|--|

RECEIVED

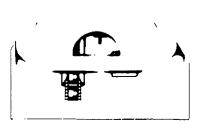
Via Electronic Submission

ExxonMobil Chemical Company 13501 Katy Freeway Houston, TX 77079-1398 281.870.6113 Telephone 281.588.2522 Facsimile Susan K. Blevins 2000 SEP 26 AH 7: 40 Manager Global Product Stewardship & Regulatory Affairs

September 25, 2008

Administrator US Environmental Protection Agency P. O. Box 1473 Merrifield, VA 22116 Attention: Chemical Right-to-Know Program

Re: Gases, Petroleum, Extractive, C4-6 Isopentene Rich Reaction Products with Methanol, Ether Fraction, Hydrogenated, Cracked, Isopentene Fraction, CAS No. 108083-44-9 for the HPV Challenge Program (ExxonMobil Chemical Company Registration Number for HPV Challenge Program)


To Whom It May Concern:

ExxonMobil Chemical Company (EMCC) is strongly committed to the chemical industry's Responsible Care® program and takes seriously its commitment to the responsible manufacture, testing, and safe use of its products. Under the U.S. Environmental Protection Agency (EPA) High Production Volume (HPV) Chemical Challenge Program (Program), ExxonMobil Chemical Company committed to voluntarily compile a Screening Information Data Set (SIDS) that can be used for an initial hazard assessment of the Gases, Petroleum, Extractive, C4-6 Isopentene Rich Reaction Products with Methanol, Ether Fraction, Hydrogenated, Cracked, Isopentene Fraction (C4-6 IRRP Fraction), CAS No. 108083-44-9. Although there are no data for the stream, based on its composition, it was determined that data for three constituents can be used to characterize the SIDS endpoints because they comprise a large fraction of the stream and therefore, will define the fate and effects of the stream. The three substances are n-hexane (CAS No. 110-54-3), 2,4-dimethylpentane (CAS No. 108-08-7), and cyclohexane (CAS No. 110-82-7).

With this letter, EMCC submits the test plan and robust study summaries compiled into separate dossiers for the three main constituent substances in the C4-6 IRRP Fraction stream. Sufficient data and information exist to characterize all endpoints in the HPV Program. Therefore, no additional testing is proposed. With the submission of this test plan and dossiers, EMCC has completed its commitment under the HPV Program for the C4-6 IRRP Fraction stream.

Please contact me if you require any further information on the status of EMCC commitments to the U.S. HPV Program.

1

Sincerely,

,

Susan K. Blevins Global Product Stewardship and Regulatory Affairs Manager Email: susan.k.blevins@exxonmobil.com

Attachment

Bcc:

EMCC - Houston

- R. Brown
- C. Fairbrother

EMBSI - Clinton

- A. Bachman
- R. Davi
- T. Parkerton
- K. Pavkov
- D. Winkelmann

201-16752A	
RECEIVED OPPT CBIC	

HIGH PRODUCTION VOLUME 200 55P 26 AM 7: 40

CHEMICAL CHALLENGE PROGRAM

TEST PLAN For:

GASES, PETROLEUM, EXTRACTIVE, C4-6 ISOPENTENE RICH REACTION PRODUCTS WITH METHANOL, ETHER FRACTION, HYDROGENATED, CRACKED, ISOPENTENE FRACTION

CAS No. 108083-44-9

Prepared by:

ExxonMobil Chemical Company

September 25, 2008

EXECUTIVE SUMMARY

Under the U.S. Environmental Protection Agency (EPA) High Production Volume (HPV) Chemical Challenge Program (Program), ExxonMobil Chemical Company committed to voluntarily compile a Screening Information Data Set (SIDS) that can be used for an initial hazard assessment of Gases, Petroleum, Extractive, C4-6 Isopentene Rich Reaction Products with Methanol, Ether Fraction, Hydrogenated, Cracked, Isopentene Fraction (C4-6 IRRP Fraction), CAS No. 108083-44-9.

Existing data and technical analyses adequately characterize the SIDS endpoints for the C4-6 IRRP Fraction stream and support a screening-level hazard assessment, which informs the public about the SIDS-based hazards of this substance. Sufficient data and information exist to characterize all endpoints in the HPV Program. Therefore, no additional testing is proposed.

The C4-6 IRRP Fraction stream is a complex substance that contains a predominant ether fraction in combination with a larger hydrocarbon fraction. A search for existing studies/information and their review identified adequate data for select constituents to characterize all SIDS endpoints for the stream. Data suggest that the C4-6 IRRP Fraction stream generally presents a low order of hazard for human health and a moderate order of environmental hazard for the predominant groups of constituents as a whole. The predominant constituents of the stream are relatively volatile. Information on their fate in the environment suggests that once in the atmosphere, they will be largely degraded through physical processes at a relatively rapid rate.

Page

TABLE OF CONTENTS

ΕX	EC	UTIVE SU	MMARY	2	
I.	INTRODUCTION				
١١.	. CHEMICAL DESCRIPTION, MANUFACTURING PROCESS, AND USE				
		Table 1.	Percent composition ranges of predominant constituents in the C4-6 IRRP Fraction Stream.	6	
III.	ТΕ	ST PLAN	RATIONALE AND DATA SUMMARY	6	
	Α.	Physicock	nemical Data	7	
		Table 2.	Selected physico-chemical properties for two select constituents used to characterize the C4-6 IRRP Fraction stream.	8	
	В.	<u>Environm</u>	ental Fate Data	8	
		Table 3.	Environmental distribution as calculated by the Mackay	12	
			(1998a) Level I fugacity model for select constituents used to		
			characterize the C4-6 IRRP Fraction stream.		
		Table 4.	Environmental distribution as calculated by the Mackay (1998b) Level III fugacity model for select constituents used to characterize the C4-6 IRRP Fraction stream.	13	
	C.	Aquatic T	oxicity Data	14	
		Table 5.	Measured and calculated aquatic toxicity values for n-Hexane	14	
		Table 6.	Measured and calculated aquatic toxicity values for 2,4- Dimethylpentane.	15	
		Table 7.	Measured and calculated aquatic toxicity values for Cyclohexane.	16	
	D.	<u>Mammalia</u>	an Toxicity Data	17	
		Table 8.	Mammalian toxicity endpoint summary for n-Hexane.	27	
		Table 9.	Mammalian toxicity endpoint summary for 2,4- Dimethylpentane.	28	
		Table 10.	Mammalian toxicity endpoint summary for Cyclohexane.	29	
IV.	TE	ST PLAN	SUMMARY	30	
			n-Hexane, 2,4-dimethylpentane, and cyclohexane data availability and adequacy for endpoints in the HPV Program.	30	

31

Appendix A - n-Hexane Appendix B - 2,4-Dimethylpentane Appendix C - Cyclohexane

TEST PLAN FOR C4-6 IRRP FRACTION CAS No. 108083-44-9

I. INTRODUCTION

Under the U.S. Environmental Protection Agency (EPA) High Production Volume (HPV) Chemical Challenge Program (Program), ExxonMobil Chemical Company committed to voluntarily compile a Screening Information Data Set (SIDS) that can be used for an initial hazard assessment of the Gases, Petroleum, Extractive, C4-6 Isopentene Rich Reaction Products with Methanol, Ether Fraction, Hydrogenated, Cracked, Isopentene Fraction (C4-6 IRRP Fraction) stream, CAS No. 108083-44-9. Although there are no data for the stream, based on its composition, it was determined that data for three constituents can be used to characterize the SIDS endpoints because they comprise a large fraction of the stream and therefore, will define the fate and effects of the stream. The three substances are n-hexane (CAS No. 110-54-3), 2,4-dimethylpentane (CAS No. 108-08-7), and cyclohexane (CAS No. 110-82-7).

This assessment includes data for selected physicochemical, environmental fate, and mammalian and environmental effect endpoints identified by the U.S. HPV Program. Procedures to assess the reliability of selected data for inclusion in this test plan were based on guidelines described by Klimisch *et al.* (1997) and identified within the U.S. EPA (1999) document titled <u>Determining the Adequacy of Existing Data</u>. The following sections describe the C4-6 IRRP Fraction stream and its manufacturing process, and data used to characterize the various endpoints in the HPV Program. After a review of the existing data, ExxonMobil Chemical Company believes that data needed to adequately assess all SIDS endpoints have been identified and that additional testing is not necessary.

II. CHEMICAL DESCRIPTION, MANUFACTURING PROCESS, AND USE

The C4-6 IRRP Fraction stream is composed of several constituent substances (Table 1). The predominant chemical fractions in this stream are C5 to C8 aliphatic hydrocarbons, which can comprise approximately 90% of the stream. The remaining 10% is made up of olefins (<1%), methoxypentanes or ethers (6%), furans (<1%) and aromatic hydrocarbons (<2%).

In the chemical plant, a mostly C5 stream is brought into the isoamylene unit (IAU) from upstream fractionation. To remove the isoamylene (2-methyl-butene-1 and 2-methyl-butene-2), the stream is run across a catalyst that oxygenates the isoamylene into TAME (tertiary-amyl methyl ether) using methanol. This TAME is then fractionated away from the remaining C5 stream, and decomposed back to isoamylene and methanol and recovered as product. In the first methanol reaction, there are side reactions that occur that cause generation of oxygenates heavier than TAME. These are fractionated off as the IAU light co-product stream. The IAU light co-product stream is then sent back to the refinery for further processing.

Table 1.	Percent composition ranges of predominant constituents in the C4-6 IRRP
	Fraction stream.

C4-6 IRRP Fraction Stream					
Chemical Group	Constituent	Percent Composition			
C5 Aliphatics					
	pentanes	0.6			
C6 Aliphatics					
	hexanes	24.5			
	hexane	0.1			
	cyclohexane	20.8			
C7 Aliphatics					
	2,4-dimethylpentane	35.4			
	3-methylhexane	0.2			
	heptanes	3.1			
	heptane	0.1			
	dimethylcyclopentane	1.3			
	methylcyclohexane	0.3			
C8 Aliphatics					
	octanes +	3.6			
C6 Olefins					
	2-methyl-1-pentene	0.1			
	trans-3-hexene	0.4			
	2,3-dimethyl-2-butene	0.3			
Methoxypentanes					
	TAME	3.7			
	SAME	1.5			
Aromatics					
	benzene	1.8			
Furans					
	2-methylfuran	1.0			

III. TEST PLAN RATIONALE AND DATA SUMMARY

The predominant constituent chemical groups of the C4-6 IRRP Fraction stream include C6 to C7 Aliphatics (9 constituents) at as much as 80% of the stream, these combined constituent fractions, will be responsible for the biological effects exhibited by the stream as a whole. The few remaining chemical groups or individual chemical constituents, that are present at levels between <1% to as much as 4%, will not contribute to a greater adverse biological effect than that resulting from the two major groups. Therefore, data from representative constituents from each of these two groups will be used to characterize the overall biological and fate characteristics of the stream.

The basic strategy of this test plan for characterizing the human health hazards of the C4-6 IRRP Fraction stream is to evaluate data for the major components of the stream. The major chemical components of the stream in the C4-6 IRRP Fraction stream have been tested for human health toxicity endpoints. Available data on these components prove to provide sufficient information to develop scientific judgment-based characterizations of the human health effects of the stream for purposes of satisfying

HPV program requirements. Therefore, no additional human health toxicity testing is proposed. The hazard characterization for the C4-6 IRRP Fraction stream will include the hazards of n-hexane, 2,4-dimethylpentane and cyclohexane.

The environmental fate and effects of the C4-6 IRRP Fraction stream will be characterized by n-hexane, 2,4-dimethylpentane, and cyclohexane. A SIDS dataset exists for cyclohexane. Use of the constituent data to characterize the environmental fate and effects for this stream is supported by calculated results from the ECOSAR computer model (ECOSAR, 2004) using EPI SuiteTM (2000) modeled input data. The acute aquatic toxicity data for each of the freshwater fish, daphnid, and green alga endpoints show that the representative constituent fractions are expected to cause effects within a relatively narrow range from 0.2 to 4.5 mg/l.

Additional data for this stream used to characterize the aquatic toxicity endpoints were developed using the ECOSAR computer model (ECOSAR, 2004) provided within EPI SuiteTM (2000). This model applies an equation for neutral organics to estimate aquatic toxicity and is therefore considered appropriate to estimate aquatic toxicity for the representative substances. No additional environmental fate and effects testing is proposed.

Data used to characterize the various physicochemical, environmental fate, and environmental and mammalian health endpoints are described below.

A. Physicochemical Data

Calculated and measured n-hexane, 2,4-dimethylpentane, and cyclohexane physicochemical data from the literature are listed in Table 2.

Table 2. Selected physico-chemical properties for three select constituents used to characterize the C4-6 IRRP Fraction stream.

ENDPOINT	Hexane	2,4-Dimethylpentane	Cyclohexane
Melting Point	-95.3	-119.5	6.6
(ºC)	(Lide, 2003)	(Lide, 2003)	(Lide, 2003)
Boiling Point	68.7	80.4	80.7
(ºC at 1012 hPa)	(Lide, 2003)	(Lide, 2003)	(Lide, 2003)
Density	0.659	0.668	0.774
(g/cm ³ at 20°C)	(Riddick <i>et al.</i> , 1986)	(Riddick <i>et al.</i> , 1986)	(Riddick <i>et al.</i> , 1986)
Vapor Pressure	20,131	10,586	12,919
(Pa at 25°C)	(Boublik <i>et al.</i> , 1984)	(Daubert & Danner, 1989)	(Chao <i>et al.</i> , 1983)
Water Solubility (mg/l at 25°C)	9.5 (McAuliffe, 1966)	5.5 (Yalkowsky & Dannenfelser, 1992)	55.0 (McAuliffe, 1966)
Log K _{ow}	3.90 (20°C)	3.63 (25°C)	3.44 (20°C)
	(Hansch <i>et al.</i> , 1995)	(U.S. EPA, 2000)	(Hansch <i>et al.</i> , 1995)

Conclusion

Based on data identified for n-hexane, 2,4-dimethylpentane, and cyclohexane, the C4-6 IRRP Fraction stream will exhibit a melting range between approximately 6.6 to -119°C, a boiling range between approximately 68 to 81°C, a density ranging from approximately 0.6 to 0.8 g/cm³ at 20°C, and a vapor pressure between approximately 10,500 to 20,100 Pa at 25°C. The predominant constituents of the IRF stream have water solubilities that range from 5.5 to 55 mg/l at 25°C and Log K_{ow} values that range from approximately 3.44 to 3.90.

B. Environmental Fate Data

Biodegradation

Biodegradation of an organic substance by bacteria can provide energy and carbon for microbial growth. This process results in a structural change of an organic substance and can lead to the complete degradation of that substance, producing carbon dioxide and water.

A test procedure used to develop data for substances in this stream was OECD 301F Guideline (Manometric Respirometry Test), which uses a continuously stirred, closed system, measuring oxygen consumption. This method is recommended when assessing the biodegradability of poorly water soluble, volatile constituents like those in this stream. The microbial inocula originated from a domestic wastewater treatment facility and were not acclimated for the test procedures.

Data for heptane was developed following this method and is available to be used as read-across for n-hexane and 2,4-dimethylpentane. Heptane was evaluated in triplicate test systems at a concentration of approximately 45 mg/l, and exhibited 74% biodegradation after 28 days, based on ThOD (ExxonMobil, 1996). Linear and methyl branched C_6 and C_7 hydrocarbon isomers are expected to biodegrade to similar extents because of their similarity in structure and the conservative nature of microbial metabolic processes. In data developed using the Japanese MITI test, for example, n-hexane, at a concentration of 100 mg/l, achieved 100% of its theoretical BOD in 4 weeks using an activated sludge inoculum at 30 mg/l (CITI, 1992).

Additional data for n-heptane was also developed following standard methods for the examination of water and waste water (APHA, 1971). The source of the microbial inoculum used in this study was a silt loam soil and it was not acclimated. The average biodegradation based on theoretical biological oxygen demand for n-heptane on days 2, 5, 10, and 20 was 28, 63, 70, and 70%, respectively (Haines and Alexander, 1974).

Biodegradability of cyclohexane was determined following OECD 301F test guidelines. Cyclohexane was evaluated in triplicate test systems at a concentration of approximately 34 mg/l, and exhibited 77% biodegradation after 28 days, based on ThOD (ExxonMobil, 1995). A lag-phase of about 12 days was observed and the 10-day criteria was fulfilled. The first step of cyclohexane biodegradation is oxidation to cyclohexanol (Verschueren, 1983). Cyclohexanol can clearly be considered as readily biodegradable (CITI, 1992). Overall, it can be concluded that cyclohexane is readily biodegradable in the aquatic environment.

The ether fraction of the stream, which is small (approximately 5%), is not expected to demonstrate significant biodegradation.

Conclusion

Based on data for n-hexane, n-heptane and cyclohexane, the C4-6 IRRP Fraction stream is expected to demonstrate an overall high extent of biodegradation. However, in the environment, the fate of the C4-6 IRRP Fraction stream constituents have the potential to partition primarily to air because the they have relatively high vapor pressures, which suggests that they can volatilize to the air at a rapid rate if released.

Photodegradation – Photolysis

Direct photochemical degradation occurs through the absorbance of solar radiation by a chemical substance in aqueous solution. If the absorbed energy is high enough, then the resultant excited state of the chemical may undergo a transformation. A prerequisite for direct photodegradation is the ability of one or more bonds within a chemical to absorb ultraviolet (UV)/visible light in the 290 to 750 nm range. Light wavelengths longer than 750 nm do not contain sufficient energy to break chemical bonds, and wavelengths below 290 nm are shielded from the earth by the stratospheric

ozone layer (Harris, 1982a).

An approach to assessing the potential for a substance to undergo photochemical degradation is to assume that degradation will occur in proportion to the amount of light wavelengths >290 nm absorbed by constituent molecules (Zepp and Cline, 1977). Saturated and unsaturated hydrocarbons like those in the C4-6 IRRP Fraction stream do not absorb light above 290 nm. Therefore, the hydrocarbon constituents of this stream will not exhibit photolytic degradation.

Similarly, the oxygen non-bonding electrons in ethers do not give rise to absorption above 160 nm, which is why pure ether solvents can be used in spectroscopic studies. Consequently, the ether fraction of the C4-6 IRRP Fraction stream is also not subject to photolytic processes in the aqueous environment.

Conclusion

Based on the potential for photolysis of hydrocarbons and ethers, this process is not expected to significantly contribute to the degradation of constituents of the C4-6 IRRP Fraction stream.

Photodegradation – Atmospheric Oxidation

Photodegradation can be measured (US EPA, 1999a) or estimated using an atmospheric oxidation potential (AOP) model accepted by the EPA (US EPA, 1999b). Atmospheric oxidation as a result of hydroxyl radical attack is not direct photochemical degradation, but rather indirect degradation.

The constituents of the C4-6 IRRP Fraction stream have the potential to volatilize to air, based on the vapor pressure of three of the predominant constituents, where they are subject to atmospheric oxidation. In air, C4-6 IRRP Fraction stream constituents can react with photosensitized oxygen in the form of hydroxyl radicals (°OH). The computer program AOPWIN (atmospheric oxidation program for Microsoft Windows) (U.S. EPA, 2000) calculates a chemical half-life for a 12-hour day (the 12-hour day half-life value normalizes degradation to a standard day light period during which hydroxyl radicals needed for degradation are generated), based on an °OH reaction rate constant and a defined °OH concentration.

n-Hexane has a calculated half-life in air of 23.4 hours or 1.96 days (12-hour day), based on a rate constant of 5.46 x 10^{-12} cm³/molecule-sec and an [•]OH concentration of 1.5 x 10^{6} [•]OH /cm³. 2,4-dimethylpentane has a calculated half-life in air of 18.7 hours or 1.6 days (12-hour day), based on a rate constant of 6.85 x 10^{-12} cm³/molecule-sec and an [•]OH concentration of 1.5 x 10^{6} [•]OH /cm³. Cyclohexane has a calculated half-life in air of 15.1 hours or 1.3 days (12-hour day), based on a rate constant of 8.48 x 10^{-12} cm³/molecule-sec and an [•]OH concentration of 1.5 x 10^{6} [•]OH /cm³. Atkinson (1989) reported experimental [•]OH rate constants for hexane, 2,4-dimethylpentane, and cyclohexane of 5.61 x 10^{-12} cm³/molecule-sec, 5.16 x 10^{-12} cm³/molecule-sec, and 7.49 x 10^{-12} cm³/molecule-sec, respectively.

Conclusion

Atmospheric oxidation via hydroxyl radical attack can be a significant route of degradation for constituents in the C4-6 IRRP Fraction stream. Based on calculated and experimental values for the three chemicals that are representative of the majority of stream constituents, C4-6 IRRP Fraction stream constituents are expected to have an atmospheric half-life of approximately 2 days or less as a result of indirect photolysis by hydroxyl radical attack.

Stability in Water (Hydrolysis)

Hydrolysis of an organic chemical is the transformation process in which a water molecule or hydroxide ion reacts to form a new carbon-oxygen bond. Chemicals with leaving groups that have a potential to hydrolyze include alkyl halides, amides, carbamates, carboxylic acid esters and lactones, epoxides, phosphate esters, and sulfonic acid esters (Neely, 1985). The lack of a suitable leaving group renders a compound resistant to hydrolysis. Hydrocarbon and ether constituents of the C4-6 IRRP Fraction stream are resistant to hydrolysis because they lack functional groups that are hydrolytically reactive and Harris (1982b) identifies ether groups as generally resistant to hydrolysis.

Conclusion

Hydrolysis will not contribute to the removal from the environment of constituents in the C4-6 IRRP Fraction stream.

Chemical Distribution In The Environment (Fugacity Modeling)

Fugacity-based multimedia modeling provides basic information on the relative distribution of a chemical between selected environmental compartments (*i.e.*, air, soil, water, sediment, suspended sediment, and biota). Two widely used fugacity models are the EQC (Equilibrium Criterion) Level I and Level III model (Mackay, 1998a; Mackay, 1998b).

The input data required to run a Level I model include basic physicochemical parameters; distribution is calculated as percent of chemical partitioned to 6 compartments (air, soil, water, suspended sediment, sediment, biota) within a unit world. Level I data are basic partitioning data that allow for comparisons between chemicals and indicate the compartment(s) to which a chemical may to partition, based on selected physical parameters. The Level III model uses the same physical parameters as the Level I model, but also requires half-life degradation data for the air, soil, water, and sediment compartments, as well as emission parameters for the air, water, and soil compartments.

Results of the Mackay Level I and Level III environmental distribution models for three representative stream constituents are shown in Tables 3 and 4, respectively.

Table 3.Environmental distribution as calculated by the Mackay (1998a) Level I
fugacity model for select constituents used to characterize the C4-6 IRRP
Fraction stream.

ENVIRONMENTAL COMPARTMENT	HEXANE DISTRIBUTION* (%)	2,4- DIMETHYLPENTANE DISTRIBUTION** (%)	CYCLOHEXANE DISTRIBUTION† (%)
Air	99.97	99.98	99.91
Water	0.02	<0.01	0.03
Soil	0.01	0.01	0.06
Sediment	<0.01	<0.01	<0.01
Suspended Sediment	<0.01	<0.01	<0.01
Biota	<0.01	<0.01	<0.01

* Distribution is based on the following model input parameters for n-Hexane:

Molecular Weight	86.18
Temperature	25° C
Log K _{ow}	3.90
Water Solubility	9.5 g/m ³
Vapor Pressure	20,131 Pa
Melting Point	-95.3° C

** Distribution is based on the following model input parameters for 2,4-dimethylpentane:

	5
Molecular Weight	100.21
Temperature	25° C
Log K _{ow}	3.63
Water Solubility	5.5 g/m ³
Vapor Pressure	10,586 Pa
Melting Point	-119.5° C

† Distribution is based on the following model input parameters for cyclohexane:

Molecular Weight	84.16
Temperature	25° C
Log K _{ow}	3.44
Water Solubility	55.0 g/m ³
Vapor Pressure	12,919 Pa
Melting Point	6.6° C

Table 4.Environmental distribution as calculated by the Mackay (1998b) Level IIIfugacity model for select constituents used to characterize the C4-6 IRRPFraction stream.

ENVIRONMENTAL COMPARTMENT	HEXANE DISTRIBUTION* (%)	2,4- DIMETHYLPENTANE DISTRIBUTION** (%)	CYCLOHEXANE DISTRIBUTION† (%)
Air	21.3	20.0	15.8
Water	63.3	70.6	67.3
Soil	4.3	2.8	12.9
Sediment	11.1	6.6	4.0

* Distribution for n-hexane is based on the following model input parameters, reaction half-life in hours as predicted using EPI SuiteTM (2000), and a model default emission rate of 1000 kg/hr into each of the air, water, and soil compartments:

Molecular Weight	86.18	Reaction half-life (hr):	
Temperature	25° C	Air (gaseous)	23.5
Log K _{ow}	3.90	Water (no susp. part.)	360
Water Solubility	9.5 g/m ³	Bulk Soil	720
Vapor Pressure	20,131 Pa	Bulk Sediment	7,200
Melting Point	-95.3° C		

** Distribution for 2,4-dimethylpentane is based on the following model input parameters, reaction halflife in hours as predicted using EPI SuiteTM (2000), and a model default emission rate of 1000 kg/hr into each of the air, water, and soil compartments:

Molecular Weight	100.21	Reaction half-life (hr):	
Temperature	25° C	Air (gaseous)	18.7
Log K _{ow}	3.63	Water (no susp. part.)	360
Water Solubility	5.5 g/m ³	Bulk Soil	720
Vapor Pressure	10,586 Pa	Bulk Sediment	7,200
Melting Point	-119.5° C		

† Distribution for cyclohexane is based on the following model input parameters, reaction half-life in hours as predicted using EPI SuiteTM (2000), and a model default emission rate of 1000 kg/hr into each of the air, water, and soil compartments:

Molecular Weight	84.16	Reaction half-life (hr):	
Temperature	25° C	Air (gaseous)	15.1
Log K _{ow}	3.44	Water (no susp. part.)	360
Water Solubility	55.0 g/m ³	Bulk Soil	720
Vapor Pressure	12,919 Pa	Bulk Sediment	7,200
Melting Point	6.6° C		

Conclusion

Results of the Mackay Level I model suggest that the predominant constituents of the C4-6 IRRP Fraction stream will partition primarily to the air, >99%. These results are largely explained by their vapor pressures. In comparison, the Level III model suggests that the majority of the C4-6 IRRP Fraction stream will partition to the water compartment, approximately 63 to 71%, followed by the air compartment at

approximately 15 to 21%, and soil and sediment compartments at approximately 3 to 13%. These results are explained by the model parameters, but in particular the default emission rates and degradation half-lives.

C. Aquatic Toxicity Data

Data are available to characterize the potential freshwater fish acute, invertebrate acute, and freshwater alga toxicity of the C4-6 IRRP Fraction stream, based on data for three constituents, n-hexane, 2,4-dimethylpentane, and cyclohexane (Tables 5 through 7). n-Hexane demonstrated a measured 48-hour invertebrate (*Daphnia magna*) EC₅₀ toxicity value of 2.1 mg/l (TNO, 1986). A 24-hour LC₅₀ toxicity value for goldfish (*Carassius auratus*) of 4 mg/l was also reported by Verschueren (1983) using a modified ASTM D1345 test guideline (Shell Chemie, 1975). Two marine invertebrate species, *Chaetogammarus marinus* and *Mysidopsis bahia*, demonstrated 96-hour LC₅₀ toxicity values of 0.4 mg/l (TNO, 1986).

The measured n-hexane data were compared with data calculated (Table 5) by the ECOSAR model (2004). This model is considered appropriate to estimate the aquatic toxicity for this class of chemicals. The calculated data compared favorably with the measured data. The calculated freshwater fish acute, invertebrate acute, and freshwater alga toxicity values ranged between 0.9 to 1.3 mg/l.

ENDPOINT	MEASURED VALUE (mg/l)	CALCULATED VALUE* (mg/l)			
Fish 96-hr LC ₅₀	4 (Verschueren, 1983)	1.0			
Daphnid 48-hr EC50	2.1 (TNO, 1986)	1.3			
Alga 72-hr EbC ₅₀	na	na			
Alga 96-hr EC ₅₀	na	0.9			
Alga 72-hr NOEC	na	na			
Alga 96-hr ChV**	na	0.3**			
Marine Invert. 96-hr LC ₅₀	0.4 (TNO, 1986)	0.1			

Table 5.	Measured and	calculated a	aquatic toxicity	values for n-Hexane
		ouround to a t	aquallo lonioliy	

na - not available

* Model input parameters for ECOSAR (2004):

Log K _{ow}	3.90
Water Solubility	9.5 g/m ³
Melting Point	-95.3° C
ChV (chronic) voluo	

** ChV (chronic) value

Measured test data was not available for 2,4-dimethylpentane. Measured data for a suitable analog, n-heptane, was used to compare to modeled 2,4-dimethylpentane data. are available for a freshwater invertebrate and two marine invertebrate species (Table 6). n-Heptane demonstrated a 48-hour invertebrate (*Daphnia magna*) EC₅₀ toxicity value of 1.5 mg/L (TNO, 1986). Two marine invertebrate species, *Chaetogammarus marinus* and *Mysidopsis bahia*, demonstrated 96-hour LC₅₀ toxicity values of 0.2 and 0.1 mg/L, respectively (TNO, 1986).

The measured n-heptane data were compared with data estimated for 2,4dimethylpentane (Table 6) by the ECOSAR model (2004). As stated previously, this model is considered appropriate to estimate the aquatic toxicity for this class of chemicals. The calculated data compared favorably with the measured data. The calculated freshwater fish acute, invertebrate acute, and freshwater alga toxicity values ranged between 0.2 to 2.6 mg/l.

ENDPOINT	MEASURED VALUE (mg/l)	CALCULATED VALUE* (mg/l)
Fish 96-hr LC ₅₀	na	2.2
Daphnid 48-hr LC ₅₀	1.5 (TNO, 1986)	2.6
Alga 96-hr EC ₅₀	na	2.0
Alga 96-hr ChV**	na	0.5
Marine Invert. 96-hr LC ₅₀	0.2 (TNO, 1986)	0.2

Table 6. Measured and calculated aquatic toxicity values for 2,4-Dimethylpentane.

na - not available

* Model input parameters for ECOSAR (2004):

Log Kow3.63Water Solubility5.5 g/m³Melting Point-119.5° C

** ChV - chronic value

Measured cyclohexane data are available for a freshwater fish (Table 7). Cyclohexane demonstrated a 96-hour fathead minnow (*Pimephales promelas*) LC₅₀ toxicity value of 4.53 mg/l (Geiger, et.al., 1987). The study was performed under flow through conditions and the results are based on measured concentrations. An additional study with Rainbow Trout (Oncorhynchus mykiss) reported a 96-hour LL₅₀ toxicity value of 3.2 mg/l (EMBSI, 2001a). The study was performed under static, no-headspace conditions, with test solutions renewed at 24-hour intervals. Results are based on nominal concentrations of the test substance. Cyclohexane demonstrated a 48-hour invertebrate (Daphnia magna) EC₅₀ toxicity value of 0.9 mg/l (TNO, 1986). The lowest green alga (Selenastrum capricornutum) 72-hour EC₅₀ toxicity value was for biomass and measured 3.4 mg/l (EMBSI, 1998). Two marine invertebrate species, Chaetogammarus marinus and Mysidopsis bahia, demonstrated 96-hour LC₅₀ toxicity values of 2.2 mg/l (TNO, 1986). Many other results for cyclohexane are available in the open literature, but most studies were performed in static open systems without analytical monitoring. Due to the high volatility of cyclohexane, they therefore cannot be considered as valid and are not reported here.

The measured cyclohexane data were compared with data calculated (Table 7) by the ECOSAR model (2004). This model is considered appropriate to estimate the aquatic toxicity for this class of chemicals. The calculated data compared favorably with the measured data. The calculated freshwater fish acute, invertebrate acute, and freshwater alga toxicity values ranged between 2.2 to 3.3 mg/l.

ENDPOINT	MEASURED VALUE (mg/l)	CALCULATED VALUE* (mg/l)			
Fish 96-hr LC ₅₀	4.53 (Geiger, <i>et.al</i> , 1987)	2.8			
Daphnid 48-hr LC50	0.9 (TNO, 1986)	3.3			
Alga 96-hr EC ₅₀	3.4 (EMBSI, 1998)	2.2			
Alga 96-hr ChV**	na	0.5			
Marine Invert. 96-hr LC ₅₀	2.2 (TNO, 1986)	0.3			

na - not available

* Model input parameters for ECOSAR (2004):

Log K_{ow} 3.44 Water Solubility 55.0 g/m³

Melting Point 6.6° Č

** ChV - chronic value

Conclusion

The predominant constituent chemical groups of the C4-6 IRRP Fraction stream include C6 Aliphatics (3 constituents), which when combined can comprise approximately 45% of the stream, and C7 Aliphatics (6 constituents), which when combined can comprise approximately 40% of the stream. These combined constituent fractions, which can comprise up to 85% of the stream, will be responsible for the biological effects exhibited by the stream as a whole. The aquatic toxicity data for constituents from this stream are expected to fall within a relatively narrow range regardless of the isomer or mixture of isomers, because the constituent chemicals are neutral organic hydrocarbons whose toxic mode of action is non-polar narcosis (Ramos *et. al.*, 1998). The toxic mechanism of short-term toxicity for these chemicals is disruption of biological membrane function (Van Wezel and Opperhuizen, 1995), and the differences between toxicities (i.e., LC/LL₅₀, EC/EL₅₀) can be explained by the differences between the target tissue-partitioning behavior of individual constituent chemicals (Verbruggen *et. al.*, 2000).

The existing fish toxicity database for hydrophobic, neutral organic chemicals, which compose the constituents of this stream, supports a critical body residue (CBR) for these chemicals between approximately 2-8 mmol/kg fish (wet weight) (McCarty *et al.*, 1991; McCarty and Mackay, 1993). The CBR is the internal concentration of a toxicant that causes mortality. When normalized to lipid content for most organisms, the CBR is approximately 50 µmol/g of lipid (Di Toro *et al.*, 2000). Therefore, only hydrocarbon substances with components of sufficient water solubility, such that their molar sum in solution is high enough to produce a total partitioning to the organism of approximately 50 µmol of hydrocarbon per gram of lipid will demonstrate lethality. The C4-6 IRRP Fraction stream is expected to exhibit acute aquatic toxicity in the range from 0.2 to 4.5 mg/l.

D. Mammalian Toxicity Data

Acute Toxicity

Data are available to characterize the potential acute toxicity of the C4-6 IRRP Fraction stream, based on data for cyclohexane, n-hexane, and n-heptane, a suitable analog of 2,4-dimethylpentane. Rat oral LD₅₀ values of > 5,000 mg/kg (Phillips Petroleum Company, 1982a), 29,800 mg/kg (Deichmann and Le Blanc, 1943) and 8,000-39,000 mg/kg (Kimura et al., 1971) have been reported for cyclohexane. The oral rat LD50 values for hexane are 28,720 mg/kg, or 15,840 and 29,700 mg/kg for juvenile and adult rats (HSDB, 2005). The dermal LD₅₀ value for cyclohexane was >2000 mg/kg (Phillips Petroleum Company, 1982c). The inhalation rat LC₅₀ values (4hr) for cyclohexane, n-hexane and n-heptane were >32.88 mg/L (Phillips Petroleum Company, 1982b), 48,000 ppm, and >29 mg/L (HEDSET, 1982), respectively. A 1 hour acute inhalation exposure of rabbits to cyclohexane vapor produced effects on the central nervous system, with exposure-related observations including convulsions, tremors, hyperactivity, rapid respiration, cyanosis and diarrhea; all the animals exposed to 89.6 mg/L died (Treon *et al.*, 1943).

In summary, available acute toxicity data on predominant constituents of the C4-6 IRRP Fraction stream demonstrated a low order of acute oral, dermal, and inhalation toxicity. No further testing is proposed.

Genotoxicity

In vitro

Two constituents of the C4-6 IRRP Fraction stream and n-heptane as an analog for 2,4dimethylpentane have been evaluated in several *in vitro* genotoxicity assays. Cyclohexane, n-hexane and n-heptane were negative in a bacterial reverse gene mutation assay (Ames test) in *Salmonella typhimurium* and/or *Escherichia coli* with and without S-9 metabolic activation (Mortlemans *et al.*, 1986; NTP, 1991; Brooks *et al.*, 1982). n-Hexane and n-heptane showed no evidence of genotoxic activity in the mammalian chromosomal aberration assays (Daughtrey *et al.*, 1994; NTP, 1991; Brooks *et al.*, 1982). n-Heptane was also negative in a mitotic gene conversion assay using *Saccharomyces cerevisiae* JD1 (Brooks *et al.*, 1982).

Cyclohexane and n-hexane were negative for forward mutations in the mouse lymphoma L5178Y tk+/- assay (API, 1986; Phillips Petroleum Company, 1982g; Hazleton Laboratories, 1992). Similarly, cyclohexane was negative in an *in vitro* sister chromatid exchange test while n-hexane showed a marginally increased incidence of sister chromatid exchanges in chinese hamster ovary cells in the presence of S9 (not dose dependent) (Phillips Petroleum Company, 1982h; NTP, 1991). n-Hexane induced polyploidy in Chinese hamster lung fibroblast cells (Ishidate *et al.*, 1984).

Cyclohexane was also tested in the unscheduled DNA synthesis test at doses of $10^{-2} - 10^{-3}$ and 10^{-4} M in DMSO (Perocco *et al.*, 1983). Human lymphocytes (+ or – S9 mix) were cultured for 4 hours in the presence or absence of cyclohexane. The effects on the DNA synthesis were measured through cellular [³H]TdR uptake. Cyclohexane induced a marked inhibition of [³H]TdR uptake in the S9 mix-lacking cultures while the corresponding cellular viabilities were unaffected. No effect was seen with metabolic activation. The effects seen without metabolic activation were not dose-dependent; solvent controls and negative controls were highly variable. Decrease of the uptake for

the highest dose was within the values of the controls. No conclusion was drawn from this study. DNA synthesis was inhibited in human lymphocytes in the presence of concentrations of n-hexane from $10^{-4} - 10^{-2}$ M but only at cytotoxic concentrations (Perocco *et al.*, 1983).

Cyclohexane was found to be negative when tested alone in the DNA cell binding assay in the groups treated with liver extract or with lysozyme and liver extract. A positive finding (1.6% only) was found in the group treated with cyclohexane + lysozyme at the highest dose (100 uM). This result is considered doubtful because it is a very slight increase and also because this effect is not found in the group minus cyclohexane + lysozyme + liver extract (Kubinsky *et al.*, 1981).

In vivo

In vivo cyclohexane has been studied in a rodent bone marrow cytogenetic assay (American Petroleum Institute, 1982). Groups of 10 male and female Sprague Dawley rats were exposed by inhalation to atmospheres of 0, 97, 307 and 1,042 ppm for 6 hours per day for 5 days (350-1,050 -3,650 mg/m3). Samples of bone marrow cells were taken for cytogenetic analysis 6 hours after completion of the final dose. A positive control, triethyleneamine, showed a significant increase in structural aberration frequency. For cyclohexane a small but statistically significant increase in numerical aberrations was recorded in low and medium dose females, and pooled data at the low dose groups of both sexes. There was no information on general toxicity; no decrease on mitotic index was seen at all the doses tested. However, the authors of the report concluded that the lack of a dose-related response indicated that these increases were not of biological importance. Moreover, the numerical aberrations parameter had often shown great variation in this laboratory, having no statistical significance even for positive controls (numerical data is not available). It can be considered that cyclohexane does not produce chromosomal aberrations under the conditions of this test.

Test for the genotoxic potential of n-hexane *in vivo* have been predominantly negative. No dominant lethal mutations were induced following n-hexane exposure in CD-1 mice (Mast et al., 1988b; Litton Bionetics, 1980). Also n-hexane did not induce chromosomal aberrations and micronuclei in bone marrow cells of B6C3F1 mice injected intraperitoneally (Shelby and Witt, 1995). A slight, but significant, increase in the number of chromosomal mutations induced by n-hexane in albino rat bone marrow cells has been reported (Hazleton Laboratories, 1992). In addition, an *in vivo* bone marrow cytogenetic assay found that male albino rats exposed to 150, 300, and 600 ppm of n-hexane for 5 days experienced a significant increase in chromosomal aberrations at all treatment levels compared with controls (Hazleton Laboratories, 1992). No increase in the incidence of sister chromatid exchanges in *in vivo* mouse bone marrow cells was seen with intraperitoneal doses of 500, 1,000, or 2,000 mg/kg n-hexane. (NTP, 1991). The dosed groups displayed slight increases in chromosomal aberrations, but this increase was not considered to be significant.

In summary, the weight of the evidence for *in vitro* genotoxicity testing of cyclohexane, n-hexane and n-heptane and *in vivo* genotoxicity testing of cyclohexane and n-hexane indicates no strong evidence for genotoxicity. Based on these data on predominant constituents, no additional testing on the C4-6 IRRP Fraction stream is proposed.

Repeated Dose Toxicity

A number of repeated dose toxicity studies have been conducted on cyclohexane, n-hexane, and n-heptane, as a suitable analog for 2,4-dimethylpentane.

Cyclohexane

A two-week repeated dose inhalation range finding study was conducted with Crl CD.BR rats exposed (whole body) to cyclohexane vapor (Haskell Laboratory, 1995). In this study, the rats were exposed to cyclohexane vapor at target concentrations of 0, 3,000, 6,000, and 9,000 ppm. Nine exposures, each lasting 6 hours were performed in total. A slight but significant decrease in body weight gain was observed in males treated with the high dose (9,000 ppm). Only a minimal increase in mitotic index figures in the hepatocytes of males at 6,000 ppm and higher and in females at 9,000 ppm was detected; no other treatment related findings were observed for systemic toxicity. In particular, no modification in absolute and relative liver weights was noted in these studies. Based on these findings, a No Observable Adverse Effect Level (NOAEL) of 3,000 ppm was determined for systemic toxicity. For neurotoxic effects, diminished responses to stimulus were observed from day 2 at 9,000 ppm and from 7 exposures at 6,000 ppm. No effect was observed in a Functional Observational Battery (FOB). A NOAEL of 3,000 ppm was reported for neurotoxic effects in rats. This study served as a range-finding study for a 90 day inhalation toxicity study.

In a 13-week repeated dose toxicity study conducted by Haskell Laboratory, 1996a (Malley *et al.*, 2000), CD BR rats (20/sex/group for controls and high concentration and 10/sex/group for intermediary concentration groups) were exposed by whole body inhalation to cyclohexane at target concentrations of 0, 500, 2,000, and 7,000 ppm for 6 hours/day, 5 day/week for 13 weeks (66 exposures). Ten rats per month were allowed a one-month recovery period for control group and 7,000 ppm groups. After 45 and 90 days of exposure, blood and urine were collected for evaluation of clinical pathology parameters. Gross pathology, organ weight, macroscopic and microscopic examinations were performed at the end of the study.

No treatment-related effects were observed on body weight, body weight gain, food consumption, urine analysis and clinical examinations. A slight decrease (not significant) in succinate dehydrogense and lactate dehydrogenase was observed in males and females at 7,000 and 2,000 ppm at both sampling times. In males exposed to 7,000 ppm a slight increase in adrenals weight was observed at the end of the recovery period. This finding was not observed at the end of the 90 day exposure so the relevance and significance is questionable. In the 7,000 ppm group, a statistically significant increase in the relative liver weight with hepatic hypertrophy was observed in males (10/10), concurrent with an increase in the incidence of centrilobular hypertrophy in both sexes (9/10 males and 5/10 females). This finding was partially reversible in the one-month recovery period. For neurological effects, decreases in or absences of response to auditory stimulations were observed with a dose-response relationship from 500 ppm. In the 500 ppm group, there was a decrease in response on treatment days 61, 66, 67 and 68. In the 2,000 ppm group, there was decrease in the response during 16 exposures and no response during 50 exposures. In the 7,000 ppm group, a decreased response was observed in one exposure and no response was observed in

the other 65 exposures. These effects were transient, and as no clinical observations of compromised neurological function were detected they were considered to be due to a reversible sedation caused by cyclohexane. The NOAEL for neurological effects was 500 ppm while the NOAEL for hepatic effects was 2,000 ppm. However, the partially reversible hepatic effects observed in males at 7,000 ppm were slight and may be considered of an adaptive nature.

Additional groups of rats (12/sex/group) were treated in parallel with those of the previous study in order to assess neurotoxicity of cyclohexane in FOB, motor activity and neuropathology tests (Haskell Laboratory 1996c). Neurobehavioral evaluations were conducted prior to exposure and at week 4, 8, and 13. During each evaluation period FOB was performed prior to the motor activity test. At the end of the study, 6 rats/sex/group were selected for neuropathology, the controls and 7,000 ppm tissues selected were examined, and the intermediate dose tissues were saved. Neurological lesions were also assessed by examining sections of the brain, spinal cord, sciatic nerve, gasserian ganglia, cervical and dorsal root fibers and ganglia, cervical and lumbar ventral root fibers and gastrocnemius muscle.

Similar to the main 90 day study described previously, a sedative effect was observed at doses of 2,000 ppm and higher characterized by a decrease in the mean response to an alerting stimulus. This effect was transient since no effects were observed immediately after removal from the exposure chamber. No effects were observed during the FOB and motor activity assessment. Histologically, no treatment-related findings were observed, the only lesions observed being identical in character and severity to those observed in controls. These have already been described as occurring spontaneously in the rat. The NOAEL for neurotoxicity was 500 ppm based on the transient sedative effect observed at 2,000 ppm and higher.

A 13 week inhalation toxicity study (Haskell Laboratory, 1996b; Malley *et al.*, 2000) in mice was also performed following a 2-week range finding study in mice. The study was comparable in experimental conditions to that performed on rats. For neurologic effects, a NOAEL of 500 ppm was determined based on signs of sedation observed in animals at 2,000 ppm. The NOAEL for systemic effects was 2,000 ppm based on effects observed in the liver at 7,000 ppm (increase in absolute and relative liver weights).

n-Hexane

A fair number of subchronic inhalation studies with n-hexane have been performed, particularly concerning the neurotoxic potential of n-hexane in rats (Ono *et al.*, 1982; Pryor *et al.*, 1983; Howd *et al.*, 1983; Cavender *et al.*, 1984a,b; Huang, 1989, 1992; Biodynamics, 1978, IRDC, 1992; NTP, 1991). Three of these key studies are described.

The subchronic toxicity of n-hexane is of some concern due to reports of treatment related peripheral neuropathy. A key 13-week inhalation study of n-hexane in male and female rats provided strong evidence for treatment related peripheral neuropathy. (Cavender *et al.* 1984a,b). Male and female F344 rats (15/sex/group) were exposed to n-hexane at 0, 3,000, 6,500, and 10,000 ppm for 6 hours/day, 5 days/week for 13 weeks. There were no n-hexane-related clinical signs of toxicity, effects on food consumption, ophthalmological findings, or changes in neurological function. However, there was a lowering of the urinary pH in high-dose males. There were increased

organ/body weight ratios for liver, kidney, and testis in high-dose males and kidney in mid-dose males. Histopathological examination of the tibial nerves revealed paranodal axonal swelling in mid- and high-dose males. n-Hexane is metabolized to 5-hydroxy-2-hexanone and 2,5-hexanedione *in vivo* (DiVincenzo *et al.*, 1976). These two metabolites are believed to be responsible for the neurotoxicities associated with n-hexane exposure. There is evidence to show that 2,5-hexanedione is more persistent in peripheral nerve tissue than the parent n-hexane (Bus *et al.*, 1981).

In a 16-week inhalation toxicity study, male Wistar rats (8/group) were exposed to 0, 500. 1.200. or 3.000 ppm n-hexane for 12 hours/day, 7 days/week (Huang et al., 1989). Motor nerve conduction velocity was measured in the tail nerve along with body weight before exposure and after 4, 8, 12, and 16 weeks of exposure. One animal from each group was sacrificed after 16 weeks of exposure for histopathological evaluation of the nerve fibers in the tail. In addition, nerve-specific proteins (i.e. enolase and β -S100), involved in processes such as cell-cell communication, cell growth, intracellular signal transduction, and development and maintenance of the central nervous system, were measured. Statistically significant reductions in body weight gain were observed in a for the mid-dose (at 12 weeks) and high-dose (at 8 weeks) rats. Neurological deficits (i.e. reduction in grip strength and comparative slowness of motion) in mid- and high-dose rats were noted from 12 weeks of exposure. No hind-limb paralysis was observed by the time of sacrifice. A reduction in motor nerve conduction velocity, statistically significant during weeks 8-16, was seen with mid and high-dose rats. In addition increased incidence of paranodal swelling, along with some evidence of demyelination and remyelination was present in the peripheral nerves with 1,200 and 3,000 ppm. These histopathologic findings were most sever in the high-dose group. Dosedependent biochemical changes included reductions in nervous system-specific proteins, particularly the β -S100 protein in tail nerve fibers which was reduced by approximately 75% at all dose levels. Under the conditions of this study, the NOAEL was 500 ppm based on the neurophysiologic deficits and histopathologic effects seen with 1,200 and 3,000 ppm.

A 13-week inhalation study of n-hexane in mice was conducted in 1991 by the NTP. Groups of 10 mice/sex/group were exposed to 0, 500, 1,000, 4,000, or 10,000 ppm nhexane 6 hours/day, 5 days per week for the duration of the study. A second group of 10 mice was exposed at 1,000 ppm for 22 hours/day, 5 days/week for the duration of the study. Separate groups of 8 mice/sex/group received identical treatments but were subjected to neurobehavioral tests before the start of dosing then again after 6 and 13 weeks of exposure. Four males and four females were randomly selected from the 0, 1,000 ppm extended duration, and 10,000 ppm exposure groups for histopathological examination of the spinal cord and tibial nerves. Animals were observed daily for signs of clinical toxicity and weighed weekly.

A full necropsy was performed at sacrifice, weights of the major organs were recorded, and histopathological evaluations were carried out at term on a variety of excised organs and tissues. The liver was examined only in the males of all exposure groups. Animals exposed to 10,000 ppm n-hexane exhibited some signs of nasal irritation and all animals survived to term. Relative liver, kidney, and heart weights appeared to be increased compared with controls in exposed females. In addition, females exposed to 10,000 ppm 6 hours/day and 1,000 ppm for 22 hours/day exhibited neurobehavioral deficits with a reduction in locomotor activity. There was an increased incidence of

paranodal axonal swelling in high-dose or extended exposure duration mice. It was concluded that n-hexane caused minimal toxicity to the nervous system and/or respiratory system at 1,000 ppm and above indicating a NOAEL of 500 ppm.

2,4-dimethyl pentane (n-Heptane)

A 26-week inhalation toxicity study with n-heptane was conducted in Sprague-Dawley rats (API, 1980). In this study, the rats (15/sex/group) were exposed by inhalation to 0, 398 and 2,970 ppm n-heptane for 6 hours/day, 5 day/week for 26 weeks. There were no treatment-related deaths during the study. The only treatment-related observations were labored breathing or rapid breathing and slight prostration during the first week of study during exposure only, and anogenital fur staining and dry rales during weekly observations. No significant changes of body weight, hematology or urinalysis for both sexes were detected. Serum alkaline phosphatase was significantly elevated in female high dose rats and slightly elevated in low dose females. All other clinical chemistry values appeared normal with the exception of one male in the high dose group whose serum glutamic pyruvic transaminase and serum alkaline phosphatase levels were markedly elevated when compared to all other male rats on test. Proteinuria, elevated specific gravity and ketones were observed but do not appear to be related to treatment. The effects observed are consistent with acute central nervous system (CNS) depression and generally abated by the second week of the study. Under the conditions of this study, the Low Observed Adverse Effect Level (LOAEL) for acute CNS depression was 2,970 ppm and the NOAEL for systemic toxicity was 2,970 ppm.

In a 30-week inhalation neurotoxicity study, Sprague-Dawley rats (6-9 males/dose group) were exposed by inhalation to air or 1,500 ppm n-heptane for 9 hours/day, 5 days/week for 30 weeks (Frontali *et al.*, 1981). The primary objective of this study was to assess the appearance of polyneuropathy and urinary metabolites in rats following exposure to analytical grade solvents frequently used in Italian shoe factories. Nerve tissue was examined microscopically. None of the animals developed signs of neuropathy. There were no differences in weight gain of rats exposed to n-heptane compared to controls. Differences between mean values for hind limb spreads observed in treated animals and controls were not statistically significant. No histological signs of giant axonal degeneration were noted in rats treated at 1,500 ppm. Under the condition of this test, the NOAEL for repeated dose toxicity was considered to be 1,500 ppm.

In summary, data are available to adequately characterize the repeated dose toxicity of C4-6 IRRP Fraction stream. The C4-6 IRRP Fraction stream is expected to have a low order of repeated dose toxicity although some concern is noted based on evidence for peripheral neuropathy as a result of n-hexane exposure. No further testing is proposed.

Reproductive and Developmental Toxicity

Predominant constituents of the C4-6 IRRP Fraction stream have been evaluated for reproductive and developmental toxicity.

Cyclohexane

A two-generation reproductive toxicity study of inhaled cyclohexane vapor was conducted with CD BR rats (Haskell Laboratory, 1997c) according to OECD and US Environmental Protection Agency guidelines. In this study, weanling F0 rats (30/sex/group) inhaled cyclohexane vapor at 0, 500, 2,000, or 7,000 ppm 5 day/week and 6 h/day. Exposure duration was 10 weeks before mating until sacrifice of the P1 generation and 11 weeks before mating until sacrifice of the F1 generation. Gravid females were not exposed from day 21 of gestation until day 4 of lactation. From day 5 of lactation until weaning the neonates were potentially exposed by maternal milk; no other exposure was administered. At post partum day 25, thirty F1 animals/sex/dose were chosen to produce the next generation, treatment was continued 11 weeks before mating and during gestation. Fertility parameters were calculated. From 500 ppm, there was an increased incidence of diminished response to a stimulus during exposure, this finding being significant at 2,000 ppm and higher. At 7,000 ppm, major effects were observed on body weight, body weight gain and food efficiency. A decrease in mean body weight was seen with F1 male rats, P1 and F1 females during pre-mating, P1 females throughout gestation, and F1 females during lactation. A decrease in mean body weight gain was observed with F1 male rats and P1 and F1 females during pre-mating; however no reductions were seen for P1 females during gestation, suggesting that the reduction in mean gestation body weight was probably due to pre-existing body weight deficits established during the pre-mating period. The same findings were also seen with the F1 generation. A decrease in mean food efficiency of P1 and F1 females during lactation and a decrease in food consumption of P1 females during lactation were also observed. Effects on reproduction were limited to a decrease in mean pup weight for both the F1 and F2 generations at the high dose which was significant between post partum day 7 and 25 during which time pups were fed only maternal milk indicating the effect is due to cyclohexane via lactation. There was a slight increase in the incidence of pro-static inflammation at 7,000 ppm in P1 and F1 adults, but this was considered incidental due to the lack of severity and the reported common occurrence in rats. There was a slight but significant decrease in the mean percentage of animals born alive in the F1 litters dosed with 7,000 ppm, but given that the value was still in the range of historical controls and that this effect was not doserelated, this was not considered biologically significant.

The NOAEL for adult reproductive toxicity was 2,000 ppm based on decreases in pup body weight observed at 7,000 ppm. The systemic NOAEL for this study was 500 ppm based on sedative effects observed at 2,000 ppm and higher.

In another EPA and OECD guideline study, the developmental toxicity of cyclohexane in rats was tested (Haskell Laboratory, 1997a). As a pilot study, four groups of eight pregnant CDBR rats were exposed whole-body to concentrations of 0, 3,000, 6,000, or 9,000 ppm cyclohexane from gestational day 7 to 16. Dams were sacrificed on day 22 and examined for gross pathologies; implantations and resorptions were counted and their relative positions recorded; fetuses were weighed and examined externally for alterations. Maternal effects were limited to a reduction in overall maternal bodyweight gain, overall food consumption and diminished response of animals to a sound stimulus during exposure to 6,000 ppm and higher. No effects were observed in the pups. The NOAEL was 3,000 ppm for the dams and 9,000 ppm for the pups.

This pilot study served as a range-finding study used to design a more complete study which was carried out during the 90 day inhalation study previously described (Haskell Laboratory, 1997b). Four groups of CD BR rats were exposed whole body to cyclohexane at concentrations of 0, 500, 2,000 or 7,000 ppm from gestational day 7 to 16. Animals were sacrificed on day 22 and examined. Findings were limited to the dams and included a diminished response of the animals to a sound stimulus while in

the chamber during exposure and at 2,000 ppm or higher and reductions in overall body weight gain and food consumption throughout the treatment period. A slight but significant decrease in implantation number with the number of corpora lutea unchanged was seen when compared with controls. This finding was consistent with slight pre-implantation losses and can be considered as not treatment-related since there was no treatment during the pre-implantation period. The NOAEL was 500 ppm for maternal toxicity and 7,000 ppm for developmental toxicity considering the lack of toxic effects noted.

n-Hexane

The developmental toxicity of n-hexane was assessed using timed-pregnant (30 animals per group) and virgin (10 animals per group) Sprague-Dawley rats exposed to 0 (filtered air), 200, 1,000, and 5,000 ppm n-hexane vapor in inhalation chambers for 20 hours per day for a period of 14 consecutive days (Mast, 1987). Spermpositive females were exposed on gestation days (GD) 6-19 and virgins were exposed concurrently for 14 consecutive days. Maternal toxicity, manifested as a reduction in extra-gestational maternal weight gain, was observed at all exposure levels, and was statistically significant for the 5,000 ppm exposure group. Extra-gestational maternal weight gain (calculated from GD 0 to GD 20) relative to control animals was reduced for the 200, 1,000, and 5,000 ppm exposure groups. Cumulative weight gain (CWG) for dams in the 1,000 and 5,000 ppm exposure groups was significantly reduced with respect to controls by GD 20. The CWG for the 5,000 ppm was also significantly reduced with respect to controls by GD 13.

Comparison of n-hexane exposed groups with the control group (0 ppm) indicated that gestational exposure to n-hexane did not result in an increase in the incidence of intrauterine deaths or in the incidence of fetal malformations. A statistically significant reduction in fetal body weight relative to controls was observed for males at the 1,000 and 5,000 ppm exposure levels. Female weights were also reduced with respect to controls for these exposure levels, but the reduction was statistically significant for only the 5,000 ppm group. Gravid uterine weight was also significantly less than controls for the 5,000 ppm exposure groups. A statistically significant increase in the mean percent incidence per litter of reduced ossification of sternebrae 1-4 was observed for the 5,000 ppm group, and was positively correlated with exposure concentration. This increased incidence of reduced ossification in the sternebrae, and the reduction in fetal body weight at the 5,000 ppm level, may have been inter-related manifestations of slight growth retardation.

No major abnormalities were found in any of the fetuses. Variations observed included dilated ureter, renal pelvic cavitation, supernumerary ribs, and reduced skeletal ossifications at several sites. The increase in mean percent incidence per litter of reduced ossification of sternebrae 1-4 was statistically significant for the highest exposure concentration, and the increase was positively correlated with increasing exposure concentration. The NOAEL for developmental toxicity was 200 ppm.

The effect of n-hexane on the male reproductive system when administered via the inhalation route was examined by exposing male Sprague-Dawley rats (12-39/group) to 5,000 ppm n-hexane in either a single 24 hour exposure, repeated 16 hour/day exposures for up to 8 days, or repeated 16 hour/day exposures, 6 hours/day for up to 6

weeks (De Martino *et al.*, 1987). Rats exposed to 5,000 ppm n-hexane displayed some evidence of neuropathy such as paralysis. Focal degeneration of spermatocytes and exfoliation of elongated spermatids was also observed in response to treatment. Early meiotic prophase spermatocytes and transitional spermatocytes as well as those undergoing meiotic metaphase appeared to be more susceptible to the action of n-hexane than pachytene spermatocytes. Rats exposed repeatedly to 5,000 ppm n-hexane over a 6-week period showed complete atrophy of the seminiferous tubules. In addition, a reduction in food consumption and body weight gain accompanied by signs of incipient neuropathy were seen with repeated n-hexane exposure. A wide range of testicular lesion did not complete resolve during a recovery period even though body weights and clinical symptoms improved.

Timed-pregnant (~33 females per group) and virgin (10 females per group) Swiss (CD-1) mice were exposed to 0, 200, 1,000, and 5,000 ppm n-hexane (99.2% purity) vapor in inhalation chambers, 20 h/day, for a period of 12 consecutive days (Mast *et al.*, 1988b). Plug-positive females were exposed on GD 6-17. Maternal body weight at sacrifice (GD 18) and total cumulative weight gain for dams in the 5,000 ppm exposure group were significantly reduced with respect to controls; however, this was due to an exposure correlated reduction in gravid uterine weight, not to a decrease in extragestational gain. An exposure-correlated decrease in the gravid uterine weight to extragestational weight gain ratio (significant for the 5,000 ppm group) occurred in the absence of an effect on placental weight.

Gestational exposure to n-hexane resulted in an increase in the number of resorbed fetuses for all exposure groups relative to the control group; however, the increases were not directly correlated to exposure concentration. The differences were statistically significant for the 200-ppm group with respect to total intrauterine death (early plus late resorptions), and with respect to late resorptions for the 5,000 ppm group. A small, but statistically significant, reduction in female (but not male) fetal body weight relative to the control group was observed at the 5,000 ppm exposure level. There were no exposure-related increases in any individual fetal malformation or variation, nor was there any increase in the incidence of combined malformations or variations.

Gestational exposure of CD-1 mice to n-hexane vapors appeared to cause a degree of concentration-related developmental toxicity in the absence of overt maternal toxicity, but the test material was not found to be teratogenic. This developmental toxicity was manifested as an increase in the number of resorptions per litter for all exposure levels, and as a decrease in the uterine: extra-gestational weight gain ratio at the 5,000 ppm exposure level. Because of the significant increase in the number of resorptions at the 200-ppm exposure level, a NOEL for developmental toxicity was not established for exposure of mice to 200, 1,000, or 5,000 ppm n-hexane vapors.

The available data on predominant constituents of the C4-6 IRRP Fraction stream prove adequate to support a screening level assessment of the reproductive and developmental toxicity of the IRF stream. Furthermore, these data indicate that the C4-6 IRRP Fraction stream is expected to have a low order of reproductive and developmental toxicity.

Conclusion

Mammalian toxicology data on three constituents of the C4-6 IRRP Fraction stream, cyclohexane, n-hexane and n-heptane have shown a low order of acute toxicity by the oral, dermal and inhalation routes of exposure. Repeated exposure to these constituents is not expected to produce target organ toxicity with the exception of n-hexane induced peripheral neuropathy for which some concern is noted. Reproductive and developmental toxicity potential is considered low. The weight of the evidence for *in vitro* and in vivo genotoxicity testing of cyclohexane, n-hexane, and n-heptane indicates no strong evidence for genotoxicity. The available data compiled for predominant constituents prove adequate to support a screening level hazard assessment of the IRF stream. Therefore, no additional human health toxicity testing is proposed.

TOXICITY ENDPOINT		RESULTS	REFERENCE			
	Inhalation	LC50 > 32.88 mg/L	Phillips Petroleum Company, 1982b			
Acute	Oral	LD50 > 5,000 mg/kg	Phillips Petroleum Company, 1982a			
	Dermal	LD50 > 2,000 mg/kg	Phillips Petroleum Company, 1982c			
Irritation	Skin	Skin irritant	Phillips Petroleum Company, 1982d; Jacobs and Martens, 1987			
	Eye	Minimal irritant	Phillips Petroleum Company, 1982e,f			
Sensitization		Not a dermal sensitizer	White Eagle Toxicology Labs, 1996; EU Risk Assessment, 2004			
Repeated Dos	se	Rat: NOAEL = 2,000 ppm	Haskell Laboratories, 1996a			
Reproductive		NOAEL for Adult Reproductive toxicity = 2,000 ppm NOAEL for Systemic toxicity = 500 ppm	Haskell Laboratories, 1997e			
Developmenta	al	NOAEL for maternal toxicity = 500 ppm (rat, mouse) NOAEL developmental toxicity = 7,000 ppm (rat)	Haskell Laboratories, 1997c,d			
Neurotoxicity		For FOB and motor activity assessment, very few effects were observed. Cyclohexane did not induce neurobehavioral effects.	TNO, 1998b			
In vitro Ames Salmonella assay		Negative	Mortlemans et al., 1986			
Genotoxicity	In vitro chromosome aberration					
	<i>In vivo</i> micronucleus	Negative - Cyclohexane was not clastogenic to rat bone marrow	American Petroleum Institute, 1982			

Table 8.Mammalian toxicity endpoint summary for cyclohexane.

TOXIC	TY ENDPOINT	RESULTS	REFERENCE		
	Inhalation	LC50 = 48,000 ppm	HEDSET, 1982		
Acute	Oral	LD50 = 28,720 mg/kg	HSDB, 2005		
	Dermal				
Irritation	Skin	Mild Irritant – Dermal exposure can lead to peripheral neuropathy in humans	Nomiyama <i>et al.</i> , 1973; Spencer <i>et al.</i> , 1980 & 1987		
	Eye				
Sensitization					
Repeated Dos	se	Rat: NOAEL = 500 ppm Mouse: NOAEL = 500 ppm	Huang <i>et al.</i> , 1989; NTP, 1991		
Reproductive					
		NOAEL for maternal toxicity = 200, 1,000 ppm (rat, mouse)	Mast <i>et al</i> ., 1987; 1988		
Developmenta	al	NOAEL developmental toxicity = 200 ppm (rat),			
		LOAEL developmental toxicity = 200 ppm (mouse)			
Neurotoxicity		Evidence for peripheral neuropathy	Cavender et al., 1984a,b		
	In vitro Ames Salmonella assay	Negative	NTP, 1991		
Genotoxicity	<i>In vitro</i> chromosome aberration	Negative	Daughtrey <i>et al.</i> , 1994; NTP, 1991		
		Negative – n-hexane was not clastogenic to mouse bone	Shelby and Witt, 1995		
	In vivo	marrow	Hazleton Laboratories, 1992		
	micronucleus	Positive – n-hexane was clastogenic to albino rat bone marrow			

Table 9.Mammalian toxicity endpoint summary for n-hexane.

TOXICITY ENDPOINT		RESULTS	REFERENCE			
Inhalation		LC50 > 29.29 mg/L	HEDSET, 1982			
Acute	Oral					
	Dermal					
Irritation	Skin					
Irritation	Еуе					
Sensitization						
Repeated Dos	se .	NOAEL = 2,970 ppm (rat)	American Petroleum Institute, 1980			
Reproductive						
Developmenta	al					
Neurotoxicity		No signs of neuropathy and no histological evidence of giant axonal degeneration were noted in rats.	Frontali <i>et al.</i> , 1981			
	<i>In vitro</i> Ames Salmonella assay	Negative	Brooks <i>et al.</i> , 1982			
Genotoxicity	<i>In vitro</i> chromosome aberration	Negative	Brooks <i>et al.</i> , 1982			
	In vivo					
	micronucleus					

Table 10. Mammalian toxicity endpoint summary for 2,4-Dimethylpentane (n-heptane).

IV. TEST PLAN SUMMARY

A search for existing studies/information identified adequate data to characterize all endpoints under the U.S. EPA HPV Program using data from representative constituents of the predominant fractions in the C4-6 IRRP Fraction stream. The three constituents were n-hexane, 2,4-dimethylpentane, and cyclohexane. Adequate data for n-hexane, 2,4-dimethylpentane, and cyclohexane are shown in Table 11.

Table 11. n-hexane, 2,4-dimethylpentane, and cyclohexane data availability and adequacy for endpoints in the HPV Program.

		Mammalian Toxicity					Environmental Environmental Toxicity Fate				Physical/Chemical Properties								
	Acute Tox.	Genetic Pt. Mut.		Repeat Dose	Devel.	Repro.	Acute Fish	Acute Invert.	Alga Tox.	Photo- deg.	Hydrol.	Fug.	Biodeg.	Melt. Pt.	Boil. Pt.	Dens.	Vap. Pres.	Water Sol.	K _{ow}
Hexane	Α	Α	Α	Α	Α	Α	С	A/C	С	т	Т	С	Α	Α	Α	Α	Α	Α	Α
2,4- dimeth ylpenta ne	А	A	A	A	-	-	С	A/C	с	т	т	с	-	A	A	A	Α	A	А
Cyclo- hexane	Α	Α	-	Α	Α	Α	A/C	A/C	A/C	Т	Т	С	Α	Α	Α	Α	Α	Α	Α

A Adequate measured data available

C Adequate computer model data available

T Adequate technical discussion available

V. <u>REFERENCES</u>

Abernethy, S., Bobra, A.M., Shiu, W.Y., Wells, P.G. and Mackay, D. (1986). Acute lethal toxicity of hydrocarbons and chlorinated hydrocarbons to two plank tonic crustaceans: the key role of organism-water partitioning, Aquatic Toxicology 8, 163-174.

American Petroleum Institute (1980). A 26-week inhalation toxicity study of heptane in the rat. Unpublished Report.

American Petroleum Institute (1982). Mutagenicity evaluation of certified cyclohexane in the rat bone marrow cytogenetics assay. API Medical Research Publication Number 29-32357, Final Report. Litton Bionetics Inc.

American Petroleum Institute (1986). Mutagenicity evaluation of certified cyclohexane. API Final Report. Project No. PS-4-LBI (503-0), Litton Bionetics Inc.

American Public Health Association (1971). Standard methods for the examination of water and waste water. 13th ed. American Public Health Association, Inc., Washington, DC, USA.

Atkinson, R. (1989). J. Phys. Chem. Ref. Data Monograph 1.

Biodynamics Inc. (1978). 26-Week inhalation toxicity study of n-hexane in the rat. EPA Document No. FYI-AX-1081-0137; NTIS No. OTS0000137-0.

Boublik, T., Fried, V. and Hala, E. (1984). The vapour pressures of pure substances. 2nd Revised edition, Elsevier, Amsterdam.

Brooks T, Meyer, A. and Hutson, D. (1982). The genetic toxicology of some hydrocarbon and oxygenated solvents. Mutagenesis. 3, 227-232.

Bus, J.S., White, E.L., Gilliers, P.J. *et al.* (1981). Tissue distribution of n-hexane, methyln-butyl ketone and 2,5-hexanedione in rats after single or repeated inhalation exposure to hexane. Drug Metab Dispos. 9, 386-387.

Cavender, F.L., Casey, H.W., Salem, H. *et al.* (1984a). A 13-week vapor inhalation study of n-hexane in rats with emphasis on neurotoxic effects. Fundam Appl Toxicol 4 (Part 1), 191-201.

Cavender, F.L., Casey, H.W., Gralla, E.J. *et al.* (1984b). The subchronic inhalation toxicity of n-hexane and methyl ethyl ketone. Advances in Modern Environ Toxicol. 6, 215-231.

Chemicals Inspection and Testing Institute (CITI) (1992). Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. CITI (ed.). Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade and Industry, Japan. Japan Chemical Industry Ecology-Toxicology and Information Center.

Chao, J., Lin, C.T. and Chung, T.H. (1983). Vapor pressure of coal chemicals. J. Phys. Chem. Ref. Data. 12, 1033-1063.

Daubert, T. and Danner, R. (1989). Physical and thermodynamic properties of pure chemicals: Data compilation. Design Institute for Physical Property Data, American Institute of Chemical Engineers. Hemisphere Publishing Corp., New York, NY, USA.

Daughtrey, W.C., Putman, D.L., Duffy, J. *et al.* (1994b). Cytogenetic studies on commercial hexane solvent. J Appl Toxicol. 14, 161-165.

DeMartino, C., Malorni, W., Amantini, M.C. *et al.* (1987). Effects of respiratory treatment with n-hexane on rat testis morphology. I. A light microscopic study. Exp Mol Pathol. 46, 199-216.

Deichmann, W.B. and Le Blanc, T.J. (1943). Determination of the approximate lethal dose with about six animals. J Ind Health Toxicol. 25, 415-417.

Di Toro, D.M., McGrath, J.A., and Hansen, D.J. (2000). Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and Tissue. Envir Toxicol & Chem, 19,1951-1970.

DiVincenzo, G.D., Kaplan, C.J. and Dedinas, J. (1976). Characterization of the metabolites of methyl n-butyl ketone, methyl iso-butyl ketone, and methyl ethyl ketone in guinea pig serum and their clearance. Toxicol Appl Pharmacol. 36, 511-522.

ECOSAR v0.99h (2004) in EPI Suite[™], U.S. EPA (2000). Estimation Program Interface Suite, v3.12. Syracuse Research Corporation, Syracuse, NY, USA.

EMBSI (1995). Ready Biodegradability: OECD 301F Manometric Respirometry Test. ExxonMobil Biomedical Sciences Inc. Project No. 103394A. Final Report.

EMBSI (1996). Ready Biodegradability: OECD 301F Manometric Respirometry Test. ExxonMobil Biomedical Sciences Inc. Project No. 116894A. Final Report.

EMBSI (1998). Algal inhibition test. ExxonMobil Biomedical Sciences, Inc., Project No. 114267, Final Report, April 1998.

EMBSI (2001). Fish acute toxicity test. ExxonMobil Biomedical Sciences, Inc., Project No. 161858, Final Report, February 2001.

Frontali, N., Amantini, M., Spagnolo, A., Guarcini, A., Saltari, M., Brugnone, F. and Perbellini, L. (1981). Experimental neurotoxicity and urinary metabolites of the C5-C7 aliphatic hydrocarbons used as glue solvents in shoe manufacture. Clin Toxicol. 18,1357-1367.

Geiger, D.L., Brooke, L.T., Call, D.J. (1987). Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas), Vol. 5, Centre for Lake Superior Studies, University of Wisconsin Superior, WI, 332 p.

Haines, J. and Alexander, M. (1974). Microbial degradation of high-molecular-weight alkanes. Appl Microbiol. 28,1084-1085.

Hansch, C., Leo, A. and Hoekman, D. (1995). Exploring QSAR - Hydrophobic, electronic, and steric constants. American Chemical Society. Washington, DC, USA.

Haskell Laboratory (1995). Two week inhalation range-finding study with cyclohexane in rats. Laboratory Report No. 40-95.

Haskell Laboratory (1996a). 90-Day inhalation toxicity study with cyclohexane in rats. Laboratory Report No. 298-96.

Haskell Laboratory (1996b). 90-Day inhalation toxicity study with cyclohexane in mice. Laboratory Report No. 17-96.

Haskell Laboratory (1996c). 90-Day inhalation neurotoxicity study with cyclohexane in rats. Laboratory Report No. 752-95.

Haskell Laboratory (1997a). Pilot inhalation developmental toxicity of cyclohexane in rats. Laboratory Report No. 18-96.

Haskell Laboratory (1997b). Inhalation developmental toxicity study of cyclohexane in rats. Laboratory Report No. 881-96.

Haskell Laboratory (1997c). Reproductive and fertility effects with cyclohexane. Inhalation multigeneration reproductive study in rats. Laboratory Report No. 409-96.

Harris J (1982a). Rate of aqueous photolysis. In: Handbook of Chemical Property Estimation Methods. Chapter 8. Edited by WJ Lyman, WF Reehl and DH Rosenblatt. McGraw-Hill Book Company, New York, NY, USA.

Harris, J. (1982b). Rate of hydrolysis. In: Handbook of Chemical Property Estimation Methods. Chapter 7. Edited by WJ Lyman, WF Reehl and DH Rosenblatt. McGraw-Hill Book Company, New York, NY, USA.

Hazelton Laboratories (1992). Initial submission: in vivo and in vitro mutagenicity studies n-hexane (hexane UV) (final report) with attachments and cover letter dated 020592. Submitted under Section 8ECP of TSCA. EPA document No. 88-920000955; NTIS No. OTS0535721.

HEDSET (1982). Acute inhalation toxicity test, n-heptane, Final Report.

Howd, R., Rebert, C., Dickinson, J. *et al.* (1983). Comparison of the rates of development of functional hexane neuropathy in weanling and young adult rats. Neurobehav Toxicol Teratol. 5, 63-68.

HSDB (Hazardous Substances Data Bank) (2005). n-Hexane. National Library of Medicine, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD. Available from: <jttp://toxnet.nlm.nih.gov>

Huang, J., Kato, K., Shibata, E. *et al.* (1989). Effects of chronic n-hexane exposure on nervous system-specific and muscle-specific proteins. Arch Toxciol. 63, 381-385.

Huang, J., Shibata, E., Kato, K., *et al.* (1992). Chronic exposure to n-hexane induces changes in nerve-specific marker proteins in the distal peripheral nerve of the rat. Human & Exper Toxicol. 11, 323-327.

IRDC (International Research and Development Corporation). (1992a). 6-Month continuous inhalation exposures of rats to hexane mixtures – Phase I. EPA Document No. FYI-0892-0901; NTIS No. OTS0000901K6.

IRDC (1992b). 6-Month continuous inhalation exposures of rats to hexane mixtures – Phase II. EPA Document No. FYI-0892-0901; NTIS No. OTS0000901K5.

Ishidate, M., Sofuni, T., Yoshikawa, K., *et al.* (1984). Primary mutagenicity screening of food additives currently used in Japan. Food Chem Toxicol. 22, 623-636.

Jacobs, G. and Martens, M. (1987). Evaluation of the test method for skin irritation as prescribed by OECD and EC. J Toxicol-Cut Ocular Toxicol. 6, 215-225.

Kimura, E.T., Ebert, D.M., and Dodge, P.W. (1971). Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol. 19, 699-704.

Klimisch, H., Andreae, M. and Tillmann, U. (1997). A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Reg Toxicol & Pharm. 25,1-5.

Kubinski, H., Gutzke, G.E., and Kubinski, Z.O. (1981). DNA cell-binding assay for suspected carcinogens and mutagens. Mut Res. 89, 95-136.

Lide, D. (2003). CRC Handbook of Chemistry and Physics. 84th Edition. CRC Press, New York, NY, USA.

Litton Bionetics, Inc. (1979). Mutagenicity evaluation of n-hexane in the mouse dominant lethal assay [final report]. EPA Document No. FYI-AX-1081-0137. NTIS No. OTS0000137-0.

Mackay, D. (1998a). Level I fugacity-based environmental equilibrium partitioning model, Version 2.1 (16-bit). Environmental Modelling Centre, Trent University, Ontario, Canada.

Mackay, D. (1998b). Level III fugacity-based environmental equilibrium partitioning model, Version 2.1 (16-bit). Environmental Modelling Centre, Trent University, Ontario, Canada.

Malley, L.A., Bamberger, J.R., Stadler, J.C., Elliott, G.S., Hansen, J.F., Chiu, T., Grabowski, J.S. and Pavkov, K.L. (2000). Subchronic toxicity of cyclohexane in rats and mice by inhalation exposure. Drug Chem Tox. 23, 513-537.

Mast, T. (1987). Inhalation developmental toxicology studies: Teratology study of nhexane in rats [final report]. Public Health Service, US Department of Health and Human Services; NTP TER90082. Prepared by the Pacific Northwest Laboratory, Richland, WA, for the National Toxicology Program, National Institute for Environmental Health Services, Research Triangle Park, NC; PNL-6453.

Mast, T. (1988a). Inhalation developmental toxicology studies: Teratology study of nhexane in mice [final report]. Public Health Service, US Department of Health and Human Services; NTP TER90083. Prepared by the Pacific Northwest Laboratory, Richland, WA, for the National Toxicology Program, National Institute for Environmental Health Services, Research Triangle Park, NC; PNL-6590.

Mast, T., Rommerein, R., Evanoff, J. *et al.* (1988b). Inhalation reproductive toxicology studies: male dominant lethal study of n-hexane in Swiss (CD-1) mice. Prepared by the Pacific Northwest Laboratory, Richland, WA, for the National Toxicology Program, National Institute for Environmental Health Services, Research Triangle Park, NC; PNL-6679.

McCarty, L.S. and Mackay, D. (1993). Enhancing ecotoxicological modeling and assessment. Environ Sci Technol. 27,1719-1728.

McCarty, L.S., Mackay, D., Smith, A.D., Ozburn, G.W. and Dixon, D.G. (1991). Interpreting aquatic toxicity QSARs: The significance of toxicant body residues at the pharmacologic endpoint. In: WSAR in Environmental Toxicology - IV. J.L.M. Hermens and A. Opperhuizen, eds. Elsevier.

McAuliffe, C. (1966). Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin and aromatic hydrocarbons. J. Phys. Chem. 76. 1267-1275.

Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B., and Zeiger, E. (1986). Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen. 8, 1-119.

National Toxicology Program (NTP). (1991). Toxicity studies of n-hexane in B6C3F1 mice (inhalation studies). Public Health Service, US Department of Health and Human Services; TOX-2.

Neely, W. (1985). Hydrolysis. In: W. B. Neely and G. E. Blau, eds. Environmental Exposure from Chemicals. Vol I., pp. 157-173. CRC Press, Boca Raton, FL, USA.

Nomiyama, K., Yoshida, T. and Yanagisawa, H. (1973). Percutaneous absorption of nhexane caused severe polyneuropathy. Proc 46th Ann Jpn Assoc Ind Health. p.420.

Ono, Y., Takeuchi, Y. Hisanaga, N. *et al.* (1982). Neurotoxicity of petroleum benzine compared with n-hexane. Int Arch Occup Environ Health 50, 219-229.

Phillips Petroleum Company (1982a). Acute oral toxicity study in rats. Cyclohexane. Final Report, Project No. 652-127.

Phillips Petroleum Company (1982b). Acute inhalation toxicity test cyclohexane. Final Report, Project No. 652-1148.

Phillips Petroleum Company (1982c). Acute dermal toxicity study in rabbits. Cyclohexane. Final Report, Project No. 652-122.

Phillips Petroleum Company (1982d). Primary skin irritation study in rabbits. Cyclohexane. Final Report, Project No. 652-118.

Phillips Petroleum Company (1982e). Washed primary eye irritation study in rabbits. Cyclohexane. Final Report, Project No. 652-117.

Phillips Petroleum Company (1982f). Unwashed primary eye irritation study in rabbits. Cyclohexane. Final Report, Project No. 652-116.

Phillips Petroleum Company (1982g). Mouse lymphoma forward mutation assay. Cyclohexane. Final Report, Project No. 652-120.

Phillips Petroleum Company (1982h). In vitro sister chromatid exchange in chinese hamster ovary cells. Cyclohexane. Final Report, Project No. 652-121.

Perocco, P., Bolognesi, S. and Aberghini, W. (1983). Toxic activity of seventeen industrial solvents and halogenated compounds of human lymphocytes cultured in vitro. Toxicol Lett. 16, 69-75.

Pryor, G., Dickinson, J., Howd, R. *et al.* (1983). Neurobehavioral effects of subchronic exposure of weanling rats. Neurobehav Toxicol Teratol. 5, 47-52.

Ramos, E.U., Vaes, W.H.J., Verhaar, H.J.M. and Hermens, J.L.M. (1998). Mechanism of narcosis: A proposed mechanism for narcosis mode of action. In: Aquatic Toxicity of Polar Narcotic Pollutants. Environmental Toxicology and Chemistry, Research Institute for Toxicology (RITOX), Utrecht University, Utrecht, The Netherlands.

Riddick, J.A., Bunger, W.B. and Sakano, T.K. (1986). Organic solvents. Wiley Interscience, New York.

Spencer, P.S., Schaumburg, H.H., Sabri, M.I. and Veronesi, B. (1980). The enlarging view of hexacarbon neurotoxicity. CRC Crit Rev Toxicol. 7, 279-356.

Spencer, P.S. and Bischoff, M.C. (1987). Skin as a route of entry for neurotoxic substances. In: Dermatotoxicology, 3rd ed. pp.625-640. F.N. Marzulli and H.I Maibach, Eds. Hemisphere, Washington.

Shelby, M. and Witt, K. (1995). Comparison of results from mouse bone marrow chromosome aberration and micronucleus tests. Environ Mol Mutagen. 25, 302-313.

Shell Chemie (1975). Shell Industrie Chemicalien gids. Shell Nederland Chemie, Afd. Industrie-chemicalien, Wassenaarseweg 80, 's-Gravenhage, Nederland. 1.1.1975.

TNO, Division of Technology for Safety, Netherlands Organization for Applied Scientific Research (1986). Aquatic toxicity of compounds that may be carried by ships (MARPOL 1972, Annex II), Doc. # R 86/326a. TNO, The Netherlands.

Treon, J.F., Crutchfield, W.E. Jr. and Kitzmiller, K.V. (1943). The physiological response of animals to cyclohexane, methylcyclohexane and certain derivatives of these compounds II, inhalation. J of Indust Hyg Toxicol. 25, 323-347.

US EPA, (1999a). <u>Determining the Adequacy of Existing Data</u>. OPPT, EPA., Washington, DC, USA.

US EPA, (1999b). <u>The Use of Structure-Activity Relationships (SAR) in the High</u> <u>Production Volume Chemicals Challenge Program</u>. OPPT, EPA, Washington, DC, USA.

U.S. Environmental Protection Agency (U.S. EPA) (2000). EPI SuiteTM, Estimation Program Interface Suite, v3.12. U.S. EPA, Washington, DC, USA.

Van Wezel, A.P. and Opperhuizen, A. (1995). Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens. Crit Rev Toxicol. 25,255-279.

Verbruggen, E.M.J., Vaes, W.J.J., Parkerton, T.F., and Hermens, J.L.M. (2000). Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environ Sci & Technol. 34,324-331

Verschueren, K. (1983). Handbook of Environmental Data on Organic Chemicals, Second Edition. Van Nostrand Rienhold, New York.

Yalkowsky, S. and Dannenfelser, R. (1992). Aquasol database of aqueous solubility. Version 5. College of Pharmacy, University of Arizona, AZ, USA.

Zepp, R. and Cline, D. (1977). Rates of direct photolysis in the aqueous environment. Environ Sci Technol. 11, 359-366.

Zobell, C.F. and Prokop, J.F. (1966). Microbial oxidation of mineral oils in Barataria Bay bottom deposits. Zeitschrift fürallgemeine Mikrobiologie, 6, 143-162.

201-16752B

RECEIVED OPPT CRIC

2008 SEP 26 AN 7:41

IUCLID

Data Set

Existing Chemical CAS No. EINECS Name EC No. TSCA Name Molecular Formula	: 108-08-7 : 2,4-dimethylpentane : : 2,4-dimethylpentane
Producer related part Company Creation date	: ExxonMobil Biomedical Sciences Inc. : 30.06.2008
Substance related part Company Creation date	: ExxonMobil Biomedical Sciences Inc. : 30.06.2008
Status Memo	: : U.S. EPA - HPV Challenge Program
Printing date Revision date	: 30.06.2008 :
Date of last update	: 30.06.2008
Number of pages	: 32
Chapter (profile) Reliability (profile) Flags (profile)	

1. General Informat	lion	ld Date	108-08-7
1.0.1 APPLICANT AND C	COMPANY INFORMATION		
1.0.2 LOCATION OF PRO	DDUCTION SITE, IMPORTER OR FO	RMULATOR	
1.0.3 IDENTITY OF RECI	PIENTS		
1.0.4 DETAILS ON CATE	GORY/TEMPLATE		
1.1.0 SUBSTANCE IDEN	TIFICATION		
1.1.1 GENERAL SUBSTA			
Purity type Substance type Physical status Purity Colour Odour 03.07.2008	petroleum product liquid		
1.1.2 SPECTRA			
1.2 SYNONYMS AND T	RADENAMES		
1.3 IMPURITIES			
1.4 ADDITIVES			
1.5 TOTAL QUANTITY			
1.6.1 LABELLING			
1.6.2 CLASSIFICATION			

1.6.3 PACKAGING

1. General Information	108-08-7 30.06.2008
1.7 USE PATTERN	
1.7.1 DETAILED USE PATTERN	
1.7.2 METHODS OF MANUFACTURE	
1.8 REGULATORY MEASURES	
1.8.1 OCCUPATIONAL EXPOSURE LIMIT VALUES	
1.8.2 ACCEPTABLE RESIDUES LEVELS	
1.8.3 WATER POLLUTION	
1.8.4 MAJOR ACCIDENT HAZARDS	
1.8.5 AIR POLLUTION	
1.8.6 LISTINGS E.G. CHEMICAL INVENTORIES	
1.9.1 DEGRADATION/TRANSFORMATION PRODUCTS	
1.9.2 COMPONENTS	
1.10 SOURCE OF EXPOSURE	
1.11 ADDITIONAL REMARKS	
1.12 LAST LITERATURE SEARCH	
1.13 REVIEWS	

Date

2.1 MELTING POINT

Value Sublimation Method Year GLP Test substance Reliability Flag 03.07.2008	 = -119.5 °C other: not specified no data CAS #108-08-7; 2,4-dimethylpentane; purity is unknown. (2) valid with restrictions The CRC Handbook of Chemistry and Physics is a peer reviewed publication. This robust summary has a reliability rating of 2 because t is insufficient information available on the method and analytical proce Critical study for SIDS endpoint 	
2.2 BOILING POINT		
2.2 BUILING FUINT		
Value Decomposition Method Year GLP Test substance Reliability Flag 03.07.2008	 = 80.4 °C at 1013 hPa other: not specified no data CAS #108-08-7; 2,4-dimethylpentane; purity is unknown. (2) valid with restrictions The CRC Handbook of Chemistry and Physics is a peer reviewed publication. This robust summary has a reliability rating of 2 because t is insufficient information available on the method and analytical proce Critical study for SIDS endpoint 	
2.3 DENSITY		
Type Value Method Year GLP Test substance Reliability Flag 03.07.2008	 density = .668 g/cm³ at 20 °C other: not specified no data CAS #108-08-7; 2,4-dimethylpentane; purity is unknown. (2) valid with restrictions Data supplied by the experimental database associated with EPISuite This robust summary has a reliability rating of 2 because the data was reviewed for quality, however, the reference is associated with a peer-reviewed publication. Critical study for SIDS endpoint 	s not
2.3.1 GRANULOMETRY		

2.4 VAPOUR PRESSURE

Value	:	= 10.59	hPa at 25 °C
Decomposition	:		
Method	:		

i nysico-oneini	ical Data Id 10 Date	18-08-7
Year	:	
GLP	: no data	
Method Test substance	 Method not specified. CAS #108-08-7; 2,4-dimethylpentane; purity is unknown. 	
Reliability	: (2) valid with restrictions	
Renability	This robust summary has a reliability rating of 2 because the reviewed for quality, however, the reference is from a peer handbook.	
Flag	: Critical study for SIDS endpoint	
03.07.2008		(4
2.5 PARTITION COE	FFICIENT	
Partition coefficient	: octanol-water	
Partition coefficient	: octanol-water : = 3.63 at 25 °C	
Log pow pH value	: = 3.63 at 25 °C :	
Log pow		
Log pow pH value Method Year	: = 3.63 at 25 °C :	
Log pow pH value Method Year GLP	= 3.63 at 25 °C other (calculated)	
Log pow pH value Method Year	: = 3.63 at 25 °C :	ne of the
Log pow pH value Method Year GLP	 = 3.63 at 25 °C other (calculated) Calculated values using KOWWIN version 1.67, a subrouti computer program EPIWIN version 3.20 Octanol / Water Partition Coefficient is calculated by the Ke subroutine, which is based on an atom/fragment contribution Meylan and P. Howard in "Atom/fragment contribution met estimating octanol-water partition coefficients". 1995. J. Ph 	OWWIN on method of W. hod for
Log pow pH value Method Year GLP Method	 = 3.63 at 25 °C other (calculated) Calculated values using KOWWIN version 1.67, a subrouti computer program EPIWIN version 3.20 Octanol / Water Partition Coefficient is calculated by the Ke subroutine, which is based on an atom/fragment contribution Meylan and P. Howard in "Atom/fragment contribution met 	OWWIN on method of W. hod for
Log pow pH value Method Year GLP Method Test condition	 = 3.63 at 25 °C other (calculated) Calculated values using KOWWIN version 1.67, a subrouti computer program EPIWIN version 3.20 Octanol / Water Partition Coefficient is calculated by the Ke subroutine, which is based on an atom/fragment contribution Meylan and P. Howard in "Atom/fragment contribution met estimating octanol-water partition coefficients". 1995. J. Ph 92. 	OWWIN on method of W. hod for
Log pow pH value Method Year GLP Method Test condition	 = 3.63 at 25 °C other (calculated) Calculated values using KOWWIN version 1.67, a subroutin computer program EPIWIN version 3.20 Octanol / Water Partition Coefficient is calculated by the Ke subroutine, which is based on an atom/fragment contribution met estimating octanol-water partition coefficients". 1995. J. Ph 92. CAS #108-08-7; 2,4-dimethylpentane; purity is unknown (2) valid with restrictions The value was calculated based on chemical structure as a SuiteTM. This robust summary has a reliability rating of 2 	OWWIN on method of W. hod for arm. Sci. 84:83- modeled by EPI
Log pow pH value Method Year GLP Method Test condition	 = 3.63 at 25 °C other (calculated) Calculated values using KOWWIN version 1.67, a subrouting computer program EPIWIN version 3.20 Octanol / Water Partition Coefficient is calculated by the Ke subroutine, which is based on an atom/fragment contribution met estimating octanol-water partition coefficients". 1995. J. Ph 92. CAS #108-08-7; 2,4-dimethylpentane; purity is unknown (2) valid with restrictions The value was calculated based on chemical structure as a subroaction of the subroactio	OWWIN on method of W. hod for arm. Sci. 84:83- modeled by EPI

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in Value	: Water : = 5.5 mg/l at 25 °C
pH value concentration	: at °C
Temperature effects	:
Examine different pol.	:
рКа	: at 25 °C
Description	:
Stable	:
Deg. product	:
Method	: other: no data
Year	:
GLP	: no data
Test substance	: CAS #108-08-7; 2,4-dimethylpentane; purity is unknown
Reliability	: (2) valid with restrictions
	Data supplied by the experimental database associated with EPISuite. This robust summary has a reliability rating of 2 because the data was not reviewed for quality, however, the reference is associated with a peer- reviewed publication.
Flag	: Critical study for SIDS endpoint
03.07.2008	(20)

2. Physico-Chemical Data	ld 108-08-7 Date
2.6.2 SURFACE TENSION	
2.7 FLASH POINT	
2.8 AUTO FLAMMABILITY	
2.9 FLAMMABILITY	
2.10 EXPLOSIVE PROPERTIES	
2.11 OXIDIZING PROPERTIES	
2.12 DISSOCIATION CONSTANT	
2.13 VISCOSITY	
2.14 ADDITIONAL REMARKS	

3. Environmental Fate and Pathways

Date

3.1.1 PHOTODEGRADATION

Type Light source Light spectrum Relative intensity Conc. of substance INDIRECT PHOTOLYSIS Sensitizer Conc. of sensitizer Rate constant Degradation Deg. product Method Year GLP Method	 air nm based on intensity of sunlight at 25 °C OH 1500000 molecule/cm³ = .0000000000685 cm³/(molecule*sec) = 50 % after 18.7 hour(s) other (calculated): Calculated values using AOPWIN version 1.92, a subroutine of the computer program EPI SuiteTM version 3.20 Calculated values using AOPWIN version 1.92, a subroutine of the computer program EPI SuiteTM version 3.20
Remark	 Indirect photodegradation, or atmospheric oxidation potential, is based on the structure-activity relationship methods developed by R. Atkinson under the following conditions: Temperature: 25°C Sensitizer: OH- radical Concentration of Sensitizer: 1.5E6 OH- radicals/cm3 2,4-dimethylpentane has the potential to volatilize to air, based on a relatively high vapor pressure, where it is subject to atmospheric oxidation. In air, 2,4-dimethylpentane can react with photosensitized oxygen in the form of hydroxyl radicals (OH-). The computer program AOPWIN (atmospheric oxidation program for Microsoft Windows) (EPI SuiteTM, 2000) calculates a chemical half-life for a 12-hour day (the 12-hour day half-life value normalizes degradation to a standard day light period during which hydroxyl radicals needed for degradation are generated), based on an OH- reaction rate constant and a defined OH- concentration. Based on a 12-hour day, a rate constant of 6.85 E-12 cm3/molecule*sec, and an OH- concentration of 1.5 E6 OH-/cm3, 2,4-dimethylpentane has a calculated half-life in air of 1.6 days or 18.7 hours of daylight.
Test substance Reliability	 CAS #108-08-7; 2,4-dimethylpentane; purity is unknown. (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPIWIN. This robust summary has a reliability rating of 2 because the data are calculated and not measured. Critical study for SIDS endpoint
Flag 03.07.2008	. Childal study for SIDS endpoint (19)
Deg. product Method Year GLP Method Remark	 Technical discussion Direct photochemical degradation occurs through the absorbance of solar radiation by a chemical substance in aqueous solution. If the absorbed energy is high enough, then the resultant excited state of the chemical may undergo a transformation. A prerequisite for direct photodegradation is the ability of one or more bonds within a chemical to absorb ultraviolet (UV)/visible light in the 290 to 750 nm range. Light wavelengths longer than 750 nm do not contain sufficient energy to break chemical bonds, and wavelengths below 290 nm are shielded from the earth by the stratospheric

5. Environmenta	I Fate and Pathways	ld 108-08-7 Date
Test substance Reliability Flag 03.07.2008	 ozone layer (Harris, 1982). An approach to assessing the potential for a subsephotochemical degradation is to assume that degproportion to the amount of light wavelengths >29 constituent molecules (Zepp and Cline, 1977). Sa hydrocarbons do not absorb light above 290 nm. dimethylpentane is not subject to photolytic proceenvironment. CAS #108-08-7; 2,4-dimethylpentane; purity is ur (2) valid with restrictions This robust summary has a reliability of 2 becaus discussion and not a study. Critical study for SIDS endpoint 	gradation will occur in 90 nm absorbed by aturated and unsaturated Consequently, 2,4- esses in the aqueous
3.1.2 STABILITY IN V	/ATER	
Type t1/2 pH4 t1/2 pH7 t1/2 pH9 Deg. product Method Year GLP Result Test substance Reliability Flag 03.07.2008	 abiotic at °C at °C at °C other: Technical discussion no data Hydrolysis of an organic chemical is the transform water molecule or hydroxide ion reacts to form a Chemicals with leaving groups that have a potent alkyl halides, amides, carbamates, carboxylic acid epoxides, phosphate esters, and sulfonic acid est lack of a suitable leaving group renders a compose Heptane is resistant to hydrolysis because it lack hydrolytically reactive and Harris (1982) identifies generally resistant to hydrolysis. Therefore, hydrot the removal of 2,4-dimethylpentane from the envite CAS #108-08-7; 2,4-dimethylpentane; purity is ur (2) valid with restrictions This robust summary has a reliability of 2 because discussion and not a study. 	new carbon-oxygen bond. tial to hydrolyze include d esters and lactones, ters (Gould, 1959). The und resistant to hydrolysis s a functional group that is s hydrocarbons as olysis will not contribute to ironment. hknown
3.1.3 STABILITY IN S	OIL	
3.2.1 MONITORING E 3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type		
Media	other: air - biota - sediment(s) - soil - water	
Air Water	: % (Fugacity Model Level I) : % (Fugacity Model Level I)	

3. Environmental Fate and Pathways

Date

Soil Biota Soil Method Year	 % (Fugacity Model Level I) % (Fugacity Model Level II/III) % (Fugacity Model Level II/III) other: Calculation according Mackay, Level I
Remark	: The EQC Level I is a steady state, equilibrium model that utilizes the input of basic chemical properties including molecular weight, vapor pressure, and water solubility to calculate distribution within a standardized regional environment.
	Physicochemical input values for the model were calculated using the EPIWIN Estimation v 3.20 program. Measured input values were also used where available and obtained from the EPIWIN database. Distribution data from the equilibrium model provide basic information on the potential partitioning behavior of chemicals between selected environmental compartments (i.e., air, water, soil, sediment, suspended sediment, biota).
	Physicochemical data used in the calculation:
	ParameterValue w/ UnitsMolecular Weight100.21Temperature25° CLog Kow3.63Water Solubility5.5 g/m3Vapor Pressure10,586 Pa
Result	Melting Point -119.5° C Using the Mackay Level I calculation, the following distribution is predicted for heptane:
	%DistributionCompartment99.98Air<0.01
Test substanc Reliability	
Flag	calculated. Critical study for SIDS endpoint
03.07.2008	(14)
Туре	: fugacity model level III
Media	: other
Air	: % (Fugacity Model Level I)
Water Soil	: % (Fugacity Model Level I) : % (Fugacity Model Level I)
Biota	: % (Fugacity Model Level II/III)
Soil	: % (Fugacity Model Level II/III)
Method	: other: Level III simulation using the Mackay Multimedia Environmental Model (Mackay, 2001)
Year Method	 The EQC Level III model is a steady state model that is useful for determining how the medium of release affects environmental fate. Level III fugacity allows non-equilibrium conditions to exist between connected media as steady state, and illustrate important transport and transformation processes.
	Physicochemical input values for the model were calculated using the EPIWIN Estimation v 3.20 program. Measured input values were also 9 / 32

Environmenta	I Fate and Pathways	ld 108-08-7 Date
	used where available and obtained from the equilibrium model provi partitioning behavior of chemicals bet compartments (i.e., air, water, soil, ar	ween selected environmental
	Input values used: Molecular mass = 100.21 g/mol Water solubility = 5.5 g/m ³ Vapour pressure = 10,586 Pa log Kow = 3.63 Melting point = -119.5 deg C	
	Degradation half-lives:	
	Air - 18.7 hrs Water - 360 hrs Soil - 720 hrs Sediment - 7200 hrs	
	Environmental Properties (EQC stand Dimensions (all defaults) Densities (all defaults) Organic carbon & Advection (all defau Transport Velocities (all defaults)	
Result	Emission and Inflows (defaults used) Air 1000 kg/hr Water 1000 kg/hr Soil 1000 kg/hr Sediment 0 kg/hr : Output:	
Result	Mass% Emissions(kg/ Air 20.0 1000 Water 70.6 1000 Soil 2.8 1000 Sediment 6.6 0	/hr)
Test substance Conclusion	 CAS #108-08-7; 2,4-dimethylpentane The majority of 2,4-dimethylpentane i phase, with smaller but significant am based on the modeling parameters us dimethylpentane is considered to be a partition into all environmental compa 	is calculated to partition into the water nounts into air, soil, and sediment sed in this calculation. 2,4- a Type 1 chemical with potential to
Reliability	: (2) valid with restrictions This robust summary has a reliability calculated.	

3.3.2 DISTRIBUTION

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Туре	:	aerobic
Inoculum	:	activated sludge
Contact time	:	28 day(s)

3. Environmental Fate and Pathways

Date

Degradation	: 74 (±) % after 28 day(s)	
Result	: other: readily biodegradable	
Deg. product	:	
Method	: OECD Guide-line 301 F "Ready Biodegradability: Manometric	
N	Respirometry Test"	
Year	: 1996	
GLP	: yes	
Result	: Test material was readily biodegradable. Half-life was reached by day 10	
	By day 28, 74% degradation of the test material was observed. 10% biodegradation was achieved on day 4.	
	By day 10, >60% biodegradation of positive control was observed, which	
	met the guideline requirement. No excursions from the protocol were	
	noted.	
	Biodegradation was based on oxygen consumption and the theoretical	
	oxygen demand of the test material as calculated using results of an	
	elemental analysis of the test material.	
	% Degradation* Mean % Degradation	
	<u>Sample (day 28)</u> (day 28)	
	Test Material 72.5, 74.0, 76.8 74.4	
	Na Benzoate 88.7, 88.9 88.8	
	* replicate data	
Test condition	: Non acclimated activated sludge and test medium were combined prior to	
	test material addition. Test medium consisted of glass distilled water and mineral salts (Phosphate buffer, Ferric chloride, Magnesium sulfate	
	mineral salts (Phosphate buffer, Ferric chloride, Magnesium sulfate, Calcium chloride).	
	Test vessels were 1L glass flasks placed in a waterbath and electronical	
	monitored for oxygen consumption.	
	Test material was tested in triplicate, controls and blanks were tested in	
	duplicate.	
	Test material concentration was approximately 45 mg/L. Sodium benzoa	
	(positive control) concentration was 50mg/L.	
	Test temperature was 22 +/- 1 Deg C. All test vessels were stirred constantly for 28 days using magnetic stir ba	
	and plates.	
Test substance	: CAS #142-82-5; heptane; 99% pure.	
Conclusion	: Heptane is readily biodegradable.	
Reliability	: (1) valid without restrictions	
30.06.2008		
Туре	: aerobic	
Inoculum	: other: soil, non-adapted	
Contact time	: 20 day(s)	
Degradation	: 70 (±) % after 20 day(s)	
Result	: other: readily biodegradable	
Deg. product	: other: Otendard Methods for the Eventing tion of Mister and Missis Mist.	
Method Year	 other: Standard Methods for the Examination of Water and Waste Wate 1971 	
rear GLP	: 1971 : no	
Result	 70% degradation was measured after 20 days incubation with an 	
	unacclimated inoculum.	
	% Biodegradation of test substance after days:	
	2 days = 28 %	
	2 days = 28 % 5 days = 63 %	
	2 days = 28 % 5 days = 63 % 10 days = 70 %	
T	2 days = 28 % 5 days = 63 % 10 days = 70 % 20 days = 70 %	
Test condition	2 days = 28 % 5 days = 63 % 10 days = 70 % 20 days = 70 % : American Public Health Association, Standard Methods for the	
Test condition	 2 days = 28 % 5 days = 63 % 10 days = 70 % 20 days = 70 % 3 American Public Health Association, Standard Methods for the Examination of Water and Waste Water, using 1.0 mg/l of test substance 	
Test condition	2 days = 28 % 5 days = 63 % 10 days = 70 % 20 days = 70 %	

	I Fate and Pathways	ld 108-08-7 Date
Test substance Conclusion Reliability 30.06.2008	 (BOD). Each 300 ml BOD bottle receiv 1:10 suspension Hudson-Collamer silt mineral salts solution prepared as deso were incubated in the dark at 25C. The Aldrich Chemical Co. CAS #142-82-5; heptane; 99% pure. Heptane is readily biodegradable. (2) valid with restrictions A standard test method was used. The 	loam soil in distilled water, and a cribed in the test method. Bottles test substance was obtained from
3.6 BOD5, COD OR	BOD5/COD RATIO	
3.7 BIOACCUMULA	TION	
Species Exposure period Concentration	: other: see remark : at 25 °C :	
Species Exposure period	: other: see remark	
Species Exposure period Concentration BCF Elimination	: other: see remark : at 25 °C : : = 125	
Species Exposure period Concentration BCF Elimination Method Year	 other: see remark at 25 °C = 125 other: calculation 	h was used to calculate the BCF,
Species Exposure period Concentration BCF Elimination Method Year GLP	 other: see remark at 25 °C = 125 other: calculation no A log bioconcentration factor (BCF) of With respect to a log Kow = 3.63, whic 2,4-dimethylpentane in the aquatic env 	h was used to calculate the BCF, ironment is expected to have a low purity is unknown

4. Ecotoxicity

Id 108-08-7

Date

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type Species Exposure period Unit LC50 Method Year GLP Method	 other: fish 96 hour(s) mg/l = 2.2 other: ECOSAR version 0.99h, US EPA ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity of chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemicals. Toxicity values for new chemicals may then be calculated by inserting the estimated Kow into the regression equation and correcting the resultant value for the molecular weight of the compound.	
Result Test condition Test substance Reliability	 To date, over 150 SARs have been developed for more than 50 chemical classes. These chemical classes range from the very large, e.g., neutral organics, to the very small, e.g., aromatic diazoniums. Some chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number of SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. The ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a pragmatic approach to SAR as opposed to a theoretical approach. Calculated 96-hr LC50 for fish = 2.2 mg/L Experimental water solubility = 5.5 mg/l @ 25°C (Yalkowsky and Dannenfelser, 1992), log Kow = 3.63 @ 25°C (USEPA, 2000), and melting point = -119.5°C (Lide et al., 1997-1998) were entered into the program. Class: Neutral organics CAS #108-08-7; 2,4-dimethylpentane; purity is unknown (2) valid with restrictions This robust summary has a reliability rating of 2 because the data are calculated and not measured. 	
03.07.2008	(5)	

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type Species Exposure period Unit LC50 Method	:	other: Daphnia 48 hour(s) mg/l = 2.6 other: ECOSAR version 0.99h, US EPA
--	---	--

. Ecotoxicity	ld 108-08-7 Date
Year	
GLP Method	ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity of chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemicals. Toxicity values for new chemicals may then be calculated by inserting the estimated Kow into the regression equation and correcting the resultant value for the molecular weight of the compound. To date, over 150 SARs have been developed for more than 50 chemical
Result	 classes. These chemical classes range from the very large, e.g., neutral organics, to the very small, e.g., aromatic diazoniums. Some chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number of SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. The ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a pragmatic approach to SAR as opposed to a theoretical approach. calculated 48-hr LC50 for a daphnid = 2.6 mg/L
Test condition	 Experimental water solubility = 5.5 mg/l @ 25°C (Yalkowsky and Dannenfelser, 1992), log Kow = 3.63 @ 25°C (USEPA, 2000), and melting point = -119.5°C (Lide et al., 1997-1998) were entered into the program. Class: Neutral organics
Test substance Reliability	 CAS #108-08-7; 2,4-dimethylpentane; purity is unknown (2) valid with restrictions This robust summary has a reliability rating of 2 because the data are
03.07.2008	calculated and not measured. (5)
Type Species Exposure period Unit EC50	: static : other: Daphnia : 48 hour(s) : mg/l : = 1.5
Method Year GLP Method	 other: based on discussions in GESAMP/MARPOL meetings held in 1973 no data Individual treatment concentrations were prepared by mixing the test
	substance in freshwater for 24 hours in a conical flask. The flask was almost completely filled with solution. After mixing, the treatment solutions were allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were 250 ml conical flasks with 25 daphnids per flask. Two replicates of each treatment level and control were evaluated.
	Organisms supplied by testing lab; age = <24 hours old; parents age = approximately 21 days old. Statistical method: Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981.
	Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-

	Date
	119.).
Result	: 48-hr EC50 for a daphnid = 0.423 mg/L
Test condition	: Dissolved oxygen was >50% saturation during the study. The pH was 7.5 to 8.3. Temperature was 20 Deg C.
	Analytical method used was Gas Chromatography with Flame Ionization
	Detection (GC-FID). Nominal treatment levels ranged from 0.32 to 10 mg/L Only the following analytical data were reported:
	Nominal Initial Measured48-hr Measured Conc. (mg/L) Conc. (mg/L) Conc. (mg/L)
	0.32 0.04 Not Determined
	1.0 0.04 Not Determined
	3.2 0.5 Not Determined 5.6 2.1 1.7
	10 2.2 Not Determined
Test substance	: CAS #142-82-5; heptane
Reliability	: (2) valid with restrictions
	This robust summary has a reliability rating of 2 because there is less raw
	data and information on the testing procedure than is desirable in order to rate this study for reliability at a level higher than 2. There is sufficient
	information in the report to suggest that the testing procedure generally
	followed an acceptable test guideline, OECD 202, and used acceptable
F lass	methods to prepare exposure solutions.
Flag 03.07.2008	: Critical study for SIDS endpoint (18
Туре	: semistatic
Species	: other: Gammarid (Chaetogammarus marinus)
Exposure period	: 96 hour(s)
Unit	: mg/l
LC50 Method	 = .2 other: Static Gammarid Acute Toxicity Test
Year	:
GLP	: no data
Method	: Individual treatment solutions were prepared by mixing the test substance in freshwater for 24 hours in conical flasks. The flask was almost
	completely filled with solution. After mixing, the treatment solutions were
	allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were
	scintillation vials almost filled with approximately 20 ml of test solution and
	one organism per vial. Ten organisms were tested per treatment level.
	Organisms were transferred into fresh control and test solutions every 24
	hours up to 96 hours.
	Organisms supplied by testing lab, grown in natural seawater with a salinity
	of 2.8%; length = 5 mm.
	Statistical method: Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981.
	Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-
Desult	119.). 26. hr. 050. fan a germanerid - 0.0 men."
Result Test condition	 96-hr LC50 for a gammarid = 0.2 mg/L Dissolved oxygen was >50% saturation during the study. The pH was 7.5
	to 8.3. Temperature was 15 Deg C. Natural seawater was used with a salinity of 2.8%
	Analytical method used was Gas Chromatography with Flame Ionization
	Detection (GC-FID). Nominal treatment levels ranged from 0.32 to 10 mg/L Test solutions were analyzed only upon test initiation.
	Only the following analytical data were reported:

4. Ecotoxicity	ld 108-08-7
	Date
Test substance Reliability	Nominal Initial Measured Conc. (mg/L) Conc. (mg/L) 0.32 0.003 1.0 0.07 3.2 0.2 5.6 Not Determined 10 Not Determined 2 Valid with restrictions This robust summary has a reliability rating of 2 because there is less raw data and information on the testing procedure than is desirable in order to rate this study for reliability at a lowel higher than 2. There is sufficient
Flag	 rate this study for reliability at a level higher than 2. There is sufficient information in the report to suggest that the testing procedure generally followed an acceptable test guideline and used acceptable methods to prepare exposure solutions. Critical study for SIDS endpoint
03.07.2008	(18)
Type Species Exposure period Unit LC50 Method Year GLP	 semistatic other: mysid shrimp (Mysidopsis bahia) 96 hour(s) mg/l = .1 other: Static Gammarid Acute Toxicity Test no data
Method	: Individual treatment solutions were prepared by mixing the test substance in freshwater for 24 hours in conical flasks. The flask was almost completely filled with solution. After mixing, the treatment solutions were allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were scintillation vials almost filled with approximately 20 ml of test solution and one organism per vial. Ten organisms were tested per treatment level. Organisms were transferred into fresh control and test solutions every 24 hours up to 96 hours.
Result Test condition	 Organisms supplied by testing lab, grown in natural seawater with a salinity of 2.8%; test organisms were approximately 4 weeks old, with lengths of approximately 6 mm. Statistical method: Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981. Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-119.). 96-hr LC50 for a gammarid = 0.1 mg/L Dissolved oxygen was >50% saturation during the study. The pH was 7.5 to 8.3. Temperature was 20 Deg C. Natural seawater was used with a salinity of 2.8%
	Analytical method used was Gas Chromatography with Flame Ionization Detection (GC-FID). Nominal treatment levels ranged from 0.32 to 10 mg/L. Test solutions were analyzed only upon test initiation. Only the following analytical data were reported: Nominal Initial Measured Conc. (mg/L) Conc. (mg/L) 0.32 0.003 1.0 0.07 3.2 0.2 5.6 Not Determined
Test substance	10 Not Determined : CAS #142-82-5; heptane
lest substance	: CAS #142-82-5; heptane 16 / 32

4. Ecotoxicity	Date	-08-7
Reliability	: (2) valid with restrictions This robust summary has a reliability rating of 2 because the data and information on the testing procedure than is desirat rate this study for reliability at a level higher than 2. There is information in the report to suggest that the testing procedure followed an acceptable test guideline and used acceptable m prepare exposure solutions.	ble in order to sufficient e generally
Flag 03.07.2008	: Critical study for SIDS endpoint	(1)
4.3 TOXICITY TO A	QUATIC PLANTS E.G. ALGAE	
Species	: other algae: Green Alga	
Endpoint	:	
Exposure period	: 96 hour(s)	
Unit EC50	: mg/l : = 2.0	
ChV	= 2.0 = 0.5	
Method	: other: ECOSAR version 0.99h, US EPA	
Year	:	
GLP	:	
Method	ECOSAR version 0.99h, U.S. EPA. The structure-activity relation (SARs) presented in this program are used to predict the aquic chemicals based on their similarity of structure to chemicals aquatic toxicity has been previously measured. Most SAR can the ECOSAR Class Program are based upon the octanol/wa coefficient (Kow). SARs have been used by the U.S. Environ Protection Agency since 1981 to predict the aquatic toxicity of industrial chemicals in the absence of test data. SARs are dischemical classes based on measured test data that have been by industry or they are developed by other sources for chemical classes of chemicals. Toxicity values for new chemicals realculated by inserting the estimated Kow into the regression correcting the resultant value for the molecular weight of the To date, over 150 SARs have been developed for more than classes. These chemical classes range from the very large, organics, to the very small, e.g., aromatic diazoniums. Some classes have only one SAR, such as acid chlorides, for whice 96-hour LC50 has been developed. The class with the great SARs is the neutral organics, which has SARs ranging from the COSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a computerized version of the ECOSAR Class Program is a c	uatic toxicity of for which the alculations in ter partition mental of new eveloped for en submitted icals with c toxicity be developed nay then be n equation and compound. 50 chemical e chemical h only a fish test number of acute and ificial soil. Th COSAR ollution
Result	 regulatory constraints of the Toxic Substances Control Act (T pragmatic approach to SAR as opposed to a theoretical appr Calculated 96-hr EC50 for a green alga = 2.0 mg/L 	SCA). It is a
Test condition	 Calculated 96-hr ChV for a green alga = 0.5 mg/L Experimental water solubility = 5.5 mg/l @ 25°C (Yalkowsky Dannenfelser, 1992), log Kow = 3.63 @ 25°C (USEPA, 2000 point = -119.5°C (Lide et al., 1997-1998) were entered into the solution of the solution), and melting
Test substance Reliability	 Class: Neutral organics CAS #108-08-7; 2,4-dimethylpentane; purity is unknown (2) valid with restrictions This robust summary has a reliability rating of 2 because the 	data are
03.07.2008	calculated and not measured.	(!

4. Ecotoxicity	ld 108-08-7 Date
4.4 TOXICITY TO MIC	ROORGANISMS E.G. BACTERIA
4.5.1 CHRONIC TOXICI	TY TO FISH
4.5.2 CHRONIC TOXICI	TY TO AQUATIC INVERTEBRATES
4.6.1 TOXICITY TO SEE	DIMENT DWELLING ORGANISMS
4.6.2 TOXICITY TO TER	RESTRIAL PLANTS
Species Endpoint Exposure period Unit Method Year GLP Test substance Result	 other terrestrial plant: Lactuca sativa Ravel R2 other: growth day(s) mg/l other no n-Heptane; CAS #142-82-5; >/= 95% pure Soil Test Results Test 1 (lab 1): Days 7 and 14 EC50 = >1000 mg/kg soil (dry weight), based on nominal concentrations. No effects at the highest concentration tested. Test 2 (lab 2): Days 7 and 14 EC50 = >1000 mg/kg soil (dry weight), based on nominal concentrations. No effects at the highest concentration tested. Test 2 (lab 2): Days 7 and 14 EC50 = >1000 mg/kg soil (dry weight), based on nominal concentrations. No effects at the highest concentration tested. Test 2 (lab 2): Days 7 and 14 EC50 = >1000 mg/kg soil (dry weight), based on nominal concentrations. No effects at the highest concentration tested.
Test condition	 Test 1 (lab 1): Day 16 or 21 EC50 = 1.7 (1.4-2.0) mg/L, based on measured concentrations (value is below water solubility). Test 2 (lab 2): Day 16 or 21 EC50 = 47 (38-65) mg/L, based on measured concentrations (value exceeds water solubility). Testing occurred in two labs. Two tests were conducted in soil (one at each lab) and two tests in a nutrient solution (one at each lab). In both soil tests, lettuce seeds (Lactuca sativa) were germinated in soil obtained from an orchard. The characteristics of the soil collected for the first study were: pH = 7.5; organic matter content = 1.4%; clay content = 12%. The characteristics of the soil collected for the second study were: pH = 7.5; organic matter content = 1.8%; clay content = 24%. Test soil was sieved, 4 mm, prior to use. The nutrient solution composition was as follows: 3.73 mM Ca(NO3); 4.40 mM KNO3; 0.97 mM KH2PO4; 1.92 mM MgSO4; 0.89 mM K2SO4; trace elements and FeEDTA (per Steiner A, 1968. Soilless culture. Proceedings, Sixth Colloquium of the International Potash Institute, Florence, Italy, pp. 342-341.).
	Soil Experiments Test substances were dissolved in acetone and/or mixed with a small amount of quartz sand, which was then mixed through the test soil to obtain a uniform distribution of test substance through the soil sample. A nominal concentration of 1000 mg/kg soil was tested. Test substance concentrations in dry soil were spaced by a factor of 3.2. Controls and at least 3 test concentrations were run in duplicate. Soil was brought to 25 to 30% moisture content, which was equivalent to approximately 80% water holding capacity. Test systems were covered 18/32

4. Ecotoxicity	ld 108-08-7 Date
	with glass plates until germination occurred to prevent moisture loss. After germination, the plates were removed and moisture loss was control by adding demineralized water back to the soil.
	Five seedlings from each replicate test system were selected for the test and allowed to grow. Seedlings were sampled on days 7 and 14 by cutting them at soil level and measuring fresh weight. Soil water content and pH were measured at experimental initiation and termination.
	Heptane was analyzed in soil at test initiation and termination by solvent extraction and GC/FID and/or GC/ECD. Measured concentrations in soil for test substances ranged from 70 to 150% of nominal concentrations. Specific results for heptane were not given.
	Nutrient Solution Experiment
	Test substances were dissolved in tributylalcohol and added to the nutrient solution. Seeds were placed on plastic trays, which contained perlite that was saturated with nutrient solution. The trays were covered with glass plates to reduce volatile loss during germination. After germination, seedlings were transferred to containers filled with nutrient solution and test substance. Solutions were renewed 3 times a week. Duplicate containers were used for each test concentration. Test concentrations were spaced by a factor of 3.2. Shoots were harvested on either day 16 or 21 and fresh weights determined. Oxygen content and pH were measured at solution renewal.
	Heptane was analyzed in nutrient solution at test initiation and termination by solvent extraction and GC/FID and/or GC/ECD. Measured concentrations in solution for heptane were <50% of nominal concentrations. Specific results for heptane were not given. The volatility of heptane was suspected to have contributed to the loss in solution.
	Statistics
Reliability	 EC50 values were determined based only on harvested shoots and calculated by applying a logistic model (per Haanstra et al., 1985. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 82, 293-297.) (2) valid with restrictions Although a specific standard guideline was not used, the test method generally followed standard test procedures, however, less specific
07.07.2008	analytical information was provided than is desirable. (12)
Species Endpoint Exposure period Unit Method Year GLP Test substance Result	 other terrestrial plant: Daucus carota L. cv. Early Horn other: leaf damage, electrolyte loss 0 day(s) mg/l other no n-Heptane; CAS #142-82-5; >99.5% pure The rate at which electrolytes were lost from carrot leaves exposed to n-heptane was 34 min-1 x E4. The rate at which electrolytes were lost from
	untreated leaves was 12 min-1 x E4. The rate at which electrolytes were lost norm permeability as indicated by conductance agreed with the known susceptibility of different plant species towards hydrocarbons applied in the liquid state. The effect on the final conductance values and electrolyte concentration was similar for the hydrocarbons tested.
	Electrolyte loss from leaves exposed to a liquid hydrocarbon solvent 19 / 32

4. Ecotoxicity	ld 108-08-7 Date 30.06.2008
Test condition	 coating is explained as resulting from the destruction of plant cell membrane permeability and the release of internal cell electrolytes. Carrot plants, Daucus carota, were grown in a nutrient solution under controlled temperatures of 23 deg C during the day and 13 deg C during the night. The plants used were 3 to 5 weeks old. 5 g, fresh weight, of leaves were selected at random from the plants. 2 ml of test material was added to abaxial leaf surfaces by dropwise application so as to cover ther as evenly as possible. This quantity represented an excess when compared to the lipid content of the plant cells. The leaves were immediately immersed in 100 ml of deionized water at 25 deg C in a glass flask. The leakage of salts from the leaves was inferred from changes in conductance across a dip-type bright platinum electrode inserted into the water over a period of 6 to 7 hours. The flasks were sealed with parafilm and the contents shaken before each reading. Data are based on 3 replicates.
Reliability	 A final conductance value representing the total electrolytes released from the leaves was taken after the suspensions were boiled. (4) not assignable There is insufficient documentation on the samples and results to rate this study for reliability. The relevance of the method of exposure and adding the test substance to the abaxial surface of the leaf to mimic the effect of applying agrochemical sprays is not clear.
07.07.2008	(
Species Endpoint Exposure period Unit Method Year GLP Test substance Result	 other terrestrial plant: Helianthus annuus other: leaf damage, electrolyte loss 0 day(s) mg/l other no n-Heptane; CAS #142-82-5; >99.5% pure The rate at which electrolytes were lost from sunflower leaves exposed to n-heptane was 160 min-1 x E4. The rate at which electrolytes were lost from untreated leaves was 16 min-1 x E4. A second study with n-heptane resulted in a rate of 170 min-1 x E4. The rate at which electrolytes were lost from untreated leaves in the second study was 17 min-1 x E4. The effects on cell membrane permeability as indicated by conductance agree with the known susceptibility of different plant species towards hydrocarbons applied in the liquid state. The effect on the final conductance values and electrolyte concentration was similar for the hydrocarbons tested.
Test condition	 Electrolyte loss from leaves exposed to a liquid hydrocarbon solvent coating is explained as resulting from the destruction of plant cell membrane permeability and the release of internal cell electrolytes. Sunflower plants, Helianthus annuus, were grown in a nutrient solution under controlled temperatures of 23 deg C during the day and 13 deg C during the night. The plants used were 3 to 5 weeks old. 5 g, fresh weight of leaves were selected at random from the plants. 2 ml of test material was added to abaxial leaf surfaces by dropwise application so as to cover them as evenly as possible. This quantity represented an excess when compared to the lipid content of the plant cells. The leaves were immediately immersed in 100 ml of deionized water at 25 deg C in a glass flask. The leakage of salts from the leaves was inferred from changes in conductance across a dip-type bright platinum electrode inserted into the water over a period of 6 to 7 hours. The flasks were sealed with parafilm and the contents shaken before each reading. Data are based on 3 replicates.
	A final conductance value representing the total electrolytes released fror 20 / 32

4. Ecotoxicity	ſ	Id 108-08-7 Date	
Reliability	 the leaves was taken after the suspensions were b (4) not assignable There is insufficient documentation on the samples study for reliability. The relevance of the method of the test substance to the abaxial surface of the lea applying agrochemical sprays is not clear. 	and results to rate this exposure and adding	
07.07.2008		(2)	
4.6.3 TOXICITY TO	SOIL DWELLING ORGANISMS		
4.6.4 TOX. TO OTH	IER NON MAMM. TERR. SPECIES		
4.7 BIOLOGICAL	EFFECTS MONITORING		
	DRMATION AND KINETICS		
4.8 BIOTRANSFO			

4.9 ADDITIONAL REMARKS

5. Toxicity	ld 108-08-7 Date
5.0 TOXICOKINETICS	S, METABOLISM AND DISTRIBUTION
5.1.1 ACUTE ORAL TO	XICITY
5.1.2 ACUTE INHALATI	
Type Value Species Strain Sex Number of animals Vehicle Doses Exposure time Method Year GLP Test substance Remark Result Conclusion Reliability 07.07.2008	 LC50 > 29.29 mg/l rat Sprague-Dawley male/female 10 other: none 29.29 mg/L (17940 ppm) 4 hour(s) other: Similar to OECD guideline 403 1982 other TS: n-Heptane (CAS # 142-82-5) Animals were exposed to n-heptane vapor for 4 hours at a concentration of 29.29 mg/L (nominal) or 17937.5 ppm (mean analytical). There was no mortality during the course of the study. A slight reduction of mean male body weights was noted on day 2 post exposure but males recovered by day 4. All animals appeared normal throughout the study and at terminal necropsy with the exception of one female observed with enlarged mandibular lymph nodes on the right side. n-Heptane has a low order of toxicity by the inhalation route of exposure. (2) valid with restrictions
5.1.3 ACUTE DERMAL	ΤΟΧΙϹΙΤΥ
5.1.4 ACUTE TOXICITY 5.2.1 SKIN IRRITATION	
5.2.2 EYE IRRITATION	
5.3 SENSITIZATION	
5.4 REPEATED DOSE	ΞΤΟΧΙΟΙΤΥ
Type Species Sex Strain Route of admin.	: rat male/female Sprague-Dawley inhalation

Toxicity	Id 108-08-7
	Date
Exposure period	: 6 hours/day
Frequency of treatm.	: 5 days/week for 26 weeks
Post exposure period	: 2-week post exposure recovery period
Doses	: 0, 500, 2000 and 4000 ppm
Control group	: yes
NOAEL	: = 2970 ppm
Method	: other: similar to OECD guideline 413
Year	: 1980
GLP	
Test substance	: other TS: n-Heptane (CAS # 142-82-5)
Remark	: Animals were exposed to 0, 398 or 2970 ppm n-heptane.
	Type: 26-week inhalation toxicity study
	Number of animals: 15/sex/dose group
Result	: There were no treatment-related deaths during the study. The only
lioouli	treatment-related observations were labored breathing or rapid breathing
	and slight prostration during the first week of study during exposure only,
	and anogenital fur and dry rales during weekly observations. The in
	chamber signs were generally more numerous and severe in the higher
	dose group and appeared to abate by the second week of the study.
	dose group and appeared to abate by the second week of the study.
	No treatment-related effects were observed for body weight, hematology or
	urinalysis. Serum alkaline phosphatase was significantly elevated in
	female high dose rats and slightly elevated in low dose females. All other
	clinical chemistry values appeared normal with the exception of one male
	high level rat whose serum glutamic pyruvic transaminase and serum
	alkaline phosphatase levels were markedly elevated when compared to all
	other male rats on test. Proteinuria, elevated specific gravity and ketones
	were observed but do not appear to be related to treatment.
Conclusion	: The effects observed are consistent with acute CNS depression and
	generally abated by the second week of study. Under the conditions of this
	study, the LOAEL for acute CNS depression is 2,970 ppm and the NOAEL
	for systemic toxicity is 2,970 ppm.
Reliability	: (2) valid with restrictions
08.07.2008	(1
Туре	:
Species	: rat
Sex	: male
Strain	: Sprague-Dawley
Route of admin.	: inhalation
Exposure period	: 9 hours/day
Frequency of treatm.	: 5 days/week for 7, 14 or 30 weeks
Post exposure period	: None. Animals were sacrificed at 7, 14 or 30 weeks.
Doses	: 0, 1500 ppm
Control group	: other: yes, omitted the second air flow
NOAEL	: > 1500 - ppm
Method	: other: none specified
Year	: 1981
GLP	
Test substance	: other TS: n-Heptane (CAS # 142-82-5)
Remark	: Only males and one dose group were used. The primary objective of this
	study was to assess the appearance of polyneuropathy and urinary
	metabolites in rats following exposure to analytical grade solvents
	frequently used in Italian shoe factories. Nerve tissue was examined
	microscopically.
	Body weights were analyzed by a two-way analysis of variance and
	Student's t test for the comparison of two slopes.
	Student's t test for the comparison of two slopes. Type: 30-week inhalation neurotoxicity study
	Student's t test for the comparison of two slopes. Type: 30-week inhalation neurotoxicity study Number of animals: 6-9 males/dose group
Result	Student's t test for the comparison of two slopes. Type: 30-week inhalation neurotoxicity study
Result	Student's t test for the comparison of two slopes. Type: 30-week inhalation neurotoxicity study Number of animals: 6-9 males/dose group

. Toxicity	ld 108-08-7 Date
Conclusion	 Differences between mean values for hindlimb spreads observed in treat animals and controls were not statistically significant. However, authors note that in their hands, the test employed turned out to be scarcely effective due to high individual variability. No histological signs of giant axonal degeneration were noted in rats treated at 1500 ppm (30 weeks). Under the conditions of this test, inhalation of n-heptane at 1500 ppm did not induce neuropathy in rats.
Reliability 08.07.2008	: (2) valid with restrictions
.5 GENETIC TOXICI	ry 'IN VITRO'
Type System of testing Test concentration Cycotoxic concentr. Metabolic activation Result Method	 Bacterial reverse mutation assay Salmonella typhimurium and Escherichia coli Doses ranging from 3.91 to 250 ug/ml 500 µg/ml with and without negative other: No specific method or guideline was noted.
Year GLP Test substance Remark	 1982 other TS: heptane (CAS # 142-82-5) GLP: Quality assurance statement Strains tested: Salmonella typhimurium tester strains TA98, TA100,
	Test substance concentrations: 3.91, 7.81, 15.6, 31.3, 62.5, 125, 250 mg/ml Metabolic activation: With and without (S9 fraction mix of livers from Aroclor 1254 pretreated rats) Vehicle: Tween 80/ethanol Positive Controls: benzo[a]pyrene, 4-nitroquinoline-N-oxide, sodium azid
	neutral red, potassium dichromate. Cytotoxicity study: A toxicity screening test conducted prior to the full assay indicated cytotoxicity at 500 mg/ml with and without metabolic activation.
Result	 The cultures were incubated at 37°C for 48-72 hours in a sealed contained before the revertant colonies were counted. Pre-incubation method was used to limit evaporation of test material. The addition of heptane at amounts up to 250 mg per ml to cultures of Escherichia coli WP2 and WP2 uvr A, Salmonella typhimurium TA 1535, TA 1537, TA 1538, TA 98, and TA 100 did not lead to an increase in the reverse gene mutation frequency in any of these strains, either in the presence or in the absence of rat liver S9 fraction. In one assay with Escherichia coli WP2 in the presence of S9 fraction a greater than 2.5 fol increase was not dose-related nor repeated in replicate assays and was therefore not considered to be a compound-related effect.
Conclusion Reliability 08.07.2008	 Under the conditions of this study, the test material was not mutagenic. (1) valid without restriction
Type System of testing Test concentration	 other: Mitotic gene conversion assay Yeast Doses ranging from 0.01 to 5.0 mg/ml
	24 / 32

5. Toxicity	Id 108-08-7
	Date
Cycotoxic concentr. Metabolic activation Result Method Year GLP Test substance	: with and without negative other: No specific method or guideline was noted 1982 : other TS: heptane (CAS # 142-82-5)
Remark	 Other 13. heptane (CAS # 142-02-3) GLP: Quality assurance statement Strains tested: Saccharomyces cerevisiae JD1 Test substance concentrations: 0.01, 0.1, 0.5, 1.0, 5.0 mg/ml Metabolic activation: With and without (S9 fraction mix of livers from Aroclor 1254 pretreated rats) Vehicle: Tween 80/ethanol Positive Controls: 4-nitroquinoline-N-oxide, cyclophosphamide After 18-hour incubation at 30°C the cultures were placed onto the appropriate culture media for the selection of prototrophic colonies. After three days incubation at 30°C the numbers of prototrophic colonies were counted. Exposure of Saccharomyces cerevisiae JD1 to heptane at concentrations
Conclusion	 Exposure of Saccharolyces cerevisiae 3D1 to heptane at concentrations up to 5.0 mg/ml did not result in a consistent increase in the rate of mitotic gene conversion, either in the presence or in the absence of rat liver S9 fraction. Under the conditions of this study, the test material was not genotoxic.
Reliability 08.07.2008	: (1) valid without restriction (3)
Type System of testing Test concentration Cycotoxic concentr. Metabolic activation Result Method Year GLP Test substance Remark	 other: Chromosome aberration assay Rat Liver (RL4) cells 2.5, 5, 10 ug/ml 20 ug/ml (100% cytotoxicity), 10 ug/ml (0% cytotoxicity) negative other: No specific method or guideline was noted 1982 other TS: heptane (CAS # 142-82-5) GLP: Quality assurance statement Vehicle: Tween 80/ethanol
Result	 Positive Controls: 7,12-Dimethylbenzanthracene (DMBA) Cultured rat liver cells were grown and treated on glass microscopic slides contained in 100-ml volume glass Leighton tubes. After 22-hour exposure to test compound or vehicle, colcemid was added to each culture. After further 2 hours, the slides were removed, subjected to hypotonic treatment followed by fixation (methanol:acetic acid, 3:1) and stained with Giemsa. The preparations were randomly coded and 100 cells from each culture were analyzed microscopically. In one culture exposed to 10 mg/ml of heptane a total of 7 chromatid gaps
Conclusion	 were seen; this increased the frequency to 0.024 gaps per cell which, although greater than the vehicle control frequency, was not accompanied by an increase in any other type of aberration and is not considered to be a compound-related effect. Thus there was no significant or dose-related increase of chromosome damage in any of the culture exposed to heptane. Cultures exposed to the positive control material, DMBA, showed a marked increase in the frequency of chromosome damage. Under the conditions of this study, the test material was not clastogenc. 25 / 32

5. Toxicity		ld 108-08-7 Date
Reliability 08.07.2008	: (2) valid with restrictions	(3)
5.6 GENETIC TOXICIT	Y 'IN VIVO'	
5.7 CARCINOGENICIT	Υ	
5.8.1 TOXICITY TO FER	TILITY	
5.8.2 DEVELOPMENTAL	L TOXICITY/TERATOGENICITY	
583 TOXICITY TO REP	RODUCTION, OTHER STUDIES	
5.9 SPECIFIC INVEST		
J.9 SPECIFIC INVEST	IGATIONS	
5.10 EXPOSURE EXPE	RIENCE	
5.11 ADDITIONAL REM	ARKS	

6. Analyt. Meth. for Detection and Identification	ld 1 Date	108-08-7

6.2 DETECTION AND IDENTIFICATION

6.1 ANALYTICAL METHODS

7. E	ff. Against Target Org. and Intended Uses	Id Date	108-08-7
7.1	FUNCTION		
7.2	EFFECTS ON ORGANISMS TO BE CONTROLLED		
7.3	ORGANISMS TO BE PROTECTED		
7.4	USER		
7.5	RESISTANCE		

3. M	eas. Nec. to Prot. Man, Animals, Environment	ld 108-08-7 Date
8.1	METHODS HANDLING AND STORING	
0.1		
8.2	FIRE GUIDANCE	
8.3	EMERGENCY MEASURES	
8.4	POSSIB. OF RENDERING SUBST. HARMLESS	
8.5	WASTE MANAGEMENT	
8.6	SIDE-EFFECTS DETECTION	

8.8 REACTIVITY TOWARDS CONTAINER MATERIAL

9. Refere	ences	ld 108-08-7 Date
(1)	American Petroleum Institute (API) (1980). A in the Rat.	26 Week Inhalation Toxicity Study of Heptane
(2)	Boyles D (1976). The loss of electrolytes fron derivatives. Ann Appl Biol 83, 103-113.	n leaves treated with hydrocarbons and their
(3)	Brooks TM, Meyer AL and Hutson, DH (1982 and oxygenated solvents. Mutagenesis 3:227). The genetic toxicology of some hydrocarbon 7-232.
(4)	Daubert T and Danner R (1989). Physical and chemicals: Data compilation. Design Institute of Chemical Engineers. Hemisphere Publishing	for Physical Property Data, American Institute
(5)	ECOSAR v0.99h (2004) in EPI SuiteTM, U.S Suite, v3.12. Syracuse Research Corporation	
(6)	Frontali N, Amantini MC, Spagnolo A, Guarci L (1981). Experimental Neurotoxicity and Ur Hydrocarbons Used as Glue Solvents in Sho	
(7)	Gould E (1959). Mechanism and Structure in Winston, New York, NY, USA.	Organic Chemistry. Holt, Reinhart and
(8)	Haines J and Alexander M (1974). Microbial Appl Microbiol 28:1084-1085.	degradation of high-molecular-weight alkanes.
(9)	Harris J (1982). Rate of Aqueous Photolysis. Estimation Methods. Chapter 8. Edited by W. McGraw-Hill Book Company, New York, NY,	J Lyman, WF Reehl and DH Rosenblatt.
(10)	Harris J (1982). Rate of Hydrolysis. In: Handt Methods. Chapter 7. Edited by WJ Lyman, W Book Company, New York, NY, USA.	
(11)	HEDSET (1982). Acute Inhalation Toxicity Te	est, n-Heptane, Final Report.
(12)	Hulzebos E, Adema D, Dirven-van Breemen J, Baerselman R and van Gestel C (1993). Pl and nutrient solution. Environ Toxicol Chem 2	
(13)	Lide D (ed.) (2003). CRC Handbook of Chem New York, NY, USA.	istry and Physics. 84th Edition. CRC Press,
(14)	Mackay D (1998). Level I Fugacity-Based En Version 2.1 (16-bit). Environmental Modelling	
(15)	Mackay D (1998). Level III Fugacity-Based E Version 2.1 (16-bit). Environmental Modelling	
(16)	Riddick, J.A., Bunger, W.B. and Sakano, T.K Interscience, New York	. (1986). Organic solvents. Wiley
(17)	Sangster, J (1989). Octanol-water partition co Phys Chem Ref Data 18:1111-1227.	pefficients of simple organic compounds. J
(18)	TNO, Division of Technology for Safety, Neth Research (1986). Aquatic Toxicity of Compo 1972, Annex II), Doc. # R 86/326a. TNO, The	unds that may be Carried by Ships (MARPOL
(19)	U.S. Environmental Protection Agency (U.S. Program Interface Suite, v3.20. U.S. EPA, W	

9. Refere	Id 108-08-7 Date 30.06.2008
(20)	Yalkowsky S and Dannenfelser R (1992). Aquasol Database of Aqueous Solubility. Version 5. College of Pharmacy, University of Arizona, AZ, USA.
(21)	Zepp R and Cline D (1977). Rates of direct photolysis in the aqueous environment. Environ Sci Technol 11, 359-366.

10. \$	Summary and Evaluation	ld Date	108-08-7
10.1	END POINT SUMMARY		
10.2	HAZARD SUMMARY		
10.3	RISK ASSESSMENT		

201-16752C

RECEIVED GPPT CBIC

2008 SEP 26 AN 7:41

IUCLID

Data Set

Existing Chemical CAS No. EINECS Name EC No. TSCA Name Molecular Formula	: 203-777-6 : Hexane
Producer related part Company	: ExxonMobil Biomedical Sciences Inc.
Creation date	: 30.06.2008
Substance related part Company Creation date	: ExxonMobil Biomedical Sciences Inc. : 30.06.2008
Status Memo	: : U.S. EPA - HPV Challenge Program
Printing date	: 12.08.2008
Revision date Date of last update	: 12.08.2008
Number of pages	: 36
Chapter (profile) Reliability (profile) Flags (profile)	 Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 10 Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

•

1. General Informa	ation	ld 110-54-3 Date
1.0.1 APPLICANT AND	COMPANY INFORMATION	
1.0.2 LOCATION OF PR	RODUCTION SITE, IMPORTER OR	FORMULATOR
1.0.3 IDENTITY OF REC	CIPIENTS	
1.0.4 DETAILS ON CAT	EGORY/TEMPLATE	
1.1.0 SUBSTANCE IDE	NTIFICATION	
1.1.1 GENERAL SUBST	TANCE INFORMATION	
Purity type Substance type Physical status Purity Colour Odour	: petroleum product iquid	
30.06.2008		
1.1.2 SPECTRA		
1.2 SYNONYMS AND	TRADENAMES	
1.3 IMPURITIES		
1.4 ADDITIVES		
1.5 TOTAL QUANTITY	Y	
1.6.1 LABELLING		

1.6.3 PACKAGING

1. General Information	110-54-3 30.06.2008
1.7 USE PATTERN	
1.7.1 DETAILED USE PATTERN	
1.7.2 METHODS OF MANUFACTURE	
1.8 REGULATORY MEASURES	
1.8.1 OCCUPATIONAL EXPOSURE LIMIT VALUES	
1.8.2 ACCEPTABLE RESIDUES LEVELS	
1.8.3 WATER POLLUTION	
1.8.4 MAJOR ACCIDENT HAZARDS	
1.8.5 AIR POLLUTION	
1.8.6 LISTINGS E.G. CHEMICAL INVENTORIES	
1.9.1 DEGRADATION/TRANSFORMATION PRODUCTS	
1.9.2 COMPONENTS	
1.10 SOURCE OF EXPOSURE	
1.11 ADDITIONAL REMARKS	
1.12 LAST LITERATURE SEARCH	
1.13 REVIEWS	

Date

2.1 MELTING POINT

Value Sublimation	: = -95.3 °C
	•
Method	: other: not specified
Year	:
GLP	: no data
Test substance	: other TS: hexane; (CAS #110-54-3)
Test substance	: CAS #110-54-3; hexane; purity is unknown.
Reliability	: (2) valid with restrictions
	The CRC Handbook of Chemistry and Physics is a peer reviewed
	publication. This robust summary has a reliability rating of 2 because there is insufficient information available on the method and analytical procedure.
Flag	: Critical study for SIDS endpoint
30.06.2008	(20)

2.2 BOILING POINT

Value Decomposition Method Year GLP Test substance	 = 68.7 °C at 1013 hPa other: not specified no data other TS: hexane; (CAS #110-54-3)
Test substance Reliability Flag 30.06.2008	 CAS #110-54-3; hexane; purity is unknown. (2) valid with restrictions The CRC Handbook of Chemistry and Physics is a peer reviewed publication. This robust summary has a reliability rating of 2 because there is insufficient information available on the method and analytical procedure. Critical study for SIDS endpoint (20)

2.3 DENSITY

Type Value Method Year GLP Test substance Test substance Reliability	 density = .659 g/cm³ at 20 °C other: not specified no data other TS: hexane; (CAS #110-54-3) CAS #110-54-3; hexane; purity is unknown. (2) valid with restrictions Data supplied by the experimental database associated with EPISuite. This robust summary has a reliability rating of 2 because the data was not reviewed for quality, however, the reference is associated with a peerreviewed publication.
Flag 30.06.2008	: Critical study for SIDS endpoint (31)

2.3.1 GRANULOMETRY

2. Physico-Chemical Data

2.4 VAPOUR PRESSURE

Value Decomposition Method Year GLP Test substance Method Test substance Reliability	 = 20.13 hPa at 25 °C no data other TS: hexane; (CAS #110-54-3) Method not specified. CAS #110-54-3; hexane; purity is unknown. (2) valid with restrictions This robust summary has a reliability rating of 2 because the data were not reviewed for quality, however, the reference is from a peer-reviewed
Flag	handbook.
30.06.2008	Critical study for SIDS endpoint (6)

2.5 PARTITION COEFFICIENT

Partition coefficient Log pow pH value Method Year	cotanol-water = 3.9 at 20 °C
GLP	: no data
Test substance	: other TS: hexane; (CAS #110-54-3)
Test substance	: CAS #110-54-3; hexane; purity is unknown.
Reliability	: (2) valid with restrictions The value cited by the author is a recommended value based on a review of data retrieved from the literature. This robust summary has a reliability rating of 2 because there is insufficient information available on the method.
Flag 30.06.2008	: Critical study for SIDS endpoint (11)

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in	:	Water
Value	:	= 9.5 mg/l at 20 °C
pH value	:	
. concentration	:	at °C
Temperature effects	:	
Examine different pol.	:	
pKa		at 20 °C
Description		
Stable		
Deg. product	:	
Method	:	other: no data
Year	:	
GLP	:	no data
Test substance	:	other TS: hexane; (CAS #110-54-3)
Test substance	:	CAS #110-54-3; hexane; purity is unknown.
Reliability	:	(2) valid with restrictions
		This robust summary has a reliability rating of 2 because the data are from a peer-reviewed journal.
Flag	:	Critical study for SIDS endpoint
30.06.2008		(38)

2. Physico-Chemical Data	ld 110-54-3 Date
2.6.2 SURFACE TENSION	
2.7 FLASH POINT	
2.8 AUTO FLAMMABILITY	
2.9 FLAMMABILITY	
2.10 EXPLOSIVE PROPERTIES	
2.11 OXIDIZING PROPERTIES	
2.12 DISSOCIATION CONSTANT	
2.13 VISCOSITY	
2.14 ADDITIONAL REMARKS	

3.1.1 PHOTODEGRADATION

Type Light source Light spectrum Relative intensity Conc. of substance INDIRECT PHOTOLYSIS Sensitizer Conc. of sensitizer Rate constant Degradation Deg. product Method	 OH 1500000 molecule/cm³ = .0000000000546 cm³/(molecule*sec) = 50 % after 23.4 hour(s) other (calculated): Calculated values using AOPWIN version 1.92, a
Year GLP Test substance Method	 subroutine of the computer program EPI SuiteTM version 3.20 other TS: hexane; (CAS #110-54-3) Calculated values using AOPWIN version 1.92, a subroutine of the computer program EPI SuiteTM version 3.20
Remark	 Indirect photodegradation, or atmospheric oxidation potential, is based on the structure-activity relationship methods developed by R. Atkinson under the following conditions: Temperature: 25°C Sensitizer: OH- radical Concentration of Sensitizer: 1.5E6 OH- radicals/cm3 Hexane has the potential to volatilize to air, based on a relatively high vapor pressure, where it is subject to atmospheric oxidation. In air, hexane can react with photosensitized oxygen in the form of hydroxyl radicals (OH-). The computer program AOPWIN (atmospheric oxidation program for Microsoft Windows) (EPI SuiteTM, 2000) calculates a chemical half-life for a 12-hour day (the 12-hour day half-life value normalizes degradation to a standard day light period during which hydroxyl radicals needed for degradation are generated), based on an OH- reaction rate constant and a defined OH- concentration. Based on a 12-hour day, a rate constant of 5.46 E-12 cm3/molecule*sec, and an OH- concentration of 1.5 E6 OH-/cm3, hexane has a calculated
Test substance Reliability	 half-life in air of 1.96 days or 23.4 hours of daylight. CAS #110-54-3; hexane; purity is unknown. (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPIWIN. This robust summary has a reliability rating of 2 because the data are calculated and not measured.
Flag 30.06.2008	: Critical study for SIDS endpoint (37)
Deg. product Method Year GLP Method Remark	 Technical discussion Direct photochemical degradation occurs through the absorbance of solar radiation by a chemical substance in aqueous solution. If the absorbed energy is high enough, then the resultant excited state of the chemical may undergo a transformation. A prerequisite for direct photodegradation is the ability of one or more bonds within a chemical to absorb ultraviolet (UV)/visible light in the 290 to 750 nm range. Light wavelengths longer than 750 nm do not contain sufficient energy to break chemical bonds, and
	7 / 36

3. Environmental F	ate and Pathways	ld 110-54-3 Date 30.06.2008
Test substance Reliability Flag 30.06.2008	 wavelengths below 290 nm are shield ozone layer (Harris, 1982). An approach to assessing the potenti photochemical degradation is to assu proportion to the amount of light wave constituent molecules (Zepp and Clin hydrocarbons do not absorb light abo not subject to photolytic processes in CAS #110-54-3; hexane (2) valid with restrictions This robust summary has a reliability discussion and not a study. Critical study for SIDS endpoint 	al for a substance to undergo me that degradation will occur in elengths >290 nm absorbed by e, 1977). Saturated and unsaturated we 290 nm. Consequently, hexane is the aqueous environment.
3.1.2 STABILITY IN WA	rer (interview)	
Type t1/2 pH4 t1/2 pH7 t1/2 pH9 Deg. product Method Year GLP Test substance Result	 abiotic at °C at °C at °C other: Technical discussion no data other TS: hexane; (CAS #110-54-3) Hydrolysis of an organic chemical is t water molecule or hydroxide ion react Chemicals with leaving groups that ha alkyl halides, amides, carbamates, ca epoxides, phosphate esters, and sulfe lack of a suitable leaving group rende Hexane is resistant to hydrolysis beca hydrolytically reactive and Harris (198 generally resistant to hydrolysis. Ther the removal of hexane from the environ CAS #110-54-3; hexane (2) valid with restrictions This robust summary has a reliability discussion and not a study. Critical study for SIDS endpoint 	ts to form a new carbon-oxygen bond, ave a potential to hydrolyze include arboxylic acid esters and lactones, onic acid esters (Gould, 1959). The ers a compound resistant to hydrolysis ause it lacks a functional group that is 32) identifies hydrocarbons as refore, hydrolysis will not contribute to onment.
3.1.3 STABILITY IN SOI	L	
3.2.1 MONITORING DAT 3.2.2 FIELD STUDIES	Ā	
3.3.1 TRANSPORT BET	WEEN ENVIRONMENTAL COMPARTMEN	NTS
Type Media Air	: : other: air - biota - sediment(s) - soil - : % (Fugacity Model Level I)	water

Water Soil	: % (Fugacity Model Level I) : % (Fugacity Model Level I)
Biota	: % (Fugacity Model Level II/III)
Soil	: % (Fugacity Model Level II/II)
Method	: other: Calculation according Mackay, Level I
Year	:
Remark	 The EQC Level I is a steady state, equilibrium model that utilizes the input of basic chemical properties including molecular weight, vapor pressure, and water solubility to calculate distribution within a standardized regional environment.
	Physicochemical input values for the model were calculated using the EPIWIN Estimation v 3.20 program. Measured input values were also used where available and obtained from the EPIWIN database. Distribution data from the equilibrium model provide basic information on the potential partitioning behavior of chemicals between selected environmental compartments (i.e., air, water, soil, sediment, suspended sediment, biota).
	Physicochemical data used in the calculation:
	Parameter Value w/ Units
	Molecular Weight 86.18 Temperature 25° C
	Log Kow 3.90
	Water Solubility 9.5 g/m3
	Valor Pressure 20,131 Pa
	Melting Point -95.3° C
Result	: Using the Mackay Level I calculation, the following
	distribution is predicted for heptane:
	%Distribution Compartment
	99.97 Air
	0.02 Water
	0.01 Soil
	<0.01 Sediment
	<0.01 Suspended Sediment
Taat aubatanaa	<0.01 Biota
Test substance Reliability	: CAS #110-54-3; hexane : (2) valid with restrictions
Reliability	This robust summary has a reliability rating of 2 because the data are calculated.
Flag	: Critical study for SIDS endpoint
30.06.2008	(22)
Туре	: fugacity model level III
Media	: other
Air Watar	: % (Fugacity Model Level I)
Water Soil	: % (Fugacity Model Level I) : % (Fugacity Model Level I)
Biota	: % (Fugacity Model Level II/III)
Soil	: % (Fugacity Model Level II/III)
Method	: other: Level III simulation using the Mackay Multimedia Environmental
	Model (Mackay, 2001)
Year	:
Method	: Level III simulation using the Mackay Multimedia Environmental Model (Mackay, 2001). Mass balances are calculated for the four bulk media of air (gas + aerosol), water (solution + suspended sediment + biota), soil, (solids + air + water), and sediment (solids + pore water). Equilibrium exists within,
	but not between media. Physical-chemical properties are used to quantify a chemical's behavior in an evaluative environment. Three types of chemicals are treated in this model: chemicals that partition into all media

Date

	(Type 1), non volatile chemicals (Type 2), and chemicals with zero, or near- zero, solubility (Type 3). The model cannot treat ionizing or speciating substances. The Level III model assumes a simple, evaluative environment with user-defined volumes and densities for the following homogeneous environmental media (or compartments): air, water, soil, sediment, suspended sediment, fish and aerosols. This model provides a description of a chemical's fate including the	
	important degradation and advection losses and the intermedia transport processes. The distribution of the chemical between media depends on how the chemical enters the system, e.g. to air, to water, or to both. This mode of entry also affects persistence or residence time.	
Result :	The rates of intermedia transport are controlled by a series of 12 transport velocities. Reaction half-lives are requested for all 7 media. The advective residence time selected for air also applies to aerosols and the residence time for water applies to suspended sediment and fish. The advective residence time of aerosols, suspended sediment and fish cannot be specified independently of the air and water residence times. Output:	
	Mass% Emissions(kg/hr)	
	Air 21.3 1000 Water 63.3 1000	
	Soil 4.3 1000	
Test condition :	Sediment 11.1 0 Physicochemical data used in the calculation:	
Test condition .		
	Parameter Value w/ Units Molecular Weight 86.18	
	Molecular Weight 86.18 Temperature 25° C	
	Log Kow 3.90	
	Water Solubility 9.5 g/m3	
	Vapor Pressure 20,131 Pa Melting Point -95.3° C	
	Reaction Half Lives in hours as predicted using EPI SuiteTM:	
	Air (gaseous) 23.5	
	Water (no susp. part.) 360 Bulk Soil 720	
	Bulk Sediment 720	
	Environmental Drenerties (EQC standard environment)	
	Environmental Properties (EQC standard environment) Dimensions (all defaults)	
	Densities (all defaults)	
	Organic carbon & Advection (all defaults) Transport Velocities (all defaults)	
	Emission and Inflows (defaults used)	
	Air 1000 kg/hr Water 1000 kg/hr	
	Soil 1000 kg/hr	
Test substance :	Sediment 0 kg/hr CAS #110-54-3; hexane	
Conclusion :	The majority of hexane is calculated to partition into the water phase, with smaller but significant amounts into air, soil, and sediment based on the modeling parameters used in this calculation. Hexane is considered to be a Type 1 chemical with potential to partition into all environmental compartments.	
Reliability :	(2) valid with restrictions This robust summary has a reliability rating of 2 because the data are calculated.	
	10 / 36	

3. Environmental Fa	te and Pathways	ld 110-54-3 Date 30.06.2008
Flag 30.06.2008	: Critical study for SIDS endpoint	(23)
3.3.2 DISTRIBUTION		
3.4 MODE OF DEGRAD	ATION IN ACTUAL USE	
3.5 BIODEGRADATION		
Type Inoculum Contact time Degradation Result Deg. product Method Year GLP Test substance Result	 aerobic activated sludge 28 day(s) 74 (±) % after 28 day(s) other: readily biodegradable OECD Guide-line 301 F "Ready Biode Respirometry Test" 1996 yes other TS: heptane; (CAS #142-82-5) Test material was readily biodegradab By day 28, 74% degradation of the test biodegradation was achieved on day 4 By day 10, >60% biodegradation of po met the guideline requirement. No exc noted. Biodegradation was based on oxygen oxygen demand of the test material as elemental analysis of the test material. % Degradation* <u>Sample</u> (day 28) Test Material 72.5, 74.0, 76.8 Na Benzoate 88.7, 88.9 	le. Half-life was reached by day 10. t material was observed. 10% sitive control was observed, which cursions from the protocol were consumption and the theoretical calculated using results of an
Test condition Test substance Conclusion Reliability	 * replicate data Non acclimated activated sludge and to test material addition. Test medium co- mineral salts (Phosphate buffer, Ferric Calcium chloride). Test vessels were 1L glass flasks plac monitored for oxygen consumption. Test material was tested in triplicate, c duplicate. Test material concentration was appro (positive control) concentration was 50 Test temperature was 22 +/- 1 Deg C. All test vessels were stirred constantly and plates. CAS #142-82-5; heptane; 99% pure. Heptane is readily biodegradable. (1) valid without restrictions 	onsisted of glass distilled water and chloride, Magnesium sulfate, eed in a waterbath and electronically controls and blanks were tested in ximately 45 mg/L. Sodium benzoate omg/L.
30.06.2008		(10)
Туре	: aerobic	

Inoculum	: other: soil, non-adapted
Contact time	: 20 day(s)
Degradation	: 70 (±) % after 20 day(s)
Result	: other: readily biodegradable
Deg. product	:
Method	: other: Standard Methods for the Examination of Water and Waste Water
Year	: 1971
GLP	: no
Test substance	: other TS: heptane; (CAS #142-82-5)
Result	: 70% degradation was measured after 20 days incubation with an
	unacclimated inoculum.
	% Biodegradation of test substance after days:
	2 days = 28 %
	5 days = 63 %
	10 days = 70 %
	20 days = 70 %
Test condition	: American Public Health Association, Standard Methods for the
	Examination of Water and Waste Water, using 1.0 mg/l of test substance.
	Biodegradation was determined by measuring biological oxygen demand
	(BOD). Each 300 ml BOD bottle received 1.0 mg of heptane, 1.0 ml of a
	1:10 suspension Hudson-Collamer silt loam soil in distilled water, and a
	mineral salts solution prepared as described in the test method. Bottles
	were incubated in the dark at 25C. The test substance was obtained from
	Aldrich Chemical Co.
Test substance	: CAS #142-82-5; heptane; 99% pure.
Conclusion	: Heptane is readily biodegradable.
Reliability	: (2) valid with restrictions
	A standard test method was used. The study was conducted prior to GLP.
30.06.2008	(12)
Туре	: aerobic
Inoculum	: activated sludge
Contact time	: 28 day(s)
Degradation	$= 100 (\pm) \%$ after 28 day(s)
Result	: Readily biodegradable
Deg. product	
Method	 other: Modified MITI test (Comparable to OECD 301C)
Year	: 1992
GLP	: no data
Test substance	: CAS No. 110-54-3; hexane
Test condition	: Concentration of the test substance was 100 mg/l, with a concentration of
	inoculum of 30 mg/l. The source of the inoculum was non-acclimated
	activated sludge. Results of the study were based on BOD.
Test substance	: CAS No. 110-54-3; hexane; purity is unknown
Reliability	: (2) valid with restrictions
2	The study was performed following acceptable guidlines, however, the data
	were not retrieved an reviewed for quality.
Flag	: Critical study for SIDS endpoint
30.06.2008	(5)

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

Species	: other: see remark
Exposure period	: at 25 °C
Concentration	:
BCF	: = 200

ld 110-54-3 Date 30.06.2008

Elimination	:
Method	: other: calculation
Year	:
GLP	: no
Test substance	: other TS: hexane; (CAS #110-54-3)
Remark	 A log bioconcentration factor (BCF) of 2.30 is calculated (BCF = 200). With respect to a log Kow = 3.90, which was used to calculate the BCF, hexane in the aquatic environment is expected to have a low potential to bioaccumulate.
Test substance	: CAS #110-54-3; hexane
Reliability	: (2) valid with restrictions
·	This robust summary has a reliability rating of 2 because the data are calculated and not measured.
Flag	: Critical study for SIDS endpoint
30.06.2008	(37

3.8 ADDITIONAL REMARKS

4. Ecotoxicity

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type Species Exposure period Unit LC50 Method Year GLP Test substance Method		other: fish 96 hour(s) mg/l = 1.0 other: ECOSAR version 0.99h, US EPA other TS: hexane; (CAS #110-54-3) ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in	Э
		the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemicals. Toxicity values for new chemicals may then be calculated by inserting the estimated Kow into the regression equation ar correcting the resultant value for the molecular weight of the compound.	d ed
		To date, over 150 SARs have been developed for more than 50 chemica classes. These chemical classes range from the very large, e.g., neutral organics, to the very small, e.g., aromatic diazoniums. Some chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. T ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a pragmatic approach to SAR as opposed to a theoretical approach.	of The
Result Test condition	:	Calculated 96-hr LC50 for fish = 1.0 mg/L Experimental water solubility = 9.5 mg/l @ 25°C (McAuliffe, 1996), log Ko = 3.90 @ 20°C (Hansch, et.al, 1995), and melting point = -95.3°C (Lide e al., 2003) were entered into the program. Class: Neutral organics	
Test substance Reliability	:	CAS #110-54-3; hexane (2) valid with restrictions This robust summary has a reliability rating of 2 because the data are calculated and not measured.	
30.06.2008			(8)

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Туре	: static
Species	: other: Daphnia
Exposure period	: 48 hour(s)
Unit	: mg/l
EC50	: = 2.1

Ecotoxicity	ld 110-54-3 Date 30.06.2008
Method	: other: based on discussions in GESAMP/MARPOL meetings held in 1973
Year	
GLP	: no data
Method	: Individual treatment concentrations were prepared by mixing the test substance in freshwater for 24 hours in a conical flask. The flask was almost completely filled with solution. After mixing, the treatment solutions were allowed to settle for 24 hours. The aqueous solution was then draine through a stopcock at the base of the flask and tested. Test vessels were 250 ml conical flasks with 25 daphnids per flask. Two replicates of each treatment level and control were evaluated.
	Organisms supplied by testing lab; age = <24 hours old; parents age = approximately 21 days old. Statistical method: Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981.
	Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-119.).
Result	: 48-hr EC50 for a daphnid = 2.1 mg/L
Test condition	: Dissolved oxygen was >50% saturation during the study. The pH was 7.5 to 8.3. Temperature was 20 Deg C.
	Analytical method used was Gas Chromatography with Flame Ionization Detection (GC-FID). Nominal treatment levels ranged from 1.0 to 10 mg/L
Test substance	: CAS #110-54-3; hexane
Reliability	: (2) valid with restrictions This robust summary has a reliability rating of 2 because there is less raw data and information on the testing procedure than is desirable in order to rate this study for reliability at a level higher than 2. There is sufficient information in the report to suggest that the testing procedure generally
	followed an acceptable test guideline, OECD 202, and used acceptable methods to prepare exposure solutions.
Flag 30.06.2008	: Critical study for SIDS endpoint (3
Туре	: semistatic
Species	: other: Gammarid (Chaetogammarus marinus)
Exposure period	: 96 hour(s)
Unit	: mg/l
LC50	: = 4
Method	: other: Static Gammarid Acute Toxicity Test
Year GLP	: . no data
GLP Method	 no data Individual treatment solutions were prepared by mixing the test substance in freshwater for 24 hours in conical flasks. The flask was almost completely filled with solution. After mixing, the treatment solutions were allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were scintillation vials almost filled with approximately 20 ml of test solution and one organism per vial. Ten organisms were tested per treatment level. Organisms were transferred into fresh control and test solutions every 24 hours up to 96 hours.
	Organisms supplied by testing lab, grown in natural seawater with a salini of 2.8%; length = 5 mm. Statistical method: Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981. Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-
Result Test condition	 119.). 96-hr LC50 for a gammarid = 0.4 mg/L Dissolved oxygen was >50% saturation during the study. The pH was 7.5
	to 8.3. Temperature was 15 Deg C. Natural seawater was used with a

4. Ecotoxicity	ld 110-54-3 Date 30.06.2008
	Date 30.00.2000
	salinity of 2.8%
	Analytical method used was Gas Chromatography with Flame Ionization Detection (GC-FID). Nominal treatment levels ranged from 1.0 to 10 mg/L. Test solutions were analyzed only upon test initiation.
Test substance Reliability	 CAS #110-54-3; hexane (2) valid with restrictions This robust summary has a reliability rating of 2 because there is less raw data and information on the testing procedure than is desirable in order to rate this study for reliability at a level higher than 2. There is sufficient information in the report to suggest that the testing procedure generally followed an acceptable test guideline and used acceptable methods to
Flag	prepare exposure solutions. Critical study for SIDS endpoint
30.06.2008	(36)
Type Species Exposure period Unit LC50 Method	 semistatic other: mysid shrimp (Mysidopsis bahia) 96 hour(s) mg/l = .4 other: Static Gammarid Acute Toxicity Test
Year GLP Method	 no data Individual treatment solutions were prepared by mixing the test substance in freshwater for 24 hours in conical flasks. The flask was almost completely filled with solution. After mixing, the treatment solutions were allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were scintillation vials almost filled with approximately 20 ml of test solution and one organism per vial. Ten organisms were tested per treatment level. Organisms were transferred into fresh control and test solutions every 24 hours up to 96 hours.
Result Test condition	 Organisms supplied by testing lab, grown in natural seawater with a salinity of 2.8%; test organisms were approximately 4 weeks old, with lengths of approximately 6 mm. Statistical method: Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981. Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-119.). 96-hr LC50 for a mysid = 0.4 mg/L Dissolved oxygen was >50% saturation during the study. The pH was 7.5 to 8.3. Temperature was 20 Deg C. Natural seawater was used with a salinity of 2.8%
Test substance Reliability	 Analytical method used was Gas Chromatography with Flame Ionization Detection (GC-FID). Nominal treatment levels ranged from 0.32 to 10 mg/L. Test solutions were analyzed only upon test initiation. CAS #110-54-3; hexane (2) valid with restrictions This robust summary has a reliability rating of 2 because there is less raw
Flog	data and information on the testing procedure than is desirable in order to rate this study for reliability at a level higher than 2. There is sufficient information in the report to suggest that the testing procedure generally followed an acceptable test guideline and used acceptable methods to prepare exposure solutions.
Flag	: Critical study for SIDS endpoint 16 / 36

. Ecotoxicity	ld 110-54-3 Date
30.06.2008	(36)
Туре	:
Species	: other: Daphnia
Exposure period	: 48 hour(s)
Unit LC50	: mg/l : = 1.3
Method	other: ECOSAR version 0.99h, US EPA
Year	:
GLP	:
Test substance Method	 other TS: hexane; (CAS #110-54-3) ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity of chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemicals. Toxicity values for new chemicals may then be calculated by inserting the estimated Kow into the regression equation and correcting the resultant value for the molecular weight of the compound.
	To date, over 150 SARs have been developed for more than 50 chemical classes. These chemical classes range from the very large, e.g., neutral organics, to the very small, e.g., aromatic diazoniums. Some chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number of SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. The ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a pragmatic approach to SAR as opposed to a theoretical approach.
Result	: Calculated 48-hr LC50 for a dahpnid = 1.3 mg/L
Test condition	 Experimental water solubility = 9.5 mg/l @ 25°C (McAuliffe, 1996), log Kow = 3.90 @ 20°C (Hansch, et.al, 1995), and melting point = -95.3°C (Lide et al., 2003) were entered into the program. Class: Neutral organics
Test substance	: CAS #110-54-3; hexane
Test substance Reliability	

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Species	: other algae: Green Alga
Endpoint	:
Exposure period	: 96 hour(s)
Unit	: mg/l
EC50	: = .9
ChV	: = .3
Method	: other: ECOSAR version 0.99h, US EPA
Year	:

4. Ecotoxicity	ld 110-54-3 Date 30.06.2008
GLP Method	 ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity of chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemicals. Toxicity values for new chemicals may then be calculated by inserting the estimated Kow into the regression equation and correcting the resultant value for the molecular weight of the compound. To date, over 150 SARs have been developed for more than 50 chemical classes. These chemical classes range from the very large, e.g., neutral organics, to the very small, e.g., aromatic diazoniums. Some chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number of SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. The ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a pragmatic approach to SAR as opposed to a theoretical approach. Calculated 96-hr ChV for a green alga = 0.3 mg/L Experimental water solubility = 9.5 mg/l
30.06.2008	calculated and not measured. (8
	·
4.4 TOXICITY TO M 4.5.1 CHRONIC TOXIC	ICROORGANISMS E.G. BACTERIA CITY TO FISH
4.5.2 CHRONIC TOXIC	CITY TO AQUATIC INVERTEBRATES
4.6.1 TOXICITY TO SE	EDIMENT DWELLING ORGANISMS
4.6.2 TOXICITY TO TE	ERRESTRIAL PLANTS
	19/26

4. Ec	otoxicity	ld Date	110-54-3
4.6.3	TOXICITY TO SOIL DWELLING ORGANISMS		
4.6.4	TOX. TO OTHER NON MAMM. TERR. SPECIES		
4.7	BIOLOGICAL EFFECTS MONITORING		
4.8	BIOTRANSFORMATION AND KINETICS		
4.9	ADDITIONAL REMARKS		

5. Toxicity

5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION

5.1.1 ACUTE ORAL TOXICITY

_	
Туре	: LD50
Value	: 28,720 mg/kg
Species	: rat
Strain	: no data
Sex	: no data
Number of animals	:
Vehicle	: no data
Year	:
GLP	:
Remark	:
Test substance	: CAS No. 110-54-3; hexane; purity is unknown
Conclusion	: Hexane has a low order of toxicity by the oral route of exposure
Reliability	: (2) valid with restrictions
licinationaly	Original study not retrieved and reviewed. Data from reliable peer-
	reviewed source.
Flag	: Critical study for SIDS endpoint
	•
21.07.2008	(17)
Turne	
Туре	: LD50
Value	: =15,840 mg/kg
Species	: rat
Strain	: no data
Sex	: no data
Number of animals	:
Vehicle	: no data
Doses	:
Method	: no data
Year	:
GLP	:
Test substance	: CAS No. 110-54-3; hexane; purity is unknown
Conclusion	: Hexane has a low order of toxicity by the oral route of exposure
Reliability	: (2) valid with restrictions
licitationaly	Original study not retrieved and reviewed. Data from reliable peer-
	reviewed source.
Flag	: Critical study for SIDS endpoint
21.07.2008	(17)
21.07.2000	(11)
Туре	: LD50
	: 29,700 mg/kg
Value	
Species Strain	: rat : no data
Sex	: no data
Number of animals	
Vehicle	: no data
Doses	
Method	
Year	: 1970
GLP	: pre-GLP
Remark	: The oral LD50 in a 14-day old rat was 29,700 mg/kg. Symptoms included
	depressive effect on the central nervous system, salivation and soft faeces.
Test substance	: CAS No. 110-54-3; hexane; purity is unknown
Conclusion	: Hexane has a low order of toxicity by the oral route of exposure
Reliability	: (2) valid with restrictions

5. Toxicity	ld 110-54-3 Date 30.06.2008
Flag 21.07.2008	 Original study not retrieved and reviewed. Data from reliable peer-reviewed source. Critical study for SIDS endpoint (19)
5.1.2 ACUTE INHALAT	ON TOXICITY
Type Value Species Strain Sex Number of animals Vehicle Doses Exposure time Method Year GLP Remark	 LC50 48,000 ppm rat no data no data no data other: none 1000 to 64000 ppm 4 hour(s) other: Similar to OECD guideline 403
Conclusion	: n-Hexane has a low order of toxicity by the inhalation route of exposure.
Reliability	: (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer- reviewed source.
21.07.2008	(16
5.1.3 ACUTE DERMAL	τοχιειτχ

5.1.4 ACUTE TOXICITY, OTHER ROUTES

5.2.1 SKIN IRRITATION

Species Sex Number of animals Duration of study Doses Method Year GLP Test substance Result Remark	 humans no data no data 1973 pre-GLP CAS No. 110-54-3; hexane; purity is unknown Mild irritant Dermal exposure can lead to peripheral neuropathy in humans.
	: Dermal exposure can lead to peripheral neuropathy in humans.
Reliability	 (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer- reviewed source.
Flag 22.07.2008	: Critical study for SIDS endpoint (29)(34)(35)

5.2.2 EYE IRRITATION

5. Toxicity

5.3 SENSITIZATION

5.4 REPEATED DOSE TOXICITY

Type Species Sex Number of animals Strain Route of admin. Exposure period Frequency of treatm. Doses Control group Method Year GLP Test substance Result	 rat male/female 15/sex/group F344 inhalation 6 hours/day 5 days/week for 13 weeks 0, 3000, 6500 and 10000 ppm yes no data 1984 CAS No. 110-54-3; hexane; purity is unknown There were no n-hexane-related clinical signs of toxicity, effects on food consumption, ophthalmological findings, or changes in neurological function. However, there was a lowering of the urinary pH in high-dose males. There were increased organ/body weight ratios for liver, kidney, and testis in high-dose males and kidney in mid-dose males. Histopathological examination of the tibial nerves revealed paranodal axonal swelling in mid- and high-dose males.
Remark	: n-Hexane is metabolized to 5-hydroxy-2-hexanone and 2,5-hexanedione <i>in vivo</i> (DiVincenzo <i>et al.</i> , 1976). These two metabolites are believed to be responsible for the neurotoxicities associated with n-hexane exposure. There is evidence to show that 2,5-hexanedione is more persistent in peripheral nerve tissue than the parent n-hexane (Bus <i>et al.</i> , 1981).
Reliability 08.08.2008	: (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer- reviewed source.
00.00.2000	(3)(4)
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses Control group NOAEL Method Year GLP Test substance Remark	 rat male Wistar inhalation 12 hours/day 7 days/week for 16 weeks 0, 500, 1200, 3000 ppm yes, 500 ppm other: none specified 1989 no data CAS No. 110-54-3; hexane; purity is unknown Motor nerve conduction velocity was measured in the tail nerve along with body weight before exposure and after 4, 8, 12, and 16 weeks of exposure. One animal from each group was sacrificed after 16 weeks of exposure for histopathological evaluation of the nerve fibers in the tail. In addition, nerve-specific proteins (i.e. enolase and β-S100), involved in processes such as cell-cell communication, cell growth, intracellular signal transduction, and development and maintenance of the central nervous system, were measured.

. Toxicity	ld 110-54-3 Date
Result	: Statistically significant reductions in body weight gain were observed in a for the mid-dose (at 12 weeks) and high-dose (at 8 weeks) rats. Neurological deficits (i.e. reduction in grip strength and comparative slowness of motion) in mid- and high-dose rats were noted from 12 weeks of exposure. No hind-limb paralysis was observed by the time of sacrifice. A reduction in motor nerve conduction velocity, statistically significant during weeks 8-16, was seen with mid and high-dose rats. In addition increased incidence of paranodal swelling, along with some evidence of demyelination and remyelination was present in the peripheral nerves with 1,200 and 3,000 ppm. These histopathologic findings were most sever in the high-dose group. Dose-dependent biochemical changes included reductions in nervous system-specific proteins, particularly the β -S100 protein in tail nerve fibers which was reduced by approximately 75% at all dose levels.
Conclusion	: Under the conditions of this study, the NOAEL was 500 ppm based on the neurophysiologic deficits and histopathologic effects seen with 1,200 and 3,000 ppm.
Reliability	: (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer- reviewed source.
08.08.2008	(18
Type Species Sex Number of animals Strain Route of admin. Exposure period Frequency of treatm. Doses Control group NOAEL Method Year GLP Test substance Remark	 mouse male /female 10/sex/group B6C3F1 inhalation 6 hours/day 5 days/week for 13 weeks 0, 500, 1000, 4000, 10000 ppm yes, 500 - ppm other: none specified 1991 no data CAS No. 110-54-3; hexane; purity is unknown Groups of 10 mice/sex/group were exposed to 0, 500, 1,000, 4,000, or 10,000 ppm n-hexane 6 hours/day, 5 days per week for the duration of the study. A second group of 10 mice was exposed at 1,000 ppm for 22 hours/day, 5 days/week for the duration of the study. Separate groups of 8 mice/sex/group received identical treatments but were subjected to neurobehavioral tests before the start of dosing then again after 6 and 13 weeks of exposure. Four males and four females were randomly selected from the 0, 1,000 ppm extended duration, and 10,000 ppm exposure groups for histopathological examination of the spinal cord and tibial nerves. Animals were observed daily for signs of clinical toxicity and weighed weekly.
Result	: A full necropsy was performed at sacrifice, weights of the major organs were recorded, and histopathological evaluations were carried out at term on a variety of excised organs and tissues. The liver was examined only in the males of all exposure groups. Animals exposed to 10,000 ppm n-hexane exhibited some signs of nasal irritation and all animals survived to term. Relative liver, kidney, and heart weights appeared to be increased compared with controls in exposed females. In addition, females exposed to 10,000 ppm 6 hours/day and 1,000 ppm for 22 hours/day exhibited neurobehavioral deficits with a reduction in locomotor activity. There was an increased incidence of paranodal axonal swelling in high-dose or

extended exposure duration mice.
 It was concluded that n-hexane caused minimal toxicity to the nervous system and/or respiratory system at 1,000 ppm and above indicating a NOAEL of 500 ppm.
: (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer-
reviewed source. (28
TY 'IN VITRO'
 Ames test Test species/strain: Salmonella typhimurium TA100, TA1535, TA97, TA98,
TA1537 • 0, 0.001, 0.0033, 0.010, 0.033, 0.10, and 0.333 mg/plate
 with and without negative no data
: 1986
 no data Salmonella typhimurium (TA1535, TA1537, TA97, TA98 and TA100) were incubated with and without metabolic activation. Two metabolic activation systems were used, one with S9 rats livers and the other with Syrian hamster livers. Doses of hexane ranged from 0 to 0.333 mg/plate.
: The highest negative dose tested in any Salmonella typhimurium strain was 0.333 mg/plate. Some cultures exhibited slight clearing of the background bacterial lawn at the two highest doses tested.
Genotoxic effects: With metabolic activation: negative
Without metabolic activation: negative CAS No. 110-54-3; hexane
 (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer- reviewed source.
: Critical study for SIDS endpoint (27)(28
: Mouse Lymphoma Assay
 L5178Y mouse lymphoma cells (TK locus) 40 to 180 μg/ml
: with and without
: negative
: Method equivalent to current guidelines : 1980
: no data
The ability of n-hexane to induce specific locus mutations at the TK locus ir cultured L5178Y mouse lymphoma cells was evaluated in the presence and absence of Aroclor-induced rat liver S9 metabolic activation. Based or preliminary toxicity tests, 8 non-activated cultures were treated with 80, 90, 100, 110, 120, 130, 140, or 150 µg/ml which produced a range of 0 to 140% total growth. Eight activated cultures were treated with 40, 60, 80, 100, 120, 140, 160, or 180 µg/ml which produced a range of 0 to 22% total growth. The method used was equivalent to the guidelines.

Toxicity	ld 110-54-3	
	Date	
Result	: None of the non-activated or activated cultures produced mutant frequencies significantly greater than the solvent controls.	
Test substance	: CAS No. 110-54-3; n-hexane	
Reliability	: (2) valid with restrictions	
	Original study not retrieved and reviewed. Data from reliable peer- reviewed source.	
Flag	: Critical study for SIDS endpoint	
11.08.2008		5)
Туре	: Sister Chromatid Exchange Test	
System of testing	: Mouse bone marrow cells	
Test concentration	: 500, 1000, 2000 mg/kg	
Cycotoxic concentr.	: no data	
Metabolic activation	: with and without	
Result	: negative	
Method	: Method equivalent to current guidelines	
Year	: 1982	
GLP	: no data	
Remark	: No increase in the incidence of sister chromatid exchanges in <i>in vivo</i>	
	mouse bone marrow cells was seen with intraperitoneal doses of 500, 1,000, or 2,000 mg/kg n-hexane.	
Result	: The dosed groups displayed slight increases in chromosomal aberrations	
	but this increase was not considered to be significant.	
Test substance	: CAS No. 110-54-3; hexane	
Reliability	: (2) valid with restrictions	
	Original study not retrieved and reviewed. Data from reliable peer- reviewed source.	
Flag	: Critical study for SIDS endpoint	
12.08.2008	•	28)
Туре	: Unscheduled DNA synthesis	
System of testing	: Human lymphocytes	
Test concentration	: 0.1 to 10 mM cyclohexane	
Cycotoxic concentr.	: no data	
Metabolic activation	: with and without	
Result	: negative	
Method	: Method equivalent to current guidelines	
Year GLP	: 1983 : no data	
Remark	: Human lymphocytes (+ or – S9 mix) were cultured for 4 hours in the	
Rellidik	presence or absence of hexane. The effects on the DNA synthesis were	
	measured through cellular [³ H]TdR uptake.	
Result	: DNA synthesis was inhibited in human lymphocytes in the presence of	
	concentrations of n-hexane from $10^{-4} - 10^{-2}$ M but only at cytotoxic	
	concentrations	
Test substance	: CAS No. 110-54-3; hexane	
Reliability	: (2) valid with restrictions	
	Original study not retrieved and reviewed. Data from reliable peer-	
Flag	reviewed source. Critical study for SIDS endpoint	
1 16114		

5.6 GENETIC TOXICITY 'IN VIVO'

Туре

: Micronucleus

ld 110-54-3 Date 30.06.2008

5. Toxicity

Species	: mouse
Strain	: B6C3F1
Sex	
•••	: no data
Route of admin.	: Intraperitoneal injection
Result	: negative
Doses	
Method	
Year	:
GLP	: no data
Remark	
Result	 n-Hexane did not induce chromosomal aberrations and micronuclei in bone marrow cells of B6C3F1 mice injected intraperitoneally.
Test substance	: CAS No. 110-54-3; hexane; purity is unknown
Reliability	: (2) valid with restrictions
	Original study not retrieved and reviewed. Data from reliable peer-
	reviewed source.
Flag	: Critical study for SIDS endpoint
22.07.2008	(32)
Туре	: Cytogenetic Assay
Species	: rat
Strain	: Sprague Dawley
Sex	: Male/female
Number of animals	: 10 per sex
Route of admin.	: inhalation
Exposure period	: 6 hours/day for 5 days
Doses	: 0, 150, 300, 600 ppm
Method	: other: not specified
Year	
GLP	no data
Remark	
Result	 A slight, but significant, increase in the number of chromosomal mutations induced by n-hexane in albino rat bone marrow cells was reported. In addition, an in vivo bone marrow cytogenetic assay found that male albino rats exposed to 150, 300, and 600 ppm of n-hexane for 5-days experienced a significant increase in chromosomal aberrations at all treatment levels compared with controls.
Test substance Reliability Flag 22.07.2008	 CAS No. 110-54-3; hexane; purity is unknown (1) valid without restriction Critical study for SIDS endpoint (15)

5.7 CARCINOGENICITY

5.8.1 TOXICITY TO FERTILITY

5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

Type Species Sex Number of animals Strain Route of admin. Exposure period	 Developmental toxicity rat female 30/group Sprague-Dawley inhalation 14 days
Exposure period	: 14 days
Frequency of treatm.	: 20 hours/day

. Toxicity	ld 110-54-3 Date 30.06.2008
Doses Control group Method Year GLP Method	 0, 200, 1000, or 5000 ppm yes no data 1987 no data The developmental toxicity of n-hexane was assessed using timed-pregnant (30 animals per group) and virgin (10 animals per group) Sprague-Dawley rats exposed to 0 (filtered air), 200, 1,000, and 5,000 ppn n-hexane vapor in inhalation chambers for 20 hours per day for a period of 14 consecutive days (Mast, 1987). Spermpositive females were exposed on gestation days (GD) 6-19 and virgins were exposed concurrently for 14 consecutive days.
Result	: Maternal toxicity, manifested as a reduction in extra-gestational maternal weight gain, was observed at all exposure levels, and was statistically significant for the 5,000 ppm exposure group. Extra-gestational maternal weight gain (calculated from GD 0 to GD 20) relative to control animals was reduced for the 200, 1,000, and 5,000 ppm exposure groups. Cumulative weight gain (CWG) for dams in the 1,000 and 5,000 ppm exposure groups was significantly reduced with respect to controls by GD 20. The CWG for the 5,000 ppm was also significantly reduced with respect to controls by GD 13.
	Comparison of n-hexane exposed groups with the control group (0 ppm) indicated that gestational exposure to n-hexane did not result in an increase in the incidence of intrauterine deaths or in the incidence of fetal malformations. A statistically significant reduction in fetal body weight relative to controls was observed for males at the 1,000 and 5,000 ppm exposure levels. Female weights were also reduced with respect to controls for these exposure levels, but the reduction was statistically significant for only the 5,000 ppm group. Gravid uterine weight was also significantly less than controls for the 5,000 ppm exposure groups. A statistically significant increase in the mean percent incidence per litter of reduced ossification of sternebrae 1-4 was observed for the 5,000 ppm group, and was positively correlated with exposure concentration. This increased incidence of reduced ossification in the sternebrae, and the reduction in fetal body weight at the 5,000 ppm level, may have been inter related manifestations of slight growth retardation.
	No major abnormalities were found in any of the fetuses. Variations observed included dilated ureter, renal pelvic cavitation, supernumerary ribs, and reduced skeletal ossifications at several sites. The increase in mean percent incidence per litter of reduced ossification of sternebrae 1-4 was statistically significant for the highest exposure concentration, and the increase was positively correlated with increasing exposure concentration.
Conclusion	: The NOAEL for developmental toxicity was 200 ppm.
Test substance Reliability	 CAS No. 110-54-3; hexane; purity is unknown (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer- reviewed source. Critical study for SIDS onducint
Flag 18.07.2008	: Critical study for SIDS endpoint (2-
Type Species Sex Number of animals Strain Route of admin. Exposure period	: rat male 12 to 39/group Sprague-Dawley inhalation 24 hours

Toxicity	ld 110-54-3 Date 30.06.2008
Frequency of treatm. Doses Control group Method Year	: single : 5000 ppm : yes : no data : 1987
GLP Method	 no data The effect of n-hexane on the male reproductive system when administered via the inhalation route was examined by exposing male Sprague-Dawley rats (12-39/group) to 5,000 ppm n-hexane in either a single 24 hour exposure, repeated 16 hour/day exposures for up to 8 days or repeated 16 hour/day exposures, 6 hours/day for up to 6 weeks.
Result	: Rats exposed to 5,000 ppm n-hexane displayed some evidence of neuropathy such as paralysis. Focal degeneration of spermatocytes and exfoliation of elongated spermatids was also observed in response to treatment. Early meiotic prophase spermatocytes and transitional spermatocytes as well as those undergoing meiotic metaphase appeared to be more susceptible to the action of n-hexane than pachytene spermatocytes. Rats exposed repeatedly to 5,000 ppm n-hexane over a 6 week period showed complete atrophy of the seminiferous tubules. In addition, a reduction in food consumption and body weight gain accompanied by signs of incipient neuropathy were seen with repeated n-hexane exposure. A wide range of testicular lesion did not complete resolve during a recovery period even though body weights and clinical symptoms improved.
Test substance Reliability	 CAS No. 110-54-3; hexane; purity is unknown (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer-reviewed source.
Flag 11.08.2008	: Critical study for SIDS endpoint
Туре	
Species	: mouse
Sex	: female
Number of animals	: 33/group
Strain	: CD-1
Route of admin.	: inhalation
Exposure period	: 14 days
Frequency of treatm.	: 20 hours/day : 0, 200, 1000, or 5000 ppm
Doses Control group	: yes
Method	: no data
Year	: 1988
GLP	: no data
Method	 Timed-pregnant (~33 females per group) and virgin (10 females per group Swiss (CD-1) mice were exposed to 0, 200, 1,000, and 5,000 ppm n- hexane (99.2% purity) vapor in inhalation chambers, 20 h/day, for a period of 12 consecutive days. Plug-positive females were exposed on GD 6-17.
Result	: Maternal body weight at sacrifice (GD 18) and total cumulative weight gain for dams in the 5,000 ppm exposure group were significantly reduced with respect to controls; however, this was due to an exposure correlated reduction in gravid uterine weight, not to a decrease in extragestational gain. An exposure-correlated decrease in the gravid uterine weight to extragestational weight gain ratio (significant for the 5,000 ppm group) occurred in the absence of an effect on placental weight.
	Gestational exposure to n-hexane resulted in an increase in the number or resorbed fetuses for all exposure groups relative to the control group; however, the increases were not directly correlated to exposure

		Date 30.06.2008
		concentration. The differences were statistically significant for the 200-ppr group with respect to total intrauterine death (early plus late resorptions), and with respect to late resorptions for the 5,000 ppm group. A small, but statistically significant, reduction in female (but not male) fetal body weight relative to the control group was observed at the 5,000 ppm exposure level. There were no exposure-related increases in any individual fetal malformation or variation, nor was there any increase in the incidence of combined malformations or variations.
		Gestational exposure of CD-1 mice to n-hexane vapors appeared to cause a degree of concentration-related developmental toxicity in the absence of overt maternal toxicity, but the test material was not found to be teratogenic. This developmental toxicity was manifested as an increase in the number of resorptions per litter for all exposure levels, and as a decrease in the uterine: extra-gestational weight gain ratio at the 5,000 ppm exposure level. Because of the significant increase in the number of resorptions at the 200-ppm exposure level, a NOEL for developmental toxicity was not established for exposure of mice to 200, 1,000, or 5,000 ppm n-hexane vapors.
Conclusion	:	The LOAEL for developmental toxicity (in mice) was 200 ppm.
Test substance Reliability	:	CAS No. 110-54-3; hexane; purity 99.2% (2) valid with restrictions Original study not retrieved and reviewed. Data from reliable peer- reviewed source.
Flag 11.08.2008	:	Critical study for SIDS endpoint (20

5.9 SPECIFIC INVESTIGATIONS

5.10 EXPOSURE EXPERIENCE

5.11 ADDITIONAL REMARKS

6. Analyt. Meth. for Detection and identification	110-54-3
	30.06.2008

6.1 ANALYTICAL METHODS

6.2 DETECTION AND IDENTIFICATION

/. E	ff. Against Target Org. and Intended Uses	ld 110-54-3 Date
7.1	FUNCTION	
7.2	EFFECTS ON ORGANISMS TO BE CONTROLLED	
7.3	ORGANISMS TO BE PROTECTED	
7.4	USER	
7.5	RESISTANCE	

- 8.1 METHODS HANDLING AND STORING
- 8.2 FIRE GUIDANCE
- 8.3 EMERGENCY MEASURES
- 8.4 POSSIB. OF RENDERING SUBST. HARMLESS
- 8.5 WASTE MANAGEMENT
- 8.6 SIDE-EFFECTS DETECTION
- 8.7 SUBSTANCE REGISTERED AS DANGEROUS FOR GROUND WATER
- 8.8 REACTIVITY TOWARDS CONTAINER MATERIAL

9. Referen	Id 110-54-3 Date 30.06.2008
(1)	American Petroleum Institute (API) (1980). A 26 Week Inhalation Toxicity Study of Heptane in the Rat.
(2)	Brooks TM, Meyer AL and Hutson, DH (1982). The genetic toxicology of some hydrocarbon and oxygenated solvents. Mutagenesis 3:227-232.
(3)	Cavender, F.L., Casey, H.W., Salem, H. <i>et al.</i> (1984a). A 13-week vapor inhalation study of n-hexane in rats with emphasis on neurotoxic effects. Fundam Appl Toxicol 4 (Part 1), 191-201.
(4)	Cavender, F.L., Casey, H.W., Gralla, E.J. <i>et al.</i> (1984b). The subchronic inhalation toxicity of n-hexane and methyl ethyl ketone. Advances in Modern Environ Toxicol. 6, 215-231.
(5) (6)	Chemicals Inspection and Testing Institute (CITI) (1992). Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. CITI (ed.). Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade and Industry, Japan. Japan Chemical Industry Ecology-Toxicology and Information Center. Daubert T and Danner R (1989). Physical and thermodynamic properties of pure chemicals: Data compilation. Design Institute for Physical Property Data, American Institute of Chemical Engineers. Hemisphere Publishing Corp., New York, NY, USA.
(7)	DeMartino, C., Malorni, W., Amantini, M.C. <i>et al.</i> (1987). Effects of respiratory treatment with n-hexane on rat testis morphology. I. A light microscopic study. Exp Mol Pathol. 46, 199-216.
(8)	ECOSAR v0.99h (2004) in EPI SuiteTM, U.S. EPA (2000). Estimation Program Interface Suite, v3.20. Syracuse Research Corporation, Syracuse, NY, USA.
(9) (10)	ExxonMobil Biomedical Sciences, Inc. (1996). Ready Biodegradability: OECD 301F Manometric Respirometry Test. ExxonMobil Biomedical Sciences Inc. Project No. 116894A. Final Report. Frontali N, Amantini MC, Spagnolo A, Guarcini AM, Saltari MC, Brugnone F and Perbellini
	L (1981). Experimental Neurotoxicity and Urinary Metabolites of the C5-C7 Aliphatic Hydrocarbons Used as Glue Solvents in Shoe Manufacture. Clin Toxicol 18(12):1357-1367.
(11)	Gould E (1959). Mechanism and Structure in Organic Chemistry. Holt, Reinhart and Winston, New York, NY, USA.
(12)	Haines J and Alexander M (1974). Microbial degradation of high-molecular-weight alkanes. Appl Microbiol 28:1084-1085.
(13)	Harris J (1982). Rate of Aqueous Photolysis. In: Handbook of Chemical Property Estimation Methods. Chapter 8. Edited by WJ Lyman, WF Reehl and DH Rosenblatt. McGraw-Hill Book Company, New York, NY, USA.
(14)	Harris J (1982). Rate of Hydrolysis. In: Handbook of Chemical Property Estimation Methods. Chapter 7. Edited by WJ Lyman, WF Reehl and DH Rosenblatt. McGraw-Hill Book Company, New York, NY, USA.
(15)	Hazelton Laboratories (1992). Initial submission: in vivo and in vitro mutagenicity studies n-hexane (hexane UV) (final report) with attachments and cover letter dated 020592. Submitted under Section 8ECP of TSCA. EPA document No. 88-920000955; NTIS No. OTS0535721.
(16)	HEDSET (1982). Acute Inhalation Toxicity Test, n-Heptane, Final Report.
(17)	HSDB (Hazardous Substances Data Bank) (2005). n-Hexane. National Library of Medicine, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD. Available from: <jttp: toxnet.nlm.nih.gov=""></jttp:>

9. Refere	9. References Id 110-54-3 Date 30.06.2008	
(18)	Huang, J., Kato, K., Shibata, E. <i>et al.</i> (1989). Effects of chronic n-hexane exposure on nervous system-specific and muscle-specific proteins. Arch Toxciol. 63, 381-385.	
(19)	Kimura, E.T., Ebert, D.M., and Dodge, P.W. (1971). Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol. 19, 699-704.	
(20)	Lide D (ed.) (2003). CRC Handbook of Chemistry and Physics. 84th Edition. CRC Press, New York, NY, USA.	
(21)	Lewis, R.J. (1996). Sax's Dangerous Properties of Industrial Materials. 9th ed. Volumes 1- 3. New York, NY: Van Nostrand Reinhold., p. 1800	
(22)	Mackay D (1998). Level I Fugacity-Based Environmental Equilibrium Partitioning Model, Version 2.1 (16-bit). Environmental Modelling Centre, Trent University, Ontario, Canada.	
(23)	Mackay D (1998). Level III Fugacity-Based Environmental Equilibrium Partitioning Model, Version 2.1 (16-bit). Environmental Modelling Centre, Trent University, Ontario, Canada.	
(24)	Mast, T. (1987). Inhalation developmental toxicology studies: Teratology study of n-hexane in rats [final report]. Public Health Service, US Department of Health and Human Services; NTP TER90082. Prepared by the Pacific Northwest Laboratory, Richland, WA, for the National Toxicology Program, National Institute for Environmental Health Services, Research Triangle Park, NC; PNL-6453.	
(25)	Mast, T. (1988a). Inhalation developmental toxicology studies: Teratology study of n- hexane in mice [final report]. Public Health Service, US Department of Health and Human Services; NTP TER90083. Prepared by the Pacific Northwest Laboratory, Richland, WA, for the National Toxicology Program, National Institute for Environmental Health Services, Research Triangle Park, NC; PNL-6590.	
(26)	Mast, T., Rommerein, R., Evanoff, J. <i>et al.</i> (1988b). Inhalation reproductive toxicology studies: male dominant lethal study of n-hexane in Swiss (CD-1) mice. Prepared by the Pacific Northwest Laboratory, Richland, WA, for the National Toxicology Program, National Institute for Environmental Health Services, Research Triangle Park, NC; PNL-6679.	
(27)	Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B., and Zeiger, E. (1986). Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen. 8, 1-119	
(28)	National Toxicology Program (NTP). (1991). Toxicity studies of n-hexane in B6C3F1 mice (inhalation studies). Public Health Service, US Department of Health and Human Services; TOX-2.	
(29)	Nomiyama, K., Yoshida, T. and Yanagisawa, H. (1973). Percutaneous absorption of n- hexane caused severe polyneuropathy. Proc 46 th Ann Jpn Assoc Ind Health. p.420.	
(30)	Perocco, P., Bolognesi, S. and Aberghini, W. (1983). Toxic activity of seventeen industrial solvents and halogenated compounds of human lymphocytes cultured in vitro. Toxicol Lett. 16, 69-75.	
(31)	Riddick, J.A., Bunger, W.B. and Sakano, T.K. (1986). Organic solvents. Wiley Interscience, New York	
(32)	Shelby, M. and Witt, K. (1995). Comparison of results from mouse bone marrow chromosome aberration and micronucleus tests. Environ Mol Mutagen. 25, 302-313.	
(33)	Snyder, R. (ed) (1987). Ethyl Browning's Toxicity and Metabolism of Industrial Solvents. 2nd edition Volume 1: Hydrocarbons. Amsterdam - New York - Oxford: Elsevier, pp. 330.	
(34)	Spencer, P.S., Schaumburg, H.H., Sabri, M.I. and Veronesi, B. (1980). The enlarging view of hexacarbon neurotoxicity. CRC Crit Rev Toxicol. 7, 279-356.	

9. Referenc	Id 110-54-3 Date 30.06.2008
(35)	Spencer, P.S. and Bischoff, M.C. (1987). Skin as a route of entry for neurotoxic substances. In: Dermatotoxicology, 3 rd ed. pp.625-640. F.N. Marzulli and H.I Maibach, Eds. Hemisphere, Washington.
(36)	TNO, Division of Technology for Safety, Netherlands Organization for Applied Scientific Research (1986). Aquatic Toxicity of Compounds that may be Carried by Ships (MARPOL 1972, Annex II), Doc. # R 86/326a. TNO, The Netherlands.
(37)	U.S. Environmental Protection Agency (U.S. EPA) (2000). EPI SuiteTM, Estimation Program Interface Suite, v3.12. U.S. EPA, Washington, DC, USA.
(38)	Yalkowsky S and Dannenfelser R (1992). Aquasol Database of Aqueous Solubility. Version 5. College of Pharmacy, University of Arizona, AZ, USA.
(39)	Zepp R and Cline D (1977). Rates of direct photolysis in the aqueous environment. Environ Sci Technol 11, 359-366.

10.1 END POINT SUMMARY

10.2 HAZARD SUMMARY

10.3 RISK ASSESSMENT

2	<u>01</u>	-1	67	752	D
~			01	02	

RECEIVED OPPT CBIC 2008 SEP 26 AM 7:41

IUCLID

Data Set

Existing Chemical CAS No. EINECS Name EC No. TSCA Name Molecular Formula IUPAC Name	: 110-82-7 : Cyclohexane : 203-806-2 : Cyclohexane
Producer related part Company Creation date	: ExxonMobil Biomedical Sciences Inc. : 30.06.2008
Substance related part Company Creation date	: ExxonMobil Biomedical Sciences Inc. : 30.06.2008
Status Memo	: : U.S. EPA - HPV Challenge Program
Printing date Revision date Date of last update	: 30.06.2008 : : 30.06.2008
Number of pages	: 41
Chapter (profile) Reliability (profile) Flags (profile)	 Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 10 Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

1. General Information		ld 110-82-7 Date
1.0.1 APPLICANT AND COMPANY	NFORMATION	
1.0.2 LOCATION OF PRODUCTION	SITE, IMPORTER OR FORMUL	ATOR
1.0.3 IDENTITY OF RECIPIENTS		
1.0.4 DETAILS ON CATEGORY/TEM	PLATE	
1.1.0 SUBSTANCE IDENTIFICATIO	ı	
1.1.1 GENERAL SUBSTANCE INFO	RMATION	
Purity type:Substance type:Physical status:IiquidPurity:Colour:Odour:01.07.2008	eum product	
1.1.2 SPECTRA		
1.2 SYNONYMS AND TRADENAM	ES	
1.3 IMPURITIES		
1.4 ADDITIVES		
1.5 TOTAL QUANTITY		
1.6.1 LABELLING		
1.6.2 CLASSIFICATION		
1.6.3 PACKAGING		

1. General Information	110-82-7 30.06.2008
1.7 USE PATTERN	
1.7.1 DETAILED USE PATTERN	
1.7.2 METHODS OF MANUFACTURE	
1.8 REGULATORY MEASURES	
1.8.1 OCCUPATIONAL EXPOSURE LIMIT VALUES	
1.8.2 ACCEPTABLE RESIDUES LEVELS	
1.8.3 WATER POLLUTION	
1.8.4 MAJOR ACCIDENT HAZARDS	
1.8.5 AIR POLLUTION	
1.8.6 LISTINGS E.G. CHEMICAL INVENTORIES	
1.9.1 DEGRADATION/TRANSFORMATION PRODUCTS	
1.9.2 COMPONENTS	
1.10 SOURCE OF EXPOSURE	
1.11 ADDITIONAL REMARKS	
1.12 LAST LITERATURE SEARCH	
1.13 REVIEWS	

2.1 MELTING POINT

Value Sublimation Method Year GLP Test substance Test substance Reliability	 = 6.6 °C other: not specified no data CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions The CRC Handbook of Chemistry and Physics is a peer reviewed publication. This robust summary has a reliability rating of 2 because there is insufficient information available on the method and analytical procedure Critical study for SIDS endpoint (27) 	.
2.2 BOILING POINT		
Value Decomposition Method Year GLP Test substance Test substance Reliability	 = 80.7 °C at 1013 hPa other: not specified no data CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions The CRC Handbook of Chemistry and Physics is a peer reviewed publication. This robust summary has a reliability rating of 2 because there is insufficient information available on the method and analytical procedure Critical study for SIDS endpoint (27) 	
2.3 DENSITY		
Type Value Method Year GLP Test substance Test substance Reliability Flag 01.07.2008	 density = .774 g/cm³ at 20 °C other: not specified no data CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions Data supplied by the experimental database associated with EPISuite. This robust summary has a reliability rating of 2 because the data was not reviewed for quality, however, the reference is associated with a peer-reviewed publication. Critical study for SIDS endpoint 	3)
0.101.2000	(+	,
2.3.1 GRANULOMETRY		

2. Physico-Chemical Data

2.4 VAPOUR PRESSURE

Value	: = 12.9 hPa at 25 °C
Decomposition Method Year	other (measured): not specified
GLP	no data
Test substance	:
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions Data supplied by the experimental database associated with EPISuite. This robust summary has a reliability rating of 2 because the data was not reviewed for quality, however, the reference is associated with a peer-reviewed publication.
Flag 01.07.2008	: Critical study for SIDS endpoint (4)

2.5 PARTITION COEFFICIENT

Partition coefficient Log pow pH value Method Year GLP Test substance	 octanol-water = 3.44 at 20 °C other (measured): not specified no data
Test substance Reliability Flag 01.07.2008	 CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions Data supplied by the experimental database associated with EPISuite. This robust summary has a reliability rating of 2 because the data was not reviewed for quality, however, the reference is associated with a peerreviewed publication. Critical study for SIDS endpoint (14)

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in Value pH value concentration Temperature effects	: Water : = 55 mg/l at 25 °C : : at °C
Examine different pol. pKa Description Stable Deg. product	at 25 °C
Method Year GLP Test substance	other: not specified no data
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions Data supplied by the experimental database associated with EPISuite.

2. Pł	nysico-Chemica	al Data	ld 110-82-7 Date
Fla (01.0	g 07.2008		ity rating of 2 because the data was not reference is associated with a peer- (30)
2.6.2	SURFACE TENSION	N	
2.7	FLASH POINT		
2.8	AUTO FLAMMABIL	ΙΤΥ	
2.9	FLAMMABILITY		
2.10	EXPLOSIVE PROPE	ERTIES	
2.11		RTIES	
2.12	DISSOCIATION CO	NSTANT	
2.13	VISCOSITY		
2.14	ADDITIONAL REMA	ARKS	

3. Environmental Fate and Pathways

3.1.1 PHOTODEGRADATION

Type Light source Light spectrum Relative intensity INDIRECT PHOTOLYSIS Sensitizer Conc. of sensitizer Rate constant Degradation Deg. product Method Year GLP Test substance	 air Sun light nm based on intensity of sunlight OH 1500000 molecule/cm³ = .000000000848 cm³/(molecule*sec) = 50 % after 15.1 hour(s) other (calculated): Calculated values using AOPWIN version 1.92, a subroutine of the computer program EPI SuiteTM version 3.20
Method	 Calculated values using AOPWIN version 1.92, a subroutine of the computer program EPI SuiteTM version 3.20
Remark	 Indirect photodegradation, or atmospheric oxidation potential, is based on the structure-activity relationship methods developed by R. Atkinson under the following conditions: Temperature: 25°C Sensitizer: OH- radical Concentration of Sensitizer: 1.5E6 OH- radicals/cm3 Cyclohexane has the potential to volatilize to air, based on a relatively high vapor pressure, where it is subject to atmospheric oxidation. In air, cyclohexane can react with photosensitized oxygen in the form of hydroxyl radicals (OH-). The computer program AOPWIN (atmospheric oxidation program for Microsoft Windows) (EPI SuiteTM, 2000) calculates a chemical half-life for a 12-hour day (the 12-hour day half-life value normalizes degradation to a standard day light period during which hydroxyl radicals needed for degradation are generated), based on an OH-reaction rate constant and a defined OH- concentration.
Test substance Reliability Flag 01.07.2008	 Based on a 12-hour day, a rate constant of 8.48 E-12 cm3/molecule*sec, and an OH- concentration of 1.5 E6 OH-/cm3, cyclohexane has a calculated half-life in air of 1.3 days or 15.1 hours of daylight. CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPIWIN. This robust summary has a reliability rating of 2 because the data are calculated and not measured. Critical study for SIDS endpoint (46)
Type Light source	: water
Light spectrum Relative intensity Test condition	 nm based on intensity of sunlight Direct photochemical degradation occurs through the absorbance of solar radiation by a chemical substance in aqueous solution. If the absorbed energy is high enough, then the resultant excited state of the chemical may undergo a transformation. A prerequisite for direct photodegradation is the ability of one or more bonds within a chemical to absorb ultraviolet (UV)/visible light in the 290 to 750 nm range.

3. Environmental Fat	e and Pathways	ld 110-82-7 Date 30.06.2008
	Light wavelengths longer than 750 n break chemical bonds, and waveleng the earth by the stratospheric ozone	oths below 290 nm are shielded from
Test substance	An approach to assessing the poten photochemical degradation is to ass proportion to the amount of light way constituent molecules (Zepp and Clin hydrocarbons do not absorb light ab cyclohexane is not subject to photoly environment. CAS No. 110-82-7; cyclohexane; pu	ume that degradation will occur in relengths >290 nm absorbed by ne, 1977). Saturated and unsaturated ove 290 nm. Consequently, rtic processes in the aqueous
Reliability	 (2) valid with restrictions This robust summary has a reliability discussion and not a study. 	
Flag 01.07.2008	Critical study for SIDS endpoint	(15)(48
3.1.2 STABILITY IN WATER	8	
Deg. product Method Year GLP Test substance	other: Technical Discussion no data	
Result	water molecule or hydroxide ion read Chemicals with leaving groups that h alkyl halides, amides, carbamates, c epoxides, phosphate esters, and sul lack of a suitable leaving group rend Cyclohexane is resistant to hydrolys that is hydrolytically reactive and Ha	arboxylic acid esters and lactones, fonic acid esters (Gould, 1959). The ers a compound resistant to hydrolysis s because it lacks a functional group rris (1982) identifies hydrocarbons as erefore, hydrolysis will not contribute to
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; pu (2) valid with restrictions This robust summary has a reliability discussion and not a study. 	ity is unknown
Flag 01.07.2008	Critical study for SIDS endpoint	(13)(16
3.1.3 STABILITY IN SOIL		
3.2.1 MONITORING DATA		
3.2.2 FIELD STUDIES		
3.3.1 TRANSPORT BETWE	EN ENVIRONMENTAL COMPARTME	NTS
Type Media Air	fugacity model level I other: air - biota - sediment(s) - soil - % (Fugacity Model Level I)	water

Γ

3. Environmental Fate and Pathways

Water Soil Biota Soil Method Year		 % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level II/III) % (Fugacity Model Level II/III) other: Calculation according Mackay, Level I 2003
Method	:	The EQC Level I is a steady state, equilibrium model that utilizes the input of basic chemical properties including molecular weight, vapor pressure, and water solubility to calculate distribution within a standardized regional environment.
		Physicochemical input values for the model were calculated using the EPIWIN Estimation v 3.20 program. Measured input values were also used where available and obtained from the EPIWIN database. Distribution data from the equilibrium model provide basic information on the potential partitioning behavior of chemicals between selected environmental compartments (i.e., air, water, soil, sediment, suspended sediment, biota).
Result		Input values used: Molecular mass = 84.16 g/mol Water solubility = 55 g/m ³ Vapour pressure = 12,919 Pa log Kow = 3.44 Melting point = 6.6 deg C
		Air - 99.91% Water - 0.03% Soil - 0.06% Sediment - <0.01% Suspended Sed - <0.01% Biota - <0.01%
Test substance Reliability 01.07.2008	:	CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions This robust summary has a reliability rating of 2 because the data are calculated and not measured. (28)
01.07.2008		(20)
Туре	:	fugacity model level III
Media Air	÷	other: air - sediment(s) - soil - water % (Fugacity Model Level I)
Water	÷	% (Fugacity Model Level I)
Soil	:	% (Fugacity Model Level I)
Biota Soil	÷	% (Fugacity Model Level II/II) % (Fugacity Model Level II/II)
Method	÷	other: Calculation according Mackay, Level III
Year	:	2003
Method	:	The EQC Level III model is a steady state model that is useful for determining how the medium of release affects environmental fate. Level III fugacity allows non-equilibrium conditions to exist between connected media as steady state, and illustrate important transport and transformation processes.
		Physicochemical input values for the model were calculated using the EPIWIN Estimation v 3.20 program. Measured input values were also used where available and obtained from the EPIWIN database. Distribution data from the equilibrium model provide basic information on the potential partitioning behavior of chemicals between selected environmental compartments (i.e., air, water, soil, and sediment).
		Input values used:
		9 / 41

3. Environmental Fa	te and Pathways	ld 110-82-7 Date	
	Molecular mass = 84.16 g/mol Water solubility = 55 g/m ³ Vapour pressure = 12,919 Pa log Kow = 3.44 Melting point = 6.6 deg C		
	Degradation half-lives:		
	Air - 15.1 hrs Water - 360 hrs Soil - 720 hrs Sediment - 7200 hrs		
	Environmental Properties (EQC standard environ Dimensions (all defaults) Densities (all defaults) Organic carbon & Advection (all defaults) Transport Velocities (all defaults)	iment)	
Result	Emission and Inflows (defaults used) Air 1000 kg/hr Water 1000 kg/hr Soil 1000 kg/hr Sediment 0 kg/hr : Output:		
	Mass% Emissions(kg/hr) Air 15.8 1000 Water 67.3 1000 Soil 12.9 1000 Sediment 4.0 0		
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; purity is unknow (2) valid with restrictions This robust summary has a reliability rating of 2 b calculated and not measured. 		
Flag 01.07.2008	: Critical study for SIDS endpoint	(28)	

3.3.2 DISTRIBUTION

Г

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Type Inoculum Contact time Degradation Result Deg. product	 aerobic activated sludge 28 day(s) 77 (±) % after 28 day(s) other: readily biodegradable
Method	 OECD Guide-line 301 F "Ready Biodegradability: Manometric Respirometry Test"
Year	: 1995
GLP	: yes
Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown

3. Environmental Fate and Pathways

Result	 Test material was readily biodegradable. Half-life was reached by day 20. By day 28, 77% degradation of the test material was observed. 10% biodegradation was achieved on day 13. By day 2, >60% biodegradation of positive control was observed, which met the guideline requirement. No excursions from the protocol were noted. Biodegradation was based on oxygen consumption and the theoretical oxygen demand of the test material as calculated using results of an elemental analysis of the test material.
	% Degradation*Mean % DegradationSample(day 28)(day 28)Test Material79.8, 70.7, 80.276.9Na Benzoate91.0, 90.490.7
Test condition Test substance Conclusion	 * replicate data Non acclimated activated sludge and test medium were combined prior to test material addition. Test medium consisted of glass distilled water and mineral salts (Phosphate buffer, Ferric chloride, Magnesium sulfate, Calcium chloride). Test vessels were 1L glass flasks placed in a waterbath and electronically monitored for oxygen consumption. Test material was tested in triplicate, controls and blanks were tested in duplicate. Test material concentration was approximately 34 mg/L. Sodium benzoate (positive control) concentration was 50mg/L. Test temperature was 22 +/- 1 Deg C. All test vessels were stirred constantly for 28 days using magnetic stir bars and plates. CAS No. 110-82-7; cyclohexane; purity is unknown. Cyclohexane is readily biodegradable.
Reliability 01.07.2008	: (1) valid without restrictions (9)
01.07.2000	(3)

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

GLP:noTest substance:CAS No. 110-82-7; cyclohexane; purity is unknownRemark:A log bioconcentration factor (BCF) of 1.95 is calculated (BCF = 89). With respect to a log Kow = 3.44, which was used to calculate the BCF, cyclohexane in the aquatic environment is expected to have a low potential	Test substance	osure period at 25 °C centration = 89 ination other: calculation nod other: calculation substance CAS No. 110-82-7; cyclohexane; purity is unknown ark A log bioconcentration factor (BCF) of 1.95 is calculated (BCF = 89). With respect to a log Kow = 3.44, which was used to calculate the BCF, cyclohexane in the aquatic environment is expected to have a low potential
Test substance : CAS No. 110-82-7; cyclohexane; purity is unknown Reliability : (2) valid with restrictions This robust summary has a reliability rating of 2 because the data are calculated and not measured. Flag : Critical study for SIDS endpoint 01.07.2008 : (43)	Reliability Flag	 substance CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions This robust summary has a reliability rating of 2 because the data are calculated and not measured. Critical study for SIDS endpoint

3. Environmental Fate and Pathways

3.8 ADDITIONAL REMARKS

4. Ecotoxicity

Date

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Туре	: Flow Through Acute Fish Toxicity Test
Species Exposure period	 Pimephales promelas (Fish, fresh water) 96 hour(s)
Unit	: mg/l
LC50	: 4.53 measured/nominal
Limit test Analytical monitoring	: : no data
Method	
Year	: 1987
GLP	: no data
Statistical Method Test Conditions	 Trimmed Spearrman Karber Method Treatment solutions were prepared by diluting a 37.9mg/L stock solution. Nominal cyclohexane treatment levels were 1.62, 3.24, 4.86, 6.48, 8.10 mg/L, which measured 2.00, 3.53, 4.84, 6.96 and 8.86mg/L, respectively.
	Control/dilution water was EPA Duluth laboratory water. Ten fish were tested per treatment. Treatment volume = 250ml.
	Test parameters were as follows: temperature = 25.2 Deg C (s.d. 0.14); dissolved oxygen (DO) = 7.2 mg/L (s.d. 0.38); pH = 7.5 (s.d. 0.10); fish age = 30 days old; fish mean wt. = 0.119 g; fish mean length = 20.5 mm; fish loading = 0.1190 g/L/day. Temperature, DO, and pH data from the treatment solutions were only provided as mean values with standard deviations.
	Organism supplier was U.S. EPA Environmental Research Lab, Duluth, MN, USA.
Results	: 96-hour LC50 = 4.53 mg/L (95% CI 3.96 to 5.18) based upon measured concentrations
	Analytical method used was Gas-Liquid Chromatography.
	Measured Fish Total Mortality
	<u>Conc. (mg/L) (@ 24, 48, 72, 96 hrs)*</u> Control 0, 0, 0, 0
	2.00 0, 0, 0, 0
	3.52 1, 1, 1, 1
	4.84 0, 2, 3, 6
	6.9610, 10, 10, 108.8610, 10, 10, 10
	* 10 fish added at test initiation
Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown
Conclusion	: 96-hour LC50 = 4.53 mg/L (95% CI 3.96 to 5.18) based upon measured
Reliability	concentrations : (1) valid without restrictions
Konabinty	Although a standard method was not cited, the testing procedures followed
	generally accepted fish acute toxicity guideline methods and sufficient
	information on testing method and conditions was available to rate this study as "reliable without restriction".
Flag	: Critical study for SIDS endpoint
01.07.2008	(12)
Туре	:
Species	other: freshwater fish
Exposure period	: 96 hour(s)
	13 / 41

4. Ecotoxicity	ld 110-82-7 Date
Unit LC50 Method	: mg/l : = 2.8 calculated : other: ECOSAR Computer Model
Year GLP Test substance Method	 CAS No. 110-82-7; cyclohexane; purity is unknown ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity of chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemicals. Toxicity values for new chemicals may then be calculated by inserting the estimated Kow into the regression equation and
	correcting the resultant value for the molecular weight of the compound. To date, over 150 SARs have been developed for more than 50 chemical classes. These chemical classes range from the very large, e.g., neutral organics, to the very small, e.g., aromatic diazoniums. Some chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number of SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. The ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a pragmatic approach to SAR as opposed to a theoretical approach.
Result Test condition	 Calculated 96-hr LC50 for fish = 2.8 mg/L Experimental water solubility = 55.0 mg/l @ 25°C (McAuliffe, 1966), log Kow = 3.44 @ 20°C (Hansch, et.al, 1995), and melting point = 6.6°C (Lide, 2003) were entered into the program.
Test substance Reliability	 Class: Neutral organics CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPIWIN. This robust summary has a reliability rating of 2 because the data are calculated and not measured.
Flag 01.07.2008	: Critical study for SIDS endpoint (3
Type Species Exposure period Unit LC50 Limit test Analytical monitoring Method Year	 Fish Acute Toxicity Test Oncorhynchus mykiss (Fish, fresh water, marine) 96 hour(s) mg/l 3.2 measured/nominal no no OECD 203 Fish Acute Toxicity Test 2000
GLP Statistical Method Test Conditions	 yes Binomial Method Individual Water Accomodated Fractions (WAF's) were prepared for each test treatment. The test substance was added volumetrically, via a syringe, to 19L of dilution water in a 20L glass carboy. The solutions were mixed for

4. Ecotoxicity	Id 110-82-7 Date
	24 hours at a vortex of = 10% of the total depth. The test solutions were<br pumped from each mixing vessel into three replicates of 4.5L in 4.0L glass aspirator bottles (no headspace). Five fish were added to each test replicate and the replicates sealed. Daily renewals were performed by removing ~80% of the test solution through the port at the bottom and refilling with fresh solution.
	Test temperature was 14.5 Deg C., Lighting was 16 hours light : 8 hours dark with 562 to 728 Lux during full daylight periods. Dissolved Oxygen at initiation ranged from 8.6 to 8.9 mg/L and from 7.1 to 8.1 mg/L in "old" solutions prior to renewals. The pH was ranged from 7.5 to 7.8 during the study. Fish were not fed during the study. Water hardness ranged from 92 to 96 mg/L as CaCO ₃ .
Results	 Fish Mean Wt.= 0.213g. Mean Total length = 3.1cm, Test Loading = 0.24 g of fish/L. LL50 = 3.2mg/L (CI 1.0 to 10.0), based upon nominal loading levels.
	Nominal Conc <u>% Mortality @ 96 hr</u> .
	Control 0
	1 mg/L 0
	10 mg/L 10
	100 mg/L 10
Test substance	 Dissolved oxygen levels dropped below 60% of saturation in some of the treatments on Days 1 through 4 of the test. Since no mortality occurred in these treatments, the deviations are not believed to have affected the outcome of the study. CAS No. 110-82-7; cyclohexane; purity is unknown
Reliability	: (2) valid with restrictions
01.07.2008	No analytical monitoring of test concentrations was performed. (11)
4.2 ACUTE TOXICIT	Y TO AQUATIC INVERTEBRATES
Type Species Exposure period Unit EC50 Method Year GLP Test condition	 Daphnia sp. (Crustacea) 48 hour(s) mg/l = 3.3 calculated other: ECOSAR Computer Model ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity of chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemicals. Toxicity values for new chemicals may then be
	15 / 41

4. Ecotoxicity	ld 110-82-7 Date 30.06.2008
Test substance Result Test condition Reliability	 calculated by inserting the estimated Kow into the regression equation and correcting the resultant value for the molecular weight of the compound. To date, over 150 SARs have been developed for more than 50 chemical classes. These chemical classes range from the very large, e.g., neutral organics, to the very small, e.g., aromatic diazoniums. Some chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number of SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. The ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a pragmatic approach to SAR as opposed to a theoretical approach. CAS No. 110-82-7; cyclohexane; purity is unknown Calculated 48-hr LC50 for a dahpnid = 3.3 mg/L Experimental water solubility = 55.0 mg/l @ 25°C (McAuliffe, 1966), log Kow = 3.44 @ 20°C (Hansch, et.al, 1995), and melting point = 6.6°C (Lide, 2003) were entered into the program. Class: Neutral organics (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPIWIN. This robust summary has a reliability rating of 2 because the data are calculated and not measured.
Flag 08.07.2008	: Critical study for SIDS endpoint (3)
Type Species Exposure period Unit EC50 Method Year GLP Method	 static other: Daphnia 48 hour(s) mg/l = 0.9 other: based on discussions in GESAMP/MARPOL meetings held in 1973 no data Individual treatment concentrations were prepared by mixing the test substance in freshwater for 24 hours in a conical flask. The flask was almost completely filled with solution. After mixing, the treatment solutions were allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were 250 ml conical flasks with 25 daphnids per flask. Two replicates of each treatment level and control were evaluated.
Result Test condition	 Organisms supplied by testing lab; age = <24 hours old; parents age = approximately 21 days old. Statistical method: Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981. Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-119.). 48-hr EC50 for a daphnid = 0.9 mg/L Dissolved oxygen was >50% saturation during the study. The pH was 7.5 to 8.3. Temperature was 20 Deg C.
Test substance Reliability	 Analytical method used was Gas Chromatography with Flame Ionization Detection (GC-FID). Nominal treatment levels ranged from 1.0 to 10 mg/L. CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions This robust summary has a reliability rating of 2 because there is less raw data and information on the testing procedure than is desirable in order to rate this study for reliability at a level higher than 2. There is sufficient 16 / 41

Ecotoxicity	ld 110-82-7 Date 30.06.2008
	information in the report to suggest that the testing procedure generally followed an acceptable test guideline, OECD 202, and used acceptable methods to prepare exposure solutions.
Flag 30.06.2008	: Critical study for SIDS endpoint (44
Toma	
Type Species	 semistatic other: Gammarid (Chaetogammarus marinus)
Exposure period	: 96 hour(s)
Unit	: mg/l
LC50	: = 2.2
Method	: other: Static Gammarid Acute Toxicity Test
Year GLP	: no data
Method	 Individual treatment solutions were prepared by mixing the test substance in freshwater for 24 hours in conical flasks. The flask was almost completely filled with solution. After mixing, the treatment solutions were allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were scintillation vials almost filled with approximately 20 ml of test solution and one organism per vial. Ten organisms were tested per treatment level. Organisms were transferred into fresh control and test solutions every 24 hours up to 96 hours.
	Organisms supplied by testing lab, grown in natural seawater with a salinity of 2.8%; length = 5 mm. Statistical method:
Result	 Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981. Parametric analyses of mortality rate in bio-assays. Water Res., 15:107-119.). 96-hr LC50 for a gammarid = 2.2 mg/L
Test condition	 Dissolved oxygen was >50% saturation during the study. The pH was 7.5 to 8.3. Temperature was 15 Deg C. Natural seawater was used with a salinity of 2.8%
	Analytical method used was Gas Chromatography with Flame Ionization Detection (GC-FID). Nominal treatment levels ranged from 1.0 to 10 mg/L. Test solutions were analyzed only upon test initiation.
Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown
Reliability	: (2) valid with restrictions This robust summary has a reliability rating of 2 because there is less raw data and information on the testing procedure than is desirable in order to rate this study for reliability at a level higher than 2. There is sufficient information in the report to suggest that the testing procedure generally followed an acceptable test guideline and used acceptable methods to prepare exposure solutions.
Flag 30.06.2008	: Critical study for SIDS endpoint (44
Туро	: semistatic
Type Species	 semistatic other: mysid shrimp (Mysidopsis bahia)
Exposure period	: 96 hour(s)
Unit	: mg/l
LC50	: = 2.2
Method	: other: Static Gammarid Acute Toxicity Test
Year	:
GLP Method	 no data Individual treatment solutions were prepared by mixing the test substance in freshwater for 24 hours in conical flasks. The flask was almost completely filled with solution. After mixing, the treatment solutions were

4. Ecotoxicity	ld 110-82-7 Date
	allowed to settle for 24 hours. The aqueous solution was then drained through a stopcock at the base of the flask and tested. Test vessels were scintillation vials almost filled with approximately 20 ml of test solution and one organism per vial. Ten organisms were tested per treatment level. Organisms were transferred into fresh control and test solutions every 24 hours up to 96 hours.
	Organisms supplied by testing lab, grown in natural seawater with a salinity of 2.8%; test organisms were approximately 4 weeks old, with lengths of approximately 6 mm. Statistical method:
	Parametric model developed by Kooijman (Kooijman, S.A.L.M. 1981. Parametric analyses of mortality rate in bio-assays. Water Res., 15:107- 119.).
Result Test condition	 96-h LC50 for a mysid = 2.2 mg/L Dissolved oxygen was >50% saturation during the study. The pH was 7.5 to 8.3. Temperature was 20 Deg C. Natural seawater was used with a salinity of 2.8%
	Analytical method used was Gas Chromatography with Flame Ionization Detection (GC-FID). Nominal treatment levels ranged from 0.32 to 10 mg/L. Test solutions were analyzed only upon test initiation.
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; purity is unknown (2) valid with restrictions This robust summary has a reliability rating of 2 because there is less raw data and information on the testing procedure than is desirable in order to rate this study for reliability at a level higher than 2. There is sufficient information in the report to suggest that the testing procedure generally followed an acceptable test guideline and used acceptable methods to
Flag 30.06.2008	prepare exposure solutions. : Critical study for SIDS endpoint (44)

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Species Endpoint Exposure period Unit EC50 Method	 other algae: Pseudokirchneriella subcapitata 72 hour(s) mg/l = 3.4 measured OFCD 201 Alga Crowth Inhibition Test
Year GLP Statistical Method	 OECD 201 - Alga, Growth Inhibition Test 1998 yes Proc regression procedure of SAS, Anova procedure of SAS for NOEC
Test condition	: Individual test treatment solutions were prepared as Water Accommodated Fractions (WAFs). Test material was added to algal media via syringe in 2.0L aspirator bottles. The bottles were completely filled, no headspace. The mixing vessels were sealed with Teflon-covered stoppers and mixed on magnetic stir plates with teflon coated stir bars for 23.5 hours at room temperature. After mixing the solutions were allowed to settle for one hour and the WAF was removed from the bottom of the mixing vessel via the port and used for testing. Test vessels were 125ml glass Erlenmeyer flasks with approximately 140 ml of treatment solution and inoculated with algae. Test vessels were completely filled and sealed with glass stoppers. Samples were taken daily for cell counts. Six replicates were prepared for each treatment level. The initial algal concentration was 1.0×10^4 cells/ml. All test replicates were placed on a shaker table at 100 oscillations per minute

4. Ecotoxicity	Id 110-82-7
4. Leotoxicity	Date 30.06.2008
	during the study. Biomass was calculated as the area under the growth curve. Nominal loading levels were 0.5, 1.4, 3.9, 11, and 31 mg/L Test temperature was 24.6 Deg. C. Lighting was continuous at approximately 4200 Lux. The pH was 7.5 to 7.6 at test initiation and ranged from 8.4 to 8.7 at test termination.
	Test treatments were analyzed by GC-FID. Measured values on Day 0 were 0.085, 0.719, 0.952, 2.940 and 4.425 mg/L. The test material was not detected in the control.
Test substance Result Reliability	 CAS No. 110-82-7; cyclohexane; purity is unknown 72-hr EC50 for a green alga = 3.4 mg/L 72-hr NOEC for a green alga = 0.952 mg/L (1) valid without restrictions
Flag 02.07.2008	: Critical study for SIDS endpoint (10)
Species Endpoint Exposure period Unit EC50 ChV Method Year GLP Test condition	 other algae: Pseudokirchneriella subcapitata 96 hour(s) mg/l = 2.2 calculated = 0.5 calculated other: ECOSAR Computer Model ECOSAR version 0.99h, U.S. EPA. The structure-activity relationships (SARs) presented in this program are used to predict the aquatic toxicity of chemicals based on their similarity of structure to chemicals for which the aquatic toxicity has been previously measured. Most SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition coefficient (Kow). SARs have been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data. SARs are developed for chemical classes based on measured test data that have been submitted by industry or they are developed by other sources for chemicals with similar structures, e.g., phenols. Using the measured aquatic toxicity values and estimated Kow values, regression equations can be developed for a class of chemical. Toxicity values for new chemicals may then be calculated by inserting the estimated Kow into the regression equation and correcting the resultant value for the molecular weight of the compound. To date, over 150 SARs have been developed for more than 50 chemical classes have only one SAR, such as acid chlorides, for which only a fish 96-hour LC50 has been developed. The class with the greatest number of SARs is the neutral organics, which has SARs ranging from acute and chronic SARs for fish to a 14-day LC50 for earthworms in artificial soil. The ECOSAR Class Program is a computerized version of the ECOSAR analysis procedures as currently practiced by the Office of Pollution Prevention and Toxics (OPPT). It has been developed within the regulatory constraints of the Toxic Substances Control Act (TSCA). It is a
Test substance Result	 pragmatic approach to SAR as opposed to a theoretical approach. CAS No. 110-82-7; cyclohexane; purity is unknown Calculated 96-hr EC50 for a green alga = 2.2 mg/L Calculated 96-hr ChV for a green alga = 0.5 mg/L Experimental water collubility = 55.0 mg/L
Test condition	 Experimental water solubility = 55.0 mg/l @ 25°C (McAuliffe, 1966), log Kow = 3.44 @ 20°C (Hansch, et.al, 1995), and melting point = 6.6°C (Lide, 19 / 41

4. Ecotoxicity	ld 110-82-7 Date 30.06.2008
Reliability Flag 02.07.2008	 2003) were entered into the program. Class: Neutral organics (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPIWIN. This robust summary has a reliability rating of 2 because the dat are calculated and not measured. Critical study for SIDS endpoint
02.07.2008	(
4.4 TOXICITY TO M	ICROORGANISMS E.G. BACTERIA
4.5.1 CHRONIC TOXIC	CITY TO FISH
4.5.2 CHRONIC TOXIC	CITY TO AQUATIC INVERTEBRATES
4.6.1 TOXICITY TO SI	EDIMENT DWELLING ORGANISMS
4.6.2 TOXICITY TO TE	ERRESTRIAL PLANTS
4.6.3 TOXICITY TO SO	OIL DWELLING ORGANISMS
4.6.4 TOX. TO OTHER	R NON MAMM. TERR. SPECIES
4.7 BIOLOGICAL EF	FFECTS MONITORING
4.8 BIOTRANSFOR	MATION AND KINETICS
4.9 ADDITIONAL RE	EMARKS

5. Toxicity Id 110-82-7 Date 5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION

5.1.1 ACUTE ORAL TOXICITY

Туре	: LD50
Value	: >5000 mg/kg
Species	: rat
Strain	: no data
Sex	: no data
Number of animals	:
Vehicle	: no data
Doses	· · · · · · · · · · · · · · · · · · ·
Method	
Year	
GLP	•
Remark	
Test substance	CAS No. 110-82-7; cyclohexane; purity is unknown
Conclusion	
	: Cyclohexane has a low order of toxicity by the oral route of exposure
Reliability	: (2) valid with restrictions
	Original study not retrieved and reviewed. Study used for EU Risk
	Assessment of cyclohexane.
Flag	: Critical study for SIDS endpoint
14.07.2008	(32)
_	
Туре	: LD50
Value	: =29,800 mg/kg
Species	: rat
Strain	: no data
Sex	: no data
Number of animals	:
Vehicle	: no data
Doses	:
Method	:
Year	:
GLP	:
Remark	:
Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown
Conclusion	: Cyclohexane has a low order of toxicity by the oral route of exposure
Reliability	: (2) valid with restrictions
-	Original study not retrieved and reviewed. Study used for EU Risk
	Assessment of cyclohexane.
Flag	: Critical study for SIDS endpoint
14.07.2008	(7)
Туре	: LD50
Value	: 8,000 - 39,000 mg/kg
Species	: rat
Strain	: no data
Sex	: no data
Number of animals	· · · · · · · · · · · · · · · · · · ·
Vehicle	no data
Doses	· · · · · · · · · · · · · · · · · · ·
Method	
Year	: 1970
GLP	: pre-GLP
Remark	 pre-GLF The oral LD50 in a 14-day old rat, a young adult rat and an older rat was
	8.0, 39.0 and 16.5 ml/kg, respectively (6,240, 30,420 and 12,870 mg/kg,
	0.0, 00.0 and 10.0 mixing, respectively $(0,270, 00,720)$ and $12,070$ mg/kg,

Toxicity	ld 110-82-7 Date
	respectively). Symptoms included depressive effect on the central nervous
	system, salivation and soft faeces.
Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown
Conclusion	: Cyclohexane has a low order of toxicity by the oral route of exposure
Reliability	: (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk
	Assessment of cyclohexane.
Flag	: Critical study for SIDS endpoint
14.07.2008	(25
1.2 ACUTE INHALATI	
Туре	: LC50
Value	: > 32.88 mg/l
Species	: rat
Strain Sex	: no data : no data
Number of animals	
Vehicle	no data
Doses	:
Exposure time	: 4 hour(s)
Method Year	: other
GLP	: no data
Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown
Remark	: Single 4-hour exposure at one dose level of 9500 ppm (32.28 mg/l). No
	death occurred at level tested. Exposure-related symptoms noted during the exposure included tremors, hyperactivity, rapid respiration, and also hypoactivity.
Result	:
Conclusion	: Cyclohexane has a low order of toxicity by the inhalation route of exposure
Reliability	 (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk
	Assessment of cyclohexane.
Flag	: Critical study for SIDS endpoint
14.07.2008	(33
Tumo	. 1.050
Type Value	: LC50
Species	: rabbit
Strain	: no data
Sex	: no data
Number of animals Vehicle	: no data
Doses	- 10 uala
Exposure time	· 1 hour(s)
	: other
Method	
Method Year	
Method Year GLP	: pre-GLP CAS No. 110-82-7: cyclobexape: purity is upknown
Method Year GLP Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown
Method Year GLP Test substance	 CAS No. 110-82-7; cyclohexane; purity is unknown A 1 hour acute inhalation exposure of rabbits to cyclohexane vapor produced effects on the central nervous system, with exposure-related
Method Year GLP Test substance	 CAS No. 110-82-7; cyclohexane; purity is unknown A 1 hour acute inhalation exposure of rabbits to cyclohexane vapor produced effects on the central nervous system, with exposure-related observations including convulsions, tremors, hyperactivity, rapid
Method Year GLP	 CAS No. 110-82-7; cyclohexane; purity is unknown A 1 hour acute inhalation exposure of rabbits to cyclohexane vapor produced effects on the central nervous system, with exposure-related observations including convulsions, tremors, hyperactivity, rapid respiration, cyanosis and diarrhea; all the animals exposed to 89.6 mg/L
Method Year GLP Test substance Remark	 CAS No. 110-82-7; cyclohexane; purity is unknown A 1 hour acute inhalation exposure of rabbits to cyclohexane vapor produced effects on the central nervous system, with exposure-related observations including convulsions, tremors, hyperactivity, rapid
Method Year GLP Test substance	 CAS No. 110-82-7; cyclohexane; purity is unknown A 1 hour acute inhalation exposure of rabbits to cyclohexane vapor produced effects on the central nervous system, with exposure-related observations including convulsions, tremors, hyperactivity, rapid respiration, cyanosis and diarrhea; all the animals exposed to 89.6 mg/L

Г

. Toxicity		ld 110-82-7 Date 30.06.2008
Flag 14.07.2008	Assessment of cyclohexane. Critical study for SIDS endpoint	(45
5.1.3 ACUTE DERMAL	DXICITY	
Turne		
Type Value	: LD50 : > 2000 mg/kg bw	
Species	: > 2000 mg/kg bw : rabbit	
Strain	: no data	
Sex	: no data	
Number of animals		
Vehicle	: no data	
Doses		
Method	: other	
Year	:	
GLP	: no data	
Test substance	: CAS No. 110-82-7; cyclohexane; purity is unknown	own
Result	: No deaths or systemic symptoms were observe oedema were noted in a few animals.	ed, a slight erythema and
Conclusion	: Cyclohexane has a low order of toxicity by the	dermal route of exposure
Reliability	: (2) valid with restrictions Original study not retrieved and reviewed. Stud Assessment of cyclohexane.	
Flag	: Critical study for SIDS endpoint	
14.07.2008		(34
5.1.4 ACUTE TOXICITY		

5.2.1 SKIN IRRITATION

(25)
(35)

5. Toxicity	ld 110-82-7 Date 30.06.2008
Duration of study Doses Method Year GLP Test substance Result Remark	 7 days EEC Directive 83/467/EEC yes CAS No. 110-82-7; cyclohexane; purity is unknown not irritating Test substance applied under a semi-occlusive dressing. Single application. Resulted in a mean erythema score for 24-hr and 72-hr of 1.93. A review of this study did however note that the erythematous reaction reached maximum severity at 5 days post-application (mean score 2.56). During this time, there was a gradual increase in dermal reaction for a further 144 h observation time (2.83). Overall, the irritation reactions were important and still present at the end of the study.
Reliability 	: (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk Assessment of cyclohexane.
Flag 14.07.2008	: Critical study for SIDS endpoint (24)
5.2.2 EYE IRRITATION	
Species Strain Sex Number of animals Vehicle	 rabbit no data no data 6 none

Strain Sex Number of animals Vehicle Doses Method Year GLP Test substance Result Remark	 no data no data 6 none Single undiluted Draize Test yes CAS No. 110-82-7; cyclohexane; purity is unknown slightly irritating After application of the test substance to one eye of the rabbit the eye was
	left unwashed. At one hour post instillation, corneal opacity, involving up to 25% of the cornea, was noted in one rabbit and iritis was noted in another rabbit. Conjunctival redness was noted in five rabbits with conjunctival chemosis in one rabbit. All ocular lesions had cleared within 24 hours and no conjunctival discharge was noted in any of the six animals.
Reliability	: (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk Assessment of cyclohexane.
Flag 14.07.2008	: Critical study for SIDS endpoint (36)
Species Strain Sex Number of animals Vehicle Doses Method	 rabbit no data no data 6 none Single undiluted Draize Test

:

Year

5. Toxicity	ld 110-82-7 Date
GLP Test substance Result Remark	 yes CAS No. 110-82-7; cyclohexane; purity is unknown slightly irritating After application of the test substance to one eye of the rabbit the eye was rinsed / washed.
Reliability Flag 14.07.2008	 (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk Assessment of cyclohexane. Critical study for SIDS endpoint
5.3 SENSITIZATION	
Type Species Strain Sex Number of animals Vehicle Doses Method Year GLP Test conditions	 Dermal sensitization Guinea pig no data male / female 9 male / 11 female ethanol / acetone EC Annex V Method B6 - modified Buehler method 1996 yes Twenty guinea pigs (9 males and 11 females) were induced dermally with 10% cyclohexane (purity 99.98%) in ethanol and challenged with 10% cyclohexane in acetone. Concurrent negative controls (no cyclohexane) and positive controls (DNCB-0.1% in 50% ethanol at induction and 0.07% in acetone at challenge) were tested. It should be noted that a maximisation test was not required because of the very poor tolerance to intra-dermal injection of solvents. During the induction phase, the response ranged from no redness (14/20 animals) to very faint redness on some tested animals (6/20 animals with a slight reaction). A very faint redness was observed 24 hours after the challenge application in 1/20 tested animals, no reactions were observed in other tested animals or negative controls. The incidence of sensitisation among cyclohexane induced and challenged animals was 0/20. The incidence of sensitisation among the DNCB induced and challenged animals was 8/10. A higher challenge concentration could have been chosen (15% in acetone did not produce any dermal irritation) and there were only a few animals with dermal reactions during the induction phase, these findings reduce the significance of this test.
Test substance Result Reliability Flag	 CAS No. 110-82-7; cyclohexane; (purity 99.98%) not a dermal sensitizer (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk Assessment of cyclohexane. Critical study for SIDS endpoint
14.07.2008	(8

Гуре	:
Species	: rat
Sex	: male/female

5.	То	xic	ity
----	----	-----	-----

ld 110-82-7 Date 30.06.2008

Number of animals	: 5/sex/group	
Strain	: other: Crl:CD.BR	
Route of admin.	: inhalation	
Exposure period	: 9 days	
Frequency of treatm		
Doses	: 3000, 6000, 9000 ppm	
Control group	: yes	
NOAEL	: = 3000 ppm	
Method	: EPA test method	
Year	: 1995	
GLP	: yes	
Test Methods	In a two-week inhalation range finding study, Crl CD.BR rats (5/sex/group)	
	 were exposed (whole body in an exposure chamber) to 0-3,000-6,000 and 9,000 ppm (0-10,500-21,000 and 31,500 mg/m3) of cyclohexane (purity 99.97%). Nine exposures, each lasting six hours, were performed in total. The animals were weighed before treatment, clinical signs were checked before, during and after exposure, and common biochemical parameters and histological examinations were conducted at the end of the study. For neurotoxicity assessment, the animals were checked for alerting behaviour in response to a standardised auditory stimulus at least three times during each exposure. They were also submitted to an abbreviated Functional Observational Battery (FOB) before and after exposure on two separate days (test days 4 and 11). This assessment was also performed prior to the initiation of exposures to establish baseline measurements. During the FOB, the following parameters were assessed: in home cage: posture and palpebral closure, in open field: righting reflex, convulsions, gait characteristics, vocalisations, labored breathing, coordination, arousal and palpebral closure, during manipulations: approach and touch response, auditory response (clicker) and tail pinch. 	
	This study was performed according to EPA guidelines and following EPA and OECD GLPs.	
Result	: A slight but significant decrease in body weight gain was observed in males treated with 9,000 ppm. Except for a minimal increase in mitotic index figures detected in the hepatocytes of males at 6,000 ppm and higher and in females at 9,000 ppm, no other treatment related findings were observed for systemic toxicity. In particular, no modification in absolute and relative liver weights was noted in these studies. Based on these findings, a NO(A)EL of 3,000 ppm (10,320 mg/m3) can be assumed for systemic toxicity. For neurotoxic effects, diminished responses to stimulus were observed from day 2 at 9,000 ppm and from 7 exposures at 6,000 ppm. No effect was observed in FOB. A NOAEL of 3,000 ppm (10,320 mg/m3) can be assumed for neurotoxic effects in rats. This study served as a range-finding study for a 90-day inhalation toxicity study. It should be noted that this value is very conservative because the effects are very slight and may be of adaptive nature; this is taken into account in the risk characterisation.	e
Test substance Reliability Flag 17.07.2008	 CAS No. 110-82-7; cyclohexane; (purity 99.97%) (1) valid without restriction Critical study for SIDS endpoint)
Туре	:	
Species	: rat	
Sex	: male/female	
	26 / 41	
	20/71	

. Toxicity	ld 110-82-7 Date 30.06.2008
Number of animals	: 20/sex/group (controls & hi dose); 10/sex/group (intermediary doses)
Strain	: other: Crl:CD.BR
Route of admin.	: inhalation
Exposure period	: 13 weeks
Frequency of treatm.	: 6 hrs / day, 5 days / week (total 66 exposures)
Doses	: 500, 2000, 7000 ppm
Control group	: yes
NOAEL	:
Method	: EPA test method
Year	: 1995
GLP	: yes
Methods	In a 13-week repeated dose toxicity study conducted using CD BR rats (20/sex/group for controls and high concentration and 10/sex/group for intermediary concentration groups) were exposed by whole body inhalation to cyclohexane at target concentrations of 0, 500, 2,000, and 7,000 ppm fo 6 hours/day, 5 day/week for 13 weeks (66 exposures). Ten rats per month were allowed a one-month recovery period for control group and 7,000 ppm groups. After 45 and 90 days of exposure, blood and urine were collected for evaluation of clinical pathology parameters. Gross pathology, organ weight, macroscopic and microscopic examinations were performed at the end of the study.
Result	No treatment-related effects were observed on body weight, body weight gain, food consumption, urine analysis and clinical examinations. A slight decrease (not significant) in succinate dehydrogense and lactate dehydrogenase was observed in males and females at 7,000 and 2,000 ppm at both sampling times. In males exposed to 7,000 ppm a slight increase in adrenals weight was observed at the end of the recovery period. This finding was not observed at the end of the 90 day exposure so the relevance and significance is questionable. In the 7,000 ppm group a statistically significant increase in the relative liver weight with hepatic hypertrophy was observed in males (10/10), concurrent with an increase in the incidence of centrilobular hypertrophy in both sexes (9/10 males and 5/10 females). This finding was partially reversible in the one-month recovery period. For neurological effects, decreases in or absences of response to auditory stimulations were observed with a dose-response relationship from 500 ppm. In the 500 ppm group, there was a decrease in response on treatment days 61, 66, 67 and 68. In the 2,000 ppm group, there was decrease in the response during 16 exposures and no response during 50 exposures. In the 7,000 ppm group, a decreased response was observed in one exposure and no response was observed in the other 65 exposures. These effects were transient, and as no clinical observations or compromised neurological function were detected they were considered to be due to a reversible sedation caused by cyclohexane. The NOAEL for neurological effects was 500 ppm while the NOAEL for hepatic effects was 2,000 ppm. However, the partially reversible hepatic effects observed in males at 7,000 ppm were slight and may be considered of an adaptive nature.
Remark	: Additional groups of rats (12/sex/group) were treated in parallel with those of the main study in order to assess neurotoxicity of cyclohexane in FOB, motor activity and neuropathology tests (Haskell Laboratory 1996c). Neurobehavioral evaluations were conducted prior to exposure and at week 4, 8, and 13. During each evaluation period FOB was performed prior to the motor activity test. At the end of the study, 6 rats/sex/group were selected for neuropathology, the controls and 7,000 ppm tissues selected were examined, and the intermediate dose tissues were saved. Neurological lesions were also assessed by examining sections of the brain, spinal cord, sciatic nerve, gasserian ganglia, cervical and dorsal root fibers and ganglia, cervical and lumbar ventral root fibers and
	gastrocnemius muscle.

5. Toxicity	ld 110-82-7 Date
Test substance Reliability Flag 17.07.2008	 of 2,000 ppm and higher characterized by a decrease in the mean response to an alerting stimulus. This effect was transient since no effects were observed immediately after removal from the exposure chamber. No effects were observed during the FOB and motor activity assessment. Histologically, no treatment-related findings were observed, the only lesions observed being identical in character and severity to those observed in controls. These have already been described as occurring spontaneously in the rat. The NOAEL for neurotoxicity was 500 ppm based on the transient sedative effect observed at 2,000 ppm and higher. CAS No. 110-82-7; cyclohexane; (purity 99.98%) (1) valid without restriction Critical study for SIDS endpoint
Type Species Sex Number of animals Strain Route of admin. Exposure period Frequency of treatm. Doses Control group NOAEL Method Year GLP Methods	 mouse male/female 20/sex/group (controls & hi dose); 10/sex/group (intermediary doses) other: CrI:CD1 (ICR) BR inhalation 13 weeks 6 hrs / day, 5 days / week (total 66 exposures) 500, 2000, 7000 ppm yes EPA test method 1996 yes A 13 week inhalation toxicity study in mice was also performed following a 2-week range finding study in mice. The study was comparable in experimental conditions to that performed on rats. After a stimulus, the animals of the 500 ppm group reacted as controls. In the 2,000 ppm group, a decrease in or an absence of response was observed from the third exposure onwards, the effects appearing to get worst with time (more and more no-response with increasing numbers of exposures). In the 7,000 ppm group, there was an increase in the incidence of decreased response, absence of response and hyperactive state form test day 40 test day 30. From test day 30 to the end of the study, the response to the stimulus was impossible to determine due to the hyperactive state of the animals. These symptoms were observed just after exposure but were reversible until the next exposure. The most frequently described symptoms were abnormal gait or mobility, excessive grooming, hyperactivity, hyper reactivity, spasms, aggressivity, hypo-activity and ruffled fur. In males, haematological abnormalities were observed from 500 ppm, these symptoms (increase in RBC - increase in HB - increase in H1 and decrease in platelets) were not always statistically significant and not always dose-related. In females, increases in RBC, Hb and Ht were only observed at 7,000 ppm. Variation in the haematological parameters occured for all nimials at the 7,000 ppm dose level, but could not be explained in relation to the lack of systemic symptoms of dehydration. They were considered to be of no toxicological importance.
	increased in females. No concomitant histological findings were observed. These results were not in accordance with those found during the two- week range finding test (histological findings from 3,000 onwards in 28 / 41

Result Test substance Reliability Flag 17.07.2008	 females and at 9,000 in males) but did not interfere with the determination of a NOEL. For neurologic effects, a NOAEL of 500 ppm was determined based on signs of sedation observed in animals at 2,000 ppm. The NOAEL for systemic effects was 2,000 ppm based on effects observed in the liver at 7,000 ppm (increase in absolute and relative liver weights). CAS No. 110-82-7; cyclohexane; (purity 99.98%) (1) valid without restrictions Critical study for SIDS endpoint
Test substance Reliability Flag 17.07.2008	 signs of sedation observed in animals at 2,000 ppm. The NOAEL for systemic effects was 2,000 ppm based on effects observed in the liver at 7,000 ppm (increase in absolute and relative liver weights). CAS No. 110-82-7; cyclohexane; (purity 99.98%) (1) valid without restrictions Critical study for SIDS endpoint
Reliability Flag 17.07.2008	(1) valid without restrictionsCritical study for SIDS endpoint
Flag 17.07.2008	: Critical study for SIDS endpoint
17.07.2008	•
5 GENETIC TOXICI	
	ſY 'IN VITRO'
Туре	: Ames test
System of testing	 Test species/strain: Salmonella typhimurium TA100, TA1535, TA98, TA1537
Test concentration	: 0 to 10000 nl/ml
Cytotoxic concentr. Metabolic activation	: 7800 μg/ml (10000 nl/ml) : with and without
Result	: negative
Method	: not data
Year	: 1986
GLP Test Method	: no data : Salmonella typhimurium (TA1535, TA1537, TA98 and TA100) were
	incubated with and without metabolic activation in DMSO. Two metabolic activation systems were used, one with SD rats livers and the other with Syrian hamster livers. Doses of cyclohexane ranged from 0 to 10,000 µg/plate.
Result	: Signs of toxicity were noted in the 3,333 μg/plate for TA1537 and TA98 an in the 10,000 μg/plate for TA100 and TA1535.
	There was no evidence of reverse mutation for any dose tested with and without metabolic activation.
	Genotoxic effects:
	With metabolic activation: negative Without metabolic activation: negative
Test substance	: CAS No. 110-82-7; cyclohexane
Reliability	: (2) valid with restrictions
	Original study not retrieved and reviewed. Study used for EU Risk Assessment of cyclohexane.
Flag	: Critical study for SIDS endpoint
18.07.2008	(3*
Туре	: Mouse Lymphoma Assay
System of testing Test concentration	 L5178Y mouse lymphoma cells (TK locus) 313 to 10000 nl/ml (250 to 7800 μg/ml)
Cycotoxic concentr.	: 7800 μg/ml (10000 nl/ml)
Metabolic activation	: with and without
Result	: negative
Method	: Method equivalent to current guidelines : 1986
Year GLP	: 1986 : no data
Remark	 Cyclohexane, solubilised in desionised water, was tested at doses ranging from 313 nl/ml to 10,000 nl/ml (250 µg/ml to 7,800 µg/ml) (API, 1986). The method used was equivalent to the guidelines.

٦

Γ

5. Toxicity	ld 110-82-7 Date	
Result	 Cytotoxicity was seen at 10,000 nl/ml (7,800 µg/ml) with and without metabolic activation. Without metabolic activation the percentage of relative growths ranged from 39 to 59 % without dose-effect relationship. There was no evidence of forward mutation at any dose. With metabolic activation, the percentage of relative growths ranged from 46 to 64% and was not dose related. There were very slight increases in mutant frequency in four treatments, but not dose related, and it was decided to confirm this result with another test. Doses ranging from 3,000 to 8,000 nl/ml (2,340 to 6,240 µg/ml) were tested 	
	in the second trial (cytotoxicity was found at 9,000 nl/ml (7,020 μ g/ml)). The percentage of relative growths ranged from 23 to 69%. In this trial the results were clearly negative. Overall, this test can be considered as negative with and without metabolic activation.	
Test substance	: CAS No. 110-82-7; cyclohexane	
Reliability Flag	 (1) valid without restriction Critical study for SIDS endpoint 	
18.07.2008	(2)(38)	
Туре	: Sister Chromatid Exchange Test	
System of testing	: Chinese Hamster Ovary cells	
Test concentration	: 0.25 to 25 μg/ml in DMSO : no data	
Cycotoxic concentr. Metabolic activation	: with and without	
Result	: negative	
Method	: Method equivalent to current guidelines	
Year GLP	: 1982 : no data	
Remark	 Cyclohexane, solubilised in DMSO, was tested at doses ranging from 0.25 to 25 µgl/ml. The method used was equivalent to the guidelines. 	
Result	The higher dose tested corresponding to a complete growth inhibition of the cell culture (25 μ g/ml). No effect was seen within the range of the doses tested and the test is considered negative.	
Test substance	: CAS No. 110-82-7; cyclohexane	
Reliability	: (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk	
F 1	Assessment of cyclohexane.	
Flag 18.07.2008	: Critical study for SIDS endpoint (39)	
Type System of testing	: Unscheduled DNA synthesis : Human lymphocytes	
Test concentration	: 0.1 to 10 mM cyclohexane	
Cycotoxic concentr.	: no data	
Metabolic activation Result	: with and without : negative	
Method	: Method equivalent to current guidelines	
Year	: 1983	
GLP Remark	 no data Human lymphocytes (+ or – S9 mix) were cultured for 4 hours in the presence or absence of cyclohexane. The effects on the DNA synthesis were measured through cellular [³H]TdR uptake. 	
Result	: Cyclohexane induced a marked inhibition of [³ H]TdR uptake in the S9 mix- lacking cultures while the corresponding cellular viabilities were unaffected. No effect was seen with metabolic activation. The effects seen without metabolic activation were not dose-dependent; solvent controls and negative controls were highly variable. Decrease of the uptake for the	
	30 / 41	

. Toxicity	ld 110-82-7 Date
	highest dose was within the values of the controls. No conclusion was drawn from this study.
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; purity = 99.8% (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk Assessment of cyclohexane.
Flag 18.07.2008	: Critical study for SIDS endpoint (40)
Type System of testing Test concentration Cycotoxic concentr. Metabolic activation Result Method Year GLP Remark	 DNA cell binding assay <i>E. coli</i> 10 and 100 μM cyclohexane no data with and without negative no data 1981 no data Cyclohexane was tested in a DNA cell binding assay at doses of 10 and 100 μM. Cyclohexane was tested alone, mixed with lysozyme, mixed with liver extract and mixed with lysozyme and liver extract. Positive control was MMS and negative control was the culture middle only. The results are expressed as a "binding percentage". If this percentage is > 1%, the substance was considered positive.
Result	: Cyclohexane was found negative when tested alone in the groups treated with liver extract and –with lysozyme and liver extract. A positive finding (1.6% only) was found in the group treated with cyclohexane + lysozyme at the highest dose (100 μ M). This result is considered doubtful because this is a very slight increase and also because this effects is not found in the group - cyclohexane + lysozyme + liver extract.
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; purity = 99.8% (2) valid with restrictions Original study not retrieved and reviewed. Study used for EU Risk Assessment of cyclohexane.
Flag 18.07.2008	: Critical study for SIDS endpoint (26)

5.6 GENETIC TOXICITY 'IN VIVO'

Type:Species:Strain:Sex:Number of animals:Route of admin.:Exposure period:Doses:Method:Year:GLP:	Cytogenetic Assay rat Sprague Dawley male/female 10 per sex inhalation 6 hours/day for 5 days 0, 97, 307, 1042 ppm other: not specified
GLP :	no data
Year :	·

5. Toxicity	ld 110-82-7 Date
Remark	: Samples of bone marrow cells were taken for cytogenetic analysis 6 hours after completion of the final dose. A positive control, triethyleneamine, showed a significant increase in structural aberration frequency. For cyclohexane a small but statistically significant increase in numerical aberrations was recorded in low and medium dose females, and pooled data at the low dose groups of both sexes. There was no information on general toxicity; no decrease on mitotic index was seen at all the doses tested. However, the authors of the report concluded that the lack of a dose-related response indicated that these increases were not of biological importance. Moreover, the numerical aberrations parameter had often shown great variation in this laboratory, having no statistical significance even for positive controls (numerical data is not available). It can be considered that cyclohexane does not produce chromosomal aberrations under the conditions of this test.
Result	 Negative result. Some increased aberrations at low and medium doses but no dose-related effect.
Test substance Reliability	 CAS No. 110-82-7; cyclohexane; purity is unknown (1) valid without restriction
Flag	: Critical study for SIDS endpoint
14.07.2008	(1)

5.7 CARCINOGENICITY

5.8.1 TOXICITY TO FERTILITY

Туре		Two generation reproductive study
Species		rat
Sex	:	male/female
Number of animals	•	30/sex/group
Strain	:	other: CD BR
Route of admin.	:	inhalation
Exposure period	:	90 days
Frequency of treatm.	:	5 day/week and 6 h/day
Premating exposure per	riod	
Male	:	10 weeks
Female	:	10 weeks
Duration of test	:	
No. Of generation	:	2
studies		
Doses	:	0, 500, 2,000, or 7,000 ppm
Control group	:	yes
NOAEL parental	:	•
NOAEL F1 offspring	:	
Method	:	other: US and OECD Test guideline
Year	:	1997
GLP		Ves
Remark		In this study, weanling F0 rats (30/sex/group) inhaled cyclohexane vapor at
	-	0, 500, 2,000, or 7,000 ppm 5 day/week and 6 h/day. Exposure duration was 10 weeks before mating until sacrifice of the P1 generation and 11 weeks before mating until sacrifice of the F1 generation. Gravid females were not exposed from day 21 of gestation until day 4 of lactation. From day 5 of lactation until weaning the neonates were potentially exposed by maternal milk; no other exposure was administered. At post partum day 25, thirty F1 animals/sex/dose were chosen to produce the next generation, treatment was continued 11 weeks before mating and during gestation. Fertility parameters were calculated. From 500 ppm, there was an increased incidence of diminished response to a stimulus during exposure,

5. Toxicity	ld 110-82-7 Date
	this finding being significant at 2,000 ppm and higher. At 7,000 ppm, majo effects were observed on body weight, body weight gain and food efficiency. A decrease in mean body weight was seen with F1 male rats, P1 and F1 females during pre-mating, P1 females throughout gestation, and F1 females during lactation. A decrease in mean body weight gain was observed with F1 male rats and P1 and F1 females during pre-mating; however no reductions were seen for P1 females during gestation, suggesting that the reduction in mean gestation body weight was probably due to pre-existing body weight deficits established during the pre-mating period. The same findings were also seen with the F1 generation. A decrease in mean food efficiency of P1 and F1 females during lactation and a decrease in food consumption of P1 females during lactation were also observed. Effects on reproduction were limited to a decrease in mear pup weight for both the F1 and F2 generations at the high dose which was significant between post partum day 7 and 25 during which time pups were fed only maternal milk indicating the effect is due to cyclohexane via lactation. There was a slight increase in the incidence of pro-static inflammation at 7,000 ppm in P1 and F1 adults, but this was considered incidental due to the lack of severity and the reported common occurrence in rats. There was a slight but significant decrease in the mean percentage of animals born alive in the F1 litters dosed with 7,000 ppm, but given that the value was still in the range of historical controls and that this effect was not dose-related, this was not considered biologically significant.
Result	: The NOAEL for adult reproductive toxicity was 2,000 ppm based on decreases in pup body weight observed at 7,000 ppm. The systemic NOAEL for this study was 500 ppm based on sedative effects observed at 2,000 ppm and higher.
Test substance Reliability Flag 18.07.2008	 CAS No. 110-82-7; cyclohexane (1) valid without restriction Critical study for SIDS endpoint
5.8.2 DEVELOPMENT	AL TOXICITY/TERATOGENICITY
Туре	: Developmental toxicity

туре	
Species	: rat
Sex	: female
Number of animals	: 8/group
Strain	: other: Crl:CD BR
Route of admin.	: inhalation
Exposure period	: 9 days
Frequency of treatm.	
Duration of test	: 14 days
Doses	: 0, 3000, 6,000, or 9,000 ppm
Control group	: yes
Method	other: US and OECD Test guideline
Year	: 1997
GLP	: yes
Remark	As a pilot study, four groups of eight pregnant CDBR rats were exposed whole-body to concentrations of 0, 3,000, 6,000, or 9,000 ppm cyclohexane from gestational day 7 to 16. Dams were sacrificed on day 22 and examined for gross pathologies; implantations and resorptions were counted and their relative positions recorded; fetuses were weighed and examined externally for alterations.
Result	: Maternal effects were limited to a reduction in overall maternal bodyweight gain, overall food consumption and diminished response of animals to a

5. Toxicity	ld 110-82-7 Date 30.06.2008
	sound stimulus during exposure to 6,000 ppm and higher. No effects were observed in the pups. The NOAEL was 3,000 ppm for the dams and 9,000 ppm for the pups.
Remark	: This pilot study served as a range-finding study used to design a more complete study which was carried out during the 90 day inhalation study previously described (Haskell Laboratory, 1997b). Four groups of CD BR rats were exposed whole body to cyclohexane at concentrations of 0, 500, 2,000 or 7,000 ppm from gestational day 7 to 16. Animals were sacrificed on day 22 and examined. Findings were limited to the dams and included a diminished response of the animals to a sound stimulus while in the chamber during exposure and at 2,000 ppm or higher and reductions in overall body weight gain and food consumption throughout the treatment period. A slight but significant decrease in implantation number with the number of corpora lutea unchanged was seen when compared with controls. This finding was consistent with slight pre-implantation losses and can be considered as not treatment-related since there was no treatment during the pre-implantation period. The NOAEL was 500 ppm for maternal toxicity and 7,000 ppm for developmental toxicity considering the lack of toxic effects noted.
Test substance Reliability Flag 18.07.2008	 CAS No. 110-82-7; cyclohexane (1) valid without restriction Critical study for SIDS endpoint
5.8.3 TOXICITY TO RE	EPRODUCTION, OTHER STUDIES

5.10 EXPOSURE EXPERIENCE

5.11 ADDITIONAL REMARKS

6. Analyt. Meth. for Detection and Identification	ld 110-82-7
	Date 30.06.2008

6.1 ANALYTICAL METHODS

6.2 DETECTION AND IDENTIFICATION

7. Eff. Against Target Org. and Intended Uses		ld 110-82-7 Date	
7.1	FUNCTION		
7.2	EFFECTS ON ORGANISMS TO BE CONTROLLED		
7.3	ORGANISMS TO BE PROTECTED		
7.4	USER		
7.5	RESISTANCE		

8.	Meas.	Nec.	to	Prot.	Man,	Animals,	Environment
----	-------	------	----	-------	------	----------	-------------

- 8.1 METHODS HANDLING AND STORING
- 8.2 FIRE GUIDANCE
- 8.3 EMERGENCY MEASURES
- 8.4 POSSIB. OF RENDERING SUBST. HARMLESS
- 8.5 WASTE MANAGEMENT
- 8.6 SIDE-EFFECTS DETECTION
- 8.7 SUBSTANCE REGISTERED AS DANGEROUS FOR GROUND WATER
- 8.8 REACTIVITY TOWARDS CONTAINER MATERIAL

9. Refere	Id 110-82-7 Date 30.06.2008
(1)	American Petroleum Institute (1982). Mutagenicity evaluation of certified cyclohexane in the rat bone marrow cytogenetics assay. API Medical Research Publication Number 29-32357, Final Report. Litton Bionetics Inc.
(2)	American Petroleum Institute (1986). Mutagenicity evaluation of certified cyclohexane. API Final Report. Project No. PS-4-LBI (503-0), Litton Bionetics Inc.
(3)	Cash G and Nabholz V (1999). ECOSAR Classes for Microsoft Windows, ECOWIN v0.99e. U.S. Environmental Protection Agency, OPPT - Risk Assessment Division. Washington, DC, USA.
(4)	Chao, J., Lin, C.T. and Chung, T.H. (1983). Vapor pressure of coal chemicals. J. Phys. Chem. Ref. Data. 12, 1033-1063.
(5)	Chemicals Inspection and Testing Institute (CITI) (1992). Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. CITI (ed.). Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade and Industry, Japan. Japan Chemical Industry Ecology-Toxicology and Information Center.
(6)	Daubert T and Danner R (1989). Physical and thermodynamic properties of pure chemicals: Data compilation. Design Institute for Physical Property Data, American Institute of Chemical Engineers. Hemisphere Publishing Corp., New York, NY, USA
(7)	Deichmann, W.B. and Le Blanc, T.J. (1943). Determination of the approximate lethal dose with about six animals. J Ind Health Toxicol. 25, 415-417.
(8)	EU Risk Assessment: Cyclohexane (2004)
(9)	ExxonMobil Biomedical Sciences, Inc. (1995). Ready Biodegradability: OECD 301F Manometric Respirometry Test. ExxonMobil Biomedical Sciences Inc. Project No. 103394A. Final Report.
(10)	ExxonMobil Biomedical Sciences, Inc. (1998). Algal inhibition test. ExxonMobil Biomedical Sciences, Inc., Project No. 114267, Final Report
(11)	ExxonMobil Biomedical Sciences, Inc. (2001). Fish acute toxicity test. ExxonMobil Biomedical Sciences, Inc., Project No. 161858, Final Report, February 2001
(12)	Geiger, D.L., Brooke, L.T., Call, D.J. (1987). Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas), Vol. 5, Centre for Lake Superior Studies, University of Wisconsin Superior, WI, 332 p.
(13)	Gould E (1959). Mechanism and Structure in Organic Chemistry. Holt, Reinhart and Winston, New York, NY, USA.
(14)	Hansch, C., Leo, A., and Hoekman, D. (1995). Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. American Chemical Society. Washington, DC, USA
(15)	Harris J (1982). Rate of Aqueous Photolysis. In: Handbook of Chemical Property Estimation Methods. Chapter 8. Edited by WJ Lyman, WF Reehl and DH Rosenblatt. McGraw-Hill Book Company, New York, NY, USA.
(16)	Harris J (1982). Rate of Hydrolysis. In: Handbook of Chemical Property Estimation Methods. Chapter 7. Edited by WJ Lyman, WF Reehl and DH Rosenblatt. McGraw-Hill Book Company, New York, NY, USA.
(17)	Haskell Laboratory (1995). Two week inhalation range-finding study with cyclohexane in rats. Laboratory Report No. 40-95.

9. Referen	Id 110-82-7 Date 30.06.2008
(18)	Haskell Laboratory (1996a). 90-Day inhalation toxicity study with cyclohexane in rats. Laboratory Report No. 298-96.
(19)	Haskell Laboratory (1996b). 90-Day inhalation toxicity study with cyclohexane in mice. Laboratory Report No. 17-96.
(20)	Haskell Laboratory (1996c). 90-Day inhalation neurotoxicity study with cyclohexane in rats. Laboratory Report No. 752-95.
(21)	Haskell Laboratory (1997a). Pilot inhalation developmental toxicity of cyclohexane in rats. Laboratory Report No. 18-96.
(22)	Haskell Laboratory (1997b). Inhalation developmental toxicity study of cyclohexane in rats. Laboratory Report No. 881-96.
(23)	Haskell Laboratory (1997c). Reproductive and fertility effects with cyclohexane. Inhalation multigeneration reproductive study in rats. Laboratory Report No. 409-96.
(24)	Jacobs, G. and Martens, M. (1987). Evaluation of the test method for skin irritation as prescribed by OECD and EC. J Toxicol-Cut Ocular Toxicol. 6, 215-225.
(25)	Kimura, E.T., Ebert, D.M., and Dodge, P.W. (1971). Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol. 19, 699-704.
(26)	Kubinski, H., Gutzke, G.E., and Kubinski, Z.O. (1981). DNA cell-binding assay for suspected carcinogens and mutagens. Mut Res. 89, 95-136.
(27)	Lide D (ed.) (2003). CRC Handbook of Chemistry and Physics. 84th Edition. CRC Press, New York, NY, USA.
(28)	Mackay D, DiGuardo A, Paterson S and Cowan C (2003). EQC Model ver. 2.02, available from the Environmental Centre, Trent University, Canada.
(29) (30)	Malley, L.A., Bamberger, J.R., Stadler, J.C., Elliott, G.S., Hansen, J.F., Chiu, T., Grabowski, J.S. and Pavkov, K.L. (2000). Subchronic toxicity of cyclohexane in rats and mice by inhalation exposure. Drug Chem Tox. 23, 513-537. McAuliffe, C. (1966). Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin and aromatic hydrocarbons. J. Phys. Chem. 76. 1267-1275.
(31)	Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B., and Zeiger, E. (1986). Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen. 8, 1-119.
(32)	Phillips Petroleum Company (1982a). Acute oral toxicity study in rats. Cyclohexane. Final Report, Project No. 652-127.
(33)	Phillips Petroleum Company (1982b). Acute inhalation toxicity test cyclohexane. Final Report, Project No. 652-1148.
(34)	Phillips Petroleum Company (1982c). Acute dermal toxicity study in rabbits. Cyclohexane. Final Report, Project No. 652-122.
(35)	Phillips Petroleum Company (1982d). Primary skin irritation study in rabbits. Cyclohexane. Final Report, Project No. 652-118.
(36)	Phillips Petroleum Company (1982e). Washed primary eye irritation study in rabbits. Cyclohexane. Final Report, Project No. 652-117.
(37)	Phillips Petroleum Company (1982f). Unwashed primary eye irritation study in rabbits. Cyclohexane. Final Report, Project No. 652-116.

9. Referen	ces		110-82-7 30.06.2008
(38)	Phillips Petroleum Company (1982g). Mouse lymphon Cyclohexane. Final Report, Project No. 652-120.	na forward mutati	on assay.
(39)	Phillips Petroleum Company (1982h). In vitro sister ch hamster ovary cells. Cyclohexane. Final Report, Proje		e in chinese
(40)	Perocco, P., Bolognesi, S. and Aberghini, W. (1983). T solvents and halogenated compounds of human lymph 16, 69-75.		
(41)	MHLW (Ministry of Health, Labour and Welfare), Japar Environmental Chemicals, 9, 255-259.	n (2002) Toxicity	Testing Reports of
(42)	Morrow, J., Gritz, R. And Kirton, M. (1975). Effects of S Young Coho Salmon. Copeia. No. 2: 326-331	Some Componer	nts of Crude Oil on
(43)	Riddick, J.A., Bunger, W.B. and Sakano, T.K. (1986). Interscience, New York	Organic solvents	. Wiley
(44)	TNO, Division of Technology for Safety, Netherlands C Research (1986). Aquatic toxicity of compounds that m 1972, Annex II), Doc. # R 86/326a. TNO, The Netherla	ay be carried by	
(45)	Treon, J.F., Crutchfield, W.E. Jr. and Kitzmiller, K.V. (1 animals to cyclohexane, methylcyclohexane and certain inhalation. J of Indust Hyg Toxicol. 25, 323-347.		
(46)	U.S. Environmental Protection Agency (U.S. EPA) (200 Program Interface Suite, v3.20. U.S. EPA, Washington		, Estimation
(47)	Verschueren, K. (1983). Handbook of Environmental D Edition. Van Nostrand Rienhold, New York	ata on Organic C	Chemicals, Second
(48)	Zepp R and Cline D (1977). Rates of direct photolysis i Sci Technol 11, 359-366.	n the aqueous e	nvironment. Environ

10.1 END POINT SUMMARY

10.2 HAZARD SUMMARY

10.3 RISK ASSESSMENT