Rule 57 Aquatic Values Data Sheet

Chemical name: cis-1,3-Dichloropropylene

CAS #: 10061-01-5

Developed by: D. Bush FAV: 160 ug/L Approved by: B. Saylar AMV: 81 ug/L Approval date: 9/21/07 FCV: 9.0 ug/L

(Tier 1)

(Tier 1)

(Tier 2)

Literature search date: 8/14/2006 Acute CF: --- Chronic CF: ---

ACUTE DATA

× ×			Test							
Species	Test type	Duration	conditions	Hardness		LC50/EC50	SMAV	GMAV		
species	(EC or LC50)	(hours)	(FT,M, etc.)	mg/L	Chemical	ug/L	ug/L	ug/L	Rank	Refere
Fathead minnows	LC50	96	FT,M	46		239	239	239	1	1
(Pimephales promelas)	LC50	96	S,U	44		4100*	237	237	1	2
	LC50	96	S,U	35		2320*				3
Water flea	EC50	48	S,U	44		90	747	747	»	2
(Daphnia magna)	LC50	48	S,U	72		6,200	747	/4/	2	2 4
			· ·	. –		0,200				4
Walleye	LC50	96	S,U	272		1,080	1,080	1,080	3	2
(Stizostedion vitreum)						,	-,	1,000	3	L
Midge	LC50	48	S,U	46		1,350	1 250	1.250	4	= =
(Chironomus riparius)		,,,	2,0	10		1,550	1,350	1,350	4	5
Scud	LC50	96	CII	4.4		• • • •	*			12
(Gammarus minus)	LC30	90	S,U	44		2,000	2,000	2,000	5	5
,							*			
Largemouth bass	LC50	96	S,U	272		3,650	3,650	3,650	6	2
(Micropterus salmoides)						2,000	2,030	5,050	U	2
Rainbow trout	T C50	0.0	C TT							
(Oncorhynchus mykiss)	LC50	96	S,U	51		5,360	5,360	5,360	7	3
()										

^{*} This value not used in the derivation of the SMAV because the results from FT,M tests are a higher priority than the results from S,U tests.

Stonefly (<i>Tallaperla maria</i>)	LC50	96	S,U	48	5,420	5,420	5,420	8	5
Ramshorn snail (Helisoma trivolvis)	LC50	96	S,U	41	8,100	8,100	8,100	9	5

CHRONIC DATA

			Study							
	Test type	Duration	Conditions	Hardness	Chemical	MATC	SMCV	GMCV		×
Species	(ELS, etc.)	(days)	(FT,M etc.)	mg/L		ug/L	ug/L	ug/L	Rank	Referei.

No useful chronic studies available.

References:

- 1. Geiger, D.L., L.T. Brooke, and D.J. Call. 1990. Acute Toxicities of Organic Chemicals to Fathead Minnows (*Pimephales promelas*). Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Wi. 5:332p.
- 2. Mayer, F.L., Jr., and M.R. Ellersieck. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resource Publication Number 160, U.S. Department of Interior, Fish and Wildlife Service, Washington, DC: 505p.
- 3. Birge, W.J., J.A., Black, S.T. Ballard, and W.E. McDonnell. 1982. Acute toxicity testing with freshwater fish. In: Aquatic Toxicity Studies of Five Priority Pollutants, Rep. No. 4398, NUS Corp, Houston, TX:47p.
- 4. LeBlanc, G.A. 1980. Acute Toxicity of Priority Pollutants to Water Flea (Daphnia magna). Bull. Environ. Contam. Toxicol. 24(5):684-691.
- 5. Horne, J.D. and B.R. Oblad. 1983. Aquatic Toxicity Studies of Six Priority Pollutants. Rep. No. 4380, NUS Corporation, Houston Environmental Center TX:99p.

References of appropriate duration but not used:

1. Buccafusco, R.J., S.J. Ells, and G.A. LeBlanc. 1981. Acute toxicity of priority pollutants to bluegill (*Lepomis macrochirus*). Bull. Environ. Contam. Toxicol. 26(4):446-452.

Rule 5	57 A	Aquatic	Values	Work	Sheet
--------	------	---------	--------	------	-------

Min. data	Acute	
req. met	Factor	
2	13	
3	8	
4	7	
5	6.1	
6	5.2	
7	4.3	
1.0	537	- 1

Chemical Name: Cis -1, 3- Dichlorogropyene C.A.S. #: 10061-01-5

C. Aquatic Maximum Value (AMV) calculation:

AQUATIC MAXIMUM VALUE CALCULATIONS

A. Minimum 8 species requirement is not met. Minimum requirements met = Minimum requirements missing for Tier I = Acute factor =	
1. Toxicity is not dependent on a water characteristic	
a. FAV calculation	
2. Toxicity is dependent on a water characteristic	
a. Slope = (Table)	
b. FAV equation:	
3. Go to C.	
B. Minimum 8 species requirement is met (Tier I)	8
1. Toxicity is not dependent on a water characteristic	
a. FAV calculation: Att FAV=162.1132 ng/L = 160 ng/	12
2. Toxicity is dependent on a water characteristic	
a. Slope = (Table)	
b. Ranked genus mean acute intercepts: Table	
c. Final acute intercept = (Att)	
In of final acute intercept =	
d. FAV equation =	

Amv = 162.1132 ng/L + 2 = 81.1 ng/L = 81 ng/L

FINAL CHRONIC VALUE CALCULATIONS

A. Minimum 8 species requirement is not met (Tier II). Minimum requirements met =
Minimum requirements missing for Tier ! =
1. Acute to chronic ratio
a. Number ACRs meeting minimum data requirements = _O_(Table)
b. Acute to chronic ratio = 18
2. Toxicity is not dependent on a water characteristic
FCV = 162.1132 ng/L = 18 = 9.01 ng/L = 9.0 ng/L
3. Toxicity is dependent on a water characteristic
a. Slope = (Table _)
b. Aquatic chronic intercept = (Table _)
In of aquatic chronic intercept =
c. FCV equation =
B. Minimum 8 species requirement is met (Tier I)
Toxicity is not dependent on a water characteristic
a. FCV = (Att)
2. Toxicity is dependent on a water characteristic
a. Slope = (Table)
b. Ranked genus mean chronic intercepts: Table
c. Final chronic intercept = (Att); In of final chronic intercept =
d. FCV equation =

Rule 57 Aquatic Values Data Sheet

Chemical name:	1,1-Dichloroethylene	Developed by: D. Bush	FAV: 2,300 ug/L	(Tier: 2)
C.A.S #:	75-35-4	Approved by: B. Sayln Approval date: 781167	AMV: 1,200 ug/L FCV: 130 ug/L	(Tier: 2)
		Literature search date: 7/10/2007	Acute CF: Chronic CF:	(Tier: 2)

Clearinghouse search date:

Acute CF: ----Chronic CF: ----

ACUTE DATA

Species	Test type (EC or LC50)	Duration (hours)	conditions (FT,M, etc.)	Hardness mg/L	Chemical	LC50/EC50 ug/L	SMAV ug/L	GMAV ug/L	Rank	Referei
Water flea (Daphnia magna)	LC50 LC50	48 48	S,U S,U	72 100		79,000 11,600	30,272	30,272	1	1 2
Fathead minnow (Pimephales promelas)	LC50 LC50	96 96	FT,M S,U	100 100		108,000 169,000*	108,000	108,000	2	2 2

^{*}flow-through measured test is higher priority than static unmeasured test so this value was not used.

CHRONIC DATA

Study Test type Duration Conditions Hardness Chemical MATC **GMCV SMCV** Species (ELS, etc.) (FT,M etc.) (days) mg/L ug/L ug/L ug/L Rank Reference

No useful chronic studies are available.

References:

- 1. LeBlanc, G.A. 1980. Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull. Environ. Contam. Toxicol. 24(5):684-691.
- 2. Dill, D.C. et al. 1980. Toxicity of 1,1-Dichloroethylene (Vinylidene Chloride) to Aquatic Organisms. Ecol. Res. Ser., EPA-600/3-80-057. (the fathead minnow test was not run at the recommended temperature (although this may have prevented some volatilization) and did not provide details of the study design (# reps, fish/rep, control information). However, it was used to derive a tier 2 value because it was a FT,M test and the daphnid value found in the same test was significantly lower).

References Reviewed but not Used:

- 1. Buccafusco, R.J. et al. 1981. Acute toxicity of priority pollutants to bluegill (*Lepomis macrochirus*). Bull. Environ. Contam. Toxicol. 26(4): 446-452. (reject because of low dissolved oxygen in undetermined test runs)
- 2. Dawson, G.W. et al. 1977. The acute toxicity of 47 industrial chemicals to fresh and saltwater fishes. J. Hazard. Mater. 1(4):303-318. (high loading, wide size range of organisms, no control treatments used, insufficient information on test conditions--reps?, # fish?)
- 3. Heitmuller, P.T. et al. 1981. Acute toxicity of 54 industrial chemicals to sheepshead minnows (*Cyprinodon variegatus*). Bull. Environ. Contam. Toxicol. 27(5):596-604. (test conducted in saltwater)
- 4. EPA. 1978. In-Depth Studies on Health and Environmental Impact of Selected Water Pollutants. (secondary reference and test conducted in saltwater)

Rule 57 Aquatic Values Work Sheet

	Min. data	Acute
	req. met	Factor
	2	13
	3	8
	4	7
	5	6.1
	6	5.2
	7	4.3
- 1	1	

Chemical Name: 1,1-Dichlorosthylene C.A.S. #: 75-35-4

AQUATIC MAXIMUM VALUE CALCULATIONS

- A. Minimum 8 species requirement is **not** met. Minimum requirements met = <u>2 (v, iii'</u>)

 Minimum requirements missing for Tier I = 6

 Acute factor = <u>13</u>
 - 1. Toxicity is not dependent on a water characteristic

a. FAV calculation
$$FAV = \frac{30,272 \text{ mg/L}}{13} = 2,329 \text{ mg/L} = 2,300 \text{ mg/L}$$

2. Toxicity is dependent on a water characteristic

- b. FAV equation:
- 3. Go to C.
- B. Minimum 8 species requirement is met (Tier I)
 - 1. Toxicity is not dependent on a water characteristic
 - a. FAV calculation: Att. ____
- 2. Toxicity is dependent on a water characteristic

- b. Ranked genus mean acute intercepts: Table
- c. Final acute intercept = (Att. ___)

 In of final acute intercept =
- d. FAV equation =
- C. Aquatic Maximum Value (AMV) calculation:

FINAL CHRONIC VALUE CALCULATIONS

 A. Minimum 8 species requirement is not met (Tier II). Minimum requirements met = Minimum requirements missing for Tier I =
Acute to chronic ratio
a. Number ACRs meeting minimum data requirements = _O_ (Table)
b. Acute to chronic ratio = 18
2. Toxicity is not dependent on a water characteristic $FCV = \frac{30,272 \text{ wg/L}}{13} \div 18 = 129 \text{ wg/L} = 130 \text{ wg/L}$
3. Toxicity is dependent on a water characteristic
a. Slope = (Table)
b. Aquatic chronic intercept = (Table _)
In of aquatic chronic intercept =
c. FCV equation =
D. Minimum O. and it was a second at the sec
B. Minimum 8 species requirement is met (Tier I)
1. Toxicity is not dependent on a water characteristic
a. FCV = (Att)
2. Toxicity is dependent on a water characteristic
a. Slope = (Table _)
b. Ranked genus mean chronic intercepts: Table
c. Final chronic intercept = (Att); In of final chronic intercept =
d. FCV equation =