DERIVATION OF ACUTE AND CHRONIC TOXICITY CRITERIA FOR NICKEL

PREPARED BY: JIM SCHMIDT - WDNR July, 2001

ACUTE TOXICITY CRITERIA

EPA SPECIES MEAN ACUTE VALUES

(values from 3/86 EPA AWQC document, EPA 440/5-86-004 and 3/95 GLWQI Criteria Document for the Protection of Aquatic Life in Ambient Water)

NOTE: Normalized hardness and nickel values are listed for a species when information was available over a sufficient hardness range (EPA: maximum hardness > 3 X lowest hardness and > 100 PPM above lowest hardness). Normalized value equals individual result / geometric mean result (rounded to 3 dec. places).

Worm, Nais sp.

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
50	14100	S	М			Rehwoldt, et al. 1973
50	14100					GEO MEAN (1 result)

Snail, Amnicola sp.

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
50	11400	S	М			Rehwoldt, et al. 1973
50	14300	S	М			Rehwoldt, et al. 1973
50	12767.9					GEO MEAN (2 results)

Snail. Physa gyrina

Onan, 1 1190a	<i>9)</i>					
HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
26	239	FT	J			Nebeker, et al. 1986
26	239					GEO MEAN (1 result)

Cladoceran, Daphnia magna

HARDNESS	VALUE	MET	HOD	NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
45.3	510	S	J	0.570	0.312	Biesinger and Christensen, 1972
51.1	915	S	М	0.643	0.561	Call, et al. 1983
51	1800	S	М	0.641	1.103	Chapman, et al. Manuscript
100	2360	S	М	1.257	1.446	Chapman, et al. Manuscript
104	1920	S	М	1.308	1.176	Chapman, et al. Manuscript
206	4970	S	М	2.590	3.045	Chapman, et al. Manuscript
79.52	1632.32					GEO MEAN (6 results)

Cladoceran, Daphnia pulicaria

	······································											
HARDNESS	VALUE	MET	HOD	NORMALIZED	NORMALIZED	REFERENCE						
(PPM)	(ug/L)			HARDNESS	VALUE							
48	2182	S	М			Lind, et al. Manuscript						
48	1813	S	М			Lind, et al. Manuscript						
44	1836	S	М			Lind, et al. Manuscript						
47	1901	S	М			Lind, et al. Manuscript						
46.72	1927.64					GEO MEAN (4 results)						

Amphipod, Gammarus sp.

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
50	13000	S	М			Rehwoldt, et al. 1973
50	13000					GEO MEAN (1 result)

Amphipod, Crangonyx pseudogracilis

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
50	66100	S	U			Martin and Holdich, 1986
50	66100					GEO MEAN (1 result)

Midge, Chironomus riparis

HARDNESS (PPM)	VALUE (ug/L)	MET	HOD	NORMALIZED HARDNESS	NORMALIZED VALUE	REFERENCE
55	72400	S	J			Fowlesland and George, 1986 (1st inst.)
55	81300	S	J			Fowlesland and George, 1986 (1st inst.)
55	84900	S	J			Fowlesland and George, 1986 (1st inst.)
55	184000	S	J			Fowlesland and George, 1986 (2 nd inst.)
55	150000	S	U			Fowlesland and George, 1986 (2 nd inst.)
55	174000	S	J			Fowlesland and George, 1986 (2 nd inst.)
55	79355.8					GEO MEAN (3 results, only 1 st instar was
						used to calculate SMAV)

Mayfly, Ephemerella subvaria

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
42	4000	S	J			Warnick and Bell, 1969
42	4000					GEO MEAN (1 result)

Damselfly - unidentified

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
50	21200	S	М			Rehwoldt, et al. 1973
50	21200					GEO MEAN (1 result)

Stonefly, Acroneuria lycorias

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
40	33500	S	U			Warnick and Bell, 1969
40	33500					GEO MEAN (1 result)

Caddisfly - unidentified

HARDNESS	VALUE	MET	HOD	NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)	_		HARDNESS	VALUE	
50	30200	S	М			Rehwoldt, et al. 1973
50	30200					GEO MEAN (1 result)

American eel, Anguilla rostrata

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
53	13000	S	М			Rehwoldt, et al. 1971
55	13000	S M				Rehwoldt, et al. 1972
53.99	13000					GEO MEAN (2 results)

Rainbow trout, Onchorhynchus mykiss

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
33	10000	FT	М			Nebeker, et al. 1985
33	10900	FT M				Nebeker, et al. 1985
33	8900	FT	М			Nebeker, et al. 1985
33	8100	FT	М			Nebeker, et al. 1985
33	9415.11					GEO MEAN (4 results)

Goldfish, Carassius auratus

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE		
(PPM)	(ug/L)			HARDNESS	VALUE			
20	9820	S U				Pickering and Henderson, 1966		
20	9820	_				GEO MEAN (1 result)		

Carp. Cyprinus carpio

Carp, Cyprin	us carpio					
HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
53	10600	S	М			Rehwoldt, et al. 1971
55	10400	S M				Rehwoldt, et al. 1972
53.99	10499.5					GEO MEAN (2 results)

Fathead minnow, *Pimephales promelas*

Tambaa miimow, Timophaloo promolao									
HARDNESS	VALUE	MET	HOD	NORMALIZED	NORMALIZED	REFERENCE			
(PPM)	(ug/L)			HARDNESS	VALUE				
20	5180	S	U	0.187	0.337	Pickering and Henderson, 1966			
20	4580	S	J	0.187	0.298	Pickering and Henderson, 1966			
360	42400	S	U	3.360	2.760	Pickering and Henderson, 1966			
360	44500	S	J	3.360	2.896	Pickering and Henderson, 1966			
210	27000	S U		1.960	1.757	Pickering, 1974			
210	32200	S	М	1.960	2.096	Pickering, 1974			
210	28000	FT	М	1.960	1.823	Pickering, 1974			
210	25000	FT	М	1.960	1.627	Pickering, 1974			
45	5209	FT M		0.420	0.339	Lind, et al. Manuscript			
44	5163	FT M		0.411	0.336	Lind, et al. Manuscript			
96.67	11713.6					GEO MEAN (4 results, FT only)			

All ten results were used in the slope calculation, normalized values were based on a mean hardness = 107.16 and mean LC50 = 15363.48.

Banded killifish, Fundulus diaphanus

	HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE			
	(PPM)	(ug/L)			HARDNESS	VALUE				
	53	46200	S	M			Rehwoldt, et al. 1971			
	55	46100	S M				Rehwoldt, et al. 1972			
	53.99	46150.0					GEO MEAN (2 results)			

The guppy result was not used in Wisconsin because genus Poecilia is not resident to the Great Lakes states or Iowa.

White perch, Morone americana

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
53	13600	S	М			Rehwoldt, et al. 1971
55	13700	S	М			Rehwoldt, et al. 1972
53.99	13649.9					GEO MEAN (2 results)

Striped bass, Morone saxatilis

HARDNESS (PPM)	VALUE (ug/L)	METHOD		NORMALIZED HARDNESS	NORMALIZED VALUE	REFERENCE
53	6200	S	М	0.698	0.736	Rehwoldt, et al. 1971
55	6300	S	М	0.724	0.748	Rehwoldt, et al. 1972
40	3900	S	U	0.527	0.463	Palawski, et al. 1985
285	33000	S	J	3.754	3.919	Palawski, et al. 1985
75.93	8420.30					GEO MEAN (4 results)

Rock bass, Ambloplites rupestris

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE
(PPM)	(ug/L)			HARDNESS	VALUE	
26	2480	FT M				Lind, et al. Manuscript
26	2480					GEO MEAN (1 result)

Pumpkinseed, Lepomis gibbosus

	<u>,</u>	3							
HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE			
(PPM)	(ug/L)			HARDNESS	VALUE				
53	8100	S M				Rehwoldt, et al. 1971			
55	8200	S M				Rehwoldt, et al. 1972			
53.99	8049.84					GEO MEAN (2 results)			

Bluegill, Lepomis macrochirus

HARDNESS	VALUE	METHOD		NORMALIZED	NORMALIZED	REFERENCE			
(PPM)	(ug/L)			HARDNESS	VALUE				
20	5180	S	U	0.388	0.419	Pickering and Henderson, 1966			
20	5360	S U		0.388	0.434	Pickering and Henderson, 1966			
360	39600	S U		6.985	3.205	Pickering and Henderson, 1966			
49	21200	FT	М	0.951	1.716	Cairns, et al. 1981			
49	21200					GEO MEAN (1 result, FT only)			

All four results were used in the slope calculation, normalized values were based on a mean hardness = 51.54 and mean LC50 = 12356.10.

HARDNESS DATA: Geometric mean of all results = 60.21 Mean + 2 standard deviations (calculated on log scale) = 268 Mean - 2 standard deviations (calculated on log scale) = 14 Range over which acute criteria are applied = 14 – 268 PPM

SLOPE OF ATC EQUATION (from normalized data) = 0.8460 (r-squared = 0.886). This agrees with EPA's calculation.

MINIMUM DATABASE REQUIREMENT EVALUATION

According to s. NR 105.05(1)(a), acute toxicity criteria can be calculated if data are available on one or more species of freshwater animal in at least 8 different families, provided that of the 8 species:

- 1. At least one is a salmonid fish in the family Salmonidae in the class Osteichthyes,
- 2. At least one is a non-salmonid fish from another family in the class Osteichthyes, preferably a commercially or recreationally important species,
- 3. At least one is a planktonic crustacean (e.g., cladoceran, copepod),
- 4. At least one is a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish),
- 5. At least one is an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge),
- 6. At least one is a fish or amphibian from a family in the phylum Chordata not already represented in one of the other subdivisions,
- 7. At least one is an organism from a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca), and
- 8. At least one is an organism from a family in any order of insect or any other phylum not already

represented in subds. 1. to 7.

Using the above numbering scheme, the following species are represented in the minimum database requirements for criteria calculation. If any of the 8 categories are not represented in the database, a criterion cannot be calculated under ch. NR 105. Instead, a secondary value must be calculated.

- 1. Rainbow trout
- 2. Bluegill
- 3. Cladoceran (D. magna)
- 4. Amphipod (Gammarus)
- 5. Stonefly (A. lycorias)
- 6. Fathead minnow, family Cyprinidae
- 7. Snail (P. gyrina)
- 8. Banded killifish, family Cyprinodontidae

CONCLUSION: An acute toxicity criterion can be calculated for nickel according to ch. NR 105.

Normalize mean toxicity values to intercepts @ hardness = 1 PPM using the slope of 0.846 relating ln LC50 to ln hardness. Species are arranged in the following table by genus names in alphabetical order).

	Mean	Mean	SMAI (LC50/EC50
Genus/species	<u>hardness</u>	LC50/EC50	@ hardness = 1)
Stonefly (Acroneuria lycorias)	40.00	33500	1478.34
Rock bass (Ambloplites rupestris)	26.00	2480	157.56
Snail (Amnicola sp.)	50.00	12767.93	466.52
American eel (Anguilla rostrata)	53.99	13000	445.12
Caddisfly (genus unidentified)	50.00	30200	1103.45
Goldfish (Carassius auratus)	20.00	9820	778.93
Midge (Chironomus riparis)	55.00	79355.85	2674.91
Amphipod (Cran. pseudogracilis)	50.00	66100	2415.17
Carp (Cyprinus carpio)	53.99	10499.52	359.50
Damselfly (genus unidentified)	50.00	21200	774.61
Cladoceran (Daphnia magna)	79.52	1632.32	40.28
Cladoceran (Daphnia pulicaria)	46.72	1927.64	74.59
Mayfly (Ephemerella subvaria)	42.00	4000	169.38
Banded killifish (Fundulus diaphanus)	53.99	46149.97	1580.18
Amphipod (Gammarus sp.)	50.00	13000	475.00
Bluegill (Lepomis macrochirus)	49.00	21200	787.96
Pumpkinseed (Lepomis gibbosus)	53.99	8049.84	275.63
Striped bass (Morone saxatilis)	75.93	8420.30	216.07
White perch (Morone americana)	53.99	13649.91	467.37
Worm (Nais sp.)	50.00	14100	515.19
Rainbow trout (Onch. mykiss)	33.00	9415.11	488.91
Snail (Physa gyrina)	26.00	239.00	15.18
Fathead minnow (Pimeph. promelas)	96.67	11713.55	245.04

Genus Mean Acute Intercept calculations from above table (geometric means calculated if more than one species in a genus has data). The GMAIs are sorted from high to low and the representative receiving water classifications in Wisconsin are also noted.

	GMAI	CLASSIFICATIONS *			
GENUS NAME	<u>(ug/L)</u>	<u>CW</u>	<u>WW</u>	<u>LFF</u>	LAL
Chironomus	2674.91	Χ	Χ	Χ	Χ
Crangonyx	2415.17	Χ	Χ	Χ	Χ
Fundulus	1580.18	Х	Χ		
Acroneuria	1478.34	Χ	Χ	Χ	Χ
Caddisfly	1103.45	Χ	Χ	Χ	Χ
Carassius	778.93	Χ	Χ	Χ	
Damselfly	774.61	Χ	Χ	Χ	Χ
Nais	515.19	Χ	Χ	Χ	Χ
Onchorhynchus	488.91	Х			
Gammarus	475.00	Χ	Χ	Χ	Χ
Amnicola	466.52	Χ	Χ	Χ	Χ
Lepomis	466.03	Х	Χ		
Anguilla	445.12	Х	Χ		
Cyprinus	359.50	Χ	Χ	Χ	
Morone	317.79	Х	Χ		
Pimephales	245.04	Χ	Χ	Χ	
Ephemerella	169.38	Χ	Χ	Χ	Χ
Ambloplites	157.56	Х	Χ		
Daphnia	54.81	Χ	Χ	Χ	Χ
Physa	15.18	Χ	Χ	Χ	Χ
TOTAL NUMBER REPR	RESENTED:	20	19	14	11

^{* -} KEY TO CLASSIFICATIONS (an x is listed for species considered in each):

CW = Coldwater community, all genera are considered here.

WW = Warmwater sportfish community, only the coldwater fish are excluded from this database (also includes warmwater forage).

LFF = Limited forage fish community, all sport fish are excluded from this database.

LAL = Limited aquatic life, all fish are excluded from this database.

The four most sensitive genera in each classification are used to calculate the criteria under each classification, pursuant to s. NR 105.05 (2). From this point, the results of the calculation are shown using the variables listed in sub. (2).

CRITERIA CALCULATION:

RIA CALCULATION:						
	CW	WW	LFF	LAL		
G	MAI RANKS					
4	169.3803	169.3803	245.03775	466.51646		
3	157.56031	157.56031	157.56031	169.3803		
2	54.812849	54.812849	54.812849	54.812849		
1	15.184239	15.184239	15.184239	15.184239		
n	20	19	14	11		
In GMAI						
4	5.1321465	5.1321465	5.5014123	6.1452933		
3	5.0598083	5.0598083	5.0598083	5.1321465		
2	4.0039246	4.0039246	4.0039246	4.0039246		
1	2.720258	2.720258	2.720258	2.720258		
(In GMAI)^2						
4	26.338927	26.338927	30.265537	37.76463		
3	25.60166	25.60166	25.60166	26.338927		
2	16.031413	16.031413	16.031413	16.031413		
1	7.3998035	7.3998035	7.3998035	7.3998035		
Р						
4	0.1904762	0.2	0.2666667	0.3333333		
3	0.1428571	0.15	0.2	0.25		
2	0.0952381	0.1	0.1333333	0.1666667		
1	0.047619	0.05	0.0666667	0.0833333		
sq rt P						
4	0.4364358	0.4472136	0.5163978	0.5773503		
3	0.3779645	0.3872983	0.4472136	0.5		
2	0.3086067	0.3162278	0.3651484	0.4082483		
1	0.2182179	0.2236068	0.2581989	0.2886751		
EV	16.916137	16.916137	17.285403	18.001622		
EW	75.371803	75.371803	79.298413	87.534773		
EP	0.4761905	0.5	0.6666667	0.8333333		
EPR	1.3412248	1.3743465	1.5869586	1.7742737		
J	0.05	0.05	0.05	0.05		
S	12.033444	11.743439	11.144037	11.864186		
L	0.1941457	0.1941457	-0.099931	-0.762173		
Α	2.8849057	2.8200586	2.3919518	1.8907399		
FAI	17.901879	16.777833	10.934816	6.6242681		
ACI	8.9509395	8.3889166	5.4674078	3.312134		
In ACI	2.1917585	2.1269114	1.6988046	1.1975927		

TOTAL NICKEL ACUTE CRITERION EQUATIONS:

ACOTE CIVILLICION EQUATIONS.							
	CW	WW	LFF	LAL			
SLOPE	0.8460	0.8460	0.8460	0.8460			
In ACI	2.1918	2.1269	1.6988	1.1976			
		< CW	< CW	< CW			
adj. In ACI	2.2551	2.2551	2.2551	2.2551			
		000					
mean H + 2SD		268					
mean H - 2 SD		14					
TOTAL REC. Ni							
ATC (in ug/L)							
@ hardness =							
50	184.39						
100	331.42						
200	595.72						
268	763.08						

The calculated criteria for the non-coldwater classifications were all less than the coldwater criterion, and all four were less than the EPA criterion because of the non-resident species (Guppy, genus Poecilia) used by EPA. Since Wisconsin's database is a subset of EPA's, the criterion was raised to equal EPA's (In ACI = 2.255).

Acute toxicity criteria for nickel (in ug/L as total recoverable): all classifications: ATC = EXP(0.846 X In(hardness) + 2.255)

where EXP = e raised to the power of the term in parentheses

CHRONIC TOXICITY CRITERIA

EPA SPECIES MEAN CHRONIC VALUES

(values from 3/86 EPA AWQC document, EPA 440/5-86-004 and 3/95 GLWQI Criteria Document for the Protection of Aquatic Life in Ambient Water)

Cladoceran, Daphnia magna

oladoolan, zapinna magna							
HARDNESS	VALUE	TYPE OF	NORMALIZED	NORMALIZED	REFERENCE		
(ppm)	(ug/L)	TEST	HARDNESS	VALUE			
51	14.77	LC			Chapman, et al. Manuscript		
105	123.1	LC			Chapman, et al. Manuscript		
205	356.6	LC			Chapman, et al. Manuscript		
103.16	86.55				GEO MEAN (3 results)		

Caddisfly, Clistoronia magnifica

HARDNESS	VALUE	TYPE OF	NORMALIZED	NORMALIZED	REFERENCE		
(ppm)	(ug/L)	TEST	HARDNESS	VALUE			
54	128.4	LC			Nebeker, et al. 1984		
54	128.4				GEO MEAN (1 result)		

Rainbow trout, Onchorhynchus mykiss

HARDNESS	VALUE	TYPE OF	NORMALIZED	NORMALIZED	REFERENCE
(ppm)	(ug/L)	TEST	HARDNESS	VALUE	
53	< 35	ELS			Nebeker, et al. 1985
52	91.15	ELS			Nebeker, et al. 1985
49	240.3	ELS			Nebeker, et al. 1985
51.30	91.52				GEO MEAN (3 results)

Fathead minnow. Pimephales promelas

HARDNESS	VALUE	TYPE OF	NORMALIZED	NORMALIZED	REFERENCE
(ppm)	(ug/L)	TEST	HARDNESS	VALUE	
210	526.7	LC			Pickering, 1974
44 – 45	217.3	ELS			Lind, et al. Manuscript
96.67	338.31				GEO MEAN (3 results)

EPA ACUTE-CHRONIC RATIOS:

Only four freshwater species have chronic data. Not enough data are available to permit the calculation of independent chronic toxicity criteria (see table below) because the minimum database requirement was not met. Instead, acute-chronic ratios (ACRs) must be developed such that the chronic criterion equals the final acute value divided by the appropriate ACR. The following table summarizes the calculation procedure for the ACRs using the procedure in s. NR 105.06 (5).

	ACUTE	CHRONIC	TEST	
<u>SPECIES</u>	<u>VALUE</u>	<u>VALUE</u>	<u>ACR</u>	SMACR
Daphnia magna				
(hardness = 51)	1800	14.77	121.9	
(hard. = 104-105)	1920	123.1	15.60	
(hard. = 205-206)	4970	356.6	13.94	29.86
Fathead minnow				
(hard. = 44-45)	5186#	217.3	23.87	
(hard. = 210)	27950*	526.7	53.03	35.58
Mysid	508	92.74	5.48	5.48

- mean of two values (Lind, et al. Manuscript)

The mysid shrimp ratio was used because there were only two freshwater species with ACRs. FACR:

Coldwater, warmwater, limited forage = Geo. mean of 29.86, 35.58, 5.48 = 17.98 Limited agu. life = Geo. mean of 29.86 and 5.48 = 12.79

Chronic toxicity criteria for nickel (in ug/L as total recoverable): CW, WWSF, LFF: CTC = EXP(0.846 X In(hardness) + 0.0591)

LAL: $CTC = EXP(0.846 \times In(hardness) + 0.4004)$

where EXP = e raised to the power of the term in parentheses

NOTE: The coldwater equation does not exactly agree with EPA's, equation intercept is 0.0591 instead of 0.0584. EPA's FACR is based on an ACR of 122.4 for the cladoceran test at hardness 51 PPM, but based on the values reported in EPA's criteria document, the ratio calculated out as 121.9 (1800 / 14.77). This reduces the FACR by a small amount and results in a slightly relaxed criterion. The difference is considered to be insignificant (see summary below).

TOTAL RECOVERABLE Ni CTC (in ug/L):

hardness	EPA	CW,	LAL	
		WW,		
		LFF		
50	29.01	29.03	40.84	
100	52.15	52.19	73.42	
200	93.74	93.81	131.96	
268	120.08	120.16	169.03	

^{* -} mean of four values (Pickering, 1974)