FACT SHEET REVISED

VALUE (S) REMOVED

AMBIENT SURFACE WATER QUALITY STANDARDS DOCUMENTATION

CHEMICAL: 1,1-Dichloroethylene

CAS NO.(s): 75-35-4

BASIS (Human/Aquatic): Human

WATER CLASSIFICATION: AA; AA-s; A; A-s

STANDARD: 0.07 ug/l Note A

REMARKS:

SUMMARY INFORMATION:

The toxicologic data base for this compound has been reviewed. 1-3 It is an animal oncogen as defined in Part 701.1(p). Chronic exposure of laboratory animals to inhaled doses of this compound has resulted in a significant increase in the incidence of kidney tumors in male mice and perhaps mammary gland tumors in female mice and rats. 4 It has also shown genotoxic activity in short-term tests. 2 Although the oncogenicity of inhaled 1,1-dichloroethylene has not been confirmed by other studies using oral or inhalation doses, 2,3 these studies did not meet the criteria for a well-designed and well-conducted oncogenic bioassay; specifically, exposures were too short and/or doses too low to maximize the probability of inducing and detecting tumors.

STANDARD DERIVATION:

Dose-response data from the Maltoni et al. 4,5 carcinogenesis bioassay were used for extrapolation. Using the protocol in Part 701.4 and a linearized multistage extrapolation procedure (GLOBAL82)⁵, a 1,1-dichloroethylene concentration of 0.07 ug/l in water was calculated to correspond to an increased human cancer risk of 1 x 10-6 over a lifetime (see calculations below). The recommended ambient water quality standard for 1,1-dichloroethylene is 0.07 ug/l.

Calculations:

1. Maltoni <u>et al</u>. Bioassay Data

The incidence of kidney tumors in male mice exposed to l,l-dichloroethylene concentrations in air of 0, 10 and 25 ppm for 4-5 days each week during the exposure period is the dose-response data for the most sensitive tumor type in the most sensitive species and sex, occurring at a statistically significant level.

2. Average Daily Intake (for animals)*

Average Daily Intake During Lifetime

- 0 mg/kg/day
- 2.42 mg/kg/day
- 6.05 mg/kg/day

*The dose received by the mice during their exposure to air concentrations of l,l-dichloroethylene can be calculated from the following equation:

 $D = (R \times h \times c \times a)/W$

where D = mg/kg/day on treatment days,

 $R = m^3$ of air respired per mouse per day $(R = 0.0345 (W/0.025)^2/3 m^3/day)^6$,

W = body weight of mouse (0.03 kg),

h = proportion of day exposed (4h/24h = 0.17),

- c = air concentration of 1,1-dichloroethylene in mg/m^3 (1 ppm = 3.97 mg/m^3),
- a = proportion of inhaled 1,1-dichloroethylene absorbed
 (1.0)

Exposure was only for 4-5 days a week; therefore, calculated doses on treatment days were multiplied by 4.5/7 to calculate average daily doses during the exposure period. In addition, mice lived an additional 69 weeks without exposure after being exposed for 52 weeks; therefore, average daily doses during exposure were multiplied by 0.43 to calculate average daily doses during lifetime.

3. Data Input for GLOBAL82 Computer Program

Dose (mg/kg/day)	Number of animals with tumors	Number of experimental animals
0	0	126
2.42	0	25
6.05	28	119

4. GLOBAL82 Result (for animals)

The lower 95% confidence limit value of the 1,1-dichloroethylene dose corresponding to an increased lifetime cancer risk of 1 x 10^{-6} for the experimental animals was 0.027 ug/kg/day.

5. Conversion of the animal dose (ug/kg/day) to a human dose using surface area conversion rule

rodent dose (ug/kg/day) x (animal body wt. (kg)).33 human dose (ug/kg/day)

0.027 ug/kg/day x
$$\left(\frac{0.03 \text{ kg}}{70 \text{ kg}}\right)^{0.33} = 0.0021 \text{ ug/kg/day}$$

6. Calculation of the 1,1-dichloroethylene level in water corresponding to an increased cancer risk of 1 x 10-6 for a 70 kg human ingesting 2 liters of contaminated water per day over a lifetime.

 $\frac{0.0021 \text{ ug/kg/day x 70 kg}}{2 \text{ 1/day}} = 0.074 \text{ ug/1}$

REFERENCES:

- (1) Mational Academy of Sciences. 1983. Drinking Water and Health, Vol. 5. National Academy Press. Washington, D.C.
- (2) International Agency for Research on Cancer. 1979. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. 19: 439-459.
- (3) U.S. Environmental Protection Agency. 1980. Ambient water quality criteria for dichloroethylenes. WTIS No. PB81-117525.
- (4) Haltoni, C. et al. 1977. Carcinogenicity bioassays of vinylidene chloride. Research plans and early results. Hed. Lav. 68: 242-262.
- (5) U.S. Environmental Protection Agency. 1983. Health assessment document for vinylidene chloride (review draft). EPA-600/8-83-031A.
- (6) U.S. Environmental Protection Agency. 1980. Water quality criteria documents; availability. Fed. Register. 79318-79378.
- (7) Howe, R.B. and K.S. Crump. 1982. GLOBAL82 Computer Program. Science Research Systems, Inc., Ruston, LA.