
Illinois Environmental Protection Agency Bureau of Water – Water Quality Standards Section

Lake Michigan Basin Water Quality Standards

Di(2-ethylhexyl)phthalate (DEHP)

CAS: 117-81-7 Water Solubility: 0.27 mg/L

 $Log K_{ow}$: 7.6

Derived Criteria

Human Health: Where no standard is applicable for a chemical substance within waters of the Lake Michigan Basin, human health numeric values or criteria may be calculated pursuant to 35 IAC 302.540. A Tier I Lake Michigan Basin Human Health Threshold Value (LMHHTV) is derived based on disease or functional impairment due to a physiological mechanism for which there is a threshold dose below which no damage occurs (35 IAC 302.585). A Tier I Lake Michigan Basin Human Health Nonthreshold Value (LMHHNV) is derived based on disease or functional impairment due to a physiological mechanism for which any dose may cause some risk of damage from cancer or a nonthreshold mechanism (35 IAC 302.590). Values are derived for surface waters classified as public water supplies (drinking), as well as surface waters not used as human drinking water sources (nondrinking).

Tier I Lake Michigan Basin Human Health Criteria			
LMHHTC (µg/L)		LMHHNC (µg/L)	
<u>Drinking</u>	Nondrinking	<u>Drinking</u>	Nondrinking
60	67	2.8	3.2

Exposure and Toxicity Data

BCF = 114 (Stephan 1993)

 $f_{fd} = 0.09475\,$

 $FCM_{TL3} = 11.708$

 $FCM_{TL4} = 16.749$

 $f_1 = 0.048$ (% lipid from Stephan 1993)

 $BAF_{HHTL3} = 506.2 \text{ l/kg}$

 $BAF_{HHTL4} = 1232.2 \text{ l/kg}$

NOAEL = 19 mg/kg-day (IRIS, 6/20/06)

UF = 1,000 (IRIS, 6/20/06)

ADE = 0.019 mg/kg-day

Carcinogen Assessment: B2, probable human carcinogen (IRIS, 6/20/06)

Cancer slope factor (q₁): 1.4×10^{-2} per mg/kg-day (IRIS, 6/20/06)

 $RAD = 7.143 \times 10^{-4}$

Human Health Calculations

Bioaccumulation Factor:

BAF predicted based on Log K_{ow} (ChemID, 6/20/06) and measured BCF (Stephan 1993) Log $K_{ow} = 7.6$, $K_{ow} = 39,810,717$

$$f_{fd} = 1 / [1 + (0.00000024 \text{ kg/L})(K_{ow})] = 0.09475$$

Baseline BAF_{T3} = $(FCM_{TL3})\{[measured BCF / f_{fd}] - 1\}\{1 / f_1\} = 293,472$

Baseline BAF_{T4} = (FCM_{TL4}){ [measured BCF / f_{fd}] - 1}{1 / f_1 } = 419,481

 $BAF_{HHTL3} = [(Baseline BAF_{T3})(0.0182)+1] = 506.2$

 $BAF_{HHTL4} = [(Baseline BAF_{T4})(0.0310)+1] = 1232.2$

Acceptable Daily Exposure:

$$ADE = NOAEL / UF = 0.019 \text{ mg/kg-day}$$

Risk Associated Dose:

$$RAD = 0.00001 / q_1 = 7.143 \times 10^{-4} \text{ mg/kg-day}$$

LMHHTC Calculation

$$LMHHTC = \frac{ADE \text{ x BW x RSC}}{WC \text{ x } [(FC_{TL3} \text{ x BAF}_{HHTL3}) + (FC_{TL3} \text{ x BAF}_{HHTL3})]}$$

$$Drinking \text{ water } LMHHTC = \frac{0.019 \text{ mg/kg-day x } 70 \text{ kg x } 0.8}{2.0 \text{ l/day x } [(0.0036 \text{ kg/day x } 506.2 \text{ l/kg}) + (0.0114 \text{ kg/day x } 1232.2 \text{ l/kg})]}$$

$$= 0.060 \text{ mg/l} = \textbf{60 \mu g/L}$$

$$Nondrinking \text{ water LMHHTC} = \frac{0.019 \text{ mg/kg-day x } 70 \text{ kg x } 0.8}{0.01 \text{ l/day x } [(0.0036 \text{ kg/day x } 506.2 \text{ l/kg}) + (0.0114 \text{ kg/day x } 1232.2 \text{ l/kg})]}$$

$$= 0.067 \text{ mg/l} = \textbf{67 \mu g/L}$$

LMHHNC Calculation

$$LMHHNC = \frac{RAD \times BW}{WC \times [(FC_{TL3} \times BAF_{HHTL3}) + (FC_{TL3} \times BAF_{HHTL3})]}$$

$$\frac{Drinking \text{ water }}{LMHHNC} = \frac{7.143 \times 10^{-4} \text{ mg/kg-day} \times 70 \text{ kg}}{2.0 \text{ l/day} \times [(0.0036 \text{ kg/day} \times 506.2 \text{ l/kg}) + (0.0114 \text{ kg/day} \times 1232.2 \text{ l/kg})]}$$

$$= 0.0028 \text{ mg/l} = 2.8 \text{ \mug/L}$$

$$\frac{7.143 \times 10^{-4} \text{ mg/kg-day} \times 70 \text{ kg}}{0.01 \text{ l/day} \times [(0.0036 \text{ kg/day} \times 506.2 \text{ l/kg}) + (0.0114 \text{ kg/day} \times 1232.2 \text{ l/kg})]}$$

$$= 0.00315 \text{ mg/l} = 3.2 \text{ \mug/L}$$

REFERENCES

ChemIDplus. United States National Library of Medicine, Toxicology Data Network (TOXNET). http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CHEM

Integrated Risk Information System (IRIS). United States National Library of Medicine, Toxicology Data Network (TOXNET). http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen?IRIS

Stephen, CE. 1993. Derivation of Proposed Human Health and Wildlife Bioaccumulation Factors for the Great Lakes Initiative. Environmental Research Laboratory, Office of Research and Development, U.S. EPA, Duluth, MN.

Derivation History

Derived June 20, 2006

Contact Information

Brian Koch Water Quality Standards, Bureau of Water Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, IL 62794-9276