lognormal data can be computed,
though the equation is beyond the scope of this book. See Land (1971) and (1972) for details.

Example 2, cont.

To estimate the mean concentration assuming a lognormal distribution,
. = exp (3.17 + 0.5°1.96%) = 162.8..

This estimate does not even fall within the confidence interval computed eatlier for the
geometric mean (10.6 = GM = 53.5). Thus here is a case where it is obvious that the CI on
the geometric mean is not an interval estimate of the mean. It is an interval estimate of the

median, assuming the data follow a lognormal distribution.

3.5. Nonparametric Prediction Intervals

The question is often asked whether one new observation is likely to have come from the same
distribution as previously-collected data, or alternatively from a different distribution. This can
be evaluated by determining whether the new observation is outside the prediction interval
computed from existing data. Prediction intervals contain 100¢(1—-0t) percent of the data
distribution, while 100°0t percent are outside of the interval. If a new observation comes from

the same distribution as previously-measured data, there is a 100°0. percent chance that it will lie
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outside of the prediction interval. Therefore being outside the interval does not "prove" the
new observation is different, just that it is likely to be so. How likely this is depends on the

choice of o0 made by the scientist.

Prediction intervals are computed for a different purpose than confidence intervals -- they deal
with individual data values as opposed to a summary statistic such as the mean. A prediction
interval is wider than the corresponding confidence interval, because an individual observation is
more variable than is a summary statistic computed from several observations. Unlike a
confidence interval, a prediction interval takes into account the variability of single data points
around the median or mean, in addition to the error in estimating the center of the distribution.
When the mean * 2 standard deviations are mistakenly used to estimate the width of a
prediction interval, new data are asserted as being from a different population more frequently
than they should.

In this section nonparametric prediction intervals are presented -- intervals not requiring the data
to follow any particular distributional shape. Prediction intervals can also be developed
assuming the data follow a particular distribution, such as the normal. These are discussed in

section 3.6. Both two-sided and one-sided prediction intervals are described.

Prediction Intervals to
evaluate one new observation

Valid only
Valid only for when logs are
Valid for all data symmetric data symmetric

Sec. 3.5 Sec. 3.6.1 Sec. 3.6.2

It may also be of interest to know whether the median or mean of a new set of data differs from
that for an existing group. To test for differences in medians, use the rank-sum test of Chapter

5. To test for differences in means, the two-sample t-test of Chapter 5 should be performed.

3.5.1 Two-Sided Nonparametric Prediction Interval

The nonparametric prediction interval of confidence level ¢ is simply the interval between the
0./2 and 1—(0./2) percentiles of the distribution (figure 3.7). This interval contains 100°(1—0r)
percent of the data, while 1000t percent lies outside of the interval. Therefore if the new
additional data point comes from the same distribution as the previously measured data, there is

a 100+t percent chance that it will lie outside of the prediction interval and be incorrectly
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labeled as "changed". The interval will reflect the shape of the data it is developed from, and no

assumptions about the form of that shape need be made.

Plnp = Xo/2:n+1) t0 X[1—(01/2)]+(n+1) [3.10]

1 -«

Confidence level

m i <2 ZmMmZamm;
[ D T e e o S O 0 Y

- P2

W W
A Predicion Intervdl —— e U

Figure 3.7 Two-sided prediction interval. A new observation will be below X] o./2% and
above Xy 0/2% of the time, when the data distribution is unchanged.

Example 2, cont.

Compute a 90% (00 = 0.10) prediction interval for the arsenic data without assuming the data
follow any particular distribution.

The 5th and 95th percentiles of the arsenic data are the observations with ranks of (.05°26) and
(:95°206), or 1.3 and 24.7. By linearly interpolating between the 1st and 2nd, and 24th and 25th
observations, the 0. = 0.10 prediction interval is
X1+ 0.3 X2—X1) to X24+ 0.7 * (X25-X24)
1.3+03°02 to 340+ 0.7« 240
1.4 to 508 ppb
A new observation less than 1.4 or greater than 508 can be considered as coming from a
different distribution at a 10% risk level (ot = 0.10).

3.5.2 One-Sided Nonparametric Prediction Interval
One-sided prediction intervals are appropriate if the interest is in whether a new observation is
larger than existing data, or smaller than existing data, but not both. The decision to use a onel!

sided interval must be based entirely on the question of interest. It should not be determined
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after looking at the data and deciding that the new observation is likely to be only larger, or only
smaller, than existing information. One-sided intervals use O rather than 01/2 as the etror risk,

placing all the risk on one side of the interval (figure 3.8).

one-sided PI np: new X < Xqe(n+1) » Of
new x > X[1_0q.<n+1) [3.11]
(but not either, or)

-«
Confidetwne level

Mo D ZmoomI T
MOZMIOID S o0

-4——— Predicton Interval L

Figure 3.8 Confidence level and alpha level for a 1-sided prediction interval Probability of
obtaining a new observation greater than Xy, when the distribution is unchanged
1s OL.

Example 2, cont.

An arsenic concentration of 350 ppb is found in a New Hampshire well. Does this indicate a
change to larger values as compared to the distribution of concentrations for the example 2
data? Use o0 = 0.10.

As only large concentrations are of interest, the new data point will be considered larger if it
exceeds the o0 = 0.10 one-sided prediction interval, or upper 90th percentile of the existing data.
X0.90¢26 = X23.4. By linear interpolation this corresponds to a concentration of

X093 + 0.44(Xp4—Xp3) = 300 + 0.4+(40) = 316.

In other words, a concentration of 316 or greater will occur approximately 10 percent of the
time if the distribution of data has not increased. Therefore a concentration of 350 ppb is

considered larger than the existing data at an ol level of 0.10.
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3.6 Parametric Prediction Intervals

Parametric prediction intervals are also used to determine whether a new observation is likely to
come from a different distribution than previously-collected data. However, an assumption is
now made about the shape of that distribution. This assumption provides more information
with which to construct the interval, as long as the assumption is valid. If the data do not

approximately follow the assumed distribution, the prediction interval may be quite inaccurate.

3.6.1 Symmetric Prediction Interval

The most common assumption is that the data follow a normal distribution. Prediction intervals
are then constructed to be symmetric around the sample mean, and wider than confidence
intervals on the mean. The equation for this interval differs from that for a confidence interval
around the mean by adding a term s = s, the standard deviation of individual

observations around their mean:

Pl = X—t /2, n-1)"* \l 2+ (s2/n) to X+t (0/2,n—1)* A/ 82 + (s2/n) [3.12]

One-sided intervals are computed as before, using O rather than 0/2 and comparing new data to

only one end of the prediction interval.

Example 2, cont.
Assuming symmetty, is a concentration of 350 ppb different (not just larger) than what would be

expected from the previous distribution of arsenic concentrations? Use o = 0.10.

The parametric two-sided ot = 0.10 prediction interval is
98.4— t (05, 24 *\| 14472+ 144.72/25 10 984+ t (35, 24) *\| 144.72 + 144.72/25

98.4—1.711+147.6 to 98.4+ 1.711 « 147.6
-154.1 to 350.9

350 ppb is at the upper limit of 350.9, so the concentration is not declared different at

o, = 0.10. The negative concentration reported as the lower prediction bound is a clear
indication that the underlying data are not symmetric, as concentrations are non-negative. To
avoid an endpoint as unrealistic as this negative concentration, an asymmetric prediction interval
should be used instead.

3.6.2 Asymmetric Prediction Intervals

Asymmetric intervals can be computed either using the nonparametric intervals of section 3.5,
or by assuming symmetry of the logarithms and computing a parametric interval on the logs of
the data. Either asymmetric interval is more valid than a symmetric interval when the underlying

data are not symmetric, as is the case for the arsenic data of example 2. As stated in Chapter 1,
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most water resources data and indeed most environmental data show positive skewness. Thus
they should be modelled using asymmetric intervals. Symmetric prediction intervals should be
used only when the data are known to come from a normal distribution. This is because
prediction intervals deal with the behavior of individual observations. Therefore the Central
Limit Theorem (see first footnote in this chapter) does not apply. Data must be assumed nonl |
normal unless shown otherwise. It is difficult to disprove normality using hypothesis tests
(Chapter 4) due to the small sample sizes common to environmental data sets. It is also difficult
to see non-normality with graphs unless the departures are strong (Chapter 10). It is unfortunate
that though most water resources data sets are asymmetric and small, symmetric intervals are

commonly used.

An asymmetric (but parametric) prediction interval can be computed using logarithms. This
interval is parametric because percentiles are computed assuming that the data follow a

lognormal distribution. Thus from equation 3.12:

(— 2 2 — 2 2
PI = exp (y—t(alz’nflﬂ’sy +5, /n) to exp (y+t(a/2,n7m/sy +5 /n)

where y = In(X), y is the mean and sj the variance of the logarithms. [3.13]

Example 2, cont.

An asymmetric prediction interval is computed using the logs of the arsenic data. A 90%

prediction interval becomes

In(PT): 3.17 = t (0,05, 24) 1962 +1.962/25 to 3.17 + t (0.05, 24) *
A/ 1.962 + 1.962/25

317-171211 to 317+ 171211
0.44 t0 6.78

which when exponentiated into original units becomes
1.55 to 880.1

As percentiles can be transformed directly from one measurement scale to another, the
prediction interval in log units can be directly exponentiated to give the prediction interval in
original units. This parametric prediction interval differs from the one based on sample
percentiles in that a lognormal distribution is assumed. The parametric interval would be
preferred if the assumption of a lognormal distribution is believed. The sample percentile
interval would be preferred when a robust interval is desired, such as when a lognormal model is

not believed, or when the scientist does not wish to assume any model for the data distribution.
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3.7 Confidence Intervals for Percentiles (Tolerance Intervals)

Quantiles or percentiles have had the traditional use in water resources of describing the
frequency of flood events. Thus the 100-year flood is the 99th percentile (0.99 quantile) of the
distribution of annual flood peaks. It is the magnitude of flood which is expected to be
exceeded only once in 100 years. The 20-year flood is of a magnitude which is expected to be
exceeded only once in 20 years (5 times in 100 years), or is the 95th percentile of annual peaks.
Similarly, the 2-year flood is the median or 50th percentile of annual peaks. Flood percentiles
are determined assuming that peak flows follow a specified distribution. The log Pearson Type
111 is often used in the United States. Historically, European countries have used the Gumbel

(extreme value) distribution, though the GEV distribution is now more common (Ponce, 1989).

The most commonly-reported statistic for analyses of low flows is also based on percentiles, the
"7-day 10-year low flow" or 7Q10. The 7Q10 is the 10th percentile of the distribution of annual
values of Y, where Y is the lowest average of mean daily flows over any consecutive 7-day
period for that year. Y values are commonly fit to Log Pearson III or Gumbel distributions in
order to compute the percentile. Often a series of duration periods is used to better define flow
characteristics, ie. the 30Q10, 60Q10, and others (Ponce, 1989).

Recently, percentiles: water quality of water-quality records appear to be becoming more
important in a regulatory framework. Crabtree et al. (1987) among others have reported an
increasing reliance on percentiles for developing and monitoring compliance with water quality
standardsT. In these scenarios, the median, 95th, or some other percentile should not exceed (or
be below) a standard. As of now, no distribution is usually assumed for water-quality
concentrations, so that sample percentiles are commonly computed and compared to the
standard. In regulatory frameworks, exceedance of a tolerance interval on concentration is
sometimes used as evidence of contamination. A tolerance interval is nothing other than a
confidence interval on the percentile. The percentile used is the ‘coverage coefficient’ of the

tolerance interval.

In light of the ever increasing use of percentiles in water resources applications, understanding
of their variability is quite important. In 3.7.1, interval estimates will be computed without
assuming a distribution for the data. Estimates of peak flow percentiles computed in this way
will therefore differ somewhat in comparison to those computed using a Log Pearson 111 or

Gumbel assumption. Computation of percentile interval estimates when assuming a specific

T Data presented by Crabtree et al. (1987) shows that for each of their cases, percentiles of flow
and water-quality constituents are best estimated by (nonparametric) sample percentiles rather
than by assuming some distribution. However they come to a different conclusion for two
constituents (see their Table 2) by assuming that a parametric process is better unless proven
otherwise. In those two cases either could be used.
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distributional shape is discussed in section 3.7.3. In sections 3.7.2 and 3.7.4, use of interval

estimates for testing hypotheses is illustrated.

Confidence Intervals for percentiles

Valid only when a
distribution is
Valid for all data assumed

3.7.1 Nonparametric Confidence Intervals for Percentiles

Confidence intervals can be developed for any percentile analogous to those developed in
section 3.3 for the median. First the desired confidence level is stated. For small sample sizes a
table of the binomial distribution is entered to find upper and lower limits corresponding to
critical values at one-half the desired alpha level (0t/2). These critical values are transformed

into the ranks corresponding to data points at the ends of the confidence interval.

The binomial table is entered at the column for p, the percentile (actually the quantile) for which
a confidence interval is desired. So for a confidence interval on the 75th percentile, the p=0.75
column is used. Go down the column until the appropriate sample size n is found. The tabled
probability p* should be found which is as close to 0./2 as possible. The lower critical value xj is
the integer corresponding to this probability p*. A second critical value xy, is similatly obtained
by continuing down the column to find a tabled probability p' = (1-0t/2). These critical values
xj and x; are used to compute the ranks R] and Ry, corresponding to the data values at the upper
and lower ends of the confidence limit (equations 3.14 and 3.15). The resulting confidence level

of the interval will equal (p'—p*).

R| = x+1 3.14]

Ry = xy [3.15]

Example 2, cont.

For the arsenic concentrations of Boudette and others (1985), determine a 95% confidence
interval on C(),20), the 20th percentile of concentration (p=0.2).

The sample 20th percentile C 0.20 = 2.9 ppb, the 0.20¢(26) = 5.2 smallest observation, or twol
tenths of the distance between the 5th and 6th smallest observations. To determine a 95%
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confidence interval for the true 20th percentile C() 2(), the binomial table from a statistics text
such as Bhattacharyya and Johnson (1977) is entered at the p = 0.20 column. The integer x]
having an entry nearest to o,/2 = 0.025 is found to be 1 (p* = 0.027, the error probability for the
lower side of the distribution). From equation 3.14 the rank R} = 2. Going further down the
column, p'= 0.983 for an x; = Ry = 9. Therefore a 95.6% confidence interval (0.983-0.027 =
0.9506) for the 20th percentile is the range between the 2nd and 9th observations, or

1.5=<Cppo =8 ata=0.044
The asymmetry around é 0.20 = 2.9 reflects the skewness of the data.

When n>20, a large-sample (normal) approximation to the binomial distribution can be used to
obtain interval estimates for percentiles. From a table of quantiles of the standard normal
distribution, z¢; /2 and z[]_¢,/2] (the 0/2th and [1-0t/2]th normal quantiles) determine the
upper and lower ranks of observations corresponding to the ends of the confidence interval.

Those ranks are

Rj= np+zg/o° \lnp (1-p) + 0.5 [3.16]
Ry= np+ 2[1-0/2] * \op (1-p) +0.5 [3.17]

The 0.5 terms added to each reflect a continuity correction (see Chapter 4) of 0.5 for the lower
bound and —0.5 for the upper bound, plus the +1 term for the upper bound analogous to

equation 3.5. The computed ranks Ry; and Rj are rounded to the nearest integer.

Example 2, cont.

Using the large sample approximation of equations 3.16 and 3.17, what is a 95% confidence

interval estimate for the true 0.2 quantile?

Using z¢, /2 = —1.96, the lower and upper ranks of the interval are
Rp= 2502+ (=1.96) *~/25%0.2 (1-0.2) +0.5 =5—1.962 +0.5 =1.0
Ry = 25°0.2+ 1.96°1/25°0.2 (1-0.2) +0.5 =5+1962+05 =94
After rounding, the 2nd and 9th ranked observations are found to be an approximate 0t=0.05

confidence limit on C() 2, agreeing with the exact confidence limit computed previously.

3.7.2 Nonparametric Tests for Percentiles

Often it is of interest to test whether a percentile is different from, or larger or smaller than,
some specified value. For example, a water quality standard X() could be set such that the
median of daily concentrations should not exceed X() ppb. Or the 10-year flood (90th percentile
of annual peak flows) may be tested to determine if it differs from a regional design value X{j.
Detailed discussions of hypothesis tests do not begin until the next chapter. However, a simple

way to view such a test is discussed below. It is directly related to confidence intervals.
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3.7.2.1 N-P test for whether a percentile differs from X() (a two-sided test)

To test whether the percentile of a data set is significantly different (either larger or smaller)
from a pre-specified value X(), compute an interval estimate for the percentile as described in
section 3.7.1. If X() falls within this interval, the percentile is not significantly different from X
at a significance level = o (figure 3.9). If X(y is not within the interval, the percentile
significantly differs from X at the significance level of o..

FROBABILITY OF
INCLUDNG THE | /0 95% = 1-« afo
TRUE Xp :

Interval estimate
A

DATA WALLIE

FROBABILITY OF

INCLUDMG THE o — -
TRUE Ko Afo O95% = 1-a ....Ci'_ll."g

Interval estimate

B.

0 A X, ﬁp X1
DATA WALUE

Figure 3.9 Interval estimate of pth percentile Xp as a test for whether Xp = X.
A. X inside interval estimate: Xp not significantly different from X
B. X outside interval estimate: Xp significantly different from X.

Example 3
In Appendix C1 are annual peak discharges for the Saddle R. at Lodi, NJ from 1925 to 1967.

Of interest is the 5-year flood, the flood which is likely to be equalled or exceeded once every 5
years (20 times in 100 years), and S0 is the 80th percentile of annual peaks. Though flood
percentiles are usually computed assuming a Log Pearson Type 111 or Gumbel distribution
(Ponce, 1989), here they will be estimated by the sample 80th percentile. Is there evidence that
the 20-year flood between 1925-1967 differs from a design value of 1300 cfs at an o= 0.05?

The 80th percentile is estimated from the 43 values between 1925 and 1967 as the
0.8(44) = 35.2 value when ranked from smallest to largest. Therefore Q (g = 1672 cfs, 0.2
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of the distance between the 35th and 36th ranked peak flow. A two-sided confidence interval
on this percentile is (following equations 3.16 and 3.17):

Ry =np+zg/2° \lnp 1-p) + 0.5 Ry =n0p+2z[1—o/2] * \ap (I-p) +0.5
Rj = 43(0.8)—1.96%/43+0.8 (0.2) + 0.5 Ry, = 43(0.8)+1.96%\[430.8 (0.2) + 0.5
= 29.8 = 40.0

The 0=0.05 confidence interval lies between the 30th and 40th ranked peak flows, or
1370 < Qq.8 < 1860
which does not include the design value X() = 1300 cfs. Therefore the 20-year flood does differ

from the design value at a significance level of 0.05.

3.7.2.2 N-P test for whether a percentile exceeds Xy (a one-sided test)

To test whether a percentile X significantly exceeds a specified value or standard X(), compute
the one-sided confidence interval of section 3.7.1. Remember that the entire error level O is
placed on the side below the percentile point estimate X p (figure 3.10). Xp will be declared
significantly higher than X{j if its one-sided confidence interval lies entirely above Xg).

PROBABILITY OF
INCLUDING THE o 1-«
TRUE Xp

A.

Interval estimate

DATA VALUE

PROBABILITY OF
INCLUDING THE
TRUE Xp

B.

o 1-o

Interval estimate

0 Xo X| 9
DATA VALUE
Figure 3.10  One-sided interval estimate as a test for whether percentile Xp > Xp.

p

A. X inside interval estimate: Xp not significantly greater than Xj).
B. X below interval estimate: Xp significantly greater than X().
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Example 2, cont.

Suppose that a water-quality standard stated that the 90th percentile of arsenic concentrations in
drinking water shall not exceed 300 ppb. Has this standard been violated at the ot = 0.05
confidence level by the New Hampshire data of example 2?

The 90th percentile of the example 2 arsenic concentrations is
C 99 = (25+1)°0.9th = 23.4th data point =300 + 0.4 (340-300)
= 316 ppb.

Following equation 3.16 but using o instead of 0/2, the rank of the obsetrvation cotresponding
to a one-sided 95% lower confidence bound on C g( is
Ry =np+zg *y\np (1-p) +0.5 = 2509 + 20 o5 *V25°0.9 (0.1) +0.5
=225+ (-1.64)/2.25 + 0.5
=20.5
and thus the lower confidence limit is the 20.5th lowest observation, or 215 ppb, halfway
between the 20th and 21st observations. This confidence limit is less than X =300, and

therefore the standard has not been exceeded at the 95% confidence level.

3.7.2.3 N-P test for whether a percentile is less than X() (a one-sided test)
To test whether a percentile Xp is significantly less than X(), compute the one-sided confidence
interval placing all error o on the side above X p (tigure 3.11). Xp will be declared as

significantly less than X{j if its one-sided confidence interval is entirely below X(.

PROBABILITY OF
INCLUDING THE 1-o o
TRUE Xp

A.

Interval estimate

X
0 Qp 0 X

DATA VALUE

PROBABILITY OF
INCLUDING THE
TRUE Xp

B.

1—o

Interval estimate

0 Qp Xy Xo
DATA VALUE
Figure 3.11  One-sided interval estimate as a test for whether percentile Xp < Xp.
A. X inside interval estimate: Xp not significantly less than Xg).
B. X( above interval estimate: Xp significantly less than X{.
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Example 4
The following 43 values are annual 7-day minimum flows for 1941-1983 on the Little Mahoning

Creek at McCormick, PA. Though percentiles of low flows are often computed using a Log
Pearson Type III distribution, here the sample estimate of the percentile will be computed. Is
the 7Q10 low-flow (the 10th percentile of these data) significantly less than 3 cfs at o = 0.05?

0.69  0.80 1.30 1.40 1.50 1.50 1.80 1.80 2.10 250  2.80
290  3.00 3.10 3.30 3.70 3.80 3.80 4.00 4.10 420 430
440  4.80 4.90 5.70 5.80 5.90 6.00 6.10 7.90 8.00  8.00
9.70  9.80 10.00 11.00 11.00 12.00 13.00 16.00  20.00  23.00

The sample 10th percentile of the data is 4.4th observation, or 7AQ 10 = 1.4 cfs. The upper 95%
confidence interval for Q 1() is located (following equation 3.17 but using O) at rank Ry;:
Ry= np+ 2[1-0] * \op (1-p) +0.5
= 43¢0.1 +1.64 *1/430.1 (0.9) +0.5
= 8.0
So the upper 95% confidence limit equals 1.8 cfs. This is below the Xy of 3 cfs, and therefore
the 7Q10 is significantly less than 3 cfs at an o0 = 0.05.

3.7.3 Parametric Confidence Intervals for Percentiles

Confidence intervals for percentiles can also be computed by assuming that data follow a
particular distribution. Distributional assumptions are employed because there are often
insufficient data to compute percentiles with the required precision. Adding information
contained in the distribution will increase the precision of the estimate as long as the

distributional assumption is a reasonable one. However when the distribution which is assumed

does not fit the data well, the resulting estimates are less accurate, and more misleading, than if
nothing were assumed. Unfortunately, the situation in which an assumption is most needed,
that of small sample sizes, is the same situation where it is difficult to determine whether the

data follow the assumed distribution.

There is little theoretical reason why data should follow one distribution over another. As stated
in Chapter 1, most environmental data have a lower bound at zero and may have quite large
observations differing from the bulk of the data. Distributions fit to such data must posses
skewness, such as the lognormal. But few "first principles" can be drawn on to favor one
skewed distribution over another. Empirical studies have found that for specific locations and
variables certain distributions seem to fit well, and those have become traditionally used. Thus
the lognormal, Pearson Type III and Gumbel distributions are commonly assumed in water

resources applications.
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Computation of point and interval estimates for percentiles assuming a lognormal distribution
are straightforward. First the sample mean yand sample standard deviation sy of the

logarithms are computed. The point estimate is then

A

X p = CXP (V + Zp.Sy) [3.18]

where zp is the pth quantile of the standard normal distribution and y = In(x).

The interval estimate for the median was previously given by equation 3.7 assuming that data are
lognormal. For other percentiles, confidence intervals are computed using the non-central t_|
distribution (Stedinger, 1983). Tables of that distribution are found in Stedinget's article, with
more complete entries online in commercial computer mathematical libraries. The confidence

interval on Xp is:

CI(Xp) = exp (7 + Coy2esy, 7+ {[1-as2]"sy) [3.19]

where (g2 is the 0./2 quantile of the non-central t distribution for the desired percentile with

sample size of n.

Example 2, cont.
Compute a 90% interval estimate for the 90th percentile of the New Hampshire arsenic

concentrations, assuming the data are lognormal.

The 90th percentile assuming concentrations are lognormal is as given in equation 3.18:
Coo = exp F+z9p°sy) = exp (3.17 + 1.28+1.96)
= 292.6 ppb.
(which is lower than the sample estimate of 316 ppb obtained without assuming the data are

lognormal).

The corresponding 90% interval estimate from equation 3.19 is:
exp (7 + §p.05°sy) < Co0 < exp (7 + {p.95°sy)
exp (3.17 + 0.8981.96) < C 9 < exp(3.17 + 1.8381.96)
138.4 < Cg( < 873.5

This estimate would be preferred over the nonparametric estimate if it was believed that the data
were truly lognormal. Otherwise a nonparametric interval would be preferred. When the data

are truly lognormal, the two intervals should be quite similar.

Interval estimates for percentiles of the Log Pearson III distribution are computed in a similar

fashion. See Stedinger (1983) for details on the procedure.
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3.7.4 Parametric Tests for Percentiles

Analogous to section 3.7.2, parametric interval estimates may be used to conduct a parametric
test for whether a percentile is different from (2-sided test), exceeds (1-sided test), or is less than
(1-sided test) some specified value X(y. With the 2-sided test for difference, if X falls within the
interval having 0./2 on either side, the percentile is not proven to be significantly different from
X If X falls outside this interval, the evidence supports Xp # X( with an error level of oL
For the one-sided tests, the error level ot is placed entirely on one side before conducting the

test, and X() is again compared to the end of the interval to determine difference or similarity.

Example 2, cont.

Test whether the 90th percentile of arsenic concentrations in drinking water exceeds 300 ppb at

the o = 0.05 significance level, assuming the data are lognormal.

The one-sided 95% lower confidence limit for the 90th percentile was computed above as 138.4
ppb. (note the nonparametric bound was 215 ppb). This limit is less than the p( value of 300,

and therefore the standard has not been exceeded at the 95% confidence level.

3.8 Other Uses for Confidence Intervals

Confidence intervals are used for purposes other than as interval estimates. Three common uses
are to detect outliers, for quality control charts, and for determining sample sizes necessary to
achieve a stated level of precision. Often overlooked are the implications of data non-normality

for the three applications. These are discussed in the following three sections.

3.8.1 Implications of Non-Normality for Detection of Outliers

An outlier is an observation which appears to differ in its characteristics from the bulk of the
data set to which it is assigned. It is a subjective concept -- different people may define specific
points as either outliers, or not. Outliers are sometimes deleted from a data set in order to use
procedures based on the normal distribution. One of the central themes of this book is that this
is a dangerous and unwarranted practice. It is dangerous because these data may well be totally
valid. There is no law stating that observed data must follow some specific distribution, such as
the normal. Outlying observations are often the most important data collected, providing
insight into extreme conditions or important causative relationships. Deleting outliers is
unwarranted because procedures not requiring an assumption of normality are both available
and powerful. Many of these are discussed in the following chapters.

In order to delete an outlier, an observation must first be declared to be one. Rules or "tests"
for outliers have been used for years, as surveyed by Beckman and Cook (1983). The most

common tests are based on a t-interval, and assume that data follow a normal distribution.
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Usually equation 3.12 for a normal prediction interval is simplified by assuming the (s2/n) terms
under the square root sign are negligable compared to s2 (true for large n). Points beyond the
simplified prediction interval are declared as outliers, and dropped.

Real world data may not follow a normal distribution. As opposed to a mean of large data sets,
there is no reason to assume that they should. Rejection of points by outlier tests may not
indicate that data are in any sense in error, but only that they do not follow a normal distribution
(Fisher, 1922). For example, below are 25 observations from a lognormal distribution. When
the t-prediction interval is applied with 00=0.05, the largest observation is declared to be an
outlier. Yet it is known to be from the same non-normal distribution as generated the remaining
observations.

0.150 0.244 0.339 0.408 0.434

0.595 0.728 0.776 0.832 0.836

0.900 0.924 1.074 1.136 1.289 DATA
' ' ' ' ' VALUE

1.709 1.889 2.217 2.755 2.886

2919 2939 3.166 4.282 7.049

NOOTR~AWN—=O

OUTLIER

00 30 60 90
NO. OF OBSERVATIONS

Table 3.3 Lognormal data set with "outlier" more than +2 sd above the mean.

Multiple outliers cause other problems for outlier tests that are based on normality (Beckman
and Cook, 1983). They may so inflate the estimated standard deviation that no points are
declared as outliers. When several points are spaced at increasingly larger distances from the
mean, the first may be declared an outlier upon using the test once, but re-testing after deletion
causes the second largest to be rejected, and so on. Replication of the test may eventually
discard a substantial part of the data set. The choice of how many times to apply the test is
entirely arbitrary.

3.8.2 Implications of Non-Normality for Quality Control

A visual presentation of confidence intervals used extensively in industrial processes is a control
chart (Montgomery, 1991). A small number of products are sampled from the total possible at
a given point in time, and their mean calculated. The sampling is repeated at regular or random
intervals, depending on the design, resulting in a series of sample means. These are used to
construct one type of control chart, the xbar chart. This chart visually detects when the mean of

future samples become different from those used to construct the chart. The decision of
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difference is based on exceeding the parametric confidence interval around the mean given in
section 3.4.1.

Suppose a chemical laboratory measures the same standard solution at several times during a day
to determine whether the equipment and operator are producing consistent results. For a series
of n measurements at m time intervals, the total sample size N=n*m. The best estimate of the

concentration for that standard is the overall mean
N
— Xj
X=) N
i=1
X is plotted as the center line of the chart. A confidence interval on that mean is described by
equation 3.8, using the sample size n available for computing each individual mean value. Those
interval boundaries are also plotted as parallel lines on the quality control chart. Mean values
will on average plot outside of these boundaries only 0t*100% of the time if the means are
normally distributed. Points falling outside the boundaries more frequently than this are taken

to indicate that something in the process has changed.

If n is large (say 30 or more) the Central Limit Theorem states that the means will be normally
distributed even though the underlying data may not be. However if n is much smaller, as is
often the case, the means may not follow this pattern. In particular, for skewed data (data with
outliers on only one side), the distribution around the mean may still be skewed. The result is a
large value for the standard deviation, and wide confidence bands. Therefore the chart will have
lower power to detect departures or drifts away from the expected mean value than if the data

were not skewed.

Control charts are also produced to illustrate process variance. These either use the range (R
chart) or standard deviation (S chart). Both charts are even more sensitive to departures from
normality than is the X chart (Montgomery, 1991). Both will have a difficult time in detecting
changes in variance when the underlying data are non-normal, and the sample size n for each

mean is small.

In water quality studies the most frequent application of control charts is to laboratory chemical
analyses. As chemical data tend to be positively skewed, control charts on the logs of the data
are usually more applicable than those in the original units. Otherwise large numbers of samples
must be used to determine mean values. Use of logarithms results in the center line estimating
the median in original units, with multiplicative variation represented by the confidence bands of
section 3.3.2.
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Nonparametric control charts may be utilized if sample sizes are sufficiently large. These could
use the confidence intervals for the median rather than the mean, as in section 3.3.
Alternatively, limits could be set around the mean or median using the "F-psuedosigma" of
Hoaglin (1983). This was done by Schroeder et al. (1987). The F-psuedosigma is the
interquartile range divided by 1.349. It equals the standard deviation for a normal distribution,
but is not as strongly affected by outliers. It is most useful for characterizing symmetric data
containing outliers at both ends, providing a more resistant measure of spread than does the

standard deviation.

3.8.3 Implications of Non-Normality for Sampling Design

The t-interval equations are also used to determine the number of samples necessary to estimate
a mean with a specified level of precision. However, such equations require the data to
approximately follow a normal distribution. They must consider power as well as the interval
width. Finally, one must decide whether the mean is the most appropriate characteristic to

measure for skewed data.

To estimate the sample size sufficient for determining an interval estimate of the mean with a

specified width, equation 3.8 is solved for n to produce

t s 2
n= [ a/2.n—1 J [3.20]
A

where s is the sample standard deviation and A is one-half the desired interval width. Sanders et

al. (1983) and other authors have promoted this equation. As discussed above, for sample sizes
less than 30 to 50 and even higher with strongly skewed data, this calculation may have large
errors. Estimates of s will be inaccurate, and strongly inflated by any skewness and/or outliers.
Resulting estimates of n will therefore be large. For example, Hakanson (1984) estimated the
number of samples necessary to provide reasonable interval widths for mean river and lake
sediment characteristics, including sediment chemistry. Based on the coefficients of variation
reported in the article, the data for river sediments were quite skewed, as might be expected.

Necessary sample sizes for rivers were calculated at 200 and higher.

Before using such simplistic equations, skewed data should be transformed to something closer
to symmetry, if not normality. For example, logarithms will drastically lower estimated sample
sizes for skewed data, equivalent to equation 3.13. Samples sizes would result which allow the
median (geometric mean) to be estimated within a multiplicative tolerance factor equal to £2A

in log units.

A second problem with equations like 3.20 for estimating sample size, even when data follow a
normal distribution, is pointed out by Kupper and Hafner (1989). They show that eq. 3.20
underestimates the true sample size needed for a given level of precision, even for estimates of

n = 40. This is because eq. 3.20 does not recognize that the standard deviation s is only an



94 Statistical Methods in Water Resources

estimate of the true value 0. They suggest adding a tolerance probability to eq. 3.20, akin to a
statement of power. Then the estimated interval width will be at least as small as the desired
interval width for some stated percentage (say 90 or 95%) of the time. For example, when n
would equal 40 based on equation 3.20, the resulting interval width will be less than the desired
width 2A only about 42% of the time! The sample size should instead be 53 in order to insure
the interval width is within tolerance range 90% of the time. They conclude that eq. 3.20 and
similar equations which do not take power into consideration "behave so poorly in all instances

that their future use should be strongly discouraged".

Sample sizes necessary for interval estimates of the median or to perform the nonparametric
tests of later chapters may be derived without the assumption of normality required above for t]
intervals. Noether (1987) describes these more robust sample size estimates, which do include
power considerations and so are more valid than equation 3.20. However, neither the normal’]
theory or nonparametric estimates consider the important and frequently-observed effects of
seasonality or trend, and so may never provide estimates sufficiently accurate to be anything

more than a crude guide.
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Exercises

3.1

3.2

3.3

34

3.5

Compute both nonparametric and parametric 95% interval estimates for the median of

the granodiorite data of exercise 2.3. Which is more appropriate for these data? Why?

Compute the symmetric 95% interval estimate for the mean of the quartz monzonite
data of exercise 2.3. Compute the sample mean, and the mean assuming the data are

lognormal. Which point estimate is more appropriate for these data? Why?

A well yield of 0.85 gallons/min/foot was measured in a well in Virginia. Is this yield
likely to belong to the same distribution as the data in exercise 1.1, or does it represent
something larger? Answer by computing 95% parametric and nonparametric intervals.

Which interval is more appropriate for these datar?

Construct the most appropriate 95 percent interval estimates for the mean and median

annual streamflows for the Conecuh River at Brantley, Alabama (data in Appendix C2).

Suppose a water intake is to be located on the Potomac River at Chain Bridge in such a
way that the intake should not be above the water surface more than 10 percent of the
time. Data for the design year (365 daily flows, ranked in order) are given in Appendix
C3. Compute a 95% confidence interval for the daily flow guaranteed by this placement
during the 90% of the time the intake is below water.






Hypothesis Tests

Scientists collect data in order to learn about the processes and systems those data represent.
Often they have prior ideas, called hypotheses, of how the systems behave. One of the primary
purposes of collecting data is to test whether those hypotheses can be substantiated, with
evidence provided by the data. Statistical tests are the most quantitative ways to determine

whether hypotheses can be substantiated, or whether they must be modified or rejected outright.

One important use of hypothesis tests is to evaluate and compare groups of data. Water
resources scientists have made such comparisons for years, sometimes without formal test
procedures. For example, water quality has been compared between two or more aquifers, and
some statements made as to which are different. Historic frequencies of exceeding some critical
surface-water discharge have been compared with those observed over the most recent 10 years.
Rather than using hypothesis tests, the results are sometimes expressed as the author's educated
opinions -- "it is cleat that development has increased well yield." Hypothesis tests have at least
two advantages over educated opinion:
1) they insure that every analyst of a data set using the same methods will arrive at
the same result. Computations can be checked on and agreed to by others.
2) they present a measure of the strength of the evidence (the p-value). The
decision to reject an hypothesis is augmented by the risk of that decision being

incorrect.

In this chapter hypothesis tests are classified based on when each is appropriate for use. The
basic structure of hypothesis testing is introduced. The rank-sum test is used to illustrate this
structure, as well as to illustrate the origin of tables of test statistic quantiles found in most
statistics textbooks. Finally, tests for normality are discussed. Concepts and terminology found
here will be used throughout the rest of the book.
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4.1 Classification of Hypothesis Tests

The numerous varieties of hypothesis tests often cause unnecessary confusion to scientists.

Tests can be classified into the five major types shown in figure 4.1, based on the measurement
scales of the data being tested. Within these types, the distributional shape of the data determine
which of two major divisions of hypothesis tests, parametric or nonparametric, are appropriate
for use. Thus the data, along with the objectives of the study, determine which test procedure
should be employed.

The terms response variable and explanatory variable are used in the following discussion. A
response variable is one whose variation is being studied. In the case of regression, for example,
the response variable is sometimes called the "dependent variable" or "y variable". An
explanatory variable is one used to explain why and how the magnitude of the response variable
changes. With a t-test, for example, the explanatory variable consists of the two categories of

data being tested.

4.1.1 Classification Based on Measurement Scales

In figure 4.1, five groupings of test procedures are represented by the five boxes. Each differs
only in the measurement scales of the response and explanatory variables under study. The
scales of measurement may be either continuous or categorical. Both parametric and

nonparametric tests may be found within a given box.

Tests represented by the three boxes in the top row of figure 4.1 are all similar in that the
response variable is measured on a continuous scale. Examples of variables having a continuous
scale are concentration, streamflow, porosity, and many of the other items measured by water
resources scientists. Tests represented by the two boxes along the bottom of figure 4.1, in
contrast, have response variables measured only on a categorical or grouped measurement scale.
These variables can only take on a finite, usually small, number of values. They are often
designated as letters or integer values. Categorical variables used primarily as explanatory
variables include aquifer type, month, land use group, and station number. Categorical variables
used as response variables include above/below a reporting limit (pethaps recorded as 0 or 1),

presence or absence of a particular species, and low/medium/high risk of contamination.

The top left box represents the two- and multi-sample hypothesis tests such as the rank-sum and
t-tests. The subject of Chapters 5 through 7, these tests determine whether a continuous
response variable (such as concentration) differs in its central value among two or more grouped

explanatory variables (such as aquifer unit).

The top right box represents two often-used methods -- linear regression and correlation. Both
relate a continuous response variable (the dependent or y variable) to a continuous explanatory

variable (the independent or x variable). Examples include regression of the 100-year flood
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magnitude versus basin characteristics, and correlations between concentrations of two chemical
constituents. Analysis of trends over time is a special case of this class of methods, where the

explanatory variable of primary interest is time.

The top center box is a blend of these two approaches, called analysis of covariance. A
continuous response variable is related to several explanatory variables, some of which are

continuous and some categorical. This is discussed in Chapter 11.

The bottom left box represents a situation similar to that for use of t-tests or analysis of
variance, except that the response variable is categorical. Examples include determining whether
the probability of finding a volatile organic above the reporting limit varies by land-use grouping.
Contingency tables appropriately measure the association between two such categorical

variables. Further information is found in Chapter 14.

The bottom right box shows that a regression-type relationship can be developed for the case of
a categorical response variable. Perhaps the proportion of pesticide or other data below the
reporting limit exceeds fifty percent, and it makes little sense to try to model mean or median
concentrations. Instead, the probability of finding a detectable concentration can be related to
continuous variables such as population density, percent of impervious surface, irrigation
intensities, etc. This is done through the use of logistic regression, one subject of Chapter 15.
Logistic regression can also incorporate categorical explanatory variables in a multiple regression

context, making it the equivalent of analysis of covariance for categorical response variables.

4.1.2 Classification Based on the Data Distribution

Hypothesis tests which assume that the data have a particular distribution (usually a normal
distribution, as in Fig. 1.2) are called parametric tests. This is because the information
contained in the data is summarized by parameters, usually the mean and standard deviation, and
the test statistic is computed using these parameters. This is an efficient process if the data truly
follow the assumed distribution. When they do not, however, the parameters may only pootly
represent what is actually occurring in the data. The resulting test can then reach an incorrect

conclusion, usually because it lacks sensitivity (power) to detect real effects.

Hypothesis tests not requiring the assumption that data follow a particular distribution are
called distribution-free or nonparametric tests. Information is extracted from the data by
comparing each value with all others (ranking the data) rather than by computing parameters. A
common misconception is that nonparametric tests "lose information" in comparison to
parametric tests because nonparametric tests "discard" the data values. Bradley (1968, p.13)
responded to this misconception: "Actually, the utilization of the additional sample information
[in the parameters| is made possible by the additional population 'information' embodied in the
parametric test's assumptions. Therefore, the distribution-free test is discarding information

only if the parametric test's assumptions are known to be true." Rather than discarding
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information, nonparametric tests efficiently extract information on the relative magnitudes
(ranks) of data without collapsing the information into only a few simple statistics. Both
parametric and nonparametric tests will be presented in the upcoming chapters for each category

of hypothesis tests.

4.2 Structure of Hypothesis Tests

Hypothesis tests are performed by following the structure discussed in the next six sections:

STRUCTURE OF HYPOTHESIS TESTS
1) Choose the appropriate test.
2) Establish the null and alternate hypotheses.
3) Decide on an acceptable error rate OL.
4) Compute the test statistic from the data.
5) Compute the p-value.
6) Reject the null hypothesis if p = o.

4.2.1 Choose the Appropriate Test

Test procedures are selected based on the data characteristics and study objectives. Figure 4.1
presented the first selection criteria -- the measurement scales of the data. The second criteria is
the objective of the test. Hypothesis tests are available to detect differences between central
values of two groups, three or more groups, between spreads of data groups, and for covariance
between two or more variables, among others. For example, to compare central values of two
independent groups of data, either the t-test or rank-sum test might be selected (see figure 4.2).
Subsequent chapters are organized by test objectives, with several alternate tests discussed in

each.

The third selection criteria is the choice between parametric or nonparametric tests. This should
be based on the expected distribution of the data involved. If similar data in the past were
normally distributed, a parametric procedure would usually be selected. If data were expected to
be non-normal, or not enough is known to assume any specific distribution, nonparametric tests
would be preferred. The power of parametric tests to reject Hy when Hy is false can be quite
low when applied to non-normal data, and type II errors commonly result (Bradley, 1968). This

loss of power is the primary concern when using parametric tests.

Sometimes the choice of test is based on a prior test of normality for that particular data set. If
normality is rejected a nonparametric test is chosen. Otherwise, a parametric test is used. This
can lead to two problems. First, with small data sets it is difficult to reject the null hypothesis of

normality because there is so little evidence on which to base a decision. Tests based on little
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data have little power. Thus a parametric test might easily be used when the underlying data are
actually non-normal. Nonparametric tests are particularly appropriate for small data sets unless
experience supports the assumption of normality. Second, small departures from normality not
large enough to detect with a test may be sufficiently large to weaken the power of parametric
tests. An example is given in Chapter 10. For nearly-normal data, such as produced by power

transformations to near-symmetry, the two classes of methods will often give the same result.

Test procedures should be selected that have greater power for the types of data expected to be
encountered. Comparisons of the power of two test procedures, one parametric and one
nonparametric, can be based on the tests' asymptotic relative efficiencies (ARE), a property of
their behavior with large sample sizes (Bradley, 1968, p.58). A test with larger ARE will have
generally greater power. For non-normal data the ARE of nonparametric tests can be many
times those of parametric tests(Hollander and Wolfe, 1973). Thus their power to reject Hy
when it is truly false is generally much higher in this case. When data are produced by a normal
distribution, nonparametric tests have generally lower (5-15%) ARE than parametric tests
(Hollander and Wolfe, 1973). Thus nonparametric tests are, in general, never much worse than
their parametric counterparts in their ability to detect departures from the null hypothesis, and
may be far, far better. As an example, the rank-sum test has a larger ARE (more power) than
the t-test for distributions containing outliers (Conover, 1980, p.225). Kendall and Stuart (1979,
p.540) show that for the gamma distribution (a skewed distribution commonly used in water
resources) a moderate skew of 1.15 produces an ARE of greater than 1.25 for the rank-sum
versus the t test. As skewness increases, so does the ARE. Therefore in the presence of
skewness and outliers, precisely the characteristics commonly shown by water resources data,

nonparametric tests exhibit greater power than do parametric tests.

One question which always arises is how non-normal must a distribution be in order for
nonparametric tests to be preferred? Blair and Higgins (1980) gave insight into this question.
They mixed data from two normal distributions, 95 percent from one normal distribution and 5
percent from a second normal distribution with quite different mean and standard deviation.
Such a situation could easily be envisioned when data result from low to moderate discharges
with occasional storm events, or from a series of wells where 5 percent are affected by a
contaminant plume, etc. A difference of 5 percent from truly normal may not be detectable by a
graph or test for normality. Yet when comparing two groups of this type, they found that the
rank-sum test exhibited large advantages in power over the t-test. As a result, data groups
correctly discerned as different by the rank-sum test could be found "not significantly different”

by the t-test. Their paper is recommended for further detail and study.

The greatest strengths of parametric procedures are in modeling and estimation, such as
performed with regression. Relationships among multiple variables can be described and tested

which are difficult, if not nearly impossible, with nonparametric methods. Statistical practice has
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historically been dominated by parametric procedures, due largely to their computational

elegance.

Transformations are sometimes used to make data more normally distributed, prior to
performing a parametric test. There is no guarantee that a given transformation, such as taking
logarithms, will produce data sufficiently close to a normal distribution. Often several attempts
to find a suitable transformation are required before the data appear approximately normal. The
primary pitfall in using transformations is that when two or more groups are to be compared, no
single transformation may provide neatly-normal data simultaneously for all groups. Groups
whose right-skewness was solved by transformation may be offset by relatively symmetric
groups which are now left-skewed. When several tests are performed, such as trend tests at
numerous locations, parametric tests might be appropriate in some cases but not in others.
Compatisons of results across sites are more difficult when test procedures and/or
transformations vary for each case. Nonparametric tests allow the freedom to use the identical
test procedure in all cases, without the requirement that the many individual data sets follow the
same distribution. Finally, transformations may produce nearly-symmetric data, but cannot
compensate for a heavy-tailed distribution -- the presence of more data near the extremes than

found in a normal distribution.

It should be noted that there are actually three versions of most nonparametric tests:

1. Exact test. Exact versions of nonparametric tests provide results (in the form of
p-values, defined soon) which are exactly correct . They are computed by comparing the
test statistic to a table of quantiles that is specific for the sample sizes present. Therefore an
extensive set of tables is required, one for every possible combination of sample sizes.
When sample sizes are small, only the exact version will provide accurate results.

2. Large sample approximation. To avoid the necessity for large books filled with tables of
test statistic quantiles, approximate p-values are obtained by assuming that the distribution
of the test statistic can be approximated by some common distribution, such as the normal.
This does not mean the data themselves follow that distribution, but only that the test
statistic does. For large sample sizes (30 or more observations per group, but sometimes
less) this approximation is very accurate. The test statistic is modified if necessary (often
standardized by subtracting its mean, and dividing by its standard deviation), and then
compared to a table of the common distribution to determine the p-value.

WARNING: Computer software predominantly uses large sample approximations when
reporting p-values, whether or not the sample sizes are sufficient to warrant using them. For
small sample sizes, p-values should be taken from exact tables rather than from the
computer printout.

3. Rank transformation test. In this approximation, parametric procedures are computed not
on the data themselves, but on the ranks of the data (smallest observation has rank=1,
largest has rank=N). Conover and Iman (1981) have shown this to adequately approximate

many exact nonparametric tests for large samples sizes. The rank-sum test would be
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approximated in this fashion by computing a t-test on joint ranks of the data. In fact, Iman
and Conover (1983) use the name "rank-sum test" for just this procedure. We would call
this version a

"t-test on ranks", reserving the traditional name for the first or second versions of the test
and more accurately describing what was done. Rank approximations are most useful when
performing nonparametric tests using statistics packages which contain only parametric
procedures. They are also very useful for situations where there is no equivalent

nonparametric analog, such as for multiple-factor analysis of variance.

In figure 4.2, exact and rank transform tests are aligned with their parametric counterparts, as a

guide to the use of hypothesis tests.

4.2.2 Establish the Null and Alternate Hypotheses
The null and alternate hypotheses should be established prior to collecting data. These
hypotheses are a concise summary of the study objectives, and will keep those objectives in

focus during data collection.

The null hypothesis (H) is what is assumed to be true about the system under study
prior to data collection, until indicated otherwise. It usually states the "null" situation -- no
difference between groups, no relation between variables. One may "suspect”, "hope", or "root
for" either the null or alternate hypothesis, depending on one's vantage point. But the null
hypothesis is what is assumed true until the data indicate that it is likely to be false. For example,
an engineer may test the hypothesis that wells upgradient and downgradient of a hazardous
waste site have the same concentrations of some contaminant. They may "hope" that
downgradient concentrations are higher (the company gets a new remediation project), or that
they are the same (the company did the original site design!). In either case, the null hypothesis

assumed to be true is the same: concentrations are similar in both groups of wells.

The alternate hypothesis (H;) is the situation anticipated to be true if the evidence (the
data) show that the null hypothesis is unlikely. It is in some cases just the negation of Hy,
such as "the 100-year flood is not equal to the design value." Hp may also be more specific than
just the negation of Hy -- "the 100-year flood is greater than the design value." Alternate
hypotheses come in two general types: one-sided, and two-sided. Their associated hypothesis

tests are called one-sided and two-sided tests. These are often confused and misapplied.

Two-sided tests occur when evidence in either direction from the null hypothesis (larger or
smaller, positive or negative) would cause the null hypothesis to be rejected in favor of the

alternate hypothesis. For example, if evidence that "the 100-year flood is smaller than the design
value" or "the 100-year flood is greater than the design value" would both cause doubt about the

null hypothesis, the test is two-sided. Most tests in water resources are of this kind.
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PARAMETRIC

NONPARAMETRIC
[exact]

RANK TRANSFORM
[approximation]

Two Independent Data Groups (Chapte

r 5)

two-sample t-test

rank sum test
or Mann-Whitney

or Wilcoxon-Mann-Whitney

t-test on ranks

Matched Pairs of Data (Chapter 6)

paired t-test

(Wilcoxon)

signed-rank test

t-test on signed ranks

More than Two Independent Data Groups (Chapter 7)

(ANOVA)

1-way Analysis Of Variance

Kruskal-Wallis test

1-way ANOVA on ranks

More than Two Dependent Data Groups (Chapter 7)

Analysis Of Variance

without replication

Friedman test

2-way ANOVA on ranks

Correlation between Two Continuous Variables (Chapter 8)

Pearson's r

or linear correlation

Kendall 's tau

Spearman's rho

(Pearson's r on ranks)

Relation between Two Continuous Variables (Chapters 9, 10)

Linear Regression

test for slope = 0

Mann-Kendall
test for slope = 0

regression on ranks:

test for monotonic

change

Figure 4.2 Guide to the classification of some hypothesis tests

One-sided tests occur when departures in only one direction from the null hypothesis

would cause the null hypothesis to be rejected in favor of the alternate hypothesis. With
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one-sided tests, it is considered supporting evidence for Hy should the data indicate differences
opposite in direction to the alternate hypothesis. For example, suppose only evidence that the
100-year flood is greater than the previous design value is of interest, as only then must the
culvert be replaced. The null hypothesis would be stated as "the 100-year flood is less-than or
equal to the design flood", while the alternate hypothesis is that "the 100-year flood exceeds the
design value." Any evidence that the 100-year flood is smaller than the design value is

considered evidence for Hy.

If it cannot be stated prior to looking at any data that departures from Hy in only one
direction are of interest, a two-sided test should be performed. If one simply wants to look
for differences between two streams or two aquifers or two time periods, then a two-sided test is
appropriate. It is not appropriate to look at the data, find that group A is considerably larger in
value than group B, and perform a one-sided test that group A is larger. This would be ignoring
the real possibility that had group B been larger there would have been interest in that situation
as well. Examples in water resources where one-sided tests would be appropriate are:
1. testing for decreased annual floods or downstream sediment loads after
completion of a flood-control dam,
2. testing for decreased nutrient loads or concentrations due to a new sewage
treatment plant or best management practice,
3. testing for an increase in concentration when comparing a suspected

contaminated site to an upstream or upgradient control site.

4.2.3 Decide on an Acceptable Error Rate ot

The o-value, or significance level, is the probability of incorrectly rejecting the null hypothesis
(rejecting Hp when it is in fact true, called a "Type I error"). Figure 4.3 shows that this is one of
four possible outcomes of an hypothesis test. The significance level is the risk of a Type I error
deemed acceptable by the decision maker. It is a "management tool" dependent not on the data,
but on the objectives of the study. Statistical tradition uses a default of 5% (0.05) for ¢, but
there is no reason why other values should not be used. Suppose that an expensive cleanup
process will be mandated if the null hypothesis of "no contamination" is rejected, for example.
The o-level for this test might be set very small (such as 1%) in order to minimize the chance of
needless cleanup costs. On the other hand, suppose the test was simply a first cut at classifying
sites into "high" and "low" values prior to further analysis of the "high" sites. In this case the O-
level might be set to 0.10 or 0.20, so that all sites with high values would likely be retained for
further study.
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Unknown True Situation
Hy is true Hy is false

Fail to
Reject Correct decision Type 11 error

Hop Prob(correct decision) = 1—-0t Prob(Type II error) =

A Reject Type I error Correct decision
Ho Prob (Type I error) = o Prob (correct decision) = 1-3
Significance level Power

Figure 4.3 Four possible results of hypothesis testing,

Since o represents one type of error, why not keep it as small as possible? One way to do this
would be to never reject Hy -- ot would then equal zero. Unfortunately this would lead to large
errors of a second type -- failing to reject Hy when it was in fact false. This second type of error
is called a Type II error, or lack of power (Fig. 4.3). Both errors are of concern to practitioners,
and both will have some finite probability of occurrence unless decisions to "always reject” or
"never reject" are made. Once a decision is made as to an acceptable Type I risk 0, two steps
can be taken to concutrently reduce the risk of Type II error B:

1. Increase the sample size n.

2. Use the test procedure with the greatest power for the type of data being analyzed.

For water quality applications, null hypotheses are usually of "no contamination". Situations
with low power mean that actual contamination may not be detected. This happens with
simplistic formulas for determining sample sizes (Kupper and Hafner, 1989). Instead,
probabilities of Type II errors should be considered when setting sample size. Power is also
sacrificed when data having the characteristics outlined in Chapter 1 are analyzed with tests
requiring a normal distribution. Power loss increases as skewness and the number of outliers

increase.

4.2.4 Compute the Test Statistic from the Data

Test statistics summarize the information contained in the data. If the test statistic is not
unusually different from what is expected to occur if the null hypothesis is true, the null
hypothesis is not rejected. However, if the test statistic is a value unlikely to occur when Hy is
true, the null hypothesis is rejected. The p-value measures how unlikely the test statistic is when

Hy is true.
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4.2.5 Compute the p-Value

The p-value is the probability of obtaining the computed test statistic, or one even less likely,
when the null hypothesis is true. It is derived from the data, concisely expressing the evidence
against the null hypothesis contained in the data. It measures the "believability" of the null
hypothesis. The smaller the p-value, the less likely is the observed test statistic when Hy is true,
and the stronger the evidence for rejection of the null hypothesis. The p-value is also called the

"attained significance level", the significance level attained by the data.

How do p-values differ from ot levels? The 0i-level does not depend on the data, but states the
risk of making a Type I error that is acceptable a priori to the scientist or manager. The o-level is
the critical value which allows a "yes/no" decision to be made -- the treatment plant has
improved water quality, nitrate concentrations in the well exceed standards, etc.. The p-value
provides more information -- the strength of the scientific evidence. Reporting the p-value

allows someone with a different risk tolerance (different o) to make their own yes/no decision.

For example, consider a test of whether upgradient and downgradient wells have the same
expected contaminant concentrations. If downgradient wells show evidence of higher
concentrations, some form of remediation will be required. Data are collected, and a test
statistic calculated. A decision to reject at 0=0.01 is a statement that "remediation is warranted
as long as there is less than a 1 percent chance that the observed data would occur when
upgradient and downgradient wells actually had the same concentration." This level of risk was
settled on as acceptable, so that 1 percent of the time remediation would be performed when in
fact it is not required. Reporting only "reject” or "not reject” would prevent the audience from
distinguishing a case that is barely able to reject (p=0.009) from one in which Hy is virtually
certain to be untrue (p=0.0001). Reporting a p-value of 0.02, for example, would allow a later
decision by someone with a greater tolerance of unnecessary cleanup (0t = 5 percent, perhaps) to
decide for remediation.

4.2.6 Make the Decision to Reject Hy or Not

Reject Hyp when: p-value < Ol-level.

When the p-value is less than the decision criteria (the O-level), Hy is rejected. When the pl
value is greater than o, Hy is not rejected. The null hypothesis is never "accepted", or proven
to be true. It is assumed to be true until proven otherwise, and is "not rejected" when there is

insufficient evidence to do so.
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4.3 The Rank-Sum Test as an Example of Hypothesis Testing

Suppose that aquifers X and Y are sampled to determine whether the concentrations of a
contaminant in the aquifers are similar or different. This is a test for differences in location or
central value, and will be covered in detail in Chapter 5. Two samples xj are taken from aquifer
X (n=2), and 5 samples yj from aquifer Y (m=>5) for a total of 7 samples (N = n+m = 7). Also
suppose that there is a prior reason to believe that X values tend to be lower than Y values:
aquifer X is deeper, and is likely to be uncontaminated. The null hypothesis (H) and alternative
hypothesis (H1) of this one-sided test are as follows:

Hp: xjand yj are samples from the same distribution, or
Hp: Prob (xj = yi) = 0.5.

H1: xjis from a distribution which is generally lower that of yj, or
Hi: Prob (xj = yi) <0.5.

Remember that with one-sided tests such as this one, data indicating differences opposite in
direction to Hy (xj frequently larger than yj) are considered supporting evidence for Hyp. With

one-sided tests we can only be interested in departures from H( in one direction.

Having established the null and alternate hypotheses, an acceptable error rate 0L must be set. As
in a court of law, innocence is assumed (i.e. concentrations are identical) unless evidence is
collected to show "beyond a reasonable doubt" that aquifer Y has higher concentrations (i.e. that
differences observed are not likely to have occurred by chance alone). The "reasonable doubt"

is set by 0, the significance level.

If the t-test were to be considered as the test procedure, each data group should be tested for
normality. However, sample sizes of 2 and 5 are too small for a reliable test of normality. Thus
the nonparametric rank-sum test is appropriate. This test procedure entails ranking all 7 values
(lowest concentration has rank=1, highest has rank=7) and summing the ranks of the 2 values
from the population with the smaller sample size (X). This rank-sum is the statistic W used in

the exact test.

Next, W would be computed and compared to a table of test statistic quantiles to determine the
p-value. Where do these tables come from? We will derive the table for sample sizes 2 and 5 as

an example.

What are the possible values W may take, given that the null hypothesis is true? The collection
of all of the possible outcomes of W defines its distribution, and therefore composes the table of
rank-sum test statistic quantiles. Shown below are all the possible combinations of ranks of the

two x values.
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1.2 1,3 1,4 1,5 1,6 1,7
23 24 2,5 2,6 27

34 35 3.6 37

45 4.6 47

5,6 5,7

6,7

If Hy is true, each of the 21 possible outcomes must be equally likely. That is, it is just as likely
for the two x's to be ranks 1 and 2, or 3 and 5, or 1 and 7, etc. Each one of the outcomes results
in a value of W, the sum of the two ranks. The 21 W values corresponding to the above

outcomes are

3 4 5 6 7 8
5 6 7 8 9

7 8 9 10

9 10 11

11 12

13

The expected value of W is the mean (and median) of the above values, or 8. Given that each

outcome is equally likely when Hy is true, the probability of each possible W value is:

W 3 4 5 6 7 8 9 10 11 12 13

Prob(W)| 1/21 1/21 2/21 2/21 3/21 3/21 3/21 2/21 2/21 1/21 1/21

What if the data collected produced 2 x values having ranks 1 and 4? Then W would be 5, lower
than the expected value E [W] = 8. If H{ were true rather than Hp, W would tend toward low
values. What is the probability that W would be as low as 5 or lower if Hy were true? It is the
sum of the probabilities for W = 3, 4, and 5, or 4/21 = 0.190 (see figure 4.4). This number is
the p-value for the test statistic of 5. It says that the chance of a departure from E [W] of at
least this magnitude occurring when Hy is true is 0.190, which is not very uncommon (about 1
chance in 5). Thus the evidence against Hy is not too convincing. If the ranks of the 2 x values
had been 1 and 2, then W = 3 and the p-value would be 1/21 = 0.048. This result is much less
likely than the previous case but is still not extremely rare. In fact, due to such a small sample
size the test can never result in a highly compelling case for rejecting Hy. Adding more data

would make it possible to attain lower p-values, providing a stronger case against Hy.
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Figure 4.4 Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5.

The p-value for a one-sided test equals the area shaded.

This example has considered only the one-sided p-value, which is appropriate when there is
some prior notion that x should be smaller than y (or the reverse). Quite often the situation is
that there is no prior notion of which should be lower. In this case a two-sided test must be
done. The two-sided test has the same null hypothesis as was stated above, but H1 is now that
xj and yj are from different distributions, or

Hy: Prob (xj = yi) # 0.5.

Suppose that W for the two-sided test were found to be 5. The p-value equals the probability
that W will differ from E [W] by this much or more, in either direction. Itis
Prob (W < 5) + Prob (W = 11). (see figure 4.5)
Where did the 11 come from? It is just as far from E [W] = 8 as is 5. The two-sided
p-value therefore equals 8/21 = 0.381, twice the one-sided p-value. Symbolically we could state:
Prob (| W—E [W] | > 3) = 8/21.

To summarize the subject of p-values: they describe how "far" the observed test statistic is from
that expected to occur if the null hypothesis were true. They are the probability of being that far
or farther given that the null hypothesis is true. The lower the p-value the stronger is the
case against the null hypothesis.

Now, lets look at an O-level approach. Return to the original problem, the case of a one-sided
test. Assume 0. is set equal to 0.1. This corresponds to a critical value for W, call it W*, such
that Prob (W = W*) = o. Whenever W=W*, Hy is rejected with no more than a 0.1 frequency
of error if Hy were always true. However, because W can only take on discrete, in fact integer,
values as seen above, a W* which exactly satisfies the equation is not usually available. Instead
the largest possible W* such that Prob (W = W*) =< o is used.
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Figure 4.5 Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5.

The p-value for a two sided-test equals the area shaded.

Searching the above table of possible W values and their probabilities, W* = 4 because Prob (W
< 4) =0.095 = 0.1. Note the "lumpiness" of the relationship between ot and W*. If ot =0.09
had been selected then W* would be 3. This lumpiness can be avoided by reporting p-values
rather than only "reject” or "not reject”.

For a two-sided test a pair of critical values W™ and Wy * is needed, where

Prob (W < W) + Prob (W > Wy < o and Wy*~E [W] =E [W] — W
These upper and lower critical values of W are symmetrical around E [W] such that the
probability of W falling on or outside of these critical levels is as close as possible to O, without
exceeding it, under the assumption that Hy is true. In the case at hand, if
o = 0.1, then Wi *= 3 and W™= 13 because

Prob (W = 3) + Prob (W = 13) = 0.048 + 0.048 = 0.095 = 0.1.
Note that for a two-sided test, the critical values are farther from the expected value than in a

one-sided test at the same O level.

It should be recognized that p-values are also influenced by sample size. For a given magnitude
of difference between the x and y data, and a given amount of variability in the data, p values
will tend to be smaller when the sample size is large. In the extreme case where vast amounts of
data are available, it is a virtual certainty that p values will be small even if the differences

between x and y are what might be called "of no practical significance."

Most statistical tables are set up for one-sided tests. That is, the rejection region O or the p’
value is given in only one direction. When a two-sided test at significance level o is

performed, the tables must be entered using 0l/2. In this way rejection can occur with a
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probability of 01/2 on either side, and an overall probability of o.. Similarly, tabled p-values
must be doubled to get p-values for a two-sided test. Modern statistical software often
reports p-values with its output, eliminating the need for tables. Be sure to know whether it is

one-sided or two-sided p-values being reported.

4.4 Tests for Normality

The primary reason to test whether data follow a normal distribution is to determine if
parametric test procedures may be employed. The null hypothesis for all tests of normality is
that the data are normally distributed. Rejection of Hy says that this is doubtful. Failure to
reject Hy, however, does not prove that the data do follow a normal distribution, especially for
small sample sizes. It simply says normality cannot be rejected with the evidence at hand. Use
of a larger a-level (say 0.1) will increase the power to detect non-normality, especially for small

sample sizes, and is recommended when testing for normality.

The test for normality used in this book is the probability plot correlation coefficient (PPCC)
test discussed by Looney and Gulledge (19852). Remember from Chapter 2 that the more
normal a data set is, the closer it plots to a straight line on a normal probability plot. To test for
normality, this linearity is tested by computing the linear correlation coefficient between data
and their normal quantiles (or "normal scores", the linear scale on a probability plot). Samples
from a normal distribution will have a correlation coefficient very close to 1.0. As data depart
from normality, their correlation coefficient will decrease below 1. To perform a test of Hy: the
data are normal versus Hj: they are not, the correlation coefficient (r) between the data and
their normal quantiles is tested to see if it is significantly less than 1. For a sample size of n, if r
is smaller than the critical value r* of table B3 for the desired ot-level, reject Hy. Looney and
Gulledge (1985b) have shown this table, developed using the Blom plotting position, is also
valid for other plotting positions except the Weibull position i/(n+1). In order to use one
plotting position for all functions in this book, the Cunnane plotting position was adopted as
explained in Chapter 2.

To illustrate this test, probability plots of the unit well yield data from Chapter 2 are shown in
figures 4.6 and 4.7. For the valleys without fracturing, r = 0.805, the correlation coefficient
between yj and Zp in the left-hand side of Table 4.1.

From table B3 with n=12, if r is below the ot = 0.05 critical value of r* = .928, normality is
rejected. Therefore normality is rejected for the yields without fractures at o = 0.05. A p-value
for this test would be <0.005, as +=0.805 is less than the tabled r* of 0.876 for ®=0.005. Note
the nonlinearity of the data on the probability plot (figure 4.6). For the yields with fracturing,
n=13, r*is 0.932 at ot = 0.05, and the PPCC r = 0.943; therefore fail to reject normality at
00=0.05. The p-value for the yields with fracturing is just under 0.10 (normality would barely be
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rejected at 00=0.10). The probability plot, figure 4.7, shows a closer adherence to a straight line
than for figure 4.6.

Table 4.1. Unit well yields (in gal/min/ft) in Virginia (Wright, 1985)
yi = yield Zp = normal quantile

valleys without fracturing valleys with fracturing

Yi  Zp Yi  Zp yi Zp | i Zp yvi  Zp oy Zp
0.001 -1.65  0.030 —.31 010 52| 0.020 -1.69 016 =39 040 .39
0.003 —-1.13 0040 —10  0.454 .80| 0.031 -1.17 016 —19 044 .60
0.007 —0.80  0.041 .10 049 1.13| 0.08 —0.85 0.8 .00 051 .85
0.020 —0.52 0077 .31 1.02 1.65 013 -0.60 030 .19 072 1.17
0.95 1.69

Computer packages use several methods for testing normality. Several are based on probability
plots. The most common is perhaps the Shapiro-Wilk test, as its power to detect non-normality
is as good or better than other tests (Shapiro et al., 1968). A table of quantiles for this test
statistic is available for n < 50 (Conover, 1980). Shapiro and Francia (1972) developed a
modification of the Shapiro-Wilk test useful for all sample sizes. It is essentially identical to the
PPCC test, as it is the 12 for a regression between the data and their normal scores. Therefore pl]

values and power characteristics for the two tests should be essentially the same.

Tests for normality not related to probability plots include the Kolmogorov and chi-square tests,
described in more detail by Conover (1980). Both are general tests that may be used for data
which are ordinal (data recorded only as low/medium /high, etc) but do not possess a
continuous scale. This makes them less powerful than the probability plot tests, however, for

the specific purpose of testing continuous data for normality (Shapiro et al., 1968).

The important advantage of the PPCC test is its graphical analog, the probability plot, which
visually illustrates its results. The probability plot itself provides information on how the data

depart from normality, something not provided by any test statistic.

To make the PPCC test easy to perform by hand, normal quantiles for the Cunnane plotting
positions of table B1 are listed in table B2 of the Appendix. For the n=12 yields without
fracturing, for example, the upper six quantiles are easily found in the table. Lower quantiles are
mirror images around zero of the upper quantiles, and so equal the upper values multiplied by
—1. Table B2 quantiles were computed by first calculating the Cunnane plotting position to
more significant digits than found in table B1, and then looking up the corresponding normal

quantiles in a table of the normal distribution.
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Figure 4.6 Probability plot for the yields without fracturing, with PPCC r
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Figure 4.7 Probability plot for the yields with fracturing, with PPCC r
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Exercises

4.1 The following are annual streamflows for the Green R. at Munfordville, KY. Beginning

in 1969 the stream was regulated by a reservoir.

before after

1950 4910 1960 2340 1969 1350
1951 3660 1961 2600 1970 2350
1952 3910 1962 3410 1971 3140
1953 1750 1963 1870 1972 3060
1954 1050 1964 1730 1973 3630
1955 2670 1965 2730 1974 3890
1956 2880 1966 1550 1975 3780
1957 2600 1967 4060 1976 3180
1958 3520 1968 2870 1977 2260
1959 1730 1978 3430

1979 5290

1980 2870

Test both before and after data sets for normality using the PPCC test. If either are nonl
normal, transform the data and re-test in order to find a scale which appears to be close

to a normal distribution.

4.2 Test the arsenic data and transformed data of Exercise 2.2 for normality.



Differences between Two
Independent Groups

Wells upgradient and downgradient of a hazardous waste site are sampled to determine whether
the concentrations of some toxic organic compound known to reside in drums at the site are
greater in the downgradient wells. Are they greater at the o = 0.01 significance level? If so, the

ground water is declared to be contaminated, and the site will need to be cleaned up.

Measurements of a biological diversity index are made on sixteen streams. Eight of the streams
represent "natural” conditions, while the other eight have received urban runoff. Is the

biological quality of the urban streams worse than that of the "natural" streams?

Unit well yields are determined for a series of bedrock wells in the Piedmont region. Some wells
tap areas where fracturing is prevalent, while other wells are drilled in largely unfractured rock.
Does fracturing affect well yields, and if so how?

These are examples of comparisons of two independent groups of data, to determine if one
group tends to contain larger values than the other. The data are independent in the sense that
there is no natural structure in the order of observations across groups -- there are no pairings of
data between observation 1 of group 1 and observation 1 of group 2, etc. Where such a pairing
does exist, methods like those of Chapter 6 should be used. In some cases it is known ahead of
time which group is expected to be larger (a one-sided test), and in other cases it is not (a twol
sided test). This chapter will present and discuss the rank-sum test, a nonparametric procedure
for determining whether two independent groups differ. In the special case where the data
within each group are known to be normally distributed, and the differences between the groups
are additive, the t-test may also be used. Graphical presentations of the test results will be
quickly surveyed. Finally, methods for estimating the magnitude of the difference between the
two groups are presented, including the Hodges-Lehmann estimator, one of a class of efficient

and resistant nonparametric estimators unfamiliar to many water resources scientists.
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5.1 The Rank-Sum Test

The rank-sum test goes by many names. It was developed by Wilcoxon (1945), and so is
sometimes called the Wilcoxon rank-sum test. It is equivalent to a test developed by Mann and
Whitney near the same time period, and the test statistics can be derived one from the other.
Thus the Mann-Whitney test is another name for the same test. The combined name of

Wilcoxon-Mann-Whitney rank-sum test has also been used.

5.1.1 Null and Alternate Hypotheses
In its most general form, the rank-sum test is a test for whether one group tends to produce
larger observations than the second group. It has as its null hypothesis:

Hp:  Prob [x>y] =0.5
where the x are data from one group, and the y are from a second group. In words, this states
that the probability of an x value being higher than any given y value is one-half. The alternative

hypothesis is one of three statements:

Hy:  Prob [x>y] #0.5 (2-sided test -- x might be larger or smaller than y).
Hj:  Prob [x >y] > 0.5 (1-sided test -- x is expected to be larger than y)
H3z:  Prob [x>y] <0.5 (1-sided test-- x is expected to be smaller than y).

Note that no assumptions are made about how the data are distributed in either group. They
may be normal, lognormal, exponential, or any other distribution, They may be uni-, bi- or
multi-modal. In fact, if the only interest in the data is to determine whether one group tends to

produce higher observations, the two groups do not even need to have the same distribution!

Usually however, the test is used for a more specific purpose -- to determine whether the two
groups come from the same population (same median and other percentiles), or alternatively
whether they differ only in location (central value or median). If both groups of data are from
the same population, about half of the time an observation from either group could be expected
to be higher than that from the other, so the above null hypothesis applies. However, now it
must be assumed that if the alternative hypothesis is true, the two groups differ only in their
central value, though not necessarily in the units being used. For example, suppose the data
are shaped like the two lognormal distributions of figure 5.1. In the original units, the data have
different sample medians and interquartile ranges, as shown by the two boxplots. A rank-sum
test performed on these data has a p-value of <0.001, leading to the conclusion that they do
indeed differ. But is this test invalid because the variability, and therefore the shape, of the two
distributions differs? Changing units by taking logs, the boxplots of figure 5.2 result. The logs
of the data appear to have different medians, but similar IQR's, and thus the logs of the data
appear to differ only in central location. The test statistic and p-value for a rank-sum test

computed on these transformed data is identical to that for the original units! Nonparametric
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tests possess the very useful property of being invariant to power transformations such as those
of the ladder of powers. Since only the data or any power transformation of the data need be

similar except for their central location in order to use the rank-sum test, it is applicable in many

situations.
LT «=
— 1 o
Figure 5.1 Boxplots of two lognormal distributions with

different medians and IQRs.

— [
—L T ]

Figure 5.2 Boxplots of the logarithms of the figure 5.1 data.
Medians still differ, while IQRs are the same.

5.1.2 Computation of the Exact Test

The exact form of the rank-sum test is given below. It is the only form appropriate for
comparing groups of sample size 10 or smaller per group. When both groups have samples
sizes greater than 10 (n, m > 10), the large-sample approximation may be used. Remember that
computer packages report p-values from the large sample approximation regardless of sample

size.
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Exact Version of the Rank-Sum test

Situation Two independent groups of data are to be compared. The sample size for the
smaller of the two groups xj, i=1,...n is designated n, while the larger sample size

¥j» j=1,...m is designated m.

Test Statistic Compute the joint ranks Rk .

Rk =1to (N =n + m), using average ranks in case of ties.

The exact test statistic
Wys = sum of ranks for the group having the smaller sample size,

= XR; i=1,n (use cither group when sample sizes are equal: n = m )

Decision Rule. To reject Hp: Prob [x > y] = 0.5
1. Hp: Prob [x >y] # 0.5 (the smaller data set tends to have cither higher or lower values
than the larger data set)
Reject Hp if Wyg = X*a/z’n’m or Wy 2 Xoy2,n,m from Table B4 of the
Appendix; otherwise do not reject Hy.

2. Hp: Prob [x >y] > 0.5 (the smaller data set tends to have higher values than the larger data
set)
Reject Hp if Wys 2 xounm from Table B4; otherwise do not reject H .

3. H3: Prob [x >y] < 0.5 (the smaller data set tends to have lower values than the larger data
set)
Reject Hp if Wyg = x*gr.n.m from Table B4; otherwise do not reject H .

Example 1.

Precipitation quality was compared at sites with different land uses by Oltmann and Shulters
(1989). A rank-sum test is used to determine if one of the constituents, ammonia plus organic

nitrogen, significantly differs (00 = 0.05) between the industrial and residential sites.

Hp: median concentration (industrial) = median concentration (residential)

H3: median concentration (industrial) # median concentration (residential).

The 10 observations at each site are assigned ranks from 1 to 20 as follows. Note that three
pairs of concentrations (at 0.7, 1.1, and 1.3 mg/L) are tied, and so are assigned tied ranks equal

to the average of their two individual ranks:
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Ammonia plus organic nitrogen concentration (in mg/L) in precipitation

X, ¥j = concentrations Rj = joint rank
industrial site residential site
xi. Rk X Rk ai Rk Y- Rk
0.59 4 1.3 14.5 0.3 1 0.9 8
0.87 7 1.6 16 0.36 2 0.92 9
1.1 11.5 1.7 17 0.5 3 1.0 10
1.1 11.5 3.2 18 0.7 5.5 1.3 14.5
1.2 13 4.0 19 0.7 5.5 9.7 20
Wys = sum of the 10 ranks for the residential site (n=m=10, so either could be used)
=78.5

For this two-sided test, reject H( if Wy < x*o/2.nm or Wrs 2 Xoy2,0,m’ From Table B4,
X*026,10,10 = 79 and x* 022 10,10 = 78. Interpolating halfway between these for Wys = 78.5,
the p-value for the two-sided test is 0.024¢2 = 0.048, and the decision would be to reject Hy at o
= 0.05. Reporting the p-value shows how very close the risk of Type I error is to 0.05. The
conclusion is therefore that ammonia plus organic nitrogen concentrations from industrial
precipitation are significantly different than those in residential precipitation at a p-value of
0.048.

5.1.3 The Large Sample Approximation

For the rank sum test, the distribution of the test statistic Wrg closely approximates a normal
distribution when the sample size for each group is 10 or above (figure 5.3). With n=m=10,
there are 184,756 possible arrangements of the data ranks. The collection of test statistics for
each of these comprises the exact distribution of Wyg, shown as bars in figure 5.3, with a mean
of 105. Superimposed on the exact distribution is the normal distribution which closely
approximates the exact values. This demonstrates how well the exact distribution of this test
can be approximated, even for relatively small sample sizes. The inset shows a magnified view
of the peak of the distribution, with the normal approximation crossing the center of the exact

distribution bars.

This approximation does not imply that the data are or must be normally distributed. Rather, it
is based on the near normality of the test statistic at large sample sizes. If there are no ties, Wyg

has a mean [y, and standard deviation Oy, when Hy is true of:

Hy = ne(N+1)/2 [5.1]
Oy = \ neme(N+1)/12 [5.2]

where N = n + m.
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Figure 5.3 Illustration of the distribution of Wyg and its fitted normal distribution.

The test statistic for the large sample approximation is computed by standardizing Wyg and
making a continuity correction. The continuity correction occurs because the normal
distribution fits halfway through the top of the bars of the exact test statistic distribution (figure
5.3). The correction moves the probability of occurrence from the outer edge of each bar to its
center prior to using the normal curve. It therefore equals d/2, where d is the minimum
difference between possible values of the test statistic (the bar width). For the rank-sum test
d=1, as the test statistic values change by units of one. Zys, the standardized form of the test

statistic, is therefore computed as

( d
WIS - _2 - My
er = 4 O ifWrs — mW [5.3]
d
WfS + _2 - mW
1f Wrs < mW

4 Sy

Zys is compared to a table of the standard normal distribution for evaluation of the test results.
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Example 1, cont.
The large-sample approximation is applied to the precipitation nitrogen data. Note that this is

inappropriate because there are three pairs of tied values. How close is the approximate to the

exact p-value? For the exact test above, Wrg = 78.5.

Wy = 1021)/2 = 105 Oy =\ 1010 (21)/12 =13.23
_ 785+1/2-105
Therefore er - 13.23 - _1.965

and p = 2°0.025 = 0.05 from a table of the normal distribution such as Table A2 of Iman and
Conover (1983). This is very close to the exact test results, and errors decrease with increasing

sample sizes.

5.1.3.1 Correction for ties
Conover (1980) presents a further correction to Oy when ties occur, and tied ranks are assigned.
The formula below for Oy, should be used for computing the large sample approximation

rather than Oy when more than a few ties occut.

N nm(N +1)° _
Oyt = JN(N D kz: —4(N ) where N = n+m [5.4]

Example 1, cont.

The tie correction is applied to the large sample approximation for the precipitation

1 10021
nitrogen data. Gy, :J200109 2868.5 — %9) \/174.61 =13.21.

This is essentially identical to the value of 13.23 obtained without the tie correction. The
test statistic Zrg and its p-value are unchanged.

5.1.4 The Rank Transform Approximation

Another approximation to the exact rank-sum test is to compute the equivalent parametric test,
in this case the t-test, on the ranks Rj rather than on the original data themselves.

Computations will be illustrated in detail following the presentation of the t-test in the next
section. The rank-transform p-value calculated in that section for the precipitation nitrogen data
1s 0.042, close to but lower than the exact value, and not as close as the large sample
approximation. Rank transform approximations are not as widely accepted as are the large
sample approximations. This is due to the fact that the rank transform approximations can
result in a lower p-value than the exact test, while the large sample approximation will not. In

addition, the rank approximation is often not as close as the large-sample approximation for the
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same sample size. Statisticians prefer that an approximation never result in a lower p-value than
the exact test, as this means that Hy will be rejected more frequently than it should. However,
this problem only occurs for small sample sizes. For the sample sizes (conservatively, n and m
both larger than 25) at which the rank approximation should be used, it should perform well.

5.2 The t-Test

The t-test is perhaps the most widely used method for comparing two independent groups of
data. Itis familiar to most water resources scientists. However, there are five often overlooked
problems with the t-test that make it less applicable for general use than the nonparametric rankl|
sum test. These are 1) lack of power when applied to non-normal data, 2) dependence on an
additive model, 3) lack of applicability for censored data, 4) assumption that the mean is a good
measure of central tendency for skewed data, and 5) difficulty in detecting non-normality and
inequality of variance for the small sample sizes common to water resources data. These
problems were discussed in detail by Helsel and Hirsch (1988), and will be evaluated here in
regard to the precipitation nitrogen data.

5.2.1 Assumptions of the Test

The t-test assumes that both groups of data are normally distributed around their respective
means, and that they have the same variance. The two groups therefore are assumed to have
identical distributions which differ only in their central location (mean). Therefore the t-test is a
test for differences in central location only, and assumes that there is an additive difference
between the two means, if any difference exists. These are strong assumptions rarely satisfied
with water resources data. The null hypothesis is stated as

Hp: U = Hy the means for groups x and y are identical.
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5.2.2 Computation of the t-Test

Two Sample t-test

Situation Two independent groups of data are to be compared. Each group is normally
distributed around its respective mean value, and the two groups have the same

variance. The sole difference between the groups is that their means may not be

the same.
Test Statistic Compute the t-statistic:
B
A A
S, ’1/ n+1/m
where X is the sample mean of data in the first group xj i=1,n

y is the sample mean of data in the second group i j=1,m
and s is the pooled sample standard deviation, estimating the

standard deviation assumed identical in both groups:

J(n—l)sxz+(m—1)sy2
=

n+m-2
. 2 2 .
The sample variances of both groups s~ and s are used to estimate s.

Decision Rule. To reject Hp: Uy = Hy

1. Hi: pug # Hy (the two groups have different mean values, but there is no prior
knowledge which of x or y might be higher)
Reject HO if t<-—t (X/Z,(n+m—2) or t>t Oc/2,(n+m—2) from a table
of the t distribution; otherwise do not reject H.

2. H2: Ux > Uy (prior to seeing any data, x is expected to be greater than y)
Reject H if t>t (n+m—2) from a table of the t distribution;
otherwise do not reject H .

3. H3: Mg <MWy (prior to seeing any data, y is expected to be greater than x)
Reject Hp if t <—t ¢ (n+m—2) from a table of the t distribution;
otherwise do not reject H( .

5.2.3 Modification for Unequal Variances
When the two groups have unequal variances the degrees of freedom and test statistic t should

be modified using Satterthwaite's approximation:
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Two Sample t-test with Unequal Variances

Situation The mean values of two independent groups of data are to be tested for
similarity. Each group is normally distributed around its respective mean value,

and the two groups do not have the same variance.

Test Statistic Compute the t-statistic:
Ty
\/ s In+s>Im
X y

t=

2. .

where s_ is the sample variance of the first group, and
2 . .

s, is the sample variance of the second group.

Also compute the approximate degrees of freedom df, where

(sz /n+s§/m)2

df =
(s>/n)? (S;/m)2

+
(n=1)  (m=1)

Decision Rule. To reject Hp: Uy = Hy

1. Hi: puy # Hy (the two groups have different mean values, but there is no prior
knowledge which of x or y might be higher)
Reject Hp if t < —t 2,df) Of > oy (df from a table of the t

distribution; otherwise do not reject Hy).

2. H2: Mg > Uy (prior to seeing any data, x is expected to be greater than y)
Reject H if t >t (df) from a table of the t distribution;

otherwise do not reject HQ .

3. H3: Mg <MWy (prior to seeing any data, y is expected to be greater than x)
Reject Hp if t < —t ¢ df from a table of the t distribution; otherwise

do not reject H .

Example 1, cont.
The t-test is applied to the precipitation nitrogen data. Are the means of the two groups of data

equal? As the variance for the industrial data is 1.2 while for the residential data it is 8.1,

Satterthwaite's approximation is used rather than computing an overall variance:
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t 1.67 - 1.64 003, and df = —A7/10+ 8.12/10)2 s
= = U. n = .
[ 1.17/10 + 8.12/10 > A (1.17/10)2 . (8.12/10)2
9 9

Therefore from a table of the t-distribution, the p-value is 0.98. The conclusion: fail to reject
Hq. There is essentially no evidence that the means differ using the t-test.

The "t-test on ranks" approximation to the rank-sum test is also computed. This t-test is

computed using the joint ranks Rj; rather than the original data themselves:
13.15 - 7.85

t =
rank = 5 4~[1/10 + 1/10
where 13.15 is the mean rank of the x data, etc. Comparing this to t 3p5 1g = 2.10, H( is

=219

rejected with a p-value of 0.042. The medians are declared different.

5.2.4 Consequences of Violating the t-Test's Assumptions

Computing the probability plot correlation coefficient to test for normality of the two groups of
precipitation nitrogen data, the industrial group had a PPCC of 0.895, while the residential group
had a PPCC of 0.66. From Table B3 of the Appendix, both correlation coefficients are below
the critical value of 0.918 for an o of 0.05, and so both groups must be considered non-normal
(see Chapter 4 for details on the PPCC test). A t-test should not have been used on these data.
However, if the normality test results are ignored, the t-test declares the group means to be
similar, which is commonly interpreted to mean that the two groups are similar. The rank-sum

test finds the two groups to be significantly different. This has the following consequences:

1. This example demonstrates the lack of power encountered when a t-test is applied to
non-normal data. When parametric tests are applied to non-normal data, their power to
detect differences which are truly present is much lower than that for the equivalent
nonparametric test (Bradley, 1968). Thus the t-test is not capable of discerning the difference
between the two groups of precipitation nitrogen. The skewness and outliers in the data inflate
the sample standard deviation used in the t-test. The t-test assumes it is operating on normal
distributions having this standard deviation, rather than on non-normal data with smaller overall
spread. It then fails to detect the differences present.

2. As shown by the Q-Q plot of figure 5.5, these data do not exhibit an additive difference
between the data sets. A multiplicative model of the differences is more likely, and logs of the
data should be used rather than the original units in a t-test. Of course, this is not of concern to

the rank-sum test, as the test results will in either units be identical.

3. A t-test cannot be easily applied to censored data, such as data below the detection limit.
That is because the mean and standard deviation of such data cannot be computed without

either substituting some arbitrary values, or making a further distributional assumption about the
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data. This topic is discussed further in Chapter 13. It will only be noted here that all data below
a single detection limit can easily be assigned a tied rank, and a rank-sum test computed, without

making any distributional assumptions or assigning arbitrary values to the data.

4. The t-test assumes that the mean is a good measure of central tendency for the data
being tested. This is certainly not true for skewed data such as the precipitation nitrogen data.
The mean of the residential data is greatly inflated by the one large outlier (figure 5.4), making it
similar to the mean at the industrial site. The mean is neither resistant to outliers, nor near the

center (50th percentile) of skewed data. Therefore tests on the mean often make little sense.

5. When prior tests for normality are used to decide whether a nonparametric test is
warranted, departures from normality must be large before they are detected for the small
sample sizes (n<25 or 30) commonly investigated. In this example, departures were sufficiently
drastic that normality was rejected. For lesser departures from normality, computing both the
rank sum and t-test would protect against the potential loss of power of the t-test for non’

normal data. Alternatively, just the rank sum test could be used for analysis of small data sets.

5.3 Graphical Presentation of Results

In Chapter 2 a detailed discussion of graphical methods for comparisons of two or more groups
of data was presented. Overlapping and side-by-side histograms, and dot and line plots of
means and standard deviations, inadequately portray the complexities commonly found in water
resources data. Probability plots and quantile plots allow complexity to be shown, plotting a
point for every observation, but often provide too much detail for a visual summarization of
hypothesis test results. Two methods, side-by-side boxplots and Q-Q plots, are very well suited
to describing both the results of hypothesis tests, and visually allowing a judgement of whether
data fit the assumptions of the test being employed. This is illustrated by the precipitation

nitrogen data below.

5.3.1 Side-by-Side Boxplots

The best method for illustrating results of the rank-sum test is side-by-side boxplots. With
boxplots only a few quantiles are compared, but the loss of detail is compensated for by greater
clarity. In figure 5.4 are boxplots of the precipitation nitrogen data. Note the difference in
medians is clearly displayed, as well as the similarity in spread (IQR). The rejection of normality
by PPCC tests is seen in the presence of skewness (industrial) and an outlier (residential). Side-
by-side boxplots are an effective and concise method for illustrating the basic characteristics of

data groups, and of differences between those groups.
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Figure 5.4 Boxplots of the precipitation nitrogen data. Note the skewness and outliers.

5.3.2 Q-Q Plots

Another method for illustration of rank-sum results is the quantile-quantile (Q-Q) plot described
in Chapter 2. Quantiles from one group are plotted against quantiles of the second data group.
Chapter 2 has shown that when sample sizes of the two groups are identical, the x's and y's can
be ranked separately, and the Q-Q plot is simply a scatterplot of the ordered data pairs (x1 ,
y1)----(Xn, Yn). When sample sizes are not equal (n<m), the quantiles from the smaller data set

are used as is, and the n corresponding quantiles for the larger data set are interpolated.

It is always helpful in a Q-Q plot comparing two groups to plot the y = x line. Figure 5.5 is a QL
Q plot of the precipitation nitrogen data. Two important data characteristics are apparent.

First, the data are not parallel to the y = x line, and therefore quantiles do not differ by an
additive constant. Instead, they increasingly depart from the line of equality indicating a
multiplicative relationship. Note that the Q-Q plot shows that a t-test would not be applicable
without a transformation, because it assumes an additive difference between the two groups.

The rank-sum test does not make this assumption, and is directly applicable to groups differing

by a multiplicative constant (rank procedures will not be affected by a power transformation).

The magnitude of this relationship between two sets of quantiles on a Q-Q plot can be
estimated using the median of all possible ratios (YJ/ xj), 1=1,n and j=1,n. This is a type of
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Hodges-Lehmann estimator, as discussed in the next section. The median ratio equals 0.58, and
the line residential = 0.58%industrial is drawn in figure 5.5. Note the resistance of the median

ratio to the one large outlier.
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Figure 5.5 Q-Q plot of the precipitation nitrogen data.

Second, the data are crowded together at low concentrations while spread further apart at higher
concentrations -- a pattern indicating right-skewness. To remedy both skewness and non’
additivity, a power transformation with @ < 1 was chosen, the base 10 log transform (8 = 0). A
Q-Q plot of data logarithms is shown in figure 5.6. Note that the data are now spread more
evenly from low to high concentrations, indicating skewness has decreased. The slope of the
quantiles is now parallel to the y = x line. Thus a multiplicative relationship in original units has
become an additive relationship in log units, with the Hodges-Lehmann estimate (see next
section) of the difference between log(x) and log(y) &equal t0—0.237. Note that Ais the log
of the Hodges-Lehmann estimate of the ratios in the original units, log1(0.58) = —0.237. The
line parallel to y=x, log(residential) = —0.237¢log(industrial), is plotted on figure 5.6. A t-test
would now be appropriate for the logarithms, assuming each group's transformed data were

approximately normal.

In summary, Q-Q plots of the quantiles of two data groups illustrate the reasonableness of
hypothesis tests (t-test or rank-sum), while providing additional insight that the test procedures

do not provide. Q-Q plots can demonstrate skewness, the presence of outliers, and inequality of
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variance to the data analyst. Perhaps most importantly, the presence of either an additive or
multiplicative relationship between the two groups can easily be discerned. Since the t-test
requires an additive difference between two groups, Q-Q plots can signal when transformations

to produce additivity are necessary prior to using the t-test.
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Figure 5.6 Q-Q plot of the logs of the precipitation nitrogen data.

5.4 Estimating the Magnitude of Differences Between Two Groups

After completion of an hypothesis test comparing two groups of data, the logical next step is to
determine by how much the two groups differ. The most well-known approach, related to the
two-sample t-test, is to compute the difference between the two group means (x—y ). A more
robust alternative, related to the rank-sum test, is one of a class of nonparametric estimators
known as Hodges-Lehmann estimators. These two estimators are compared in the following

sections.

5.4.1 The Hodges-Lehmann Estimator

One nonparametric estimate of the difference between two independent groups is a Hodges-
Iehmann estimator A (Hodges and Lehmann, 1963; Hollander and Wolfe, 1973, p. 75-77).
This estimator is the median of all possible pairwise differences between the x values and y

values

A= median [x; — i for xj, i=1,..n and yj, j=1,..m. [5.5]
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There will be n*m pairwise differences.

Example 2
For the following x's and y's , compute 15 -8 =7, 15—27 = —12, etc:
Xj v All Possible Differences (xj — Y])
15 8 7 9 17
17 27 -12 -10 -2
25 3 12 14 22
5 10 12 20

Ranked in order from smallest to largest, the 3°4 = 12 pairwise differences are
-12,-10,-2,7,9, 10,12, 12, 14, 17, 20, 22.

The median of these is the average of the 6th and 7th smallest values, or A =11. Note that the

unusual y value of 27 could have been any number greater than 14 and the estimator A would

be unchanged. Thus A is resistant.

The A estimator is related to the rank-sum test, in that if A were subtracted from each of the x
observations, the rank-sum statistic Wg would provide no evidence for rejection of the null
hypothesis. In other words, a shift of size A makes the data appear devoid of any evidence of

difference between x and y when viewed by the rank-sum test.

A is a median unbiased estimator of the difference in the medians of populations x and y. That
is, the probability of underestimating or overestimating the difference between the median of x
and the median of y is exactly one-half. If the populations were both normal, it would be a
slightly less efficient estimator of differences in medians (or means) than would the parametric
estimator X —y. However, when one or both populations is substantially non-normal, it is a

more efficient (lower variance) estimator of this difference.

There is another logical nonparametric estimator of the difference in population medians -- the
difference between the sample medians (Xyned — Ymed)- For example 2, (Xped — Ymed) = 10.5.
Note that the difference in sample medians is not necessarily equal to the median of the
differences A. In addition, (Xmed — Ymed) 18 always somewhat more variable (less efficient)
than is A and so is less desirable.

A modified version of the A statistic is used as the estimate of the magnitude of the step trend
in the seasonal rank-sum test procedure described by Crawford, Slack, and Hirsch (1983, p. 74).

5.4.2 Confidence Interval for A
A nonparametric interval estimate for A illustrates how variable the difference between the

medians might be. No distribution is assumed for the pairwise differences. The interval is
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computed by a process similar to that for the confidence interval on the median described
earlier. The tabled distribution of the test statistic is entered to find upper and lower critical
values at one-half the desired alpha level. These critical values are transformed into ranks. After
ordering the n*m pairwise differences from smallest to largest, the differences corresponding to

those ranks are the ends of the confidence interval.

For small sample sizes, table B4 for the rank-sum test is entered to find the critical value x*
having a p-value nearest to 0./2. This critical value is then used to compute the ranks Ry and R}
corresponding to the pairwise differences at the upper and lower confidence limits for A. These
limits are the Rjth ranked data points going in from either end of the sorted list of N=n*m

pairwise differences.

(]
R :x*—n—%—Z [5.6]

Ry = N—Rj+1 for N = nem [5.7]

Example 2, cont.
The N=12 possible pairwise differences between x and y were:

-12,-10,-2,7,9, 10, 12,12, 14, 17, 20, 22.
The median of these (A) was 11.  To determine an o = 0.10 confidence interval for A, the
tabled critical value x* nearest to 0./2 = 0.05 is 7 (p=0.057). The rank R] of the pairwise

difference at the lower end of the confidence interval is therefore

34
Rj =7- %2 = 1 forn=3 and m=4.

Ry, the rank of the pairwise difference at the upper end of the confidence interval is
Ry = 12.

With such a small data set, the o0 = 2¢0.057 = 0.014 confidence limit for A is the range of the

entire data set (the 1st difference in from either end), or
-12< A <22,

When the latge-sample approximation to the rank-sum test is used, a critical value zg /2 from
the table of standard normal quantiles determines the upper and lower ranks of the pairwise

differences corresponding to the ends of the confidence interval. Those ranks are
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N (n+m+1)
N-z5/0° 3

R, = ! 5.8

N (n+m+1)
N+zy/0e 3

Ry = > +1 [5.9]

= N-Rj+1

Example 1 cont.

For the precipitation nitrogen data there were N = (10)(10) = 100 possible pairwise differences.
Awould be the average of the 50th and 51st ranked differences. For a 95 percent confidence
interval on A, zg/2 = 1.96 and

3

100 (10+10+1)
100 - 1.96 *
R = 5 = 24.1

Ry

100 — 24.1 +1 =76.9

the 24.1st ranked slope from either end. Rounding to the nearest integer, the 24th and 77th
ranked slopes are used as the ends of the o0 = 0.05 confidence limit on A. Note that using the
exact formula, from Table B4 the exact & level is determined to be 2¢0.026 = 0.052.

5.4.3 Difference Between Mean Values

As noted above, in the situation where the t-test is appropriate, the difference between the
means of both groups X —y is the most efficient estimator of the difference between the two
groups of data. Perhaps obvious is that when x and y are transformed prior to performing the t |
test, (X —y ) does not estimate the difference between group means in their original units. Less
obvious is that a re-transformation of (X — ) back to original units also does not estimate the
difference between group means, but is closer to a function of group medians. For the log
transformation as an example, X —y retransformed would equal the ratio of geometric means of
the two groups. How close such a re-transformation comes to estimating the ratio of group

medians depends on how close the data are to being symmetric in their transformed units.

5.4.4 Confidence Interval for x—Yy
An interval estimate for the difference in means X — is also available. It is appropriate in

situations where the t-test may be used -- when both data groups closely follow a normal



Differences between Two Independent Groups 135

distribution. When the variances of the two groups are similar and the pooled standard

deviation s is used in the test, the confidence interval is

Cl= }—y + tOL/2,(n+rn—2) . S'\’ 1/a+1/m ) [510]

When the standard deviations of the two groups are dissimilar and cannot be pooled, the

confidence interval becomes

Cl= x-y t toy2,(df) * ‘/sj/n +s2y/m [5.11]

where df is the approximate degrees of freedom used in the t-test.

Exercises

5.1 For the precipitation nitrogen data of Example 1, what would Wyg have been had the
industrial site been used rather than the arbitrary choice of the residential site. What is

the effect on the p-value?

5.2 Historical ground-water quality data for a shallow aquifer underlying agricultural land
shows the following nitrate concentrations (mg/L):
pre-1970 post-1970
1 2 4 1 5 14
1 3 5 2 8 15
1 3 5 2 10 18
2 4 10 4 11 23

Given that we wish to test for a change in concentration between the two periods,
should this be a one-sided or two-sided test?

5.3 Annual streamflows for the Green R. at Munfordville, KY were listed in Exercise 4.1.
Beginning in 1969 the stream was regulated by a reservoir.
a. Construct a Q-Q plot, and indicate whether the flows exhibit an additive or
multiplicative relationship, or neither.
b. Does there appear to be a relationship between (after—before) or (after/before) and
the magnitude of annual flow itself? If so, explain why this might occur.

a. Test whether flows after the reservoir came onstream are different.
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5.5

5.6

Statistical Methods in Water Resources

Consider the following small data set

X: 1.0, 2.0, 3.0, 4.0

Y: 1.5, 2.5, 3.5, 4.5, 5.5, 7.0, 10.0, 20.0, 40.0, 100.0
Using the Table B4, determine the two-sided p value for an additive difference between
the X and Y data using the exact rank-sum test. Then compute it using the large-sample
approximation. Then compute it using the t-test on ranks. Compute the expected
difference A between X and Y.

Unit well yields, in gallons per minute per foot of water-bearing material, were contrasted
for wells within valleys containing fracturing versus valleys with no fracturing (Wright,
1985). For the PPCC test for normality, r(with)=0.943 and r(without)=0.805. Perform the
appropriate 00 = 0.05 test to discern whether fracturing is associated with higher mean unit

well yield
Yields with fracturing Yields without

0.95 0.16 1.02 0.040
0.72 0.16 0.49 0.030
0.51 0.13 0.454 0.020
0.44 0.086 0.10 0.007
0.40 0.031 0.077 0.003
0.30 0.020 0.041 0.001
0.18

Assume that the unit well yield data are now trace organic analyses from two sampling
sites and that all values below 0.050 were reported as "< 0.05." Retest the hypothesis that
Ho : ux= Uy versus Hy : Ux > [y using the rank-sum test. By how much does the test
statistic change? Are the results altered by presence of a detection limit? Could a t-test be

used in this situation?
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To determine the effectiveness of an acid solution in developing wells in carbonate rock, yields
of twenty wells were measured both before and after treatment of the wells with acid. Factoring
out the differences in yield between wells, have the yields changed as a result of using the acid?

What is the magnitude of this change?

Annual sediment loads are measured at two sites over a period of twenty-four years. Both
drainage basins are of essentially the same size, and have the same basin characteristics.
However, logging has occurred in one basin during the period, but not in the other. Can the
year to year variation in load (due to differences in precipitation) be compensated for, to

determine whether the site containing logging produced generally higher loads than the other?

Two laboratories are compared in a quality assurance program. Each lab is sent one of a pair of
30 samples split into duplicates in the field, to determine if one lab consistently over- or under]
estimates the concentrations of the other. If no difference between the labs is seen, their data
may be combined prior to interpretation. The differences between labs must be discerned above

the sample to sample differences.

As with the tests of Chapter 5, we wish to determine if one group tends to contain larger values
than the other. However, now there is a logical pairing of the observations within each group.
Further, there may be a great deal of variability between these pairs, as with the year-to-year
pairs of sediment data in the second example above. Both basins exhibit low yields in dry years,
and higher yields in wet years. This variability between pairs of observations is noise which
would obscure the differences between the two groups being compared if the methods of
Chapter 5 were used. Instead, pairing is used to block out this noise by performing tests on the
differences between data pairs. Two nonparametric tests are presented for determining whether
paired observations differ, the sign test and the signed-rank test. Also presented is the paired t_|
test, the parametric equivalent which may be used when the differences between pairs are
known to be normally distributed. After surveying graphical methods to illustrate the test

results, estimators for the difference between the two groups are discussed.
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For paired observations (xi,yi), i=1,2,...n, their differences Dj = xj — yj are computed. The tests
in this chapter determine whether xj and yj are from the same population -- the null hypothesis [
- by analyzing the Dj. If there are differences, the null hypothesis is rejected.

When the Dj's have a normal distribution, a paired t-test can be employed. The paired t-test
determines whether the mean of the Dj's equals 0. This is equivalent to stating that the mean of
the xj and the yj are the same. If the Dj's are symmetric, but not necessatily normal, a signed!]
rank test can be used. The signed-rank test determines whether the median of the the Dj's is
equal to 0. The assumption of symmetry made by the signed-rank test is much less restrictive
than that of normality, as there are many non-normal distributions which are symmetric. Asa
result, the signed-rank test is a more generally applicable method than the t-test. If the
differences are asymmetric, the sign test may be used. The sign test does not require an
assumption of symmetry or normality. It tests a more general hypothesis than comparisons of
means or medians -- does x tend to be higher (or lower, or different) than y? The sign test is the
most generally applicable of the three methods. It is also appropriate when the magnitude of the
paired differences cannot be computed but one observation can be determined to be higher than
the other, as when comparing a <1 to a 3. (Analysis of data below the detection limit is
discussed in detail in Chapter 13. See also exercises 6.4 and 6.5 at the end of this chapter.)

6.1 The Sign Test

For data pairs (xj,yi) i=1,...n, the sign test determines whether x is generally larger (or smaller, or

different) than y, without regard to whether that difference is additive. The sign test may be

used regardless of the distribution of the differences, and thus is fully nonparametric.

6.1.1 Null and Alternate Hypotheses

The null and alternative hypotheses may be stated as follows:
Hp:  Prob [x>y] = 0.5,

versus one of the three possible alternative hypotheses:

Hy:  Prob [x>y] #0.5 (2-sided test -- x might be larger or smaller than y).
Hj:  Prob [x >y] > 0.5 (1-sided test -- x is expected to be larger than y)
H3:  Prob [x>y] <0.5 (1-sided test-- x is expected to be smaller than y).

6.1.2 Computation of the Exact Test
If the null hypothesis is true, about half of the differences Dj will be positive (xi > yj) and about

half negative (xj < yj). If one of the alternate hypotheses is true instead, more than half of the

differences will tend to be either positive or negative.

The exact form of the sign test is given below. It is the form appropriate when comparing 20 or

fewer pairs of samples. With larger sample sizes the large-sample approximation may be used.
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Remember that computer packages usually report p-values from the large sample approximation

regardless of sample size.

Exact form of the sign test
Situation Two paired groups of data are to be compared, to determine if one group tends
to produce larger (or different) values than the other group. No assumptions
about the distribution of the differences Dj = xj — yj, 1 = 1,...N are required.

This means that no assumption is made that all pairs are expected to differ by
about the same amount. Numerical values for the data are also not necessary, as

long as their relative magnitudes may be determined.

Tied data Ignore all tied data pairs (all Dj =0). Reduce the sample size of the test to the

number of nonzero differences n.

Computation Delete all Di= 0 (xj = yi). The test uses the n nonzero differences
n= N—[number of Dj=0]. Assign a + for all Dj > 0, and a — for all D; < 0.

Test Statistic ST = the number of +'s, the number of times x;j > yi, 1=1,.n.

geee

Decision Rule To reject Hp: Prob [x >y] = 0.5,
1. H1: Prob [x >y] # 0.5 (the x measurement tends to be either larger or smaller than the y

measurement).

+ +
Reject Hpif S 2 xg/p, of S =x'y/, from Table B5; otherwise do not reject
Ho.

2. Hp: Prob [x >y] > 0.5 (the x measurement tends to be larger than the y measurement).

_F
Reject Hoif S =2 xg n from Table B5; otherwise do not reject H .

3. H3: Prob [x>y] <0.5 (the x measurement tends to be smaller than the y measurement).

_%
Reject Hpif S =x'gn from Table B5; otherwise do not reject Hy .

Example 1.

Counts of mayfly nymphs were recorded in 12 small streams at low flow above and below
industrial outfalls. The mayfly nymph is an indicator of good water quality. The question to be
considered is whether effluents from the outfalls decreased the number of nymphs found on the
streambeds of that region. A Type I risk level o of 0.01 is set as acceptable. Figure 6.1a
presents a separate boxplot of the counts for the above and below groups. Both groups are
positively skewed. There is a great deal of variability within these groups due to the differences
from one stream to another, though in general the counts below the outfalls appear to be

smaller. A rank-sum test as in Chapter 5 between the the two groups would be inefficient, as it
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would not block out the stream to stream variation (no matching of the pair of above and below

Statistical Methods in Water Resources

counts in each stream). Variation in counts among the streams could obscure the difference

being tested for. The natural pairing of observations at the same stream can be used to block

out the stream to stream variability by computing the above—below differences in counts for

each stream (figure 6.1b). A test is then performed on these differences. Note the asymmetry of

the paired differences. They do not appear to all be of about the same magnitude.
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Figure 6.1 a) above and below counts. b) above — below differences.
Table 6.1 Mayfly nymph data.

Xj
12
15
11

41

xj = counts above outfalls,

Dj

yi = counts below outfalls

Dj. = difference xj — yj.

Xj
106
63
296
53

i
48
17
11
41

Dj
58
46
285
12

Xj

20
110
429

185

14
60
53
124

376
61
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The null hypothesis H() is that the counts above the outfalls are equally likely to be higher or
lower than counts below the outfalls. The one-sided alternate hypothesis H) is that the counts

below the outfalls are expected to be lower, in which case ST would be large.

Of the 12 pairs, 11 are increases, so ST = 11. Note that this statistic is very resistant to outliers,

as the magnitudes of the differences are not used in computing the test statistic. From Table B5
of the Appendix, the one-sided p-value for ST = 11 is 0.003. Therefore reject that counts above
and below the outfall are the same at o0 = 0.01.

6.1.3 The Large Sample Approximation

For sample sizes n>20 the exact sign test statistic can be modified so that its distribution closely
follows a standard normal distribution. Again, this does not mean that the data or their
differences require normality. It is only the modified test statistic which follows a normal
distribution.

The large sample approximation for the sign test takes the standardized form

(o 1
ST—=75 = Ug*t o
ot if ST > Ug+
+ L
ST+75 = ugt .
L ot if ST < pg+

1
where us+:% , and GS+:§\/n .

The 1/2 in the numerator of Z is again a continuity correction (see Chapter 5). Z7 is
compared to a table of the standard normal distribution to obtain the approximate
p-value. Using the mayfly data of Example 1, the approximate p-value of p = 0.005 is obtained

below. This is very close to the true (exact) p=0.003, and both are sufficiently small that the
decision to reject H() would not be altered by their difference.

Therefore, if accurate p-values are of primary concern, such as when p is close to the agreed|
upon risk O, and the sample size is 20 or smaller, perform the exact test to get accurate p-values.

Regardless of sample size, if p-values are not the primary interest and one must simply decide to
reject Hy or not, when p-values are much smaller (such as 0.001) or much larger (such as 0.50)
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than o the decision whether to reject Hy will be sufficiently clear from the approximate

procedure.

Example 1, cont.

For ST =11 u+:2 :6cs+:l 12 =173
» UsT =7 sT T2 '
11-1-6
T= —2— =200
1.73

And from a table of the normal distribution, the approximate one-sided p-value = 0.005.

6.2 The Signed-Rank Test

The signed-rank test was developed by Wilcoxon (1945), and is sometimes called the Wilcoxon
signed-rank test. Itis used to determine whether the median difference between paired
observations equals zero. It may also be used to test whether the median of a single data set is

significantly different from zero.

6.2.1 Null and Alternate Hypotheses
For Dj = xj —yj, the null hypothesis for the signed-rank test is stated as:
Hp:  median[D] = 0.

The alternative hypothesis is one of three statements:

Hi:  median[D] # 0 (2-sided test -- x might be larger or smaller than y).
Hj:  median[D] > 0 (1-sided test -- x is expected to be larger than y)
H3: median[D] <0 (1-sided test-- x is expected to be smaller than y).

The signed-rank test is usually stated as a determination of whether the x's and y's come from
the same population (same median and other percentiles), or alternatively that they differ only in
location (central value or median). If both groups are from the same population, regardless of
the shape, about half of the time their difference will be above 0, and half below 0. In addition,
the distribution of data above 0 will on average mirror that below 0, so that given a sufficient
sample size the differences will be symmetric. They may not be anything like a normal
distribution, however. If the alternative hypothesis is true, the differences will be symmetric
when x and y come from the same shaped distribution (whatever the shape), differing only in
central value (median). This is called an additive difference between the two groups, meaning
that the variability and skewness within each group is the same for both. Boxplots for the two
groups would look very similar, with the only difference being an offset of one from the other.
The signed-rank test determines whether this "offset", the magnitude of difference between
paired observations, is significantly different from zero. For additive differences (the
assumption of symmetric differences is valid), the signed-rank test has more power to detect

differences than does the sign test.
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In addition, the signed-rank test is also appropriate when the differences are not symmetric in
the units being used, but a logarithmic transformation of both data sets will produce
differences which are symmetric. In such a situation a multiplicative relationship is made into
an additive relationship in the logarithms. For example, figure 6.2 displays the differences
between two positively skewed distributions. A multiplicative relationship between x and y is
suspected, ie. x = c*y, where c is some constant. This is a common occurrence with water
resources data; data sets having higher median values also often have higher variances than
"background" sites with low median values. In the original units the Dj from such data are
asymmetric. Changing units by taking the logarithms of the data prior to calculating differences,
the boxplot of figure 6.3 results. The log transformation (8 = 0) changes a multiplicative
relationship to an additive one: log x = log ¢ + log y. The variances of the logs are often made
similar by the transformation, so that the logs differ only in central value. The DI, the
differences in log units, are therefore much more symmetric than the differences in the original
units. The median difference in the logs can then be re-transformed to estimate the median

ratio of the original units, ¢ = median [y/x] = exp (median [DI]).

LT F——— ** = o o
t t t t t t diff
@.o 3.0 1o.@ 15.@ 20.@ 25.0@
Figure 6.2 Boxplot of asymmetric Dj = xj — yj
1 ] b
. ' ' ' Llogx - 1ogy
-1.0 0.0 1.0 2.0 3.0

Figure 6.3 Boxplot of symmetric DIj = log(xj) — log(yi)

6.2.2 Computation of the Exact Test

If the null hypothesis is true, the median [D] will be close to zero, and the differences will be
symmetric around zero. If one of the alternate hypotheses is true instead, the differences will
not have a median near zero, but show a symmetric distribution around a nonzero median.
Therefore more than half will be either positive or negative. The signed-rank test uses both the
signs of the differences as in the sign test, along with the ranks of the absolute values of those

differences. This latter information makes sense to use only when the differences are symmetric.

The exact form of the signed-rank test is given below. It is the only form appropriate for
comparing 15 or less pairs of samples. With larger sample sizes either large-sample or rank

transform approximations may be used.
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Exact form of the Wilcoxon signed-ranks test
Situation Two paired groups of data are to be compared, to determine if their differences
Dj = xj —yj are significantly different from zero. The Dj are assumed to be

symmetric. This implies that the two groups differ only in central location.

,1=1..N. Rank the

| Dj | from smallest to largest. The test uses only nonzero differences, so

Computation Compute the absolute value of the differences | Dj

sample size n= N—[number of Di=0]. Compute the signed rank
Ri,i=1,.n
Ri = rank of | Dj | for D; > 0, and
= — (rank of |Di|) for D; < 0.

Tied data If Dj= 0, delete. When two nonzero differences Dy's are tied, assign the average

of the ranks involved to all tied values.

Test Statistic The exact test statistic W is then the sum of all signed ranks Rj having a

positive sign:

n
+
W = 2 Ri&R;>0) where | signifies "given that".
i=1
Decision Rule To reject Hp: median[D] =0
1. H1: median[D] # 0 (the x measurement tends to be either larger or smaller than the y
measurement).

+ +
Reject Hpif W' 2 xgp,, or W =x'y, from Table B6; otherwise do not
reject Ho.

2. Hp: median[D] >0 (the x measurement tends to be larger than the y measurement).

+
Reject Hoif W' = xg n from Table B6; otherwise do not reject H .

3. H3: median[D] <0 (the x measurement tends to be smaller than the y measurement).

+
Reject Hpif W = x'g n from Table B6; otherwise do not reject Hp .
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Example 1, cont.
The differences Dj result in the signed-ranks Rj of table 6.2. From these

WT = the sum of the positive Rj's
= 72.
From Table B0, the one-sided p-value for n=12 and W™ = 721is 0.003. This is strong evidence
against the null hypothesis being true. However, the Dj are asymmetric, violating one of the
test's assumptions, and indicating that the differences between the two groups may not be an
additive one. Asymmetry can be expected to occur when large values tend to produce large
differences, and smaller values smaller differences. This indicates that a multiplicative
relationship between the data pairs is more realistic. So projecting that a multiplicative
relationship may have produced the skewed distribution of Dj's, the base 10 logs of the data
were calculated, and a new set of differences
Dlj = log(x{) — log(yi)
are computed and presented in table 6.2 and figure 6.4. Comparing figures 6.4 and 6.1b, note
that these DIj are much more symmetric than those in the original units. Using the DIj,
W = the sum of the positive Rlj's
= 69
and the exact p-value from Table B6 is 0.008. This should be considered more correct than the
results for the untransformed data, as the differences are more symmetric, meeting the
requirements of the test procedure. Note that the p-values are not drastically changed, however,

and the conclusion to reject H() was not affected by the lack of a transformation.

Table 6.2 Mayfly nymph data.

Dj = difference xj —yj Rj = signed ranks of Dj
Dl; = difference of logs Rlj = signed ranks of DIj
Di Rj Dl R} Di Ri DI Rl Di Rj Dl R}
3 1 0125 2 58 9 0344 8 6 25 0155 3
6 25 0222 5 46 7 0569 10 50 8 0.263 7
-27 -6 -0.538 -9 285 11 1.430 12 376 12 0.908 11
17 5 0.233 6 12 4 0.111 1 61 10 0174 4

6.2.3 The Large Sample Approximation

To avoid requiring a large table of exact signed-rank test statistics for all possible sample sizes,
the exact test statistic is standardized by subtracting its mean and dividing by its standard
deviation so that its distribution closely follows a standard normal distribution. This

approximation is valid for sample sizes of n>15.
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Figure 6.4 Boxplot for the differences of the base 10 logarithms of the mayfly data.

The large sample approximation for the signed-ranks test takes the standardized form

- L 1
WT =7 = Uyt .\
Oyt W™ > Uyt
ZerT = 0 W = g+
el
W™ + 5 — Myt .
L Oyt W™ < Uyt
*(n+1 *(nt+1)*(2n+1
where [y + :ﬂf;_l , and Oyt :\/ n°(n 2)4( ntl)

The 1/2 in the numerator of Zg T is the continuity correction. Zgy™ is compared to a table of
the standard normal distribution to obtain the approximate p-value for the signed-rank test. For
the logarithms of the mayfly data of Example 1, the approximate p-value of p = 0.01 is obtained

below. This is close to the exact value of 0.008, considering that the sample size of 12 is too
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small for use of the approximation. When the sample size is 15 or smaller, perform the exact

test to get accurate p-values.

Example 1, cont.
12¢(13 12+(13)+(25
For W = 69, Myt = 44—2 =39 Oyt = J@M—Z =12.75

N
Zsr+ = u =231
12.75

And from a table of the normal distribution, the approximate one-sided p-value = 0.010.

6.2.4 The Rank Transform Approximation

The rank transform approximation for the signed-rank test is computed by performing a paired
t-test on the signed ranks Rj (or Rlj, if the differences of the logs are more symmetric) rather

than on the original data. For this approximation the zero differences Dj = 0 are retained prior
to computing the test so that there are N, not n, signed ranks. This approximation should be
called a "t-test on signed ranks" rather than a signed-ranks test for the sake of clarity.
Computations will be given in detail following the presentation of the paired t-test in the next
section. The rank-transform p-value calculated in that section for the logs of the mayfly data is
0.005, close to the exact p-value of 0.008. The rank transform approximation should be

acceptable for sample sizes greater than 15.

6.3 The Paired t-Test

The paired t-test is the most commonly used test for evaluating matched pairs of data.
However, it should not be used without expecting the paired differences Dj to follow a normal

distribution. Only if the Dj are normal should the t-test be used. As with the signed-ranks test,
logarithms may be taken prior to testing for normality if a multiplicative relationship is
suspected. In contrast, all symmetric data, or data which would be symmetric after taking
logarithms, may be tested using the signed-ranks test regardless of whether they follow a normal

distribution.

6.3.1 Assumptions of the Test
The paired t-test assumes that the paired differences Dj are normally distributed around their
mean. The two groups of data are assumed to have the same variance and shape. Thus if they
differ, it is only in their mean (central value). The null hypothesis can be stated as

Ho : Bx = Uy the means for groups x and y are identical, or

Ho: W mD)=0 the mean difference between groups x and y equals 0.
When the Dj are not normal, and especially when they are not symmetric, the p-values obtained

from the t-test will not be accurate. When the Dj are asymmetric, the mean will not provide a
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good estimate of the center, as discussed in Chapter 1. Therefore U [D] will not be a good

estimate of the additive difference between x and y.

6.3.2 Computation of the Paired t-Test

Paired t-test

Situation Two paired groups of data are to be compared, to determine if their differences
Dj = xj —yj are significantly different from zero. These differences must be

normally distributed. Both x and y follow the same distribution (same variance)

b

except that Ly and Hy might not be equal.

Dn

s

Test Statistic Compute the paired t-statistic: tp =

where D is the sample mean of the differences Dj D=

2.(D.-Dy

i=1

and s = , the sample standard deviation of the Dj's.

n-1

Decision Rule. To reject Hp: Uy = Hy

1. Hi: g # Hy (the two groups have different mean values, but there is no prior
knowledge which of x or y might be higher)
Reject Hp if tp < -t (1—=/2),(n-1) Of > t(1-0y/2),(n—1) from a
table of the t distribution; otherwise do not reject Hy).

2. H2: Mg > Uy (prior to seeing any data, x is expected to be greater than y)
Reject Hp if tp >t (1-0),(n—1) from a table of the t distribution;

otherwise do not reject H( .

3. H3: Mg <MWy (prior to seeing any data, y is expected to be greater than x)
Reject Ho if tp <—t (1—0),(n—1) from a table of the t distribution;

otherwise do not reject H( .

Example 1, cont.
Paired t-test on the mayfly data: The PPCC test for normality on the paired differences Dj

has r = 0.82, with an associated p-value of <0.005. Therefore it is highly unlikely that these data

come from a normal distribution, and the t-test cannot validly be run. In an attempt to obtain a
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distribution closer to normal, the logs of the data are computed. Again as with the signed-rank
test, this implies that a multiplicative rather than an additive relationship exists between x and y.
The PPCC test for normality of the differences between the logarithms DIj has r = 0.92, and a
p-value of 0.036. Therefore normality of the logarithms would still be rejected at o0 = 0.05, and
the t-test should still not be performed. One could try a series of power transformations,
selecting the one whose PPCC test coefficient is closest to 1.0. Howver, it may be difficult to
translate the results back into original units -- "the negative square root of differences is

statistically different". If the t-test performed on the logs, the following would result:

— 1.59 2
Dl= 0333, s= T = 0479, so tp=241.

Reject HQ in favor of H2 if tp >ty 95 11 = 1.80. Therefore reject that iy = Hy. The onel!

sided p-value for tp is about 0.02. Note that this is higher than the signed-rank test's

p-value of 0.008, reflecting a probable slight loss in power for the t-test as computed on the

(non-normal) logarithms of the data.

Rank approximation to the signed-rank test (t-test on signed-ranks): The t-test is performed
on the signed-ranks of DIj, (see Table 6.2).

18.71 2

Rl =5, s=\/ 7 =564 and =307

Reject H( in favor of H2 if ty >t 5 95 11 = 1.80. Therefore reject Hp. The one-sided

p-value equals 0.005, close to the exact p-value of 0.008. Note that the t-test on signed-ranks, as
a nonparametric test, ably overlooks the non-normality of the data. The paired t-test does not,
and is less able to distinguish the differences between the data logarithms (as shown by its higher

p-value) because those differences are non-normal.

6.4 Consequences of Violating Test Assumptions

6.4.1 Assumption of Normality (t-Test)

The primary consequence of overlooking the normality assumption underlying the

t-test is a loss of power to detect differences which may truly be present. The second
consequence is an unfounded assumption that the mean difference is a meaningful description
of the differences between the two groups.

For example, suppose a t-test was blindly conducted on the mayfly data without checking for
normality of the differences. The test statistic of t=2.08 has a one-sided p-value of 0.03. This is
one order of magnitude above the exact p-value for the (nonparametric) sign test of 0.003. Had
an ¢, of 0.01 been chosen, the t-test would be unable to reject H( while the sign test would easily
reject. The non-normality of the differences "confuses" the t-test by inflating the estimate of

standard deviation s, and making deviations from a zero difference difficult to discern.
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The mean difference D of 74.4 counts for the mayfly data is larger than 10 of the 12 paired
differences listed in table 6.1. It has little usefulness as a measure of how many more mayfly
nymphs are found above outfalls than below. The lack of resistance of the mean to skewness
and outliers heavily favors the general use of the median or Hodges-L.ehmann estimator.
Another drawback to the mean is that when transformations are used prior to computing a t|
test, re-transforming the estimate of the mean difference back into the original units does not

provide an estimate of the mean difference in the original units.

6.4.2 Assumption of Symmetry (Signed-Rank Test)

When the signed-rank test is performed on asymmetric differences, it rejects H) slightly more
often than it should. The null hypothesis is essentially that symmetric differences have a median
of zero, and asymmetry favors rejection as does a nonzero median. Some authors have in fact
stated that it is a test for asymmetry. However, asymmetry must be severe before a substantial
influence is felt on the p-value. While only one outlier can disrupt the t-test's ability to detect
differences between two groups of matched pairs, most of the negative differences must be
smaller in absolute value than are the positive differences before a signed-rank test rejects H()
due solely to asymmetry. One or two outliers will have little effect on the signed-rank test, as it
uses their rank and not their value itself for the computation. Therefore violation of the
symmetry assumption of the signed-rank test produces p-values only slightly lower than they
should be, while violating the t-test's assumption of normality can produce p-values much larger
than what is correct. Add to this the fact that the assumption of symmetry is less restrictive than
that of normality, and the signed-rank test is seen to be relatively insensitive to violation of its

assumptions as compared to the t-test.

Inaccurate p-values for the signed-rank test is therefore not the primary problem caused by
asymmetry. The p-values for the mayfly data, for example, are not that different (p = 0.003 for
the original units and 0.008 for the logs) before and after a transformation to achieve symmetry.
Both are similar to the p-value for the sign test, which does not require symmetry. However,
inappropriate estimates of the magnitude of the difference between data pairs will result from
estimating an additive difference when the evidence points towards a multiplicative relationship.
Therefore symmetry is especially important to check if the magnitude of the difference between
data pairs is to be estimated. Equally as important to check is the form of the relationship

between x and vy, using the scatterplots of the next section.

6.5 Graphical Presentation of Results

Methods for illustrating matched-pair test results are those already given in Chapter 2 for
illustrating a single data set, as the differences between matched pairs constitute a single data set.
A probability plot of the paired differences, for example, will show whether or not the data
follow a normal distribution. Of the methods in Chapter 2, the boxplot is the single graphic
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which best illustrates both the test results and the degree of conformity to the test's assumptions.
The equivalent graphic to a Q-Q plot for paired data is a scatterplot of the data pairs. The
addition of the x=y line and a smooth of the paired data will help illustrate the test results.

6.5.1 Boxplots

The best method for directly illustrating the results of the sign, sighed-rank or paired t-tests is a
boxplot of the differences, as in figure 6.1b. The number of data above and below zero and the
nearness of the median difference to zero are cleatly displayed, as is the degree of symmetry of
the Dj. Though a boxplot is an effective and concise way to illustrate the characteristics of the
differences, it will not show the characteristics of the original data. This can be better done

with a scatterplot.

6.5.2 Scatterplots With X=Y Line

Scatterplots illustrate the relationships between the paired data (figure 6.5). Each (x,y) pair is
plotted as a point. Similarity between the two groups of data is illustrated by the closeness of the
data to the x=y line. If x is generally greater than y, most of the data will fall below the line.
When y exceeds x, the data will lie largely above the x=y line. This relationship can be made
clearer for large data sets by superimposing a lowess smooth (see Chapter 10) of the paired data
onto the plot.

Data points (or their smooth) generally parallel to the x=y line on the scatterplot would indicate
an additive difference between the (x,y) data pairs. Therefore the line x =y + d could be plotted
on the figure to illustrate the magnitude of the difference between x and y, where d is the
appropriate estimate of the difference between x and y as described in the next section. In
figure 6.6 the line x = y + 31.5 is plotted, where 31.5 is the median difference. For an additive
relationship the data points would scatter around this line. Obviously the differences do not
appear to be additive.

pepning g
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Figure 6.5 Scatterplot of the example 1 mayfly data.
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Figure 6.6 Mayfly data with ill-fitting additive relationship x = y+31.5.
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Figure 6.7 Mayfly data with multiplicative relationship x = y*1.76.

Alternatively, an increasing difference between the data and the x=y reference line indicates that
there is a multiplicative difference between x and y, requiring a logarithmic transformation prior
to the signed-rank or t-test. For a multiplicative relation the line x = y*f~1(d) can be plotted as
an aid in visualizing the relation between x and y. For base 10 logs, f~1(d) = 10d while for
natural logs it is exp(d). The mayfly data of example 1 exhibit such a multiplicative relationship,

as shown in figure 6.7. There d = A , the Hodges-LLehmann estimate in log units, resulting in the
line x = y*1.76.
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6.6 Estimating the Magnitude of Differences Between Two Groups

After testing for differences between matched pairs, a measure of the magnitude of that
difference is usually desirable. If outliers are not present, and the differences can be considered
normal, an efficient estimator is the mean difference D . This estimator is appropriate whenever
the paired t-test is valid. When outliers or non-normality are suspected, a more robust estimator
is necessary. The estimator associated with the signed-rank test is a Hodges-Lehmann estimator
A (Hollander and Wolfe, 1973) . A is the median of all possible pairwise averages of the
differences. When the Dj are not symmetric and the sign test is used, the associated estimate of

difference is simply the median of the differences Dmed.

6.6.1 The Median Difference (Sign Test)

For the mayfly data of example 1, the median difference in counts is 31.5. As these data are
asymmetric, there is no statement that the two groups are related in an additive fashion. But
subtracting this median value from the x data (the sites above the outfalls) would produce data
having no evidence for rejection of H() as measured by the sign test. Therefore the median is
the most appropriate measure of how far from "equality" the two groups are in their original

units. Half of the differences are larger, and half smaller, than the median.

A confidence inteval on this difference is simply the confidence interval on the median

previously presented in Chapter 4.

6.6.2 The Hodges-Lehmann Estimator (Signed-Rank Test)
Hodges-Lehmann estimators are computed as the median of all possible appropriate

combinations of the data. They are associated with many nonparametric test procedures. For

the matched-pairs situation, A is the median of the n*(n+1)/2 possible pairwise averages:

A = median [Ajj] [6.1]
where Ajj = [Di+D;)/2] foralli=j

A is related to the signed-rank test in that subtracting A from all paired differences (or
equivalently, from the x's or y's, whichever is larger) would cause the signed-rank test to have
W close to 0, and find no evidence of difference between x and y. For the cases of symmetric
differences where the signed-rank test is appropriate, the Hodges-Lehmann estimator more
efficiently measures the additive difference between two data groups than does the sample

median of the differences Dmed. For the mayfly data, A of the logs = 0.245. The log of

upstream counts minus 0.245 estimates the log of the counts below the outfalls. Thus the
counts above the outfalls divided by 10 0-245 = 1,76 best estimates the counts below the outfalls
(the line X = 1.76 Y in figure 6.7).
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6.62.1 Confidence interval on A

A nonparametric interval estimate of the difference between paired observations is computed by
a process similar to that for the confidence interval for other Hodges-Lehmann estimators. The
tabled distribution of the test statistic is entered to find upper and lower critical values at onel|
half the desired alpha level. These critical values are transformed into ranks. The pairwise
differences Ajj are ordered from smallest to largest, and those cortesponding to the computed

ranks are the ends of the confidence interval.

For small sample sizes, table B6 for the signed-rank test is entered to find the critical value x'
having a p-value nearest to /2. This critical value is then used to compute the ranks Ry and R}

corresponding to the pairwise averages Ajj at the upper and lower confidence limits for A.
These limits are the Rjth ranked Ajj going in from either end of the sorted list of n(n+1)/2

differences.
R} =¥ for x' = (0./2)th quantile of signed-rank test statistic [6.2]
Ry = x+1 for x = (1-0./2)th quantile of signed-rank test statistic [6.3]

Example 1, cont.
For the n=12 logarithms of the mayfly data, there are N=78 pairwise averages. For an

o = 0.05 confidence interval, x'=14 and x=64 from table B6 (ot =220.026 = 0.052). The
confidence interval is composed of the 14th and 65th ranked averages (the 14th average in from

either end.

For larger sample sizes where the large-sample approximation is used, a ctitical value zg /7 from

the table of standard normal quantiles determines the upper and lower ranks of the pairwise
averages Ajj corresponding to the ends of the confidence interval. Those ranks are

n (nt+1) 2n+1)
N-zg/2* 6
Ry = 5 [6.4]

Ry =

n (n+1) 2n+1)
6
5 +1 [6.5]

= N-Rj+1 where N = n(n+1)/2
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Example 1 cont.
For the mayfly data with N=78 and n=12, an approximate 0.=0.05 confidence interval is

between the 14th and 65th ranked averages, as computed below:

12 (13) (25
78 —1.96 * ——i—éli—l
R| = > =14.0

Ry=78—14 +1 = 65.

6.6.3 Mean Difference (t-Test)

For the situation where the differences are not only symmetric but normally distributed and the
t-test is used, the most efficient estimator of the difference between the two groups is the mean
difference D . However, D is only slightly more efficient than is A , 5o that when the data
depart from normality even slightly the Hodges-Lehmann estimator is just as efficient as D.
This mirrors the power characteristics of their associated tests, as the signed-rank test is as
efficient as the t-test for only slight departures from normality (Lehmann, 1975). Therefore
when using "real data" which is never "exactly normal" the mean difference has little advantage
over A , while A is more appropriate in a wider number of situations -- for data which are

symmetric but not normal.

6.6.3.1 Confidence interval on the mean difference
A confidence interval on the mean difference D is computed exactly like any confidence
interval for a mean:
— s
Cl =D + tOC/Z,(I‘l—l) % [66]

where s is the standard deviation of the differences D;.
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Exercises
6.1 Test the null hypothesis that the median of annual flows for the Conecuh R. at Brantley,
Ala. (data in Appendix C2) is 683 cfs for 1941 - 1960. The alternate hypothesis is that it
is less than 683 cfs, and alpha = 0.05.
6.2 Which of the following are not matched pairs?
a. analyses of same standard solutions sent to two different laboratories
b. daily sediment discharges above and below a reservoir
c.  nitrate analyses from randomly selected wells in each of two aquifers
d. all of the above are matched pairs.
6.3 The following values of specific conductance were measured on the two forks of the
Shenandoah River in Virginia (D. Lynch, personal communication).
a. State the appropriate null and alternate hypotheses to see if conductance values are
the same in the two forks.
b. Determine whether a parametric or nonparametric test should be used.
c. Compute an o0 = .05 test and report the results.
d. Ilustrate and check the results with a plot.
e. Estimate the amount by which the forks differ in conductance, regardless of the test
outcome.
Date South Fork  North Fork Date South Fork North Fork
5-23-83 194 255 2-22-84 194 295
8-16-83 348 353 4-24-84 212 199
10-05-83 383 470 0-04-84 320 410
11-15-83 225 353 7-19-84 340 346
1-10-84 266 353 8-28-84 310 405
6.4 Atrazine concentrations in shallow groundwaters were measured by Junk et al. (1980)
before (June) and after (September) the application season. The data are given in
Appendix C4. Determine if concentrations of atrazine are higher in groundwaters
following surface application than before.
6.5 Try performing the comparison of atrazine concentrations in 6.4 using a t-test, setting all

values below the detection limit to zero. Compare the results with those of 6.4. Discuss

why the results are similar or different.
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Independent Groups

Concentrations of volatile organic compounds are measured in shallow ground waters across a
several county area. The wells sampled can be classified as being contained in one of seven
land-use types: undeveloped, agricultural, wetlands, low-density residential, high-density
residential, commercial, and industrial/ transportation. Do the concentrations of volatiles differ

between these types of surface land-use, and if so, how?

Alkalinity, pH, iron concentrations, and biological diversity are measured at low flow for small
streams draining areas mined for coal. Each stream drains either unmined land, land strip-mined
and then abandoned, or land strip-mined and then reclaimed. The streams also drain one of two
rock units, a sandstone or a limestone formation. Do drainages from mined and unmined lands
differ in quality? What affect has reclamation had? Are there differences in chemical or
biological quality due to rock type separate and distinct from the effects due to mining history?

Three methods for field extraction and concentration of an organic chemical are to be compared
at numerous wells. Are there differences among concentrations produced by the extraction
processes? These must be discerned above the well-to-well differences in concentration which

contribute considerable noise to the data.

The methods of this chapter can be used to answer questions such as those above. These
methods are extensions of the ones introduced in Chapters 5 and 6, where now more than two
groups of data are to be compared. The classic technique in this situation is analysis of variance.
More robust nonparametric techniques are also presented for the frequent situations where data

do not meet the assumptions of analysis of variance.
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Suppose a set of continuous data, such as concentration or water levels, is collected. It is
suspected that one or more influences on the magnitude of these data comes from grouped

variables, variables whose values are simply "from group X". Examples include season of the

nn
b

year ("from summer","winter", etc.), aquifer type, land-use type, and similar groups. Each

observation will be classified into one of these groups.

First consider the effect of only one grouped variable, calling it an explanatory variable
because it is believed to explain some of the variation in magnitude of the data at hand. This
variable is also called a factor. It consists of a set of k groups, with each data point belonging in
one of the k groups. For example, the data could be calcium concentrations from wells in one

of k aquifers, and the objective is to determine whether the calcium concentrations differ among
the k aquifers. Within each group (aquifer) there are nj observations (the sample size of cach

group is not necessatily the same). Observation yij is the ith of nj observations in group j, so
that iZl,...ni for the jth of k groups j=1,..k . The total number of observations N is thus

N =3 nj, which simplifies to N =ken
=1

when the sample size nj = n for all k groups (equal sample sizes).

The tests in this chapter determine if all k groups have the same central value (median or mean,
depending on the test), or whether at least one of the groups differs from the others. When data
within each of the groups are normally distributed and possess identical variances, an analysis of
variance (ANOVA) can be used. Analysis of variance is a parametric test, determining whether
each group's mean is identical. When there are only two groups, the ANOVA becomes identical
to a t-test. Thus ANOVA is like a t-test between three or more groups of data, and is restricted
by the same types of assumptions as was the t-test. When every group of data cannot be
assumed to be normally distributed or have identical variance, a nonparametric test should be
used instead. The Kruskal-Wallis test is much like a rank-sum test extended to more than two
groups. It compares the medians of groups differentiated by one explanatory variable (one

factor).

When the effect of more than one factor is to be evaluated simultaneously, such as both rock
type and mining history in one of the examples which began this chapter, the one-way tests can
no longer be used. For data which can be assumed normal, several factors can be tested
simultaneously using multi-factor analysis of variance. However, the requirements of normality
and equal variance now apply to data grouped by each unique combination of factors. This
becomes quite restrictive and is rarely met in practice. Therefore nonparametric alternatives are

also presented.

The following sections begin with tests for differences due to one factor. Subsequent sections

discuss tests for effects due to more than one factor. All of these have as their null hypothesis
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that each group median (or mean) is identical, with the alternative that at least one is different.
However, when the null hypothesis is rejected, these tests do not tell which group or groups are
different! Therefore sections also follow on multiple comparison tests -- tests performed after
the ANOVA or Kruskal-Wallis null hypothesis has been rejected, for determining which groups
differ from others. A final section on graphical display of results finishes the chapter.

7.1 Tests for Differences Due to One Factor

7.1.1 The Kruskal-Wallis Test

The Kruskal-Wallis test, like other nonparametric tests, may be computed by an exact method
used for small sample sizes, by a large-sample approximation (a chi-square approximation)
available on statistical packages, and by ranking the data and performing a parametric test on the
ranks. Tables for the exact method give p-values which are exactly correct. The other two
methods produce approximate p-values that are only valid when sample sizes are large, but do
not require special tables. Tables of exact p-values for all sample sizes would be huge, as there
are many possible combinations of numbers of groups and sample sizes per group. Fortunately,
large sample approximations for all but the smallest sample sizes are very close to their true
(exact) values. Thus exact computations are rarely required. All three versions have the same

objective, as stated by their null and alternate hypotheses.

7.1.1.1 Null and alternate hypotheses

In its most general form, the Kruskal-Wallis test has the following null and alternate hypotheses:
Hp:  All of the k groups of data have identical distributions, versus
Hy:  Atleast one group differs in its distribution.

No assumptions are required about the shape(s) of the distributions. They may be normal,
lognormal, or anything else. If the alternate hypothesis is true, they may have different
distributional shapes. In this form, the only interest in the data is to determine whether all
groups are identical, or whether some tend to produce observations different in value than the
others. This difference is not attributed solely to a difference in median, though that is one
possibility. Thus the Kruskal-Wallis test, like the rank-sum test, may be used to determine the

general equivalence of groups of data.

In practice, the test is usually performed for a more specific purpose -- to determine whether all
groups have the same median, or whether at least one median is different. This form requires
that all other characteristics of the data distributions, such as spread or skewness, are identical -
though not necessarily in the original units. Any data for which a monotonic transformation,
such as in the ladder of powers, produces similar spreads and skewness are also valid. This
parallels the rank-sum test (see Chapter 5). As a test for difference in medians, the Kruskal-
Wallis null and alternate hypotheses are:
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Hp:  The medians of the k groups are identical,
Hi:  Atleast one median differs from the others. (a 2-sided test).

As with the rank-sum test, the Kruskal-Wallis test statistic and p-value computed for data that
are transformed using any monotonic transformation are identical to the test statiistic and p_
value using the original units. Thus there is little incentive to search for transformations (to

normality or otherwise) -- the test is applicable in many situations.

7.1.1.2 Computation of the exact test

The exact form of the Kruskal-Wallis test is required when comparing 3 groups with sample
sizes of 5 or less per group, or with 4 or more groups of size 4 or less per group (Lehmann,
1975). For larger sample sizes the large-sample approximation is sufficiently accurate. As there
are few instances where sample sizes are small enough to warrant using the exact test, exact
tables for the Kruskal-Wallis test are not included in this book. Refer to either Conover (1980)
or Lehmann (1975) for those tables.

Should the exact test be required, compute the exact test statistic K as shown in the large sample
approximation of the following section. K is computed identically for both the exact form or

large sample approximation. When ties occur, the large sample approximation must be used.

7.1.1.3 'The large-sample approximation

To compute the test, the data are ranked from smallest to largest, from 1 to N. At this point the
original values are no longer used; their ranks are used to compute the test statistic. If the null
hypothesis is true, the average rank for each group should be similar, and also be close to the
overall average rank for all N data. When the alternative hypothesis is true, the average rank for
some of the groups will differ from others, reflecting the difference in magnitude of its
observations. Some of the average group ranks will then be significantly higher than the overall
average rank for all N data, and some will be lower. The test statistic K uses the squares of the
differences between the average group ranks and the overall average rank, to determine if groups
differ in magnitude. K will equal O if all groups have identical average ranks, and will be positive
if group ranks are different. The distribution of K when the null hypothesis is true can be
approximated quite well by a chi-square distribution with k—1 degrees of freedom.

The degrees of freedom is a measure of the number of independent pieces of information used
to construct the test statistic. If all data are divided by the overall group mean to standardize the
data set, then when any k—1 average group ranks are known, the final (kth) average rank can be
computed from the others as
- N | k-l n
Rk L {1 % N RjJ
Therefore there are actually only k—1 independent pieces of information represented by the k

average group ranks. From these the kth average rank is fixed.
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Large Sample Approximation for the Kruskal-Wallis test

Situation Several groups of data are to be compared, to determine if their medians are
significantly different. For a total sample size of N, the overall average rank
will equal (N+1)/2. If the average rank within a group (average group rank)
differs considerably from this overall average, not all groups can be considered
similar.

Computation All N observations are jointly ranked from 1 to N, smallest to largest. These
ranks Rij are then used for computation of the test statistic. Within each

group, the average group rank IT] is computed:

1
> Rij
i=1

nj

] =

Tied data When observations are tied, assign the average of their ranks to each.
Test Statistic  The average group rank Rj is compared to the overall average rank

R = (N+1)/2, squaring and weighting by sample size, to form the test

statistic K:
12 Lo N+1]?
I
NN +1) (I 2

j=1
Decision Rule To reject Ho: all groups have identical distributions, versus
H1: atleast one distribution differs
Reject Hp if K 2 XZI—OL (k=1) the 1—-0t quantile of a chi-square distribution

with (k—1) degrees of freedom; otherwise do not reject Hy.

Example 1.

Fecal coliforms, in organisms per 100 ml, were measured in the Illinois River from 1971 to 1976
(Lin and Evans, 1980). A small subset of those data are presented here. Do all four seasons
exhibit similar values, or do one or more seasons differ? Boxplots for the four seasons are
shown in figure 7.1.
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Table 7.1  Selected fecal coliform data (from Lin and Evans, 1980).

[counts in organisms per 100 ml]

Summer Fall Winter Spring
100 65 28 22
220 120 58 53
300 210 120 110
430 280 230 140
640 500 310 320
1600 1100 500 1300
PPCC p-value 0.05 0.06 0.50 0.005
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Figure 7.1 Boxplots of Fecal Coliform Data from the Illinois River
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Should a parametric or nonparametric test be performed on these data? If even one of the four
groups exhibits non-normality, the assumptions of parametric analysis of variance are violated.
The consequences of this violation is an inability to detect differences which are truly present --
a lack of power. The PPCC test for normality rejects normality at ot =0.05 for two of the
seasons, summer and spring (table 7.1). Outliers and skewness for the fall samples also argue for
non-normality. Based solely on the skewness and outliers evident in the boxplot, a

nonparametric test should be used on these data.

Computation of the Kruskal-Wallis test is shown in table 7.2. This is compared to a table of the
chi-square distribution available in many statistics texts, such as Iman and Conover (1983). We
conclude that there is not enough evidence in these data to reject the assumption that fecal

coliform counts are distributed similarly in all four seasons.

Table 7.2  Kruskal-Wallis test for the fecal coliform data.

Summer Fall Winter Spring
Ranks Rij 6 5 2 1
12 8.5 4 3
15 11 8.5 7
18 14 13 10
21 19.5 16 17

24 22 19.5 23

R 16 133 10.5 10.2 R =125
K=2.69 XZ() 95 (3) = 7.815 p=0.44 so, do not reject equality of distributions.

7.1.1.4 The rank transform approximation

The rank transform approximation to the Kruskal-Wallis test is computed by performing a one’ |
factor analysis of variance on the ranks Rjj. This approximation compates the mean rank within
each group to the overall mean rank, using an F-distribution for the approximation of the
distribution of K. The F and chi-square approximations will result in very similar p-values. The

rank transform method should propetly be called an "analysis of variance on the ranks".

For the example 1 data, the rank transform approximation results in a p-value of 0.47, essentially
identical to that for the large sample approximation. Detailed computations are shown

following the discussion of ANOVA in the next section.
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7.1.2° Analysis of Variance (One Factor)

Analysis of variance is the parametric equivalent to the Kruskal-Wallis test. It compares the
mean values of each group with the overall mean for the entire data set. If the group means are
dissimilar, some of them will differ from the overall mean, as in figure 7.2. If the group means

are similar, they will also be similar to the overall mean, as in figure 7.3.

Treatment MS > Error MS
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Figure 7.2 Hypothetical data for three groups.

Treatment mean squarc > Error mean squarce.

Why should a test of differences between means be named an analysis of variance? In order to
determine if the differences between group means (the signal) can be seen above the variation
within groups (the noise), the total noise in the data as measured by the total sum of squares is

split into two parts:
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Total sum of squares = Treatment sum of squares + Error sum of squares
(overall variation) = (group means — overall mean) +  (variation within groups)
ko O k kO
22 -2 = Y i (5,-5)2 + 22 (5,-5,)2
Fl o=l =1 Floi=l

If the total sum of squares is divided by N—1, where N is the total number of observations, it
equals the variance of the yjj's. Thus ANOVA partitions the variance of the data into two parts,
one measuring the signal and the other the noise. These parts are then compared to determine if

the means are significantly different.

7.1.2.1 Null and alternate hypotheses

The null and alternate hypotheses for the analysis of variance are:
Hp:  the k group means are identical W= Mo = = Wy .
H1:  atleast one mean is different.

Treatment MS = Error MS
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Figure 7.3 Hypothetical data for three groups.

Treatment mean square = Error mean square.
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7.1.2.2 Assumptions of the test

If ANOVA is performed on two groups, the I statistic which results will equal the square of the
two-sample t-test statistic F=t2, and will have the same p-value. It is not surprising, then, that
the same assumptions apply to both tests:

1. All samples are random samples from their respective populations.

2. All samples are independent of one another.

3. Departures from the group mean (yjj — 57]) are normally distributed for all j groups.

4. All groups have equal population variance 62 estimated for each group by sj2

2,75
sz _ =l

n- 1
Violation of either the normality or constant variance assumption results in a loss of ability to
see differences between means (a loss of power). The analysis of variance suffers from the same
five problems as did the t-test: 1) lack of power when applied to non-normal data, 2)
dependence on an additive model, 3) lack of applicability for censored data, 4) assumption that
the mean is a good measure of central tendency for skewed data, and 5) difficulty in assessing
whether the normality and equality of variance assumptions are valid for small sample sizes. See
Chapter 5 for a detailed discussion of these problems.

Difficulties arise when using prior tests of normality to "prove" non-normality before allowing
use of the nonparametric Kruskal-Wallis test. Small samples sizes may inhibit detecting nonl|
normality, as mentioned above. Second, transformations must be done on more than two
groups of data. It is usually quite difficult to find a single transformation which when applied to
all groups will result in each becoming normal with constant variance. Even the best
transformation based on sample data may not alleviate the power loss inherent when the
assumptions of ANOVA are violated. Finally, if all groups are actually from a normal
distribution, one or more may be "proven" non-normal simply by chance (there is an 01%
chance for each group). Thus the results of testing for normality can be quite inconclusive prior
to performing ANOVA. The value of nonparametric approaches here is that they are relatively

powerful for a wide range of situations.

7.1.2.3 Computation
Each obsetvation yjj can be written as a sum of the overall true mean [, plus the difference 0y
between [t and the true mean of the jth group Wj, plus the difference €jj between the individual
obsetvation yjj and the jth group mean Wj:

vij =M+ 04+ &,
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where: yij is the ith individual observation in group j, j=1,..k;
W is the overall mean (over all groups);
0 s the "group effect”, or (j — 1), and

gj are the residuals or "error" within groups.

If Ho is true, all j groups have the same mean equal to the overall mean [, and thus

aj = 0 for all j. If group means differ, 0j # 0 for some j. In order to detect a difference
between means, the variation within a group around its mean due to the €jj's must be sufficiently
small in comparison to the difference between group means so that the group means may be
seen as different (see figure 7.2). The variation within a group is estimated by the within-group
or error mean square (MSE), computed from the data. The variation between group means is

estimated by the treatment mean square (MST). Their computation is shown below.

Sum of Squares

The error or within-group sum of squares

kU
SSE = z 2 (yij _yj)z
o=l

estimates the total within-group noise using departures from the sample group mean
yj. Error in this context refers not to a mistake, but to the inherent variability within a group.

The treatment (between-group) sum of squares

k
SST =2 n(3,-)?
j=1

estimates the treatment effect using differences between group means and the overall mean of

the sample, weighted by sample size.

Degrees of freedom

Each of the sums of squares has an associated degrees of freedom, the number of independent
pieces of information used to calculate the statistic. For the treatment sum of squares this equals
k—1, as when k—1 of the group means are known, the kth group mean can be calculated. The
total sum of squares has N—1 degrees of freedom, the denominator of the formula for the
variance of yjj. The error sum of squares has degrees of freedom equal to the difference
between the above two, or N—k.

Mean Squares and the F-test

Dividing the sums of squares by their degrees of freedom produces the total variance, and the
mean squares for treatment (MST) and error (MSE). These mean squares are also measures of

the variance of the data.
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Mean Square Formula Estimates:
Variance of yj = Total SS / N-1 Total variance of the data
MST = SST / k—1 Variance within groups +

variance between groups.
MSE

SSE / N-k Variance within groups.

If Hy is true, there is no variance between group means (no difference between means), and the
MST will on average equal the MSE (figure 7.3). As 0 = 0, all variation is simply around the
overall mean W, and the MST and MSE both estimate the total variance. However when H1 is
true, the MST is larger on average than the MSE (figure 7.2), as most of the noise is that
between groups. Therefore a test is constructed to compare these two estimates of variance,
MST and MSE. The F-ratio

F = MST / MSE
is computed and compared to quantiles of an F distribution. If MST is sufficiently larger than
MSE, F is large and H( is rejected. When H is true and there is no evidence for differences in
group means, F is expected to equal 1 (W = 1 when H is true). In other words, an F =1 has a
p-value near 0.50, varying with the degrees of freedom. If F were below 1, which could happen
due to random variation in the data, generally p > 0.50 and no evidence exists for differences

between group means.

The computations and results of an ANOVA are usually organized into an ANOVA table. For
a one-way ANOVA, the table looks like:

Source df SS MS F p-value
Treatment k=1) SST MST MST/MSE p
Error (N=k) SSE MSE

Total N-1 Total SS

Example 1, cont.
For the fecal coliform data from the Illinois River, the ANOVA table is given below. The F

statistic is quite small, indeed below 1. At 00=0.05 or any reasonable 0i-level, the mean counts

would therefore not be considered different between seasons.

Source df SS MS F p-value
Season 3 361397 120466 0.67 0.58
Error 20 3593088 179654

Total 23 3954485

However, this ANOVA has been conducted on non-normal data. Without knowing the results
of the Kruskal-Wallis test, concern should be expressed that the result of "no difference" may be

an artifact of the lack of power of the ANOVA, and not of a true equivalence of means. Some
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statisticians have recommended performing both tests. This may be unnecessary if the data
exhibit sufficient non-normality to suspect an inability of ANOVA to reject. Also assumed by
performing ANOVA is that group means are an appropriate data summary. For the obviously
skewed distributions found for all but the winter season, means will make little sense as
estimates of the values which might be expected to occur. Means would be useful when

estimating the mass of bacteria transported per season, but not in the hypothesis testing realm.

One factor analysis of variance
Situation Several groups of data are to be compared, to determine if their means are
significantly different. Each group is assumed to have a normal distribution

around its mean. All groups have the same variance.

Computation The treatment mean square and error mean square are computed as their sum
of squares divided by their degrees of freedom (df). When the treatment mean
square is larger than the error mean square as measured by an F-test, the group

means are significantly different.
k

2 1,5, -9

MST= = where k—1 = treatment degrees of freedom

k-1

n.
J

< 2
22 0,75
MSE = =

—_

where N—k = error degrees of freedom

N -k
Tied data No alterations necessary.

Test Statistic  The test statistic F:
F = MST / MSE

Decision Rule To reject H(: the mean of every group is identical, versus
H1: atleast one mean differs .
Reject Hp if F 2 Fl_a, k=1, N—k the 1ot quantile of an F distribution with
k—1 and N—k degrees of freedom; otherwise do not reject Hy.

7.2 Tests for the Effects of More Than One Factor

It is quite common that more than one factor is suspected to be influencing the magnitudes of
observations. In these situations it is desirable to measure the influence of all factors

simultaneously. Sequential one-factor tests are an inadequate alternative to a single multi-factor
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test. Even when only one factor is actually influencing the data and a one-way ANOVA for that
factor soundly rejects Hy, a second one-way test for a related factor may erroneously reject Hy
simply due to the association between the two factors. The test for the second factor should
remove the effect of the first before establishing that the second has any influence. By
evaluating all factors simultaneously, the influence of one can be measured while compensating
for the others. This is the objective of a multi-factor analysis of variance, and of the

nonparametric analogue.

7.2.1 Nonparametric Multi-Factor Tests

For two-factor and more complex ANOVA's where the data within one or more treatment
groups are not normally distributed and may not have equal variances, there are two possible
approaches for analysis. The first is a class of tests which include the Kruskal-Wallis and
Friedman tests as simpler cases. These tests, described by Groggel and Skillings (1986), do not
allow for interactions between factors. The tests reformat multiple factors into two factors, one
the factor being tested, and the other the collection of all other treatment groups for all
remaining factors. The data are then ranked within treatment groups for analysis, much as in a

Friedman test. The reader is referred to their paper for more detail.

The second procedure is a rank transformation test (Conover and Iman, 1981). All data are
ranked from 1 to N, and an ANOVA computed on the ranks. This procedure is far more
robust to departures from the assumptions of normality and constant variance than is an
ANOVA on the original data. The rank transformation produces values which are much closer
to meeting the two critical assumptions than are the original values themselves. The tests
determine whether the mean rank differs between treatment groups, rather than the mean. The
mean rank is interpreted as an estimate of the median. Multiple comparison procedures on the

ranks can then differentiate which groups ditfer from others.

Examples of the computation and performance of these rank transformation tests will be

delayed until after discussion of parametric factorial ANOVA.

7.2.2 Multi-Factor Analysis of Variance -- Factorial ANOVA

The effects of two or more factors may be simultaneously evaluated using a factorial ANOVA
design. A factorial ANOVA occurs when none of the factors is a subset of the others. If
subsetted factors do occur, the design includes "nested" factors and the equations for computing
the I test statistics will differ from those here (nested ANOVA is briefly introduced in a later
section). A two-factor ANOVA will be fully described -- more than two factors can be
incorporated, but are beyond the scope of this book. See Neter, Wasserman and Kutner (1985)

for more detail on higher-way and nested analysis of variance.
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For a two-factor ANOVA, the influences of two explanatory variables are simultaneously tested.
The first page of this chapter presented a two-factor ANOVA, the determination of chemical
concentrations among basins at low flow. The objective was to determine whether
concentrations differed as a function of mining history (whether or not each basin was mined,

and if so whether it was reclaimed) and of rock type.

7.2.2.1 Null and alternate hypotheses
Call the two factors A and B. There are i=1,...a = 2 categories of factor A, and j=1,..b = 2
categories of factor B. Treatment groups are defined as all the possible combinations of factors
A and B, so there are a*b treatment groups. Within each treatment group there are njj
observations. The test determines whether mean concentrations are identical among all the
a*b treatment groups, or whether at least one differs.

Ho : all asb treatment group means Wjj arc equal W11= M1 = .= Uyp

H1 : atleast one Hij differs from the rest.

The magnitude of any observation yjjk can be affected by several possible influences:

Vijk T M og [3] + Oc[?)ij + gjjk , where
o = influence of the ith category of A
[3] = influence of the jth category of B
OcBij = interaction effect between A and B beyond those of 0 and B]

separately for the ijth treatment group, and
&jk = residual error, the difference between the kth observation (k:1,...nij)

and the treatment group mean jj.

The null hypothesis states that treatment group means [jj all equal the overall mean L.
Therefore 0 B] and Oc[.))ij all equal O -- there are no effects due to any of the factors or to their
interaction. If any one of 0y, [3]’ or OcBij are nonzero, the null hypothesis is rejected, and at least

one treatment group evidences a difference in its mean.

7.2.2.2 Interaction between factors

If OcBij = 0 in the equation above, there is no interaction present. Without interaction, the effect
of factor B is identical for all groups of factor A, and the effect of factor A is identical for all
groups of factor B. Suppose there are 3 groups of factor A (al, a2, and a3) and 2 groups of
factor B (b1 and b2), resulting in six treatment groups overall. Lack of interaction can be
visualized by plotting the means for all treatment groups as in figure 7.4. The parallelism of the
lines shows that no interaction is present. The effect of A going from al to a2 to a3 is identical
regardless of which B group is involved. The increase going from b1 to b2 for factor B is
identical for every group of factor A.

When interaction is present (OcBij # 0) the treatment group means are not determined solely by

the additive effects of factors A and B alone. Some of the groups will have mean values larger
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or smaller than those expected just from the results of the individual factors. The effect of
factor A can no longer be discussed without reference to which group of factor B is of interest,
and the effect of factor B can likewise not be stated apart from a knowledge of the group of
factor A. In a plot of the treatment group means, the lines are no longer parallel (figure 7.5).
The pattern of differences going from al to a2 to a3 depends on which group of factor B is of
interest, and likewise for the differences between bl and b2 -- the pattern differs for the three A

M
Factor B
bl

group al group a2 group a3

groups.

Concentration

Factor A

Figure 7.4 Six treatment group means with no interaction present
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Figure 7.5 Six treatment group means with interaction present
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Interaction can result from a synergistic or antagonistic effect. As an example, fish may not die
instream due only to higher water temperatures, or to slightly higher copper concentrations, but
combine the two and the result could be deadly. This type of interrelation between factors
results in a significant interaction effect. For k factors there are (k—1) possible interaction terms
between the factors. Unless it is known ahead of time that interactions are not possible,

interaction terms should always be included and tested for in multi-factor ANOVA models.

7.2.2.3 Assumptions for factorial ANOVA

Assumptions are the same as for a one-way ANOVA. Departures from each treatment group
mean Wjj (every combination of factors A and B) are assumed normally distributed with identical
variance. This is a consequence of the &ij, which are normally distributed and of variance (52,
being randomly distributed among the treatment groups. The normality and constant variance

assumptions can be checked by inspecting boxplots of the data for each treatment group.

7.2.2.4 Computation

The influences of factors A, B, and their interaction are evaluated separately by again
partitioning the total sums of squares into component parts due to each factor. After dividing
by their respective degrees of freedom, the mean squares for factors A, B, and interaction are
produced. As with a one-way ANOVA, these are compared to the error mean square (MSE)

using F-tests to determine their significance.

Sum of Squares
The equations for the sums of squares for factor A (SSA), factor B (SSB), interaction (SSI), and

error, assuming constant sample size n per treatment group, are:

due to
b n a b n
& ( Y ( )’
ooy &Sy £55, -
n abn
a n a b n
VI IR I I IS
SSB = 2 — z M]_M
an abn
SSI = 'Total SS — SSA — SSB — SSE Mij—(lli+llj)+ll
e & 3 . & X
SSE= 2 2 X (7 - X X Vijk — Mij

n

a b

&, (a n y)?
Total SS= D, X, D, () — 2 za‘bnz Vijk — M
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Mean Squares and the F-test

Dividing the sums of squares by their degrees of freedom produces the mean squares for factors
A, B, interaction, and error as in the ANOVA table below. If H is true and oy, [3], and OcBij all
equal 0, all variation is simply around the overall mean i. The MSA, MSB, and MSI will then all
be measures of the error variance, as is the MSE, and all three F-tests will have ratios not far
from 1. However when H1 is true, at least one of the mean squares in the numerators should be
larger than the MSE, and the resulting F-ratio will be larger than the appropriate quantile of the
F distribution. When F is large, H() can be rejected, and that influence be considered to
significantly affect the magnitudes of the data at a level of risk equal to O

The two-factor ANOVA table is as follows when there is an equal number of observations for

cach treatment (all njj = n).

Source df SS MS F p-value
Factor A (a—1) SSA SSA/(a-1) MSA/MSE

Factor B b-1) SSB SSB/(b-1) MSB/MSE

Interaction (a—1) (b-1) SSI SS1/(a-1)(b-1) MSI/MSE

Error ab(n—1) SSE SSE/[ab(n-1)]

Total abn—1 Total SS

Multi-factor analysis of variance
Situation Two or more influences are to be simultaneously tested, to determine if either
cause significant differences between treatment group means. Each group is
assumed to have a normal distribution around its mean. All groups have the

same variance.

Computation Compute the sums of squares and mean squares as above.

Tied data No alterations necessary.
Test Statistic  To test factor A: To test factor B: To test for interaction:
FA = MSA / MSE FB = MSB / MSE F1 = MSI / MSE
with degrees of freedom for the numerator of:
dfn = (a—1) dfn = (b-1) dfn = (a—1)(b-1)
Decision Rule To reject Hp: the mean of every group is identical (no treatment effects

for cither factor or interaction), versus
H1: at least one mean differs.
Reject Hpif F 2 Fl_o, dfn, ab(n—1) the 1-ot quantile of an F distribution
with dfn and ab(n—1) degrees of freedom; otherwise do not reject Hy.
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Example 2

Iron concentrations were measured at low flow in numerous small streams in the coal-producing
areas of eastern Ohio (Helsel, 1983). Each stream drains either an unmined area, a reclaimed
coal mine, or an abandoned coal mine. Each site is also underlain by either a sandstone or
limestone formation. Are iron concentrations influenced by upstream mining history, by the

underlying rock type, or by both?

There are several scenarios which would cause H() to be rejected. Factor A (say mining history)
could be significant (0,iF 0), but factor B insignificant. Or factor B (rock type) could be
significant (Blaﬁ 0), but not A. Both factors could be significant (0, [3] # 0). Both factors could
be significant, plus an additional interaction effect because one or more treatment groups (say
unreclaimed sandstone basins) exhibited much different iron concentrations than those expected
from either influence alone (04, [3], OLBij # 0). Finally, both factor A and B could be not
significant (0, B] = 0) but concentrations be elevated for one specific treatment group (OcBij #
0). This would be interpreted as no overall mining or rock type effect, but one combination of

mining history and rock type would have differing mean concentrations.

Boxplots for a subset of the iron concentration data from Helsel (1983) are presented in figure
7.6. Note the skewness, as well as the differences in variance as depicted by differing box
heights. A random subset was taken in order to produce equal sample sizes per treatment
group, yet preserving the essential data characteristics. The subset data are listed in Appendix
C5. In the section 7.2.2.5, analysis of unequal sample sizes per treatment group will be

presented and the entire iron data set analyzed.

There are six treatment groups, combining the three possible mining histories (unmined,
abandoned mine, and reclaimed mine) and the two possible rock types (sandstone and
limestone). An analysis of variance conducted on this subset which has n=13 observations per
treatment group produced the following ANOVA table. Tested was the effect of mining history
alone, rock type alone, and their interaction (Mine*Rock). A*B is a common abbreviation for
the interaction between A and B.

ANOVA table for the subset of iron data

Source df SS MS F p-value
Rock 1 15411 15411 2.38 0.127
Mine 2 32282 16141 2.49 0.090
Rock*Mine 2 25869 12934 2.00 0.143
Error 72 466238 6476

Total 77 539801

None of the three possible influences is significant at the ot = 0.05 level, as their p-values are all

larger than 0.05. However, the gross violation of the test's assumptions of normality and equal
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variance shown in the boxplots must be considered. Perhaps the failure to reject Hy is due not

to a lack of an influence evidenced in the data, but of the parametric test's lack of power to

detect these influences because of the violation of test assumptions. To determine whether this

is 5o, the equivalent rank transformation test is performed.

50

TOTAL IRON CONCENTRATICON, mg |

0

o(\“{‘“eé‘

we

2o
o““{\(\eé

o™
.

a‘Oa(\é

]

;00
65 66 \-\«\6
o ) 60‘(\
o

s\°“é

@
2 we

o* o N

(GC'\a (e,('a\‘a‘\

]
% 60‘55‘0“
S

Figure 7.6 A subset of the iron concentrations at low flow from Helsel (1983)

To compute the rank transformation test, the data are ranked from smallest to largest, 1 to
n=78. An analysis of variance is then performed on the ranks of the data. The ANOVA table is

below, while a boxplot of data ranks is shown in figure 7.7.

ANOVA table for the ranks of the subset of iron data

Source df SS MS F p-value
Rock 1 4121.7 4121.7 13.38 0.000
Mine 2 10933.9 5467.0 17.74 0.000
Rock*Mine 2 2286.2 1143.1 3.71 0.029
Error 72 22187.2 308.2

Total 77 39529.0
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Results for the rank transformation tests are startlingly different than those for the parametric
ANOVA. All three influences, mining history, rock type, and their interaction, are significant at
o, = 0.05. Gross violations of the assumptions of ANOVA by these data have clearly inhibited
the parametric test from detecting the influences of these factors. The rejection of Hy for the
rank test indicates that the median iron concentrations differ between treatment groups. Mean

concentrations will be distorted by the skewness and outliers present in most of the treatment

groups.

Analysis of variance on data ranks is an "asymptotically distribution-free" technique. That is, for
sufficiently large sample sizes it tests hypotheses which do not require the assumption of data
normality. For the cases where equivalent, truly nonparametric techniques exist such as the
Kruskal-Wallis and Friedman tests, the rank transformation procedures have been shown to be
large-sample approximations to the test statistics for those techniques. Where no equivalent
nonparametric methods have yet been developed such as for the two-way design, rank
transformation results in tests which are more robust to non-normality, and resistant to outliers

and non-constant variance, than is ANOVA without the transformation.

80
1
% 70_||||||||uuu-uu|.||||||||||||u||||||||||| INERLLLLELEY I uu||||||||||||||||.||||l|uu|uuuu|
—
é 60—.............................. [ e
-
=
8 BO = e dn g
= " -
< TP I s N N i B 0 N O
Z T
8 30—........................... ........... e o
L
g 20 = R _—
= "
<L
D
oS ’\. é A \.0 é 5’\.0(\é dg\ooé \Oﬂé dg\ooé
\\“\ 5@(\ A \\6\ g,a(\ A \\'G\ N &
€0 30t 4@ (0 e
W 0T e e (@O oo

Figure 7.7 Boxplots of the ranks of the iron data shown in Figure 7.6

A third option for analysis of the two-way design is ANOVA on data transformed by a power

transformation. The purpose of the power transformation is to produce a more nearly-normal
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and constant variance data set. As water resources data are usually positively skewed, the log
transformation is often employed. Using logarithms for ANOVA implies that the influences of
each factor are multiplicative in the original units, as the influences of the logarithms are
additive. The primary difficulty in using a power transformation is in producing a normally
distributed error structure for every treatment group. Groups which are skewed may be greatly
aided by a transformation, but be side-by-side with a group which was symmetric in the original
units, and is now asymmetric after transformation! Boxplots for each treatment group should be
inspected prior to performing the ANOVA to determine if each group is at least symmetric.
When only some of the treatment groups exhibit symmetry, much less normality, concerns over
the power of the procedure remain. F tests which appear to be not significant are always

suspect.

In figure 7.8, boxplots of the base 10 logarithms of the low-flow iron concentrations are
presented. Most of the treatment groups still remain distinctly right-skewed even after the
transformation, while the unmined limestone group appears less symmetric following
transformation! There is nothing magic in the log transformation -- any other transformation
going down the ladder of powers might also remedy positive skewness. It may also alter a
symmetric group into one that is left-skewed. The search for a transformation which results in

all groups being symmetric is often fruitless. In

3

BASE 10 LOGS OF IRON CONCENTRATION

&
6055‘0(\
&

o“é

-2
& e e )
0° ot 0‘50@‘5‘

Figure 7.8 Boxplots of the base 10 logarithms of the iron data shown in Figure 7.6
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addition, the "best" power transformation will likely change going from one data set to another,
one location to another, and one time period to another. In comparison, the rank
transformation has simplicity, comparability among locations and time periods, and general
validity as being asymptotically distribution-free. When the assumptions of normality and
constant variance are questionable, the rank transformation is the most generally appropriate

alternative.

7.2.2.5 Unequal sample sizes
Equations presented in the previous section are appropriate only when the number of data per
treatment group is identical for each group. This is also called a "balanced" design.
Computations for unequal sample sizes ("unbalanced" designs) are more complex. Smaller
statistics software packages often encode tests valid only for balanced designs, though that is not
always obvious from their output. Yet water resources data rarely involve situations when all
sample sizes are equal. Sample bottles are broken, floods disrupt the schedule, etc. When data
are unbalanced, the sums of squares for the above equations no longer test

HO: g = M = . = Mk
but test instead an hypothesis involving weighted group means, where the weights are a function
of treatment group sample sizes. This is of little use to the practitioner. Some software will
output the (useless and incorrect) results valid only for equal sample sizes even when unbalanced
data are provided as input, with no warnings of their invalidity. Be sure that when unequal

sample sizes occur, tests which can incorporate them are performed.

To perform ANOVA on unbalanced data, a regression approach is necessary. This is done on
larger statistical packages such as Minitab or SAS. SAS's "type I" sums of squares (called
"sequential sums of squares" by Minitab) are valid only for balanced cases, but SAS's "type 111"
sums of squares (Minitab's "adjusted sums of squares") are valid for unbalanced cases as well.
Unbalanced ANOVAs are computed in the same fashion as nested F-tests for comparing
regression models in analysis of covariance, discussed in Chapter 11. Because the equations for
the sums of squares are "adjusted" for unequal sample sizes, they do not sum to the total sum of
squares as for balanced ANOVA. See Neter, Wasserman and Kutner (1985) for more detail on
the use of regression models for performing unbalanced ANOVA.

Example 2, continued
The complete 241 observations (Appendix C6) from Helsel (1983) are analyzed with an

unbalanced ANOVA. Boxplots for the six treatment groups are shown in figure 7.9. They are
quite similar to those in figure 7.6, showing that the subsets adequately represented all the data.
An ANOVA table for the complete iron data set is as follows. Note that the sums of squares do
not add together to equal the total sum of squares for this unbalanced ANOVA. Results for
these data would be incorrect if performed by software capable only of balanced ANOVA.
Conclusions reached (do not reject for all tests) agree with those previously given for ANOVA

on the data subset.
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ANOVA table for the complete (unbalanced) iron data

Soutrce df SS MS F p-value
Rock 1 71409 71409 0.51 0.476
Mine 2 262321 131160 0.93 0.394
Rock*Mine 2 178520 89260 0.64 0.530
Error 235 32978056 140332
Total 240 34062640
50
45
T

fo)] 40-

E

Z a5

9 35 :

'_

é 30_ .....

— ©

z

6 . P F

Z Q

8 20_..... ..... e et e ne e

z

g D= FOUTOOIIRSTURRRORRIUIH AU RSTOTRPRRTRIONN NSRS

Z

O

'_

Figure 7.9 Iron concentrations at low flow from Helsel (1983)

7.2.2.6 Fixed and random factors

An additional requirement for the F tests previously given is that both factors are fixed. With a
tixed factor, the inferences to be made from the results extend only to the treatment groups
under study. For example, the influences of unmined, abandoned, and reclaimed mining
histories were previously compared. Differences in resulting chemical concentrations between
these three specific mining histories are of interest, and hence this is a fixed factor. A random
factor would result from a random selection of several groups out of a larger possible set to
represent the overall factor. Inferences from the test results would be extended beyond the
specific groups being tested to the generic factor itself. Thus there is little or no interest in
attributing test results to a specific individual group, but only in ascertaining a generic effect due
to that factor.
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As an example, suppose soil concentrations of a trace metal are to be compared between three
particle size fractions all across the state, to determine which of the three fractions is most
appropriate as a reconnaissance medium. Particle size is a fixed effect -- there is interest in those
specific sizes. However, there is only enough funding to sample sparsely if done all across the
state, so instead a random factor is incorporated to determine whether spatial differences occur.
Several counties are selected at random, and intensive sampling occurs within those counties.
No sampling is done outside of those counties. The investigator will determine not only which
size fraction is best, but whether this is consistent among the counties (the random effect),
which by inference is extended to the entire state. There is no specific interest in the counties

selected, but only as they represent spatial variability.

If every factor were random, F tests would use the mean squares for interaction as denominators
rather than the mean square for error. If a mix of random and fixed factors occurs (called a
"mixed effects" design) as in the example above, there would be a mixture of mean squares used
as denominators. In general the fixed factors in the design use the interaction mean squares as
denominators, and the random factors the error mean square, the reverse of what one might
intuitively expect! However, the structure of mixed effects F tests can get much more
complicated, especially for more than two factors, and texts such as Neter, Wasserman and
Kutner (1985) or Sokal and Rohlf (1981) should be consulted for the correct setup of F tests
when random factors are present. Note that computer software uses the MSE in the
denominator unless otherwise specified, and thus assumes that all factors are fixed. Therefore I
tests automatically produced will not be correct when random factors are present, and the

correct F ratio must be specifically requested and computed.

7.3 Blocking -- The Extension of Matched-Pair Tests

In Chapter 0, tests for differences between matched-pairs of observations were discussed. Each
pair of observations had one value in each of two groups, such as "before" versus "after". The
advantage of this type of design is that it "blocks out" the differences from one matched-pair to
another that is contributing unwanted noise. Such noise may mask the differences between the

two groups (the treatment effect being tested) unless matched-pairs are used.

Similar matching schemes can be extended to test more than two treatment groups. Background
noise is eliminated by applying the treatment to blocks (rather than pairs) of similar or identical
individuals. Only one observation is usually available for each combination of treatment and
block. This is called a "randomized complete block design", and is a common design in the

statistical literature.

The third example at the beginning of this chapter, detecting differences between three

extraction methods used at numerous wells, is an example of this design. The treatment effect is
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the extraction method, of which there are three types (three groups). The blocking effect is the
well location; the well-to-well differences are to be "blocked out". One sample is analyzed for

each extraction method at each well.

Four methods for analysis of a randomized complete block design will be presented. Each of
them attempts to measute the same influences. To do this, each observation yjj is broken down
into the effects of four influences:
vij =Wt og+ By + &,

where vij is the individual observation in block i and group j;

U is the overall mean or median (over all groups),

0 s the "jth group effect”, j=1,k

Bi is the "ith block effect", i=1,n

gj s the residual or "errot" between the individual observation and the

combined group and block effects.

Median polish provides resistant estimates of the overall median, of group effects and block
effects. Itis an exploratory technique, not an hypothesis test procedure. Related graphical tools
determine whether the two effects are additive or not, and whether the €jj are normal, as
assumed by an ANOVA. If not, a transformation should be employed to achieve additivity and
normality before an ANOVA is performed. The Friedman and median aligned ranks tests are
nonparametric alternatives for testing whether the treatment effect is significant in the presence
of blocking.

7.3.1 Median Polish

Median polish (Hoaglin et al., 1983) is an iterative process which provides a resistant estimate m
of the overall median W, as well as estimates aj of the group effects 0 and bj of the block effects
Bi. Its usefulness lies in its resistance to effects of outliers. The polishing is begun by
subtracting the medians of each row from the data table, leaving the residuals. The median of
these row medians is then computed as the first estimate of the overall median, and subtracted
from the row medians. The row medians are now the first estimates of the row effects. Then
the median of each column is subtracted from the residual data table and set aside. The median
of the column medians is subtracted from the column medians, and added to the overall median.
The column medians now become the first estimates of the column effects. The entire process
is repeated a second time, producing an estimated overall median m, row and column departures

from the overall median (estimates aj and bj), and a data table of residuals eij estimating the Ejj.

Example 3

Mercury concentrations were measured in periphyton at six stations along the South River,
Virginia, above and below a large mercury contamination site (Walpole and Myers, 1985).
Measurements were made on six different dates. Of interest is whether the six stations differ in

mercury concentration. Is this a one-way ANOVA setup? No, because there may be
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differences among the six dates -- the periphyton may not take up mercury as quickly during
some seasons as others, etc. Differences caused by sampling on six different dates are unwanted
noise which should be blocked out, hence date is a blocking effect. The data are presented in
table 7.3, and boxplots by station in figure 7.10. There appears to be a strong increase in
mercury concentration going downstream from station 1 to station 6, reflecting an input of

mercury along the way.

Table 7.3 Mercury Concentrations in Periphyton (Walpole and Myers, 1985)

Station: 1 2 3 4 5 6
Date
1 0.45 3.24 1.33 2.04 3.93 5.93
2 0.10 0.10 0.99 4.31 9.92 6.49
3 0.25 0.25 1.65 3.13 7.39 4.43
4 0.09 0.06 0.92 3.66 7.88 6.24
5 0.15 0.16 2.17 3.50 8.82 5.39
6 0.17 0.39 4.30 291 5.50 4.29
10
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Figure 7.10 Periphyton Mercury Upstream (1) to Downstream (6) of Input to River

The first step in median polish is to compute the median of each row (date), and subtract it from

that row's data. The residuals remain in the table.
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Table 7.4 Table 7.3 data aligned by subtraction of row medians

Station:

-,
[ao}
=
¢}

(S NN ) B I \ SR

1

-2.190
-2.550
-2.140
-2.200
-2.685
-3.430

2

0.600
-2.550
-2.140
-2.230
-2.675
-3.210

3

-1.310
-1.660
-0.740
-1.370
-0.665
0.700

4

-0.600
1.660
0.740
1.370
0.665

-0.690

5

1.290
7.270
5.000
5.590
5.985
1.900

6

3.290
3.840
2.040
3.950
2.555
0.690

row med
(bi)
2.64
2.65
2.39
2.29
2.84
3.60

Next the median of the row medians (2.64) is computed as the first estimate of the overall

median m. This is subtracted from each of the row medians:

Station: 1 2 3 4 5 6 row med

Date (bi)
1 -2.19 0.60 -1.31 -0.60 1.29 3.29 0.00

2 -2.55 -2.55 -1.66 1.66 7.27 3.84 0.01
3 -2.14 -2.14 -0.74 0.74 5.00 2.04 -0.25
4 -2.20 -2.23 -1.37 1.37 5.59 3.95 -0.35
5 -2.69 -2.68 -0.67 0.67 5.99 2.56 0.20
6 -3.43 -3.21 0.70 -0.69 1.90 0.69 0.96
m=2.64

The median of each column (station) is then computed and subtracted from that column's data.

The residuals from the subtractions remain in the table.

Station: 1 2 3 4 5 6 row med

Date (bi)
1 0.19 2.99 -0.29 -1.31 -4.01 0.37 0.00

2 -0.17 -0.16 -0.64 0.95 1.97 0.92 0.01

3 0.24 0.25 0.28 0.03 -0.30 -0.88 -0.25

4 0.18 0.16 -0.35 0.66 0.29 1.03 -0.35

5 -0.31 -0.29 0.35 -0.04 0.69 -0.36 0.20

6 -1.05 -0.82 1.72 -1.40 -3.40 -2.23 0.96
aj colmed:| -2.38 -2.39 -1.02 0.71 5.30 2.92 m=2.64

Then the median of the column medians (-0.106) is subtracted from each of the column medians,

and added to the overall median:
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Station: 1 2 3 4 5 6 row med

Date (bi)
1 0.19 2.99 -0.29 -1.31 -4.01 0.37 0.00

2 -0.17 -0.16 -0.64 0.95 1.97 0.92 0.01

3 0.24 0.25 0.28 0.03 -0.30 -0.88 -0.25

4 0.18 0.16 -0.35 0.66 0.29 1.03 -0.35

5 -0.31 -0.29 0.35 -0.04 0.69 -0.36 0.20

6 -1.05 -0.82 1.72 -1.40 -3.40 -2.23 0.96

aj colmed:| -2.22 -2.23 -0.86 0.87 5.46 3.08 |m=2.48

This table now exhibits the first "polish" of the data. Usually two complete polishes are

performed in order to produce more stable estimates of the overall median and row and column

effects. For the second polish, the above process is repeated on the table of residuals from the

first polish. After a second complete polish, little change in the estimates is expected from
turther polishing. The table then looks like:

Station: 1 2 3 4 5 6 row med

Date (bi)
1 0.22 3.02 -0.19 -1.26 -3.77 0.31 0.03
2 -0.57 -0.56 -0.97 0.57 1.78 0.43 0.47
3 0.08 0.09 0.19 -0.11 -0.24 -1.12 -0.03
4 -0.08 -0.09 -0.54 0.42 0.24 0.69 -0.03
5 -0.17 -0.14 0.56 0.11 1.04 -0.31 0.12
6 0.15 0.38 2.99 -0.18 -1.98 -1.11 -0.18
aj colmed:| -2.18 -2.19 -0.89 0.89 5.29 320 |m=2.38

The above table shows that

1) The station effects are large in comparison to the date effects (the aj are much larger in

absolute magnitude than the b ).

2) There is a clear progression from smaller to larger values going downstream (aj generally

increases from stations 1 to 0), with the maximum at station 5.

3) A large residual occurs for station 5 at date 1 (smaller concentration than expected).

7.3.1.1 Plots related to median polish for checking assumptions

Median polish can be used to check the assumptions behind an analysis of variance. The first

assumption is that the residuals €jj are normally distributed. Boxplots of the residuals ¢jj in the

table provide a look at the distribution of errors after the treatment and block effects have been
removed. Figure 7.11 shows that for the periphyton mercury data the residuals are probably not

normal due to the large proportion of outliers, but at least are relatively symmetric:
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Figure 7.11 Residuals from the median smooth of periphyton mercury data

In addition, the additivity of the table can be checked. An ANOVA assumes that the treatment
and block effects are additive. In other words, if being in group 1 adds -2.18 units of
concentration to the overall mean or median, and if being at time 1 adds 0.03 units, these add
together for treatment group 1 at time 1. If this is not the case, a transformation of the data
prior to ANOVA must be performed to produce additivity. To check additivity, the
"comparison value" cjj (Hoaglin et al., 1983) is computed for each combination ij of block and
treatment group, where

cij = aj° bj / m.
A residuals plot of the tabled residuals ¢jj versus cjj will appear to have a random scatter around
0 if the data are additive. If not, the pattern of residuals will lead to an appropriate
transformation to additivity -- for a nonzero slope s, the data should be raised to the (1-s)
power in the ladder of powers. In figure 7.12, a residuals plot for the mercury median polish
indicate no clear nonzero slope (most of the data are clustered in a central cloud), and therefore

no transformation is necessary.
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Figure 7.12 Median polish residuals plot showing random scatter around eij:()
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7.3.2 The Friedman Test

The Friedman test is the most common nonparametric test used for the randomized complete
block design. It computes the ranks of the data only within each block, not making cross!
comparisons between blocks. Treatment effects are determined from the within-block ranks
each treatment has received. The Friedman test is an extension of the sign test, and reduces to
the sign test when comparing only two treatment groups. Its advantages and disadvantages in
comparison to the analysis of variance are the same as that of the sign test to the t-test. When
the errors €jj can be considered normal, the ANOVA should be preferred. For the many
situations where the errors are not normal, the Friedman test will generally have equal or greater
power to detect differences between treatment groups, and should be performed. The
Friedman test is especially useful when the data can be ranked but differences between

observations cannot be computed, such as when comparing a <1 to a 5.

7.3.2.1 Null and alternate hypotheses
The Friedman test is used to determine whether
H(: the median values for k groups of data are identical, or
H1: atleast one median is significantly different.
As with the Kruskal-Wallis test, the test does not provide information on which medians are
significantly different from others. That information must come from a multiple comparison

test.

7.3.2.2 Computation of the exact test

Rank the data within each block from 1 to k, from smallest to largest. If the null hypothesis is
true, the ranks within each block will vary randomly with no consistent pattern. Summing across
blocks, the average rank for each treatment group will be similar for all groups, and also be close
to the overall average rank. When the alternative hypothesis is true, the ranks in most of the
blocks for one or more of the groups will be consistently higher or lower than others. The
average group rank for those groups will then differ from the overall average rank. A test
statistic Xf is constructed which uses the square of the differences between the average group

ranks and the overall rank, to determine if groups differ in magnitude.

The exact test statistic for the Friedman test is a function of both the number of blocks and
treatments. Iman and Davenport (1980) state that the exact test should be used for all cases
where the number of treatment groups plus the number of blocks (k + n) is

< 9. For larger sample sizes a large sample approximation is sufficiently accurate for use. When
the number of blocks n is small, the F approximation should be preferred over the chi-square

approximation (see the next section).

Should the exact test be required, compute the exact test statistic Xf as shown for the large
sample approximation of the following section. Xf is computed identically for both the exact

form and large sample approximation. When ties occur, either a corrected large sample
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approximation must be used, or the rank transform (I approximation) calculated. The rank

transform may be easier to compute.

7.3.2.3 Large sample approximation

For years the Friedman test statistic was approximated using a chi-square distribution with k—1
degrees of freedom. This is the approximation used by statistics packages, and is presented here
because of its common use. However, it does not take into account the number of blocks in the
data set, and can be in serious error for small n and small o (o0 < 0.1) (Iman and Davenport,
1980). An F approximation which is more accurate for small n is also available. It can be
computed from the chi-square approximation, or directly from the data as a rank transform

method (an analysis of variance on the within-block ranks Rjj).

The box on the next page outlines the computation process for the large sample approximation

to the Friedman test statistic.

Example 3, continued.

The Friedman test is used to determine if the median concentration of periphyton mercury
differs for the 6 stations along the South River of Virginia. The boxplots of this data were
shown in figure 7.10, and the data given in table 7.3. The within-block ranks are given below.
For 6 blocks (date) and 6 stations, sample sizes are large enough to employ an approximation,

so the preferred I approximation is computed.

Table 7.5 Within-Block Ranks of the Table 7.3 data

Station: 1 2 3 4 5 6
Date

1 1 4 2 3 5 6
2 1.5 1.5 3 4 6 5
3 1.5 1.5 3 4 6 5
4 2 1 3 4 6 5
5 1 2 3 4 6 5
6 1 2 5 3 6 4
Izi 1.33 2.0 3.17 3.67 .8 5.0

overall median = (k+1)/2 = 3.5
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Situation

Computation

Test Statistic

Tied data

The Friedman test
Measurements of k treatment groups are performed on the same or related sets
of subjects, called blocks. There are n blocks. One observation is made on

each group-block combination (N = ken).

Within each block, observations are ranked from 1 to k, smallest to largest.
These within-block ranks Rjj are then used to compute the average group rank

ﬁj for each of the j=1,k treatment groups:

n
2. Rij
= =1

]~ n
The average group rank ﬁ] is compared to the overall average rank
R = (k+1)/2 in the test statistic Xf:

o _l2n k [_. k+1} 2

XM=10rn 21827 -

=1

Xf is compared either to an exact table or approximated by a chi-square

distribution with (k—1) degrees of freedom. However, a better approximation
is available which is compared to an F distribution (Iman and Davenport,

1980). This form is more accurate for small n.

. (n-1) Xf
F= D) - XF

When observations are tied within a block, assign the average of their ranks to

each. Xf must be corrected when more than a few ties occur.
121 k [_ k+1} 2

Kt -y X 262y 7
i=1 j=1
where tj equals the number of ties of extent j in row i. The test statistic f is
then computed from this corrected Xf as above. An alternative to computing

Xfand then f is the rank transform ANOVA (next section).

Decision Rule To reject Hq: the median of every group is identical, versus

H1: atleast one median differs
Exact test: Reject H( if Xf > x¢y, the (1-0()th quantile of the Friedman test
statistic distribution from table B7 of the Appendix; otherwise do not reject
Hpo.
F-approximation: Reject Hpif f = Fl_o, k-1, (n—1)(k—=1) the 1—-0t quantile
of an F distribution with k—1 and (n—1)(k—1) degrees of freedom; otherwise
do not reject H.
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There are only two ties, so ignoring the formula for the tie correction to the variance,

162((76))2 { = 2Y 2192+ (152 + (0337 + 0172 + 2337 + (157

_12
=+ 1478

= 25.33 . This can be compared to a chi-square distribution having k—1 = 5 df.

To be more exact, the tie correction will be computed. For rows i=1,4,5,6 there are no ties. So
for j=1, tj =0 (there are 6 "ties" of extent 1), and for j=2 to 6, tjj = 0 (no true ties). For these

four rows

k
2 (tij (]3—])) = 6(1-1)+0(8-2)+0(27-3)+0(64—4)+0(125-5)+0(216—6) = 0.
=1

Rows without ties will always add to zero. Also note that "ties" of extent 1 will always
contribute 0 to the sum, as 131 = 0. For rows i=2 and 3 there is one pair of tied values per
row. Thus for j=1, tij = 4 (4 single values); for j=2, tj =1 (1 tie of extent 2), and for j=3 to 0,
tij = 0 (no triplicates, etc.). For each of these two rows

k

D (tij (j3—j)) = 4(1-1)+1(8-2)+0(27-3)+0(64—4)+0(125-5)+0(216—6) = ©.
=1

n k

Therefore », (tij (j3—j)) = 0+6+6+0+0+0 =12, and
i=1j=1
1296

Xf = - 1 14.78 = 25.58

JORTERE:

which can be compared to a chi-square distribution with 5 degrees of freedom.

The better approximation is the F approximation, or

5) 25.58
= %(Bm = 28.94 , which is compared to Fj 95 5 5 = 4.5

Therefore reject Hy that the medians are the same with a p-value of <0.0001.

7.3.2.4 Rank transform approximation: analysis of variance: on within-block ranks

Again an approximation to the exact test statistic may be computed by performing the
parametric two-factor ANOVA on the ranks. For the Friedman test, the appropriate ranks are
the within-block ranks of table 7.5. Ties are automatically corrected for by assigning the average
rank to all ties within a block. A two-factor ANOVA on the within-block ranks has an
ANOVA table as in section 7.3.4. The resulting F statistic, the ratio of the MST for the
treatment group over the MSE, is the same as the statistic f derived from the chi-square
approximation above. Thus the ANOVA on within-block ranks gives a better approximation
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than does Xf for the cases (00 < 0.1 and small n) where the chi-square approximation is
inaccurate (Groggel, 1987).

Example 3, continued.
The ANOVA table for the within-block ranks of table 7.5 is:

Source df SS MS P p-value
Date (block) 5 0.000 0.000

Station 5 88.667 17.733 28.93 <0.0001
Error 25 15.333 0.613

Total 35 104.000

Note that all differences between blocks have been nullified by transforming the data to the
identical within-block ranks, 1 to k. As the blocks all have the same values within them, the
block sum of squares equals 0. Also note that the I statistic is identical to that previously
calculated from the large-sample approximation after tie correction. Therefore the ANOVA on
within-block ranks provides a convenient way to avoid the complicated tie correction to the

Friedman statistic.

7.3.3 Median Aligned-Ranks ANOVA

The Friedman test is the multi-treatment equivalent of the sign test. In Chapter 6 the signed’]
rank test was presented in addition to the sign test, and was favored over the sign test when the
differences between the two treatments were symmetric. In this section a multi-treatment
equivalent to the signed-rank test is presented, called the Median Aligned-Ranks ANOVA
(MARA). MARA is one of several possible extensions of the signed-rank test; others include
Quade's test (Conover, 1980). Groggel (1987) and Fawcett and Salter (1984) have shown that an
aligned-rank method has substantial advantages in power over other possible signed-rank

extensions.

Friedman's test avoids any comparisons across blocks, just as the sign test avoids comparisons of
the magnitudes of paired differences across blocks. This avoids the confusion produced by
block-to-block differences, but does not take advantage of the information contained in such
comparisons. MARA allows comparisons between blocks by first subtracting the within-block
median from all of the data within that block. This "aligns" the data across blocks to a common
center. Itis equivalent to the ranking of block-to-block differences done in the signed-ranks
test. To derive the benefits of cross-block comparisons, a cost is incurred. This is an
assumption that the residuals €jj are symmetric. Symmetry can be evaluated by estimating the

residuals using median polish, and producing a boxplot as in figure 7.11.

Note that just as for the Friedman's test and two-way ANOVA without replication there are
(k—=1)(n—1) error degrees of freedom, (n—1) less than a one-way ANOVA. MARA is a twol|
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factor analysis, with alignment contributing the block effect. However, MARA is computed
using a one-way ANOVA on the aligned ranks, so the correct F-test will differ from that
performed automatically by a computerized analysis. The error degrees of freedom must be
(k—=1)(n—1), not k(n—1) as for a one-way ANOVA. MARA is identical to the aligned ranks
procedure of Fawcett and Salter (1984), except that the block median is used for alignment

rather than the block mean.

The Median Aligned-Ranks ANOVA test
Situation Measurements of k treatment groups are performed on the same or related sets
of subjects, called blocks. There are n blocks. One observation is made on

each group-block combination (N = ken).

Computation Within each of the n blocks, the observations are aligned by subtracting the
block median, forming the aligned Ofj.
ojj = (yij - bj), where block median bj = [median(yij), i=1,..K]
The ojj are then ranked from 1 to N, forming aligned ranks ARjj:
ARij = rank (Oij) .

Test Statistic ~ One-way analysis of variance is computed on the ARjj However, the F statistic
is F = MST/MSE, where the etror degtees of freedom are (n—1) less than in a
one-way ANOVA because of the alignment procedure. The ANOVA table is:

Source df SS MS F
Treatment k=1) SST SST/(k-1) MST/MSE
Error (k=1)(n—1) SSE SSE/[(k=1)(n—1)]
Total n(k—1) Total SS

Tied data Average ranks are assigned to all tied ojj.

Decision Rule To reject H(: the median of every group is identical, versus

H1: at least one median differs
Reject Hoif F =2 F1_g -1 (n—1)(k—1) the 1—-ot quantile of an F distribution
with k=1 and (n—1)(k—1) degrees of freedom; otherwise do not reject H.

7.3.3.1 Null and alternate hypotheses
The null and alternate hypotheses are identical to those of the Friedman test
H(: the median values for k groups of data are identical, or
Hj1: atleast one median is significantly different.
Herte, however, it is assumed that the residuals €jj are symmetric. MARA does not provide
information on which medians are significantly different from others. That must come from a

multiple comparison test.
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7.3.3.2 Computation
MARA is a rank transform approximation test; p-values for an exact test have not been

computed.

Example 3, continued
The aligned ojj for the petiphyton mercury data were computed during the first step of the

median polish, and listed in table 7.4. These ojj are then ranked from 1 to N=36 to form aligned
ranks, which are presented in table 7.6:

Table 7.6 Aligned Ranks of the Table 7.4 data

Station: 1 2 3 4 5 6
Date

1 9 19 14 18 24 30
2 5.5 5.5 12 26 36 31
3 10.5 10.5 15 23 33 28
4 8 7 13 25 34 32
5 3 4 17 20 35 29
6 1 2 22 16 27 21

A one-way analysis of variance is conducted on these aligned ranks. However, the computerized
F-test is ignored, as the error degrees of freedom used were n(k—1)=30, and do not reflect the
alignment process. The appropriate ANOVA table and F-test are below, and the p-value shows
that Hy is to be rejected. Significant differences are found between treatment group medians:

Source df SS MS P p-value
Station 5 3290.3 658.1 27.71 <0.0001
Error 25 593.7 23.8

Total 30 3884.0

7.3.4 Parametric Two-Factor ANOVA Without Replication

The traditional parametric test for the randomized complete block design is again an analysis of
variance -- a two-factor ANOVA without replication. One factor is the contrast between
treatment groups while the second is the block effect. There is one observation (no replicates)
per treatment-block combination. The block effect is of no interest except to remove its

masking of the treatment effect, so no test for its presence is required.
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7.3.4.1 Null and alternate hypotheses
The hypotheses are similar to those of the Friedman and MARA tests, except that treatment
group means, rather than medians, are being tested.

Ho: the k treatment group means are identical, | = [lp = ... = U, versus

Hj1: atleast one mean is significantly different.

The ANOVA model is identical to that for all of the tests of this section:

vij = R0+ Bi+ e,
where vij is the individual observation in block i and group j;

W is the overall mean,

0 is the "jth group effect”, j=1,k

Bi is the "ith block effect", i=1,n

gj is the residual or "errotr" between the individual observation and the

combined group and block effects.

Herte, however, it is assumed that the residuals €ij follow a normal distribution. ANOVA does
not provide information on which means differ from others. That must come from a multiple

comparison test.

7.3.4.2 Computation
As with other analysis of variance procedures, the treatment and error mean squares are
computed, and their ratio forms the F statistic to be compared to a table of the F distribution for

evaluation of its significance. Again there are k treatment groups and n blocks.

In comparison to a one-way ANOVA without blocking, the error sum of squares SSE is split
into two parts, the SSE and the sum of squares for the block effect SSB. The variation due to
differences between blocks is thereby removed from the background noise (MSE). If there is an
appreciable block effect, removal of the SSB lowers the SSE and MSE in comparison to their
values for a one-way ANOVA. This produces a higher I statistic, allowing the treatment effect

to be more easily discerned.

Example 3, continued
An analysis of variance is calculated directly on the periphyton mercury data. The ANOVA

table is:

Source df SS MS P p-value
Date 5 3.26 0.65

Station 5 230.13 46.03 26.15 <0.0001
Error 25 44.02 1.76

Total 35 277.40
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The null hypothesis is again soundly rejected. The treatment group means are declared different
at any reasonable alpha level. As in all of the tests applied to this data set, the block effect

(Date) is minimal.

Two-factor ANOVA without replication
Situation Measurements of k treatment groups are performed on the same or related sets
of subjects, called blocks. There are n blocks. One observation is made on

each group-block combination (N = ken).

Computation Sums of squares for treatment, block and error are computed using the
following formula. These are divided by their appropriate degrees of freedom

to form mean squares.

S5 23 s3] 25

SST = - SSB = -
n kn k kn
k n 2
DY
SSE = Total SS — SST — SSB Total SS = >, Dy — p
n

Test Statistic  The F statistic is computed as F = MST/MSE,. The ANOVA table is:

Source df SS MS F p-value
Treatment k-1 SST SST/(k-1) MST/MSE
Block n—1 SSB SSB/(n—1)
Error (k=1)(n—1) SSE SSE/[(k=1)(n—1)]
Total N-1 Total SS
Tied data No corrections necessary.
Decision Rule To reject H(: the mean of every group is identical, versus

H1: atleast one mean differs
Reject Hoif F =2 F1_g -1 (n—1)(k—1) the 1-ot quantile of an F distribution
with k=1 and (n—1)(k—1) degrees of freedom; otherwise do not reject Hy.

7.4 Multiple Comparison Tests

In most cases the analyst is interested not only in whether group medians or means differ, but
which differ from others. This is information not supplied by the tests presented in the previous
sections, but by methods called multiple comparison tests (MCTs). MCTs compare all possible

pairs of treatment group medians or means, and are performed only after the null hypothesis of
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"all medians or means identical" has been rejected. Of interest is the "pattern" of group medians
ofr means:

group A = group B < < group C,
etc. MCT's are not efficient methods for contrasting specific sets of groups known to be of
interest before an ANOVA or Kruskal-Wallis test is done, such as a treatment versus a control.
Other tests are available for making specific contrasts. Instead, MCTs compare all possible
combinations of treatment group centers, ranking the centers in order and indicating which are

similar or different from others.

Stoline (1981) reviews the many types of parametric multiple comparison tests. Campbell and

Skillings (1985) discuss nonparametric multiple comparisons.

7.4.1 Parametric Multiple Comparisons
Parametric MCT's compare treatment group means. They often calculate a "least significant
range" or LSR, the distance between any two means which must be exceeded in order for the

two groups to be considered significantly different at a significance level .

1f Iil —§2|> LSR =R s2/ n, ¥, and ¥, are significantly different.

The statistic R is analogous to the t-statistic in a t-test. R depends on the test used (is some
function of either a t- or studentized range statistic q), the error degrees of freedom from the
ANOVA, and on o The variance s is just the MSE from the ANOVA. Parametric MCTSs can
be classified into four types, based on their method of computation and on whether a pairwise

or overall o level is used (figure 7.13).

o, pairwise o overall
MST Duncans Multiple Range test REGWQ *
(equal n only) SNK REGWF *
SIM *
Fisher's t-tests (LSD) Tukey
(equal or Scheffe
unequal n) Bonferroni

Figure 7.13 Types of Parametric Multiple Comparison Tests

Methods with an asterisk * in figure 7.13 have the most power to detect differences between
group means of those methods using the overall error rate. The REGW methods are the most
powerful (have the smallest LSR) for equal sample sizes, though Tukey's test is close in power.

For unequal sample sizes, Tukey's method is the most powerful of those listed. Therefore
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Tukey's method is a generally applicable and powerful multiple comparison test for a variety of

situations.

Multiple-stage tests, MST, are valid only when group sample sizes are equal. Examples are the
Duncan's, Student-Newman-Keuls (SNK), and REGW tests. Their R statistic varies for each
pairwise comparison as a function of the number of group means in between the two being
compared. A new least significant range (y| — yp) must then be computed for each pairwise
comparison of means. If sample sizes were unequal, test results could be non-intuitive, as in:
A>B, B> C, but A =C where "A > B" means that A is larger and significantly different from
B, and "A = C" means A is not significantly different from C. This could arise if B had a large
sample size so that comparisons involving it had a lower LSR than those not involving B. Thus

MSTs are valid only for equal sample sizes within all groups.

Simultaneous inference methods, SIM, are valid for both equal and unequal group sample sizes.
Examples are Tukey's, Sheffe's, and Fisher's t-tests. These tests use one R value to calculate a

single least significant range for all pairwise comparisons. The harmonic mean
2n1 np
harmonic mean of nq and ny = np +

is substituted for n in the case of unequal group sample sizes. So for unequal sample sizes a SIM
should be used.

The second classification criteria for MCTSs is based on the type of error rate o used for
comparisons (figure 7.13). One class of tests uses the stated ol level for each pairwise
comparison (Ocp: pairwise error rate). When there are multiple comparisons each having a
pairwise error rate of 0, the overall probability of declaring at least one false difference (the
overall error rate O;) is much greater than 0. This overall error rate is the error rate for the
"pattern" of group means, and is more often of interest than a pairwise error rate in water
resources applications. For example, when comparing six group means, there are (6°5)/2 = 15
pairwise comparisons. If Oy = 0.05 is used for each test, then there will be an overall error rate
Oy = 1-(1- Ocp)15 = 0.54 of making at least one error in the overall comparisons of the six

group means.

Unfortunately, the distinction between the overall and pairwise error rates is often not
understood, and pairwise rates are presented as if they were overall rates. The pairwise rate is
much like the probability of being robbed today, while the overall rate is like the probability of
ever being robbed in your lifetime. To claim that the (very small) probability of being robbed
today is actually the probability of ever being robbed leads to a false sense of security. Similarly,
citing that according to a Duncan's multiple range test, A > B = C = D > E = F with an error
rate of o = 0.05 when in fact 0.05 was used for each test, also presents a false sense of security
in the results.
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Duncan's test is often used in this incorrect fashion. Individual paired differences found at the
o, = 0.05 level results in the overall rate of at least one error in the pattern of group means at
something higher, such as the 0.54 chance for the 6 groups above. When the primary interest is
in the overall pattern and its accuracy, methods which set the error rate equal to the overall @,

such as Tukey's test, should be performed.

Some authors report only results of a MCT, usually Duncan's multiple range test, skipping the
required priort ANOVA F-tests. NEVER DO THIS! The likely reason that this has been done
is that ANOVA did not find significant differences at a true (overall) significance level of 0.05,
but the Duncan's test did find differences. Why does this occur? Duncan's test was performed
at a pairwise significance level of 0.05, but at an overall level of something much higher (0.54 for
the six means above). An overall error level of 0.54 states there a 54 percent chance that two
means will be declared significantly different when in fact they are not. An ANOVA at o0 = 0.54
would also be "significant" (the p-value is somewhere below 0.54), but a test having this large an
error rate is essentially useless! ANOVA should always be performed first as the appropriate
test for determining whether any differences occur between group means. If they do not, stop
there. By performing only a MCT, an 00=0.54 test is conducted while declaring it to be an o =
0.05 test of whether differences occur. This is quite misleading.

7.4.1.1 Assumptions

All MCTs discussed thus far have the same assumptions as does ANOVA -- data within each
treatment group are normally distributed, and each treatment group has equal variance.
Violations of these assumptions will result in a loss of power to detect differences which are

actually present.

7.4.1.2 Computation of Tukey's test

Two group means y; and yj can be considered different if

=3 ] > 9 (1=, ko Nesc "V VSE 7

where q is the studentized range statistic from Neter, Wasserman and Kutner
(1985),
o is the overall significance level,
k is the number of treatment group means compared,
N-k are the degrees of freedom for the MSE, and
n is the sample size per group.

For unequal sample sizes

|§i—§j

where n has been replaced with the harmonic mean of the unequal sample sizes for the two

4]_
7 9 (1), Nk T\ | MSE Dy

roups being compared, n; and n;. For only two groups, q becomes the student's t statistic, and
group g p i j y groups, q
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Tukey's test is identical to Fishert's all-possible t-tests. Formulas for other MCT's can be found
in SAS Institute (1985).

Example 4
Knopman (1990) tested wells located in the Appalachian mountains of Pennsylvania to see if

their specific capacities differed among four rock types -- dolomites, limestones, siliciclastics
(sandstones, shales, etc.), and metamorphic plus igheous rocks. To make the data more nearly
normal, the natural log of specific capacity was used. A subset of 200 observations across the
four rock types were randomly selected from the over 4000 original observations. This subset is
presented in Appendix C7. Boxplots are shown in figure 7.14. The ANOVA table below
indicates that the log specific capacities differed significantly between the four rock types.

Source df SS MS F p-value
Rock type 3 54.03 18.010 4.19 0.007
Error 196 842.15 4.297
Total 199 896.18
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Figure 7.14 Natural logs of specific capacity of wells in four rock types, Pennsylvania

Since the null hypothesis is rejected, Tukey's test can be computed. The four group means ate :
y [dolomite] = y4q = 0.408 y [limestone] =y =-0.688
y [siliciclastic] = yg =-0.758 y [metamorphic] = ym =-0.894
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The least significant range LSR is computed as:
LSR = 90,95, 4, 196) *¥4.297/50 = 90.95,4,) ° A 4297 /50 = 3.630.293

= 1.06
Therefore, any group means of log specific capacity which differ by more than 1.06 are
significantly different by the Tukey's multiple comparison test. y{ is then seen to be
significantly different and larger than the other three groups, which are not significantly different

from each other, or:
Yd > Y1 = Ys = ¥Ym

REGWQ could also be computed because sample sizes in each subset group are equal. The
choice of REGWQ versus Tukey's would largely depend on which were available. First the k
group means are ordered by magnitude (¥ d, Y1, ¥s, ¥ m). The first comparison is made
between the extremes, y d versus y m. The studentized range is again used, accounting for the
number of means between and including the two being compared; k=4 in this first case. If this
test proves to be significant, the two possible comparisons with p =k—1 intervening group
means are made — y d versus y g and y ] versus y ;. Continue working inward until an
insignificant difference is found. No comparisons of group means contained between means

already found to be insignificant need be made.

For REGWQ, two group means differ at an overall significance level ot if :
yi—Yyj > qocp,p,N—p° MSE /'n
where 0y = 1= (10 P/K for p < (k1)
=q forp = (k-1).

Using the log specific capacity data, comparing y d versus y m using o = 0= 0.05:

the least significant range = q ) 5,4,196° \/W/SO = 1.06, identical to Tukey's LSR.
Therefore y 4 > ¥y m. Next, compare y d versus y g and y]versus ¥ m. Both of these have
p=3andan ISR of q (5, 3 197 *\[4.297 /50 =3.31+0.293 = 0.97. Therefore
¥yd>Ysand y]= Yy m. Since the limestone and metamorphic group means are not

significantly different there is no reason to test the siliciclastic versus the metamorphic group
means. For the final comparison, y d is compatred to y]. The LSR is based on p=2 and

ap = 1-(0.95)2/4=0.025. Therefore LSR = q  0p5 5 198 *\ 4297 / 50 = 3.31:0.293 =
0.97. So yd > y]and the overall pattern is again:

Yd> Y1l = Ys = ¥Ym

7.4.2 Nonparametric Multiple Comparisons
Statisticians are actively working in this area (see Campbell and Skillings, 1985). The simplest
procedures for performing nonparametric multiple comparisons are rank transformation tests.

Ranks are substituted for the original data, and a multiple comparison test such as Tukey's is
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performed on the ranks. These are logical follow-ups to the rank transform approximation

approaches to the Kruskal-Wallis, Friedman, and two-way ANOVA tests previously presented.

For the one-way situation, Campbell and Skillings (1985) recommend a multiple-stage test using
the Kruskal-Wallis (KW) statistic. The process resembles the REGWQ test above. After a
significant KW test occurs for k groups, place the groups in order of ascending average rank.
Perform new KW tests for the two possible comparisons between p = (k—1) groups, noting that
this involves re-ranking the observations each time. If significant results occur for one or both
of these tests, continue attempting to find differences in smaller subsets of p < (k—1). In order
to control the overall error rate, follow the pattern of REGWQ for the critical alpha values:

oy =1-(1-0)P/k for p < (k1)

=o for p = (k—1)

Example 4 continued

First, Tukey's test will be performed on the ranks of the Pennsylvania log specific capacity data.
Then a second nonparametric MCT, the multiple-stage Kruskal-Wallis (MSKW) test using
REGWQ alpha levels, is performed.

The ANOVA table for testing data ranks shows a strong rejection of H:

Source df SS MS F p-value
Rock type 3 38665 12888 4.02 0.008
Error 196 627851 3203

Total 199 666515

The four group mean ranks are :
R [dolomite] = R4 =124.11 R [limestone] = R = 94.67

R [siliciclastic] = Rg = 95.06 R [metamorphic] = Ry = 88.16

The least significant range LSR for a Tukey's test on data ranks is computed as:

ISR = q(O 95, 4, 196) '\/ 3203/50 = q(O o5 «\/ 3203/50 = 3.63°8.00

= 29.06
Pairs of group mean ranks which are at least 29.06 units apart are significantly different.
Therefore (within 0.01) Rg>Rs= R = Rm.

4, o)

To compute the MSKW test, the first step is merely the Kruskal-Wallis test on the four groups.
The overall mean rank R equals 100.5. Then

K=11.54 X20 =7.815 p=0.009 so, reject equality of group medians.

95,(3)
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Proceeding, new Kruskal-Wallis tests are performed between the two sets of three contiguous
treatment groups: R d vs. R 1 vs. R s and R 1 vs. R g VS. R m - This requires that the
data all be re-ranked each time. Their respective test statistics are denoted KdJs and Kjsm. The
significance level is as in REGWQ, so for (k—1) = 3 groups, oy =0 = 0.05.

Kdls = 8.95 X20 05.2) =5.99 p=0.012 so, reject equality of group medians.

Kism = 0.61 p=0.74 group medians not significantly different.

Finally, the k=2 = 2 group comparisons are performed. There is no need to do these for the
limestone versus siliciclastic and siliciclastic versus metamorphic comparisons, as the 3-group
Kruskal-Wallis test found no differences among those group medians. Therefore the only
remaining 2-group comparison is for dolomite versus limestone. The 2-group Kruskal-Wallis
test is performed at a significance level of

ap = 1-(0.95) 2/4=0.025.

Kdr =5.30 12 5.02 p=0.021 so, reject equality of group medians.

0.975,(1)
The pattern is the same as for the other MCT's,

mediang > median] = mediang = median,.

7.5 Presentation of Results

Following the execution of the tests in this chapter, results should be protrayed in an easilyt
understandable manner. This is best done with figures. A good figure provides a visual
confirmation of the outcome of the hypothesis test. Differences between groups are clearly
portrayed. A poor figure gives the impression that the analyst has something to hide, and is
hiding it effectively! The following sections provide a quick survey of good and bad figures for

illustrating differences between three or more treatment groups.

7.5.1 Graphical Comparisons of Several Independent Groups

Perhaps the most common method used to report comparisons between groups is a table, and
not a graph. Table 7.7a is the most common type of table in water resources, one which
presents only the mean and standard deviations. As has been shown several times, the mean and
standard deviation alone do not capture much of the important information necessary to
compare groups, especially when the data are skewed. Table 7.7b provides much more

information -- important percentiles such as the quartiles are listed as well.

Table 7.7a A simplistic table comparing the four groups of log specific capacity data
Mean  Std.Dev.

Dolomite 0.408 2.557

Limestone -0.688 2.360
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Siliciclastics -0.758 1.407
Metamorphic -0.894 1.761

Table 7.7b A more complete table for the log specific capacity data

N Mean Median Std.Dev. Min Max P25 P75
Dolomite 50 0.408 0.542 2.557 -4.605 5298  -1.332  2.264
Limestone 50  -0.688 -0.805 2.360 -4.605 5.649  -2.231  0.728
Siliciclastics 50  -0.758 -0.777 1.407 -3.507 1.723  -1.787  0.381
Metamorphic 50  -0.894 -1.222 1.761 -3.912 4317  -2.060  0.178

However, neither table provides quick intuitive insight into the data structure. Neither
sufficiently illustrates the differences between groups found by the hypothesis tests in example 4,
or how they differ.

Histograms are commonly used to display the distribution of one or more data sets, and have
been employed to attempt to illustrate differences between three or more groups of data. They
are not usually successful. The many crossing lines, coupled with an artificial division of the data
into categories, results in a cluttered and confusing graph. Figure 7.15 displays four overlapping
histograms, one for each of the data groups. It is impossible to discern anything about the
relative characteristics of any of the data groups from this figure. Overlapping histograms
should be avoided unless one is purposefully trying to confuse the audience! In figure 7.16, side-
by-side bar charts display the same information. This too is confusing and difficult to interpret.
From the graph one could not easily say which group had the highest mean or median, much
less anything about the groups' variability or skewness. Many business software packages allow

speedy production of such useless graphs as these.

Figure 7.17 shows a quantile plot of the same four data groups. The quantile plot far exceeds
the histogram and bar chart in clarity and information content. The dolomite group stands apart
from the other three throughout most of its distribution, illustrating both the ANOVA and
multiple comparison test results. An experienced analyst can look for differences in variability
and skewness by looking at the slope and shapes of each group's line. A probability plot of the
four groups would have much the same content, with the additional ability to look for

departures from a straight line as a visual clue for non-normality.
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Figure 7.15 Overlapping histograms fail to differentiate between four groups of data
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Figure 7.16 Side-by-side bars fail to clearly differentiate between four groups of data
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Compare figures 7.15 to 7.17 with boxplots of the log specific capacity data shown previously in
figure 7.14. Boxplots clearly demonstrate the difference between the dolomite and other group
medians. Variability is also documented by the box height, and skewness by the heights of the
top and bottom box halves. See Chapter 2 for more detail on boxplots. Boxplots illustrate the
results of the tests of this chapter more clearly than commonly-used alternate methods such as

histograms.
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Figure 7.17 Quantile plots differentiate between four groups of data

7.5.2 Presentation of Multiple Comparison Tests

Suppose a multiple comparison test resulted in the following:

Yy1=5y2 Y1#V3 Y1+ V4 (=: not significantly different)
y2=5y3 Y2 F V4 (# : significantly different)
y3=y4

for four treatment groups having y1>y2 > y3> y4.

The results are often presented in one of the two following formats:

1. Letters
1 y2 y3 V4
A AB BC C
Treatment group means are ordered, and those having the same letter underneath them are not

significantly different. The convenience of this presentation format is that letters can easily be
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positioned somewhere within side-by-side boxplots, illustrating the results of a MCT as well as

the overall test for equality of all means or medians (see figure 7.18).

AB

MCT results: Boxes with same letter are
not significantly different.

Figure 7.18 Boxplots with letters showing the results of a MCT.

2. Lines

In this presentation format, group means connected by a single unbroken line are not
significantly different. This format is suited for inclusion in a table listing group means or

medians.
A third method is somewhat more visual:

3. Shaded Boxes
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These shaded boxes can be thought of as thick versions of the lines presented above. Group
means with boxes shaded along the same row are not significantly different. Shaded boxes
allow group means to be ordered by something other than mean or median value. For example,
the order of stations going upstream to downstream might be 3,1,2,4. Boxes put in that order
show a significant increase in concentration between 3 and 1 and a significant drop off again
between 2 and 4. So in addition to displaying multiple comparison test results, the shaded

boxes below also illustrate the pattern of concentration levels of the data.

Downstream _—
y3 < 1 y2 > V4

Figure 7.19 Shaded boxes for illustration of a multiple comparison test.

Station means not significantly different have boxes shaded within the same row.
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Exercises

7.1 Discharge from pulp liquor waste may have contaminated shallow groundwater with
caustic, high pH effluent (Robertson, et al., 1984). Determine whether the pH of
samples taken from three sets of piezometers are all identical -- one piezometer group is
known to be uncontaminated. If not, which groups are different from others? Which

are contaminated?

pH of samples taken from piezometer groups

BP-1 7.0 7.2 7.5 7.7 8.7 7.8
BP-2 6.3 6.9 7.0 0.4 0.8 6.7
BP-9 8.4 7.6 7.5 7.4 9.3 9.0
7.2 In addition to the waters from granitic terrain given in Exercise 2.3, Feth et al. (1964)

measured chloride concentrations of ephemeral springs. These additional data are listed
below (use the zero value as is). Test whether concentrations in the three groups are all
identical. If not, which differ from others?

Chloride concentration, in mg/L.

Ephemeral Springs 0.0 0.9 0.1 0.1 0.5 0.2
0.3 0.2 0.1 2.0 1.8 0.1
0.6 0.2 0.4
7.3 The number of Corbicula (bottom fauna) per square meter for a site on the Tennessee

River was presented by Jensen (1973). The data are found in Appendix C8. Perform a
median polish for the data of strata 1. Graph the polished estimates of year and seasonal

effects. Is any transformation suggested by the residuals?

7.4 Test the Corbicula data of strata 1 to determine whether season and year are significant

determinants of the number of organisms.

7.5 Test for significant differences in the density of Corbicula between seasons and strata for
the 1969 data.
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Concentrations of atrazine and nitrate in shallow groundwaters are measured in wells over a
several county area. For each sample, the concentration of one is plotted versus the
concentration of the other. As atrazine concentrations increase, so do nitrate. How might the

strength of this association be measured and summarized?

Streams draining the Sierra Nevada mountains in California usually receive less precipitation in
November than in other months. Has the amount of November precipitation significantly
changed over the last 70 years, showing a gradual change in the climate of the area? How might
this be tested?

The above situations require a measure of the strength of association between two continuous
variables, such as between two chemical concentrations, or between amount of precipitation and
time. How do they co-vary? One class of measures are called correlation coefficients, three of
which are discussed in this chapter. Also discussed is how the significance of that association
can be tested for, to determine whether the observed pattern differs from what is expected due
entirely to chance. For measurements of correlation between grouped (non-continuous)

variables, see Chapter 14.

Whenever a correlation coefficient is calculated, the data should be plotted on a scatterplot. No
single numerical measure can substitute for the visual insight gained from a plot. Many different
patterns can produce the same correlation coefficient, and similar strengths of relationships can
produce differing coefficients, depending on the curvature of the relationship. In Chapter 2,
figure 2.1 presented eight plots all with a linear correlation coefficient of 0.70. Yet the data were
radically different! Never compute correlation coefficients and assume the data look like those

in h of figure 2.1.
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8.1 Characteristics of Correlation Coefficients

Correlation coefficients measure of the strength of association between two continuous
variables. Of interest is whether one variable generally increases as the second increases,
whether it decreases as the second increases, or whether their patterns of variation are totally
unrelated. Correlation measures observed co-variation. It does not provide evidence for causal
relationship between the two variables. One may cause the other, as precipitation causes runoff.
They may also be correlated because both share the same cause, such as two solutes measured at
a variety of times or a variety of locations. (Both are caused by variations in the source of the
water). Evidence for causation must come from outside the statistical analysis -- from the

knowledge of the processes involved.

Measures of correlation (here designated in general as p) have the characteristic of being
dimensionless and scaled to lie in the range —1 = p = 1. When there is no correlation between
two variables, p = 0. When one variable increases as the second increases, p is positive. When
they vary in opposite directions, p is negative. The significance of the correlation is evaluated
using a hypothesis test:

Hp: p =0 versus Hy: p # 0.
When one variable is a measure of time or location, correlation becomes a test for temporal or
spatial trend.

8.1.1 Monotonic Versus Linear Correlation

Data may be correlated in either a linear or nonlinear fashion. When y generally increases or
decreases as x increases, the two variables are said to possess a monotonic correlation. This
correlation may be nonlinear, with exponential patterns, piecewise linear patterns, or patterns
similar to power functions when both variables are non-negative. Figure 8.1 illustrates a non’|
linear monotonic association between two variables -- as x increases, y generally increases by an
ever-increasing rate. This nonlinearity is evidence that a measure of linear correlation would be
inappropriate. The strength of a linear measure will be diluted by nonlinearity, resulting in a
lower correlation coefficient and less significance than a linear relationship having the same

amount of scatter.

Three measures of correlation are in common use -- Kendall's tau, Spearman's rho, and
Pearson's r. The first two are based on ranks, and measure all monotonic relationships such as
that in figure 8.1. They are also resistant to effects of outliers. The more commonly-used
Pearson's r is a measure of linear correlation (figure 8.2), one specific type of monotonic
correlation. None of the measures will detect nonmonotonic relationships, where the pattern
doubles back on itself, like that in figure 8.3.
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8.2 Kendall's Tau

Tau (Kendall, 1938 and Kendall, 1975) measures the strength of the monotonic relationship
between x and y. Tau is a rank-based procedure and is therefore resistant to the effect of a small
number of unusual values. It is well-suited for variables which exhibit skewness around the

general relationship.

Because tau (T) depends only on the ranks of the data and not the values themselves, it can be
implemented even in cases where some of the data are censored, such as concentrations known
only as less than the reporting limit. This is an important feature of the test for applications to

water resources. See Chapter 13 for more detail on analysis of censored data.

Tau will generally be lower than values of the traditional correlation coefficient r for linear
associations of the same strength (figure 8.2). "Strong" linear correlations of 0.9 or above
correspond to tau values of about 0.7 or above. These lower values do not mean that tau is less
sensitive than r, but simply that a different scale of correlation is being used. Tau is easy to
compute by hand, resistant to outliers, and measures all monotonic correlations (linear and
nonlinear). Its large sample approximation produces p-values very near exact values, even for
small sample sizes. As itis a rank correlation method, tau is invariant to monotonic power
transformations of one or both variables. For example, T for the correlation of log(y) versus

log(x) will be identical to that of y versus log(x), and of y versus x.

8.2.1 Computation

Tau is most easily computed by first ordering all data pairs by increasing x. If a positive
correlation exists, the y's will increase more often than decrease as x increases. For a negative
correlation, the y's will decrease more often than increase. If no correlation exists, the y's will

increase and dectrease about the same number of times.

A two-sided test for correlation will evaluate the following equivalent statements for the null

hypothesis Hy, as compared to the alternate hypothesis Hy:

Hp: a) no correlation exists between x and y (T = 0), or
b) xand y are independent, or
¢) the distribution of y does not depend on x, or
d)  Prob (yj <y; fori<j)=1/2.

Hi:  a) xandy are correlated (T # 0), or
b) xand y are dependent, or
c) the distribution of y (percentiles, etc.) depends on x, or
d)  Prob (yj <y; fori<j)#1/2.
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The test statistic S measures the monotonic dependence of y on x. Kendall's S is calculated by
subtracting the number of "discordant pairs" M, the number of (x,y) pairs where y decreases as
x increases, from the number of "concordant pairs" P, the number of (x,y) pairs where y

increases with increasing x:
[8.1]
where P = "number of pluses", the number of times the y's increase as the x's increase,
or the number of yj < i foralli <j,
M = "number of minuses," the number of times the y's decrease as the x's increase, or
the number of yj > y; for i <j.
foralli =1,..n—1) and j = (i+1),....n.

Note that there ate n(n—1)/2 possible compatisons to be made among the n data pairs. Ifall'y
values increased along with the x values, S = n(n—1)/2. In this situation, the cortelation
coefficient T should equal +1. When all y values decrease with increasing x, S = —n(n—1)/2 and
T should equal —1. Therefore dividing S by n(n—1)/2 will give a value always falling between —1
and +1. This then is the definition of T, measuring the strength of the monotonic association

between two variables:

Kendall’s tau correlation coefficient

S
=
n(n—1)/2

[8.2]

To test for significance of T, S is compared to what would be expected when the null hypothesis
is true. If it is further from O than expected, H() is rejected. For n = 10 an exact test should be
computed. The table of exact critical values is found in table B8 of the Appendix.

8.2.2 Large Sample Approximation
For n > 10 the test statistic can be modified to be closely approximated by a normal distribution.
This large sample approximation Zg is the same form of approximation as used in Chapter 5 for
the rank-sum test, where now
d = 2 (S can vary only in jumps of 2),
Ug = 0, and
oq = A (0/18)*(n-1)*(2n+5).
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-1
S if $>0
o
N
Zs = 0 ifS=0 [8.3]
S+1 if S<0

N

The null hypothesis is rejected at significance level 0L if | Zg| > Z¢yir where Zyie is the value of
the standard normal distribution with a probability of exceedance of /2. In the case where
some of the x and/or y values are tied the formula for Gg must be modified, as discussed in the

next section.

Example 1: 10 pairs of x and y are given below, ordered by increasing x:

y 122 220 480 128 197 146 2.64 234 484 296

x 2 24 99 197 377 544 632 3452 6587 53,170
EROOE T
¥ [m]
40000 +
20000 +
[n}
[u]
o+ oo © o o o o
1,40 2. 1@ 2. 80 2 .50 4.20 4,00
4

Figure 8.4 Example 1 data showing one outlier present.

To compute S, first compare y1= 1.22 with all subsequent y's ( y; 1=,
2.20 > 1.22, so scote a +
4.80 > 1.22, score a +
1.28 > 1.22, score a +
1.97 > 1.22, score a + etc.

All subsequent y's are larger, so there are 9 +'s for i=1.

Move on to i=2, and compare yp =2.20 to all subsequent y's.
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4.80 > 2.20, so score a +
1.28 < 2.20, score a —
1.97 < 2.20, score a —
1.46 < 2.20, score a— etc.

There are 5 +'s and 3 —'s for i=2. Continue in this way, until the final compatison of y,_1 =

4.84 to yp. It is convenient to write all +'s and —'s below their respective y,, as below:

Y, 1.22 220 480 128 197 146 2.64 234 484 296
+ — — + — + —

- - + + +

+ +

+

|
|

+ 4+ +++

++ + +

+++ A+ttt
+ 4+ + |
+

In total there are 33 +'s (P = 33) and 12 —'s (M = 12). Therefore S = 33 — 12 = 21.
There are 1029/2 = 45 possible comparisons, so T = 21/45 = 0.47.
Turning to table B8, for n=10 and S=21, the exact p-value is 2¢0.036 = 0.072.

The large sample approximation is
Zs= (21-1) /\/ (10/18)+(10-1)*(20+5)
= 20/(11.18) = 1.79.
From a table of the normal distribution, the 1-sided quantile for 1.79 = 0.963
so that p=2-+(1-.963) = 0.074

8.2.3 Correction for Ties
To compute T when ties are present, tied values of either x or y produce a O rather than + or —.
Ties do not contribute to either P or M. S and T are computed exactly as before. An adjustment

is required for the large sample approximation Zg , however, by correcting the Gg formula.

In order to compute Og in the presence of ties, both the number of ties and the number of
values involved in each tie must be counted. Consider for example a water quality data set (in
units of ug/L) of 17 values (n=17) shown here in ascending order.

<1, <1, <1, <1, <1, 2, 2, 2, 3, 5, 5, 7, 9, 10, 10, 14, 18.

There are a total of 4 tied groups in the data set. The largest tied group in the data set is of 5
values (tied at <1 ug/L), there are no tied groups of 4, there is 1 tied group of 3 (at 2 ug/L), and
there ate 2 tied groups of 2 (at 5 and 10 pg/L). For completeness note that there are 5 "ties" of
extent 1 (untied values at 3,7, 9, 14, and 18 ug/L). These appropriately never add to the
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correction because (i—1) always equals zero. Kendall (1975) defined the variable tj as the
number of ties of extent i. For this data set t5 = 1 (1 tie of extent 5), t4 = 0 (no ties of extent 4),
t3 = 1 (1 tie of extent 3), ty = 2 (2 ties of extent 2) and t; = 5 (5 "ties" of extent 1). For i>5, j
= 0. Kendall's correction to Og in the presence of ties is:

(-1 @a+5- S0 6-1)Qi+5)]
>
G5 = e 8.4

So for the example water quality data:

Og = A[17°16239 - 5¢120¢7 - 202149 - 1¢302¢11 - 1+5¢4¢15] / 18

or Og =4/567 = 23.81. Notice that if the data set could have been measured with sufficient
precision (including a lower detection limit) so that no ties existed, then
Og = /589.333 = 24.28. Thus the ties here represent a rather small loss of information.

Example 2:
The example 1 data are modified to include ties, as follows:
y 122220 480 128 197 197 2064 234 484 296
X 2 24 99 99 377 544 632 3452 6587 53,170

Using a 0 to denote a tie, the comparisons used to compute P, M, and S are:

+ Ox + - + -
-~ - + + +
+ +
+

Ox: tiein x

Oy: teiny

!
!
++++++

F+H 4+t
++ 4+ +
_|_

In total there are 33 +'s (P=33) and 10 —'s (M=10). Therefore S = 33—10 = 23, and
T= 23/45 = 0.51. The exact two-sided p-value from table B8 is 2¢0.023 = 0.046. For the
large sample approximation, there are 2 ties of extent 2, so that

Og = \[[1029225 - 2¢2+1+9] / 18 =+ 123 = 11.09
whereas without the tie 6g was 11.18. Computing Zs,

Zs= (23-1)/~[123

= 22/(11.09) = 1.98.

From a table of the normal distribution, the 1-sided quantile for 1.98 = 0.976
so that p=2+ (1-.976) = 0.048 .
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8.3 Spearman's Rho

Spearman's rho is an alternative rank correlation coefficient to Kendall's tau. Kendall's tau is
related to the sign test -- all positive differences between data pairs are assigned a +1 without
regard to the magnitude of those differences. With Spearman's rtho, differences between data
values ranked further apart are given more weight, similar to the signed-rank test. Rho is
perhaps easiest to understand as the linear correlation coefficient computed on the ranks of the
data. Thus rho can be computed as a rank transform method. Rho and tau use different scales
to measure the same correlation, much like Centigrade and Fahrenheit measures of temperature.
Though tau is generally lower than rho in magnitude, their p-values for significance should be

quite similar when computed on the same data.

To compute rho, the data for the two variables are ranked independently among themselves. For

the ranks of x (Rxj) and ranks of y (Ryj), tho can be computed from the equation:
n 2
n+l1
Rx Ry )—n
z ( i yl) [ 2 )

tho = =

n(n”—1)/12 155]

where (n+1)/2 is the mean rank of both x and y. Ties in x or y are assigned average ranks. This
equation can be derived from substituting Rxj and Ryj for xj and yj in equation 8.6 for Pearson's
r, and simplifying. If there is a positive correlation, the higher ranks of x will be paired with the
higher ranks of y, and their product will be large. For a negative correlation the higher ranks of
x will be related to lower ranks of y, and their product will be small. When there is no
correlation, there will be nothing other than a random pattern in the association between x and y
ranks, and their product will be similar to the product of their average rank, the second term in

the numerator of equation 8.5. Thus rho will be close to zero.

Bhattacharyya and Johnson (1977) present the exact and large sample approximation versions of
the hypothesis test for Spearman's rho. However, it is easiest to rank the two variables and
compute the hypothesis test for Pearson's r -- the rank transform method. It is important to
note that the large sample and rank approximations for rho do not fit the distribution of the test
statistic well for small sample sizes (n<20), in contrast to Kendall's tau. This is one reason tau is

often preferred over rho.

Example 1, continued

For the example 1 data, the data ranks are
Ry 1 5 9 2 4 3 7 6 10 8
Rx 1 2 3 4 5 6 7 8 9 10

Solving for rho, multiplying the ranks above gives,
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®xi*Ry)| 1 10 27 8 20 18 49 48 90 80, ¥ =351
_351-10(5.5)> 485

Rh -
© 1099/12 825

= 0.588, exact p-value = 0.04 from table 13 of Bhattacharyya and Johnson (1977).

The approximate significance test for Pearson's r on the data ranks (as described in the next
section) has a p-value = 0.074, not too close to the exact value. Whenever using Spearman's rho

for sample sizes less than 20, exact p-values should be used.

8.4 Pearson'st

The most commonly-used measure of correlation is Pearson's r. It is also called the linear
correlation coefficient because r measures the linear association between two variables. If the
data lie exactly along a straight line with positive slope, then r = 1. This assumption of linearity
makes inspection of a plot even more important for r than for rho or tau because a nonl’|
significant value of r may be due to curvature or outliers as well as to independence. As in figure
8.1, x and y may be strongly related in a nonlinear fashion, while the resulting r may be small and

insignificantly different from zero.

Pearson's r is not as resistant to outliers as was tau and rho because it is computed using nonl|
resistant measures -- means and standard deviations. It assumes that the data follow a bivariate
normal distribution. With this distribution, not only do the individual variables x and y follow a
normal distribution, but their joint variation also follows a specified pattern. This assumption
rules out the use of r when the data have increasing variance, as in figure 8.1. Skewed variables
often demonstrate outliers and increasing variance. Thus r is often not useful for describing the

correlation between untransformed hydrologic variables.

Pearson's r is invariant to scale changes, as in converting streamflows in cubic feet per second
into cubic meters per second, etc. This dimensionless property is obtained by standardizing,
dividing the distance from the mean by the sample standard deviation, as shown in the formula
for r, below.
1 zﬂ: xX=X|y -y
1 1
n—1

[8.6]

=\ S S,

The significance of r can be tested by determining whether r differs from zero. The test statistic
ty is computed by equation 8.7, and compared to a table of the t distribution with n—2 degrees of

freedom.

L L [8.7]
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Example 1, continued

For the example 1 data, means and standard deviations are:

X AY
mean 65086 2.57
s 165316 1.31
1 & [x-65086)(y —2.57
Then r= —, |— %, = 0.174
9 < | 165316 1.31

To test for whether r is significantly different from zero, and therefore y is linearly dependent on

X

bl

0.174 V8

= 0.508,
Vl —(0.174)*

with a p-value of 0.63 from a table of the t-distribution. Therefore H(): r=0 is not rejected, and y

is not linearly dependent (or related) to x as measured by r. This differs from the results using
rho and tau, whose p-values of 0.04 and 0.07 respectively did indicate an association between y
and x. Figure 8.4 provides an intuitive explanation of why r differs from rho and tau -- r is

strongly affected by the one outlying observation, even though the overall trend is a linear one.
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Exercises

8.1 Are uranium concentrations correlated with total dissolved solids in the following

groundwater samples? If so, describe the strength of the relationship.

Utranium conc. TDS, Uranium conc. TDS,
in ppb in mg/L in ppb in mg/L
0682.65 0.9315 1240.81 06.8559
819.12 1.9380 538.35 0.4806
303.76 0.2919 607.75 1.1452
1151.40 11.9042 705.89 6.0876
582.42 1.5674 1290.57 10.8823
1043.39 2.0623 526.09 0.1473
634.84 3.8858 784.68 2.6741
1087.25 0.9772 953.14 3.0918
1123.51 1.9354 1149.31 0.7592
688.09 0.4367 1074.22 3.7101
1174.54 10.1142 1116.59 7.2446
599.50 0.7551
8.2 Compute the other two correlation coefficients not chosen in Exercise 8.1. Are all

coefficients equally appropriate?

8.3 For the data on Corbicula densities in the Tennesse River found in Appendix C8,
compute Kendall's tau for all pairs of data in the same strata and season, but one year

apart. Is this correlation significant? How should this result be interpreted?



Simple Linear Regression

The relationship between two continuous variables, sediment concentration and stream
discharge, is to be investigated. Of interest is the quantification of this relation into a model
form for use as a predictive tool during days in which discharge was measured but sediment
concentration was not. Some measure of the significance of the relationship is desired so that
the analyst can be assured that it is in fact composed of more than just background noise. A

measure of the quality of the fit is also desired.

Sediment concentrations in an urban river are investigated to determine if installation of
detention ponds throughout the city have decreased instream concentrations. Linear regression
is first performed between sediment concentration and river discharge to remove the variation in
concentrations which are due to flow variations. After subtracting this linear relation from the
data, the residual variation before versus after the installation of ponds can be compared to
determine their effect.

Regression of sediment concentration versus stream discharge is performed to obtain the slope
coefficient for the relationship. This coefficient is tested to see if it is significantly different than
a value obtained 5 years before using a rainfall-runoff model of the basin.

The above examples all perform a linear regression between the same two variables, sediment
concentration and water discharge, but for three different objectives. Regression is commonly
used for at least these three objectives. This chapter will present the assumptions, computation

and applications of linear regression, as well as its limitations and common misapplications by
the water resources community.
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Ordinary Least Squares (OLS), commonly referred to as linear regression, is a very important
tool for the statistical analysis of water resources data. It is used to describe the covariation
between some variable of interest and one or more other variables. Regression is performed

to

1) learn something about the relationship between the two variables, or

2) remove a portion of the variation in one variable (a portion that is not of interest) in
order to gain a better understanding of some other, more interesting, portion of the
variation, or

3) estimate or predict values of one variable based on knowledge of another variable, for

which more data are available.

This chapter deals with the relationship between one continuous variable of interest, called the
response variable, and one other variable -- the explanatory variable. The name "simple
linear regression" is applied because one explanatory variable is the simplest case of regression
models. The case of multiple explanatory variables is dealt with in Chapter 11 -- multiple

regression.

9.1 The Linear Regression Model

The model for simple linear regression is:

vi = Bo + B1xi T & i=1,2,...n
where
Vi is the ith observation of the response (or dependent) variable
Xj is the ith observation of the explanatory (or independent) variable
Bo is the intercept
By is the slope
g is the random error or residual for the ith observation, and
n is the sample size.

The error around the linear model ¢ is a random variable. That is, its magnitude is not
controlled by the analyst, but arises from the natural variability inherent in the system. ¢ has a
mean of zero, and a constant variance 62 which does not depend on x. Due to the latter, ; is

independent of x;.

Regtression is performed by estimating the unknown true intercept and slope B, and By with by,
and by, estimates derived from the data. As an example, in figure 9.1 the true linear relationship
between an explanatory variable x and the response variable y is represented by a solid line.
Around the line are 10 observed data points which result from that relationship plus the random

error g; inherent in the natural system and the process of measurement. In practice the true line
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is never known -- instead the analyst measures the 10 data points and estimates a linear
relationship from those points. The OLS estimate developed from the 10 measurements is

shown as the dashed line in figure 9.2.
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Figure 9.1 True linear relation between x and y, and 10 resultant measurements.
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Figure 9.2 True and estimated linear relation between x and y.
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If 10 new data points resulting from the same true (solid line) relationship are measured and
their OLS line computed, slightly different estimates of by and by result. If the process is
repeated several times, the results will look like figure 9.3. Some of the line estimates will fall
closer to the true linear relationship than others. Therefore a regression line should always be

considered as a sample estimate of the true, unknown linear relationship.
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Figure 9.3 True and several estimated linear relations between x and y.

Another way of describing the linear regression model is as an estimate of the mean of y, given
some particular value for x. This is called a conditional distribution. If x takes on the value x,
then y has a conditional mean of B, + Byx( and conditional variance 6. The mean is
"conditioned", or depends on, that particular value of x. Itis the value expected for y given that
x equals x(. Therefore:

the "expected value" of y given x E [y |xo] =By *+ B1xo

the variance of y given x, Var [y|xo] = o2

9.1.1 Assumptions of Linear Regression
There are five assumptions associated with linear regression. These are listed in table 9.1. The
necessity of satisfying them is determined by the purpose to be made of the regression equation.

Table 9.1 indicates for which purposes each is needed.
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Purpose
Predict y Predict y and | Obtain best [Test hypotheses,
given x a variance for | linear estimate
the unbiased confidence or
prediction estimator of | prediction
Assumption y intervals

(1) + + + +
Model form is correct: y is
linearly related to x

@) + + + +
Data used to fit the model
are representative of data of
interest.

3) + + +
Variance of the residuals is
constant (is homoscedastic).
It does not depend on x or
on anything else (e.g. time).

“) + +
The residuals are
independent.

5) +

The residuals are normally
distributed.

Table 9.1 Assumptions necessary for the purposes to which OLS is put.

+: the assumption is required for that purpose.

The assumption of a normal distribution is involved only when testing hypotheses, requiring the

residuals from the regression equation to be normally distributed. In this sense OLS is a

parametric procedure. No assumptions are made concerning the distributions of either the

explanatory or response variables. The most important hypothesis test in regression is whether

the slope coefficient is significantly different from zero. Normality of residuals is required for

this test, and should be checked by a boxplot or probability plot. The regression line, as a

conditional mean, is sensitive to the presence of outliers in much the same way as a sample

mean is sensitive to outliers.
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9.2 Computations

Linear regression estimation is nothing more than a minimization problem. It can be stated as
follows: find two numbers b() and by such that
z (y, —y,)? is minimized, where , is the OLS estimate of y:
i=1
yi=bo+bixj.
This can be solved for b and by using calculus. The solution is referred to as the normal

equations. From these come an extensive list of expressions used in regression:

Formula Name
— 0 xj
x= 7 mean x
1i=1
_ by
y= 2, meany
1=1
n n
Ssy = (v, -y) 2 = > Yiz - n(;)z sums of squares y = Total SS
B i=1
n n
SS¢ = (x,—X) 2 = > Xiz - n(x )2 sums of squares x
=1 i=1
n n
Sxy = (x, —)-c)(yi -y) =Y (xjy) —nxYy sums of x y cross products
B i=1
by = Sy / S8 the estimate of By (slope)
by= y—by X the estimate of B, (intercept)

N
y i=bg + byxj the estimate of y given x;
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Formula Name
e =vyi— § i the estimated residual for obs. 1
¢ .2

SSE = Y e error sum of squares

=1
$ = (SSy = by Sxy) / (n=2) The estimate of 62, also called

n

=3 e/ (0-2) mean square error (MSE).
i=1

s =\ s> standard error of the regression or

standard deviation of residuals

SEB1) = s /A/ SSx standard error of By
1 x
SEBg) = s |—+— standard error of B
nSS
r = SXy / SSXSSy the correlation coefficient
= b/ SSx / SSy
R?= [SSy — s? (n=2)] / SSy coefficient of determination, or
=1-(SSE/ SSy) fraction of the variance explained
=12 by regression

9.2.1 Properties of Least Squares Solutions

1) If assumptions 1 through 4 are all met, then the estimators b() and bq are the minimum
variance unbiased estimators of () and 1.

2) The mean of the residuals (ej's) is exactly zero.

3) The mean of the predictions ('s) equals the mean of the observed responses (y's).

4) The regression line passes through the centroid of the data ( X ,y).

5) The variance of the predictions (y's) is less than the variance of the observed responses

(vi's) unless RZ = 1.0.
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9.3 Building a Good Regression Model

A common first step in performing regression is to plug the data into a statistics software
package and evaluate the results using R2.  Values of R close to 1 are often incorrectly deemed
an indicator of a good model. This is a dangerous, blind reliance on the computer software. An
R2 near 1 can result from a poor regression model; lower R2 models may often be preferable.
Instead of the above, performing the following steps in order will generally lead to a good

regression model.

The following sections will use the total dissolved solids (TDS) concentrations from the
Cuyahoga River at Independence, Ohio, 1974-1985 as an example data set. The data are found
in Appendix C9. These concentrations will be related to stream discharge (Q).
1) First step -- PLOT THE DATA!

Plot y versus x and check for two things

1a) does the relationship look non-linear?

1b) does the variability of y look markedly different for different levels of x?

800+
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0 2000 4000 6000 8000

DISCHARGE, IN CFS

Figure 9.4 Scatterplot of the Cuyahoga R. TDS data

If the problem is curvature only (1a), then try to identify a new x which is a better linear

predictor (a transform of the original x or another variable altogether). When possible, use the



Simple Linear Regression 229

best physically-based argument in choosing the right x. It may be appropriate to resort to
empirically selecting the x which works best (highest R?) from among a set of reasonable

explanatory variables.

If the problem is non-constant variance, (also called heteroscedasticity, 1b above) or both
curvature and heteroscedasticity, then transforming y, or x and y, may be called for. Mosteller
and Tukey (1977) provided a guide to selecting power transformations using plots of y versus x
called the "bulging rule". Going "up" the ladder of powers means 8 >1 (x2, etc.) and "down"
the ladder of powers means 6 <1 (log x, 1/x, \/? , etc.).

y up 1\ T y up
x down X up
- —_—
x down X up
y down l/ l, y down

Figure 9.5 The bulging rule for transforming curvature to linearity.
(after Mosteller and Tukey, 1977).

The non-linearity of the TDS data is obvious from figure 9.4, and some type of transformation
of the x variable (discharge, denoted Q) is necessary. The base 10 log of Q) is chosen, as the plot
has the shape of the lower left quadrant of the bulging rule, and so 8 <1. Figure 9.6 presents the
TDS data versus the log of Q. Linearity is achieved. There is some hint of greater variance
around the line at the lower Q's, but notice that there are also far more data at lower discharges.
The range of values can be expected to be greater where there is more data, so non-constant
variance is not proven. Therefore this transformation appears acceptable based on the first set
of plots.

2) Having selected an appropriate x and y, compute the least squares regression statistics,
saving the values of the residuals for further examination. In the regression results,
focus on these things:

2a) The coefficients, by and by: Are they reasonable in sign and magnitude? Do they lead to
predictions of unreasonable values of y for reasonable values of x (e.g., negative flows or

concentrations)?
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Figure 9.6 Scatterplot with regression line after transformation of x

The Cuyahoga TDS data have the following regression results:

TDS = 1125 - 242 log10 Q

n=80 s=7555 RZ = 0.57 SS¢ =10.23

Parameter Estimate Std.Exr(B) t-ratio p
Intercept B 1125.5 66.9 16.8 0.000
Slope B4 —241.6 23.6 -10.2 0.000

Table 9.2 Regression statistics for the Cuyahoga TDS data

It appears reasonable that TDS concentrations should be diluted with increasing stream
discharge, producing a negative slope. No negative concentrations result from

reasonable values for Q at this site.

2b) The R2: Does the regression explain much variance? Is the amount of variance
explained substantial enough to make it worthwhile to use the regression, given the risk
that the form of the model is likely to be imperfect? There is no general rule for what is

too low an R? for a useful regression equation.
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2c)

3a)

For the Cuyahoga data, 57% of the variance of total dissolved solids is explained by the
effect of log QQ.

Look at the t-ratio (or t-statistics) on the two coefficients. These are the test statistics
needed for testing the null hypothesis that the coefficient is equal to zero. In particular,
look at the t-ratio on Bq. If |t|>2, reject ;=0 at a=0.05 for reasonably large sample
sizes and therefore assert there is a statistically significant linear relationship between x
and y. If the t-ratio is between —2 and +2, the observed relationship is no stronger than
what is likely to arise by chance alone in the absence of any real linear relationship. If
this is the case one should go back to step 1 or give up on the use of regression with this
data set. (The formalities of these hypothesis tests are given in a later section).

Both the intercept and slope of the TDS regression are significant at any reasonable o, as

shown by the large t-statistics and small p-values of table 9.2.

Examine adherence to the assumptions of regression using residuals plots. Three types
of residuals plots will clearly present whether or not the regression model adheres

sufficiently to the assumptions to be used.

Residuals versus predicted (e vs.y). Look for two possible problems: curvature and
heteroscedasticity. These are exactly the same problems described in step 1. However,
plotting residuals enhances the opportunity to see these problems as compared to
plotting the original data. The solutions to the problems are the same. Figure 9.7
presents an example of a good residuals plot, one where the residuals show no curvature
or changing variance. Figure 9.8, on the other hand, is a residuals plot which shows both
curvature and changing variance, producing the typical "horn" pattern which is often

correctable by taking the logarithms of y.

It is possible to read too much into these plots, however. Beware of "curvature"
produced by a couple of odd points or of error variance seeming to both grow and
shrink one or more times over the range of § . Probably neither of these can or should
be fixed by transformation but may indicate the need for the robust procedures of
Chapter 10.

In figure 9.9, the residuals from the Cuyahoga TDS regression are plotted versus its
predicted values. There is an indication of heteroscedasticity, though again there are
more data for the larger predicted values. There also appears to be a bow in the data,
from + to — and back to + residuals. Perhaps a transformation of the TDS
concentrations are warranted, or the incorporation of additional variables into the

regression equation.
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RESIDUALS

RESIDUALS
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Figure 9.7 Example of a residuals plot for a good regression model
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Figure 9.8 Residuals plot showing curvature and changing variance.
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RESIDUALS PLOT FOR C vs 1/(0.001*Q)
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Figure 9.9 Residuals plot of the Cuyahoga data.

3b) Residuals versus time (e vs. t). If there is any time or space order to the observations
(relating to time of collection, time of measurement, or map location), plot the residuals
versus time or season or time of day, or versus the appropriate 1- or 2-dimensional space
coordinate to see if there is a pattern in the residuals. A good residuals pattern, one with
no relation between residuals and time, will look similar to figure 9.7 -- random noise.
If on the other hand structure in the pattern over time is evident, seasonality, long-term
trend, or correlation in the residuals may be the cause. Trend or seasonality suggest
adding a new term to the regression equation (see Chapter 12). Correlation between

residuals over time or space require one of the remedies listed in section 9.5.4.

Correlation between residuals over time or space may not be evident from the ej versus
§ residuals plot (figure 9.10a), but will stand out on a plot of ej versus time (9.10b). The
nonrandomness is evident in that positive residuals clump together, as do negative -- a
positive correlation. Plotting the ith versus the (i-1)th residual shows this pattern more
strongly (9.10c). If time or space are measured as categorical variables (month, etc.), plot
boxplots of residuals by category and look for patterns of regularity. Where no
differences occur between boxes, the time or space variable has no effect on the

response variable.
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N
a) Residual ¢j vs y plot shows no hint of correlation over time
b) Time series of residuals shows ¢ related to time

¢) Correlation of ej vs. e(i-1)

In figure 9.11, boxplots of TDS residuals by month show a definite seasonality, with generally

high residuals occurring in the winter months, low residuals in the summer, and unusually high

values in September. Thus the regression equation will underpredict concentrations in the
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winter and overpredict in the summer. This pattern may be due to washoff of road de-icing salts
in the winter. The unknown cause of the September anomalies should be investigated further.
To better mimic the seasonal variation, other explanatory variables must be added. This will be
discussed in Chapter 12.
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Figure 9.11 Residual of TDS concentrations by month. Note the seasonality.

3c) Normality of residuals. Examine the distribution of residuals using a boxplot, stem and
leaf, histogram, or normal probability plot. If they depart very much from a normal
distribution, then the various confidence intervals, prediction intervals, and tests
described below will be inappropriate. Specifically,
(i) hypothesis tests will have low power (slopes or explanatory variables will falsely be
declared insignificant), and
(i) confidence or prediction intervals will be too wide, as well as giving a false

impression of symmetry.

A boxplot of residuals from the TDS-logQ) regression shown in figure 9.12 is mildly
right-skewed, with several outliers present. A probability plot of the residuals (figure
9.13) shows a slight departure from normality. If these were the only problems,

transformation of the y variable might not be warranted. But combined with the
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problems already noted above of curvature and heteroscedasticity, further work is

required.
— T .
-140 -7 @ 70 140 210

Figure 9.12 Boxplot of the TDS regression residuals

For further attempts to find an appropriate transformation of the Cuyahoga data,

see problem 9.1 at the end of this chapter.
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Figure 9.13 Probability plot of the TDS regression residuals

3d) Residuals versus other explanatory variables. To determine whether other explanatory

variables should be included into a multiple regression model, boxplots of residuals by
categorical explanatory variables or scatterplots versus continuous variables should be
plotted. If something other than a random pattern occurs, that variable or one like it
may be appropriate for adding to the regression equation. Figure 9.14 for example might
result from plotting residuals from a regression of radon concentrations in water versus
uranium content of rocks. using different symbols for wells and springs. The residuals
for wells tend to be larger than those for springs, as also shown by the boxplots at the

side. Incorporating an additional explanatory variable for "water source" into the
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regression equation using the techniques of Chapter 11 explains more of the noise in the

data, improving the model.
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Figure 9.14 Residuals plotted by an additional explanatory variable.

4) Use the regression diagnostics of section 9.5 to ensure that one or two observations are
not strongly influencing the values of the coefficients, and to determine the quality of
predicted values. These diagnostics duplicate much of what can be seen with plots for a
single explanatory variable, but become much more important when performing multiple

regression.

9.4 Hypothesis Testing in Regression

9.4.1 Test for Whether the Slope Differs from Zero
The hypothesis test of greatest interest in regression is the test for a significant slope (B).
Typically, the null hypothesis is
Hy: B1=0
versus the alternative hypothesis
Hy: B1#0.

The null hypothesis also states that the value of y does not vary as a linear function of x. Thus
for the case of a single explanatory variable this also tests for whether the regression model has
statistical significance. A third interpretation is as a test for whether the linear correlation

coefficient significantly differs from zero. The latter two interpretations are not applicable for
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multiple explanatory variables. The test statistic computed is the t-ratio (the fitted coefficient
divided by its standard error):
b1 r/n2

T ASS, A 1a2

Hy is rejected if | t]|> terit , whete terit is the point on the Student's t distribution with n—2
degrees of freedom, and with probability of exceedance of a./2.

Note that when 0=0.05 and n>30 terit = 2.0

and when 0=0.01 and n>30 terit = 2.6.

For the Cuyahoga TDS example the t-statistic for f; was much greater than 2, and indeed was
significant at the oo = 0.0001 level. Therefore a strong linear correlation exists between TDS and

log1( of Q.

This test for nonzero slope can also be generalized to testing the null hypothesis that B; =P

where B;" is some pre-specified value. For this test the statistic is defined as

b1 - bl*

NS

9.4.2 Test for Whether the Intercept Differs from Zero
Tests on the intercept by can also be computed. The test for

Hp: bg=0
is usually the one of interest. The test statistic is
bo
t=
S
S\ n "SS,

Hy is rejected if |t|> tcrit where terit is defined as in the previous test. From table 9.2 the
intercept for the TDS data is seen to be highly significantly different from 0.

It can be dangerous to delete the intercept term from a regression model. Even when the
intercept is not significantly different from zero, there is little benefit to forcing it to equal zero,
and potentially great harm in doing so. Regtession statistics such as R2 and the t-ratio for B lose
their usual meaning when the intercept term is dropped (set equal to zero). Recognition of a
physical reason why y must be zero when x is zero is not a sufficient argument for setting by =
0. Probably the only appropriate situation for fitting a no-intercept model is when all of the

following conditions are met:


jkmonson
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1) the x data cover several orders of magnitude,
2) the relationship clearly looks linear from zero to the most extreme x values,
3) the null hypothesis that B = 0 is not rejected, and

4) there is some economic or scientific benefit to dropping the intercept.

9.4.3 Confidence Intervals on Parameters

Confidence intervals for the individual parameters By, By, and 62 indicate how well these can be
estimated. The meaning of the (1-0)*100% confidence interval is that, in repeated collection of
new data and subsequent regressions, the frequency with which the true parameter value would
fall outside the confidence interval is o. For example, oo = 0.05 confidence intervals around the
estimated slopes of the regression lines in figure 9.3 would include the true slope 95% of the

time.
For the slope B the confidence interval (C.1.) is

ts ts
(bl‘«/ssX ’ b“ﬂ/ssX j

where t is the point on the student's t-distribution having n—2 degrees of freedom with a

probability of exceedance of o./2.

For the intercept B the C.I. is

1 % 1 x
by—ts |—+——.b,+ s |— +——
n SSX n SSx

where t is defined as above.

For the variance 62 (also called the mean square error MSE), the C.1. is

(n=2)s* (n-2)s’
ZZ ’ 2

l—a/2 al2

where sz is the quantile of the chi-square distribution having n—2 degrees of freedom with
exceedance probability of p.

As an example, the 95% confidence intervals for the Cuyahoga TDS data are:

1.99¢ 75.6 1.99¢ 75.6

For pi:[241.6 - ——=== | 241.6 + —F—== | = (-288.6,-194.6
Orm( 1023 ° \10.23 ) ( : )

1 2812 1, 2812
For B0: | 1125.5 - 1.99°75.6 "\ [ g5 + T0.03 » 11255+ 1.99°75.6"\ /30 * 1023

= (991.8, 1258.7)
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(78) 5708 (78) 5708
1043 > 555

For 62 ( ) = (4269 , 8022)

9.4.4 Confidence Intervals for the Mean Response

There is also a confidence interval for the conditional mean of y given any value of x. If x(is a
specified value of x, then the estimate of the expected value of y at x() is

§ = by *+b x(, the value predicted from the regression equation. But there is some uncertainty
to this, associated with the uncertainty for the true parameters B and By. The (1-0)*100%

confidence interval for the mean y is then

T N TS
YIS =+ — ", Y+ |+ ————
n SSX n SSX

where t is the quantile of the students' t-distribution having n—2 degrees of freedom with
probability of exceedance of o,/2. Note that the confidence interval is two-sided, requiring a
t-statistic of o./2 for either side. Also note from the formula that the farther x) is from X the
wider the interval becomes. That is, the model is always "bettet" near the middle of the x values

than at the extremes.

To continue the Cuyahoga TDS example, the confidence interval for the mean y is calculated for
two values of x(, 3.0 (near X ) and 3.8 (far from Xx):

2 2
1 3.0-2.81 1 3.0-2.81
for x5 = 3.0: 399 - 1.99¢75.6 307t GU-281)7 , 399 + 1.99¢75.6 20-280)7 j

10.23 80 T 1023
= (380, 418)
2 2
~ 1 (3.82.81) 1 (3.82.80)
forxg =38 |2054-1.9975.6\ g5+ 103 » 2054+ 1.9975.6\ |55+ 1003 )
= (155.9, 254.9)

a confidence interval of width 38 at x; = 3.0, and a width of 99 at x; = 3.8.

When the confidence interval for each logQ) value is connected together, the characteristic
"bow" shape of regression confidence intervals can be seen (figure 9.15). Note that this shape
agrees with the pattern seen in figure 9.3 for randomly generated regression lines, where the

positions of the line estimates are more tightly controlled near the center than near the ends.
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Figure 9.15 Confidence intervals for mean TDS for the Cuyahoga River data.

9.4.5 Prediction Intervals for Individual Estimates of y

The prediction interval, the confidence interval for prediction of an estimate of an individual y,
is often confused with the confidence interval for the mean. This is not surprising, as the best
estimate for both the mean of y given x and for an individual y given x) are the same -y .
However, their confidence intervals differ. The formulas are identical except for one very
important term. The prediction interval incorporates the unexplained variability of y (62) in
addition to uncertainties in the parameter estimates By and . The (1-0)*100% prediction

interval for a single response is

. (ECA 1 (x,=X)
y —tsl+—+—"—, J +is[l+—+—"—
n SS n SS

X

X

where all of the terms are as defined previously. Note that these intervals widen as x( departs
from x, but not nearly as markedly as the confidence intervals do. In fact, a simple rough
approximation to the prediction interval is just (§f\ —ts, yA + ts), two parallel straight lines. This
is because the second and third terms inside the square root are negligible in comparison to the
tirst, provided the sample size is large. These prediction intervals should contain approximately
1-02(100)% of the data within them, with a./2¢(100)% of the data beyond each side of the

intervals. They will do so if the residuals are approximately normal.
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The prediction intervals for the Cuyahoga TDS data are plotted in figure 9.16. They are
computed below for x5 = 3.0 and 3.8.

for x5 = 3.0:
2 2
1 (3.0-2.81) 1 (3.0-2.81)

(399 —1.99°75.6\/1+ 30 + 10.23 , 399 + 1.99'75.6\/1 + 30 + 1023 ]

= (247.4,550.0)
for x; = 3.8:

2 2
1 (3.8-2.81) 1 (3.8-2.81)

(205.4—1.99°75.6\/1+ 30 + 1023 , 205.4 + l.99°75.6\/1 + 30 + 1023 j

= (47.0, 363.8)

a prediction interval of width = 303 at x; = 3.0, and a width of 317 at xj = 3.8. Note that the
prediction intervals are much wider than the confidence intervals, and that there is only a small
difference in width between the two prediction intervals as x( changes. Also note from figure
9.16 that the data appear skewed, with all of the values found beyond the prediction intervals
falling above the upper interval.

o 800+ o DATA
= . OLS EST OF MEAN
@) o, o ,
O O™ © Cl's FOR MEAN
g |
9 600
I
O
W
0
w400
-
o
®)
)
0
0O 200+
_
<L
I_
O
I_
0 I I I |
2 2.5 3 3.5 4

LOG OF Q

Figure 9.16 Prediction intervals for an individual TDS estimate -- Cuyahoga River.
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9.4.5.1 Nonparametric prediction interval

There is also a nonparametric version of the prediction interval. This might be used when the
x,y data display a linear relationship and residuals have constant variance (homoscedastic), but
the distribution of the residuals appears non-normal. Typically, such departures from normality
take the form of skewness or an excessive number of outside or far outside values (as seen in a
boxplot). The nonparametric prediction interval is

(y Teq, v +ew)
where e and e(y) are the 1-0/2 and a,/2th quantiles of the residuals.

In other words, e(r) is the Lth ranked residual and e(yy is the Uth ranked residual, where
L= (nt+1)e0/2and U = (n+1)*(1-0/2). When L and U are not integers either the integer
closest to I. and U can be chosen, or (1) and e(u) can be interpolated between adjacent

residuals.

For the Cuyahoga TDS data, .= 81.025 = 2.025 and U= 81+.975 = 78.975. Either the 2nd and
79th ranked residual can be selected, or values interpolated between the 2nd and 3rd, and the
78th and 79th residual. These are then added to the regression line (y). In figure 9.17 the
nonparametric prediction interval is compared to the one previously developed assuming
normality of residuals. Note that the nonparametric interval is asymmetric around the central
regression line, reflecting the asymmetry of the data.
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Figure 9.17 Nonparametric and parametric prediction intervals for the TDS data.
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9.5 Regression Diagnostics

One common mistake in regression analysis is to base decisions about model adequacy solely on
the regression summary statistics--principally R2, s and the F- or t-test results. RZ is 2 measure
of the percent of the variation in the response (y) variable that is accounted for by the variation
in the explanatory variables. The s (standard error of the regression or standard deviation of the
residuals) is a measure of the dispersion of the data around the regression line. Most regression
programs also perform an overall F-test to determine if the regression relationship is statistically
significant, ie. that the apparent relationship between y and x is not likely to arise due to chance
alone. Some programs also do a t-test for each explanatory variable to determine if the

coefficient for that variable is significantly different from zero.

These statistics provide substantial information about regression results. An equation that
accounts for a large amount of the variation in the response variable and has coefficients that are
statistically significant is highly desirable. However, decisions about model adequacy cannot
be made on the basis of these criteria alone. A large R2 or significant F-statistic does not
guarantee that the data have been fitted well. Figure 9.18 (Anscombe, 1973) illustrates this
point.

The data in the four graphs have exactly the same summary statistics and regression line (same
bo, b1, s, Rz). In 9.18a is a perfectly reasonable regression model, an evidently linear
relationship having an even distribution of data around the least-squares line. The strong
curvature in 9.18b suggests that a linear model is highly inadequate and that some
transformation of x would be a better explanatory variable, or that an additional explanatory
variable is required. With these improvements perhaps all of the variance could be explained.
Figure 9.18c illustrates the effect of a single outlier on regression. The line mis-fits the data, and
is drawn towards the outlier. Such an outlier must be recognized and carefully examined to
verify its accuracy if possible. If it is impossible to demonstrate that the point is erroneous, a
more robust procedure than regression should be utilized (see Chapter 10). The regression slope
in 9.18d is strongly affected by a single point (the high x value), with the regression simply
connecting two "points", a single point plus a small cluster of points. Such situations often
produce R2 values close to 1, yet may have little if any predictive power. Had the outlying point
been in a different location, the resulting slope would be totally different. For example, the only
difference between the data of figure 9.19a and 9.19b is the rightmost data point. Yet the slopes
are entirely different! Regression should not be used in this case because there is no possible
way to evaluate the assumptions of linearity or homoscedasticity without collecting more data in
the gap between the point and cluster. In addition, the slope and R? are totally controlled by the

position of one point, an unstable situation.
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Figure 9.18 Three key pathologies in regression (after Anscombe, 1973).

© American Statistical Association. Used with permission.

The three key pathologies can be referred to by simple names: curvature (9.18b), outlier or large
residual (9.18c¢), and high influence and leverage (9.18d). They are generally easy to identify
from plots (y vs. x, o e vs. y ) in a linear regression with one explanatory variable. However, in
multiple linear regression they are much more difficult to visualize or identify, requiring plots in
multi-dimensional space. Thus numerical measures of their occurrence, called "regression

diagnostics", have been developed.

Equations for diagnostics useful in identifying points of leverage, influence, or outliers are given
here in terms of the two dimensions (x,y) applicable to simple linear regression (SLR). Each can
be generalized using matrix notation to a larger number of dimensions for multiple linear
regression (MLR). Further references on regression diagnostics are Belsley, Kuh, and Welsch
(1980), Draper and Smith (1981), and Montgomery and Peck (1982).
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9.5.1 Measures of Outliers in the x Direction

9.5.1.1 Leverage

Leverage is a measure of an "outlier" in the x direction, as in graph 9.18a. Itis a function of the
distance from the ith x value to the middle (mean) of the x values used in the regression.
Leverage is usually denoted as hj, the ith diagonal term of the "hat" matrix X (X'X)"1 X', or for
SLR
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Figure 9.19 Influence of location of a single point on the regression slope.

A high leverage point is one where hj > 3p/n where p is the number of coefficients in the model
(p=21in SLR, b and b1). Though leverage is concerned only with the x direction, a high
leverage point has the potential for exerting a strong influence on the regression slope. If the
high leverage point falls far from the regression line that would be predicted if it were absent
from the data set, then it is a point with high influence as well as high leverage (figure 9.19b).

9.5.2 Measures of Outliers in the y Direction

9.5.2.1 Standardized residual
One measure of outliers in the y direction is the standardized residual egi. It is the actual

. A . .
residual ej = yj — y i standardized by its standard error.

10
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!

eSi:s\/l—hi

An extreme outlier is one for which |egi| >3. There should be only an average of 3 of these in
1,000 observations if the residuals are normally distributed. |egi|>2 should occur about 5 times
in 100 observations if normally distributed. More than this number indicates that the residuals
do not have a normal distribution.

9.5.2.2 Prediction residuals and the PRESS statistic

A very useful form of residual computation is the prediction residual e(j). These are computed
as e(i) = vi- ?(1) where /};(1) is the regression estimate of yj based on a regression equation
computed leaving out the ith observation. The (i) symbolizes that the ith observation is left out
of the computation. These are easily calculated using leverage statistics without having to

perform n separate regressions:

ey =ei/ (1 —hy.

One of the best measures of the quality of a regression equation is the "PRESS" statistic, the

"PRediction Error Sum of Squares."

n
PRESS = 2 e(i)2
1=1

PRESS is a validation-type estimator of error. Instead of splitting the data set in half, one-half
to develop the equation and the second to validate it, PRESS uses n—1 observations to develop
the equation, then estimates the value of the one left out. It then changes the observation left
out, and repeats the process for each observation. The prediction errors are squared and
summed. Minimizing PRESS means that the equation produces the least error when making
new predictions. In multiple regression it is a very useful estimate of the quality of possible

regression models.

9.5.2.3 Studentized residuals
Studentized residuals (TRESIDs) are used as an alternate measure of outliers by some texts and

computer software. They are often confused with standardized residuals.
€ej e 1-hj
s/ TFhi  s0)

(n-p)sZ-[e®?/ (1-hy]
0 n-p-1

TRESID;

where
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TRESIDs are often similar to the standardized residuals egj, but are computed using a variance
sz(j) which does not include their own observation. Therefore an unusually large observation
does not inflate the estimate of variance used to determine whether that observation is unusual,
and outliers are more easily detected. Under a correct model with normal residuals, TRESIDs
have the theoretical advantage that they should follow a t-distribution with n—p—1 degrees of

freedom.

9.5.3 Measures of Influence
Observations with high influence are those which have both high leverage and large outliers
(figure 9.19b). These exert a stronger influence on the position of the regression line than other

observations.

9.5.3.1 Cook's D
One of the most widely used measures of influence is "Cook's D" (Belsley et al., 1980).

Lo _c?hi o e@hi
! ps2 (1 -hj)2 ps2

The ith observation is consideted to have high influence if Dj > F(p+1 n—p) at ¢=0.1 where p is
again the number of coefficients. Note that, for SLR with more than about 30 observations, the
critical value for Dj would be about 2.4, and for MLR with several explanatory variables the
critical value would be in the range of 1.6 to 2.0. Finding an observation with high Cook's D
should lead to a very careful examination of the data value for possible errors or special
conditions which might have prevailed at the time it occurred. If it can be shown that an error
occutrred, the point should be corrected if possible, or deleted if the error can't be corrected. If
no error can be proven, two options can be considered. A more complex model which fits the
point better is one option. The second option is to use a more robust procedure such as that
based on Kendall's T (for one x variable) or weighted least squares (for more than one x

variable). These methods for "robust regression” are discussed in Chapter 10.

9.5.3.2 DFFITS
The second influence diagnostic, related to TRESIDs, is the DFFITS:
i/ hi e/ hi
sy (1hi)  — sgi
An observation is considered to have high influence if | DFFITS;| = 2 m .

DFFITS; =

The identification of outliers can be done with either standardized or studentized residuals, and
the identification of highly influential points can be done with either DFFITS or Cook's D. The
leverage statistic identifies observations unusual in x. PRESS residuals are rarely used except to

sum into the PRESS statistic, in order to compare competing multiple regression models.
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Example 1

The data of figure 9.19a were analyzed by regression, and the above diagnostics calculated.
These data exhibit high leverage but low influence, as removal of the one outlier in the x
direction will not appreciably alter the slope of the regression line. The regression results are
given in Table 9.3. The only unusual value is the leverage statistic h; for the last point, the one
which plots to the right on the graph. A value of

3p/n = 0.6, so the 0.919 for this point shows it to be one of high leverage.

y = 2.83 + 0.60 x

n=10 s =0.43 RZ = 0.94

Parameter Estimate Std.Exr(B) t-ratio _p

Intercept B 2.828 0.195 14.51 0.000

Slope B4 0.596 0.054 10.98 0.000

OBS# ej hj e(i) e std estud DFFITS Dj

1 —-0.377 0.188 —0.465 —-0.974 —-0.970 —0.467 0.110
2 0.085 0.131 0.098 0.213 0.200 0.077 0.003
3 0.804 0.126 0.920 1.997 2.640 1.005 0.289
4 —0.219 0.122 -0.249 -0.543 —-0.518 -0.193 0.020
5 —0.484 0.104 —-0.541 -1.189 -1.226 —-0.419 0.082
6 0.204 0.104 0.228 0.501 0.476 0.162 0.014
7 0.380 0.101 0.423 0.931 0.922 0.309 0.048
8 0.059 0.100 0.066 0.146 0.136 0.045 0.001
9 —0.462 0.101 —-0.514 -1.132 —-1.156 —0.388 0.072

—_
)

0.010 0.919 0.132 0.087 0.081 0.276 0.043

Table 9.3 Regression statistics for the data of Figure 9.19a

Table 9.4 presents the analysis of the data for figure 9.19b. Note that the equation and ensuing
R are quite different. Only y for the 10th observation was changed from its previous value.
Note also that the influence statistics DFFITS and D;j are large. The 10th observation is one of
high influence, showing that the line computed with this point deleted is quite different than the
one with it included. This is also demonstrated by the prediction residual e(j), whose absolute
value is also large. The leverage statistic is unchanged from 9.19a, as the x position has not

changed.

It is also quite important to note the values for the 10th observation which are not large -- the
residual itself (ej) and the standardized residual (e std). These statistics do not indicate the

magnitude of the problem. Therefore residuals plots which use ej or
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e std may not display influential observations as such, because the line has been so drawn near to

the outlier that its residual does not appear unusual.

9.5.4 Measures of Serial Correlation
One of the assumptions of regression is that the residuals ¢j are independent. Many hydrologic
data sets on which regression is performed are actually pairs of time series -- precipitation and
flow, flow and concentration, concentration of one constituent versus concentration of another.
These series often exhibit serial correlation, the dependence or correlation in time sequence
between residuals, violating the assumption of independence (figure 9.10). If the sampling
frequency is high enough, serial correlation of the residuals is virtually certain to exist. If serial
correlation occurs, the following two problems ensue:
1) The estimates of the regression coefficients are no longer the most efficient estimates
possible, though they remain unbiased, and

2) The value of s2 may setiously underestimate the true 2.

This means that all of the hypothesis tests are wrong (H() is rejected too easily) and that

confidence and prediction intervals are too narrow.

V¢ = 3.65 + 0.1 x*

n=10 s = 0.60 RZ = 0.21
Parameter Estimate Std.Err(B) t-ratio _p
Intercept B 3.648 0.270 13.53 0.000
Slope B4 0.111 0.075 1.48 0.000
OBS# ej hj e(i) e std estud DFFITS Dj

1 —1.096 0.188 —-1.350 —=2.042 -=2.761 —1.330 0.483

2 —0.166 0.131 —-0.192 -0.300 —-0.282 —0.109 0.006

3 0.599 0.126 0.687 1.077 1.090 0.415 0.084

4 —-0.370 0.122 -0.421 -0.663 —0.638 —0.238 0.030

5 —0.325 0.104 -0.363 —0.576 —0.551 —0.188 0.019

6 0.373 0.104 0.417 0.662 0.637 0.217 0.025

7 0.680 0.101 0.757 1.204 1.245 0.417 0.081

8 0.534 0.100 0.594 0.945 0.938 0.313 0.049

9 0.099 0.101 0.110 0.176 0.165 0.055 0.001

10 —0.329 0919 —4.117 -1.955 —-2.531 -8.579 21.961

Table 9.4 Regression statistics for the data of Figure 9.19b

One can search for the presence of serial correlation in two ways. The first is graphical: plotting

ej versus i or a measure of time (figure 9.10b). If there is a tendency for the data to "clump,"
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positives follow positives, negatives follow negatives, this may mean there is dependence. The
clumping could arise for four different reasons: long-term trend, seasonality, dependence on
some other serially correlated variable which was not used in the model, serial dependence of
residuals, or some combination of these. Examination of a graph of ej versus time should help
to reveal trend or seasonality if they exist. If there is reason to believe it is trend or seasonality
(or both), then steps should be taken to remove these features from the residuals by adding
additional explanatory variables. Similarly, if there is an important variable missing from the
model, plots of ej versus this variable should show it, and incorporating this new variable may
remove the clumpiness of the residuals. This is particularly likely if this new explanatory variable
exhibits serial dependence, seasonality, or trend. The residuals from these new regressions can
be plotted again to see what effect this had.

9.5.4.1 Durbin-Watson statistic
There are also statistics for evaluating the dependence of residuals. The standard one is the
Durbin Watson statistic (Durbin and Watson, 1951). It is very closely related to a serial

correlation coefficient. The statistic is
n

Y lei - e-1))?
i=2

A small value of d is an indication of serial dependence. The Hj that the ej are independent is
rejected in favor of serial correlation when d<dp, which is tabled in time-series texts. The value
of dy, depends on the size of the data set, the number of explanatory variables, and o. However,
a low value of d will not give any clue as to its cause. Thus, the graphical approach is vital, and
the test is only a check. The Durbin Watson statistic requires data to be evenly spaced in time

and with few missing values.

9.5.4.2 Serial correlation coefficient

Serial correlation can also be measured by the correlation coefficient between a data point and
its adjacent point. As a linear relationship between pairs of points cannot be assumed, the
Kendall's or Spearman's coefficients will provide robust measures of serial dependence. To

compute whether this serial dependence is in fact significant,

1) Compute the regression between y and x.

2) Order the resulting residuals by the relevant time or space variable t; to tp.
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3) Offset or "lag" the vector of residuals to form a second vector, the lagged residuals. The
residuals pairs then consist of (ej, ej—1) for all i from t to tn. Figure 9.10c plots one such
set of data pairs, illustrating their correlation.

4) Compute Kendall's tau (or Spearman's tho) between the pairs (ej, ¢j—1). If the

correlation is significant, the residuals are serially correlated.

9.5.4.3 What to do if serial correlation is present
If serial dependence cannot be removed by adding new variables, and one wants to make
inferences about parameters, then these three options are available.

1) Sample from the data set. For example, if the data set is quite large and the data are
closely spaced in time (say less than a few days apart), then simply discard some of the
data in a regular pattern. The dependence that exists is an indication of considerable
redundancy in the information, so not a great deal is lost in doing this.

2) Group the data into time periods (e.g., weeks, months) and compute a summary statistic
for the period such as a time-weighted mean or median, a volume-weighted mean or
median, and then use these summary statistics in the regression. This should only be
done when the sampling frequency has remained unchanged over the entire period of
analysis.

3) Use much more sophisticated estimation methods, specifically Box and Jenkins (1976)

transfer function models, or regression with autoregressive errors Johnston (1984).

9.6 Transformations of the Response (y) Variable

The primary reason to transform the response variable is because the data are heteroscedastic --
the variance of the residuals is a function of x. This situation is very common in hydrology. For
example, suppose a rating curve between stage (x) and discharge (y) at a stream gage has a
standard error of 10 percent. This means that whatever the estimated discharge, the standard
error is 10 percent of that value. The absolute magnitude of the variance around the regression
line between discharge and stage therefore increases as estimated discharge increases. The ideal
variance stabilizing transformation in these cases is the logarithm because a multiplicative
relationship, such as standard error = 0.10*estimate, becomes a constant additive relationship
after log transformation. This satisfies the regression assumptions. The two topics that require
careful attention when transforming y are:

1) deciding if the transformation is appropriate, and

2) interpreting resulting estimates.

9.6.1 To Transform or Not to Transform?
The decision to transform y should generally be based on graphs. First develop the best possible

non-transformed model. This should entail considering all sorts of transformations of x (or
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multiple x variables) to get a good and reasonable fit. Then plot ¢j vs. § i to check for
heteroscedasticity, do a probability plot for ej to check for normality, and examine the function
for unreasonable results (i.e., predictions of negative values for variables that can't go negative).
If serious problems arise for any of these reasons, transform y and repeat the process. If both
the transformed and untransformed scales have problems, then either look for a different

transformation or accept the lesser of two evils.

Two methods are available to numerically judge whether or not to transform y. The first is to
perform a series of transformations, perform regressions, and choose the transformation which
maximizes the probability plot correlation coefficient (PPCC) for the regression residuals. This
optimizes the normality of residuals. The second method is similar, optimizing for linearity. It
searches for the minimum sum of squared errors SSE from a series of regressions using
transformed and scaled y variables (Montgomery and Peck, 1982, p.94). The transformations
used are scaled versions of the ladder of powers called "Box-Cox transformations". Scaling is
required in order to compare the errors among models with differing units of y. Either
numerical method can be a useful guide to selecting several candidate transformations from

which to choose. However, the final choice should be made only after looking at residuals plots.

The key thing to note here is that comparisons of R2, s, or F statistics between transformed
and untransformed models cannot easily be used to choose among them. Fach model is
attempting to predict a different variable (y, log(y), 1/y, etc.). The above statistics therefore
measure how well different variables are predicted, and so cannot be directly compared.

Instead, the appropriate response variable is one which fits the assumptions of regression well --
linear and homoscedastic, having a good residuals plot. Once a hydrologist has developed some
experience with certain kinds of data sets, it is quite reasonable to go directly to the appropriate
transformation without a lot of investigation. One helpful generalization is that any y variable
that covers more than an order of magnitude of values in the data set, as sediment discharge or

bacterial densities typically do, probably needs to be transformed.

9.6.2 Consequences of Transformation of y
Let's take a particular, but rather common, case of a transformed regression problem. The

model is
InL) =B+ P11nQ +e

where In is the natural log, L is constituent load (tons/day), and Q is discharge (cubic feet per

second). Let us further assume that the ¢ values are normal with mean zero and variance o2.

Figure 9.20 illustrates a data set typical of such L vs. Q data, shown here as a log-log plot. The
lines results from a SLR done in log units. The middle line is the regression line and the 50%

and 95% prediction intervals are shown. Note that, because of the normality assumption, the
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prediction intervals are symmetric about the regression line. For any given Q) value the five lines
on the graph represent five different percentage points on the conditional distribution of In(L).
They are the 2.5, 25, 50 (median), 75, and 97.5 percentage points. The median also happens to
be the conditional mean for In(L)) because when normality is assumed the median = mean. So

the regression line falls on both the conditional median and mean value for In(L).

Figure 9.21 takes each of these data points and lines and replots them in the original units (L
versus Q). The five curves remain the 2.5, 25, 50, 75, and 97.5 percentage points on the
conditional distribution. Now however this distribution of L. conditional on Q) is lognormal, not
a normal distribution. Note the asymmetry of the curves around the regression line. Fora
lognormal distribution the mean is not equal to the median. While the central line remains the
conditional median following transformation, the conditional mean of L will always lie

somewhere above the regression line.
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Figure 9.20 Prediction intervals and log-log regression in log units.
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Figure 9.21 Prediction intervals and log-log regression re-expressed in original units.

9.6.3 Computing Predictions of Mass (Load)

9.6.3.1 Median or "rating curve" estimate of mass

When the objective is estimating the mass of sediment (or nutrient or contaminant) entering a
lake, reservoir, or estuary, the mean for each of many short time periods can be estimated by
regression and summed to estimate the total (or mean) mass over a longer time period. This is
appropriate because the sum of the means equals the mean of the sum. However, simply
transforming estimates from a log-regression equation back into the original units for y provides
a median estimate of L, not a mean. Unfortuantely, this has been the traditionally-used method
since Miller (1951). The sum of these medians provides an estimate of the mean of L. which is
biased low. As the sum of the medians is not the median of the sum, it is difficult to state what
the sum of these median values represents, except that it underestimates the long-term mean
load.

Ferguson (19806) points out for some very realistic cases that using the median or rating curve

estimate for loads:

L m = exp [b0 + b1 In(Qq)]
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will result in underestimates of the mean by as much as 50%. The question then is how to
compensate for this bias. The following two methods, one assuming a normal distribution of
the logs and the other a nonparametric method, attempt to correct for this bias of the median
estimate.

9.6.3.2 Parametric or "MLE" estimate of mass

If the residuals in natural log units were known to be normal and the parameters of the model
(Bo, B1, 62) were known without error, the theory of the lognormal distribution (Aitchison and
Brown, 1981) provides the following results:

Median of L given Qg =exp [Bo + B1 In(Qo)] =Lm
= exp [Bo] *+ QP!

Mean of L given Qq =E [L]Qq] =exp [B0 *+ B1 In(QQ) + 0.5 (52]
= Lm * exp [0.5 62]

Variance of L given Qq =V [L|Qo] = [Lm *exp(0.5 62)]2 * [exp(c?) — 1]
These equations would differ if base 10 logarithms were used (Ferguson, 1980).

Unfortunately the true population values By, B1, and o2 are never known in practice. All that is
available are the estimates bg, b1, and s2. Ferguson (1986) assumed these estimates were the true

values for the parameters. His estimate of the mean is then
AN

Lyig = exp [by + by In(Qq) + 0.5 s2]

When n is large (>30) and o is small (<0.5), ﬁ MLE 1s a very good approximation. However,
when n is small or ¢ is large, it can overestimate the true mean -- it overcompensates for the
bias. There is an exact unbiased solution to this problem which was developed by Bradu and
Mundlak (1970). Itis not given here due to the complexity of the formula. Its properties are
discussed in Cohn (1988). Even so, the validity of Bradu and Mundlak's solution depends on

the normality of the residuals which can never be assured in practice.

9.6.3.3 Nonparametric or "smearing" estimate of mass

There is an alternative approach which only requires the assumption that the residuals are
independent and homoscedastic. They may follow any distribution. This is the "smearing"
estimate of Duan (1983). In the case of the log transform it is

n
Y exp [e]

i=1
Lp = exp [bo + b1 In(Qo)]
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The smearing estimator is based on each of the residuals being equally likely, and "smears" their
magnitudes in the original units across the range of x. This is done by re-expressing the residuals
from the log-log equation into the original units, and computing their mean. This mean is the
"bias-correction factor" to be multiplied by the median estimate for all xg. Even when the
residuals in log units are normal, the smearing estimate performs very nearly as well as Bradu
and Mundlak's unbiased estimator. It avoids the overcompensation of Ferguson's approach. As
it is robust to the distribution of residuals, it is the most generally-applicable approach.

The smearing estimator can also be generalized to any transformation. If Y = f(y) where y is the
response variable in its original units and f is the transformation function (e.g., square root,

inverse, or log), then

n
Z £1 (bo + b1 X0 + ¢

A _ 1i=1

YD - n

where b() and b1 are the coefficients of the fitted regression and ej are the residuals
Yi=bo+b1 Xp+ep,f -1 is the inverse of the selected transformation (e.g., square, inverse,

or exponential, respectively) and X() is the specific value of X for which we want to estimate y.

9.6.4 An Example

Total phosphorus loads are to be estimated for the Illinois River at Marseilles, Illinois, drainage
area 8259 square miles, for the period 1972-1985. The data are contained in Appendix C10.
The 96 measurements of load are plotted in figure 9.22 as a function of discharge. As loads
were not sampled for each day during this time period, estimates of load for unsampled days are

to be obtained from a regression equation as a function of discharge.
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Figure 9.22 Total phosphorous load and stream discharge for the Illinois River

The first question is whether a log transform of load is necessary to develop a good prediction
equation. From figure 9.22, the variance appears to greatly increase as discharge increases.
Therefore a log transformation of phosphorus is attempted. This results in a curvilinear pattern,
so the log of discharge is computed and used as the explanatory variable. As seen in figure 9.23,
the transformation of both load and discharge results in a linear, homoscedastic relationship. A
residuals plot in figure 9.24 shows little evidence of structure, indicating that the units are
appropriate. Therefore these units are used for the regression. Table 9.5 gives the relevant

regression statistics.

In() = 0.80 + 0.76 In(Q)

n =96 s=0339  R%=0.068
Parameter Estimate Std.Err(B) t-ratio _p
Intercept By 0.799 0.114 7.03 0.000
Slope B 0.761 0.054 14.10 0.000

Table 9.5 Regression statistics for the Illinois River phosphorus data
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Figure 9.23 Log-log relation between phosphorous and discharge for the Illinois River
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Figure 9.24  Residuals plot for In(phosphorous) versus In(discharge)

259

To illustrate the bias in phosphorus loads for the rating curve method, and the bias correction

capabilities of the other two methods, estimates of all three will be computed here for the 96
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days for which data exist. These values can then be compared to the "true" loads computed

from the observed data.

The results from this regression are these Mean Toad Error
true =12.64 -
median estimate =11.72 -7.3%
MLE estimate =1241 -1.8%
smearing estimate =12.44 -1.6%

The median estimate is biased low, while the MLE and smearing estimates are close to each
other and to the true value (figure 9.25). The MLE and smearing estimates should be expected
to be similar here, as the residuals are fairly symmetric, n is large and s is small. These are the
conditions under which the MLE works well. Had s been large (>1) or n small (<30) the MLE
would probably have had a positive bias, and only the smearing estimate would have come close

to the true value.
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Figure 9.25 Load estimate curves with and without bias correction for Illinois R. data



Simple Linear Regression 261

9.7 Summary Guide to a Good SLR Model

1) "Should x be transformed, and if so, how?" Considerable help can come from a statistic
such as R2 (maximize it), or s (minimize it), but these numbers alone do not insure a good
model. Many transformations can be rapidly checked with such statistics, but always look at
a residual versus predicted plot before making a final decision. Transform x if the residuals
plot appears non-linear but constant in variance, always striving for a linear relation between

y and x.

2) "Should y be transformed, and if so, how?" Visually compare the transformed-y model to
the untransformed-y model using their residuals plots (residual versus predicted). The better
model will be more:

1) linear,
2) homoscedastic, and

3) normal in its residuals.

The statistics RZ, s, t-statistics on B1, etc. will not provide correct information for deciding if

a transformation of y is required.

Should estimates of mass (loads) be developed using an equation having transformed-y units,
the transformation bias inherent in the process must be compensated for by use of the

smearing estimate, or MLE estimate when appropriate.

When there are multiple explanatory variables, more guidelines are required to choose between
the many possible combinations of adding, deleting and transforming the various x variables.
These are discussed in Chapter 11.
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Exercises

9.1

9.2

9.3

Bedinger (1961) graphically related median grain size of alluvial aquifer materials in the
Arkansas River Valley to their yield, in gallons per day per square foot. This enabled
estimates of yield to be made at other locations based on measured grain-size analyses.

Compute a regression equation to predict yield, based on the data in Appendix C11.

Estimate the mean yield in gallons per day per square foot available from four wells
which together compose the public supply of a small town in the Arkansas River Valley.
The wells have screens with identical cross-sectional areas. Median grain sizes for the
units they draw from are: 0.1, 0.2, 0.4 and 0.6 millimeters.

Find a transformation of discharge for the Cuyahoga River TDS example which might
improve on the log () transformation used throughout the chapter. The data are found
in Appendix C9. Obvious candidates include the ladder of power transformations.
Another class of transformations that has been shown to work well for surface-water
chemistry is the hyperbolic transformations (see Johnson, et al., 1969). The form of this
transformation is x=1/(1+kQ) where k is some constant supplied by the hydrologist.
Some general advice about selecting k is that it's not worth the effort to try and get it
"right" to a precision better than
about half an order of magnitude. A good range to work in is

1/(100(Q) < k < 100/(Q)

where (Q) is the mean discharge.

The questions you should answer are:

a) What is a good transformation of QQ to use in estimating TDS? (There is no "best"
transformation, but there are several good ones.)

b) Describe your preferred model and indicate some reasons you might be concerned
about it and might want to take steps to "fix" it in some fashion. (You will get a
chance to later.)

c) What does it tell you about TDS behavior in the Cuyahoga River?

d) A question for the mathematically inclined. If k is set to some very large value (say
around 100/Q), what other model does the hyperbolic approximate? If b is set to

some very small value (say around 1/100Q ), what other model does it approximate?


jkmonson
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9.4

Objections have been raised to regressions such as load (L) versus stream discharge (Q)
because Q is used to calculate L. This "spurious correlation" between QQ and L can be
avoided by using concentration (C) instead of load as the dependent variable. Loads
would then be predicted from the estimated C. What do you think? How will the
results using C compare to those using L as the regression's response variable? To
answer this, perform the regression for the Illinois phosphorus data of section 9.6.4 and
produce the 96 load estimates using In(C in mg/L) instead of In(L in tons per day). The
data are found in Appendix C10. Note that the units of QQ (thousands of cfs) mean that
L = 2.7 Q+C. What happens to the regression coefficients and the associated statistics
such as R2, s, t-ratios, etc., when In(C) rather than In(L) is used? What is the appropriate

conclusion to this controversy?






Alternative Methods for Regression

Concentrations appear linearly related to distance down-dip in an aquifer. OLS regression
shows the residuals to be of generally constant variance. However, several outliers in the data
set inflate the standard error, and what appears graphically as a strong linear relationship tests as
being insignificant due to the outliers' influence. How can a more robust linear fit be obtained
which is not overly sensitive to a few outliers, and describes the linear relation between

concentration and distance?

A water supply intake is to be located in a stream so that water elevation (stage) is below the
intake only 5 percent of the time. Monitoring at the station is relatively recent, so OLS relating
this and a nearby site having a 50 year record is used to generate a pseudo 50-year stage record
for the intake station. The 5th percentile of the pseudo record is used as the intake elevation.
Given that OLS estimates are reduced in variance compared to actual data, this elevation
estimate will not be as extreme as it should be. What alternatives to OLS would provide better

estimates?

The mass of a radionuclide present within the aquifer of one county was computed by
performing a regression of concentration versus log of the hydraulic conductivity measured at 20
wells. This equation was used to generate estimates at 100 locations of known hydraulic
conductivity, which are then multiplied by the volumes of water, and summed. However, the
regression equation shows a marked increase in variance of concentration with increasing
conductivity, even though the relationship is linear. Transformations may produce a nonlinear
relationship, with probable transformation bias. An alternative to OLS is therefore required to

account for heteroscedasticity without employing a transformation.

Situations such as the above frequently arise where the assumptions of constant variance and
normality of residuals required by OLS regression are not satisfied, and transformations to
remedy this are either not possible, or not desirable. In addition, the inherent reduction in
variance of OLS estimates is not appropriate when extending records. In these situations,
alternative methods are better for fitting lines to data. These include nonparametric rank-based

methods, lines which minimize other than the squared residuals, and smooths.
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10.1 Kendall-Theil Robust Line

The significance of a linear dependence between two continuous variables Y and X or their
transforms may be tested by determining whether the regression slope coefficient for the
explanatory variable is significantly different from zero. This is equivalent to the test for
significance of the linear correlation coefficient r between Y and X. In a similar fashion,
Kendall's rank correlation coefficient tau (see Chapter 8) may be used to test for any monotonic,
not just linear, dependence of Y on X. Related to tau is a robust nonparametric line applicable
when Y is linearly related to X. This line will not depend on the normality of residuals for
validity of significance tests, and will not be strongly affected by outliers, in contrast to OLS

regression.

The robust estimate of slope for this nonparametric fitted line was first described by Theil
(1950). An estimate of intercept is also available (Conover, 1980, p. 267). Together these define
an estimate of a complete linear equation of the form:

¢ =hg +b; °X
This line is closely related to Kendall's tau, in that the significance of the test for
Hy: slope 31=0 is identical to the test for Hy: tau=0.

10.1.1 Computation Of the Line

The Theil slope estimate Bl is computed by comparing each data pair to all others in a pairwise
fashion. A data set of n (X,Y) pairs will result in n(n—1)/2 pairwise compatisons. For each of
these compatisons a slope AY/AX is computed (figure 10.1)* The median of all possible

pairwise slopes is taken as the nonparametric slope estimate bl .

-
o
[
<
o
[
P
w
(&)
2
O
(&)
TIME
A. B.
Figure 10.1 A. All possible pairwise slopes between six data points.

B. All possible slopes rearranged to meet at a common origin
The thick line is the median of the 15 slopes.
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%1 = median %(]_%11)) foralli <j andi=1,2,..(n~1) j=2,3,..n. [10.1]
Example 1
For example, given the following seven (X,Y) data pairs:
Y: 1 2 3 4 5 16 7
X 1 2 3 4 5 6 7
Slopes: +1 +1 +1 +1  +11 -9 There are (7)(6)/2 = 21 pait-
+1 +1 +1 +6 +1 wise slopes. Comparing
+1 +1 +43  +1 points 2 and 1, slope = +1.
+1 +3.5 +1 Going down the column
+3 +1 under point 1, comparing
+1 points 3 and 1, slope = +1.

For points 4 and 5 vs 1, slopes = +1. Compatring points 6 and 1, slope = (15/5) = +3, etc.
After computing all possible slopes, they are put into ascending order:
-9, 41, +1, +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +3 +35 +43 +6 +11
The median of these 21 values is the 11th smallest, or +1, so that f)l = +1.

The intercept is defined as follows

by = Ymed — b1 * Xmed [10.2]
where Xedq and Yieq are the medians of X and Y respectively. This formula assures that the
fitted line goes through the point (Xmed , Ymed). This is analogous to OLS, where the fitted line

always goes through the point (x,y). For the Example 1 data above, Xeq = 4 and Yimed= 4,
so that by =4 —1+4 = 0.

Other estimates of intercept have been suggested. One is the median of all possible intercepts

computed by solving the Kendall line using b and each data point (Dietz, 1989). However, the

estimate of intercept produced by placing the line through the data medians was found by Dietz
to be efficient in the presence of outliers and non-normal residuals, while also being simple to
compute. Itis the estimate recommended here, due to its robustness and efficiency, simplicity,

and analogy to OLS.

10.1.2 Properties Of the Estimator

OLS regression for the example 1 data would produce a slope by of 1.71. This differs
substantially from the Theil estimate %1 of 1, due to the strong effect on the regression slope of
the one outlying Y value of 16. This effect can be seen by changing the 6th Y value from 16 to
6. The regression slope would change from 1.71 to 1, but %1 would be unchanged. Similarly, if
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the data value were changed from 16 to 200, by would be greatly inflated while %1 would again

remain at 1. The estimator by is cleatly resistant to outliers. It responds to the bulk of the data.

%1 is an unbiased estimator of the slope of a linear relationship, and by from OLS is also an
unbiased estimator. However, the variance of the estimators differ. When the departures from
the true linear relationship (true residuals) are normally distributed, OLS is slightly more efficient
(has lower variance) than the Kendall-based line. When residuals depart from normality (are
skewed or prone to outliers), then f)l can be much more efficient than the OLS slope. The
efficiency of the Theil estimate to the OLS slope is the same as that for the Hodges-Lehmann
estimator in comparison to the mean (Sen, 1968), as the Theil estimate is one of the class of
Hodges-Lehmann estimators. The Kendall-Theil line has the desirable properties of a
nonparametric estimator: almost as "good" (efficient) as the parametric estimator when all

assumptions of normality are met, and much better when those assumptions are not met.

One commonly-asked question is "how much of a departure from a normal distribution is
necessary before a nonparametric test has an advantage over its parametric counterpart?”. In
the case of the Theil and OLS slope estimates, how non-normal must residuals be before the
Theil estimate should be used? Are there advantages even in cases where the departure from
normality is so small that visual inspection of the data distribution, or formal tests of normality,
are unlikely to provide evidence for the lack of normality? Hirsch et al. (1991) tested the two
slope estimators under one type of departure from normality, a mixture of two normal
distributions. The predominant distribution had a mean of 10 and a standard deviation of 1;
the second distribution had a mean of 11 and a standard deviation of 3. Figure 10.2 displays the
two individual distributions and figure 10.3 displays a mixture of 95 percent from the first
distribution and 5 percent from the second. Visual examination of figure 10.3 reveals only the
slightest departure from symmetry. Given sampling variability that would exist in an actual data
set it would be exceedingly unlikely that samples from this distribution would be identified as
non-normal. Figure 10.4 displays a more substantial departure from normality, a mixture of 80
percent of the first distribution and 20 percent of the second. There is a difference in the shape
of the two tails of the distribution, but again the non-normality is not highly noticeable.

Random samples were generated from each of several different mixture distributions containing
between 0 and 20 percent of the second distribution. Data from each mixture were treated as a
separate response variable in a regression versus a random order x. The true population slope is
therefore zero. Both OLS and the Theil slope estimators were computed, and their standard
deviations around zero recorded as root mean square error (RMSE). The results are given in
figure 10.5 as the ratio of RMSE for the Theil estimator to the RMSE of the regression
estimator (Hirsch et al., 1991). A value larger than 1 shows an advantage to OLS; smaller than
1 indicates the Theil estimate to be superior. For the larger sample size (n=306) the OLS

estimator was more efficient (by less than 10 percent) when the data are not mixed and
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therefore normal. With even small amounts of mixtures the Theil estimator quickly becomes
more efficient. At a 20 percent mixture the Theil estimator was almost 20 percent more
efficient. When the sample size was very small (n=0, smaller than typically used in a case study),

efficiencies of the two methods were virtually identical.

These results reinforce that when the data or their transforms exhibit a linear pattern, constant
variance and near-normality of residuals, the two methods will give neatly identical results. The
advantages of familiarity and availability of diagnostics, etc. favor using OLS regression.
However, when residuals are not normally distributed, and especially when they contain outliers,
the Kendall method will produce a line with greater efficiency (lower variability and bias) than
does OLS. Only small departures from normality (not always sufficient to detect with a test or
histogram of residuals) favor using a robust approach. Certainly one should check all outliers
for error, as discussed in Chapter 1. Do these represent a condition different from the rest of
the data? If so, they may be the most important points in the data set. Perhaps another
transformation will make the data more linear and residuals near-normal. But outliers cannot
automatically be deleted, and often no error can be found. Robust methods like Kendalls or
weighted least squares (discussed in sections 10.3 and 10.4) provide protection against

disproportionate influence by these distinctive, but perhaps perfectly valid, data points.

For analysis of a small number of data sets, detailed searches for transformations to meet the
assumptions of OLS are feasible. OLS is particularly informative in more complex applications
requiring incorporation of exogenous effects using multiple regression (see Chapter 11). Cases
aren't unusual, however, where no power transformations can produce near-normality due to
heavy tails of the distribution. Perhaps the two greatest uses for Kendall's robust fit are 1) in a
large study where multiple variables are tested for linear fits at multiple locations without the
capability for exhaustive checking of distributional assumptions or evaluations of the sensitivity
of results to outliers, and 2) by practitioners not trained in residuals plots and use of
transformations to stabilize skewness and heteroscedasticity. A third use is for fitting lines to

data which one does not wish to transform.
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Figure 10.2. Two normal distributions, the first with mean = 10 and standard deviation = 1;

the second with mean = 11 and standard deviation = 3
(from Hirsch et al., 1991).
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Figure 10.3. A mixture of data from distribution 1 (95 percent) and distribution 2 (5 percent)
shown in figure 10.2 (from Hirsch et al., 1991).
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Figure 10.4. A mixture of data from distribution 1 (80 percent) and from distribution 2 (20
percent) shown in figure 10.2 (from Hirsch et al., 1991).

11
RMSE RATIO '\
\3\0—0
\.
X AN
1 \,
\ ——— | - N=6
Y - N=36
\.
0.9 \\

®
0.8 I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20
PERCENT MIXTURE

Figure 10.5. Relative efficiency of the Theil slope estimator as compared with the OLS slope.
Efficiency is the ratio of the Theil RMSE to the OLS RMSE, expressed as a function of
population mixture and record length (from Hirsch et al., 1991).
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Example 2
Figure 10.6 shows an OLS and Kendall-Theil fit to trends in total phosphorus concentrations

from 1975 to 1989 in the St. Louis R. at Scanlon, MN. The outliers ate accurate values from
floods, and therefore cannot be ignored or deleted. The question is whether there is a significant
linear trend in concentration over this 14 year period. Here linear fits of concentration versus
time are used to test for trend (see Chapter 12 for more on trend tests). The OLS slope is
affected by the outliers present. Although the magnitude of the OLS estimate is similar to the
Theil slope, the OLS slope does not test as significantly different from zero (p=0.43). This is
due to inflation of the standard error by outliers in violation of the assumed normality of
residuals. The Theil slope is highly significantly different from zero (p<<0.0001). The Kendall-

Theil line is not dependent on assumptions of normality which the data strongly violate.

10.1.3 Test of Significance
The test for significance of the Kendall-Theil linear relationship is the test for Hy: T = 0. This
involves computation of Kendall's S statistic (equation 8.1 of Chapter 8). For n>10, the large
sample approximation (equation 8.3 of Chapter 8) may be used. The Theil slope estimator %1 is
closely related to Kendall's S and 7T in the following ways.

1. S is the sum of the algebraic signs of the possible pairwise slopes.

2. If the amount (l;l X) is subtracted from every Y value, the new Y values will have an S

and T very close to zero, indicating no correlation.

If X is a measure of time, as it is for a trend test, subtracting (b, X) yields a trend-free version of
the Y data set.
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Figure 10.6. Total phosphorus concentrations with OLS and Kendall-Theil fitted lines for the
St. Louis River at Scanlon, MN, 1975-1989.



Alternative Methods for Regression 273

Example 1, cont.
For the example 1 data set, the test of significance is computed as follows. S equals the sum of

the signs of pairwise slopes already computed. There are n(n—1)/2 =21 slopes, 20 of which are
positive and 1 negative, so that S = 20—-1 = 19. Tau = 19/21 = 0.90. Using table B8 of the
Appendix due to the small sample size, the exact two-sided p-value for an S of 19 and n=7 is
20.0014 = 0.003. (Inappropriately using the large sample approximation for such a small data
set, the approximate p-value is 0.007.) Thus Y is significantly related to X in a linear fashion.

10.1.4 Confidence Interval for Theil Slope

Confidence intervals may be computed for the Theil slope %1 with procedures parallel to those
used for other Hodges-Lehmann type estimators of earlier chapters. As before, the tabled
distribution of the test statistic, in this case table B8 for the exact Kendall's test statistic or a table
of standard normal quantiles for the large-sample approximation, is entered to find upper and
lower limits corresponding to critical values at one-half the desired alpha level. These critical
values are transformed into the ranks corresponding to data points at the ends of the confidence

interval.

For small sample sizes, table B8 is entered to find the critical value Xy, having a p-value nearest
to 0/2. This critical value is then used to compute the ranks Ry and Ry corresponding to the
slope values at the upper and lower confidence limits for %1 . These limits are the Rjth ranked
data points going in from either end of the sorted list of N = ne(n—1)/2 pairwise slopes. The

resulting confidence interval will reflect the shape (skewed or symmetric) of the original data.

Xu

Ry = % [10.3]
-Xy

R = % +1 (10.4]

Example 1, cont.
The N=21 possible pairwise slopes between the n=7 data pairs for example 1 were:

-9, +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 +1 +3 +35 +43 +6 +11.
%1 was the median or 11th largest slope. To determine a confidence interval for f)l with
o = 0.05, the tabled critical value Xy nearest to o/2= 0.025 is found to be 15 (p=0.015). The
rank Ry of the pairwise slope corresponding to the upper confidence limit is therefore

21 + 15
Ru = KTZ =18 for N=21 and X,=15.
The rank Rj of the pairwise slope corresponding to the lower confidence limit is

21-15
R| :£T2+1 = 4.

b b
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So an o0 = 2¢0.015 = 0.03 confidence limit for %1 is the interval between the 4th and 18th
ranked pairwise slope (the 4th slope in from either end), or

+1<by <435,
The asymmetry around the estimate %1 = 1 reflects the low probability that the slope is less than
1, based on the data.

When the latge-sample approximation is used, the critical value zg /2 from a table of standard
normal quantiles determines the upper and lower ranks of the pairwise slopes corresponding to

the ends of the confidence interval. Those ranks are

Ry = 18 +1 [10.5]

2

Ny Zszn(n— D(2n +5)

Nez ‘/n(n—l)(zn+5)
R| = o . 18 10.6]

As an example, for n=20 pairs of data there would be N=(20)(19)/2 = 190 possible pairwise
slopes. by is the average of the 95th and 96th ranked slopes. For a 95 percent confidence
interval on by, zg /2 = 1.96 and

190 + 1.96 /950
Ll: 2 +
~ 190 -1.96 *4] 950
R] = >

the 64.8th ranked slope from either end. Rounding to the nearest integer, the 126th and 65th

1 =126.2

= 64.8

ranked slopes are used as the ends of the =0.05 confidence limit on bl .

Further discussion of these equations is in Hollander and Wolfe (1973), pp. 207-208.

10.2 Alternative Parametric Linear Equations

Hirsch and Gilroy (1984) described additional methods for fitting straight lines to data whose
slopes and intercepts are computed using moment statistics. These lines differ from the OLS
line of Chapter 9, and are more appropriate than that line for certain situations. For example,
when X is to be predicted from Y using OLS, the resulting line differs from the OLS line
predicting Y from X. This has implications for calibration. When many predictions are to be
made and the distribution of those predictions is important (percentiles or spreads are of
interest, as well as the mean), the Line of Organic Correlation (LOC) should be used instead of
OLS. When describing a functional relationship between two variables without trying to predict
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one from the other, LOC is again more appropriate than OLS. When some geographic
trajectory is to be computed, the Least Normal Squares (LNS) line should be used.

10.2.1 OLSofXonY

The OLS regression of Chapter 9 considered the situation where a response variable Y was to be
modeled, enabling estimates of Y to be predicted from values of an explanatory variable X.
Estimates of slope and intercept for the equation were obtained by minimizing the sum of
squares of residuals in units of Y. Thus its purpose was to minimize errors in the Y direction

only, without regard to errors in the X direction. The equation may be written as:

_ N _
Yi=Y+r = (X -X) [10.7]
S

X

where r is Pearson's linear correlation coefficient, sy and sy are the standard deviations of the Y
and X variables, and (t sy/sx) = (t~/SSy /4[SSx) = by, the OLS estimate of slope (see Chapter

9). Assuming the linear form of the model is correct and that X and Y are measured without
error, OLS will lead to estimates of Yj for any given Xj which are unbiased and have minimum
variance. This means that OLS is the preferred method of estimating a single value of Y given a

value of X, where X is measured without error.

In contrast, situations occur where it is just as likely that X should be predicted from Y, or that
the two variables are equivalent in function. One classic example is in geomorphology, where
relations between the depth and width of a stream channel are to be related. It is as reasonable
to perform a regression of depth on width as it is of width on depth. A second example is the
relation between dissolved solids concentration and "residue on evaporation" or ROE, an
alternate measure of the amount of dissolved material in a water sample. Either could be chosen
to model as a function of the other, and usually a description of their relationship is what is of

most interest.

It is easy to show, however, that the two possible OLS lines (Y on X and X on Y) differ in slope
and intercept. Following equation [10.7], reversing the usual order and setting X as the response

variable, the resulting OLS equation will be
— s -
Xi=X+r—= (Y -Y) [10.8]
s
y

which when solved for Y becomes

- 1 —
Yi=Y+= = (X, -X) [10.9]
r s

Letby'=(1/r+ sy/sx), the slope of X on Y re-expressed to compare with slope by. Contrasting
[10.7] and [10.9], the slope coefficients bj# b1'. Thus the two regtession lines will differ unless
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the correlation coefficient r equals 1.0. In figure 10.7, these two regression lines are plotted for
the dissolved solids and ROE data of Appendix C12.

The choice of which, if either, of the OLS lines to use follows a basic guideline. If one is to be
predicted from the other, the predicted variable should be assigned as the response variable Y.
Errors in this variable are being minimized by OLS. However, when only a single line
describing the functional relationship between the two variables is of interest, neither OLS line is
the appropriate approach. Neither OLS line uniquely or adequately describes that relationship.
A different linear model having a unique solution should be used instead -- the line of organic

correlation.

10.2.2  Line of Organic Correlation
The line of organic correlation (LOC) was proposed as a linear fitting procedure in hydrology by
Kritskiy and Menkel (1968) and applied to geomorphology by Doornkamp and King (1971). Its
theoretical properties were discussed by Kruskal (1953). The line also has been called the
"geometric mean functional regression" (Halfon, 1985), the "reduced major axis" (Kermack and
Haldane, 1950), the "allometric relation" (Teisser, 1948) and "Maintenance of Variance -
Extension" or MOVE (Hirsch, 1982). It possesses three characteristics preferable to OLS in
specific situations:
a) LOC minimizes errors in both X and Y directions.
b) It provides a unique line identical regardless of which variable, X or Y, is used as
the response variable, and
¢) The cumulative distribution function of the predictions, including the variance
and probabilities of extreme events such as floods and droughts, estimates those

of the actual records they are generated to represent.

OLS y:TDS o

75 T
OLS
v :ROE

ROE
50 T

TDS

Figure 10.7 Three straight lines fit to the same data.
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The LOC minimizes the sum of the areas of right triangles formed by horizontal and vertical
lines extending from observations to the fitted line (figure 10.8). By minimizing errors in both
directions it lies between the two OLS lines on a plot of Y versus X (see figure 10.7). The slope
of the LOC line equals the geometric mean of the Y on X and X on Y OLS slopes:

s
b1" =~/ b1 by = sign[t] e g}X{

where by" is the slope of the LOC line

Y; _b "+ : EX .
1 = 0b0 slgn[r] . Sx .Xl [1010]

So the correlation coefficient in the equation for OLS slope is replaced by the algebraic sign
(+ or —) of the correlation coefficient with LOC. The magnitude of the LOC slope b1" is
determined solely by the ratio of standard deviations sy/sx. Performing LOC of X on'Y will
give the identical line as does the LOC of Y on X .

LOC is therefore used for two purposes, corresponding to the three above attributes:
a,b)  tomodel the correct functional relationship between two variables, both of which
are measured with error.
¢)  to produce a series of estimates Y i from observed Xj whose distributional
properties are similar to those expected had the Yj been measured. Such
estimates are important when the probability distribution (variance or percentiles)
of the estimates, and not just the mean or an individual estimate, are to be

interpreted and used.

Examples of the first use for LOC include the geomorphic relationships cited above,
describing the relation between bioaccumulation and octanol-water partition coefficients
(Halfon, 1985), or other applications where the slope is to take on physical meaning rather

than interest in prediction of values of one variable.

One example of the second use for LOC is the extension or fill-in of missing observations.
This use for record extension has been the major application of LOC to water resources thus
far. As an example, suppose two nearby sites overlap in their gaged record. The streamflow
for the site with the shorter record is related to that at the longer (the "base") site during the
overlap period. Using this relationship, a series of streamflow data at the shorter site is
estimated during an ungaged period based on flows at the base site. If the OLS equation
were used to estimate streamflows, the variance of the resulting estimates would be smaller
by a factor of R2 than it should be. OLS reduces the variance of estimates because the OLS
slope is a function not only of the ratio of the standard deviations sy/sx, but also of the
magnitude of the correlation coefficient r. Only when |r| =1 do OLS estimates posses the
same variance as would be expected based on the ratio of variances for the original data. To

see this more clearly, take the extreme case where r=0, and there is no relationship between
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Y and X. The slope then equals 0, and all OLS estimates would be identical and equal to Y.
The variance of the estimates is also zero. As R2 decreases from 1 to 0, the vatiance of OLS
estimates is proportionately reduced. This variance reduction is eliminated from LOC by
eliminating the correlation coefficient from the equation for slope. The estimates resulting
from the LOC have a variance in proportion to the ratio of the variances sy2 /sx2 from the

original data.

When multiple estimates are to be generated and statements made about probabilities of
exceedance, such as flood-flow probabilities, probabilities of low-flows below a water supply
intake, or probabilities of exceeding some water-quality standard, inferences are made which
depend on the probability distribution of the estimated data. In these cases LOC, rather than
OLS, should be used to generate data. OLS estimates would substantially underestimate the
variance because they do not include the variability of individual values around the regression
line (Hirsch, 1982). As a consequence, the frequency of extreme events such as floods,

droughts, or exceedance of standards would be underestimated by OLS.

Variations on using LOC for hydrologic record extension have been published by Vogel and
Stedinger (1985) and Grygier et al. (1989).

All three of the lines discussed thus far have two identical characteristics. They are invariant to
scale changes, so that changing the Y or X scale (from English to metric units, for example) will
not change the estimates of slope or intercept after re-expressing them back into their original
scales. However, if the X and Y axes are rotated and lines re-computed, the second set of
estimates will differ from the first following re-expression into the original orientation. This
second property is not desirable when the original axes are of arbitrary orientation, such as for
latitude and longitude. The line discussed in the next section can be fit when invariance to

spatial orientation is desired.

10.2.3 Least Normal Squares
Least normal squares is the line which minimizes the squared distances between observed points
and the line, where distances are measured perpendicular (normal) to the line. The slope can be

expressed as in figure 10.8

N2+ A? 1|s, S
b= A+ 2 where A = =| = -2 | [10.11]

r 2ls s
y X
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Method Minimizes: Slope Scale Change Rotation

OLS YonX o by = 5, invariant changes
! :

OLS XonY %o by' = 15 invariant changes
rs

LOC invariant changes

NS \ b oA Vri+ A? changes invariant
- — + —
R

where A =

S S
0.5 (=— =)
S N

y

Figure 10.8 Characteristics of four parametric methods to fit straight lines to data

An appealing property of LNS is its invariance to rotation of axes. This is desirable when the
coordinate system in which the data are measured is arbitrary. The most common example of
this is where X and Y are physical locations, such as latitude and longitude. If the axes are
rotated, the X and Y coordinates of the data recomputed, and the LNS line recomputed, it will
coincide exactly with the LNS line for the data prior to rotation. This is not so with OLS or
LOC. However, the LNS line is not invariant to scale changes. The NS line expressed in any
scale will differ depending on the scale in which the calculations were made. For example, the
LNS line relating concentration in mg/L to streamflow in cubic feet per second will differ from
the LNS line for the same data using streamflow in cubic meters per second. This attribute
makes NS poorly suited to describe the relation between most common water resources
variables. Where LNS is appropriate is in computing trajectories minimizing distances between
observed points in space. Kirby (1974) thus used LNS to compute the straight line traverse of a
ship from a set of coordinate locations taken along its trip.
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10.2.4 Summary 0f the Applicability of OLS, LOC and LNS

To summarize the application of each of the above parametric procedures:

1. To estimate individual values of one variable from another variable, use OLS (assuming
the data are linear and homoscedastic). This holds regardless of causality, and regardless
of whether there are errors in measurement of the explanatory variable.

2. To estimate multiple values of one variable from another variable in order to make
statements about the probability distribution, use LOC. This preserves the
characteristics of the entire distribution, avoiding the downward bias in variance of the
OLS estimates.

3. To describe the functional relationship between two variables with the primary interest
in the slope coefficient, use LOC.

4. To determine the geographic trajectory which minimizes the differences from observed
data, use LNS.

10.3 Weighted Least Squares

Data may exhibit a linear pattern yet have nonl!

constant variance (heteroscedasticity -- see o
figure 10.9). Corrections for non-constant
variance involving a power transformation will o

often alter the linear pattern to one which is : o o

curved. Also, transformation into differing o =2 a

units may not be desirable, due to o o
retransformation bias of the estimates (see ) o °
Chapter 9). Finally, the data may have known

inherent differences in their variances, such as

when means or other summary statistics based

<

on unequal-sized data sets are used as the _ )

. Figure 10.9 Heteroscedastic data.
explanatory variable. When the constant

variance assumption of OLS is violated, an alternate method called weighted least squares (WLS)

should instead be employed.

With WLS, each squared residual (Yi — % D2 s weighted by some weight factor wj in such a way
that observations with greater variance have lesser weight. Thus "less reliable" observations
have less influence on the resulting linear equation than "more reliable" observations. The fitted
WLS equation minimizes the squares of the weighted residuals. To evaluate whether this
weighting has corrected for heteroscedasticity, a weighted residuals plot should be drawn. In
this plot the weighted residuals, e¢; \/?1 are plotted versus % i W . The pattern of
weighted residuals can be interpreted as with any other residuals plot.
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One common use of WLS in water resources arises when basin characteristics are used to
estimate flood percentiles (Tasker, 1980). For example, estimates of the 100-year flood at
ungaged sites can be made from a log-log regression of sample estimates of 100-year floods for
gaged sites within a region versus drainage area. The flood flows used to construct the
regression will have differing variances for different sites, depending on their record lengths n.
Sample estimates based on longer records are more reliable, and will have lower variance, than
for stations with less data. Therefore estimates from longer records should be given a stronger
effect on the regression line. If all original observations are assumed to have constant variance
G 2, then the weights wj for the weighted regression will be proportional to the record lengths nj

at each station.

Further weighting could reflect any spatial correlation between the sites. This is called
generalized least squares, and is applied to hydrology by Stedinger and Tasker (1985). An
example of weighting in response to differential sampling within a stratified sampling design is
given by DuMouchel and Duncan (1983).

A more empirical method of weighting occurs by setting weights inversely proportional to the

sample variance of the response variable at that location. This variance is rarely known ahead of

time, so that weights are computed based on residuals from an ordinary least squares regression

(OLS) in the following manner:

1) OLS regression is computed for Y versus X. Residuals are plotted against e , and
nonconstant variance is seen.

2)  Observations with similar X's are grouped, and the variance of the observations in each
group sy2 is calculated. These variances are plotted versus Xj for each group.

3)  Assign sy2 to each observation in group i. Weights w; = 1/ sy2 .

Weighted least squares can be computed using software for unweighted multiple regression by
employing a data transformation Yj' = ¢; Y; , where each observation Yj is multiplied by the
square root of the weight for that point (cj = W =1/sy). The Xj must also be weighted as
X;' = ¢;Xj. A weighted intercept term must also be included as a new "variable" Ij', consisting
of a vector of ¢i's, one per observation. The transformed Y;' are then related by multiple
regression to X' and ' using the "no intercept" option (the I' column is the weighted intercept).

The resulting coefficients are the coefficients of the weighted least squares line.

Example 3
Total dissolved solids (TDS) from Appendix C12 are plotted versus time, and an increasing

variance is seen (figure 10.10). Regression of TDS versus time produces:
TDS = —1627 + 0.844¢Time, t-statistic = 4.62 p = <0.001

where Time is in years. A residuals plot would also show increasing variance.
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However, this equation puts undue emphasis on the more recent data, which have the largest
variability. The variability seems to increase after 1985, therefore the data are split into two

periods, and the variance of TDS is computed separately for each period.
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Figure 10.10 TDS data with non-constant variance (heteroscedasticity).

The variance for the pre-1985 period is 24.18, while after 1985 it is 71.80. The reciprocal of
these values is assigned as the weight function for each observation in the respective groups, and

a weighted least squares regression is performed. This results in:

TDS = —1496 + 0.778 * Time. t-statistic = 4.10 p = <0.001
- - = [u]
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Figure 10.11 Weighted residuals plot of the TDS data.

A plot of the weighted residuals versus predicted values is shown in figure 10.11. The
weighted residuals have constant variance. Thus the weighted least squares line should be
preferred to the unweighted line, because it more closely conforms to one of the assumptions of

least squares regression -- constant variance of residuals.
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10.4 Iteratively Weighted Least Squares

OLS regression can be thought of as a "linear mean", with both desirable and undesirable
properties similar to a mean. One undesirable property is that outliers can "pull" the location of
the line (estimates of slope and intercept) in their direction, much in the same fashion as the
sample mean is affected by an outlier. The resulting residuals corresponding to the outlying
point may be small, making that point difficult to discern as unusual. Such outliers must be
detected using influence statistics (see Chapter 9). In addition to detecting outliers, it may be
desirable to limit their influence on the regression line, similar in objective to the Kendall-Theil
method given in section 10.1. A second method for doing so, somewhat analogous to a
trimmed mean, is a robust regression method called iteratively weighted least squares (IWLS).

Unlike Kendall-Theil, IWLS is applicable in the multiple regression context.

The goal of any robust regression is to fit a line not strongly influenced by outliers. This leaves
large residuals for the outliers, but a better fit to most other points. IWLS produces models
similar to OLS when the underlying residuals distribution is normal, where OLS would have
been reasonable to use. Alternate methods of robust regression to IWLS include "least median
of squares" and "least absolute value" (Rousseeuw and Leroy, 1987), both of which minimize a

more robust measure of error than least squares.

With IWLS, weights are derived from the data. An OLS is first computed -- all weights are
initially set equal to one. Points nearest the OLS line are then given weights near one, while
points further away have lesser weight. A weighted least squares is computed, and the process
repeated. After about two iterations the weights become stabilized, and the final iteratively

weighted least squares line results.

There are several weight functions which have been used to compute weights. A common and

useful one is the bisquare weight function (Mosteller and Tukey, 1977):

(1—u12)2 for |uj| =1 1y
Wi
wi =
0 for |uj| > 1 051
. = Yi _ Yi 0+ I — — )
where U =TS -1 0 1
u .
c = constant, and 1
S = some robust measure Figure 10.12 Bisquare Weight Function

of spread of the residuals (Y; — ¥ D

The purpose of the divisor ¢S is to make uj invariant to scale changes.
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Common choices for ¢ and S are

a.  c¢=3and S = the IQR of the residuals. For a normal distribution IQR = 4/3 G, so that
when ¢ = 3, c*S =40. This is a margin sufficiently wide to include most or all
observations when the distribution is near-normal, and yet protect against outliers when
the distribution is markedly non-normal.

b. ¢=06andS = the MAD, the median absolute deviation from the previous line, or
median |residuals|. Again c*S =46 (MAD =2/3 ¢ for a normal distribution).

Note that since the sample standard deviation is strongly distorted by outliers, it would be a poor
choice as the measure of spread S. This highlights the failing of all parametric tests for outliers:
if the criteria for declaring a value as an outlier is strongly influenced by those same outliers, it
will be inflated to the point of declaring too few data as outliers. Either the MAD or IQR are

more appropriate than the standard deviation for this purpose.

After calculating the IQR or MAD of residuals from an OLS, the first set of weights are
produced. These weights are used in the first weighted least squares, from which new residuals
are used to compute new weights. The process is repeated until the weights stabilize -- in most

cases only two iterations are required.

Example 3

TCE concentrations were measured in wells from the Upper Glacial Aquifer, Long Island, NY.,
and related to population density (Eckhardt et al., 1989). Below are listed the percent of wells
with TCE concentrations above the detection limit (% DET), by population density of the
surrounding land (POPDEN). Compute the robust regression equation (2 iterations) to predict
detection percentage from population density.

%DET 0.64 480 1020 2250 2500 25.00 67.00 38.00 31.30

POPDEN 1 2 3 5 6 8 9 11 13
" T -
DETECTS
TCE urtweighted OLS line
1stWLS
2nd WLS
i+ .
| .
L]
0 & } } } }
n.o 3n 6.0 a.0 12.0
popden

Figure 10.13 TCE concentrations on Long Island (Eckhardt, 1989)
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The OLS (unweighted) regression equation is % DET = 2.00 + 3.56 * POPDEN

with a t-statistic of 2.86. This line is pulled up by the one outlier at a population density of 9
which doesn't fit the rest of the data very well (figure 10.13). The residuals ej from this OLS line
are used to establish bisquare weights for the first WLS line.

ei. —0.414 -0.345 -0.191  0.199  0.120 -0.404 2478 —0.253 —1.545

wiz 0929 0945 0982 0978 0992 0913  0.000 0971  0.326

The outlying point is sufficiently far from the line that it receives a weight of zero. The first
weighted regression equation is then %DET = 0.93 + 3.23*°POPDEN, with a

t-statistic of 6.93. This is shown as "1st WLS" in figure 10.13. Again, residuals are computed
from this equation, and a new set of weights computed:

wi: 0.945 0970 0999 0872 0903 0986  0.000 0989  0.489

The 2nd iteration weighted regression equation is then %DET = 1.24 + 3.10ePOPDEN,
similar to the previous iteration, with a t-statistic of 6.63. Figure 10.13 shows this line as "2nd
WLS". The residual for the outlying point remains large, while the line fits the majority of the

data quite well. This is the objective of a robust regression.

10.5 Smoothing

Smoothing differs in purpose and form from the previous methods. It is an exploratory
technique, having no simple equation or significance tests associated with it. The most common
smooths estimate the center of the data -- the conditional mean or median of Y as X changes.
The lack of an equation is a strength in the sense that a smooth is not constrained by some prior
assumption as to the mathematical function of the relationship. Rarely are there theoretical
grounds for choosing one function over another in modeling Y versus X. For large data sets it is
common to visually identify departures from a simple function which could only be modelled by
incorporating several high order terms. This can cause instability near or beyond the range of

the data. The shape of a smooth is not specified « priori, but is determined solely by the data.

Middle smooths allow the data to dictate the location of a smooth curve which goes through the
middle of the data. They are used to highlight trends or patterns in the data on a scatterplot.
These patterns are often difficult to see. The human eye only pootly follows the central
tendency of a scatterplot; the range of data dominates visual impression. Adding a line through
the middle draws attention to the center of the plot, aiding judgement of whether the pattern is

linear, indicating where breaks in slope occur, etc.

10.5.1 Moving Median Smooths
The simplest smooths are moving averages or medians. Data are smoothed by calculating the

mean or median of a portion of the total data within some 'window' of influence around a given



286 Statistical Methods in Water Resources

Xp- This is repeated while setting Xy equal to nearly every X value in the data set. As before,
outliers will influence moving averages (means) more strongly than medians, so that moving
averages are more erratic than medians in the vicinity of outliers. Moving medians therefore are

more resistant to outliers than are moving averages.

Suppose a 5-point moving median is to be computed. A 'window' of width equal to 5 data
points is begun at the left of the X-Y plot. The median of the 5 Y values within the window is
computed, and plotted at the center of the window (X = 3rd point from the left) to form the
first value of the smooth. Data outside the window have no influence on the smoothed value.
The X window is shifted to the right by one data point, a new median of the 2nd through 6th
points calculated, and this value plotted at the new X, = 4th point from the left. This shifting
and computation progressively continues through the final window, composed of the rightmost

5 points. All medians are then connected by straight lines to form the moving-median smooth.

Figure 10.14 shows an 11-point moving median smooth for sand concentrations in the Colorado
River at Lees Ferry, Arizona. Moving medians are convenient for hand computation, but
produce a "rough" pattern unless the window size is quite large. Large windows result in the
undesirable characteristic that data far from Xy influence the resulting value as much as data

nearby. To avoid this, more complex smoothing routines are now performed by computer.

20—
18+
2
5 16+
O
S
py 14+ .,
%
&
= 124 &
- %
10_ B S
8 | 1 1 1 1
7 8 9 10 11 12

LN OF STREAMFLOW

Figure 10.14 11 point moving median of sand concentrations in the Colorado River
at Lees Ferry, Arizona, 1949-1970.
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Figure 10.15 11 point moving median and LOWESS smooths of the Lees Ferry data

These allow the data nearer the center of the window to influence the smoothed value more
than those further away. They also allow the smoothness of the final fit to be adjusted to the
needs of the data analyst. One of the most flexible and useful smoothing algorithms is called
LOWESS. In figure 10.15 the 11 point moving median smooth is compared to a LOWESS
smooth for the Lees Ferry data.

10.5.2 LOWESS
LOWESS, or LOcally WEighted Scatterplot Smoothing (Cleveland et al., 1979) is
computationally intensive. It involves fitting at least 21 weighted least squares equations. At
every X, a Y s computed from a WLS regression whose weights are a function of both the
distance from X, and the magnitude of the residual from the previous regression (an iterative
procedure). The robust regression weights wj are computed by

Wi = WX{ * Wtj
where wx;j, the distance weight, is a function of the distance between the center of the window
X; and all other X. The residuals weight wr; is a function of |Y; ¥ i|, the distance in the Y
direction between the observed Y; and the value predicted from the previous WLS equation. A
point will receive a small weight, and therefore have little influence on the smoothed Y, if it is
either far from the center of the window in the X direction or has a large residual in the Y
direction. The measure of how quickly weights decrease as distances increase in the X and Y
directions is determined by the weight function. For a point at (Xj,Y;), the bisquare weight is

determined as
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1

(1-u®?2 for|u| <1

Wr.

wij = 1
0 for |uj| > 1 =
20
A 205
Yi-Yj o
where uj = ) = =
6 * median of all | Y] -Yj]| =
£ ol
v/ -1 0 1
[ u;
(1-vi3)2  for |vj| <1 X
wX{ = B 1
0 for |vi| > 1 -
)
29
%X 8 0.5
where Vi:d—x §
g 0+ L L .
£ 1 0 . 1

€—dx—> !

where dy = half width of window = mth largest | Xj — X|
m = Nf
N = sample size
f = smoothness factor specified at outset.

Smoothness of LOWESS is varied by altering the window width, as controlled by the
smoothness factor f (figure 10.16). As fis increased, the window size is increased, and more
points influence the magnitude of Y . Selection of an appropriate f is determined subjectively

according to the purpose for which the smooth is used.
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Figure 10.16 'Three smooths of the same data with differing smoothness factors f.

Three examples of situations in which LOWESS smooths greatly aid data analysis are:

1.

To emphasize the shape of the relationship between two variables on a scatterplot of
moderate to large sample size. Adding a line through the middle draws attention to the
center of the plot, aiding judgement of how the two variables are related.

To compare and contrast multiple large data sets. Plotting all data points with differing
symbols per group does not provide the clarity necessary to distinguish similarities and
differences between groups. Instead, computing and plotting LOWESS smooths without
the data may give great insight into group characteristics. For example, Welch et al. (1988)
used LOWESS to describe the relationship between arsenic and pH in four physiographic
regions of the Western United States (figure 2.26 in Chapter 2). Thousands of data points
were involved; a scatterplot would have shown nothing but a blob of data. The smooths
clearly illustrated that in three regions arsenic concentrations increased with increasing pH,
while in the fourth no increase was observed. Smooths were also used by Schertz and
Hirsch (1985) to illustrate regional patterns in atmospheric precipitation chemistry. They
used one smooth per station to display simultaneous changes in sulfate and other chemical
concentrations occuring over broad regions of the country (figure 10.17). These
relationships would have gone unnoticed using scatterplots -- the underlying patterns would

have been obscured by the proliferation and scatter of the data.
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Figure 10.17 Smooths of sulfate concentrations at 19 stations, 1978-83
(from Schertz and Hirsch, 1985).

3. To remove the effect of an explanatory variable without first assuming the form of the
relation (linear, etc.). In situations equivalent to multiple regression where several variables
may affect the magnitude of a response variable (Y), removal of one variable's (X) effects
may be accomplished by computing a LOWESS smooth of Y versus X and using the
residuals from the smooth in subsequent analyses. An example is when removing the effects
of discharge or precipitation volume from chemical concentration data prior to performing a
trend analysis (see Chapter 12). LOWESS allows the analyst to be unconcerned as to
whether the relation between Y and X is linear or nonlinear. In contrast, linearity would

have to be established prior to using regression.
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Two additonal lines are sometimes plotted along with the LOWESS middle smooth. These are
upper and lower smooths (Cleveland and McGill, 1984b), which function as smoothed versions
of upper and lower quartiles of the conditional distribution of Y as a function of X. They are
constructed by computing additional LOWESS smooths on the positive residuals and negative
residuals, respectively, from the middle LOWESS smooth. These values are then added to the
middle smooth, and connected with straight line segments. Upper and lower smooths are useful
for showing how the spread and/or symmetry of the conditional distribution of Y changes as a
function of X. Figure 10.18 is one example. It shows how the spread of nitrate concentrations
changes with depth for groundwaters under Long Island, NY. The spread or "running IQR" is
indicated by the distance between the upper and lower smooths, shown as dashed lines in the

plot.

30

NITRATE CONCENTRATION, in mg/L as N

0 20 40 60 80 100 120
SCREEN DEPTH BELOW WATER TABLE, in feet

Figure 10.18 Nitrate concentrations versus depth in the upper Glacial Aquifer, Long Island NY
(data from Eckhardt et al., 1989).

10.5.3 Polar Smoothing

Polar smooths (Cleveland and McGill, 1984b) are variations on lowess smooths. They are
polygons describing the two-dimensional locations of data groups on a scatterplot (see figure
2.28 in Chapter 2). Comparisons of differences in location of several data groups is made much
easier by comparing polar smooths rather than comparing symbols for each data point on a
scatterplot, as in figure 2.27. Polar smooths are used as a visual 'discriminant analysis' in two

dimensions.
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To compute a polar smooth, first center the data at the median of X and median of Y. All data
points are then described in terms of their angle and radius from this center, placing the data
into polar coordinates. A lowess smooth is computed while in polar coordinates, and then is rel ]
transformed back into original units. The smooth, which while in polar coordinates had 50
percent of the data below it, upon re-transformation envelops those same 50 percent within it
An analogous "upper smooth' which in polar coordinates had 75 percent of the data below it

becomes an 'outer smooth' containing 75 percent of the data in original units.

Polar smooths can be a great aid to exploratory data analysis. They are not constrained a priori
to be an ellipse or any other shape, but take on the characteristics of the data. This can lead to
new insights difficult to see by plotting the original observations. For example, in figure 2.28
smooths enclosing 75% of the conductance versus pH data for three types of upstream land use
are plotted. The irregular pattern for the smooth of abandoned mine data suggests that two
separate subgroups are present, one with higher pH than the other.
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Exercises

10.1

10.2

10.