Bayer CropScience

Ms. Lisa Jackson, Administrator U.S. Environmental Protection Agency P.O. Box 1473 Merrifield, Virginia 22116

Attention: Chemical Right to Know Program

Dear Administrator,

Bayer CropScience LP (BCS) is submitting the final test plan and robust summaries on 1H-1,2,4-triazole (CAS# 288-88-0). The test plan is being submitted electronically as a pdf file. The robust summaries are in the IUCLID format and are being submitted as an IUCLID export file as well as a pdf file. BCS believes that with this submission, all endpoints required under the HPV Challenge Program have been fulfilled.

If you have any questions regarding this submission, please contact Dr. Ann Blacker by phone (919-549-2973) or e-mail (ann.blacker@bayercropscience.com).

Sincerely,

John M. Wey Head, HSE Expertise Center Bayer CropScience mike.wey@bayercropscience.com

^VSubmitted via Electronic Submission: -oppt.ncic@epa.gov -chem.rtk@epa.gov -sheridan.diane@epamail.epa.gov -townsend.mark@epamail.epa.gov

John M Wey Head HSE Expertise Center Bayer CropScience Institute Site P O. Box 1005 Institute WV 25112 Tel 304 767 6680 Fax 304 767 6294 US EPA HPV CHALLENGE PROGRAM 1H-1,2,4-TRIAZOLE (TA) CAS NUMBER 288-88-0

COVER PAGE

US EPA HPV Challenge Program

Test Plan Submission

1H-1,2,4-Triazole CAS No. 2888-88-0

July 2009

RECEIVED OPPT ODIC 2009 JUL 13 AM 7: 11

CONTENTS

1	IDE	DENTITY			
	1.1	Identification of the Substance	5		
	1.2	Physico-Chemical properties	5		
2	GEN	NERAL INFORMATION ON EXPOSURE	5		
	2.1	Environmental Fate 6 2.1.1 Photodegradation 6 2.1.2 Stability in Water 6 2.1.3 Transport between Environmental Compartments 6 2.1.4 Biodegradation 7 2.1.5 Bioaccumulation 7	5 5 5 7		
3	HUI	MAN HEALTH HAZARDS	7		
	3.1	Effects on Human Health	7 3)) [1		
4	HAZ	ZARDS TO THE ENVIRONMENT	15		
	4.1	Aquatic Effects	5		
5	5 RECOMMENDATIONS FOR THE TEST PLAN				
6	REFERENCES				

Tables

Table 1	Summary of physico-chemical	properties	6
---------	-----------------------------	------------	---

US EPA HPV Challenge Program

Test Plan Submission

1H-1,2,4-Triazole

CAS No. 288-88-0

1 IDENTITY

1.1 Identification of the Substance

CAS Number:	288-88-0
IUPAC Name:	1H-1,2,4-triazole
Molecular Formula:	C2H3N3
Structural Formula:	N

C2H3N3 N V Ν н

Molecular Weight: Synonyms: 69 1H-1,2,4-Triazole s-Triazole TA 1,2,4-Triazole 4H-1,2,4-Triazole S-Triazole TA

1.2 Physico-Chemical properties

Property	Value	Reference
Physical state	solid	
Melting point	120.4 °C	Ciba-Geigy, 1983
Boiling point	260 °C	Lide, 2007-2008
Relative density	No data	
Vapour pressure	0.0022 hPa at 20 °C	Bayer, 2001a
Water solubility	700 g/l at 20 °C	Bayer, 2001b
Partition coefficient n- octanol/water (log value)	0.71 at 25 °C	RCC, 2005
Henry's law constant	2 x 10E-05 at 20 °C (calculated)	Bayer, 2001b

Table 1Summary of physico-chemical properties

2 GENERAL INFORMATION ON EXPOSURE

2.1 Environmental Fate

2.1.1 Photodegradation

The hydroxyl radical reaction was calculated using AOPWIN® ver. 1.92. The overall reaction halflife in air is estimated to be 107 days for 1H-1,2,4-triazole (TA) (USEPA, 2008). A study was conducted to determine the sunlight photoreactivity of TA in distilled water and in humic acid solutions, in order to estimate its photoreactivity in actual environmental situations (Miller, 1983). TA does not undergo appreciable direct photolysis in sunlight nor does humic acid have a major effect on increasing the rate of loss by indirect photochemical reactions.

2.1.2 Stability in Water

A study was conducted to determine hydrolysis rate constants and half-lives for TA in aqueous buffered solutions of pH 5, 7, and 9 at 25 °C (Biospherics, 1983). The test method was not specified. Throughout the study, the parent molecule accounted for 89.6 to 97.9% of all spotted radioactivity. At all three tested pH values 5, 7, and 9, the test material was found to be stable for 30 days at 25°C. Therefore, the half-life was concluded to be in excess of 30 days.

2.1.3 Transport between Environmental Compartments

The EQC Level III Fugacity model (EPISuite, v.3.20) was used to evaluate the fate, transport and distribution of TA between environmental matrices (USEPA, 2008). Level III fugacity modelling, using loading rates of 1000 kg/h each for air, soil and water, shows the following percent distribution TA is released simultaneously to all three compartments: Air <1%, Water = 38.9%, Soil = 61% and Sediment <1%.

2.1.4 Biodegradation

In an OECD Guideline 302B "Inherent biodegradability: Modified Zahn-Wellens Test", TA exhibited minimal degradation (1%) after 28 days, indicating that it is not readily biodegradable (Institute, 1990).

The degradation kinetics of TA were investigated in three different soils under aerobic conditions. [3,5-14C] TA was aerobically incubated in three soils (Laacher Hof AXXa, sandy loam; BBA 2.2, loamy sand; Laacher Hof A III, silt loam) at 20°C in the dark at a moisture content of approximately 40% of the water holding capacity (NOTOX, 2000). TA was applied at a concentration of about 0.06 mg/kg dry soil. This was equivalent to an application rate of triazole-releasing fungicides of 750 g a.i./ha, reaching the soil for 50%, incorporation in 5 cm of soil and assuming a soil bulk density of 1500 kg/m3, a maximum metabolite formation of 50% and a molar mass ratio of TA to parent of 0.25. The DT50 values assuming non-linear first order kinetics in the three soils investigated were: 6.32 days for Laacher Hof AXXa sandy loam soil, 9.91 days for BBA 2.2 loamy sand soil (only first phase was used) and 12.27 days for Laacher Hof A III silt loam soil.

2.1.5 Bioaccumulation

The estimated BCF of TA (EPISuite, v.3.20), is = 3.16, suggesting this compound does not bioaccumulate (USEPA, 2008).

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Acute Toxicity

Acute oral and dermal toxicity studies are available for TA.

Studies in Animals

Dermal

Groups of at least five Wistar rats/sex/group were exposed to TA by the dermal route for 24 hours under occlusive cover (Bayer, 1976; RCC, 2003). Doses were 1000, 2000, 2500, 3500, 4000, and 5000 mg/kg bw. The protocol followed was EPA OPP 81-2 and EPA FIFRA, Subdivision F, 81-2 (equivalent to 92/69/EEC B.3). The animals exhibited reduction in general well-being, sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. The symptoms appeared within an hour of administration and were observed for a maximum of up to 13 days after administration. Gross pathology examination of the animals revealed no major changes. The LD50s were = 4200 mg/kg bw (males) and = 3129 mg/kg bw (females).

Groups of two male New Zealand White rabbits were exposed to TA by the dermal route for 24 hours under occlusive cover (Rohm and Haas, 1992; RCC, 2003). Doses were 200, 2000 and 5000 mg/kg bw. The protocol followed was EPA OPP 81-2 and EPA FIFRA, Subdivision F, 81-2 (equivalent to 92/69/EEC B.3). In the 5000 and 2000 mg/kg groups, both rabbits in each dose group died by day 4 of the study. Clinical signs observed in the 2000 and/or 5000 mg/kg bw groups included abdominal breathing, ataxia, clear nasal discharge, gasping, iritis, moribundity, salivation, scant droppings, soft feces, tremors, and yellow nasal discharge. In the 200 mg/kg bw group, no deaths occurred and no clinical signs were observed. There was no effect on body weight. Decedents in the 2000 and 5000 mg/kg bw group exhibited numerous gross findings related to the

test substance; there were no findings in survivors at 200 mg/kg bw. No erythema to well-defined erythema and no edema to very slight edema were observed during the study. The LD50 was > 200 - 2000 mg/kg bw.

Oral

Groups of at least 15 Wistar rats/sex/group were administered TA by oral gavage at doses of 100, 250, 500, 1000, 1250, 1500, 1750, 1850, 2000, and 2500 mg/kg bw (Bayer, 1976; RCC, 2003). The test substance was emulsified in distilled water and Cremophor EL. The study was conducted in accordance with EPA OPP 81-1 and EPA FIFRA, Subdivision F, §81-1 (equivalent to 92/69 B.I). Clinical signs included reduction in general well-being, sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. The symptoms appeared within an hour of administration and were observed for a maximum of up to 13 days after administration. Gross pathology examination of the animals revealed no major changes. The LD50s were = 1650 mg/kg bw (males) and = 1648 mg/kg bw (females).

TA was dispersed in 0.5% methylcellulose and administered by gavage to two groups of three male rats at 500 or 5000 mg/kg bw (Rohm and Haas, 1992; RCC, 2003). The study was conducted in accordance with EPA OPP 81-1 and EPA FIFRA, Subdivision F, §81-1 (equivalent to 92/69 B.I). All rats died in the 5000 mg/kg bw group within ten minutes after dosing; no clinical signs were observed prior to death. No deaths occurred and no clinical signs were observed in the 500 mg/kg bw group. There were no effects on body weight. Necropsy of decedents (5000 mg/kg) revealed reddened duodenum and reddened glandular portion of stomach. There were no visible lesions in animals that survived to study termination. The LD50 is between 500 and 5000 mg/kg in male rats.

Conclusion

The acute dermal LD50s in Wistar rats were = 4200 mg/kg bw (males) and = 3129 mg/kg bw (females). The animals exhibited reduction in general well-being, sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. Gross pathology examination of the animals revealed no major changes. The acute dermal LD50 in male New Zealand White rabbits was > 200 - 2000 mg/kg bw. Clinical signs included abdominal breathing, ataxia, clear nasal discharge, gasping, iritis, moribundity, salivation, scant droppings, soft feces, tremors, and yellow nasal discharge. There were no gross necropsy findings in survivors. No erythema to well-defined erythema and no edema to very slight edema were observed during the study.

The acute oral (gavage) LD50s in Wistar rats were = 1650 mg/kg bw (males) and = 1648 mg/kg bw (females). Clinical signs included reduction in general well-being, sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. Gross pathology examination of the animals revealed no major changes.

3.1.2 Irritation

Eye irritation data are available for TA.

Skin Irritation

Studies in Animals

No data available.

Eye Irritation

Studies in Animals

TA was instilled into the conjunctival sac of the left eye of each of two rabbits at a dose of 50 mg/animal (Bayer, 1976; RCC, 2003). The study was conducted in accordance with EPA OPP 81-4 and EPA FIFRA, Subdivision F, 81-4 (equivalent to 92/69/EEC B.5). One hour after application, intense reddening and a very intense swelling of the conjunctivae of the treated eyes had developed. Intense reddening and moderate swelling of the conjunctivae could still be observed 24 hours after application. In one animal there was still a slight redness and swelling of the conjunctivae of both animals were normal 7 days after application. During the first and second days after application, a slight, dispersed, diffuse opacity of the cornea was observed. The iris was slightly reddened and swollen. TA is considered highly irritating to the rabbit eye.

0.1 g of TA was applied into the conjunctival sac of the left eye of two male rabbits (Rohm and Haas, 1992; RCC, 2003). The study was conducted in accordance with EPA OPP 81-4 and EPA FIFRA, Subdivision F, 81-4 (equivalent to 92/69/EEC B.5). Corneal, iridal and conjunctival effects were observed at 4 hours. Corneal and conjunctival effects were no longer evident on day 7; iridal effects were no longer evident on day 14. TA was considered moderately irritating to the rabbit eye.

Conclusion

Skin irritation data were not located for TA. TA is considered a moderate to severe eye irritant.

3.1.3 Sensitisation

Skin sensitization data are available for TA.

Studies in Animals

Skin

In an OECD Guide-line 406 "Skin Sensitization" study, groups of Dunkin Hartley Crl (HA) guinea pigs were exposed to TA as follows: Induction 10% TA by intracutaneous injection; Induction 75 % TA under semiocclusive application and Challenge 75% TA under semiocclusive application (Tox Labs, 1998; RCC, 2003). TA caused slight skin irritation with and without Freund's complete adjuvant after intradermal injection. No skin reaction was recorded after dermal induction. At 48 and 72 hours after the start of epidermal challenge no signs of allergic skin reactions were noted in test or control animals. TA was not a skin sensitizer in this study.

Conclusion

TA is not considered a skin sensitizer.

3.1.4 Repeated Dose Toxicity

Repeated dose dietary studies in rats and mice were located for TA.

Studies in Animals

Oral

Groups of 15 Wistar rats sex received TA for three months in the following concentrations in their food: 0 (control), 100, 500, and 2500 ppm (males/females: 7.79/10.27 mg/kg bw, 37.85/54.20 mg/kg bw and 212.30/266.69 mg/kg bw, respectively)mg/kg bw/day) (Bayer, 1979; RCC, 2003).

The study was conducted in accordance with EPA OPP 82-1, EPA-FIFRA, Subdivision F. § 82-1. OECD 409, and 87/302/EEC (B.27). Appearance, behaviour, growth, food consumption and mortality were unaffected up to 33 mg/kg bw. Food consumption was reduced at 167 mg/kg bw during the first two weeks of treatment. Body weight gains were reduced at 167 mg/kg bw. Temporary slight convulsions were observed in two males and two females at 167 mg/kg bw. The blood was not affected up to 33 mg/kg bw. There were statistically significant changes in red blood cell parameters at 167 mg/kg bw (reduced hemoglobin, hematocrit, MCV and MCH) that indicated a slight microcytic hypochromic anemia. Clinical chemistry, gross pathology and histopathology did not detect any liver damage in the male and female rats receiving up to 33 mg/kg bw. Slight to moderate fat accumulation in liver parenchyma cells was found in three of 15 males examined at 167 mg/kg bw. There were deviations in absolute organ weights (thymus, heart, lung, spleen, testes) at 167 mg/kg bw, particularly in males, that were attributed to lower terminal body weights. There were no findings at necropsies or histopathological examinations with the exception of the liver findings mentioned. The No Observed Adverse Effect Level (NOAEL) was = 37.9 mg/kg bw (males) and 54.2 mg/kg bw (females) based on retarded body weight development, temporary slight CNS effects, lower red blood cell parameters (males, only) and hepatocellular fat accumulation (males only).

Twenty Wistar rats/sex/group received TA in the diet for approximately 14 weeks, at nominal dietary concentrations of 0, 250, 500, 3,000 or 1,000/4,000 ppm (1,000 ppm for four weeks and 4,000 ppm thereafter; equivalent to 16, 33, 183, and 210 mg/kg bw for males, and 19, 41, 234, and 275 mg/kg bw for females) (Bayer, 2004a; RCC, 2003). The study followed OECD Guideline No. 424 Neurotoxicity Study in Rodents. Body weight was unaffected in both sexes at doses up to and including 33/41 mg/kg bw; and decreased in the higher dose groups. The FOB revealed effects in both sexes including ungroomed appearance, muscle fasciculations, tremor, gait in-coordination, decreased activity in the open field, and decreased rearing in the two highest dose groups. Slightly increased hepatic enzyme activities were observed in both sexes at the two highest dose levels; the limited magnitude of the alterations as well as the lack of corresponding morphological evidence indicate an adaptive response by the liver. There were no treatment related effects on serum chemistry, food consumption/utilization, ophthalmology, hematology, and urinalysis. There was a slight decrease in both sexes in absolute brain weight in the two highest dose groups; the relative brain weights were not affected. Other apparent variations in organ weights relative to controls were best characterized as a secondary response to alterations in body weight gain. Gross pathological evidence of toxicity was not observed. A non-statistical tendency was noted toward a greater number of total and recent-cycle corpora lutea in the two highest dose groups. The increase was likely due to an increase in the number of present cycle corpora lutea or those undergoing morphological regression, the extent of which, in conjunction with normal ovarian weights, is interpreted to be within normal physiological limits. Microscopic findings were observed in both sexes in the brain and nerve tissue in the two highest dose groups. In the brain, the lesions were limited to the more anterior dorsal cerebellum (vermis) and were coded overall as a degeneration/necrosis, which tended to be slightly more prominent in males. Findings were characterized by extensive loss of Purkinje cells, variable white matter degeneration and gliosis. Subtle atrophy of the molecular layer or loss of granule cells was occasionally present. Individual nerve fiber degeneration, which is a common background change in the peripheral nerves (sciatic, tibial, sural), was increased in incidence and severity over control levels in the two highest dose groups. Additionally, minimal to mild neuronal chromatolysis and vacuolation of the lumbar dorsal root ganglia was observed at the highest dose, but no similar change was seen in the cervical dorsal root ganglia. Based on the lack of adverse compound-related effects at 500 ppm in males and females, the NOAEL was = 33 mg/kg bw/day (males) and 41 mg/kg bw (females).

Twenty CD-1 mice/sex/group (with an additional 15 mice/sex assigned to control, 3,000, and 6,000 ppm groups received TA for approximately 13 weeks at nominal dietary concentrations of 0, 500,

1,000, 3,000 or 6,000 ppm (80, 161, 487, and 988 for males and 105, 215, 663, and 1346 for females) (Bayer, 2004b; RCC, 2003). The additional 30 animals per group in the control, 3,000 and 6,000 ppm levels were sacrificed following 28 days on study. The study was conducted in general accordance with OPPTS 870.3100, OECD 409, 87/302/EEC (B.27). Alterations in body weight were measured in males at 487 mg/kg bw and in both sexes 988/1346 mg/kg bw male and females. Clinical observations included increased incidence of tremors, yellow staining (likely urine stains), and rough coat for 988 mg/kg bw males. Analysis of the activity of selected hepatic enzymes indicated slight increases in both sexes in the two highest dose groups following 28 days and the high dose group following 90 days. However, the magnitude of the alterations as well as the lack of corresponding morphological evidence indicates an adaptive response by the liver. There were no effects on food consumption/utilization, mortality, hematology, or clinical chemistry. Gross lesions attributable were observed in 988 mg/kg bw males and included an increased incidence of rough coat and wet/stained ventrum. Organ weight changes included decreased testicular weights in 988 mg/kg bw males and decreased brain weights (absolute only) in 487 mg/kg bw males and 988/1346 mg/kg bw males and females. Histopathological findings included an increased incidence of lesions noted in the brain in high dose males and females, and in the testes of the two highest dose group males. The finding in the testes in the highest dose group was accompanied by a secondary, indirect effect in the epididymis. The lesion identified in the brain consisted of a loss of Purkinje cells in the cerebellum, accompanied by occasional degeneration of the Purkinje cell axons located in the white matter of the cerebellar folia (minimal to slight severity). Although the lack of neurons is considered to be a late-stage lesion, no earlier stages preceding this effect were observed.

In the testes increased incidences of apoptotic-like bodies, tubular atrophy, and abnormalities in spermatid development (spermiogenesis and spermiation) were seen at >= 487 mg/kg bw. The finding in the epididymis, observed in high dose males only, was considered to be a reflection of the testicular effects which were most pronounced at the highest dose level and consisted of exfoliated germ cells and debris within the lumen of the epididymal duct (the epididymal parenchyma was unchanged compared to controls). Additionally, one of the mice showed an overall decrease in the number of spermatozoa in the epididymal ducts at the highest dose. The NOAEL was = 161 mg/kg bw/day (males) (1000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) (3000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) (3000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) (3000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) (3000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) (3000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) (3000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) (3000 ppm) based on decreased body weights, decreased absolute brain weight and micropathological finding in the brain.

Conclusion

In a 90 day dietary study with male and female Wistar rats, the NOAEL was = 37.9 mg/kg bw (males) and 54.2 mg/kg bw (females) based on retarded body weight development, temporary slight CNS effects, lower red blood cell parameters (males, only) and hepatocellular fat accumulation (males only). In a 90 day dietary study with male and female Wistar rats, based on the lack of adverse compound-related effects at 500 ppm in males and females, the NOAEL was = 33 mg/kg bw/day (males) and 41 mg/kg bw (females). In a 90 day dietary study in mice the NOAEL was = 161 mg/kg bw/day (males) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) based on decreased body weights, decreased absolute brain weight and micropathological finding in the testes and = 663 mg/kg bw/day (females) based on decreased body weights, decreased absolute brain.

3.1.5 Mutagenicity

In vitro bacterial and mammalian genotoxicity studies have been conducted with TA.

In vivo Studies

No data available.

In vitro Studies

TA was negative for mutagenicity in two bacterial reverse mutation assays with *Salmonella typhimurium* TA98, TA100, TA1535, and TA1537, in the presence and absence of metabolic activation (RCC, 2003; Rohm and Haas, 1981). The study protocol followed OECD TG 471.

TA was negative for the induction of structural and numerical chromosome aberrations in CHO cells in the presence and absence of metabolic activation in an OECD TG 473 study (Toxicology & Environmental Research and Consulting, 2007a).

TA was not mutagenic in the CHO/HGPRT gene mutation assay in the presence and absence of metabolic activation in an OECD TG 476 study (Toxicology & Environmental Research and Consulting, 2007b).

Conclusion

TA is not mutagenic in *in vitro* or mammalian genotoxicity studies.

3.1.6 Toxicity for Reproduction

Reproductive toxicity studies are available for TA.

Effects on Fertility

In an OECD Guide-line 416 "Two-generation Reproduction Toxicity Study", TA was administered continuously via the feed to Wistar Hannover rats (30/sex/dietary level) at nominal dietary concentrations of 0, 250, 500, and 3000 ppm (Bayer, 2005; RCC, 2003; TDMG, 2006). To maintain a more constant dosage (on basis of mg/kg bw/day) throughout the entirety of the study the dietary levels were reduced for females during lactation. In addition to fulfilling standard guideline requirements, this two-generation reproduction study contained the following additional investigations: (1) in-depth examinations of brain tissue from the P- and F1-generation adults, as well as the F1- and F2-generation 21-day-old pups, which included qualitative microscopic evaluations and gross and microscopic morphometric analyses; (2) the inclusion of additional microscopic investigative work on the ovarian tissue from the P-generation rats as it related to the identification of infertility in the 3000 ppm group during the conduct of this study; (3) a more indepth study of the corpora lutea, based on findings from the P-generation ovarian data; and (4) determination of the onset of preputial separation and vaginal patency for F2 pups. There were no effects on food consumption or clinical signs in either generation at any dietary level. Compoundrelated declines in body weight and body weight gain were evident in the P-generation adult males and females of the 3000-ppm dose group. A slight decrease in body weight and weight gain that was attributed to treatment was also evident in F1-generation adult males in both the 250 and 500ppm dose groups. A marked reduction in fertility was evident at the 3000 ppm dietary level of the P-generation, with only two females delivering viable offspring (one each) and only three implantation sites (compared to 265 for controls). All high-dose (3000 ppm) P-generation females and pups were sacrificed before weaning, since there were too few pups to provide a second generation. There were no test substance-related effects on the mating, gestation, or fertility indices, number of days to insemination, or gestation length at any dietary level in either F1- or F2generation except for decreased fertility in 3000 ppm P-generation females. No effects were observed on the oestrous cycle length or the number of cycles at any dose in either generation, including the 3000 ppm group of the P-generation. Other than the reduced fertility evident in the 3000 ppm dose group, no other effects were observed on any litter parameter in any dose group in either generation. There was also no effect on any sperm parameter that was attributed to the test substance. At termination, treatment-related findings were evident only in the P-generation at the 3000 ppm dietary level and included: 1) decreased absolute brain weights in males and females; 2) increased incidence of cerebellar degeneration/necrosis in both genders; 3) statistically increased number of total Corpora lutea measured by quantitative ovarian analysis and increased ovary weights; and 4) increased incidence of uterine horn dilatation. No similar findings were evident in P-generation animals at lower dietary levels or in the offspring from either generation. Based on these results, the reproductive (fertility) NOAEL is 34.4 mg/kg bw/day (500 ppm) and the LOAEL is 231.7 mg/kg bw/day (3000 ppm), based on findings in P-generation animals. No definitive parental NOAEL was established, based on a slight decrease in body weight in the F1-generation males at 16.0 mg/kg bw/day (250 ppm). However, for females, the parental NOAEL was demonstrated to be 36.2 mg/kg bw/day (500 ppm).

Developmental Toxicity

In an OECD Guide-line 414 "Teratogenicity" study, TA was administered by oral gavage to groups of 25 successfully mated and presumably pregnant Bor: WISW (SPF Cpb) rats from day 6 to 15 of pregnancy at daily dose levels of 0, 10, 30, or 100 mg/kg bw/day (Bayer, 1989a; RCC, 2003). There were no mortalities. No treatment-related clinical signs were observed. Mean body weight gain was significantly reduced at 100 mg/kg bw. Fetal weight was reduced at 100 mg/kg bw/day. The incidence of runts was higher at 100 mg/kg bw/day. There were no treatment related malformations. The maternal NOAEL was = 30 mg/kg bw/day based on retarded weight gain at 100 mg/kg bw and the developmental NOAEL was= 30 mg/kg bw/day based on an increased incidence of runts and lower fetal weights at 100 mg/kg bw/day.

OECD Guide-line 414 "Teratogenicity" study, TA was administered by gavage to groups of twentyfive time-mated New Zealand White rabbits [Hra: NZW:SPF] in 0.5% aqueous CMC at dose levels of 0, 5, 15, 30 and 45 mg/kg bw/day on days 6 though 28 (Argus, 2004). Five does in the 45 mg/kg bw/day dosage group were sacrificed due to their moribund condition. All other does survived to day 29 of gestation (GD 29). Clinical observations were noted in the 45 mg/kg bw/day group and included decreased motor activity, clear perinasal substance, ptosis, excess salivation and hyperphoea. Most of these observations occurred in the does that were sacrificed moribund. Additional observations included scant feces, ungroomed coat, head tilt, lacrimation, flared nostrils and cold to touch. Body weight gains were reduced and gravid uterine weights were significantly reduced in the 45 mg/kg bw/day group. Fetal weights were significantly reduced in the 45 mg/kg bw/day group. There were a few alterations of the urogenital system (low set, small, absent kidneys and/or an absent ureter) which occurred in several fetuses of the maternally toxic 45 mg/kg/day dosage group. There were no other dosage-dependent and/or significant differences in the litter or fetal incidences of any gross external, soft tissues or skeletal alterations. Skeletal ossification averages per foetus per litter did not differ among the groups. The maternal NOAEL was = 30mg/kg bw bw/day based on mortality, reduction in body weight gain, and clinical symptoms at 45 mg/kg bw/day and the developmental NOAEL was = 30 mg/kg bw/day based on lower fetal weights and a slight increase in urogenital alterations for several fetuses at 45 mg/kg bw/day.

In an OECD Guide-line 414 "Teratogenicity" study, TA administered by oral gavage to groups of 25 successfully mated and presumably pregnant Bor: WISW (SPF Cpb) rats from day 6 to 15 of pregnancy at daily dose levels of 0, 100 or 200 mg/kg bw/day in the vehicle (0.5% aqueous Cremophor-EL) (Bayer, 1989b; RCC, 2003). There were no mortalities. No treatment-related clinical signs were observed. Food consumption was not affected. Mean body weight gain was slightly reduced at 100 mg/kg bw/day and markedly lower at 200 mg/kg bw/day. Fetal weight and placental weight were reduced at 100 and 200 mg/kg bw/day. The incidence of runts was higher at 100 mg/kg bw/day. The incidence of fetuses with minor skeletal deviations was higher at 100 mg/kg bw/day. The number of surviving fetuses per dam was reduced at 200 mg/kg bw/day. The maternal NOAEL was < 100 mg/kg bw/day based on retarded weight gain at 100 mg/kg bw and the

developmental NOAEL was < 100 mg/kg bw/day based on an increased incidence of runts, lower fetal and placental weights, and a higher incidence of minor skeletal deviations at 100 mg/kg bw.

In an OECD 416 "Two Generation Reproductive Toxicity" study, TA was administered continuously via the feed to Wistar Hannover rats (30/sex/dietary level) at nominal dietary concentrations of 0, 250, 500, and 3000 ppm (Bayer, 2005; RCC, 2003; TDMG, 2006). The exposure period was from 10 weeks premating P-generation through 61 days old for F2-pups. The histopathological lesions in the cerebellum were identical to that observed in the sub-chronic and neurotoxicity study in rats and are characterized by variable loss of Purkinje cells, white matter degeneration and gliosis. The white matter tract degeneration presented as nerve fiber (axonal) swelling or fragmentation often with digestion chambers containing debris and macrophage. No similar changes were noted in the 500 ppm animals. The statistical differences associated with certain parameters of F2-pups (pup weights, preputial separation, brain- and spleen weights) are considered to be attributed to an incidental difference in the time of delivery for both the 250- and 500-ppm dietary groups, relative to concurrent controls, rather than exposure to the test substance. The control pups were heavier than the treated group pups and above the range of historic controls because more control dams delivered on gestation day 23 and fewer on day 21 in comparison to the treatment groups. These results, including an extensive investigation of brain morphology, provided no evidence of developmental neurotoxicity at a dietary level of 500-ppm. The developmental NOAEL was > 500 ppm (equivalent to > 35.8 mg/kg bw/day) based on lack of treatment-related effects in F1 and F2 pups at 250 and 500 ppm.

Conclusion

In a two-generation study, TA produced evidence of toxicity in P-generation animals at a dietary level of 3,000 ppm (188.6 and 217.9 mg/kg/day for males and females, respectively), including reduced fertility and neuropathology. By comparison, the only evidence of toxicity at lower dietary levels of 250 and 500 ppm was slightly reduced body weight in F1-generation males. Based on these results, the reproductive (fertility) NOAEL is 34.4 mg/kg bw/day (500 ppm) and the LOAEL is 231.7 mg/kg bw/day (3000 ppm), based on findings in P-generation animals. No definitive parental NOAEL was established, based on a slight decrease in body weight in the F1-generation males at 16.0 mg/kg bw/day (250 ppm). However, for females, the parental NOAEL was demonstrated to be 36.2 mg/kg bw/day (500 ppm).

In an OECD Guide-line 414 "Teratogenicity" study with pregnant Bor: WISW (SPF Cpb) rats the maternal NOAEL was = 30 mg/kg bw/day based on retarded weight gain at 100 mg/kg bw and the developmental NOAEL was = 30 mg/kg bw/day based on an increased incidence of runts and lower fetal weights at 100 mg/kg bw/day.

In an OECD Guide-line 414 "Teratogenicity" study with pregnant New Zealand White rabbits [Hra: NZW:SPF], the maternal NOAEL was = 30 mg/kg bw bw/day based on mortality, reduction in body weight gain, and clinical symptoms at 45 mg/kg bw/day and the developmental NOAEL was = 30 mg/kg bw/day based on lower fetal weights and a slight increase in urogenital alterations for several fetuses at 45 mg/kg bw/day.

In an OECD Guide-line 414 "Teratogenicity" study with pregnant Bor: WISW (SPF Cpb) rats, the maternal NOAEL was < 100 mg/kg bw/day based on retarded weight gain at 100 mg/kg bw and the developmental NOAEL was < 100 mg/kg bw/day based on an increased incidence of runts, lower fetal and placental weights, and a higher incidence of minor skeletal deviations at 100 mg/kg bw.

In an OECD 416 "Two Generation Reproductive Toxicity" study with Wistar Hannover rats, the developmental NOAEL was > 500 ppm (equivalent to > 35.8 mg/kg bw/day) based on lack of treatment-related effects in F1 and F2 pups at 250 and 500 ppm.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

Acute aquatic toxicity test are available for TA.

Acute Toxicity Test Results

Fish

A static study with *Oncorhynchus mykiss*, conducted following OECD Guide-line 203 "Fish, Acute Toxicity Test" resulted in a 96 hour LC_{50} of >100 mg/L (measured) (Wildlife, 2002). A static study with *Salmo gairdneri*, conducted following OECD Guide-line 203 "Fish, Acute Toxicity Test" resulted in an 96 hour LC_{50} of >760 mg/L (nominal) (Ciba-Geigy, 1981).

Aquatic Invertebrates

The 48 hour EC_{50} of TA was > 100 mg/L (nominal) for the water flea (*Daphnia magna*) under static conditions following OECD TG 202 (Huntingdon, 1995).

Algae

An OECD TG 201 study was conducted for *Selenastrum capricornutum* exposed to TA (Wildlife, 2001). The 72-hour ErC_{50} and EbC_{50} values were 12 and 13 mg/L, respectively (measured). The 72-hour NOAEC was 3.1 mg a.i./L, based on cell density, biomass and growth rate: In a study conducted comparable to OECD TG 201, *Scenedesmus subspicatus* was exposed to TA (Ciba-Geigy, 1982). The 5-day EC₅₀ was= 6.3 mg/L (nominal).

Chronic Toxicity Test Results

In an OECD 215 "Fish, Juvenile Growth test", based on nominal concentrations and growth rate calculations, the 28-day NOErC for 1,2,4-triazole in rainbow trout is 100 mg/L, the highest concentration tested (Bayer, 2002).

5 RECOMMENDATIONS FOR THE TEST PLAN

All physical/chemical, environmental fate and toxicity and human health endpoints have been met for TA.

6 **REFERENCES**

Argus Research (2004) Oral (Stomach Tube) Developmental Toxicity Study of 1,2,4-Triazole in Rabbits. Laboratory Project ID VCB00002.

Bayer AG Institute of Toxicology (1976) 1,2,4-Triazole Occupational Toxicology Study. Report No. 5926.

Bayer AG Institute of Toxicology (1979) 1,2,4-triazole: Subchronic Toxicological Study with Rats - Feeding study over three months. Report No. 8667.

Bayer AG (1989a) 1,2,4-triazole: Investigations into embryotoxic effects on rats after oral administration. Report No. 17401.

Bayer AG (1989b) 1,2,4-triazole: Investigations into embryotoxic effects on rats after oral administration. Report No. 17402.

Bayer AG (2001a) Vapor Pressure Curve of 1,2,4-Triazole. Bayer Report 200011.

Bayer AG (2001b) Water solubility and Henry Law Constant of 1,2,4-Triazole. Bayer Report 200007.

Bayer AG (2002) 1,2,4-Triazole - Juvenile Growth Test, Fish (Oncorhynchus mykiss). Report No. DOM 21060.

Bayer CropScience LP (2004a) A Combined Subchronic Toxicity / Neurotoxicity Screening Study in the Wistar Rat with 1,2,4-Triazole. Report No. 201024.

Bayer CropScience LP (2004b) A Subchronic Toxicity Testing Study in the CD-I Mouse with 1,2,4-Triazole. Report Number 201052.

Bayer CropScience LP (2005) A Two-Generation Reproductive Toxicity Study in the Wistar Rat with 1,2,4-Triazole. Report Number 201220.

Biospherics Incorporated (1983) Determination of the Hydrolysis Rate Constants of 1,2,4-Triazole. Project No. 83-E-074.

CIBA-GEIGY Ltd. (1981) Acute Toxicity of CGA 98032 to Rainbow Trout. Project No. 82 14 18.

CIBA-GEIGY Ltd. (1982) Report on the Test for Acute Toxicity of CGA 98032 to Algae. Project No. 82 14 17.

CIBA-GEIGY Ltd. Agricultural Division (1983) Physico-chemical Properties of 1,2,4-Triazole (CGA 71019). Chemodynamics AG 2.24.

Huntingdon Life Sciences Ltd. (1995) 1,2,4-Triazole: Acute Toxicity to Daphnia magna. Report No. ENVIR/95/52.

Institute Fuer Umweltanayse Und Bewertungen (1990) Report Number 168 A/90 Z.

Lide, D.R. Editor (2007-2008) CRC Handbook of Chemistry and Physics, 88th Edition, CRC Press, pg 3-488.

Miller, G.C. (1983) Sunlight Photolysis of 1,2,4-H-Triazole in Distilled Water and Humic Acid Solutions.

NOTOX (2000) Degradation of 1,2,4-Triazole in Three Soils Under Aerobic Conditions. Project 278336.

RCC Ltd. (2003) 1,2,4-Triazole Summary Documentation According to Directive 91/414/EEC, Annex IIA, Point 5, Tier II, Section 3: Toxicological and Metabolism Studies; Updated by Bayer CropScience AG in 2006 and 2008

RCC Ltd. (2005) Determination of ohe Partition Coefficient (N-Octanol / Water) Of Cga71019 Including Effect of pH. Study No. A31612

Rohm and Haas (1981) 1,2,4-Triazole: Microbial Mutagen Test. Report No. 81R-252.

Rohm and Haas Company (1992) 1,2,4-triazole Acute Toxicity Range-Finding Study. Report No. 81R-057A.

Toxicology & Environmental Research and Consulting (2007a) Evaluation Of 1,2,4-Triazole In An In Vitro Chromosomal Aberration Assay Utilizing Rat Lymphocytes. Laboratory Project Study ID 061123.

Toxicology & Environmental Research and Consulting (2007b) Evaluation of 1,2,4-triazole in the Chinese Hamster Ovary Cell/Hypoxanthine-Guanine-Phosphoribosyl Transferase (CHO/HGPRT) forward mutation assay. Laboratory Project Study ID 061122.

Tox Labs (1998) Evaluation of Skin Sensitisation by 1,2,4-Triazole with the Guinea-Pig Maximisation Test. Report No. Toxlabs/1998/7050 SEN.

Triazole Derivative Metabolite Group (TDMG) (2006) Revision to MRID No. 46467304. Revision Date: January 25, 2006.

USEPA (2008) Estimations Programs Interface (EPI) Suite®, Epiwin version 3.20.

Wildlife International, Ltd. (2001) 1,2,4-Triazole: A 96-Hour Toxicity Test With The Freshwater Alga (Selenastrum capricornutum). Number 528A-101.

Wildlife International, Ltd. (2002) 1,2,4-Triazole: A 96-Hour Static Acute Toxicity Test With The Rainbow Trout (Oncorhynchus Mykiss). Project Number: 512a-121.

201-16804B

RECEIVED OPPT CBIC

2009 JUL 13 AM 7: 11

IUCLID

Data Set

Existing Chemical CAS No. EINECS Name EC No. TSCA Name Molecular Formula	 ID: 288-88-0 288-88-0 1,2,4-triazole 206-022-9 1H-1,2,4-Triazole C2H3N3
Producer related part Company Creation date	: Epona Associates, LLC : 26.06.2008
Substance related part Company Creation date	: Epona Associates, LLC : 26.06.2008
Status Memo	: : Bayer
Printing date Revision date	: 16.10.2008
Date of last update	: 16.10.2008
Number of pages	: 69
Chapter (profile) Reliability (profile) Flags (profile)	 Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 10 Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

1. General Inform	ation	ld 288-88-0 Date 16.10.2008
1.0.1 APPLICANT AND	COMPANY INFORMATION	
1.0.2 LOCATION OF P	RODUCTION SITE, IMPORTER OR FORI	MULATOR
1.0.3 IDENTITY OF RE	CIPIENTS	
1.0.4 DETAILS ON CA	FEGORY/TEMPLATE	
1.1.0 SUBSTANCE IDE	NTIFICATION	
IUPAC Name Smiles Code Molecular formula Molecular weight Petrol class	: 1H-1,2,4-triazole : n1ncnc1 : C2 H3 N3 : 69 :	
14.10.2008		
Purity type Substance type Physical status Purity Colour Odour 13.10.2008	: organic : solid :	
1.1.2 SPECTRA		
1.2 SYNONYMS AND	TRADENAMES	
1,2,4-Triazole		
13.10.2008		
1H-1,2,4-Triazole		
13.10.2008		
4H-1,2,4-Triazole		
14.10.2008		
S-Triazole		

Г

1. General Information	ld 288-88-0 Date 16.10.2008
s-Triazole TA	
14.10.2008	
ТА	
13.10.2008	
1.3 IMPURITIES	
1.4 ADDITIVES	
1.5 TOTAL QUANTITY	
1.6.1 LABELLING	
1.6.2 CLASSIFICATION	
1.6.3 PACKAGING	
1.7 USE PATTERN	
1.7.1 DETAILED USE PATTERN	
1.7.2 METHODS OF MANUFACTURE	
1.8 REGULATORY MEASURES	
1.8.1 OCCUPATIONAL EXPOSURE LIMIT VALUES	
1.8.2 ACCEPTABLE RESIDUES LEVELS	
1.8.3 WATER POLLUTION	
1.8.4 MAJOR ACCIDENT HAZARDS	

1. General Information	ld	288-88-0
	Date	16.10.2008
1.8.5 AIR POLLUTION		
1.8.6 LISTINGS E.G. CHEMICAL INVENTORIES		
1.9.1 DEGRADATION/TRANSFORMATION PRODUCTS		
1.9.2 COMPONENTS		
1.10 SOURCE OF EXPOSURE		
1.11 ADDITIONAL REMARKS		
1.12 LAST LITERATURE SEARCH		

1.13 REVIEWS

2.1 MELTING POINT

Value : = 120.4 °C Sublimation : Year : 1983 GLP : no Test substance : as prescribed by 1.1 - 1.4 Method : Mething point conducted by differential scanning calorimetry (guideline number not provided): DSC thermogram was included in the report. DSC hermogram : Sample weight: 0.421 mg Range: 5 mcal/sec Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tr: 393.526 K Calibration: Indium Result : 333.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Calibration: : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Calibration: : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Calibration: : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Calibration: : Method : other Year : 2007 Calibration: : Method : Other Year : 2007 Calibration			
Sublimation : Method : Year : GLP : Test substance : Bethod : Method : Sample weight: 0.421 mg Range: 5 mcal/sec Bample weight: 0.421 mg Range: 5 deg/min Chart speed: 20 mm/min Temp range: 360-400 K Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 360-400 K Heat of tusion: 53.033 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 393.526 K = 120.4 deg C Result : 293.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : OT.07.2008 : Value : : : Year : : : Year : : : : : : : Year : : : : : : : Sublimation :	Value	: = 120.4 °C	
Year : 1983 GLP : no Test substance : as prescribed by 1.1 - 1.4 Method : Melting point conducted by differential scanning calorimetry (guideline number not provided); DSC thermogram was included in the report. DSC hermogram: Sample weight: 0.421 mg Range: 5 mcal/sec Heating rate: 5 deg/min Chart speed: 20 mn/min Temp range: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 393.526 K Calibration: Indium 939.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) 24.07.2008 (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) 24.07.2008 (21) 25.207 26.207 27.208 (21) 27.208 28.207 29.207 29.208 29.207 29.207 29.207 29.207 29.208 29.207 29.207 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 29.207 29.208 20.207 29.208 20.207 29.208 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.208 20.207 20.207 20.208 20.207 20.207	Sublimation	:	
GLP : no Test substance : as prescribed by 1.1 - 1.4 Method : Mething point conducted by differential scanning calorimetry (guideline number not provided): DSC thermogram was included in the report. DSC hermogram: Sample weight: 0.421 mg Range: 5 mcal/sec	Method	:	
Test substance : as prescribed by 1.1 - 1.4 Method : Mething point conducted by differential scanning calorimetry (guideline number not provided); DSC thermogram was included in the report. DSC hermogram: Sample weight: 0.421 mg Range 5 mcal/sec Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 380-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 393.526 K Calibration: Indium 239.526 K Calibration: Indium 239.526 K (20) valid with restrictions Provides basic data. Flag : Ortical study for SIDS endpoint 07.07.2008 : Ortical study for SIDS endpoint Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 44.07.2008 : (21) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Poecomposition : other Year : 2007 GLP : no Test substance	Year	: 1983	
Method : Meting point conducted by differential scanning calorimetry (guideline number not provided); DSC hermogram was included in the report. DSC hermogram: Sample weight: 0.421 mg Range: 5 mcal/sec Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tr: 393.526 K Calibration: Indium Calibr	GLP		
Number not provided); DSC thermogram was included in the report. DSC hermogram: Sample weight: 0.421 mg Range: 5 mcal/sec Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 380-400 K Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 380-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 393.526 K Calibration: Indium Result : 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Provides data Provides data Prear : 2007 GLP <td>Test substance</td> <td>: as prescribed by 1.1 - 1.4</td> <td></td>	Test substance	: as prescribed by 1.1 - 1.4	
Sample weight: 0.421 mg Range: 5 mcal/sec Heating rate: 5 deg/min Chart speet: 20 mm/min Temp rage: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tr:: 393.526 K Calibration: Indium Result : 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) 2. BOILING POINT	Method		
Range: 5 mcal/sec Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 333.526 K Calibration: Indium Result : 33.526 K = 120.4 deg C Calibration: Indium Result : 33.526 K = 120.4 deg C Calibration: Indium Provides basic data. Frag : Critical study for SIDS endpoint 07.07.2008 : Critical study for SIDS endpoint 07.07.2008 : Critical study for SIDS endpoint 07.07.2008 : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) 24.07.2008 : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Calibration : mo Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 -			
Heating rate: 5 deg/min Chart speed: 20 mm/min Temp range: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 393.526 K Calibration: Indium Result : 393.526 K Calibration: Indium Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) 24.07.2008 (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : (2) valid with restrictions			
Chart Speed: 20 m ^T /m ^{III} Temp range: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tr:: 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) C Reliability : (2) valid with restrictions Handbook data (21) C C Sublimation : Method : other Year : 2007 C = C = C = C = C = C = C = C = C = C =			
Temp range: 360-400 K Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 393.526 K Calibration: Indium Result : 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) 24.07.2008 : e 260 °C at Decomposition : Wathod : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : (21) Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : (2) valid with restrict			
Heat of fusion: 53.053 cal/g (15.3 kJ/mole; 3664.4 cal/mole) Tm: 393.526 K Calibration: Indium Result : 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) Value : = 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data Flag : Critical study for SIDS endpoint (21)			
Tm: 393.526 K Calibration: Indium Result : 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data 24.07.2008 : = 260 °C at Decomposition : : Walue : = = 260 °C at Decomposition : : Walue : : = 260 °C at Decomposition : : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data Flag : Critical study for SIDS endpoint 24.07.2008 : Critical study for SIDS endpoint			
Result : 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data.			
Result : 393.526 K = 120.4 deg C Reliability : (2) valid with restrictions Provides basic data. Flag : 07.07.2008 : Critical study for SIDS endpoint 07.07.2008 : : Value : = 120.5 °C Sublimation : : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 44.07.2008 : : Value : = 260 °C at Decomposition : : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : : : Yalue : : : Decomposition : : Reliability : : : <td></td> <td></td> <td></td>			
Reliability : (2) valid with restrictions Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data 24.07.2008 : (2) valid with restrictions Handbook data Value : = 260 °C at Decomposition : Wethod : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Value : = 260 °C at Decomposition : : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data Flag : Critical study for SIDS endpoint 24.07.2008 : Critical study for SIDS endpoint	Rocult		
Provides basic data. Flag : Critical study for SIDS endpoint 07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21) 24.07.2008 (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : Critical study for SIDS endpoint 24.07.2008 : Critical study for SIDS endpoint			
Flag : Critical study for SIDS endpoint (18) Value : = 120.5 °C (18) Sublimation : other Method : other 2007 Year : 2007 2007 GLP : no as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions (21) 24.07.2008 : = 260 °C at (21) Value : = 200 °C at (21) Value : = 200 °C at (21) Pecomposition : other (20) 'Year : 2007 (21) GLP : no : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data 'Flag : Critical study for SIDS endpoint (21)	Reliability		
07.07.2008 (18) Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 24.07.2008 (21) Value Decomposition : = 260 °C at Decomposition : : = 260 °C at : = 2007 : : Wethod : other : = 260 °C at : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :	Flag		
Value : = 120.5 °C Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 24.07.2008 : (21) 24.07.2008 : = 260 °C at Decomposition : . Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : Critical study for SIDS endpoint 24.07.2008 : Critical study for SIDS endpoint			(18)
Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 24.07.2008 : (21) Value : = 260 °C at Decomposition : . Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : : = 260 °C at Decomposition : . . Method : other Year : : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : : (2) valid with restrictions Handbook data . . . Flag : : Critical study for SIDS endpoint : :	01.01.2000		(10)
Sublimation : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 24.07.2008 : (21) 22 BOILING POINT (21) Value : = 260 °C at Decomposition : : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : : Flag : : Critical study for SIDS endpoint 24.07.2008 : : :	Value	: = 120.5 °C	
Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 24.07.2008 (21) 22 BOILING POINT Value : = 260 °C at Decomposition : Wethod : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : (21)	Sublimation		
Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 24.07.2008 (21) 22 BOILING POINT Value : = 260 °C at Decomposition : Wethod : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : (21)		: other	
Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions 24.07.2008 (21) Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data (21)	Year		
Reliability : (2) valid with restrictions Handbook data (21) 24.07.2008 (21) 22 BOILING POINT (21) Value : = 260 °C at (21) Decomposition : . Method : other . Year : 2007 . GLP : no . Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data Flag : Critical study for SIDS endpoint 24.07.2008 .	GLP	: no	
Handbook data (21) 24.07.2008 := 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data : Flag : Critical study for SIDS endpoint 24.07.2008 : (21)	Test substance	: as prescribed by 1.1 - 1.4	
24.07.2008 (21) 22. BOILING POINT Value : = 260 °C at Decomposition : Method : other Year : 2007 GLP : no Test substance : as prescribed by 1.1 - 1.4 Reliability : (2) valid with restrictions Handbook data Flag : Critical study for SIDS endpoint 24.07.2008 (21)	Reliability	: (2) valid with restrictions	
2 BOILING POINT Value : Decomposition : Method : Year : 2007 GLP : Test substance : as prescribed by 1.1 - 1.4 Reliability : Flag : 24.07.2008 :		Handbook data	
Value:= 260 °C atDecomposition:Method:otherYear:2007GLP:Test substance:as prescribed by 1.1 - 1.4Reliability:Flag:24.07.2008:	24.07.2008		(21)
Decomposition:Method:otherYear:2007GLP:noTest substance:as prescribed by 1.1 - 1.4Reliability:(2) valid with restrictions Handbook dataFlag:Critical study for SIDS endpoint24.07.2008:Critical study for SIDS endpoint	.2 BOILING POINT		
Decomposition:Method:otherYear:2007GLP:noTest substance:as prescribed by 1.1 - 1.4Reliability:(2) valid with restrictions Handbook dataFlag:Critical study for SIDS endpoint24.07.2008:Critical study for SIDS endpoint			
Method: otherYear: 2007GLP: noTest substance: as prescribed by 1.1 - 1.4Reliability: (2) valid with restrictions Handbook dataFlag: Critical study for SIDS endpoint24.07.2008(21)		: = 260 °C at	
Year: 2007GLP: noTest substance: as prescribed by 1.1 - 1.4Reliability: (2) valid with restrictions Handbook dataFlag: Critical study for SIDS endpoint24.07.2008(21)		:	
GLP Test substance: noCeliability: as prescribed by 1.1 - 1.4Reliability: (2) valid with restrictions Handbook dataFlag 24.07.2008: Critical study for SIDS endpoint			
Test substance: as prescribed by 1.1 - 1.4Reliability: (2) valid with restrictions Handbook dataFlag: Critical study for SIDS endpoint24.07.2008(21)			
Reliability:(2) valid with restrictions Handbook dataFlag:Critical study for SIDS endpoint24.07.2008(21)			
Flag : Critical study for SIDS endpoint 24.07.2008 (21)	lest substance	: as prescribed by 1.1 - 1.4	
Flag : Critical study for SIDS endpoint 24.07.2008 (21)	Reliability		
24.07.2008 (21)	- 1		
		: Critical study for SIDS endpoint	(0.1)
2.3 DENSITY	24.07.2008		(21)

2. Physico-Chemical Data

ld 288-88-0 Date 16.10.2008

2.3.1 GRANULOMETRY

2.4 VAPOUR PRESSURE

Value Decomposition Method Year GLP Test substance	 = .0022 hPa at 20 °C OECD Guide-line 104 "Vapour Pressure Curve" 2001 no as prescribed by 1.1 - 1.4
Method	: The vapor pressure curve of 1,2,4-triazole was determined by means of a vapor pressure balance according to OECD TG 104. Duplicate runs were conducted. The vapor pressure was measured between -6 deg C and 46 deg C in the first series and between -14 deg C and 38 deg C in the second series. By interpolating the experimental values to 10, 20 and 25 deg C and by extrapolating them to 50 and 100 deg C, and by taking for each of these temperatures the mean from the two series of measurements, vapor pressures were obtained.
Result	 The following values for vapor pressure were obtained. The following values for vapor pressure were obtained by intrapolating and extrapolating the experimental values: 10 deg C: 8.1 x 10E-04 hPa 20 deg C: 2.2 x 10E-03 hPa 25 deg C: 3.4 x 10E-03 hPa 50 deg C: 2.9 x 10E-02 hPa 100 deg C: 8.6 x 10E-01 hPa
Reliability	: (2) valid with restrictions Guideline study, but not GLP.
Flag 01.07.2008	: Critical study for SIDS endpoint (4)

2.5 PARTITION COEFFICIENT

Partition coefficient	: octanol-water
Log pow pH value	: =71 at 25 °C : = 7
Method	 . = 7 : OECD Guide-line 107 "Partition Coefficient (n-octanol/water), Flask-
Method	shaking Method"
Year	: 2005
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: Also conducted in accordance with: EEC Directive 92/69, Part A, Methods for the determination of physico- chemical properties, A.8 "Partition coefficient", EEC Publication No. L383A, December 1992.
	EPA Product Properties Test Guidelines, OPPTS 830.7550, Partition Coefficient (n-Octanol/Water), EPA712-C-96-038, August 1996.
	A shaking flask method was utilized.
	Test System: The test system consisted of an aqueous phase (pH 5, pH 7 and pH 9, respectively) and an n-octanol phase in the same vessel. A defined amount of test item dissolved in one of the solvents was added. To achieve partition of the test item between both phases the mixture was
	6 / 60

2. Physico-Chemi	cal Data	ld 288-88-0 Date 16.10.2008
	25°C and was controlled seve thermometer. The phases of	1 hours. The equilibration temperature was ral times during this period using a calibrated the solvent system were saturated with each ong n-octanol and the respective buffer each other solvent.
	each in duplicate. The volume as proposed in the guideline. containing the accurately mea containing a defined amount of vessels were placed on a lab-	each pH value, three tests were carried out, ratio of both solvents was 1:1, 2:1 and 1:2 For each pH value, six test vessels sured amounts of the two solvents, one f the test item, were prepared. The test shaker and shaken for about 21 hours at phases was then obtained by centrifugation 0 g).
	analyze the concentrations of buffer phases were analyzed acetonitrile and water (50:50; diluted to 5 ml with acetonitrile	artition coefficient, it was necessary to the test item in both phases. The aqueous after 1:10 dilution with a mixture of v/v). 1 ml of each of the n-octanol phase was prior to analysis. The quantification of cording to a standardized HPLC method.
Result	 During the main study three termin duplicate, with volume ration equilibration at 25°C, the condition determined by HPLC. The log 	sts were carried out for each pH value, each s of both solvents of 1:1, 2:1 and 1:2. After entration of the test item in each phase was Pow was calculated for each of the vessels oH 5, -0.71 at pH 7 and -0.68 at pH 9.
Test substance Reliability	 Purity 99.9% (1) valid without restriction Guideline study; GLP 	
Flag 13.10.2008	: Critical study for SIDS endpoin	nt (25)

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in	:	Water
Value	:	= 700 g/l at 20 °C
pH value	:	·
concentration	:	at °C
Temperature effects	:	
Examine different pol.	:	
pKa .	:	at 25 °C
Description	:	
Stable	:	
Deg. product	:	
Method	:	other: Guideline OPPTS 830.7840
Year	:	2001
GLP	:	no
Test substance	:	as prescribed by 1.1 - 1.4
Method		Water solubilities of 1,2,4-triazole at 20 deg C reported in the literature as mole fractions were converted into the unit gram per liter of solution by substituting approximately the partial molar volumes by the ratios of weight fractions and densities neglecting deviations from additivity.
		Guideline OPPTS 830.7840 Water solubility: n=0.268 mole fraction at 20 deg C
		n=0.283 mole fraction at 25 deg C (calculated by intrapolation) n=0.298 mole fraction at 30 deg C Reference: Vlasov, O.N. and S.I. Sukhova. (1988) Russian Journal of
		7 / 69

2. Physico-Che	mical Data	ld 288-88-0 Date 16.10.2008
	Physical Chemistry 62: 978-	979
	Guideline OPPTS 830.7300 Density (crystal): Density = 1.39 g/cm3 Reference: Jimenez, P., M. Thermodyamics 21: 759-76	/. Roux, and C. Turrion (1989) Journal Chem.
Result	Crystallogr. Sect. B 39: 388 The resulting values of 700	R. Rubie, and J.H. Yates (1983) Acta 394 g/L and 730 g/L were calculated for the water
Reliability	solubilities of 1,2,4-triazole a : (2) valid with restrictions Guideline study, but not GLI	at 20 and 25 deg C, respectively.
Flag 01.07.2008	: Critical study for SIDS endp	
2.6.2 SURFACE TE	NSION	
2.7 FLASH POINT		
2.7 FLASH POINT		
2.8 AUTO FLAMM	IABILITY	
2.9 FLAMMABILI	ΓY	
2.10 EXPLOSIVE F	PROPERTIES	
2.11 OXIDIZING PF	ROPERTIES	
2.12 DISSOCIATIO	N CONSTANT	
2.13 VISCOSITY		
2.14 ADDITIONAL	REMARKS	
Memo Method	and 25 deg C, respectively, C and 25 deg C of 0.22 Pa	f 700 and 730 g/L for the water solubilities at 20 and considering the vapor pressures at 20 deg and 0.34 Pa (calculated in Bayer Report enry Law Constants were calculated.
	Guideline OPPTS 830.7950 Vapor Pressure: 20 deg C: 2.2 x 10E-03 hPa 25 deg C: 3.4 x 10E-03 hPa	
	Reference: Bayer AG (1989) Vapor pressure curve of 1,2,4-Triazole.

2. Physico-Chemical Data		ld 288-88-0 Date 16.10.2008
Result Reliability	respectively, in combinatio g/L at 20 deg C and 25 deg calculated to be 2 x 10E-05	22 Pa and 0.34 Pa at 20 deg C and 25 deg C, n with high water solubilities of 700 g/L and 730 g C, respectively, the Henry Law Constants were 5 Pa x m3/Mole and 3 x 10E-05 Pa x m3/Mole, s are in a range where volatilization due to e excluded.
01.07.2008	Guideline study, but not Gl	LP. (5)

3. Environmental Fate and Pathways

Date

3.1.1 PHOTODEGRADATION

Туро		air	
Type Light source	÷	all	
Light spectrum	:	nm	
Relative intensity INDIRECT PHOTOLYSIS	:	based on intensity of sunlight	
Sensitizer	:	ОН	
Conc. of sensitizer	:	1500000 molecule/cm ³	
Rate constant	:	= 0 cm ³ /(molecule*sec)	
Degradation	:	= 50 % after 107 day(s)	
Deg. product Method	÷	ather (coloulated)	
Year		other (calculated) 2008	
GLP	-	2000 NO	
Test substance	:	other TS	
Method	:	AOP Program (v1.92):	
		SMILES : n1ncnc1	
		CHEM : 1H-1,2,4-Triazole	
		CAS NUM: 000288-88-0	
		MOL FOR: C2 H3 N3	
Desult	_		
Result	•	AOP Program (v1.92) Results:	
		SUMMARY (AOP v1.92): HYDROXYL RADICALS Hydrogen Abstraction = 0.0000 E-12 cm3/molecule-sec	
		Reaction with N, S and -OH = 0.0000 E-12 cm3/molecule-sec	
		Addition to Triple Bonds = 0.0000 E-12 cm3/molecule-sec	
		Addition to Olefinic Bonds = 0.0000 E-12 cm3/molecule-sec	
		Addition to Aromatic Rings = 0.1000 E-12 cm3/molecule-sec Addition to Fused Rings = 0.0000 E-12 cm3/molecule-sec	
		Addition to rused Kings = 0.0000 E-12 time/molecule-see	
		OVERALL OH Rate Constant = 0.1000 E-12 cm3/molecule-sec HALF-LIFE = 106.960 Days (12-hr day; 1.5E6 OH/cm3)	
Reliability	:	(2) valid with restrictions	
	-	Accepted calculation method	
Flag	:	Critical study for SIDS endpoint	
14.10.2008		(3	33)
Туре		water	
Light source	-	Sun light	
Light spectrum	÷	nm	
Relative intensity	:	based on intensity of sunlight	
Deg. product	:		
Method	:	other (measured)	
Year	:	1983	
GLP Test substance	÷	no as prescribed by 1.1 - 1.4	
Test substance	•	as prescribed by 1.1 - 1.4	
Method	:	The objective of this study was to determine the sunlight photoreactivity of 1,2,4-H-triazole in distilled water and in humic acid solutions, in order to estimate its photoreactivity in actual environmental situations.	of
		Photolysis procedures: 1,2,4-H-Triazole (C14-labeled, 18.9 uCi/mg), was received as a dry film inside a sealed glass container. Three ml of acetonitrile was added to the opened container, and one ml of this solution was added to 20 ml of	
		10 / 69	

3. Environmental F	ate and Pathways	ld 288-88-0 Date
	humic acid approximates several nation of triazole in this solution is approxim dissolved in the original acetonitrile. added to 1 cm x 10 cm Pyrex glass so volatilization was of concern, each o	One ml of each of these solutions was stoppered test tubes. Since f the ground glass stoppered joints was utions were set in the sun on 05-17-83 e. Samples were taken at periodic I stored in a refrigerator until the last
	alcohol:water. Visualization was acc with a medium pressure mercury arc quenching bands (Rf = .6575) we of water and 10 ml of Aguasol were scintillation. Total radioactivity in the	and 20 microliters of a 20 mg/ml cm band on a silica gel G TLC plate ates were developed in 90:10 isopropyl complished by irradiating the plates c lamp for one hour. The resulting uv re scraped into scintillation vials; 1 ml added and the vials counted by liquid irradiated solutions was determined by ed solutions into the scintillation vials
Result	 unlabeled triazole. The spectra was establishing a flat baseline on the sp Photolysis: Distilled water: Within experimenta H-triazole was not observed in distill reduction in the amount of radioactiv compared to direct addition of irradia Some loss of the starting compound evident in several samples, since red silica gel and direct counting of the ir case. Recovery of radioactivity from 	er using 0.145 M aqueous solutions of recorded after automatically bectrometer. al error, sunlight degradation of 1,2,4- ed water. There was no consistent rity from the recovered TLC spots ated solutions to scintillation vials. , presumably by volatilization, was ductions in radioactivity from both the rradiated solutions were similar in each non-irradiated samples when ded 90%. The pH of the initial and final
	2. Humic acid solutions: As in the dis photochemical loss of the starting ma experimental error. The humic acid s bleaching during the irradiation. Cor solution to the spectra of the solution revealed substantial loss of the visib While this presumably generated rea appreciable effect on the triazole. As some of the samples. Recovery of ra exceeded 90% in these solutions als solutions was 7.8 and 7.6, respective	aterial was observed, within solution underwent photochemical mparing spectra taken of the starting n exposed to nearly eight days le and ultraviolet absorbing materials. active intermediates, they had no gain, volatilization was observed in adioactivity from the TLC system so. The pH of the initial and final
	photolysis experiments, since the so	oncentration was used to insure that not be a problem. While this was it would have no effect on the direct lutions were essentially transparent to ess certain for the humic acid solutions,
	Spectra: Extinction coefficients for 1,2,4-H-tria sunlight absorption of 1,2,4-triazole i 11 / 69	

3. Environmental	Fate and Pathways	ld 28 Date	8-88-0
Conclusion	Wavelength 390 380 370 360 350 340 330 325 323 320 317.5 315 312.5 310 307.5 305 302.5 300 297.5 295 : 1. 1,2,4-H-Triazole doe	Extinction Coefficient 0.10 0.10 0.16 0.20 0.25 0.31 0.37 0.38 0.36 0.50 0.54 0.57 0.62 0.67 0.73 0.79 0.87 0.95 1.03 1.12 es not appreciably absorb sunlight.	
Reliability 01.07.2008	sunlight nor does hum loss by indirect photoc : (2) valid with restriction		sing the rate of
3.1.2 STABILITY IN WA	TER		
Type t1/2 pH4 t1/2 pH7 t1/2 pH9 t1/2 pH 5 Deg. product Method Year GLP Test substance	: abiotic : at °C : > 30 day(s) at 25 °C : : other : 1983 : no : as prescribed by 1.1 -	1.4	
Method	half-lives for 1,2,4-H-T 9 at 25 +/- 1 deg C. The test chemical was volume with deionized added to the three buf ppm. Each dosed buff The study monitored t solutions of pH 5, 7 ar regularly (at days 0, 1, deg C with respect to chemical levels preser autoradiography. At e	udy was to determine hydrolysis rate Triazole in aqueous buffered solutions a received in crystalline form and was water. Aliquots of the stock solution fer solutions to achieve a final conce fer solution was split into 2 replicates he degradation of 1,2,4-H-Trlazole in ad 9 at 25°C. The buffer solutions was , 3, 6, 13, and 30) and the loss of 1,2 time was monitored by quantitation of nt using thin layer chromatography (T each sampling interval two samples w uffer incubation. One sample was im 69	s of pH 5, 7, and s diluted to (1 mg/ml) were intration of 10 aqueous ere sampled s,4-triazole at 25 of the test FLC) and vere removed

		Date 16.10.2008
	spotted on thin layer chromatography for radiocarbon counting and pH dete	v plates. The second sample was used ermination.
Result	Data from the TLC analyses was to b constants and half-lives of 1,2,4-H-Tr : The pH range had the following resul For pH 5: pH 5.12-5.42 For pH 7: 7.04-7.22 For pH 9: 8.97-9.07	iazole.
Test substance	Throughout the study parent molecul spotted radioactivity. At all three tests material was found to be stable for 30 and rate constants could not be calcu Triazole. The molecule was not obser periods up to 30 days. Therefore, the : The test chemical [U-Ring-14C]-I,2,4- 18.8 uCi/mg. Purity of the material was	ed pH values 5, 7, and 9, the test D days at 25°C. Half-life calculations ulated for the hydrolysis of 1,2,4-H- rved to hydrolyze at pH 5, 7 or 9 for half-life was in excess of 30 days. ·H-Triazole had a specific activity of
Reliability	 TLC. (2) valid with restrictions Provides basic data to asess the stab 	
12 10 2008	different pH values; not GLP.	-
13.10.2008		(14
3.2.2 FIELD STUDIES	S	NTC
3.2.2 FIELD STUDIES		NTS
3.2.2 FIELD STUDIES	S	NTS
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media Air	S SETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : : % (Fugacity Model Level I)	NTS
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media	S SETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : : % (Fugacity Model Level I) : % (Fugacity Model Level I) : % (Fugacity Model Level I)	NTS
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media Air Water Soil Biota	S SETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : : % (Fugacity Model Level I) : % (Fugacity Model Level II/III)	NTS
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media Air Water Soil	S ETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : : % (Fugacity Model Level I) : % (Fugacity Model Level II/III) : % (Fugacity Model Level II/III)	NTS
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media Air Water Soil Biota Soil	S SETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : : % (Fugacity Model Level I) : % (Fugacity Model Level II/III)	NTS
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media Air Water Soil Biota Soil Method	S ETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : % (Fugacity Model Level I) ; % (Fugacity Model Level II/III) ; % (Fugacity Model Level II/III)	
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media Air Water Soil Biota Soil Biota Soil Method Year	S ETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : % (Fugacity Model Level I) ; % (Fugacity Model Level I) ; % (Fugacity Model Level I) ; % (Fugacity Model Level II/III) ; % % (Fugacity Model Level II/III) ; % (Fugacity Model Level I)	: ====================================
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT B Type Media Air Water Soil Biota Soil Method Year Method	S ETWEEN ENVIRONMENTAL COMPARTMEN : fugacity model level III : % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level II/III) % (Fugacity Model Level II/II) % (Fugacity Model Le	: ====================================

	Date
	(percent) (hr) (kg/hr) Air 0.00504 2.57e+003 1000 Water 38.9 360 1000 Soil 61 720 1000 Sediment 0.0713 3.24e+003 0
	FugacityReactionAdvectionReactionAdvection(atm)(kg/hr)(kg/hr)(percent)(percent)Air3.1e-0130.02360.8760.0007880.0292Water1.05e-0141.3e+00367643.422.5Soil6.05e-0131.02e+0030340Sediment9.59e-0150.2650.02480.008830.000826
	Persistence Time: 579 hr Reaction Time: 748 hr Advection Time: 2.57e+003 hr Percent Reacted: 77.4 Percent Advected: 22.6
	Half-Lives (hr), (based upon Biowin (Ultimate) and Aopwin): Air: 2568 Water: 360 Soil: 720 Sediment: 3240 Biowin estimate: 3.047 (weeks)
Reliability Flag 14.10.2008	Advection Times (hr): Air: 100 Water: 1000 Sediment: 5e+004 : (2) valid with restrictions Accepted calculation method : Critical study for SIDS endpoint (33)
Type Media Air Water Soil Biota Soil Method Year	 other: adsorption and desorption soil - air % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level II/III) % (Fugacity Model Level II/III) % (Fugacity Model Level II/III) other 1988
Method	: Conducted in accordance with Guideline 163-1 under GLP. The adsorptive and desorptive properties of I,2,4-triazole in various soils were measured using radiolabelled triazole in a batch equilibrium experiment. The objective of this study is to estimate the potential for mobility of triazole in soil by studying these properties.
	The adsorption properties of triazole on five soils were studied by mixing the soil and solutions of the test material at four concentrations (0.086, 0.043, 0.0085, and 0.0043 ppm) in aqueous calcium chloride (0.01 M). After allowing 95 hours for the mixtures to reach equilibrium the mixtures were centrifuged and the supernatants decanted. The concentration of triazole in the solutions was determined by radioassay. The soils tested were silty clay, clay loam, silty clay loam, sandy loam, and sand. The ratios of solution to soil were 5:1 for the silty clay, 4:1 for the clay loam and the silty clay loam, 3:1 for the sandy loam and 2:1 for the sand.
	14 / 69

3. Environmental	Fate and Pathways			288-88-0 16.10.2008
Result	 Desorption was determined by allo determination to equilibrate with free hours the mixtures were centrifuge concentration of triazole in the solu Fresh calcium chloride solutions we and the resulting mixtures were sha in the same manner as the previou soils were analyzed by combustion recovery of the radioactivity. The adsorption coefficient, Kd, and the amount of organic carbon, Koc 	esh calcium ed and the s utions was c vere then ad naken for 24 us mixtures. n radioassay d the adsorp	chloride upernata letermine ded to the hours be Samples y in order	solutions. After 46 nts decanted. The ed by radioassay. e remaining soils fore being analyzed s of the remaining to ascertain the stants corrected for
	Soil	Kd	Koc	
	Alpaugh Silty Clay Hollister Clay Loam Lakeland Sand Lawrenceville Silty Clay Loam 0.7 Pachappa Sandy Loam	0.833 0.748 0.234 722 104 0.719	202	
	The average of Koc for these soils basis, one would classify triazole in the high potentia the range for "high mobility").			
Test substance	The Kd's for the desorptions were the adsorptions (an average of 77%% higher for the second), suggesting irreversibly bound to the soils. This as mobile as one would predict bases The 14C-I,2,4-triazole used in this 5 positions and had a specific activity.	% higher for ing that som s would indie sed upon th study was u	the first the of the t cate that a adsorp uniformly	desorption and 704 triazole may be triazole may not be tion results. labelled in the 3 and
Reliability	The radiopurity of the test material : (1) valid without restriction			
	Guideline study			

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Type Inoculum	-	aerobic activated sludge
Concentration	:	100 mg/l related to DOC (Dissolved Organic Carbon) related to
Contact time	:	28 day(s)
Degradation	:	= 1 (±) % after 28 day(s)
Result	:	under test conditions no biodegradation observed
Kinetic of testsubst.	:	1 day(s) = 3 %
		7 day(s) = 1 %
		14 day(s) = 0 %
		21 day(s) = 1 %
		28 day(s) = 1 %
Control substance	:	Aniline
Kinetic	:	7 day(s) = 97 %

3. Environmental Fate and Pathways

ld 288-88-0

Deg. product Method	14 day(s) = 97 %
	•
Method	•
	: OECD Guide-line 302 B "Inherent biodegradability: Modified Zahn-Weller
	Test"
Year	: 1990
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: Also conducted in accordance with DIN 38 412 Teil 25.
	This test was conducted in accordance with the Zahn-Wellens/EMPA test used to determine inherent biodegradability. A mixture containing the test substance, mineral nutrients and a relatively large amount of activated sludge in aqueous medium was agitated and aerated at 20 - 25 deg C in the dark, for 28 days. Blank controls, containing activated sludge and mineral nutrients has toot substance, were run in parallel. The text was
	mineral nutrients but no test substance, were run in parallel. The test wa conducted using the reference compound, aniline.
	The following vessels were identified in the study:
	Inoculum blank: 2 vessels containing inoculum alone (A and B)
	Test suspension: 2 vessels containing the test substance and inoculum (
	and H)
	Procedure control: 2 vessels containing reference compound and inoculu (C and D)
	The biodegradation process was monitored by determination of the
	Dissolved Organic Carbon (DOC) in filtered samples, taken at 0 and 3
	hours, and 1, 7, 14, 21, 27 and 28 days. DOC in the test suspensions an
	procedure controls were monitored in duplicate samples. The ratio of
	eliminated DOC, corrected for the blank, after each time interval, to the
	initial DOC value was expressed as the percentage biodegradation at the
	sampling time. The test was considered valid if the procedural control shows the removal of the reference compound by at least 70% within 14
	days.
Result	Percentage degradation over time:
	Time Aniline
	Net DOC (mg/L)/ % degradation
	0 hr 87/0%
	3 hr 85/2%
	1 d 79/9%
	7 d 3/97% 14 d 3/97%
	21 d 6/93%
	27 d 2/98%
	28 d 2/98%
	Time Test material
	Net DOC (mg/L)/ % degradation 0 hr 104/0%
	3 hr 100/4%
	1 d 101/3%
	7 d 103/1%
	14 d 108/0%
	21 d 103/1%
	27 d 102/2%
T = (=!)	28 d 103/1%
Test substance	: 1,2,4-Triazole
Reliability	: (1) valid without restriction
	Guideline study; GLP
Flag	Critical study for SIDS endpoint

3. Environmenta	I Fate and Pathways	ld 288-88-0 Date
13.10.2008		(20)
Type Inoculum Deg. product Method Year GLP Test substance	 aerobic other: see Methods section 2000 yes as prescribed by 1.1 - 1.4 	
Method	: The study procedures described in this guidelines: European Economic Community (EEC) Annex I, 7.1.1.2.1., EEC publication No Directive 91/414/EEC concerning the p on the market, Annex II, Part A, 7.1.1.,	, Commission Directive 95/36/EC, L172 (1995) amending Council lacing of plant protection products EEC publication No L230 (1991).
	Society of Environmental Toxicology ar for assessing the environmental fate an 1.1 Aerobic degradation, Ed. M. Lynch Dutch Board for the Authorisation of Ag	nd ecotoxicity of pesticides, Part 1, (1995). grochemicals (CTB). G.1.1:
	Gegevens over de aard van de omzetti waarmee deze worden gevormd (1995) U.S. Environmental Protection Agency. Subdivision N. Chemistry: Environment metabolism studies (1982).). Pesticide Assessment Guidelines,
	Biologische Bundesanstalt fiir Land- un fur die amtliche Prufung von Pflanzenso von Pflanzenschutzmitteln im Boden - A Metabolismus - (1986).	chutzmitteln. Teil IV. 4-1 Verbleib
	The objective of this study was to provide of 1,2,4-Triazole in three different soils 14C]1,2,4-Triazole was aerobically incude AXXa, sandy loam; BBA 2.2, loamy sar 20°C ± 2°C in the dark at a moisture convater holding capacity. 1,2,4-Triazole were about 0.06 mg/kg dry soil. This was equal triazole-releasing fungicides of 750 g and assum kg/m3, a maximum metabolite formation 1,2,4-Triazole to parent of 0.25.	under aerobic conditions. [3,5- ubated in three soils (Laacher Hof nd; Laacher Hof A III, silt loam) at ontent of approximately 40% of the vas applied at a concentration of uvalent to an application rate of .i./ha, reaching the soil for 50%, ing a soil bulk density of 1500
Result	 Activity was fractionated into 14CO2, or and unextracted residue. The determin degradation rate was based on its contermine to the determine degradation rate was based on its contermine (a state of the determine). Major end products of [3,5-14C]1,2,4-T [1,2,4]Triazol-1-yl-acetic acid (7% maximextracted residue (< 65% after 120 d [1,2,4]Triazol-1-yl-acetic acid in total two was identified as 1,2,4-Triazole-hydroxy amounts (i.e. < 2.6%). 	nation of the 1,2,4-Triazole ent in the extracted fraction. riazole degradation in soil were mum), 14CO2 (< 33%) and lays of incubation). Apart from o other metabolites, one of which
	1,2,4-Triazole degraded in Laacher Hof loamy sand soil and Laacher Hof A III s of 8 days (best fit). The DT50 values of function applied are summarised below	ilt loam soil with an average half-life the three soils including the kinetic
	Soil Model 17 / 69	DT50 values

3. Environmental	Fate and Pathways	ld 288-88-0 Date 16.10.2008
	BBA 2.2	FOMC(a) 2.34 days FOMC(a) 9.34 days First order 12.27 days 7.98 days multicompartment.
Test substance	 The DT50 values assuming non-linear first order kinetics in the three soils investigated were: 6.32 days for Laacher Hof AXXa sandy loam soil, 9.91 days for BBA 2.2 loamy sand soil (only first phase was used) and 12.27 days for Laacher Hof A III silt loam soil.Major end products of [3,5-14C]1,2,4-Triazole degradation in soil were [1,2,4]Triazol-1-yl-acetic acid. 1,2,4-Triazole, 14C-labelled: Radiochemical Purity > 98% (HPLC); > 98% (TLC) Chemical purity > 99% (GC/FID) Specific activity 9.65 MBq/mg, 260.9 nCi/mg 	
Reliability 13.10.2008	 1,2,4-Triazole, unlabell Purity = 99.9% (1) valid without restrict Guideline study; GLP 	

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

Species Exposure period Concentration BCF Elimination Method Year GLP Test substance	 other at °C = 3.16 other 2008 no as prescribed by 1.1 - 1.4
Method	: BCF Program (v2.17):
Result	 SMILES : n1ncnc1 CHEM : 1H-1,2,4-Triazole MOL FOR: C2 H3 N3 MOL WT : 69.07 BCF Program (v2.17) Results:
	Log Kow (estimated) : -0.76 Log Kow (estimated) : -0.58 Log Kow used by BCF estimates: -0.71 (user entered)
	Equation Used to Make BCF estimate: Log BCF = 0.50
	Correction(s): Value Correction Factors Not Used for Log Kow < 1
Reliability	Estimated Log BCF = 0.500 (BCF = 3.162) : (2) valid with restrictions
	18 / 69

3. Environmenta	I Fate and Pathways	ld 288-88-0 Date 16.10.2008	
14.10.2008	Accepted calculation method		(3
3.8 ADDITIONAL R	EMARKS		

. Ecotoxicity	ld 288-88-0 Date
.1 ACUTE/PROLONG	ED TOXICITY TO FISH
Туре	: static
Species	: Oncorhynchus mykiss (Fish, fresh water)
Exposure period	: 96 hour(s)
Unit	: mg/l
NOEC LC50	: = 100 : > 100
LC50 Limit test	: > 100
Analytical monitoring	· : Ves
Method	: OECD Guide-line 203 "Fish, Acute Toxicity Test"
Year	: 2002
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: Also conducted in accordance with EU DIRECTIVE 67/548/EEC, ANNEX V, GUIDELINE C.1.
	Juvenile fish (mean total length 40 mm, mean wet weight 0.51 g) were exposed under static conditions to the nominal test concentrations 6.3, 13, 25, 50, 100 mg 1,2,4-triazole/L and a negative (dilution water) control. Two replicate test chambers were maintained in each treatment and control group, with 10 trout in each test chamber for a total of 20 trout per concentration. Observations of the fish were made after approximately 3, 24, 48, 72 and 96 hours for dead fish, or any clinical signs of toxicity or abnormal behavior.
Result	 Measured test concentrations were determined from samples of test water collected from the 6.3, 25 and 100 mg/L treatment groups and the control group at the beginning and end of the test. Chemical analysis, for 1,2,4-triazole, of lowest, middle and highest test concentrations (6.3, 25 and 100 mg/L) was performed at the start (t = 0 h) and end (t = 96 h) of the test using Gas Chromatography with flame ionization detection (GC/FID). Chemical analysis of the test solutions at the start and end of the test period resulted in measured 1,2,4-triazole concentrations ranging from 90 to 125% of nominal values. Therefore, all effect concentrations were based on nominal test concentrations.
Conclusion	 Fish in the control and all of the 1,2,4-triazole treatment groups appeared healthy and normal throughout the test. Thus, the 24, 48, 72 and 96 h LC50 values were > 100 mg/L, and the concentration without any observed effects (NOEC) was 100 mg/L, the maximum concentration tested. The 96 h LC50 for Oncorhynchus mykiss exposed to 1,2,4-triazole under the conditione was greater than 100 mg/L.
Reliability	static conditions was greater than 100 mg/L, thus the compound can be classified as practically non-toxic to fish.(1) valid without restriction
-	Guideline study; GLP
Flag 14.10.2008	: Critical study for SIDS endpoint (35
Туре	: static
Species	: Salmo gairdneri (Fish, estuary, fresh water)
Exposure period	: 96 hour(s)
Unit	: mg/l
LC50	: > 760
Limit test	: yes
	: yes : yes : OECD Guide-line 203 "Fish, Acute Toxicity Test"

4. Ecotoxicity	ld 288-88-0
	Date
GLP Test substance	: no : as prescribed by 1.1 - 1.4
Method	: Juvenile rainbow trout, Onchorynchus mykiss (mean body length 53 mm; mean body weight 1.27 g), were exposed to nominal levels of 100,180, 320, 580 and 1000 mg 1,2,4-triazole/L in a static system for 96 hours. Dechlorinated tap water was used to prepare the test solutions. The test incorporated two replicate tanks of five fish for each exposure concentration and for the untreated water control. Mortalities and symptoms of toxicity were recorded at intervals of 24 hours throughout the test up to 98 hours. Dissolved oxygen, temperature, pH were recorded during the study and the concentrations of 1,2,4-triazole in the test systems were determined by gas chromatography (GC) at 0 and 96 hours.
Remark	 The LC50 values were calculated according to Spearman-Kaerber, 524-530 in D.J. Finney London (1964). LC50 (96 hr) was also graphically determined on gausso-logarithmic probability paper. The LCso values that were presented in this study report were based on nominal concentrations. However, as some measured concentrations were <80% of nominal, LCso values were re-calculated based on mean measured values (Powley, 2003).
	LC50 (mg/L) based on nominal concentrations: 24 hr > 1000 48 hr = 800 72 hr = 760 96 hr = 760
	LC50 (mg/L) based on mean measured concentrations (confidence intervals $p \le 0.05$): 24 hr > 657 48 hr = 528 (n.d.) 72 hr = 498 (378 - 657) 96 hr = 498 (378 - 657)
	Based on mean measured concentrations, the 96-hr LC50 for 1,2,4-triazole in rainbow trout was 498 mg/L.
Result	 From: Syngenta () 1,2,4-triazole Document M-II, Section 6 Ecotoxicological Studies. Document BASF DocID 2003/1023473. Nominal Mean Conc. Measured
	Conc. Measured (mg/L) (mg/L) Water 100 52 180 132 320 192 580 378 1000 657
	Over the test period water temperature was maintained at 15°C, pH ranged between 7.6-8.1 and dissolved oxygen concentrations ranged between 8.2-10.1 mg/L. The test concentrations of 1,2,4-triazole, ranged from 55 to 86% of nominal at study start and from 52 to 73% of nominal in the samples taken after 96 hours. Over the exposure period, abnormal swimming behaviour and loss of equilibrium was observed in fish exposed to 100, 320 and 580 mg 1,2,4-triazole/L and there were slight effects on pigmentation in the 580 mg/L treatment group.
	Conc. Mortality (mg/L) 24h 48h 72h 96h

							288-88-0	
						Date		
	Control0	0	0	0				
	100	0	0	0	0			
	180	0	0	0	0			
	320	0	0	0	0			
	580	0	0	0	0			
	1000	0	9	10	10			
	72 48	-hr: 760 m -hr: 760 m	ng/L (cor ng/L (cor ng/L (cor	nfidence	limit: n		_)	
	LC50 valu 96-hr: 760		cally det	ermined				
	LC0 (96 h							
	LC100 (96 Controls:			0/_)				
Test substance	: Technical				ont Ra	tch No. EN3	8530	
Reliability	: (2) valid w			000110	nii, Du		0000.	
	Guideline			∍.				
14.10.2008								(15
Type Species								
Exposure period Unit EC50 Limit Test Analytical monitoring Method Year GLP Test substance	: Daphnia r : 48 hour(s) : mg/l : > 100 : yes : yes : OECD Gu : 1995 : yes : as prescri	iide-line 20	02)				
Exposure period Unit EC50 Limit Test Analytical monitoring Method Year GLP	 48 hour(s) mg/l > 100 yes yes OECD Gu 1995 yes as prescri Also cond Ecotoxicit C, Method) bed by 1.4 lucted in a y Annex to d 2 "Acute	02 I - 1.4 ccordan o Directiv toxicity	ce with E ve 92/69 to Daphr	/EEC (nia".	(OJ. No. L38	etermination (3A, 29.12.92)	Part
Exposure period Unit EC50 Limit Test Analytical monitoring Method Year GLP Test substance	 48 hour(s) mg/l > 100 yes yes OECD Gu 1995 yes as prescri Also cond Ecotoxicit C, Method Based on single con Samples of study to v direct disp compound used. Afted daphnids they were agitation. The tempo dissolved 	bed by 1.7 bed by 1.7 lucted in a y Annex to d 2 "Acute the result centration of test solu erify expo- bersion of d were add er 24 and were reco unable to erature in oxygen le	02 I - 1.4 ccordan o Directiv toxicity s of a rai o of 1,2,4 utions we sure con the 1,2,2 ded to 1 48 hours rded. Da swim fo each ves	ce with E ve 92/69 to Daphi Inge-findi I-triazole ere taker icentratio I-triazole liter of d s exposu aphnia w r approx ssel was orded at	/EEC (nia". ing tes nomir for ar ons. T in dilu iluent). ure the rere co timately meas the sta	(OJ. No. L38 t, Daphnia w hally 100 mg, halysis at the he test soluti ution water (1 . No auxiliary number of m nsidered to b y 15 seconds ured daily ar art and at the	3A, 29.12.92) rere exposed /1 in a limit test start and end ion was prepa 100 mg of test y solvents wer nobile and imr be immobilized s after gentle and the pH and e end of the st	Part to a st. d of the ared by re mobile d if udy.
Exposure period Unit EC50 Limit Test Analytical monitoring Method Year GLP Test substance	 48 hour(s) mg/l > 100 yes yes OECD Gu 1995 yes as prescri Also cond Ecotoxicit C, Method Based on single con Samples of study to v direct disp compound used. Afted daphnids they were agitation. The tempo dissolved The study under a pl aeration of analysis. 	bed by 1.2 bed by 1.2	02 1 - 1.4 ccordan o Directive toxicity s of a rais o of 1,2,4 utions we sure con the 1,2,2 ded to 1 48 hours rded. Da swim fo each vest vels recon- lucted in d of 16 h The test	ce with E ve 92/69 to Daphi Inge-findi I-triazole ere taker icentratio I-triazole liter of d s exposu aphnia w r approx ssel was orded at a const ours ligh st concer	/EEC (nia". ing tes nomin for ar ons. T e in dilu iluent). ure the vere co timately the sta ant envit, 8 ho ntratior	(OJ. No. L38 t, Daphnia w hally 100 mg, halysis at the he test soluti ution water (1 . No auxiliary number of m nsidered to k y 15 seconds ured daily ar art and at the vironment ro burs dark with n was verified	3A, 29.12.92) rere exposed /1 in a limit test start and end ion was prepa 100 mg of test y solvents wer hobile and immobilized s after gentle and the pH and	Part to a st. d of the ared by re mobile d if udy. C entary

4. Ecotoxicity	ld 288-88-0
	Date
	significantly across the treatments. Measured concentrations ranged from 94% of nominal at 0 hours to 102% of nominal at 48 hours with a mean measured concentration of 98 mg/1 indicating the test concentration was achieved and adequately maintained over the 48 hour exposure period.
	No immobilization of daphnids was recorded after 24 and 48 hours exposure and the following values were therefore determined based on nominal concentrations.
	TimeEC50(hr)(mg/L)24>10048> 100
Test substance	NOEC (immobilisation) > 100 mg/L LOEC (immobilization) >100 mg/L : Purity = 100.8%
Conclusion Reliability	 Based on these results 1,2,4-triazole can be classified as being of low toxicity to Daphnia magna. (1) valid without restriction
Flag 13.10.2008	Guideline study; GLP Critical study for SIDS endpoint (19)
Type Species Exposure period Unit EC50 Analytical monitoring Method Year GLP Test substance	 static Daphnia magna (Crustacea) 24 hour(s) mg/l = 900 no OECD Guide-line 202 1983 no as prescribed by 1.1 - 1.4
Method	: Young daphnia (< 24 hours old) were exposed to test concentrations of 100, 180, 320, 580, and 1000 mg/L (nominal). Twenty daphnia were exposed per concentration and control (4 replicated of 5 daphnia). The test substance appeared dissolved at all test concentrations. Samples for analysis were taken at 0 and 24 hours exposure.
	Temperature: 20 +/- 1 deg C Lighting: Fluorescent light, 16 hours daily pH, O2 and temperature were measured at the beginning and at the end of the test.
Result	The EC50-value was calculated according to J.BERKSON, JASA 49, (1953),569-599 EC50 (24 hours) was graphically determined on gausso-logarithmic probability paper. Immobilized Daphnia Nominal after 24 hours Nominal after 24 hours (mg/L) Control 0/20 0 100 2/20 180 2/20
	3200/2005806/2030100011/2055
	pH: (7.9-8.4 at 0 hours) (8.1-8.3 at 24 hours) O2: (8.6-8.7 at 0 hours) (8.2-8.4 at 24 hours) 23 / 69
	20,00

I. Ecotoxicity	ld 288-88-0 Date
	Temp: (22 at 0 hours) (23 at 24 hours)
	24-hr EC50 = 900 mg/L (95% conf. limit = 730 - 2200 mg/L) 24-hr EC50 (determined graphically) = 800 mg/L 24-hr EC100 > 1000 mg/L 24-hr EC0 = 320 mg/L
Test substance Reliability	 Technical 1,2,4-triazole 91.9% content, Batch No. EN38530. (3) invalid
27.06.2008	Not consistent with today's standard methods. (17
3 TOXICITY TO AQU	ATIC PLANTS E.G. ALGAE
Species Endpoint Exposure period Unit 72 hr EC50	 Selenastrum capricornutum (Algae) other: cell density (most sensitive endpoint), growth rate and biomass 96 hour(s) mg/l = 12
Limit test Analytical monitoring Method Year	: yes OECD Guide-line 201 "Algae, Growth Inhibition Test" 2001
GLP Test substance	: yes : as prescribed by 1.1 - 1.4
Method	: Also conducted in accordance with: EU Directive 92/69/EEC, Method C.3. U.S. EPA OPPTS Number 850.5400
	The freshwater green alga, Selenastrum capricornutum (now known as Pseudokirchneriella subcapitata), was exposed to a geometric series of five test concentrations and a negative (culture medium) control under static conditions for 96 hours. Three "biological" replicate test chambers were maintained in each treatment and control group. One additional "analytical" replicate was maintained in each control and treatment group to provide test solution for verification of test concentrations at 72 hours. One additional abiotic replicate at the highest test concentration was included in the experimental design for concentration verification at 72 and 96 hours. This replicate was used to monitor the effects of the experimental conditions on the stability of the test substance over the exposure period. Nominal test concentrations were selected based upon exploratory range-finding data. Nominal test concentrations selected were 1.9, 3.8, 7.5, 15 and 30 mg active ingredient (a.i.)/L. Mean measured concentrations were determined from samples of test medium collected from each treatment and control group at the beginning and end of the test.
	At test initiation an inoculum of algal cells was added to each test chamber to achieve a nominal concentration of approximately 10,000 cells/ml. Samples were collected from each "biological" test chamber at approximately 24-hour intervals during the test to determine cell densities, which were subsequently used to calculate areas under the growth curve and growth rates. Cell densities, areas under the growth curve (biomass) and growth rates were used to calculate percent inhibition values relative to the control over the 96-hour exposure period. EC50, EbC50 and E,C50 values were calculated, when possible, based upon cell density, biomass and growth rate, respectively, for each 24-hour interval of the exposure period. No-observed-adverse-effect-concentrations (NOAEC) were determined at 72 and 96 hours through statistical evaluation of the cell densities, biomass and growth rates, as well as examination of the concentration-response pattern.

Ecotoxicity							288-88-0 16.10.2008
Result	:	Test concentr	ations:				
		Nominal Negative cont	rol	<loq< td=""><td>leasured</td><td></td><td>%nominal</td></loq<>	leasured		%nominal
		1.9 mg a.i./L	.101	1.7 mg	a.i./L	89	
		3.8 mg a.i./L		3.1 mg		82	
		7.5 mg a.i./L		6.8 mg		91	
		15 mg a.i./L		14 mg a		93	
		30 mg a.i./L		31 mg a	.i./L	103	
		range establis and control gr pH of the abic increase relat	shed for the oups at 0 otic replicative to algan algae.	he test. 7) hours a ate at tes al popula The light	The test solut nd ranged fro t termination ation, which v intensity ran	ion pH was om 8.1 to 9 was 8.0. T vas typical ged from 5	thin the 23 \pm 2°C 5 8.0 for all treatmer .7 at 96 hours. The The pH tended to for tests conducted 880 to 7140 lux, 5.
							、
			EC50		95% C.I.	NOAEC	
		Cell density	(mg a.i.	/ L)	(mg a.i./L)	(mg a.i.	/ ⊑)
		72-hr	12		9.9-14	3.1	
		96-hr	18		16-19	6.8	
		Biomass					
		72-hr	13		11-15	3.1	
		96-hr	14		13-16	3.1	
		Growth rate					
		72-hr	>31		NC*	3.1	
		96-hr	>31		NC*	6.8	
Test substance Conclusion	:	measured at 7 rate). The 72- capricornutum confidence int biomass, was a.i./L. The 72- biomass and biomass, and	ons of this 72 and 96 hour EC5 n exposed terval of 9 14 mg a. hour NO/ growth ra was 6.8 r	s study w 6 hours (i 50, based d to 1,2,4 9.9 to 14 .i./L, with AEC was tte: The 9 mg a.i./L	.e., cell dens d on cell dens l-triazole was mg a.i./L. Th a 95% confi s 3.1 mg a.i./l 06-hour NOA	ity, biomas sity, for Sele a 12 mg a.i. he 96-hour dence inter L, based or EC was 3.1	/L, with a 95% EC50, based on val of 13 to 16 mg
	:	(1) valid witho		tion			
Reliability		Guideline stud					
-				andnoin			
Reliability Flag 13.10.2008	:	Childa Sludy		endpoint			(34
Flag 13.10.2008	:			-			(34
Flag 13.10.2008 Species	:	Scenedesmus		-			(34
Flag 13.10.2008 Species Endpoint		Scenedesmus growth rate		-			(34
Flag 13.10.2008 Species	:	Scenedesmus growth rate 5 day(s)		-			(34
Flag 13.10.2008 Species Endpoint Exposure period	:	Scenedesmus growth rate		-			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit	:	Scenedesmus growth rate 5 day(s) mg/l		-			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0	:	Scenedesmus growth rate 5 day(s) mg/l = .5		-			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0 EC50	:	Scenedesmus growth rate 5 day(s) mg/l = .5 = 6.3		-			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0 EC50 EC100 Limit test Analytical monitoring	: : : : : : : : : : : : : : : : : : : :	Scenedesmus growth rate 5 day(s) mg/l = .5 = 6.3		-			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0 EC50 EC100 Limit test Analytical monitoring Method		Scenedesmus growth rate 5 day(s) mg/l = .5 = 6.3 > 40.5 no other		-			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0 EC50 EC100 Limit test Analytical monitoring Method Year		Scenedesmus growth rate 5 day(s) mg/l = .5 = 6.3 > 40.5 no other 1982		-			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0 EC50 EC100 Limit test Analytical monitoring Method Year GLP		Scenedesmus growth rate 5 day(s) mg/l = .5 = 6.3 > 40.5 no other 1982 no	s subspic	atus (Alg			(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0 EC50 EC100 Limit test Analytical monitoring Method Year GLP Test substance		Scenedesmus growth rate 5 day(s) mg/l = .5 = 6.3 > 40.5 no other 1982 no as prescribed	s subspic: by 1.1 - 1	atus (Alg 1.4	ae)		(34
Flag 13.10.2008 Species Endpoint Exposure period Unit EC0 EC50 EC100 Limit test Analytical monitoring Method		Scenedesmus growth rate 5 day(s) mg/l = .5 = 6.3 > 40.5 no other 1982 no	s subspic: by 1.1 - 1	atus (Alg 1.4 smus sul	ae)		(34

4. Ecotoxicity	ld 288-88-0 Date 16.10.2008
	Inoculum: 1.0 x 10^5 cells/ml
	Exposure: Water: composition according to AFNOR T 90-304 Light: 16 hours light, 8 hours darkness approx. 4000 LUX cold white fluorescent light Temp: 24 +/- 2 deg C Duration: 5 days (120 hours) Measurement: counting of cells on TOA cell counter Test concentrations (nominal): 0.5, 1.5, 4.5, 13.5, and 40.5 mg/L Calculated amounts of stock solution to produce the desired test concentration were mixed with water in the test flasks. Samples for analysis were taken at 0 and 120 hours exposure. Reference substance: Potassium bichromate at 1.0, 1.5, 2.3, and 3.4 mg/L
Result	Each test concentration and control was tested in 4 replicates.All results are based on nominal concentrations:
	The growth control showed a multiplication factor of 210.
	% Inhibition cell growth observed:
	Test substance % Inhibition
	0.5 mg/L 0
	1.5 14
	4.5 38
	13.5 75
	40.5 93
	Potassium bichromate: 1.0 38 1.5 71
	2.3 98 3.4 > 100
Test substance Reliability	 Test material: EC50 (5 day) calculated = 6.3 mg/L 95% conf. limit = 5.5 - 7.1 mg/L 1,2,4-Triazol; purity 91.9% (2) valid with restrictions Comparable to a guideline study, but not GLP.
14.10.2008	(16)
4.4 TOXICITY TO MICH	ROORGANISMS E.G. BACTERIA
4.5.1 CHRONIC TOXICIT	
4.5.1 CHRONIC TOXICI	
Species	: Oncorhynchus mykiss (Fish, fresh water)
Endpoint	: other: growth rate
Exposure period	: 28 day(s)
Unit	: mg/l
NOEC	: = 100
Analytical monitoring	: yes
Method	: other: OECD 215
Year	: 2002
GLP Test substance	: yes : as prescribed by 1.1 - 1.4
Method	: Rainbow trout, Oncorhynchus mykiss (mean body length 6.1cm, mean
	body weight 2.4 g) were exposed to nominal concentrations of 1, 3.2, 10,
	26 / 69

I. Ecotoxicity				ld 288-88-0 Date 16.10.2008	
				Date 10.10.2008	
Result	test incorpt concentration exposed to and water s determination systems wat the control s during the s symptoms of specific gro pooled cont treatment g : The hardne and <0.2 us oxygen con oxygen satu measured of nominal val	rated five replic on and two replices untreated test of amples were of on of 1,2,4-triaz is measured the systems. pH actively. Fish were of toxicity. Fish were of toxicity. Fish with rates (r) for rols were used roups. ss and conduct S/cm, respective centrations random uration, respective concentrations of uses over the te	cate tanks contai icate control tan water only. Test ollected on days cole concentration ree times a week and dissolved oxy e examined on w were weighed o r each individual to estimate sign tivity of dilution w ely. Water tempo ged between 10 ively, over the te of 1,2,4-triazole	enewal system for 28 days ning ten fish for each expo ks in which ten fish were solutions were changed we 0, 7, 14, 21 and 28 for ns. Temperature in the tes and recorded hourly in or gen were recorded weekly reekdays for mortality and n days 0 and 28 to provide Growth rate data from the ificant differences betweer vater were 40-60 CaCOs merature, pH and dissolved .8-12.8°C, 7.2-7.4 and 90- test duration. The mean ranged from 97 to 99% of re were no findings of 1,2,3 el of 0.096 mg/L.	eekly the of n the ng/L
	Effect of 1,2	2,4-triazole on r	nean weight and	growth rate:	
	Nominal	Day 0	Day 28 Gro	-	
	Conc. (mg/L) Control 1	weight (g) 2.43	weight (g) 4.47	28 days 1.027	
	Control 2 Pooled	2.51	4.54	0.919	
	Controls	2.47	4.64	0.973	
	1.00	2.44	4.72	1.022	
	3.20	2.59	4.77	0.936	
	10.0	2.54	4.62	0.930	
	32.0 100.0	2.53 2.48	4.78 4.91	0.982 1.053	
Test substance Conclusion Reliability	mortality in 3%, the me weight. Exp 28 body we period of 0- inactive or of symptoms of Technical 1 Based on n NOErC for concentration : (1) valid wit Guideline s	the 1 mg/L trea an 28-day body osure to 1,2,3- ight or growth i 28 days. At cor displayed abno did not influence ,2,4-triazole, pu ominal concent 1,2,4-triazole in on tested. hout restriction tudy; GLP	the attraction of the second structure of the second s	d only one escape-related Assuming a daily feeding i d control fish was 188% of ave a significant effect on to pooled control fish in the 10mg/L, 50% of fish were y and labored respiration. e of the fish. wth rate calculations, the 28 100 mg/L, the highest	[:] initia day : These
Flag		ly for SIDS end	point		
13.10.2008		-	-		(6

4.5.2 CHRONIC TOXICITY TO AQUATIC INVERTEBRATES

4.6.1 TOXICITY TO SEDIMENT DWELLING ORGANISMS

4. Ecc	otoxicity	288-88-0 16.10.2008
4.6.2	TOXICITY TO TERRESTRIAL PLANTS	
4.6.3	TOXICITY TO SOIL DWELLING ORGANISMS	
161	TOX. TO OTHER NON MAMM. TERR. SPECIES	
4.0.4		
4.7 I	BIOLOGICAL EFFECTS MONITORING	
4.8 I	BIOTRANSFORMATION AND KINETICS	

4.9 ADDITIONAL REMARKS

Id 288-88-0 5. Toxicity Date 16.10.2008 5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION 5.1.1 ACUTE ORAL TOXICITY Type LD50 : Value = 1648 - 1650 mg/kg bw 2 Species rat : Strain Wistar : Sex male/female : Number of animals : 284 Vehicle other: emulsion made with distilled water and Cremophor EL : Doses : 100, 250, 500, 1000, 1250, 1500, 1750, 1850, 2000, and 2500 mg/kg bw Method : EPA OPP 81-1 Year : 1982 GLP : no Test substance : as prescribed by 1.1 - 1.4 Method : Conducted in accordance with EPA FIFRA, Subdivision F, §81-1 (equivalentto 92/69 B.I) 1,2,4-triazole was emulsified in distilled water and Cremophor EL. This emulsion was given to male and female Wistar rats by stomach tube such that the animals received 1 ml of emulsion/100 g of body weight. The posttreatment observation period was 14 days. Gross necropsy was performed at study termination. The calculation of the mean lethal dose (LD50) was carried out using probit analysis (Fink, H. et al., Methods of information in medicine 5, 19, 1966). Result : The animals exhibited the following toxicity signs: reduction in general wellbeing, accompanied by sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. The symptoms appeared within an hour of administration and were observed for a maximum of up to 13 days after administration. Gross pathology examination of the animals revealed no major changes. Dose Result* Day of death (mg/kg) Males 250 0/0/15 --0/15/15 --500 1000 0/30/30 --1250 1/15/15 1d 1500 3/15/15 1d 1h - 1d 1750 10/15/15 2h - 7d 1850 12/15/15 1 - 6d 2500 14/14/14 Females: 100 0/15/15 --250 0/15/15 --500 0/15/15 --1000 0/15/15 --1/15/15 4h 1250 1500 3/15/15 4h - 1d 1750 9/15/15 1-12d 2000 28/30/30 1 - 9d 2500 15/15/15 3h - 3d

5. Toxicity	ld 288-88-0 Date 16.10.2008
	Dato 10.10.2000
	* = number of dead animals/number of animals with symptoms/ number of animals used
	Male 14-day LD50 (C.L.) = 1650 mg/kg (1547 - 1744) Female 14-day LD50 (C.L.) = 1648 mg/kg (1547 - 1737)
Test substance Reliability	 The test sample was a technically pure substance. (2) valid with restrictions Guideline study, but not GLP.
Flag 30.06.2008	: Critical study for SIDS endpoint (7) (24)
Туре	: LD50
Value	: > 500 - 5000 mg/kg bw
Species Strain	: rat : Wistar
Sex	: male
Number of animals	: 6
Vehicle	: other: 0.5% methylcellulose
Doses Method	: 0.5 and 5 g/kg bw : EPA OPP 81-1
Year	: 1981
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: GLP: Yes (self certification of laboratory)
	Conducted in accordance with EPA FIFRA, Subdivision F, §81-1 (equivalent to 92/69 B.I)
Remark	 1,2,4-triazole was dispersed in 0.5% methylcellulose using a tissue homogenizer and administered as a single gavage dose to two groups of three male rats at doses of 0.5 (2.5 ml/kg) or 5.0 g/kg (25 ml/kg). Animals were observed for mortality and signs of toxicity for 14 days post-dosing. Initial and final body weights were recorded. At study termination necropsies were conducted on all animals. Study was conducted in 1981.
	GLP: Yes (self-certification of laboratory)
	The studies described in this Final Report were conducted in the spirit of the Good Laboratory Practice Standards (1983) of the Pesticide Programs (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and Japanese Guidelines 59 NohSan No. 3850 (August 10, 1984), except that the test substance was not analytically characterized prior to initiation of the study, and the concentration of the test substance in any vehicle was not analytically verified. In lieu of analysis, the dose preparations were conducted by experienced researchers and the weights of the dosing components are fully documented. To the best of my knowledge, there were no other deviations from the aforementioned regulations which affected the quality or integrity of the study.
Result	 Range-finding studies are preliminary investigations designed to estimate toxicity and/or irritation or to provide information needed for dose selection for subsequent studies. Such data should be considered approximations only, and further extrapolation is not recommended. When screening data are reported, they should be identified as range finding and, if appropriate, an explanatory note such as this should be included. Be aware that these range-finding studies will, in general, not meet regulatory guidelines for numbers of animals per group, inclusion of both sexes of animals, or number of dose levels used. All rats died in the 5.0 g/kg group within ten minutes after dosing. No test-

-	ld 288-88-0 Date
	substance related clinical signs were observed at 5.0 g/kg prior to death. No deaths occurred and no clinical signs were observed in the 0.5 g/kg group. There were no apparent body weight effects in survivors. Necropsy of decedents (5.0 g/kg) revealed reddened duodenum and reddened glandular portion of stomach. Survivors necropsied at the end of the two
Test substance	 week observation period (0.5 g/kg) exhibited no visible lesions. The test substance was a pale brown solid containing 92.8% of the active ingradient 4.2.4 triazola
Conclusion	 ingredient 1,2,4-triazole. 1,2,4-triazole is categorized as SLIGHTLY TOXIC according to Rohm and Haas Company criteria by ingestion of a single dose (i.e. LD50 is between 0.5 and 5.0 a/(a in mala rata).
Reliability	 0.5 and 5.0 g/kg in male rats). (1) valid without restriction Guideline study; GLP
13.10.2008	(24) (28
Туре	: LD50
Value	: = 1375 mg/kg bw
Species Strain	: rat
Strain Sex	: no data : male
Number of animals	: 80
Vehicle	: other: distilled water
Doses	: 850, 1000, 1200, 1400, 1500, 1750, 2000, and 2500 mg/kg
Method	: other
Year	: 1978
GLP	: no
Test substance	: as prescribed by 1.1 - 1.4
Method	: The test material was dissolved in distilled water and administered by oral gavage to male rats (10/dose level) at doses of 850, 1000, 1200, 1400, 1500, 1750, 2000, and 2500 mg/kg. There was a 14 day post exposure observation period.
Result	: 850 mg/kg 8.5% 0/10/10
	1000 mg/kg 10% 0/10/10
	1200 mg/kg 12% 2/10/10
	1400 mg/kg 14% 5/10/10
	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10
	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10
	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10
	1400mg/kg14%5/10/101500mg/kg15%8/10/101750mg/kg17.5%9/10/102000mg/kg20%10/10/102500mg/kg25%10/10/10
	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg LD50 LD50 LD50
	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78
	1400 mg/kg $14%$ $5/10/10$ $1500 mg/kg$ $15%$ $8/10/10$ $1750 mg/kg$ $17.5%$ $9/10/10$ $2000 mg/kg$ $20%$ $10/10/10$ $2500 mg/kg$ $25%$ $10/10/10$ LD50 = 1375 (1273-1485) mg/kg: 1,2,4-Triazol, batch 16001/78, Eg. 1/78: (4) not assignable
Test substance Reliability 13.10.2008	1400 mg/kg $14%$ $5/10/10$ $1500 mg/kg$ $15%$ $8/10/10$ $1750 mg/kg$ $17.5%$ $9/10/10$ $2000 mg/kg$ $20%$ $10/10/10$ $2500 mg/kg$ $25%$ $10/10/10$ LD50 = 1375 (1273-1485) mg/kg: 1,2,4-Triazol, batch 16001/78, Eg. 1/78: (4) not assignable Insufficient details to determine reliability.
	1400 mg/kg $14%$ $5/10/10$ $1500 mg/kg$ $15%$ $8/10/10$ $1750 mg/kg$ $17.5%$ $9/10/10$ $2000 mg/kg$ $20%$ $10/10/10$ $2500 mg/kg$ $25%$ $10/10/10$ $LD50 = 1375 (1273-1485) mg/kg$ $1,2,4$ -Triazol, batch 16001/78, Eg. 1/78:(4) not assignable Insufficient details to determine reliability.
Reliability	1400 mg/kg $14%$ $5/10/10$ $1500 mg/kg$ $15%$ $8/10/10$ $1750 mg/kg$ $17.5%$ $9/10/10$ $2000 mg/kg$ $20%$ $10/10/10$ $2500 mg/kg$ $25%$ $10/10/10$ LD50 = 1375 (1273-1485) mg/kg: $1,2,4$ -Triazol, batch 16001/78, Eg. $1/78$:(4) not assignable Insufficient details to determine reliability.
Reliability 13.10.2008 1.2 ACUTE INHALAT	1400 mg/kg $14%$ $5/10/10$ $1500 mg/kg$ $15%$ $8/10/10$ $1750 mg/kg$ $17.5%$ $9/10/10$ $2000 mg/kg$ $20%$ $10/10/10$ $2500 mg/kg$ $25%$ $10/10/10$ $LD50 = 1375 (1273-1485) mg/kg$: $1,2,4$ -Triazol, batch $16001/78$, Eg. $1/78$: (4) not assignable Insufficient details to determine reliability. TON TOXICITY (13)
Reliability 13.10.2008 1.2 ACUTE INHALAT Type	1400 mg/kg $14%$ $5/10/10$ $1500 mg/kg$ $15%$ $8/10/10$ $1750 mg/kg$ $17.5%$ $9/10/10$ $2000 mg/kg$ $20%$ $10/10/10$ $2500 mg/kg$ $25%$ $10/10/10$ LD50 = 1375 (1273-1485) mg/kg: $1,2,4$ -Triazol, batch 16001/78, Eg. $1/78$:(4) not assignable Insufficient details to determine reliability.
Reliability 13.10.2008 1.2 ACUTE INHALAT Type Value	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. 'ION TOXICITY : LC50
Reliability 13.10.2008 1.2 ACUTE INHALAT Type Value Species	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. Insufficient details to determine reliability. (13
Reliability 13.10.2008 1.2 ACUTE INHALAT Type Value Species Strain	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. 'ION TOXICITY : LC50
Reliability 13.10.2008 1.2 ACUTE INHALAT Type Value Species Strain Sex	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. (13 TON TOXICITY : LC50 : other: rats and mice : other: Wistar male rats and NMRI female mice
Reliability 13.10.2008 1.2 ACUTE INHALAT Type Value Species Strain Sex Number of animals	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. Insufficient details to determine reliability. (13
Reliability 13.10.2008 1.2 ACUTE INHALAT Value Species Strain Sex Number of animals Vehicle	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. Insufficient details to determine reliability. (13
Reliability 13.10.2008 1.2 ACUTE INHALAT Value Species Strain Sex Number of animals Vehicle Doses	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. (13 TON TOXICITY : LC50 : other: rats and mice : other: Wistar male rats and NMRI female mice
Reliability 13.10.2008 1.2 ACUTE INHALAT Type Value Species Strain Sex Number of animals Vehicle	1400 mg/kg 14% 5/10/10 1500 mg/kg 15% 8/10/10 1750 mg/kg 17.5% 9/10/10 2000 mg/kg 20% 10/10/10 2500 mg/kg 25% 10/10/10 LD50 = 1375 (1273-1485) mg/kg : 1,2,4-Triazol, batch 16001/78, Eg. 1/78 : (4) not assignable Insufficient details to determine reliability. (13 TON TOXICITY : LC50 : other: rats and mice : other: Wistar male rats and NMRI female mice

. Toxicity	ld 288-88-0
	Date
GLP	: no
Test substance	: as prescribed by 1.1 - 1.4
Method	: The inhalation experiments were carried out in a 10 liter inhalation chamber. The chamber contained 5 male Wistar rats and 10 female NMRI mice. The periods of inhalation amounted to 4 hours and 6 hours. The post-treatment observation period was 14 days. Air was passed at 2 liters per minute through 1,2,4-triazole contained in a dust tower. The resulting air, enriched with vapour and dust, was administered to the animals for inhalation.
Result	: No substance vaporized or atomized in the 4 and 6-hr experiments. Rats and mice tolerated the 4 and 6-hr, inhalation periods without signs. Nor was any irritant effect on the mucous membrane of the eyes and noses of the animals observed.
Test substance	: The test sample was a technically pure substance.
Reliability	: (3) invalid Not consistent with today's standard methods (Particle size and analytical
07 00 0000	concentration were not determined).
27.06.2008	(7
.1.3 ACUTE DERMAL	ΤΟΧΙΟΙΤΥ
.1.5 AGUIL DERMAL	
_	
Type Value	: LD50
Species	: = 3129 - 4200 mg/kg bw : rat
Strain	: Wistar
Sex	: male/female
Number of animals	: 100
Vehicle	: other: a few drops of Cremophor EL
Doses	: 1000, 2000, 2500, 3500, 4000, and 5000 mg/kg bw
Method	: EPA OPP 81-2
Year	: 1982
GLP	: no
Test substance	: as prescribed by 1.1 - 1.4
Method	: Conducted in accordance with EPA FIFRA, Subdivision F, 81-2 (equivalent to 92/69/EEC B.3)
	The studies were carried out on male and female Wistar rats using the occlusive dressing method (NOAKES, D.N., D.M. Sanderson, Brith. J. Ind. Med. 26, 59, 1969). 1,2,4-triazole was applied to the dorsal skin, which was shaven the day before. The substance was weighed out separately for each animal and moistened with a few drops of Cremophor EL so that it
	could be applied to the skin of the animals. The substance was left on for 24 hours, and was then washed off with water and soap. The post-treatment observation period lasted 14 days.
Result	 could be applied to the skin of the animals. The substance was left on for 24 hours, and was then washed off with water and soap. The post-treatment observation period lasted 14 days. The calculation of the mean lethal dose (LD50) was carried out using probi analysis (Fink, H. et al., Methods of information in medicine 5, 19, 1966). The animals exhibited the following toxicity signs: reduction in general well-
Result	 could be applied to the skin of the animals. The substance was left on for 24 hours, and was then washed off with water and soap. The post-treatment observation period lasted 14 days. The calculation of the mean lethal dose (LD50) was carried out using probi analysis (Fink, H. et al., Methods of information in medicine 5, 19, 1966). The animals exhibited the following toxicity signs: reduction in general well-being, accompanied by sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. The symptoms appeared within an hour of administration and were observed for a maximum of up to 13 days after administration. Bose Result* Day of death (mg/kg)
Result	 could be applied to the skin of the animals. The substance was left on for 24 hours, and was then washed off with water and soap. The post-treatment observation period lasted 14 days. The calculation of the mean lethal dose (LD50) was carried out using probi analysis (Fink, H. et al., Methods of information in medicine 5, 19, 1966). The animals exhibited the following toxicity signs: reduction in general well-being, accompanied by sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. The symptoms appeared within an hour of administration and were observed for a maximum of up to 13 days after administration. Gross pathology examination of the animals revealed no major changes. Dose Result* Day of death
Result	 could be applied to the skin of the animals. The substance was left on for 24 hours, and was then washed off with water and soap. The post-treatment observation period lasted 14 days. The calculation of the mean lethal dose (LD50) was carried out using probi analysis (Fink, H. et al., Methods of information in medicine 5, 19, 1966). The animals exhibited the following toxicity signs: reduction in general well-being, accompanied by sedation and breathing disorders. At higher doses, the animals were lying in the abdominal or side position. The symptoms appeared within an hour of administration and were observed for a maximum of up to 13 days after administration. Gross pathology examination of the animals revealed no major changes. Dose Result* Day of death (mg/kg) Males

5. Toxicity	ld 288-88-0 Date 16.10.2008
	Date 10.10.2000
	25002/10/10 3-4d35004/10/10 1-3d50006/10/10 2-4d
	Females: 1000 0/5/5 2000 0/10/10 - 2500 3/10/10 4-9d - 3500 6/10/10 2-9d - 4000 6/10/10 1-3d - 5000 18/20/20 1-4d
	* = number of dead animals/number of animals with symptoms/ number of animals used
Test substance Reliability Flag 13,10,2008	 Male 14-day LD50 (C.L.) = 4200 mg/kg (3081-5725) Female 14-day LD50 (C.L.) = 3129 mg/kg (2203 - 3648) The test sample was a technically pure substance. (2) valid with restrictions Guideline study, but not GLP. Critical study for SIDS endpoint (7) (24)
Type Value Species Strain Sex Number of animals Vehicle Doses Method Year GLP Test substance Method	 LD50 > 200 - 2000 mg/kg bw rat New Zealand white male 6 physiol. saline .2, 2 and 5 g/kg bw EPA OPP 81-2 1981 yes as prescribed by 1.1 - 1.4 GLP: Yes (self certification of the laboratory) Conducted in accordance with EPA FIFRA, Subdivision F, 81-2 (equivalent
Remark	 to 92/69/EEC B.3) 1,2,4-triazole was ground in a mortar with a pestle and moistened (1:1 w/v) with saline. 1,2,4-triazole was applied as a single dermal dose at 0.2, 2.0, or 5.0 g/kg to the closely shaved intact skin of two male rabbits per dose level. Each application site was covered with an impervious cuff for a period of 24 hr. After 24 hr, the cuff was removed and the application site wiped with paper towels. Skin irritation was evaluated according to the criteria of Draize et al. (J. Pharmacol. Exp. Therap. 82:377-391, 1944) on days 1 through 14. Animals were observed for mortality and signs of toxicity for 14 days post-dosing. Initial and final body weights were recorded. At study termination necropsies were conducted on all animals. Study was conducted in 1981.
	The studies described in this Final Report were conducted in the spirit of the Good Laboratory Practice Standards (1983) of the Pesticide Programs (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and Japanese Guidelines 59 NohSan No. 3850 (August 10, 1984), except that the test substance was not analytically characterized prior to initiation of the study, and the concentration of the test substance in any vehicle was not analytically verified. In lieu of analysis, the dose preparations were conducted by experienced researchers and the weights of the dosing components are fully documented. To the best of my $33/69$

5. Toxicity	ld 288-88-0 Date
	knowledge, there were no other deviations from the aforementioned regulations which affected the quality or integrity of the study.
Result	 Range-finding studies are preliminary investigations designed to estimate toxicity and/or irritation or to provide information needed for dose selection for subsequent studies. Such data should be considered approximations only, and further extrapolation is not recommended. When screening data are reported, they should be identified as range finding and, if appropriate, an explanatory note such as this should be included. Be aware that these range-finding studies will, in general, not meet regulatory guidelines for numbers of animals per group, inclusion of both sexes of animals, or number of dose levels used. In the 5.0 and 2.0 g/kg groups, both rabbits in each dose group died by day 4 of the study. The following clinical signs related to the test substance were observed in the 2.0 and/or 5.0 g/kg groups: abdominal breathing, ataxia, clear nasal discharge, gasping, iritis, moribundity, salivation, scant droppings, soft feces, tremors, and yellow nasal discharge. In the 0.2 g/kg group, no deaths occurred and no clinical signs were observed during the study. There were no apparent body weight effects in the survivors. Decedents in the 2.0 and 5.0 g/kg group exhibited numerous gross findings related to the test substance. Necropsy of survivors in the 0.2 g/kg group revealed no visible lesions. No erythema to well-defined erythema and no
Test substance	edema to very slight edema were observed during the study.The test substance was a pale brown solid containing 92.8% of the active
Conclusion	 ingredient 1,2,4-triazole. Based on these results 1,2,4-triazole is categorized as MODERATELY TOXIC according to Rohm and Haas Company criteria following acute dermal exposure (i.e., the dermal LD50 is between 0.2 and 2.0 g/kg in male rabbits).
Reliability	: (1) valid without restriction
13.10.2008	Guideline study; GLP (24) (28)

5.1.4 ACUTE TOXICITY, OTHER ROUTES

5.2.1 SKIN IRRITATION

Species Concentration Exposure Exposure time Number of animals Vehicle PDII Result Classification Method Year GLP Test substance	 rabbit undiluted Occlusive 24 hour(s) 2 not irritating EPA OPP 81-5 1982 no as prescribed by 1.1 - 1.4
Method	: Conducted in accordance with EPA FIFRA, Subdivision F, 81-5 (equivalent to 92/69/EEC B.4)
Result	 Small cellulose patches, 1.5 cm x 1.5 cm, to which 500 mg of 1,2,4-triazole had been applied, were attached for 24 hours to the hairless skin of the ears of each of 2 New Zealand white rabbits using an adhesive dressing. The treated parts of the skin revealed no changes following removal of the
	34 / 69

Toxicity	ld 288-88-0 Date 16.10.2008
	dressing or during the 7-day post-treatment observation period.
Test substance	: The test sample was a technically pure substance.
Reliability	: (3) invalid
	Not consistent with today's standard methods (rabbit ears were used for testing instead of trunk skin).
27.06.2008	(7) (24
Species	: rabbit
Concentration	: .5 g
Exposure	: Occlusive
Exposure time	: 24 hour(s)
Number of animals	: 2
Vehicle	: other: saline
PDII	
Result	slightly irritating
Classification	
Method	: EPA OPP 81-5
<i>l</i> ear	: 1981
GLP	: yes
Fest substance	: as prescribed by 1.1 - 1.4
Method	: Yes (self certification of the laboratory)
	Conducted in accordance with EPA FIFRA, Subdivision F, 81-5 (equivalen to 92/69/EEC B.4)
Remark	 1,2,4-triazole, 0.5 g, was ground in a mortar with a pestle, moistened (1:1 w/v) with saline and applied under two 2.0-in square gauze lined patches to the closely shaved skin of two male rabbits. Each rabbit received one patch on the intact skin and a second patch on abraded skin. Both application sites were covered with an impervious cuff for a period of 24 hr. After 24 hr the cuff was removed and the application sites on each rabbit were wiped with paper towels. Skin irritation was evaluated according to the criteria of Draize et al. (J. Pharmacol. Exp. Therap. 12, 377-391, 1944) at 24, 72 hrs and at 7 days after patch removal. Study was conducted in 1981.
	The studies described in this Final Report were conducted in the spirit of the Good Laboratory Practice Standards (1983) of the Pesticide Programs (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and Japanese Guidelines 59 NohSan No. 3850 (August 10, 1984), except that the test substance was not analytically characterized prior to initiation of the study, and the concentration of the test substance in any vehicle was not analytically verified. In lieu of analysis, the dose preparations were conducted by experienced researchers and the weights of the dosing components are fully documented. To the best of my knowledge, there were no other deviations from the aforementioned regulations which affected the quality or integrity of the study.
Result	 Range-finding studies are preliminary investigations designed to estimate toxicity and/or irritation or to provide information needed for dose selection for subsequent studies. Such data should be considered approximations only, and further extrapolation is not recommended. When screening data are reported, they should be identified as range finding and, if appropriate, an explanatory note such as this should be included. Be aware that these range-finding studies will, in general, not meet regulatory guidelines for numbers of animals per group, inclusion of both sexes of animals, or number of dose levels used. Mean intact skin irritation scores according to the Draize scheme: Mean score (24-72 h): Erythema = 0.5

5. Toxicity	ld 288-88-0
	Date
	In the intact skin, one application site exhibited moderate erythema at 24 hr. No edema and no other erythema were observed during the study. In the abraded skins, very slight erythema was observed on two application sites at 24 hr and on one application site at 72 hr. No other erythema and no edema were observed during the study. The Primary Irritation Score (PIS), average of 24 and 72 hr scores, was 0.25 in the intact skins and 0.38
Test substance	in the abraded skins.The test substance was a pale brown solid containing 92.8% of the active
Conclusion	 ingredient 1,2,4-triazole. These range-finding results indicate that 1,2,4-triazole is categorized as SLIGHTLY IRRITATING to the skin (i.e., the Primary Skin Index is between 0 and 2.0 in rabbits). According to EEC classification criteria 1,2,4-triazole does not require a "Xi" label symbol or a "R-38" risk phase (i.e., the mean erythema or edema score is less than 2.0).
Reliability	: (3) invalid Not consistent with today's standard methods (used 24 hour exposure
27.06.2008	period). (24) (28)
Species Concentration Exposure Exposure time Number of animals Vehicle PDII Result Classification Method Year GLP Test substance Method	 human undiluted Occlusive 8 hour(s) 5 not irritating other 1982 no as prescribed by 1.1 - 1.4 Conducted in accordance with EPA FIFPvA, Subdivision F, 81-5 (equivalent to 92/69/EEC B.4) 1,2,4-triazole was applied to the skin of the forearm of humans, using adhesive dressings. In the preliminary study, the exposure period was 2 hours and 4 hours, and in the main study 8 hours. The substance was washed off afterwards with soap and water. The post-treatment observation period lasted 7 days. In the preliminary study there was one female person for each period of exposure. The 8-hr exposure test was conducted using 5 men.
Result	: Both in the preliminary study and in the main study, the treated parts of the skin proved to be physiologically normal following removal of the dressing and during the 7-day post-treatment observation period. 1,2,4-triazole thus has no irritant effect on the skin.
Test substance Reliability	 The test sample was a technically pure substance. (3) invalid
27.06.2008	Not consistent with today's standard methods. (7)
5.2.2 EYE IRRITATION	
Species	: rabbit
Concentration Dose	: undiluted : 50 other: mg
Exposure time	

36 / 69

: : not rinsed

Exposure time

Comment

5. Toxicity	ld 288-88-0 Date 16.10.2008
Number of animals	: 2
Vehicle	:
Result	: highly irritating
Classification	:
Method	: EPA OPP 81-4
Year	: 1982
GLP	
Test substance	: as prescribed by 1.1 - 1.4
Method	: Conducted in accordance with EPA FIFRA, Subdivision F, 81-4 (equivalent to 92/69/EEC B.5)
Result	 1,2,4-triazole was instilled into the conjunctival sac of the left eye of each of two rabbits at a dose of 50 mg/animal. One hour after application, intense reddening and a very intense swelling of the conjunctivae of the treated eyes had developed. Intense reddening and moderate swelling of the conjunctivae could still be observed 24 hours after application. In one animal there was still a slight redness and swelling of the conjunctivae 5 days after application. In the other animal, the conjunctivae were normal. The conjunctivae of both animals were normal 7 days after application. During the first and second days after application, a
Test substance Reliability	 slight, dispersed, diffuse opacity of the cornea was observed. The iris was slightly reddened and swollen. 1,2,4-triazole thus has a severe irritant effect on the mucous membrane. The test sample was a technically pure substance. (2) valid with restrictions Although irritation scores were not recorded at 24, 48 and 72 hours, the
	level of eye irritation was noted; not GLP.
14.10.2008	(7) (24)
Species	: rabbit
Concentration	: undiluted
Dose	: .1 other: g
Exposure time	· · · ·
Comment	not rinsed
Number of animals	: 2
Vehicle	:
Result	: moderately irritating
Classification	
Method	: EPA OPP 81-4
Year	: 1981
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: GLP: Yes (self certification of the laboratory)
	Also conducted in accordance with EPA FIFRA, Subdivision F, 81-4 (equivalent to 92/69/EEC B.5)
	1,2,4-triazole, 0.1 g, was ground in a mortar with a pestle and applied into the conjunctival sac of the left eye of two male rabbits. The lower eyelid was held open momentarily after the eye was treated and then released to allow the
Remark	 animal to blink freely. Eye irritation was evaluated according to the criteria of Draize et al. (J. Pharmacol. Exp. Therap. 12, 377-391, 1944) at 4, 24, 48, 72 and 96 hr and at 7 and 14 days. Study was conducted in 1981.
	The studies described in this Final Report were conducted in the spirit of the Good Laboratory Practice Standards (1983) of the Pesticide Programs (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and Japanese Guidelines 59 NohSan No. 3850 (August 10, 1984), except
	and depended Caldennes of Nonoan No. 5000 (August 10, 1304), except

5. Toxicity	ld 288-88-0
-	Date 16.10.2008
	that the test substance was not analytically characterized prior to initiation of the study, and the concentration of the test substance in any vehicle was not analytically verified. In lieu of analysis, the dose preparations were conducted by experienced researchers and the weights of the dosing components are fully documented. To the best of my knowledge, there were no other deviations from the aforementioned regulations which affected the quality or integrity of the study.
	Range-finding studies are preliminary investigations designed to estimate toxicity and/or irritation or to provide information needed for dose selection for subsequent studies. Such data should be considered approximations only, and further extrapolation is not recommended. When screening data are reported, they should be identified as range finding and, if appropriate, an explanatory note such as this should be included. Be aware that these range-finding studies will, in general, not meet regulatory guidelines for numbers of animals per group, inclusion of both sexes of animals, or number of dose levels used.
Result	: Mean Score for the two animals tested (24-72 h): Corneal opacity: 1.7 Iris lesions: 0.8 Conjunctival redness: 2.0 Conjunctival chemosis: 1.8
	Corneal, iridal and conjunctival effects were observed at 4 hours. Corneal and conjunctival effects were no longer evident on day 7; iridal effects were no longer evident on day 14. These range-finding results indicate that 1,2,4-triazole is categorized as no more than SUBSTANTIALLY IRRITATING (i.e., ocular effects were reversible within 21 days but not 7
Test substance	days).The test substance was a pale brown solid containing 92.8% of the active ingredient 1,2,4-triazole.
Conclusion	 According to EEC classification criteria 1,2,4-triazole does not require a "Xi" label symbol or a "R-36" risk phase (i.e., the mean score for each of the ocular structures was less than values specified for each structure).
Reliability	: (1) valid without restriction Guideline study; GLP
14.10.2008	(24) (28
5.3 SENSITIZATION	
Туре	: Guinea pig maximization test
Species	: guinea pig
Concentration	: 1 st : Induction 10 % intracutaneous 2 rd : Induction 75 % semiocclusive
	3 rd : Challenge 75 % semiocclusive
Number of animals	: 15
Vehicle	: other
Result Classification	not sensitizing not sensitizing
Method	: OECD Guide-line 406 "Skin Sensitization"
Year	: 1998
GLP Test substance	: yes : as prescribed by 1.1 - 1.4
Method	: Also conducted in accordance with:
	EEC Directive 96/54, L 248, Annex IV C, Test B.6 (dated September 30, 1996)
	EEC Directive 93/21, L 110 A, Annex IV (dated May 04, 1993)
	EEC Directive 93/21, L 110 A, Annex IV (dated May 04, 1993) Animals: 10 male Dunkin Hartley Crl (HA) guinea pigs in the test group, 5

	Date male guinea pigs in the control group. The choices of doses for the main
	male guines pigs in the control group. The choices of doses for the main
	 study were based on the results of a pilot study with 2 male guinea pigs: the intradermal injection of a 10% or 20% solution caused slight to moderate erythema in both animals during the 72-hour observation period, while dermal application of a 75: 25 mixture (w/w) of the test substance in vaseline caused no signs of skin irritation. A 10% solution of the test article in water or in a 50:50 (v/v) mixture of water and Freund's complete adjuvant was selected for intradermal
	induction in the main study: The dermal induction and epidermal challenge in the main study was carried out with a 75:25 mixture (w/w) of the test substance in vaseline on days 7 and 21 of the investigation, respectively. The sensitivity and reliability of the experimental technique was demonstrated with benzocaine in April 1998 under the same experimental conditions (7 of 10 animals responded positive at 48 and 72 hours after the
Result	 start of epidermal challenge). The test substance caused slight skin irritation with and without Freund's complete adjuvant after intradermal injection. No skin reaction was recorded after dermal induction. At 48 and 72 hours after the start of epidermal challenge (i.e. 24 and 48 hours after removal of the dressings) no signs of allergic skin reactions were noted in test or control animals.
Test substance	: 1,2,4-triazole, purity > 98%
Conclusion	: 1,2,4-triazole is not sensitising to the skin.
Reliability	: (1) valid without restriction
13.10.2008	Guideline study; GLP (24) (29
Species Sex Strain Route of admin. Exposure period Frequency of treatm. Post exposure period Doses Control group NOAEL LOAEL Method Year GLP Test substance	 rat male/female other: Wistar W.74 SPF oral feed 90 days daily none 100, 500, and 2500 ppm yes, concurrent vehicle = 500 ppm = 2500 ppm EPA OPP 82-1 1979 no as prescribed by 1.1 - 1.4
Test substance	
Method	: EPA-FIFRA, Subdivision F, § 82-1, OECD 409, 87/302/EEC (B.27Groups of 15 male and 15 female rats received 1,2,4-triazole for three months in the following concentrations in their food: 0 (control), 100, 500, and 2500 ppm. The animals were inspected daily, and a weekly record was kept of any alterations and signs occurring. The animals' body weights were recorded weekly. The weekly food consumption was determined by weighing the uneaten food. Clinical laboratory examinations were carried out one and three months after start of study on 5 males and 5 females in each case. The blood for the test for blood sugar was taken from the vena caudalis, for the measurement of the thromboplastin time by heart puncture, and from the retro-orbital venous plexus under ether anaesthesia

5. Toxicity	ld 288-88-0
	Date 16.10.2008
	rectally for all males and females in all the dose groups, one and three months after start of study. At study termination necropsies were conducted on all the animals. Body weights and organ weights of the thyroid, thymus, heart, lung, liver, spleen, kidneys, adrenals, testicles or ovaries were obtained. The following organ material was fixed in Bouin's fluid (transferred after approx. 30 hours to 70 % ethyl alcohol) from five males and five females from each group of the rats sacrificed at end of study: heart, lung, liver, spleen, kidney, pituitary, thyroid, adrenals, testicles, epididymes, prostate, seminal vesicle, ovaries, uterus, salivary glands, pancreas, esophagus, stomach, intestines, lymph nodes, thymus, urinary bladder, brain, eyes, aorta, trachea, skeletal musculature, bone and bone marrow (sternum). Extra liver specimens (lobus sinister) from all the animals were fixed with formol calcium for the fat demonstration. The organ material from the remaining animals was fixed in 10 % formaldehyde solution.
Remark Result	 Statistical methods: The following were calculated: arithmetic group means, standard deviation s, upper and lower confidence limits on the confidence level of 1 - alpha = 95% and 1 - alpha = 99%. The comparison of the values of the test collective with the control collective was made by means of the significance test (U test) after Mann, Whitney and Wilcoxon, on the significance level of alpha = 5% and alpha = 1%. 100, 500, or 2500 ppm = (males/females): 7.79/10.27 mg/kg bw, 37.85/54.20 mg/kg bw, or 212.30/266.69 mg/kg bw Appearance, behaviour, growth, food consumption and mortality were unaffected in the males and females with doses up to 500 ppm. Rectal body temperature was not affected by treatment. Food consumption was reduced at 2500 ppm during the first two weeks of treatment, but in overall terms food intake was similar in all groups. Body weight gains were reduced at 2500 ppm, leading to total weight gain deficits of 12% and 8% for males and females, respectively, relative to untreated controls. 2500 ppm produced temporary slight convulsions in two males and two females.
	The blood was not affected by 1,2,4-triazole in the dose groups up to 500 ppm. There were statistically significant changes in red blood cell parameters (reduced hemoglobin, hematocrit, MCV and MCH) after 1 and 3 months in males at 2500 ppm that indicated a slight microcytic hypochromic anemia.
	Clinical chemistry, gross pathology and histopathology did not detect any liver damage in the male and female rats receiving up to 500 ppm. After 2500 ppm slight to moderate fat accumulation in liver parenchyma cells was found in three of 15 males examined, and this is attributed to the treatment.
	Urinalyses, clinical chemistry, autopsies and histopathology provided no indications of kidney damage in the dose groups up to 2500 ppm.
	Blood sugar and cholesterol concentrations were within the normal range in the rats up to the dose group of 2500 ppm.
	The test material did not affect functioning of the thyroid up to the dose of 2500 ppm.
	There were deviations in absolute organ weights (thymus, heart, lung, spleen, testes) at 2500 ppm, particularly in males, that were attributed to lower terminal body weights.
Test substance	 Necropsies and histopathological examinations did not reveal any indications of treatment-induced organ alterations in the groups up to 2500 ppm, with the exception of the liver findings mentioned. The toxicological study was carried out with batch no. 16001/78 purity 99.6 40 / 69

Toxicity	ld 288-88-0
	Date 16.10.2008
	%). A 90 % pre-mix with Ultrasil VN 3 (precipicated highly dispersed silicic
	acid, Degussa Co.) was used for the study. In order to compensate the
	degree of purity, 11 % of the pre-mix was added.
Conclusion	: NOAEL: 500 ppm (equivalent to 37.9/54.2 mg/kg bw/day in males/females)
	based on retarded body weight development, temporary slight CNS effects
	lower red blood cell parameters (males, only) and hepatocellular fat
	accumulation (males only) at 2500 ppm (equivalent to an average test
Reliability	substance intake of 212 and 267 mg/kg bw/day for males and females,(2) valid with restrictions
Kenability	Guideline study, but not GLP. Diet analyses and ophthalmoscopy were no
	performed.
Flag	: Critical study for SIDS endpoint
16.10.2008	(8) (24
Туре	: Sub-chronic
Species	: rat
Sex	: male/female
Strain	other: Wistar Hanover rats (Crl:WI[Glx/BRL/Han]
	IGS BR)
Route of admin.	: oral feed
Exposure period	: 90 days
Frequency of treatm.	: daily
Post exposure period	: none . 250, 500, 2000 or 1000 for 4 weeks/4000 ppm thereafter
Doses Control group	 250, 500, 3000 or 1000 for 4 weeks/4000 ppm thereafter yes, concurrent vehicle
Control group NOAEL	= 500 ppm
LOAEL	: = 3000 ppm
Method	: other: OECD Guideline No. 424 Neurotoxicity Study in Rodents
Year	: 2004
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: Also conducted in accordance with:
	OPPTS Guideline No. 870.3100: 90-Day Oral Toxicity in Rodents
	OECD Guideline No. 408 Subchronic Oral Toxicity - Rodent: 90-day Study
	MAFF Guideline 59 NohSan No. 4200 Subchronic Oral Toxicity Study
	OPPTS Guideline No. 870.6200: Neurotoxicity Screening Battery
	All animals were approximately 8 weeks old when exposure to the
	chemical was initiated. To initiate the study, animals were randomly
	distributed into one of five dose groups consisting of 40 animals (20 males
	and 20 females at each dietary level, for a total of 200 animals). During the
	study, rats received the test substance for approximately 14 weeks, at nominal dietary concentrations of 0, 250, 500, 3,000 or 1,000/4,000 (1,000
	ppm for four weeks and 4,000 ppm thereafter) ppm.
	Doses were selected based on the toxicological profile that developed over
	the course of a 3-month-exposure study that was conducted with the test
	substance (Bomhard et al., 1979). Dose levels for the present study were
	set at 0, 250, 500, 1,000, and 3,000 ppm (1,000 ppm later increased to
	4,000 ppm). It was anticipated that a low and high dose of 250 and 3,000
	ppm would constitute a clear no-observed-effect level and a maximum
	tolerated dose (predictive goal of reaching a 10% decrement in body
	weight gain over the course of this 13-week study), respectively, with the
	intermediate dietary levels of 500 and 1,000 ppm serving to confirm any dose response relationships that may emerge.
	The test substance was to be administered continuously in the feed at
	nominal dietary concentrations of 0, 250, 500, 3,000 or 1,000/4,000 ppm
	(1,000 ppm for four weeks and 4,000 ppm thereafter) relative to the
	percentage of purity of the test substance. Ethanol was used to dissolve
	the test substance prior to mixing in the diet. The control diet (including the

	Date 16.10.2008
	ethanol) was prepared the same as the treated diet, excluding only the test chemical.
	The technical grade of 1,2,4-triazole was administered continuously in the feed of the Wistar rat (20 animals/sex/dietary level), for approximately 14 weeks, at nominal dietary concentrations of 0, 250, 500, 3,000 or 1,000/4,000 ppm (1,000 ppm for four weeks and 4,000 ppm thereafter), relative to the percentage of purity of the test substance. Body weight and food consumption determinations, as well as a detailed clinical examination of each animal, were conducted weekly throughout the study.
	Selected animals from each dietary group were subjected to a neurobehavioral assessment, using an FOB and automated test of motor activity. Observations for moribundity and mortality were performed at least once daily. Standard hematologic, clinical chemistry, and urinalysis endpoints were evaluated from blood (fasted; drawn via the orbital sinus while under light anesthesia) and urine collected just prior to the respective termination. In addition, selected hepatic enzyme activities were measured. Ophthalmologic exams were conducted on all acclimatized animals prior to exposure, and then again on all surviving animals just prior to termination. All animals placed on study were subject to a postmortem examination, which included (1) documenting and saving all gross lesions, (2) weighing designated organs, and (3) collecting representative tissue specimens for histopathologic evaluation.
Result	Statistical analysis: Continuous data that were examined statistically may have been evaluated for equality or homogeneity of variance using Bartlett's test (Snedecor and Chochran, 1967). Group means were analyzed by a one-way analysis of variance (ANOVA) (Snedecor and Chochran, 1967) followed by Dunnett's test (Dunnett, 1955 and 1964). Frequency data that were examined statistically were evaluated using the Chi-square and/or Fisher exact tests (Hollander and Wolfe, 1973). For the Bartlett test, a probability (p) level < 0.001 was considered significant; for all other statistical tests, differences with p values < 0.05 were considered statistically significant. For the FOB, continuous data were first analyzed using a Repeated-Measures ANOVA, followed by a oneway ANOVA if there was a significant interaction between dose group and test week. For weeks on which there was a significant treatment effect, Dunnett's test was applied to determine which groups, if any, were significantly different from the control group. Categorical data collected in the FOB were analyzed in a similar manner, using General Linear Modeling and Categorical Modeling (CATMOD) Procedures, with post-hoc comparisons using Dunnett's test and an Analysis of Contrasts, respectively (SAS). Motor and locomotor activity (total session activity and activity for each 10-minute interval) were analyzed using a Repeated-Measures ANOVA, followed by a one-way ANOVA if there was a significant interaction with test occasion. For weeks on which there was a significant interaction with test occasion. For weeks on which there was a significant interaction with test occasion. For weeks on which there was a significant treatment effect, Dunnett's test was used to determine which, if any, groups were significantly different from the control group. Interval and test occasion as repeated Measures ANOVA, to determine on which weeks there was a significant treatment by interval interaction. For those weeks, the data for each interval were subjected to a analysis using

5. Toxicity	ld 288-88-0
	Date
	Body weight was unaffected in both sexes at doses up to and including 500 ppm. Decreases in body weight (5- 8%) and body weight gain (18-21%) were observed in both sexes at 3,000 and/or 1,000/4,000 ppm.
	The FOB revealed several compound-related effects in both sexes at the 3,000 and 1,000/4,000 ppm dietary levels, including ungroomed appearance, muscle fasciculations, tremor, gait in-coordination, decreased activity in the open field, and decreased rearing. The only effect on automated measures of activity was a 30% decreased activity in 3,000 ppm males during week 4 (when that was the highest dietary level). At later measurements this effect was no longer evident.
	Serum chemistry indication of treatment-related change was limited to decreased triglyceride concentration in 3,000- and 1,000/4,000-ppm males (97, 80, 80, 52* and 54* mg/kg for the control group and the four dose groups, respectively). Any toxicological relevance of this finding is questionable as no similar effect was evident in females. Treatment-related changes in T4, T3, or TSH concentration were not observed. Analysis of the activity of selected hepatic enzymes indicated slightly increased activities in both sexes at 3,000- and 1,000/4,000-ppm (although effects on total P-450 were not observed). The limited magnitude of the alterations as well as the lack of corresponding morphological evidence indicate an adaptive response by the liver.
	No evidence of 1,2,4-triazole-induced toxicity was observed in any other in- life parameter, including food consumption/utilization, ophthalmology, hematology, and urinalysis.
	Organ weight change attributable to exposure to 1,2,4-triazole was limited to a slight decrease in absolute brain weight in 3,000- and 1,000/4,000- ppm males and females; the relative brain weights were not affected. Other apparent variations in organ weights relative to controls were best characterized as a secondary response to alterations in body weight gain observed in both sexes at 3,000 and 1,000/4,000 ppm. Gross pathological evidence of toxicity was not observed.
	Histopathologic effects were noted in both sexes at 3,000- and 1,000/4,000-ppm. In those animals designated for subchronic (non-neurologic) evaluations, a non-statistical tendency was noted toward a greater number of total and recent-cycle corpora lutea in 3,000- and 1,000/4,000-ppm females. The increase was likely due to an increase in the number of present cycle corpora lutea or those undergoing morphological regression, the extent of which, in conjunction with normal ovarian weights, is interpreted to be within normal physiological limits.
	Microscopic findings attributable to exposure to the test substance, in those animals specifically designated and processed for neurologic evaluation, were observed in the brain and nerve tissue at 3,000 and 1,000/4,000 ppm in both sexes. In the brain, the lesions were limited to the more anterior dorsal cerebellum (vermis) and were coded overall as a degeneration/necrosis, which tended to be slightly more prominent in males. Findings were characterized by extensive loss of Purkinje cells, variable white matter degeneration and gliosis. Subtle atrophy of the molecular layer or loss of granule cells was occasionally present.
	Individual nerve fiber degeneration, which is a common background change in the peripheral nerves (sciatic, tibial, sural), was increased in incidence and severity over control levels in the 3,000 and 1,000/4,000 ppm groups. Additionally, minimal to mild neuronal chromatolysis and vacuolation of the lumbar dorsal root ganglia was observed at >= 3000 ppm, but no similar change was seen in the cervical dorsal root ganglia.

5. Toxicity	Id 288-88-0				
	Date 16.10.2008				
	Tabular Summary (Rats exposed for ca. 13 weeks via the diet at constant dietary concentrations of 0, 250, 500, 3000 or 1000/4000 ppm):				
	Males: Doses (mg/kg/day): 0, 16, 33, 183, and 210 mg/kg/day NOAEL: 33 mg/kg/day (500 ppm) LOAEL: 183 mg/kg/day (3000 ppm) Compound-related effects at LOAEL: decrease in body weight, decrease in triglyceride level, increase in several findings in functional observational battery, decrease in motor activity, decrease in absolute brain weight, increase in incidence of brain lesion, increase in incidence of nerve lesion				
	Females: Doses (mg/kg/day): 0, 19, 41, 234, and 275 mg/kg/day NOAEL: 41 mg/kg/day (500 ppm) LOAEL: 234 mg/kg/day (3000 ppm) Compound-related effects at LOAEL: decrease in body weight, increase in several findings in functional observational battery, decrease in absolute brain weight, increase in incidence of brain lesion, increase in incidence of nerve lesion				
Test substance	 1,2,4-Triazole (test batch No. S13691; CAS Registry No. 288-88-0; white scales or flakes) was obtained from Merck & Co., Inc. The chemical was administered to the animals as a dietary admixture, based on the analytically determined percentage of purity (adjustments were not made for percentage purity of less than 100%). At all times prior to, during, and subsequent to the conclusion of the exposure portion of this study, the test batch of 1,2,4-triazole was stored under room temperature conditions (~ 22 °C). Prior to the experimental start (09/09/03) and then again with conclusion of the in-life portion of the study, the test facility, was reconfirmed. Chemical purities of 99.9 and 101% were measured for 				
Conclusion	 samples tested 2/03 and 3/04, respectively, thus confirming stability. Through approximately 14 weeks of continuous and repeated dietary exposure to the test substance, the toxicological response of the rat was principally characterized by retarded body weight gain, clinical symptoms, decreased absolute brain weight and histopathological findings effects in brain and peripheral nerves) at 3,000 and 1,000/4,000 ppm. 				
Reliability	 Based on the lack of adverse compound-related effects at 500 ppm in males and females, a NOAEL of 33 mg 1,2,4-triazole/kg body wt/day was established for the rat (specifically, 33 and 41 mg 1,2,4-triazole/kg body wt/day for male and female rats, respectively). (1) valid without restriction Guideline study; GLP 				
14.10.2008	(10) (24)				
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Post exposure period Doses Control group NOAEL LOAEL Mothod	 Sub-chronic mouse male/female CD-1 oral feed 90 days daily none 500, 1,000, 3,000, or 6,000 ppm (limit dose) yes, concurrent vehicle = 1000 - 3000 ppm = 3000 - 6000 ppm other net specified 				
Method Year GLP	 other: not specified 2004 yes 44 / 69 				

5. Toxicity	ld 288-88-0 Date 16.10.2008			
Test substance	: as prescribed by 1.1 - 1.4			
Method	: Conducted in general accordance with OPPTS 870.3100, OECD 409, 87/302/EEC (B.27)			
	All animals were approximately 8 weeks old when exposure to the chemical was initiated (09/17/03). To initiate the study, animals were randomly distributed into one of five dose groups consisting of 40-70 animals (20 males and 20 females at each dietary level, with an additional 15 males and 15 females assigned to Control, 3,000-, and 6,000-ppm groups). A total of 290 animals were placed on study. During the study, mice received the test substance for approximately 13 weeks at nominal dietary concentrations of 0, 500, 1,000, 3,000 or 6,000 ppm. The additiona 30 animals per group in the control-, 3,000- and 6,000-ppm levels were sacrificed following 28 days on study.			
	Doses were selected based principally upon the results of a subacute (4- week) toxicity testing study in the mouse, conducted with the test substance at doses of 0, 50, 250, 500, or 2,000 ppm (Wahle, 2004). Dose levels for the present study were set at 0, 500, 1,000, 3,000 and 6,000 ppm. It was anticipated that the 500- and 3,000-ppm doses would constitute a no-observed-adverse-effect level and a maximum tolerated dose, respectively, with the intermediate dosage of 1,000 ppm serving to evaluate possible dose response relationships. The 6,000 ppm dose level was included as a limit dose (1000 mg/kg), in the event an adequate toxicological response was not observed at 3,000 ppm. The 6,000 ppm dietary concentration was selected based on recent 90-day body weight and food consumption data for the CD-I mouse at the testing facility, which would result in an average active ingredient (ai) intake of at least 1,000 mg ai/kg body weight/day.			
	Diet preparation and analysis. The test substance was to be administered continuously in the feed at nominal dietary concentrations of 0, 500, 1,000, 3,000, or 6,000 ppm relative to the percentage of purity of the test substance. Ethanol was used to dissolve the test substance prior to mixing in the diet. The control diet (including the ethanol) was prepared the same as the treated diet, excluding only the test chemical.			
	The technical grade of 1,2,4-triazole was administered continuously in the feed to the CD-1 mouse (20 animals/sex/dose), for approximately 3 months, at nominal dietary concentrations of 0, 500, 1,000, 3,000, or 6,000 ppm (limit dose), relative to the percentage of purity of the test substance. Control, 3,000-, and 6,000-ppm groups included an additional 15 animals/sex/dose that were treated for approximately 4 weeks prior to termination (for hepatic enzyme profile analysis). Body weight and food consumption determinations, as well as a detailed clinical examination of each animal, were conducted weekly throughout the study. Observations for moribundity and mortality were performed at least once daily. Standard hematologic and selected clinical chemistry endpoints were evaluated from non-fasted blood obtained at approximately 4 weeks (drawn via cardiac puncture while under CO2 anesthesia) or just prior to termination (drawn via the orbital sinus). In addition, selected hepatic enzyme activities were measured for control, 3,000, and 6,000 ppm levels at 4 weeks and for control and 6,000 ppm levels at 13 weeks. All animals placed on study for 13 weeks were subject to a postmortem examination, which included (1) documenting and saving all gross lesions, (2) weighing designated organs, and (3) collecting representative tissue specimens for histopathologic evaluation.			
	Statistical analysis. Continuous data that were examined statistically were evaluated initially for equality or homogeneity of variance using Bartlett's test (Snedecor and Cochran, 1967). Group means were further analyzed			

5. Toxicity	ld 288-88-0 Date 16.10.2008
Result	 by a one-way analysis of variance (ANOVA) (Snedecor and Cochran, 1967) followed by Dunnett's test (Dunnett, 1955, 1964). In the event of unequal variances, and at the discretion of the study director, data were subjected to non-parametric procedures consisting of a Kruskal-Wallis ANOVA (Hollander and Wolfe, 1973) followed by the Mann-Whitney-U test for between-group comparisons. Frequency data were initially examined for trends; data suggestive of a potential effect were then statistically evaluated using the Fisher exact tests. For the Bartlett test, a probability (p value < 0.001 was considered significant; for all other statistical tests, differences with p values < 0.05 were considered statistically significant. Al statistical evaluations were performed using software obtained from either INSTEM Computer Systems or SAS Institute Inc. The mean daily intake of the test substance (mg 1,2,4-triazole/kg body wt/day) over approximately 13 weeks at nominal dietary concentrations of 500, 1,000, 3,000, and 6,000 ppm, respectively, was 80, 161, 487, and 988 for males and 105, 215, 663, and 1346 for females.
	Alterations in body weight were measured in males at 3,000 ppm and in both sexes at 6,000 ppm relative to controls. Declines in final live body weight of 16% and 9% were noted in 6,000-ppm males and females, respectively; a decline of 6% was noted in 3,000-ppm males. Marked declines in body weight gain (BWG) were noted in these same groups, particularly in males at 6,000 ppm, where the consistent decreases in mean weekly body weight resulted in an overall body weight loss over the course of the study. Importantly, this body weight loss for males at 6000 ppm is indicative of dietary concentrations that exceed the maximum tolerated dose (MTD).
	Clinical observations during the study were noted in 6,000-ppm males and included increased incidence of tremors, yellow staining (likely urine stains), and rough coat.
	Analysis of the activity of selected hepatic enzymes indicated slight increases in both sexes, at 3,000 and 6,000 ppm following 28 days and at 6,000 ppm following 90 days. However, the magnitude of the alterations a well as the lack of corresponding morphological evidence indicate an adaptive response by the liver.
	No evidence of a 1,2,4-triazole-induced toxicity was observed in any other in-life parameter, including food consumption/utilization, mortality, hematology, or clinical chemistry. Gross lesions attributable to exposure to 1,2,4-triazole were limited to 6,000-ppm males and included an increased incidence of rough coat and wet/stained ventrum.
	Organ weight changes included decreased testicular weights in 6,000-ppm males and decreased brain weights (absolute only) in 3,000-ppm males and 6,000-ppm males and females. Histopathological findings included an increased incidence of lesions noted in the brain at 6,000-ppm in both sexes, and in the testes of 3,000- and 6,000-ppm males. The finding in the testes at 6,000 ppm was accompanied by a secondary, indirect effect in the epididymis. The lesion identified in the brain consisted of a loss of Purkinje cells in the cerebellum, accompanied by occasional degeneration of the Purkinje cell axons located in the white matter of the cerebellar folia (minimal to slight severity). Although the lack of neurons is considered to be a late-stage lesion, no earlier stages preceding this effect were observed.
	In the testes increased incidences of apoptotic-like bodies, tubular atrophy and abnormalities in spermatid development (spermiogenesis and spermiation) were seen at >= 3000 ppm. The slight effects seen at 1000 ppm are regarded to reflect background findings and not an adverse effect

5. Toxicity	ld 288-88-0
	Date 16.10.2008
	The finding in the epididymis, observed at 6,000 ppm only, was considered to be a reflection of the testicular effects which were most pronounced at the highest dose level and consisted of exfoliated germ cells and debris within the lumen of the epididymal duct (the epididymal parenchyma was unchanged compared to controls). Additionally, one of the mice showed an overall decrease in the number of spermatozoa in the epididymal ducts at 6000 ppm.
	Tabular Summary (Mice exposed for ca. 13 weeks via the diet at constant dietary concentrations of 0, 500, 1000, 3000 or 6000 ppm):
	Males: Doses (mg/kg/day): 0, 80, 161, 487, 988 mg/kg/day NOAEL: 161 mg/kg/day (1000 ppm) LOAEL: 487 mg/kg/day (3000 ppm) Compound-related effects at LOAEL: decrease in body weight, decrease in brain weight, increase in incidence testes lesion
Test substance	 Females: Doses (mg/kg/day): 0, 105, 215, 663, and 1346 mg/kg/day NOAEL: 663 mg/kg/day (3000 ppm) LOAEL: 1346 mg/kg/day (6000 ppm) Compound-related effects at LOAEL: decrease in body weight, increase in incidence of brain lesion, decrease in brain weight 1,2,4-Triazole (test batch No. S13691; CAS Registry No. 288-88-0; white ended of felace) was obtained from March 2, Cas Inc. The shearing was
Conclusion	 scales or flakes) was obtained from Merck & Co., Inc. The chemical was administered to the animals as a dietary admixture, based on the analytically determined percentage of purity (adjustments were not made for percentage purity of less than 100%). At all times prior to, during, and subsequent to the conclusion of the exposure portion of this study, the test batch of 1,2,4-triazole was stored under room temperature conditions (~ 22 °C). Prior to the experimental start (09/09/03) and then again with conclusion of the in-life portion of the study, the concentration/stability of the test batch, under storage conditions at the test facility, was reconfirmed. Chemical purities of 99.9 and 101% were measured for samples tested 2/03 and 3/04, respectively, thus confirming stability. NOAEL(males): 1000 ppm (equivalent to 161 mg/kg bw/day) based on decreased body weights, decreased absolute brain weight and
Reliability	 micropathological finding in the testes at 3000 ppm. NOAEL(femaies): 3000 ppm (equivalent to 663 mg/kg bw/day) based on decreased body weights, decreased absolute brain weight and micropathological finding in the brain at 6000 ppm (2) valid with restrictions
Flag 13.10.2008	Comparable to a guideline study; GLP. : Critical study for SIDS endpoint (11) (24)
Type Species Sex	: Sub-acute : mouse : male/female
Sex Strain	: CD-1
Route of admin.	: oral feed
Exposure period	: 28 days
Frequency of treatm.	: daily
Post exposure period Doses	: none : 50, 250, 500 or 2000 ppm
Control group	: yes, concurrent vehicle
NOAEL	= 500 - 2000 ppm
Method	: other
Year GLP	: 2004
GLF	: yes
	47 / 69

5. Toxicity	ld 288-88-0 Date			
Test substance	: as prescribed by 1.1 - 1.4			
Method	: The principal objective of this subacute (4-week) toxicity testing study was to establish dose levels of exposure for a subsequent subchronic (13-week) exposure study with 1,2,4-triazole in the mouse. 1,2,4-triazole was administered to groups of 15 male and 15 female CD-1 mice at dietary dose levels of 0, 50, 250, 500 or 2000 ppm for 4 weeks. Feed was available ad libitum at all times; the homogeneity and stability of 1,2,4-triazole as a dietary admixture was confirmed analytically.			
Result	 Mice were observed for moribundity, mortality and general clinical signs at least once per day; detailed clinical examinations, body weights and food consumption were measured weekly. Blood was collected (via orbital plexus) from non-fasted animals just prior to the termination of the in-life phase of the study and used for clinical and haematological determinations. All animals underwent a detailed post mortem examination and selected organs were weighed. Samples of all major organs, tissues and gross lesions were preserved. The mean daily compound intakes were 9, 47, 90 and 356 mg/kg bw/day for medae. 			
	for males and 12, 60, 120 and 479 mg/kg bw/day for females. Body weight, body weight gain and food consumption were not affected in males and females at dose levels up to 2000 ppm. There were no treatment-related findings or clinical observations in any treatment group. Clinical chemistry and haematology provided no indication of compound-			
	related changes in either sex at any dose level. No treatment-related gross lesions were seen at necropsy and there were no relevant differences in terminal body or organ weights. In the testes of high-dosed males slightly increased incidence and severity of certain background lesions (spermatid degeneration, depletion and asynchrony, and tubular atrophy) were noted in histopathology. Exfoliated germ cells and debris were found in the epididymides at a marginally increased incidence.			
Test substance Conclusion	 1,2,4-triazole; purity 99.9% NOAEL males: 500 ppm (equivalent to 90 mg/kg bw/day) based on slightly increased incidence and severity of degenerative background lesions in testes and epididymis at 2000 ppm. 			
Reliability	NOAELfemales: 2000 ppm (equivalent to 479 mg/kg bw/day) / highest dose tested.(4) not assignable			
14.10.2008	Range-finding study (9) (24)			
5.5 GENETIC TOXICIT	Y 'IN VITRO'			
Туре	: Bacterial reverse mutation assay			
System of testing	: Salmonella			
Test concentration	typhimurium TA 98, TA 100, TA 1535 and TA 1537 10.0; 33.3; 100.0; 333.3; 1000.0; and 5000.0 ug/plate			
Cycotoxic concentr.	: >= 1000 ug/plate			
Metabolic activation	: with and without			
	: negative			
Result				
Result Method	: OECD Guide-line 471			
Result Method Year	: 1989			
Result Method				
Result Method Year GLP	: 1989 : yes			

5. Toxicity	ld 288-88-0 Date 16.10.2008
	Vehicle: water. For the mutagenicity test the histidine-auxotrophic strains of Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 were used. Two sets of independent studies were performed (original and confirmatory study) with and without metabolic activation. The highest concentration applied was determined in the preliminary toxicity test with strains TA 98 and TA 100. Additionally, five lower concentrations spaced by a factor of 3 were tested. After preparation, the plates were incubated for 72 hours at 37 °C in darkness. Thereafter, they were evaluated by counting the number of colonies and determining the background lawn. Positive controls (without metabolic activation: sodium azide; 4-nitro-o-phenylene-diamine; with metabolic activation: 2-aminoanthracene) were included in the test in order to demonstrate the sensitivity of the test system.
Result	: In the preliminary toxicity test with S. typhimurium eight concentrations of 1,2,4-triazole ranging from 1.0 to 5000 ug / plate were tested with and without metabolic activation. From the obtained results 5000 ug / plate was selected as highest concentration for the mutagenicity experiments with S. typhimurium. In the original and confirmatory mutagenicity experiments performed without and with metabolic activation, treatment with 1,2,4-triazole at six concentrations in the range of 10 to 5000 ug / plate did not lead to an increased incidence of mutants in comparison with the negative controls. With the positive controls a marked increase of the number of revertant colonies was observed, thus indicating the sensitivity of the test system. Toxic effects, evidenced by a slight or complete reduction in the number of spontaneous revertants, occurred at 1000 and 5000 ug / plate, with and without metabolic activation.
Test substance Conclusion	 IH-I,2,4-triazole., purity 99.7%. Based on the results of this study and on standard evaluation criteria, it is concluded that 1,2,4-triazole did not induce gene mutations in the strains of
Reliability	 S. typhimurium used. (1) valid without restriction Guideline study; GLP
Flag 13.10.2008	: Critical study for SIDS endpoint (24)
Type System of testing Test concentration	 Bacterial reverse mutation assay Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 Exp 1: 100, 500, 2500, 5000, and 7500 ug/plate; Exp 2: 500, 1000, 2000, 3000, and 5000 ug/plate See results
Cycotoxic concentr. Metabolic activation Result Method Year GLP	 with and without negative OECD Guide-line 471 1981 no
Test substance Method	 as prescribed by 1.1 - 1.4 Also conducted in accordance with 84/449/EEC B.14, EPA-TSCA §
	 798.5265, JMAFF Vehicle: dimethylsulphoxide (DMSO). For the mutagenicity test the histidine-auxotrophic strains of Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 were used. The highest concentration applied was 7500 ug/plate. Additionally, four lower concentrations (5000, 2500, 500 and 100 ug/plate) were tested. A repeat experiment with 5 concentrations (500, 1000, 2000, 3000, and 5000 ug/plate) was performed with strains TA 98 and TA 100. After preparation and incubation, the plates were evaluated by counting the number of colonies and determining the background lawn. Positive controls (2-49 / 69

Toxicity	ld 288-88-0
	Date 16.10.2008
Result	 anthramine and 2-acetamidofluorene) were included in the test in order to demonstrate the sensitivity of the test system. In the original and confirmatory mutagenicity experiments performed without and with metabolic activation treatment with 1,2,4-triazole at concentrations in the range of 100 - 7500 ug/plate did not lead to an
	increased incidence of histidine-prototrophic mutants in comparison with the negative controls. With the positive controls a marked increase of the number of revertant colonies was observed, thus indicating the sensitivity of the test system. Growth inhibition was observed at 2000 ug/plate and above with strains TA 98 (without activation) and TA 100 (with and without activation), at 5000 ug/plate and above with strain TA 1537 (with
Testedetes	activation), and at 7500 ug/plate with strain TA 1535 (without activation).
Test substance Conclusion	 1,2,4-triazole, purity: 92.8% Based on the results of this study and on standard evaluation criteria, it is concluded that treatment with 1,2,4-triazole did not induce gene mutations in the strains of S. typhimurjum used
Reliability	 in the strains of S. typhimurium used. (2) valid with restrictions Confirmatory mutagenicity experiment performed on 2 Salmonella
13.10.2008	typhimurium strains only; not GLP (26
Туре	: Chromosomal aberration test
System of testing	: rat lymphocytes
Test concentration	 Initial assay: 0, 10.8, 21.6, 43.2, 86.4, 172.8, 345.5 and 691 ug/ml; Repeat assay: 0, 43, 87, 173, 346, 519 and 691 ug/ml
Cycotoxic concentr.	: > 691 ug/ml
Metabolic activation Result	: with and without : negative
Method	: OECD Guide-line 473
Year	: 2007
GLP Test substance	: yes : as prescribed by 1.1 - 1.4
Method	 Also conducted in accordance with USEPA OPPTS 870.5375 (1998); EC, B. 10 (2000) and JMAFF, Mutagenicity Guidelines (2001)
Result	 1,2,4-triazole was evaluated in an in vitro chromosomal aberration assay utilizing rat lymphocytes. Approximately 48 hours after the initiation of whole blood cultures, cells were treated either in the absence or presence of S9 activation with concentrations including 0 (solvent control), 10.8, 21.6, 43.2, 86.4, 172.8, 345.5 and 691 ug 1,2,4-triazole per ml of culture medium. The duration of treatment was 4 or 24 hours without S9 activation and 4 hours with S9 activation. The highest concentration was based on the limit dose of 10 mM in this assay system. Based upon the mitotic indices, cultures treated with targeted concentrations of 0 (solvent control), 172.8, 345.5, and 691 ug/ml in the absence (4 and 24 hour treatment) and presence of S9 activation, cultures were treated for 4 hours with concentrations including 0 (solvent control), 47, 87, 346, 519 and 691 ug 1,2,4-triazole per ml of culture medium. Based on mitotic indices, cultures with argeted concentrations. In a repeat assay in the presence of S9 activation, culture medium. Based on mitotic indices, cultures with targeted concentrations of 0 (solvent control), 346, 519, and 691 ug 1,2,4-triazole per ml of culture medium. Based on mitotic indices, cultures with targeted concentrations of 0 (solvent control), 346, 519, and 691 lag/ml were selected for determining the incidence of chromosomal aberrations. Positive controls (i.e., mitomycin C without S9 and cyclophosphamide with S9) were used both with and without metabolic activation to verify sensitivity of the assay. There were no significant increases in the frequencies of cells with aberrations in the presence or absence of metabolic activation. Cultures treated with the positive control chemicals in both assays had significantly
	higher incidences of abnormal cells in all assays.
Test substance	: 1,2,4-triazole, purity 99.3%

. Toxicity	ld 288-88-0 Date 16.10.2008			
	Date 10.10.2000			
Poliobility	chromosomal aberration assay utilizing rat lymphocytes.			
Reliability	: (1) valid without restriction Guideline study; GLP			
Flag	: Critical study for SIDS endpoint			
13.10.2008	(30			
Туре	: HGPRT assay			
System of testing	: Chinese hamster ovary cells			
Test concentration	Initial assay: 43.2, 86.4, 172.8, 345.5 and 691 ug/ml; Confirmatory assay:			
O	200, 300, 400, 500 and 691 ug/ml			
Cycotoxic concentr.	: > 691 ug/ml			
Metabolic activation Result	: with and without			
	: negative			
Method	: OECD Guide-line 476			
Year GLP	: 2007			
GLP Test substance	: yes : as prescribed by 1.1 - 1.4			
I COL OUDOLAIICE	. ας ριεςτιμέα by 1.1 - 1.4			
Method	: Also conducted in accordance with USEPA OPPTS 870.5300 (1998); EC, B. 17 (2000)			
Result	 cell/hypoxanthine-guanine-phosphoribosyl transferase (CHO/HGPRT) forward gene mutation assay. The genotoxic potential of the test material was assessed in two independent assays in the absence and presence of an externally supplied metabolic activation (S9) system with concentrations of 43.2, 86.4, 172.8, 345.5 and 691 ug/ml. The highest concentration was based on the 10 mM limit of the test system. In the confirmatory mutagenicity assay concentrations included 200, 300, 400, 500 and 691 ug/ml in the absence and presence of S9 activation. The adequacy of the experimental conditions for detection of induced mutation was confirmed by employing positive control chemicals, ethyl methanesulfonate for assays without S9 activation and 20-methylcholanthrene for assays with S9 activation. Solvent control cultures were treated with the vehicle used to dissolve the test material (i.e. distilled water). In the initial mutagenicity assay, in the absence of S9 activation, no toxicity was observed with relative cell survival (RCS) values ranging from 97.2 to 113.7%. In the presence of S9 activation, cultures treated with the test material displaced little to no toxicity with RCS values ranging from 91.1 to 113.9%. The mutant frequencies observed in cultures treated with the test material in the absence of some some some some some some some some			
	material in the absence and presence of S9 activation were not significantly different from the concurrent solvent control values. All mutant frequencies were within a reasonable range of historical background values.			
Test substance Conclusion Reliability	different from the concurrent solvent control values. All mutant frequencies			

5. Toxicity

ld 288-88-0 Date 16.10.2008

5.6 GENETIC TOXICITY 'IN VIVO'

5.7 CARCINOGENICITY

5.8.1 TOXICITY TO FERTILITY

Туре	:	Two generation study
Species	:	rat
Sex	:	male/female
Strain	:	other: Wistar Hannover
Route of admin.		oral feed
Exposure period	:	From 10 weeks premating P-generation through 61 days old for F2-pups
Frequency of treatm.	:	daily
Premating exposure per	iod	
Male	:	10 weeks
Female	:	10 weeks
Duration of test	:	From 10 weeks premating P-generation though day 61 of F2-pups
No. of generation	:	2
studies		
Doses	:	250, 500, and 3000 ppm
Control group	:	yes, concurrent vehicle
other: paternal NOAEL	:	< 250 ppm
other: maternal NOAEL		
other: reproductive		= 500 ppm
NOAEL		
Method	:	OECD Guide-line 416 "Two-generation Reproduction Toxicity Study"
Year	:	2005
GLP		yes
Test substance	:	as prescribed by 1.1 - 1.4
	-	
Method		Also conducted in compliance with: OPPTS 870.3800 Reproduction and Fertility Effects EU Guidelines on Reproductive Toxicity Studies, 91/414/EEC JMAFF 12 Nousan No. 8147 The principal objective of this study was to evaluate the potential reproductive toxicity of 1,2,4-triazole, including tests to evaluate developmental neurotoxicity. The rat was selected as the test species, based on its general acceptance and suitability as a rodent species for toxicological testing of this type.
		1,2,4-triazole was administered continuously via the feed to Wistar Hannover rats (30/sex/dietary level) at nominal dietary concentrations of 0, 250, 500, and 3000 ppm. To maintain a more constant dosage (on basis of mg/kg bw/day) throughout the entirety of the study the dietary levels were reduced for females during lactation. All test diets (including control) were available for ad libitum consumption; the homogeneity and stability of 1,2,4- triazole as a dietary admixture was confirmed analytically.
		Animals were observed for clinical signs and monitored for changes in body weight and food consumption. The evaluation of requisite guideline reproductive parameters for adult animals was conducted and included; oestrous cycling, mating, fertility, and gestation length. All animals placed on study underwent a post-mortem examination, which included (1) documenting and saving all gross lesions, (2) weighing designated organs and (3) collecting representative tissue specimens for histo-pathological evaluation and sperm analysis.
		52 / 69

5. Toxicity					288-88-0
				Date	16.10.2008
			d guideline requ the following ad		this two-generation vestigations:
Result	 (1) in-depth examinations of brain tissue from the P- and F1-generation adults, as well as the F1- and F2-generation 21-day-old pups, which included qualitative microscopic evaluations and gross and microscopic morphometric analyses; (2) the inclusion of additional microscopic investigative work on the ovarian tissue from the P-generation rats as it related to the identification of infertility in the 3000 ppm group during the conduct of this study; (3) expansion of the guideline requirements for the F1-generation ovarian counts to include a more in-depth study of the corpora lutea, based on findings from the P-generation ovarian data; and (4) determination of the onset of preputial separation and vaginal patency for F2 pups. International experts were consulted to assist with the analysis of the ovary (Dr. Paul Terranova) and to review the slides for neuropathology (Dr. Georg Krinke). The mean daily intake of the test substance (mg 1,2,4-triazole/kg bw/day) throughout this two-generation reproduction study at nominal dietary 				
	concentrations the following t		or 3,000 ppm, re	espectivel	y, is summarised in
	Mean daily int	ake of 1,2,4-tria	zole in two-gene	eration rep	production study:
	Phase of Stud Premating (P-	(mg/kg/d)(a)	500 ppm in (mg/kg/d)(a)	3000 pp (mg/kg/d	
	Male	15.4	30.9	188.6	
	Female	17.5	36.2	217.9	
	Premating (F1				
	Male Female	16 18.9	32 37.5	NA NA	
			07.0	1177	
	Gestation (P-ç Female	gen) 18.6	38.6	231.7(b))
	Gestation (P-ç Female	gen) 17.4	34.4	NA	
	each generati	on,	ed on the means at females in the		particular phase for n dose group.
	clinical signs i declines in bo generation ad decrease in bo	n either generat dy weight and b ult males and fe ody weight and ent in F1-genera	ody weight gain males of the 30 weight gain that	y level. Co were evic 00-ppm do was attrib	ompound-related
	the P-generati each) and only high-dose (30 before weanin generation. Th	ion, with only tw y three implanta 00 ppm) P-gene g, since there w here were no tes	o females delive tion sites (comp eration females a /ere too few pup st substance-rela	ared to 26 and pups v s to provid ated effect	65 for controls). All were sacrificed

5. Toxicity	Id 288-88-0 Date Date Length at any dietary level in either F1- or F2- generation except for decreased fertility in 3000-ppm P-generation females. No effects were observed on the oestrous cycle length or the number of cycles at any dose in either generation, including the 3000-ppm group of the P-generation. Other than the reduced fertility evident in the 3000 ppm dose group, no other effects were observed on any litter parameter in any dose group in either generation. There was also no effect on any sperm parameter that was attributed to the test substance.					
	At termination, treatment-related findings were evident only in the P- generation at the 3000 ppm dietary level and included: 1) decreased absolute brain weights in males and females; 2) increased incidence of cerebellar degeneration/necrosis in both genders; 3) statistically increase number of total Corpora lutea measured by quantitative ovarian analysi and increased ovary weights; and 4) increased incidence of uterine hor dilatation. No similar findings were evident in P-generation animals at lo dietary levels or in the offspring from either generation.					
	The following table su from the two generation					
	Dosage Levels (mg/kg/d)(a)	NOAEL (mg/kg/d)	LOAEL (mg/kg/d)	Key effects at LOAEL		
	 P-gen Premating: 0, 250, 500, 3000 ppr M:0, 15.4, 30.9, 188.6 and BWG		M:188.6	Dec. BW		
	degeneration and nec	crosis		Dec. Brain wt Cerebellar		
	F:0, 17.5, 36.2, 217.9	F:36.2	F:217.9	Dec. BW and BWG Dec. Brain weight Cerebellar		
	degeneration/necrosis	S		Inc. Corpora lutea		
				Uterine dilatation		
	F1-gen Premating:	F1:	F1:	F1:		
	0, 250 and 500 ppm M:(0, 16.0 and 32.0) BWG	M:<16.0	M:16.0	M:Dec. BW and		
	F:(0, 18.9 and 37.5)	F:37.5	F:>37.5			
	P-gen Gestation: Reproductive	Reproductive				
	0, 250, 500, and 3000 (0,18.6, 38.6 and 231		231.7	Dec. Fertility		
	sites			Dec. Implantation		
	F1-gen Gestation: 0, 250, and 500 ppm (0, 17.4 and 34.4) BW=Body weight BWG=Body weight ga (a)-Individual values		the means for	each particular phase.		
	(b)=Based on only two					

5. Toxicity	ld 288-88-0 Date
	Dec. = Decrease Inc. = Increase
	Paternal NOAEL: < 250 ppm (equivalent to < 16.0 mg/kg bw/day), based on retarded body weight gain at 250 and 500 ppm in F1 males.
	Maternal NOAEL: 500 ppm (equivalent to 36.2 mg/kg bw/day) based on lower body weights, degenerative findings in the cerebellum, increased number of Corpora lutea, and uterine horn dilatation at 3000 ppm in P females.
Test substance Conclusion	 Reproductive NOAEL: 500 ppm (equivalent to 34.4 mg/kg bw/day) based on reduced fertility and decreased implantation sites at 3000 ppm. 1,2,4-triazole, purity 99.9% 1,2,4-triazole produced considerable evidence of toxicity in P-generation animals at a dietary level of 3,000 ppm (188.6 and 217.9 mg/kg/day for males and females, respectively), including reduced fertility and provide the produced produced for the produced fertility and provide the produced for the produced for the produced for the produced for the produced fertility and provide the produced for the produc
	neuropathology. By comparison, the only evidence of toxicity at lower dietary levels of 250 and 500 ppm was slightly reduced body weight in F1- generation males. Based on these results, the reproductive (fertility) NOAEL is 34.4 mg/kg/day (500 ppm) and the LOAEL is 231.7 mg/kg/day (3000 ppm), based on findings in P-generation animals. No definitive parental NOAEL was established, based on a slight decrease in body weight in the F1-generation males at 16.0 mg/kg/day (250 ppm). However, for females, the parental NOAEL was demonstrated to be 36.2 mg/kg/day (500-ppm).
Reliability	: (1) valid without restriction Guideline study; GLP
Flag 14.10.2008	: Critical study for SIDS endpoint (12) (24) (32)

5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

Species Sex Strain	: rat : female : other: Bor: WISW (SPF Cpb)
Route of admin.	
	gavage
Exposure period	Gestation days 6 to 15
Frequency of treatm.	: Daily
Duration of test	Day 20 of pregnancy
Doses	: 10, 30, or 100 mg/kg bw/day in vehicle (0.5% aqueous Cremophor-EL emulsion)
Control group	: yes, concurrent vehicle
NOAEL maternal tox.	= 30 mg/kg bw
NOAEL teratogen.	: = 30 mg/kg bw
Method	: OECD Guide-line 414 "Teratogenicity"
Year	1989
GLP	Ves
Test substance	as prescribed by 1.1 - 1.4
Test substance	
Method	 Also conducted in accordance with EPA FIFRA, Subdivision F, §83-3, 87/302/EEC, JMAFF 59 NohSan No. 4200
	Test substance/vehicle mixtures were administered by oral gavage to groups of 25 successfully mated and presumably pregnant Bor: WISW (SPF Cpb) rats from day 6 to 15 of pregnancy at daily dose levels of 0, 10, 30, or 100 mg/kg bw/day in vehicle (0.5% aqueous Cremophor-EL emulsion). Maternal observations: viability, clinical signs were recorded daily, body weights were determined on days 0, 6 - 15, and 20. Termination: the dams underwent caesarian section on day 20 of
	55 / 69

5. Toxicity					d 288-	88-0	
	Date						
Result	 pregnancy. Determinations: nu and dead), sex of surviving fet weight per litter, runts, total ar examination of all fetuses for e number of fetuses (approxima (modified Wilson technique), r soft tissue evaluations. Test-article analyses demonst mixtures over a period of 8 da confirmed that all animals receiption in the soft ± 10%. 	tuses, w ad aver externa tely 30 emaini rated s ys. Ana	weight of age place I malforn % of tota ng fetuse stability o alyses of	each fe ental we nations, I) for vis es assign f the tes each do	tus, ave ight per investig ceral m ned to s t substa osing su	erage fetal litter, jation of a alformations keletal and ince/vehicle spension	
	Maternal data: There were no signs were observed. Mean be 100 mg/kg bw.						
	Body weight gains of dams (m		alues, gra	ım):			
	Time (mg/kg						
	Period 0	10		30		100	
	Dosing 28.2(100) Pregnancy 92.9(100) Where:	25.4(86.6(90.1) 93.2)	26.8(9 90.0(9	,	21.8*(77.3 79.9*(85.9	
	*=Statistically significant differ Data in brackets express body the controls. Fetal data: Fetal weight was re of runts was higher at 100 mg	v weigh educed	it gain as I at 100 r	a perce	entage c	of that seen in	
	Effects on fetuses (mean valu	- -					
	Parameter	00).	(mg/k	g bw/da	v)		
		0	Ì0 Ì	30 [·]	<i>´</i> 100		
	No. of implantations/dam	11.6	10.5	11.4	10.6		
	No. of males/dam	6.5	5.1*	6.0	5.0*		
	No. of females/dam	4.5	5.0	4.6	4.5		
	No. of males+females/dam No. of losses/dam	11.0 0.6	10.1 0.4	10.6 0.8	9.5 1.1		
	Mean weight of fetuses(g)	3.58	3.59	3.53	3.25*	*	
	Mean weight of placenta(g) No. of fetuses/litter with	0.56	0.56	0.57	0.56		
	minor skeletal deviations	2.0	2.41	2.84	2.42		
	malformations	0.05	0.05	0.05	0.17		
	No. of runts/litter	0.33	0.23	0.53	2.21*	*	
	Where: *or**=statistically significant at the 5% or 1% level, respectively.						
		ed malformations at 100 mg/kg bw/day affected only overe considered spontaneous in nature, as noted below					
	Rat Teratology study: Malform						
	Type of		g bw/day				
	Malformation	0	10	30	100		
	Microphthalmia, bilateral	1	0	0	0		
	Microphthalmia, right side Microphthalmia, left side	0 0	1 0	0 0	1 1		
	False posture of right	U	0	U	1		
	hind leg	0	0	1	0		
	Anophthalmia	0	0	0	1		
	Dysplasia and asymmetry of body of vertebrae and						
	vertebral arches of thoracic						

Toxicity	ld 288-88-0			
	Date 16.10.2008			
	spine and abnormal position			
_	of one rib 0 0 0 1			
Test substance	: 1,2,4-triazole; purity: 95.3%			
Conclusion	: Maternal NOAEL: 30 mg/kg bw/day based on retarded weight gain at 100			
	mg/kg bw.			
	Developmental NOAEL: 30 mg/kg bw/day based on an increased incidenc of runts and lower fetal weights at 100 mg/kg bw/day.			
Reliability	: (1) valid without restriction			
Rendbinty	Guideline study; GLP			
Flag	: Critical study for SIDS endpoint			
13.10.2008	(2) (24			
Species	: rabbit			
Sex	: female			
Strain	: other: New Zealand White rabbits [Hra: NZW:SPF]			
Route of admin.	: gavage			
Exposure period	: Gestation days 6 though 28			
requency of treatm.	: Daily			
Duration of test	: Gestation day 29			
Doses	5, 15, 30 and 45 mg/kg bw/day in vehicle (0.5% aqueous CMC)			
Control group	: yes, concurrent vehicle			
NOAEL maternal tox.	= 30 mg/kg bw			
NOAEL teratogen.	: = 30 mg/kg bw			
Method Year	: OECD Guide-line 414 "Teratogenicity" : 2004			
rear GLP	: 2004 : ves			
est substance	: yes : as prescribed by 1.1 - 1.4			
	· as prescribed by 1.1 - 1.4			
Vethod	: Also conducted in accordance with:			
	U.S. Environmental Protection Agency (1998). Health Effects Test			
	Guidelines; Prenatal Developmental Toxicity Study. Office of Prevention,			
	Pesticides and Toxic Substances (OPPTS) 870.3700, August, 1998.			
	U.S. Environmental Protection Agency (1997). Toxic Substances Control			
	Act (TSCA) Test Guidelines; Final Rule. Prenatal Developmental Toxicity,			
	799.9370 (cross referenced to OPPTS 870.3700). Federal Register,			
	August 15, 1997.			
	Japanese Ministry of Agriculture, Forestry and Fisheries (1 985). Guidance			
	on Toxicology Study Data for Application of Agricultural Chemical			
	Registration. 59 NohSan No. 4200.			
	1,2,4-triazole was administered by gavage to groups of twenty-five time-			
	mated New Zealand White rabbits [Hra: NZW:SPF] in 0.5% aqueous CMC			
	at dose levels of 0, 5, 15, 30 and 45 mg/kg bw/day on days 6 though 28.			
	The dosage volume was 10 mL/kg. Viability, clinical observations, body			
	weights and feed consumption were recorded. The animals were sacrifice on day 29 and examined for the number of distribution of Corpora lutea,			
	implantation sites and uterine contents. A gross necropsy of the thoracic,			
	abdominal and pelvic viscera was performed. Fetuses were weighed and			
	examined for gross external, visceral and skeletal alterations and sex.			
Result	: Five does in the 45 mg/kg/day dosage group were sacrificed due to their			
	moribund condition. All other does survived to day 29 of gestation (GD 29)			
	Adverse clinical observations related to the test substance occurred only i			
	the 45 mg/kg/day dosage group. The number of does with decreased			
	motor activity, clear perinasal substance, ptosis, excess salivation and			
	hyperphoea was significantly increased in this dosage group. Most of thes			
	observations occurred in the does that were sacrificed moribund. Addition			
	observations considered related to the test substance or inter-related with			
	the moribund condition of the doe included: scant feces, ungroomed coat,			
	head tilt, lacrimation, flared nostrils and cold to touch.			
	57 / 69			

5. Toxicity					ld Date	288-88-0	
	Body weight gains were significantly reduced for GDs 9 to 12, 21 to 24 and for the entire dosage period (calculated as GDs 6 to 29) and the entire study period (GDs 0 to 29) in the 45 mg/kg/day dosage group. Body weights did not significantly differ among the other groups. Gravid uterine weights were significantly reduced in the 45 mg/kg/day dosage group. No other statistically significant differences occurred among the groups for either body weight gains, corrected body weights (body weight on DG 29 minus the gravid uterine weight) or corrected body weight gains. Absolute and relative feed consumption values were unaffected by dosages of the test substance as high as 45 mg/kg/day.						
	Maternal body weight changes (kg) in rabbit development study (values represent mean +/- (SD)):						
	Dose group (mg/kg bw/d)(a) Days 6-29	0 +0.48	5 +0.40	15 +0.37	30 +0.38	45 +0.24**	
		(0.13)	(0.21)	(0.19)	(0.17)	(0.21) [20](b)	
	Days 0-29		+0.54 (0.25)		+0.55 (0.20)	+0.37** (0.23) [19](b)	
	Days 6-29C c	-0.07 (0.13)	-0.14 (0.18)	-0.14 (0.16)	-0.15 (0.17)	-0.21 (0.20) [19](b)	
	Days 0-29C c	+0.09 (0.15)	-0.01 (0.22)	+0.01 (0.01)	+0.02 (0.21)	-0.09 (0.22) [19](b)	
	Where: Days = days of gestation [] = number of values averaged a=Dosage occurred on days 6 through 28 of gestation b=Excludes values for rabbits that were moribund sacrificed or prematurely delivered c=29C = corrected maternal body weight [Day 29 of gestation body weight minus the gravid uterine weight] ** Significantly different from the control value (P<0.01)						
	Fetal weights (male, female and total) were significantly reduced in the 45 mg/kg/day dosage group. No other Caesarean-sectioning or litter parameters were affected by dosages of the test substance as high as 45 mg/kg/day.						
	Fetal body weight data represent mean +/- (S) in rabb	it develo	opment s	study (values	
	Dose group (mg/kg bw/d)(a)	0	5	15	30	45	
	Total fetuses	44.35 (3.37)	43.42 (5.85)	43.82 (5.70)		39.36** (5.20)	
	Male fetuses		43.91 (6.14)	44.25 (5.72)	42.39 (4.22)	39.65** (4.73)	
	Female fetuses		42.79 (5.51) [23](c)	43.64 (6.17)	42.40 (4.34)	38.70* (5.90)	
	58 / 6	69					

5. Toxicity						ld	288-88-0
-						Date	16.10.2008
	Where: [] = number of values averaged a=Dosage occurred on days 6 through 28 of gestation b=Litter 8081 had no male fetuses c=Litter 8039 had no female fetuses *Significantly different from the control value (P<0.05 "Significantly different from the control value (P<0.01)						
	absent ki of the ma dosage-c incidence	dneys and/o aternally toxi lependent a es of any gro	or an abs c 45 mg nd/or sig oss exter	sent urei /kg/day nificant nal, sofi	er) whic dosage differen tissues	h occurre group. Th ces in the or skeleta	low set, small, d in several fetuses ere were no other litter or fetal al alterations. tot differ among the
	Rabbits:	Fetal Soft T	issue Alt	erations	:		
	Paramete		ge [mg/k) 5	g bw] 15	30	45	
	Litters ev Fetuses	aluated evaluated	25 217	24 207	24 199	25 219	19 157
	Kidneys: Litter inci Fetal inci	dence0	0 0	0 0	0 0	1 3a,b,**	
	Kidneys: Litter inci Fetal inci	dence0	0 0	0 0	0 0	1 3a,b,**	
	Kidneys: Litter inci Fetal inci	dence0	0 0	0 0	0 0	2 2b,**	
	Ureter: a Litter inci Fetal inci	dence0	0 0	0 0	0 0	1 1b	
		s 8102-1 an 102-4 had d					S
Test substance Conclusion	: Maternal	zole, purity NOAEL: 30 ain, and clin	mg/kg b				, reduction in body /.
	a slight ir bw/day.	ncrease in u	rogenital				wer fetal weights and uses at 45 mg/kg
Reliability	: (1) valid Guideline	without restrees to without restrees without restrict the second s					
13.10.2008		- , ,					(1)
Species Sex Strain Route of admin. Exposure period Frequency of treatm.	: rat : female : other: Bo : gavage : Gestatior : Daily	r: WISW (S n days 6 to ⁄					
Duration of test		f pregnancy	/ 69				

Toxicity	ld 288-88-0
	Date 16.10.2008
Doses	: 100 or 200 mg/kg bw/day in vehicle (0.5% aqueous Cremophor-EL
Control group	emulsion)
Control group NOAEL maternal tox.	: yes, concurrent vehicle : <100 mg/kg bw
NOAEL teratogen.	1 < 100 mg/kg bw
Method	: OECD Guide-line 414 "Teratogenicity"
Year	: 1989
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: Also conducted in accordance with EPA FIFRA, Subdivision F, §83-3, 87/302/EEC, JMAFF 59 NohSan No. 4200
	Test article/vehicle mixtures were administered by oral gavage to groups of 25 successfully mated and presumably pregnant Bor: WISW (SPF Cpb) rats from day 6 to 15 of pregnancy at daily dose levels of 0, 100 or 200 mg/kg bw/day in vehicle (0.5% aqueous Cremophor-EL emulsion).
	Maternal observations: viability, clinical signs recorded daily, body weights determined on days 0, 6 - 15, and 20, food consumption determined from day 0-6, 6-11,11-16, and 16-20. Termination: the dams underwent caesarian section on day 20 of pregnancy.
Result	 Determinations: number of nidations, number of corpora lutea, weight of uterus, number of fetuses (live and dead), sex of surviving fetuses, weight of each fetus, average fetal weight per litter as well as malformations, placental weight, length of fetuses crown to rump, examination of all fetuses for external malformations, investigation of a number of fetuses (approximately 50% of total) for visceral malformations (modified Wilson technique), remaining fetuses assigned to skeletal and soft tissue evaluations. Test substance analyses demonstrated stability of the test substance/vehicle mixtures over a period of 8 days. Analyses of each dosing suspension confirmed that all animals received the intended dose within experimental limits of ± 10%.
	Maternal data: There were no mortalities. No treatment-related clinical signs were observed. Food consumption was not affected by treatment. Mean body weight gain was slightly reduced at 100 mg/kg bw/day and markedly lower at 200 mg/kg bw/day.
	Body weight gains of dams (mean values, gram):
	Time (mg/kg/day)
	Period 0 100 200 Desing 29 3(100) 27 4(93 5) 21 5*(73 4)
	Dosing29.3(100)27.4(93.5)21.5*(73.4)Pregnancy96.9(100)91.9(94.8)60.4**(62.3)Where:
	Where: *or**=Statistically significant at the 5% or 1% level, respectively. Data in
	brackets express body weight gain as a percentage of that seen in the controls.
	Fetal data: Fetal weight and placental weight were reduced at 100 and 200 mg/kg bw/day. The incidence of runts was higher at 100 and 200 mg/kg bw/day. The incidence of fetuses with minor skeletal deviations was higher at 100 mg/kg bw/day. The number of surviving fetuses per dam was reduced at 200 mg/kg bw/day. The incidence of fetuses with malformations was higher at 200 mg/kg bw/day.
	Effects on fetuses (mean values): Parameter (mg/kg bw/day)
	0 100 200 No. of corpora lutea/dam 13.6 13.9 14.2*

Toxicity					288-88-0
				Date	
	No. of implantations/dam	12.5	12.2	11.8	
	No. of males/dam	5.9	6.0	3.1**	
	No. of females/dam	6.1	5.9	2.4**	
	No. of males+females/dam		5.9 11.9	2.4 5.5**	
				5.5 6.3**	
	No. of losses/dam	0.5	0.3		
	Mean weight of fetuses(g)	3.55	3.06**		
	Mean weight of placenta(g)	0.59	0.52*	0.49**	
	No. of fetuses/litter with	0.07	4.00*	0.04	
	minor skeletal deviations	2.67	4.32*	2.24	
	No. of fetuses with	0.00	0.00	0.00*	
	malformations	0.29	0.63	0.80*	
	No. of runts/litter	0.24	2.84**	4.96**	
	Where: *or**=statistically significant	t at the 5%	5 or 1% l	evel, resp	pectively.
	The distribution of malforma	ations is si	ummarizo	ed below.	
	Rat Teratology study: Malfo	ormations:			
	Type of		g bw/day	<i>'</i>)	
	Microphthalmia, left side	2	0 0	́о	
	False posture of hind legs	0	0	1	
	Undescended testicle	2	11	6	
	Hydronephrosis	1	1	7	
	Multiple malformation	1	0	0	
	Cleft palate	0	0 0	4	
	Humeral dysplasia	0	0 0	1	
	General edema	0	0	0	1
	Long bone dysplasia	0	0	2	1
	Diaphragmatic hernia	0	0	2	
Test substance	: 1,2,4-triazole; purity: 94%	0	0	I	
Conclusion	: Maternal NOAEL: < 100 mg	a/ka bw/da	wheed	on rotard	lod woight gain at
Conclusion	100 mg/kg bw.	y/ky bw/ua	ly based	Unietaiu	ieu weigint gain at
		100 ma/ka	bw/dov/	hoood on	on increased
	Developmental NOAEL: < 1				
	incidence of runts, lower fet				
Deliebility	incidence of minor skeletal	deviations	at 100 r	ng/kg bw	•
Reliability	: (1) valid without restriction				
13.10.2008	Guideline study; GLP				(3) (2
					(0) (=
Species Sex	: rat : male/female				
Strain	: other: Wistar Hannover				
Route of admin.	: oral feed				
Exposure period	: From 10 weeks premating F	D_achoroti	on throw	ah 61 day	ve old for E2 pupe
		-yenerali		gnoruay	ya ulu iui rz-pups
Frequency of treatm. Duration of test	: Daily	D-gonoroti	on thous	h day 61	of E2 pupe
Duration of test	: From 10 weeks premating F	-yenerali	on moug	n uay ol	or i z-pups
	: 250 and 500 ppm				
Control group	: yes, concurrent vehicle				
NOAEL maternal tox.	: = 500 ppm				
NOAEL teratogen.	: > 500 - ppm				
Method	: other: OECD 416				
Year	: 2005				
GLP Test substance	: yes				
Test substance	: as prescribed by 1.1 - 1.4				
Method	: Also conducted in complian		Fortility F	ffocto	
Wethod	OPPTS 870.3800 Reprodu				4/EEC
Method	FU Guidalinas on Ponroduu		ity Studi	53, 31/41	
Metrioa	EU Guidelines on Reproduc JMAFF 12Nousan No. 8147				
Method	JMAFF 12Nousan No. 8147	7	nuously v	via the fee	ed to Wistar
Method		7 ered contir			

5. Toxicity	ld 288-88-0 Date 16.10.2008
	250, 500, and 3000 ppm. To maintain a more constant dosage (on basis of mg/kg bw/day) throughout the entirety of the study the dietary levels were reduced for females during lactation. All test diets (including control) were available for ad libitum consumption; the homogeneity and stability of 1,2,4-triazole as a dietary admixture was confirmed analytically. Additional details of this study provided in section 5.8.1.
Result	 Developmental toxicity: Following parturition, the litters were evaluated for effects on pup body weight, litter size, sex ratio, pup viability, onset of preputial separation and vaginal patency and anogenital distance (F2- pups only). The mean daily intake of the test substance (mg 1,2,4-triazole/kg bw/day) throughout this two-generation reproduction study at nominal dietary concentrations of 0, 250, 500 or 3,000 ppm, respectively, is summarised in the following table:
	Mean daily intake of 1,2,4-triazole in two-generation reproduction study:
	Phase of Study250 ppm in 500 ppm in 3000 ppm in (mg/kg/d)(a) (mg/kg/d)(a) (mg/kg/d)(a)
	Lactation (P-gen) Female 19.3 38.7 NA
	Lactation (F1-gen) Female 20.3 35.8 NA
	Where: a) Individual values were based on the means for each particular phase for each generation,
	The histopathological lesions in the cerebellum were identical to that observed in the sub-chronic and neurotoxicity study in rats and are characterized by variable loss of Purkinje cells, white matter degeneration and gliosis. The white matter tract degeneration presented as nerve fiber (axonal) swelling or fragmentation often with digestion chambers containing debris and macrophage. No similar changes were noted in the 500 ppm animals. The statistical differences associated with certain parameters of F2-pups (pup weights, preputial separation, brain- and spleen weights) are considered to be attributed to an incidental difference in the time of delivery for both the 250- and 500-ppm dietary groups, relative to concurrent controls, rather than exposure to the test substance. The control pups were heavier than the treated group pups and above the range of historic controls because more control dams delivered on gestation day 23 and fewer on day 21 in comparison to the treatment groups.
	The following table summarizes the developmental NOAEL and LOAEL and key findings from the two generation reproductive study with 1,2,4-triazole:
	Dosage LevelsNOAELLOAELKey effects(mg/kg/d)(a)(mg/kg/d)(mg/kg/d)at LOAEL
	P-gen Lactation: Developmental: Developmental: (0, 250, and 500 ppm) (F1/F2): (F1/F2): (0, 19.3 and 38.7) 35.8 >35.8
	F1-gen Lactation: (0, 20.3 and 35.8)
	BW=Body weight BWG=Body weight gain (a)=Individual values were based on the means for each particular phase.
	Developmental NOAEL: > 500 ppm (equivalent to > 35.8 mg/kg bw/day) 62 / 69

5. IC	oxicity		Id 288-88-0
			Date 16.10.2008
		based	
_			nent-related effects in F1 and F2 pups at 250 and 500 ppm.
	st substance	: 1,2,4-triazole, p	
Cor	nclusion		ncluding an extensive investigation of brain morphology, dence of developmental neurotoxicity at a dietary level of
		500-ppm.	
Rel	iability	: (1) valid without	restriction
	•	Guideline study	
13.1	10.2008		(12) (24) (32)
5.8.3	TOXICITY TO R	EPRODUCTION, OTHEI	R STUDIES
5.8.3	TOXICITY TO R	EPRODUCTION, OTHEI	R STUDIES
			R STUDIES
	TOXICITY TO R SPECIFIC INVE		R STUDIES
			R STUDIES
5.9			R STUDIES
5.8.3 5.9 5.10		STIGATIONS	R STUDIES
5.9	SPECIFIC INVE	STIGATIONS	R STUDIES
5.9	SPECIFIC INVE	STIGATIONS	R STUDIES

6. A	nalyt. Meth. for Detection and Identification	288-88-0 16.10.2008
6.1	ANALYTICAL METHODS	
6.2	DETECTION AND IDENTIFICATION	

7. Ef	ff. Against Target Org. and Intended Uses	ld Date	288-88-0
7.1	FUNCTION		
7.2	EFFECTS ON ORGANISMS TO BE CONTROLLED		
7.3	ORGANISMS TO BE PROTECTED		
7.4	USER		
7.5	RESISTANCE		

8. Mea	s. Nec.	to Prot.	Man,	Animals,	Environment
--------	---------	----------	------	----------	-------------

- 8.1 METHODS HANDLING AND STORING
- 8.2 FIRE GUIDANCE
- 8.3 EMERGENCY MEASURES
- 8.4 POSSIB. OF RENDERING SUBST. HARMLESS
- 8.5 WASTE MANAGEMENT
- 8.6 SIDE-EFFECTS DETECTION
- 8.7 SUBSTANCE REGISTERED AS DANGEROUS FOR GROUND WATER
- 8.8 REACTIVITY TOWARDS CONTAINER MATERIAL

. Refer	ences ld 288-88-0 Date 16.10.2008		
(1)	Argus Research (2004) Oral (Stomach Tube) Developmental Toxicity Study of 1,2,4- Triazole in Rabbits. Laboratory Project ID VCB00002.		
(2)	Bayer AG (1989) 1,2,4-triazole: Investigations into embryotoxic effects on rats after oral administration. Report No. 17401.		
(3)	Bayer AG (1989) 1,2,4-triazole: Investigations into embryotoxic effects on rats after oral administration. Report No. 17402.		
(4)	Bayer AG (2001) Vapor Pressure Curve of 1,2,4-Triazole. Bayer Report 200011.		
(5)	Bayer AG (2001) Water solubility and Henry Law Constant of 1,2,4-Triazole. Bayer Report 200007.		
(6)	Bayer AG (2002) 1,2,4-Triazole - Juvenile Growth Test, Fish (Oncorhynchus mykiss). Report No. DOM 21060.		
(7)	Bayer AG Institute of Toxicology (1976) 1,2,4-Triazole Occupational Toxicology Study. Report No. 5926.		
(8)	Bayer AG Institute of Toxicology (1979) 1,2,4-triazole: Subchronic Toxicological Study with Rats - Feeding study over three months. Report No. 8667.		
(9)	Bayer CropScience (2004) Technical grade 1,2,4-triazole: A subacute toxicity testing study in CD-I mouse. Report No. 200808.		
(10)	Bayer CropScience LP (2004) A Combined Subchronic Toxicity / Neurotoxicity Screening Study in the Wistar Rat with 1,2,4-Triazole. Report No. 201024.		
(11)	Bayer CropScience LP (2004) A Subchronic Toxicity Testing Study in the CD-I Mouse with 1,2,4-Triazole. Report Number 201052.		
(12)	Bayer CropScience LP (2005) A Two-Generation Reproductive Toxicity Study in the Wistar Rat with 1,2,4-Triazole. Report Number 201220		
(13)	Bayer Institute of Toxicology (1978) Determination of Acute Toxicity (LD50)		
(14)	Biospherics Incorporated (1983) Determination of the Hydrolysis Rate Constants of 1,2,4- Triazole. Project No. 83-E-074.		
(15)	CIBA-GEIGY Ltd. (1981) Acute Toxicity of CGA 98032 to Rainbow Trout. Project No. 82 14 18.		
(16)	CIBA-GEIGY Ltd. (1982) Report on the Test for Acute Toxicity of CGA 98032 to Algae. Project No. 82 14 17.		
(17)	CIBA-GEIGY Ltd. (1983) ACUTE TQXICITY OF CGA 98032 TO DAPHNIA MAGNA. Project No. B2 14 16.		
(18)	CIBA-GEIGY Ltd. Agricultural Division (1983) Physico-chemical Properties of 1,2,4-Triazole (CGA 71019). Chemodynamics AG 2.24.		
(19)	Huntingdon Life Sciences Ltd. (1995) 1,2,4-Triazole: Acute Toxicity to Daphnia magna. Report No. ENVIR/95/52		
(20)	Institute Fuer Umweltanayse Und Bewertungen (1990) Report Number 168 A/90 Z.		
(21)	Lide, D.R. Editor (2007-2008) CRC Handbook of Chemistry and Physics, 88th Edition, CRC Press, pg 3-488.		

9. Refer	ences Id 288-88-0			
	Date 16.10.2008			
(22)	Miller, G.C. (1983) Sunlight Photolysis of 1,2,4-H-Triazole in Distilled Water and Humic Acid Solutions.			
(23)	NOTOX (2000) DEGRADATION OF 1,2,4-TRIAZOLE IN THREE SOILS UNDER AEROBIC CONDITIONS. NOTOX Project 278336.			
(24)	RCC Ltd. (2003) 1,2,4-Triazole Summary Documentation According to Directive 91/414/EEC, Annex IIA, Point 5, Tier II, Section 3: Toxicological and Metabolism Studies; Updated by Bayer CropScience AG in 2006 and 2008			
(25)	RCC Ltd. (2005) DETERMINATION OF THE PARTITION COEFFICIENT (n-OCTANOL / WATER) OF CGA71019 INCLUDING EFFECT OF pH. Study No. A31612			
(26)	Rohm and Haas (1981) 1,2,4-Triazole: Microbial Mutagen Test. Report No. 81R-252.			
(27)	Rohm and Haas Company (1988) Soil Adsorption and Desorption of 1,2,4-Triazole. Technical Report No. 348-88-27.			
(28)	Rohm and Haas Company (1992) 1,2,4-triazole Acute Toxicity Range-Finding Study. Report No. 81R-057A.			
(29)	Tox Labs (1998) Evaluation of Skin Sensitisation by 1,2,4-Triazole with the Guinea-Pig Maximisation Test. Report No. Toxlabs/1998/7050 SEN			
(30)	Toxicology & Environmental Research and Consulting (2007) EVALUATION OF 1,2,4- TRIAZOLE IN AN IN VITRO CHROMOSOMAL ABERRATION ASSAY UTILIZING RAT LYMPHOCYTES. Laboratory Project Study ID 061123.			
(31)	Toxicology & Environmental Research and Consulting (2007) Evaluation of 1,2,4-triazole in the Chinese Hamster Ovary Cell/Hypoxanthine-Guanine-Phosphoribosyl Transferase (CHO/HGPRT) forward mutation assay. Laboratory Project Study ID 061122.			
(32)	Triazole Derivative Metabolite Group (TDMG) (2006) Revision to MRID No. 46467304. Revision Date: January 25, 2006			
(33)	USEPA (2008) Estimations Programs Interface (EPI) Suite®, Epiwin version 3.20.			
(34)	Wildlife International, Ltd. (2001) 1,2,4-Triazole: A 96-Hour Toxicity Test With The Freshwater Alga (Selenastrum capricornutum). Number 528A-101.			
(35)	WILDLIFE INTERNATIONAL, LTD. (2002) 1,2,4-TRIAZOLE: A 96-HOUR STATIC ACUTE TOXICITY TEST WITH THE RAINBOW TROUT (Oncorhynchus mykiss). PROJECT NUMBER: 512A-121.			

10. Summary and Evaluation	ld 288-88-0
To. Summary and Evaluation	Date 16.10.2008
10.1 END POINT SUMMARY	
10.2 HAZARD SUMMARY	
10.3 RISK ASSESSMENT	