MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY WATER RESOURCES DIVISION HUMAN & WILDLIFE TOXICITY SUMMARY | Chemical Name:
Derived By:
Reviewed By: | 1,1,1-Trichloroethane D. Bush Shamer Brigg | CAS No.:
Literature Review Date:
Verification Date: | 71-55-6
7/18/12
8/9/2 012 | | |---|--|---|--|--| | | Drinking Water | | Nondrinking Water | | | Surface Water | | | | | | HNV (Tier 1) | 62,000 ug/L | | 1,300,000 ug/L | | | HCV (Tier 1) | NA | | NA | | | Screening Level | | _ | | | | Ground Water | | | | | | GW Noncancer | | | | | | GW Cancer | | | | | | HUMAN HEALT | H INTERMEDIATE VALUES: | | | | | | ADE (RfD) | 2.295 mg/kg/d | | | | | POTENCY | | | | | | HH-BAF-TL ₃ | 4.1 L/kg | | | | | HH-BAF-TL ₄ | 6.2 L/kg | | | | | | | | | | WV | NA | | | | | WV-BAF-TL ₃ | | | | | | WV-BAF-TL ₄ | | | | | | Comments: | | | | | ## MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY WATER RESOURCES DIVISION HUMAN NONCANCER VALUE WORKSHEET | Chemical Name: 1,1,1-Trich | | ,1-Trichloroethane | | CAS No.: | 71-55-6 | | | |---|--|--|---|---|----------------|--|--| | Developed By: D. Bush | | Bush | | Literature Search Date: | 7/18/2012 | | | | Reviewed By | i: 31 | remontrigo | | Verification Date: | 8/9/2012- | | | | Key Study: | NTP (2000) expose
NOAEL and LOAI
dietary concentration
doses of 1,770 mg/ | ed male and female m
EL (> 10% body weig
ons of 10,000 ppm and
kg and 2,820 mg/kg to
sex was more sensitive | ice to 1,1,1-trichloroethane via the diet for 90 days. A ght decrease) occurred in male and female mice exposed to d 20,000 ppm, respectively. NTP (2000) calculated NOAEL for male and female mice, respectively. Since it could not be than the other, the arithmetic mean of 1,770 mg/kg and 2,820 | | | | | | ADE = 2.295 mg/kg/d ADE = $\frac{2,295 \text{ mg/kg/d}}{1,000}$ | | Where UF = 10x for each intraspecies and interspecies extrapolation. An additional 10x was used to account for subchronic-to-chronic extrapolation and concern for neurological effects. | | | | | | | drinking wat
HNV = | er
(2 L/d) + | (2.295 mg/kg/d)
- (0.0036 kg/d | x 4.1 L/kg) + (0. | $x (0.8) = 0.0114 \text{ kg/d} \times 6.2 \text{ L/kg}$ | 61,627.28 ug/L | | | | | | | HN | V for drinking water = 6 | 2,000 ug/L | | | $(2.295 \text{ mg/kg/d}) \times (70 \text{ kg})$ $(0.01 \text{ L/d}) + (0.0036 \text{ kg/d} \times 4.1 \text{ L/kg}) + (0.0114 \text{ kg/d} \times 6.2 \text{ L/kg})$ non-drinking water HNV = HNV for non-drinking water = 1,300,000 ug/L 1,346,605.1970 ug/L ## MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY WATER RESOURCES DIVISION BIOACCUMULATION FACTOR WORKSHEET | BAF
BAF
HH-
HH- | Chemical Name: BAF Derived By: BAF Reviewed By: BAF Reviewed By: Shamon Sign HH-BAF-TL.3: 4.1 L/kg HH-BAF-TL.4: 6.2 L/kg | | CAS No. Literature Review Date: Verification Date: WL-BAF-TL.3: WL-BAF-TL.4: | | 71-55-6
7/18/2012
8/9 / 2012 | | | | |--------------------------|--|-------------------------|---|---|---|---------------------------------|--------------------------------|---------------------------------------| | Ref | BAF, BSAF,
or BCF | Value | Species | Exposure Duration (days) | Tissue
Type | Tissue
Lipid (%) | Steady State Tissue Conc. ng/g | Water or
Sed. (BSAF)
Conc. µg/L | | 1.)_

Fina | BCF | 9 Even though | bluegill sunfish the BCF is base | 28 | whole body | 4.8% | N/A | 73.4 | | II, I | oG Kow VAL | because it is | the only measur | | 44-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7- | | | | | # | Log Kow | Method | Value | *************************************** | Log Kow | Met | hod | Value | | ′ – | Measured
Measured | Shake-flask Shake-flask | 2.47
2.49 | -
- | | | | | | 4.) <u>(</u> | Calculated | CLOGP | 2.48 | | | | | | | | l Log Kow: | | g Kow is the ean of the two lues. | | Food Chain
FCM-TL.3:
FCM-TL.4: | Multipliers
1.0098
1.0019 | | | ## MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY WATER RESOURCES DIVISION BIOACCUMULATION FACTOR CALCULATIONS ### Assessment/Calculations: Baseline BAF = $(FCM)[(BCF/F_{fd}) -1](1/F_1)$ Baseline BAFTL3 = 1.0098[(9/1) - 1](1/0.048) = 168.30Baseline BAFTL4 = 1.00192[(9/1)-1](1/0.048) = 166.99 Note: $F_{fd} = 1$ because Log Kow < 4.00 f_{fd} ambient = $1/[1 + (2.4 \times 10^{-7})(10^{logKow})]$ f_{fd} ambient = $1/[1 + (2.4 \times 10^{-7})(10^{2.48})]$ f_{fd} ambier 0.9999275 HH BAF_{TL3} = [(Baseline BAF_{TL3})(0.0182) +1]($f_{fd \text{ ambient}}$) HH BAF_{TL3} = [(168.30)(0.0182) +1] (0.9999275) HH BAF_{TL3} = 4.1 HH BAF_{TL4} = [(Baseline BAF_{TL4})(0.031) + 1](f_{fd} ambient) HH BAF_{TL4} = [(166.99)(0.0310) +1](0.9999275) HH BAF_{TL4} = 6.2 ### References: - Barrows, M.E., S.R. Petrocelli, K.J. Macek, and J.J. Carroll. 1980. Bioconcentration and elimination of selected water pollutants by bluegill sunfish (*Lepomis macrochirus*). In: Dynamics, Exposure, and Hazard Assessment of Toxic Chemicals. R. Haque, ed. Ann Arbor, MI: Ann Arbor Science. 379-92. - 2.) Banerjee, S., S.H. Yalkowsky, and S.C. Valvani. 1980. Water solubility and octanol/water partition coefficients of organics: limitations of the solubility-partition coefficient correlation. Environ. Sci. Technol. 14(10):1227-1229. - 3.) Hansch, C. and A. Leo. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley and Sons, N.Y. - 4.) USEPA. 1997. ASTER Ecotoxicity Profile, ERL-Duluth.