201-16826A

RECEIVED

10 JAN-4 AT 7:16

Bromochloromethane Testing Rationale

CAS 74-97-5

I. INTRODUCTION

Albemarle Corporation (Albemarle) would like to submit a test plan for bromochloromethane in the Environmental Protection Agency's High Production Volume (HPV) Challenge Program.

Albemarle is committed to making existing test data publicly available for this chemical and to develop any additional screening level data needed on health and environmental effects, fate, and physicochemical properties. In order to minimize the use of animals in the testing of chemicals, Albemarle has conducted a thorough literature search for all available data, published and unpublished for bromochloromethane (BCM). It also has performed an analysis of the adequacy of the existing data. Further, it developed a scientifically supportable analogy for BCM and the related chemical dibromomethane (DBM, CAS 74-95-3) and used structure-activity relationship modeling as appropriate. This document describes the data available for bromochloromethane and its dihalogenated methane analog dibromomethane (DBM). Data on both chemicals are included to provide justification for the proposed analogy. Robust summary documents have been prepared and are included for each of these chemicals in this submission. Finally, the rationale for proposed testing is described. No testing of whole animals is proposed in this test plan.

II. DEVELOPMENT OF THE DIHALOMETHANE ANALOGY

Structurally, BCM and DBM are brominated analogs of dihalogenated methanes. The halogen substituents are bromine and chlorine. Figure 1 gives the names, CAS numbers, and structures of the substances.

Figure 1. Dihalogenated Methanes Included in the HPV Program

a. bromochloromethane (BCM) CAS 74-97-5

b. dibromomethane (DBM) CAS 74-95-3

Both of these substances are clear, colorless chemicals at room temperatures. They are not flammable, and are co-manufactured in the same processes. Primary uses for both have been as chemical intermediates, and in fire extinguishing applications. Similarities of physico/chemical properties, toxicity and metabolism are described in the testing rationale sections.

III. MANUFACTURING, USE AND EXPOSURE INFORMATION

Bromochloromethane is manufactured by reacting dichloromethane with anhydrous aluminum bromide (treatment with bromine and aluminum) or by reaction with hydrogen bromide in the presence of an aluminum halide catalyst, followed by water washing and distillation (Stenger, V.A., 1978). Dibromomethane is manufactured alongside bromochloromethane production.

The largest category of current use for these chemicals is as chemical intermediates in the synthesis of a variety of organic chemicals. Because the majority of the current production volume is converted to other chemicals (i.e., is used as a chemical intermediate), human and environmental exposure to the original chemicals is limited.

Historically, bromochloromethane was used as a fire-extinguisher fluid in aircraft and in portable extinguishers (Stenger, V.A., 1978). These are no longer applications for BCM because of regulation based on it's calculated ozone-depleting potential. The US Environmental Protection Agency found that BCM was an unacceptable replacement for ozone-depleting substances in various industry sectors, including fire suppression, under the Significant New Alternatives Program (US EPA, 1999). The areas for which BCM is considered unacceptable include total flooding applications in fire suppression and explosion protection systems, as replacement for CFC113, methyl chloroform and HCFC141b in metals cleaning, electronics cleaning and precision cleaning, in aerosols as a solvent as a substitute for CFC113, methyl chloroform and HCFC 141b, and in adhesives, coatings and inks as a carrier solvent. EPA, in accordance with the Montreal Protocol on Substances that Deplete the Ozone Laver, implemented regulations listing it as a substance subject to production and consumption controls under the Clean Air Act in July, 2003 (US EPA, 2003). The regulations listed BCM as a new group (Group VIII) under Class I substances that deplete the ozone layer, with an ozone depletion potential of 0.12. This established a full ban on production and import of BCM unless the production or import is for destruction or transformation. There are provisions for exemptions for essential uses, laboratory and analytical uses.

Dibromomethane is used in organic synthesis and as a solvent for fats, waxes and resins, in gage fluids, and as a heavy liquid in solid separations. A previous use was also as an ingredient of fire extinguishing fluids.

Because of use as chemical intermediates, the potential for exposure to bromochloromethane and dibromomethane exists primarily in the workplaces of the manufacturers and their customers. Bromochloromethane has an occupational exposure limit of 200 ppm as an 8-hour time weighted average (OSHA Permissible Exposure Limit and ACGIH Time Weighted Average). The manufacturers use and recommend both personal protective equipment and engineering controls. Splash-proof chemical safety goggles, full-faceshields, or full-face respirators are recommended to protect against eye contact. Local exhaust ventilation is recommended to minimize inhalation exposure. Organic vapor cartridge respirators are recommended for use if there is a potential for exposure to vapors or mists. In case of a spill or leak, appropriate protection, which may include a respirator with supplied air, is required. Appropriate gloves, aprons, and chemical resistant clothing are used to prevent dermal contact.

IV. TEST PLAN RATIONALE

There is a large amount of screening level test data available for dibromomethane from literature references and more current data produced for dibromomethane under the TSCA Section 4 Test Rule for HPV Unsponsored Chemicals issued on March 16, 2006 (71 FR 13708). These data allow the use of analogy and estimation to predict effects where data are missing for bromochloromethane. The robust summary documents enclosed for each chemical summarize the available studies. The critical studies to fulfill required HPV Challenge endpoints were chosen according to several factors, including documentation and detail, when the study was conducted, and access to a detailed publication or report. Overall, existing data or calculated values have been identified for all of the HPV Challenge screening level endpoints.

a. Physical Properties

The physical properties for both the chemicals are summarized in Table 1 below. Both the compounds are liquids at room temperature, with relative densities ranging from 1.93 to 2.5 gm/cu cm at 20°C. The boiling points range from 68 to 94.1 °C. The vapor pressures at 25°C range from 35.3 (DBM, measured, O'Connor, 2007) to 142 mm Hg (BCM, estimated). The water solubility estimates for BCM range from 5.3 to 16 gm/l with a comparable measured value for DBM of 9.0 grams per liter at 20 °C. The range of the log of the octanol-water partition coefficients (log P or log Kow) is from 1.41 to 1.68. These data are sufficient to describe the physical properties of this category, and no further testing is proposed.

Property	Bromochloromethane	Dibromomethane
Molecular Weight	129.38	173.86
Melting Point ($^{\circ}C$)	-70 to -87.95 °C	< -20.0 °C (exp)
Boiling Point ($^{\circ}C$)	68 °C	94.1 °C (367 K) (exp)
Density g/cc at 20'C	1.9344 @ 20°C	2.4969 @ 20°C
Vapor Pressure	142 mm Hg @ 25°C	35.3 mm Hg @25°C (exp)
Log P	1.41 (est)	1.68 @ 22.5 °C (exp)
Water Solubility	5.3 to 16 g/l @ 20°C	9.0 g/l @ 20 °C (exp)

Table 1: Physical Properties	Table 1:	Physical Pro	operties
-------------------------------------	----------	---------------------	----------

exp = experimental est = estimated

b. Metabolism

Metabolism of bromochloromethane and dibromomethane is similar. Biotransformation of dihalomethanes leads to dehalogenation with an endproduct of carbon monoxide (described in Cassarett and Doull, 1986). These processes have been determined by <u>in vitro</u> and <u>in vivo</u> experimentation.

The process of metabolism has been shown <u>in vitro</u> to produce carbon monoxide and inorganic bromide by microsomal enzymes of liver, lungs and kidneys, but not of the brain, or spleen. The oxidation appears to be catalyzed by a cytochrome P-450 dependent system. (cited in US EPA, 1990)

Administration of dibromomethane to rats <u>in vivo</u> resulted in increased levels of carboxyhemoglobin, indicative of metabolism to carbon monoxide and inorganic bromide (as cited in US EPA, 1990). Similarly, carboxyhemoglobin levels were increased in rats injected with bromochloromethane intraperitioneally (Kubic, 1974 as cited in HA, 1989), with a maximum saturation of 5% carboxyhemoglobin after 4 hours. Svirbely et al (1947) reported release of inorganic bromide in dogs, rats and rabbits exposed to 1000 ppm BCM by inhalation for 7 hours per day, 5 days per week for 14 days. Blood bromide levels were shown to increase in various species after inhalation exposure by other researchers (Torkelson, 1960, McDougal, 1985, Anderson, 1980, Gargas, 1982)

c. Environmental Fate

In general, halobromomethanes do not absorb light in the environmental UV spectrum (> 290 nm). Thus, direct photolysis would have only a minor effect on the atmospheric lifetime of bromochloromethane. Indirect photolysis via reaction with hydroxyl radicals can be estimated. The rate constant for reaction of vapor-phase chlorobromomethane with photochemically produced hydroxyl radicals has been estimated to be 0.93 to 1.11 x 10⁻¹³ cu cm/molecule-sec @ 25° C (Orkin et al, 1997 and DeMore, 1996 as cited in Hazardous Substances Database, HSDB). This corresponds to an atmospheric half-life of 145 days at an atmospheric concentration of 5 x 10^{+5} hydroxyl radicals per cu cm (Syracuse Research Corporation as cited by HSDB). Similarly, calculation of the rate constant using AOP v. 1.92 from EPISUITE (v. 4.0) yields a value of $0.099e^{-12}$ cu cm/molecule-sec giving a half-life estimate of 107.63 days.

If released into water, hydrolysis is not expected to be a significant process as the hydrolysis half-life of BCM under environmental conditions at 25 °C has been estimated at 44 years. (Mill, T, 1982 as cited in HSDB). Half-life estimate by the same authors for dibromomethane is 183 years. (Mabey and Mill, 1978 as cited in US EPA, 1990). Half-lives for both chemicals calculated with HYDROWIN v. 2.00 (EPISUITE v. 4.0) also were in years. However, these modeling programs may underestimate neutral hydrolysis under environmental conditions. An experimental hydrolysis study of dibromomethane determined half-lives at various pH values to range from 50 to 122 days. (Fackler, 1989)

Modeling of biodegradation using BIOWIN v. 4.10 (EPISUITE v. 4.0) predicts that neither bromochloromethane nor dibromomethane meet the definition of ready biodegradation. However, biodegradation could be a factor in the ultimate environmental fate of BCM. Screening studies have shown degradation in settled domestic wastewater inoculum under aerobic conditions, and in standard tests with activated sludge innoculum. One report indicated 100% of BCM was degraded after the initial seven-day incubation period and in each subsequent subculture with static incubation of 5 and 10 mg/I BCM in the Bunch and Chambers static culture flask biodegradability screening test (Tabak, 1981 as cited in HA, 1989). This would indicate significant biodegradation and rapid adaptation. Anaerobic microbial degradation with soil bacteria has also been reported (Kobayshi, 1982.) Based on estimated log Koc values (DBM 24 and BCM 29-137), the dihalogenated methanes would be expected to have moderate to rapid migration through soils and low to moderate sorption to soils, (HSDB for DBM, HA for BCM). Adsorption to sediments is predicted to be not significant (US EPA, 1985).

Neither of the dihalogenated bromomethanes is likely to bioaccumulate in aquatic organisms based on the estimated bioconcentration factors calculated from octanol-water partition coefficients. Estimated BCF values of 2.4 to 3.96 (BCM) and 2.79 to 6.15 (DBM) suggest that bioconcentration potential in aquatic organisms is low.

There are sufficient data for these dihalogenated methanes to characterize the fate of these chemicals. Neither of the dihalogenated bromomethanes meet the criteria for Persistent, Bioaccumulative and Toxic (PBT) chemicals, and no further environmental fate testing is proposed.

Endpoint	Bromochlo	romethane	<mark>Dibromo</mark>	methane
Direct Photodegradation	Not ex	pected	Not ex	pected
Indirect Photolysis (atmospheric half-life)	108 to 145	days (est)	146 da	ys (est)
Hydrolysis	Not signif	icant (est)	Not signif	icant (est)
Distribution	Air:	44 %	Air	34%
(PBT profiler)	Water:	40 %	Water	36%
,	Soil:	16%	Soil	29%
	Sediment:	0%	Sediment	0%
Level III Fugacity	Air:	40.5%	Air:	40.5%
(EPISUITE v. 4.0)	Water:	37.8%	Water:	35.9%
	Soil:	21.6%	Soil:	30.1%
	Sediment:	0.104%	Sediment:	0.0983%
Biodegradation	Not ready bi	odegradable	Not ready bi	odegradable
Log Koc	29 to 1	37 (est)	24 (est)
Bioaccumulation: BCF	2.4 to 3.	.96 (est)	2.79 to 6	6.15 (est)

Table 2: Environmental Aspects

d. Aquatic Toxicity

A fathead minnow toxicity test for bromochloromethane was summarized by the EPA as having a NOEL of 80 mg/l and an LC50 of greater than 80 mg/l. (US EPA, 1990 citing Dow studies) Experimental data for dibromomethane in fish showed a trout LC50 of 45 mg/l and NOEC of 32 mg/l (Goodband, 2007b). Acute toxicity testing of dibromomethane in invertebrates (*Daphnia magna*) gave an EC50 of 66 mg/l and a NOEC of 32 mg/l (Goodband, 2007a). Invertebrate studies were not found for bromochloromethane, but a value of 164 mg/l for an acute invertebrate LC50, 48 hours, can be estimated by using the modeling program ECOSAR v. 1.00 (EPISUITE v. 4.0). DBM testing in algae produced EC50 values for growth of 210 mg/l at 96 hours, for yield 130 mg/l at 96 hours and for biomass integral, 110 mg/l (Vryenhoef, 2007).

Regrowth tests showed that dibromomethane was algistatic in action. Estimation of acute algal EC 50 for BCM can be made by ECOSAR, yielding a value of about 61 mg/l.

As there is a sufficient screening amount of acute aquatic toxicity data available for chemicals in this category, either by testing or estimation, no further testing is proposed.

Endpoint	Bromochloromethane	Dibromomethane
Acute fish LC50, 96 hours		
Trout		45 mg/l
Fathead minnow	> 80 mg/l	_
Acute invertebrate LC50, 48 hours	164 mg/l (ECOSAR)	66 mg/l
Acute algal, EC50, mg/l, 96 hrs	60.79 (ECOSAR	
Growth		210 mg/l
Yield		130 mg/l
Biomass integral		110 mg/l
		-

Table 3: Aquatic Toxicity

e. Mammalian Toxicity

The dihalogenated methanes have been tested for acute toxicity by several routes of administration. Rat oral LD50 values are generally greater than 1000 mg/kg for both chemicals. Rat inhalation LC50 values for bromochloromethane in rats have ranged from 3000 ppm to greater than 5000 ppm for 7-hour exposures. Signs observed in acute toxicity tests are related to central nervous system toxicity. Liver and kidney effects have been seen in animals after single exposures.

	LD50	
First halogen group	bromo	bromo
Second halogen	bromo	chloro
Rat, oral	> 1 g/kg	> 5 to < 7 g/kg
Rat, inhalation, LC50		5000 ppm/ 7 hr
and exposure length		> 38.6 mg/l / 4 hr
Mouse, oral		4.3 g/kg
Rabbit, dermal	> 4 gm/kg	> 5 gm/kg

The rabbit dermal LD50 values for the di-substituted compounds are > 4 gm/kg by single dermal applications.

These materials are irritants to the eyes, and can cause irritation to corrosion of the skin if the skin is occluded by clothing. An animal sensitization test for bromochloromethane showed some skin sensitization potential, but not sufficient to lead to classification in the EU.

No further testing is proposed for the dihalogenated methanes for acute mammalian toxicity endpoints.

f. Mammalian Repeated Dose Toxicity

Oral and inhalation repeated exposure studies have been completed on bromochloromethane and dibromomethane using various animal species.

Bromochloromethane has been tested by subchronic repeated dose exposure by the inhalation route in rats, mice, guinea pigs, rabbits and dogs. Studies have ranged in length from 14 weeks to about 6 months. Dose levels ranged from 370 ppm (rats) to about 1000 ppm in all. Exposures were usually 5 to 7 hours in length, 5 days per week. Generally effects seen at 500 ppm to 1000 ppm were minor such as decreased body weights, increased relative liver and kidney weights and reversible histology in the liver and kidney. Exposure of mice to 1000 ppm caused death and marked liver injury in mice, suggesting mice were more susceptible than other species.

Dibromomethane also has repeated dose inhalation studies in rats, rabbits, dogs exposed for at least 90 days for 6-7 hours, 5 days per week. Exposure concentrations for these studies ranged up to 150 ppm in concentration.

Based on the length of studies, the multiple routes and species, as well as consistent critical effects seen for both the compounds, no further repeated exposure animal testing is proposed.

g. Genetic Toxicity

Standard bacterial mutagenicity assays (with and without metabolic activation) and chromosome aberration tests have been conducted for bromochloromethane and dibromomethane. Results of these tests have been considered positive evidence of mutagenicity. (IRIS, Bromochloromethane Carcinogenicity Assessment, as revised in 1991).

Bromochloromethane was mutagenic in Salmonella typhimurium and E. coli tests and induced sister chromatid exchange and chromosome aberrations in Chinese hamster cells in vitro (as reported in US EPA, 1990).

Dibromomethane was reported to be mutagenic in some strains of S. typhimurium (TA100 and TA 1950) and E. Coli (WU 361089 and K39) without metabolic activation and in TA 100 with metabolic activation, and weakly mutagenic in Saccharomyces cerevisiae strain D3 (as reported in US EPA, 1990). In more recent testing, DBM was considered clastogenic in a chromosome aberration test using human lymphocytes (Wright, 2007).

<i>in vitro:</i> gene mutation Bacteria: Ames test	Positive	Positive
<i>in vitro:</i> chromosome aberrations Cytogenetics, CHO or CHL	Positive	Positive (human lymphocytes)

No further testing is proposed for genetic toxicity endpoints for this group.

h. Developmental and Reproductive Screening

Although reproductive tests were not found for bromochloromethane, reproductive target organ effects were seen in some species in repeated dose studies. BCM exposure caused

decreased spermatogenesis and fibrosis in testicular tubules of guinea pigs and rabbits subchronically (114 days) exposed by inhalation to doses equivalent to 344.18 to 357.25 mg/kg and 257.23 –to 267.00 mg/kg/day respectively (Torkelson, et al. 1960)

A reproduction screening study in rats for dibromomethane by the oral route using current methodology found decreased mating performance and reduction of litter size at birth at the high dose level (500 mg/kg/day). Histopathology of reproductive organs revealed no pathology. High dose males had effects on epididymal and testes weights. No teratologic effects were noted. (Dhinsa, N.K., 2007).

	Bromochloromethane	Dibromomethane
Reproduction Toxicity	Male target organ effects in guinea pigs, rabbits in repeated inhalation exposure studies at doses approximately 350 and 250 mg/kg respectively	1 generation screening study: effects on reproduction at 500 mg/kg/day given orally
Developmental		1 generation screening study:
Toxicity		no developmental effects

As there is adequate information on the brominated homologs of halogenated methanes at the screening level for reproductive toxicity, no further testing for these endpoints is proposed.

DATA GAPS AND TEST PLAN

As mentioned previously, data existing for bromochloromethane, data from the analogous chemical dibromomethane, and estimations that can be calculated using modeling programs are adequate for screening level evaluation of bromochloromethane as a high production volume chemical. No further testing is proposed for bromochloromethane.

	Bromochloromethane
Photodegradation	S
Hydrolysis	S
Fugacity	S
Biodegradation	S
Acute fish	Α
Acute invertebrate	C, S
Acute algal	C, S
Acute toxicity	Α
Repeated dose toxicity	Α
Genetic Toxicity	Α
Reproductive toxicity	С
Developmental toxicity	C

Summary of Data Gaps and Method of Completion

A = Adequate data available

T = Testing to be done

S = Structure-activity relationship (modeling program used)

C = Use of Category Approach (read across)

Category References:

Andersen, M.E., M.L. Gargas, R.A. Jones and L. Jenkins, Jr., "Determination of the Kinetic Constants for Metabolism of Inhaled Toxicants in vivo Using Gas Uptake Measurements," Toxicol Appl Pharmacol 53(1): 100-116, 1980.

Casarett and Doull's Toxicology, 3rd edition, Doull, J., C.D. Klassen, and M.D. Amdur (eds), New York, MacMillan Co., Inc., p. 647. 1986.

Dean, J.A., Handbook of Organic Chemistry, New York, NY, McGraw-Hill Book, Co., p. 4-47, 1987

DeMore, W.B., J Phys Chem 100: 5813-20, 1996 as cited in Hazardous Substances Database.

Dhinsa, N.K., and S. Fulcher, "Dibromomethane: Oral (Gavage) Reproduction/Developmental Toxicity Screening Test in the Rat," SPL Project Number 0466/0261, SafePharm Laboratories, UK, May, 2007

Fackler, P.H., ."Determination of the Hydrolysis Potential of Dibromomethane as a Function of pH at 25° C", Springborn Life Sciences, Inc, June 15, 1989.

Gargas, M.L. and M.E. Andersen, "Metabolism of Inhaled Brominated Hydrocarbons: Validation of Gas Uptake Results by Determination of a Stable Metabolite," Toxicol. Appl. Pharmacol. 66(1): 55-68, 1982

Gargas, M.L., H.J. Clewell and M.E. Andersen, "Metabolism of Inhaled Dihalomethanes in vivo: Differentiation of Kinetic Constants for Two Independent Pathways," Appl. Pharmacol. 82(2): 211-223, 1982.

Goodband, T.J. and D. Mullee, "Dibromomethane: Acute Toxicity to Daphnia Magna" .SPL Project Number 0466/0264, SafePharm Laboratories, June 22, 2007. Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, 2007a.

Goodband, T.J., and D. Mullee, "Dibromomethane: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss)" SPL Project Number 0466/0263, SafePharm Laboratories, June 22, 2007. Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, 2007b.

HA: See US EPA 1989.

IRIS, Integrated Risk Information System, Bromochloromethane, on line and last revised 03/01/1991.

Kobayashi, H, and B.E. Rittman, Environ Sci Tech 16, pp 170A-83A, 1982.

Kubic, V.L., M.W. Anders, R.R. Engel, C.H. Barlow and W.S. Caughey, "Metabolism of Dihalomethanes to Carbon Monoxide," I. In Vivo Studies. Drug Metab Dispos, 2(1): 53-57, 1974 as cited in HA.

Mabey, W. and T. Mill, "Critical Review of Hydrolysis of Organic Compounds in Water under Environmental Conditions," J Phys Chem Ref Data, 7:383-415, 1978

McDougal, JN, GW Jepson, HJ Clewell, and M.E. Anderson, "Dermal Absorption of Dihalomethane Vapors," Toxicology and Applied Pharmacology, 79, pp 150-158, 1985.

Mill, T., "Validation of Estimation Techniques for Predicting Environmental Transformation of Chemicals, US EPA 68-01-6269, Washington, D.C., 1982

O'Connor, B.J. and D.M. Mullee, "Dibromomethane: Determination of General Physico-Chemical Properties," SPL Project Number: 0466/0259, Safepharm Laboratories, U.K., May 16, 2007. Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, 2007.

Orkin, V.L. et al, J Phys Chem A 101: 174-178, 1997, as cited in Hazardous Substances Database.

Stenger, VA, Bromine Compounds, in: Kirk-Othmer Encyclopedia of Clinical Technology, Vol. 4, 3rd edition, M. Grayson and D. Eckroth, ed. John Wiley and Sons, Inc,. New York, NY, p. 252-253, 1978

Svirbely, J.L., B. Highman, W.C. Alford, and W.F. von Oettingen, "The Toxicity and Narcotic Action of Mono-chloro-mono-bromomethane with Special Reference to Inorganic and Volatile Bromide in Blood, Urine, and Brain," J. Ind. Hyg. Toxicol, 29:382-389, 1947.

Tabak, H.H., S.A. Quave, C.I. Mashni, and E.F. Barth, "Biodegradability Studies with Organic Priority Compounds," J Water Pollut Control Fed., 53, pp 1503-18, 1981.

Torkelson, T.R., F. Oyen, and VK Rowe, "The Toxicity of Bromochloromethane (Methylene Chlorobromide) as Determined on Laboratory Animals," American Industrial Hygiene Association Journal, Vol. 21, No. 4, 1960.

US EPA, "Health and Environmental Effects Profile (HEEP) for Methylene Bromide". Prepared by the Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, D.C., 1987.

US EPA: "Bromochloromethane, Health Advisory", (HA), Office of Water, U.S. Environmental Protection Agency, October, 1989.

U.S. EPA: "Health and Environmental Effects Document for Bromochloromethane," (HEED). Prepared by the Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, D.C., 1990.

US EPA: Federal Register, Vol. 64, No. 81, April 28, 1999, Environmental Protection Agency, Protection of the Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances, Final Rule, 1999.

US EPA, Federal Register, Vol. 68, No. 138, Friday, July 18, 2003, Environmental Protection Agency, 40 CFR Part 82, Protection of Stratospheric Ozone: Phaseout of Chlorobromomethane Production and Consumption; Final Rule, 2003.

US EPA, Federal Register, Vol. 71, No. 51, Friday, March 16, 2006, Environmental Protection Agency, 40 CFR Parts 9 and 79, Testing of Certain High Production Volume Chemicals; Final Rule, p 13707-13735, 2006.

Vryenhoef, H., and D.M. Mullee, "Algal Growth Inhibition Test", SPL Project Number: 0466/0265, SafePharm Laboratories, U.K., Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, May 15, 2007.

Wright, N.P., "Chromosome Aberration Test in Human Lymphocytes In Vitro," SPL Project Number 0466/0262, SafePharm Laboratories, U.K., May 15, 2007.

IUCLID

Data Set

Memo	: BCM HPV dossier
CAS No.	: 74-97-5
EC No.	: 200-826-3
EINECS Name	: Bromochloromethane
CAS Name	: Bromochloromethane
Common name	: BCM
Molecular Formula	: C H2 Br Cl

Number of pages : 34

1. General Information

Id 74-97-5

Date 04.28.06

1.0.1 APPLICANT AND COMPANY INFORMATION

1.0.2 LOCATION OF PRODUCTION SITE, IMPORTER OR FORMULATOR

1.0.3 IDENTITY OF RECIPIENTS

1.0.4 DETAILS ON CATEGORY/TEMPLATE

1.1.0 SUBSTANCE IDENTIFICATION

Smiles Code	: C(Cl)Br
Molecular formula	: CH2 Br Cl
Molecular weight	: 129.38 (CRC Handbook of Chemistry, 1998)

1.1.1 GENERAL SUBSTANCE INFORMATION

Purity type :	Typical for marketed substance
Substance type :	organic
Physical status :	Liquid
Purity :	= > 98% w/w
Colour :	Colorless to light yellow
Odour :	Sweet

04.28.06

1.1.2 SPECTRA

1.2 SYNONYMS AND TRADENAMES

Remark	:	CAS name: Bromochloromethane
Remark	:	Pure substrance: Methylene chlorobromide
Remark	:	Pure substrance: Monochloromonobromomethane
Remark	:	Pure substance: chloromethyl bromide
Remark	:	Pure substance: methane, chlorobromo
Remark	:	Trade name: BCM
Remark	:	Trade name: Halon 1011
Remark	:	Trade name: Chlorobrom
Remark	:	Trade name: MIL-B-4394-B

1. General Informa	tion	ld 74-97-5
		Date 04.28.06
1.3 IMPURITIES		
1.4 ADDITIVES		
1.5 TOTAL QUANTITY		
1.6.1 LABELLING		
Labelling Specific limits Symbols R-Phrases S-Phrases 04.28.06	 provisionally by manufacturer/imp No Xn (20) Harmful by inhalation (23) Do not breathe fumes/vapou 	
1.6.2 CLASSIFICATION		
Classified Class of danger R-Phrases Specific limits 04.28.06	 provisionally by manufacturer/imp Harmful (20) Harmful by inhalation No 	porter
1.6.3 PACKAGING		
1.7 USE PATTERN		
Remark	extinguishers (Stenger, VA, 1978) (Kuney, JH, 1988). Uses for BCN Environmental Protection Agency	nguisher fluid in aircraft and portable fire). It is also used in chemical synthesis I are restricted under actions by the US as detailed in the regulatory measures
04.28.06	section.	
1.7.1 DETAILED USE PA	TTERN	
1.7.2 METHODS OF MAI	NUFACTURE	
Remark		by reacting dichloromethane with eatment with bromine and aluminum) or by

Remark : Bromochloromethane is prepared by reacting dichloromethane with anhydrous aluminum bromide (treatment with bromine and aluminum) or by reaction with hydrogen bromide in the presence of an aluminum halide catalyst, followed by water washing and distillation (Stenger, V.A., 1978). 04.28.06

1. Genera	al Informatio	n		ld	74-97-5
			C)ate	04.28.06
41.8	REGULATORY	MEASURES			
Remark 04.28.06	:	unacceptable replace industry sectors unde 1999). The areas for applications in fire sup replacement for CFC1 cleaning, electronics of solvent as a substitute and in adhesives, coa accordance with the M Ozone Layer, implem- production and consu (US EPA, 2003). The under class I substant depletion potential of import of BCM unless	al Protection Agency found the ment for ozone depleting sub- r the Significant New Alternat which BCM was unacceptable opression and explosion prote 13, methyl chloroform and H cleaning and precision cleaning of CFC113, methyl chlorofor tings and inks as a carrier so Montreal Protocol on Substan- ented regulations listing it as mption controls under the Clea- regulations listed BCM as a ces that deplete the ozone lay 0.12. This established a full the the production or import is for e are provisions for exemption cal uses.	stan ives e indectio CFC ng, ii lven ces a su ean / new yer, f oan o r de	ces in various Program (US EPA, cluded total flooding n systems, as 2141b in metals n aerosols as a and HCFC 141b, t. EPA, in that Deplete the bstance subject to Air Act in July, 2003 group (Group VIII) with an ozone on production and struction or
1.8.1 OCC	UPATIONAL EXPO	DSURE LIMIT VALUES	6		
Remark	:	OSHA Permissible Ex Average: 200 ppm (1	posure Limit: Table Z-1: 8-h	nr Tir	ne Weighted
04.28.06		Average. 200 ppm (1			
Remark 04.28.06	:	ACGIH 8-hr Time We	ighted Average (TWA): 200 p	opm	
Remark 04.28.06	:		d Exposure Limit: 10 hr Time ly Dangerous to Life or Healt		
	EPTABLE RESIDU	JES LEVELS			
1.8.3 WAT	ER POLLUTION				
1.8.4 MAJ	OR ACCIDENT HA	ZARDS			
1.8.5 AIR I	POLLUTION				
1.0.3 AIR I					
1.8.6 LIST	INGS E.G. CHEMI	CAL INVENTORIES			
1.9.1 DEG	RADATION/TRAN	SFORMATION PRODU	ICTS		
1.9.2 COM	PONENTS				
		Δ / '	DE		

1. G	1. General Information		74-97-5	
		Date	04.28.06	
1.10	SOURCE OF EXPOSURE			
1.11	ADDITIONAL REMARKS			
1.12	LAST LITERATURE SEARCH			
1.13	REVIEWS			

2.1 MELTING POINT

Value	: = -70 °C / -87.9°C / -86.5 °C /-87.95 °C		
Method	: other: Literature values		
Test substance	: Bromochloromethane, > 98% purity		
Remark	: Estimate using PBT Profiler / Literature (Lide, DR., 1999)/ cited in HA, 1989 / Riddick et al, 1986 as cited in HEED, 1990.		
04.28.06			
2.2 BOILING POINT			
2.2 BOILING FOINT			
Value	$= 68 ^{\circ}\text{C} / 68 ^{\circ}\text{C} / 67 ^{\circ}\text{C}$		
Method	: Other: Literature values		
Test substance	: Bromochloromethane, > 98% purity		
Test substance			
Remark	: Albemarle Corporation MSDS / Literature (Lide, DR, 1999) / cited in HA,		
	1989		
04.28.06			
2.3 DENSITY			
Туре	: Density		
Value	: = 1.92 at 25 °C / 1.9344 g/cu cm at 20 °C		
Method	: other: Literature values		
Test substance	: Bromochloromethane, > 98% purity		
Remark : Albemarle Corporation MSDS / Literature (Lide, DR, 1999)			

Remark 04.28.06

2.3.1 GRANULOMETRY

2.4 VAPOUR PRESSURE

Type Value Method Test substance	:	Vapor Pressure 147.2 mmHg at 25 °C other: Literature values Bromochloromethane, > 98% purity
Remark 04.28.06	:	Riddick, J.A., 1986 cited in HEED, 1990
Type Value Method Test substance	:	Vapor Pressure = 142 mmHg at 25 °C / 141.07 mm Hg at 24.05 °C other: Literature values Bromochloromethane, > 98% purity
Remark 04.28.06	:	Daubert, TE, 1989 / cited in HA, 1989

Id 74-97-5 2. Physico-Chemical Data Date 04.28.06 **PARTITION COEFFICIENT** 2.5 Partition coefficient : octanol-water Log Kow : 1.41 Method : Other: Literature Test substance : Bromochloromethane, > 98% purity : Literature: Tewari, Y.B., 1982 and as cited in PBT Profiler and in HA, 1989. Remark 04.28.06 2.6.1 SOLUBILITY IN DIFFERENT MEDIA Solubility in : Water Value : = 5300 mg/l at 25 °C Remark : Estimated from PBT profiler Test substance : Bromochloromethane, > 98% purity Solubility in : Water : 1.67 x 10⁺⁴ mg/l at 20 °C / 9,000 mg/l at 25 °C/ 16.7 g/l at 25 °C Value Remark : Literature: Yalkowsky, S.H., 1992 / cited in HA, 1989 / Tewari, Y.B., 1982 04.28.06 2.6.2 SURFACE TENSION 33.32 dynes/cm @ 20 °C Value Remark : Literature: Dean, J.A., 1987 04.28.06 2.7 FLASH POINT : Flash Point Type Method : other: Literature value Test substance : Bromochloromethane, > 98% purity : No flash point or fire points could be demonstrated by standard tests in air. Remark BCM has a history of use in fire extinguishers. Literature: Clayton, GD, 1994 04.28.06 2.8 **AUTO FLAMMABILITY** 2.9 FLAMMABILITY 2.10 EXPLOSIVE PROPERTIES 2.11 OXIDIZING PROPERTIES

2. Physico-Chemical Data

2.12 DISSOCIATION CONSTANT

2.13 VISCOSITY

Туре	:	Viscosity
Value	:	= 0.670 mN.s/sq m at 20 °C
Method	:	other: literature
Test substance	:	Bromochloromethane, > 98% purity
Remark	:	Literature: Dean, J.A., 1987
04.28.06		
04.20.00		

2.14 ADDITIONAL REMARKS

3. Environmental Fate and Pathways

3.1.1 PHOTODEGRADATION

Type Test substance	hotodegradation romochloromethane, purity > 98%	
Remark	irect photolysis should have only a minor effect on the a etime of chlorobromomethane due to its very low UV al avelengths > 290 nm (Orkin, VL et al, 1997 as cited in I	osorption at
Туре	stimation of overall hydroxyl rate constant	
Remark	alculation of the rate constant for the atmospheric react notochemically produced hydroxyl radicals and the test apor phase gives an overall rate constant value of 0.099 n3/molecule-sec. This rate constant calculates to an e 07.63 days. (12 hr day, 1.5e ⁶ OH/cm ³ ; AOP Program v. PISUITE v. 4.0)	substance in the 94e ⁻¹² stimated half-life of

3.1.2 STABILITY IN WATER

Type Method Test substance	:	Abiotic Literature Bromochloromethane
Remark	:	The hydrolysis half-life of bromochloromethane has been estimated at about 44 years at 25°C and pH 7. Therefore, hydrolysis should not be environmentally significant. (Mabey, W. and T. Mill, 1978, cited in HEED, 1990)
		Measurement of chlorobromomethane reaction kinetics as a function of pH and temperature indicate that HS- promoted reactions exceed hydrolysis rates at HS- concentrations greater than 2-17 uM, well within ranges common in sulfate-reducing environments. Therefore abiotic reactions with bisulfide ions may be of considerable importance in sulfate-reducing environments. (Roberts, AL, 1992 cited in HEED, 1990).
		Other estimation of hydrolysis rates yields a rate constant of $9.350e^{-008}$ L/molecule-sec at pH > 8 and 25 degrees C. The rate constant estimated in this modelling does not include the neutral rate constant, which could be the dominant hydrolysis rate at environmental pH values. Half-life from this rate for pH 8 is estimated at 2.349 e ⁺⁰⁰⁵ years, and for pH 7 at 2.349 e ⁺⁰⁰⁵ . (HYDROWIN program v. 2.00, from EPISUITE, v. 4.0).
04.28.06		
3.1.3 STABILITY IN SOI	L	
Remark	:	A Koc of 21 can be estimated (assuming water solubility 16.7 g/l, and using method of Lyman). This suggests high soil mobility (Swann et al, 1983 cited in US EPA, 1990). The Koc estimates suggest that BCM is not tightly

	bound to soil through adsorption. It is also unlikely that BCM adsorb to sediment, thus not interfering with volatilization or biodegradation in
	disappearance from aquatic environment. BCM has been reported to undergo microbial degradation under anoxic conditions when cultured with soil bacteria (Kobayashi, H., 1982).
Test substance 04.28.06	: Bromochloromethane, > 98% purity

3.2.2 FIELD STUDIES 3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS Type : other: adsorption/desorption Media : water - soil Remark : The partition coefficient of BCM between sandy loam soil and water was reported to be 0.2497. Reference : Mokrauer, J.E., 1989 as cited in HSDB Test substance : Bromochloromethane, > 98% purity 04.28.06 : State - S		Fate and Pathways	ld 74-97-5 Date 04.28.06
21.73 L/kg using molecular connectivity index methods and 16.72 L/kg when based on an experimental log Kow of 1.41. Test substance (J4.28.06) 3.2.1 MONITORING DATA 3.2.2 FIELD STUDIES 3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS Wedia : water - soil Remark : The partition coefficient of BCM between sandy loam soil and water was reported to be 0.2497. Reference : Mokrauer, J.E., 1989 as cited in HSDB Test substance (J4.28.06) 3.3.2 DISTRIBUTION Remark : Distribution as estimated by PBT Profiler Water 40% Soil 16% Sediment 0% Air 44% Reference : Literature: estimated by PBT Profiler Water 40% Soil 16% Sediment 0% Air 44% Reference : Literature: estimated by Synacuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 Remark : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters:: Molecular weight 129.38, Henry's Law Constant Constant 0.00146 atm m ³ /mole (Henry database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN NCT method). Persistence Time: 183 hours Reference : Modelling using EPISUITE v. 4.0 <	Remark		
04.28.06 32.1 MONITORING DATA 32.2 FIELD STUDIES 33.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS Type : other: adsorption/desorption Media : water - soil Remark : The partition coefficient of BCM between sandy loam soil and water was reported to be 0.2497. Reference : Mokrauer, J.E., 1989 as cited in HSDB Test substance Distribution as estimated by PBT Profiler Water 40% Soil 16% Sa.2 DISTRIBUTION Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 Reference Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 Reference Reference : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using if parameters: Molecular weight 129.38, Henry's Law Constant Constant 0.00146 atm-m*/moleculeney. Vawor pressure 143 m Hg	Remark	21.73 L/kg using molecular connectiv	ity index methods and 16.72 L/kg
3.2.2 FIELD STUDIES 3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS Type : other: adsorption/desorption Media : water - soil Remark : The partition coefficient of BCM between sandy loam soil and water was reported to be 0.2497. Reference : Mokrauer, J.E., 1989 as cited in HSDB Test substance : Bromochloromethane, > 98% purity 04.28.06 3.3.2 DISTRIBUTION Reference : Distribution as estimated by PBT Profiler Water 40% Soil 16% Sediment 0% Air 44% Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 Remark : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry is Law Constant Constant 0.00146 atm-m ³ /mole (Henry database). Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 969 hours Percent reacted: 18.9% Advection time: 226 hours Verence : Modelling using EPISUITE v. 4.0 Environmental Mass Half-life Emissions Fugacity Reaction Advection (kg/hr)		: Bromochloromethane, > 98% purity	
3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS Type : other: adsorption/desorption Media : water - soil Remark : The partition coefficient of BCM between sandy loam soil and water was reported to be 0.2497. Reference : Mokrauer, J.E., 1989 as cited in HSDB Test substance : Bromochloromethane, > 98% purity 04.28.06 : Distribution as estimated by PBT Profiler Water 40% Soil 16% Sediment 0% Air 44% Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry's Law Constant Constant 0.0146 attm-m ³ /mole (Henry database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 226 hours Reference : Modelling using EPISUITE v. 4.0 Environmental Mass Half-life Environmental Mass Half-life Compartment Amount (hours) Kefrence<	3.2.1 MONITORING DA	ΓΑ	
Type : other: adsorption/desorption Media :: water - soil Remark : The partition coefficient of BCM between sandy loam soil and water was reported to be 0.2497. Reference :: Mokrauer, J.E., 1989 as cited in HSDB Test substance :: Bromochloromethane, > 98% purity 04.28.06 :: Distribution as estimated by PBT Profiler Water 40% Soil 16% Sediment 0% Air 44% Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry's Law Constant Constant 0.00146 atm-m ² /mole (Henry' database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 226 hours Percent reacted: 18.9% Advection time: 226 hours Reference : Modelling using EPISUITE v. 4.0 :	3.2.2 FIELD STUDIES		
Media Remark : water – soil Remark : The partition coefficient of BCM between sandy loam soil and water was reported to be 0.2497. Reference Test substance 04.28.06 : Mokrauer, J.E., 1989 as cited in HSDB 3.3.2 DISTRIBUTION : Distribution as estimated by PBT Profiler Water 40% Soil 16% Sediment 0% Air 44% Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry's Law Constant 0.00146 atm-m ³ /mole (Henry database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 969 hours Percent reacted: 18.9% Advection time: 226 hours Reference : Modelling using EPISUITE v. 4.0	3.3.1 TRANSPORT BET	WEEN ENVIRONMENTAL COMPARTME	NTS
Remark : Distribution as estimated by PBT Profiler Water Water 40% Soil Soil 16% Sediment Sediment 0% Air Air 44% Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 : Remark : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry's Law Constant Constant 0.00146 atm-m³/mole (Henry database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: Reference : Modelling using EPISUiTE v. 4.0 Environmental Mass Amount Mass Half-life Environmental Mass Amount Mass Half-life Environmental Mass Amount Mass Half-life Environmental Mass (kg/hr) Mass Half-life	Media Remark Reference Test substance	 water – soil The partition coefficient of BCM betw reported to be 0.2497. Mokrauer, J.E., 1989 as cited in HSD 	
Water 40% Soil 16% Sediment 0% Air 44% Reference : 04.28.06 : Remark : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry's Law Constant Constant 0.00146 atm-m³/mole (Henry database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 969 hours Percent reacted: 18.9% Advection time: 226 hours Verter : Modelling using EPISUITE v. 4.0 Environmental Mass Half-life Emissions Fugacity Reaction Advection (kg/hr)	3.3.2 DISTRIBUTION		
Reference : Literature: estimated by Syracuse Research Corporation as cited in Hazardous Substance Database and as estimated using PBT Profiler. 04.28.06 : Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry's Law Constant Constant 0.00146 atm-m ³ /mole (Henry database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 969 hours Percent reacted: 18.9% Advection time: 226 hours Percent advected: 81.1% Reference : Modelling using EPISUiTE v. 4.0			
The following table represents the fugacity modelling calculated using th parameters: Molecular weight 129.38, Henry's Law Constant Constant 0.00146 atm-m ³ /mole (Henry database), Vapor pressure 143 mm Hg (MPBWIN program), Log Kow 1.41 (KOCWIN program) and Soil Koc 21 (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 969 hours Percent reacted: 18.9% Advection time: 226 hours Percent advected: 81.1% Reference : Modelling using EPISUITE v. 4.0 Environmental Mass Amount (hours) (kg/hr) (ATM) (kg/hr) (kg/hr)	Remark	Water 40% Soil 16% Sediment 0%	filer
Reaction Time: 969 hours Percent reacted: 18.9% Advection time: 226 hours Percent advected: 81.1% Reference : Modelling using EPISUITE v. 4.0 Environmental Compartment Mass Half-life Emissions Fugacity Reaction Advection (kg/hr) Kg/hr) (ATM) (kg/hr) (kg/hr)	Reference	Water 40% Soil 16% Sediment 0% Air 44% : Literature: estimated by Syracuse R	esearch Corporation as cited in
EnvironmentalMassHalf-lifeEmissionsFugacityReactionAdvectionCompartmentAmount(hours)(kg/hr)(ATM)(kg/hr)(kg/hr)	Reference 04.28.06	 Water 40% Soil 16% Sediment 0% Air 44% Literature: estimated by Syracuse R Hazardous Substance Database and Level III Fugacity-Based Environmen The following table represents the fug parameters: Molecular weight 129.3 0.00146 atm-m³/mole (Henry database (MPBWIN program), Log Kow 1.41 (I 	esearch Corporation as cited in as estimated using PBT Profiler. tal Partitioning Modelling gacity modelling calculated using the 8, Henry's Law Constant Constant se), Vapor pressure 143 mm Hg
Compartment Amount (hours) (kg/hr) (ATM) (kg/hr) (kg/hr)	Reference 04.28.06	 Water 40% Soil 16% Sediment 0% Air 44% Literature: estimated by Syracuse R Hazardous Substance Database and Level III Fugacity-Based Environmen The following table represents the fug parameters: Molecular weight 129.3 0.00146 atm-m³/mole (Henry database (MPBWIN program), Log Kow 1.41 (I (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 969 hours Pero 	esearch Corporation as cited in as estimated using PBT Profiler. tal Partitioning Modelling gacity modelling calculated using the 8, Henry's Law Constant Constant se), Vapor pressure 143 mm Hg (OCWIN program) and Soil Koc 21.7
(percent) (percent) (percent)	Reference 04.28.06 Remark	 Water 40% Soil 16% Sediment 0% Air 44% Literature: estimated by Syracuse R Hazardous Substance Database and Level III Fugacity-Based Environmen The following table represents the fug parameters: Molecular weight 129.3 0.00146 atm-m³/mole (Henry database (MPBWIN program), Log Kow 1.41 (I (KOCWIN MCI method). Persistence Time: 183 hours Reaction Time: 969 hours Perce Advection time: 226 hours Perce 	esearch Corporation as cited in as estimated using PBT Profiler. tal Partitioning Modelling gacity modelling calculated using the 8, Henry's Law Constant Constant se), Vapor pressure 143 mm Hg (OCWIN program) and Soil Koc 21.7

3. Environmental Fate and Pathways

Air	40.5	2,916	1000	4.2e ⁻⁰¹⁰	1.76	2.23e ⁺⁰⁰³ 74.2
Water	37.8	360	1000	1.17e ⁻⁰⁰⁸	399 13.3	208 6.92
Soil	21.6	720	1000	8.93e ⁻⁰⁰⁸	114 3.81	0 0
Sediment	0.104	3,240	0	1.05e ⁻⁰⁰⁸	0.122 0.00405	0.0114 0.000379

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Type Inoculum Test substance		wastewater innoculum or activated sludge innoculum promethane, > 98% purity
Remark 04.28.06	suggest th In the fin underwent wastewate ensued wi In a 4 w ppm, and	two aerobic biodegradation screening studies in aqueous media at biodegradation could be relevent to aquatic fate. st study, BCM at an initial concentration of 5 or 10 mg/l 100% degradation within 7 days using a settled domestic er innoculum and aerobic conditions. Complete degradation th 3 successive subcultures. (Tabak, H.H., 1981) eek biodegradation screening test (MITI test), using BCM at 100 activated sludge innoculum, removal of 0-12% of BOD was CITI, 1992).
Type Test substance Remark	Bromochlo	ation estimation promethane, > 98% purity s using BIOWIN v. 4.10 (EPISUITE 4.0) predict that
	bromochlo time frame	romethane does not meet ready biodegradation criteria, but the for primary biodegradation is days to weeks, and ultimate ation timeframe is weeks.

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

BCF Method Remark	 ca. 2.4 other: estimations A bioconcentration factor of 2.4 can be estimated using PBT profiler using regression derived equations, and a log Kow of 1.41. This suggests the potential for bioconcentration in aquatic organisms is low (Swann, R.L., 1983)
Test substance 04.28.06	: Bromochloromethane, > 98% purity.
BCF Method	ca. 3.96 tother: estimations

3. Environmental Fate and Pathways		ld 74-97-5 Date 04.28.06
Remark	BCFBAF v. 3.00 (EPISUITE v. 4.0 1.41. A value for BCF if 4 L/kg we Experimental BCF-kM Database s	/kg wet weight can be estimated using based on a log Kow (experimental) of tweight was also identified in the structure match. This suggests the quatic organisms is low (Swann, R.L.,

3.8 ADDITIONAL REMARKS

4. Ecotoxicity

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type:Species:Exposure period:Unit:NOEC:LC50:Method:GLP:Test substance:Reliability	static Pimephales promelas (Fish, fresh water) Not reported mg/l = 80 mg/l = > 80 mg/l other: Methods for Acute Toxicity Tests with Fish, Macroinvertebrates and Amphibians (1975), EPA-660/3-75-009 No Bromochloromethane, > 98% purity 1
Remark :	Dow Chemical Company Studies (1960), summarized by US EPA (in
04.28.06	HEED, 1990)

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Туре	Estimation
Remark	Estimation of acute invertebrate toxicity using the ECOSAR v. 1.00
	modelling program (EPISUITE v. 4.0), based on an estimated Kow of 1.43,
	an experimental water solubility of 16.7 g/L and a chemical class of neutral
	organics gives a Daphnid 48 hour LC50 prediction of 164 .033 mg/L (ppm).

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Туре	Estimation
Remark	Estimation of acute toxicity to green algae using the ECOSAR v. 1.00
	modelling program (EPISUITE v. 4.0), based on an estimated Kow of 1.43, an experimental water solubility of 16.7 g/L and a chemical class of neutral organics, gives a 96 hour EC50 prediction of 60.789 mg/L (ppm).

4.4 TOXICITY TO MICROORGANISMS E.G. BACTERIA

4.5.1 CHRONIC TOXICITY TO FISH

4.5.2 CHRONIC TOXICITY TO AQUATIC INVERTEBRATES

4.6.1 TOXICITY TO SEDIMENT DWELLING ORGANISMS

4.6.2 TOXICITY TO TERRESTRIAL PLANTS

4.6.3 TOXICITY TO SOIL DWELLING ORGANISMS

4. Ec	4. Ecotoxicity Id 74-97-5		
		ate	04.28.06
464	TOX. TO OTHER NON MAMM. TERR. SPECIES		
4.0.4			
4.7	BIOLOGICAL EFFECTS MONITORING		
4.8	BIOTRANSFORMATION AND KINETICS		

4.9 ADDITIONAL REMARKS

5. Toxicity

TOXICOKINETICS, N	IETABOLISM AND DISTRIBUTION
n Vitro/in vivo	: In vivo
Гуре	: Dermal absorption via exposure in air
Species	: Rat
Strain	Fischer 344
Numbers of animals	: 6 males per group
Doses	: 2,500, 5,000, 20,000 or 40,000 ppm air concentrations
Route of administration	: other: dermal exposure via air concentration
Exposure time	: 4 hours
GLP	: No
Test substance	: BCM: 98% by weight in air
Method	: Body-only exposures in chambers with individual protection to prevent pulmonary uptake from test article concentrations in air
Reference Result Reliability 04.28.06	 A 33 liter chamber was constructed with six individual compartments to house rats fitted with latex masks conected to outside airlines. Rats wer fitted with right jugular cannulas for blood sampling while confined in the exposure chambers. Blood samples were taken prior to the exposure, a 0.5 hours, and hourly during exposures, except during the 1 hour expose experiment when samples were drawn every 10 minutes. Tissue/air partition coefficients for BCM were 41.5 +/-0.9 for blood/air, 29.2 +/- 0.5 liver/air, and 11.1 +/- 1.8 for muscle/air. Plasma bomide levels increase with increasing exposure concentrations of BCM, but not in a linear fashion. Plasma bromide levels for 2,500 ppm BCM were 0.8 mM, for 5,000 ppm, 0.9 mM, for 20,000, 3.4 mM, and for 40,000 ppm, 5.6 mM. 4 hour blood levels for the same concentrations were 6.2, 26.0, 104.4, and 224.4 ug/ml. Permeability constants for these values were 0.81, 0.81, 0 and 0.77 cm/hr. McDougal, J.N. et al., 1985 The Health Advisory reports that the dermal flux in this study was 0.011 0.164 mg/cm^3/hour. (HA, 1989) 1
Method Remark	 Inhalation exposure Kinetics of absorption of inhaled bromochloromethane in male Fisher 34 rats was shown to be a composite of a slow first order and a saturable uptake process. Km (the concentration in air at which uptake occurs at one-half the maximum rate) was calculated to be 119 ppm (630 mg/m³ and the Vmax (the maximum rate of uptake) was calculated to be 11.4 mg/kg/hour. (Anderson, M.E. et al, 1980)
	In another experiment, male F344 rats were exposed to nine initial concentrations of 100 to 10,000 ppm bromochloromethane vapor for 175 205 minutes in a closed inhalation chamber. Chamber concentration disappearance curves indicated that absorption was biphasic, consisting a rapid equilibrium phase completed in 70 to 110 minutes and a slow phase that was nearly linear after equilibrium. The rapid uptake phase reportedly represents the initial blood-gas equilibrium. The slow uptake phase reportedly represents metabolism and and loading into poorly perfused tissues, and was a composite of a saturable process at lower concentrations and a first order process. Kinetic constants for the saturable process were determined and included a Km of 91 ppm and a Vmax of 10.5 mg/kg/hour. (Gargas, M.L. and M.E. Anderson, 1982).
	Kinetics of bromochloromethane metabolism was studied by Gargas et a (1986) using 4 hour inhalation studies with male F344 rats. Gas uptake was determined during exposure to 200 to 4000 ppm test article in a closchamber, and plasma bromide levels and carboxyhemoglobin levels we

5. Toxicity	ld 74-97-5 Date 04.28.06
Reliability 04.28.06	 determined following exposure to constant concentrations of 51 to 2006 ppm. The gas uptake data indicated that metabolism had both first order and saturable components. The oxidative, cytochrome P-450 mediated pathway was high affinity and low capacity with production of CO saturable at bromochloromethane concentrations greater than 200 ppm; the maximum percent carboxyhemoglobin saturation attained was about 9%. The maximum rate for metabolism of BCM to carbon monoxide was 54 umol metabolized/kg/hour. The glutathione-dependent cytosolic pathway producing CO2 and halide was low affinity but high capacity and a single first order process at all exposure concentrations. 1
In Vitro/in vivo	: In vivo – distribution
Result Reference Reliability 04.28.06	 An inhalation study was conducted using various species (2 female dogs, 3 male rabbits, and 20 male rats). Animals were separately exposed for 7 hours per day, 5 days/week, for 14 weeks to 1000 ppm bromochloromethane. Both organic and inorganic bromide levels in brain and blood of treated animals were elevated at termination of a 7-hour exposure period compared to control. Total bromide levels in blood were 6.0 to 10.5 times higher than levels in brain. Levels of organic bromide in blood were 8.0 to 13.1 times the levels in the brain. Svirbely, J.L. et al., 1947 as cited in HA, 1989

5.1.1 ACUTE ORAL TOXICITY

Type Value Species Sex Number of animals Vehicle Doses Method Year GLP Test substance	 LD50 > 5000 mg/kg bw Rat Male 5 per group Corn oil 5000 or 7000 mg/kg other: 1960 No BCM, 99% as demonstrated by Infrared analysis
Remark Reliability Reference 04.28.06	 Aliquots of a 50% BCM in corn oil solution were gavaged to male rats. All rats gavaged with 7 g/kg died within 24 hours. All rats gavaged with 5 g/kg survived for the 14 day recovery period. 1 Dow Chemical Company, 1960 – published as Torkelson, T.R., 1960
Type Value Species Strain Number of animals Vehicle Doses Year GLP	 LD50 4,300 mg/kg bw Mice Swiss 10 per group olive oil 500 to 4400 mg/kg 1947 No

5. Toxicity	ld 74-97-5 Date 04.28.06
Test substance Reliability Remark Reference 04.28.06	 Bromochloromethane, > 98% purity 1 Doses ranged from 500 to 4400 mg/kg/day administered in corn oil to groups of 10 animals per dose. Surviving animals were observed for 6 days. CNS depression was noted in animals dosed higher than 500 mg/kg. Literature: Svirbely, J.L. et al, 1947 as reported in Health Advisory, 1989.
Type Species Strain Sex Vehicle Doses Year GLP Test substance	 Single gavage dose and 10 day repeated dose Mice Swiss Male/female Corn oil in single dose; Olive oil in repeated dose 0, 500, 3,000 or 4,500 mg/kg single dose; 3,000 mg/kg/day for repeated dose 1948 No Bromochloromethane, > 98% purity
Remark Reliability Reference 04.28.06	 Fatty degeneration of the liver and kidney, as well as focal necrosis and hydropic degeneration of the liver was observed in the 3,000 and 4,500 groups after single oral dose. Changes were most severe after 24 hours and were reversible in mice surviving 48 hours. No effects were noted at 500 mg/kg. Thirty two Swiss mice were gavaged with 3,000 mg/kg for 10 consecutive days. Control animals were gavaged with olive oil. Several mice were sacrificed after each of the doses. In mice that were sacrificed or died, fatty degeneration of the liver, kidney and sometimes the heart were observed. The effects were most severe 24-48 hours after the initial dose, and became slight after 80 hours. Opacity of the eyes was observed in 5/19 rats surviving 3 days. 1 Literature: Highman, B., 1948 as reported in Health Advisory, 1989

5.1.2 ACUTE INHALATION TOXICITY

Type Species Sex Number of animals Vehicle Doses Exposure time Method Year GLP		Mortality from Single Exposures Rat male/female 10 per sex most groups; one group had 11 per sex; one had 15 per sex None 5,000, 10,000, 20,000, 40,000 or 80,000 ppm 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 1.5, 2.0, 4.0, 6.0 or 7.0 hour(s) Dow Laboratories method 1960 No
Test substance	:	BCM, 99% as confirmed by infrared analysis
Remark	:	Exposures were made in 160-liter capacity glass walled chambers. Rats were introduced after vapor concentrations were established. Measured values were generally within 10% of calculated values. Maximum exposures causing no mortality were: 0.1 hr at 40,000 ppm; 0.4 hr at 20,000 ppm, 1.5 hr at 10,000 ppm and 7.0 hr at 5,000 ppm. Deaths that occurred were generally during the exposures and appeared to be totally related to anesthesia. Four hour exposure to 10,000 ppm killed 6 of 10 male rats, and 5/10 female rats. One hour exposure to the same concentration killed one female rat only; six hour exposure to 10,000 ppm killed all animals exposed.

Toxicity	ld 74-97-5 Date 04.28.06
Remark	Female rats (4-5 treated, 10 control) from various single exposure scenarios (600, 800, 1500, 5,000, 10,000, or 40,000 ppm) for durations of 0.025 hours to 7 hours were examined to determine the most severe conditions that caused no significant organic damage. No gross pathological changes were seen at necropsy. Microscopic evidence of injury was detected only in the liver, although increases in organ weights were also seen in the kidneys. The liver injury was slight, being characterized as very small vacuoles in the parenchyma, but not typical of fatty degeneration.
Remark	Significant liver weight increases accompanied the histopathological changes. The maximum exposures that caused no significant organic injury were 0.025 hours at 40,000 ppm; 0.1 hour at 10,000 ppm; 0.3 hour a 5,000 ppm; 3.0 hours at 1,500 ppm, and 7.0 hours at 600 ppm.
Reliability Reference 04.28.06	1 Dow Chemical Company, 1960 – published as Torkelson, TR, 1960
Type Value Species Strain Sex Number of animals Vehicle Doses Exposure time Method Year GLP Test substance	 Acute Inhalation Toxicity > 38.6 mg/l Rat Sprague Dawley CD male/female 5 per sex in single group None 54.2 nominal, 38.6 mg/l achieved 4 hour(s), nose only OECD 403 "Acute Inhalation Toxicity" 1998 Yes Bromochloromethane, > 98% purity
Remark	: The mean achieved atmospheric concentration (as measured by a gas chromatographic method) was 38.6 mg/l bromochloromethane. Ten Sprague Dawley rats (5 male, 5 female) were exposed by nose only to this limit concentration for 4 hours. One male and one female rat died from this exposure. Common clinical signs observed were hunched posture, lethargy, piloerection, coma and hypothermia. Changes in respiratory rate ataxia, ptosis, diuresis, loss of righting reflex, noisy respiration, and occasional incidents of wet fur, labored respiration, fasciculations and staining around the snout were noted. Surviving animals appeared normal within 2 to 4 days of exposure. One animal showed no bodyweight gain the the first week after exposure, and other survivors showed possible reduction in that time period. Normal body weight gains were seen in weel 2. The animals that died during the study had lung abnormalities including hemorrhage, swelling, dark or pale patches and pale foci. At the end of the study, one male had hydroneprhosis, and one female had dark foci in the lungs and a dark liver. The other six animals had no abnormalities at necropsy. Acute inhalation median lethal concentration (LC50) in the Sprague Dawley rat under the conditions of the study was greater than 38.6 mg/l bromochloromethane.

Acute Inhalation

Summary Table from HEED, 1990

Lethality

Species	Strain/sex	Concentration	Concentration	Exposure	Endpoint	Reference
		mg/m ³	ppm	duration		
Mouse	Swiss/NR	2,995	15,850	7 hours	8 hr LC50	Svirbely, 1947

5. Toxicity

Date 04.28.06

Mouse	Swiss/NR	2,504	13,257	7 hours	24 hr LC50	Svirbely, 1947
Mouse	Swiss/NR	2,436	12,891	7 hours	48 hr LC50	Svirbely, 1947
Mouse	Swiss/NR	2,273	12,029	7 hours	72 hr LC50	Svirbely, 1947
Mouse	Swiss/NR	2,551	13,500	1 week	18/20 died	Svirbely, 1947
Mouse	Swiss/NR	2,268	12,2002	7 hours	72 hr LC50	Highman, 1948
Rat	NR/M	5,000	26,460	7 hours	0/11 died	Torkelson, 1960
Rat	NR/Fe	5,000	26,460	7 hours	0/11 died	Torkelson, 1960
Rat	NR/M	10,000	52,920	4 hours	6/10 died	Torkelson, 1960
Rat	NR/Fe	10,000	52,920	4 hours	6/10 died	Torkelson, 1960
	the second states of		·			

Note: NR = not reported

5.1.3 ACUTE DERMAL TOXICITY

Type Value Species Number of animals Vehicle Doses Method Year GLP Test substance	 LD50 > 5000 mg/kg bw Rabbit 5 None 5 g/kg Modified Draize technique, 24 hour exposure 1960 No BCM, 99% as demonstrated by Infrared analysis
Remark Reliability Reference 04.28.06	 Belly hair was clipped from the rabbits, and a single application of BCM was applied using a modified Draize technique. One death occurred within 24 hours of exposure to 5 g/kg, and only a slight loss of body weight occurred in other animals over the observation period. Clinical observations included a burn and denaturation of the skin with occlusive application. When the material was allowed to evaporate freely, BCM only caused typical defatting effects to the skin. 1 Dow Chemical Company, 1960 – published as Torkelson, TR, 1960

5.1.4 ACUTE TOXICITY, OTHER ROUTES

Remark : BCM was used as a vaporizable fire extinguishing agent. It was studied along with fluorinated halogen agents for effects on the heart. In a comparative study in anesthetized dogs, thirty eight variables reflecting cardiovascular dynamics and myocardial metabolism were monitored before, during and after exposure to 0.3 to 1.0% BCM in oxygen. Exposure to BCM was found to cause disturbances in myocardial energy metabolism that were connected to myocardial performance. Based on concentrations at which the effects occurred, BCM was more potent than the fluorinated halogens tested. (Van Stee, EW, 1975). Previous to this study, a moderate effect of exposure, defined as definite feeling of light headedness, moderate acceleration of heart rate, and occasional premature ventricular contraction was estimated to likely occur in humans with 20 minute of exposure to 0.33% BCM. (Van Stee, EW, 1974).

08.02.2002

5.2.1 SKIN IRRITATION/ CORROSION

Species	: rabbit
Exposure time	: 4 hour(s)

. Toxicity	Id 74-97-5
	Date 04.28.06
Result	: Non-corrosive
Method	: 21 CFR, Part 191, Paragraph 191.11 (revised 1970)
Year	: 1973
GLP	: No
Test substance	: Bromochloromethane, > 98% purity
Reference	: Rampy, LW, 1973
Reliability	2
04.28.06	
Remark	: In a dermal toxicity test, dermal application of 5000 mg/kg to clipped hair
	sites in 5 rabbits with occlusion resulted in burns and denaturation of the skin with 4/5 animals surviving after 24 hours. Application without
- /	occlusion only had a defatting effect
Reference	Torkelson, T.R., 1960 as reported in Health Advisory, 1989.
04.28.06	
Species	: rabbit
Concentration	: 0.5 ml neat bromochloromethane
Exposure	: Semi-occlusive
Exposure time	: 4 hour(s)
Number of animals Vehicle	: 3 rabbits
Result	: None : Corrosive
Method	: OECD 404 "Acute Dermal Irritation/Corrosion"
Year	: 1998
GLP	: 1996 : Yes
Test substance	Bromochloromethane, > 98% purity
Reliability	1
Remark	 The test was not extended to another group of 3 animals because of the
	severity of the effects seen in the first group.
Reference	Notox Laboratories, 1998

5.2.2 EYE IRRITATION

Species Concentration Dose Number of animals Vehicle Method Year GLP Test substance	 Rabbit undiluted 0.1 ml 2 None Other: 1960 No BCM, 99% as demonstrated by Infrared analysis
Remark	: Moderate irritation was seen when BCM was instilled in the eyes of 2 rabbits. Considerable swelling of the conjunctiva and slight transitory irritation of the cornea occurred.
Reliability Reference 04.28.06	1 Dow Chemical Company, 1960 – published as Torkelson, TR, 1960.

5.3 SENSITIZATION

Туре

: Magnusson and Kligman Maximisation

5. Toxicity	ld 74-97-5 Date 04.28.06
Species Number of animals Vehicle Result Classification	 guinea pig 20 test and 10 control in main study Arachis oil for id induction, and topical challenge 20% sensitisation rate (4/20) Mild sensitiser not meeting criteria for EU labelling
Method Year GLP	 OECD 406, "Skin Sensitisation", 1992 1997 Yes
Test substance Reliability	: :Bromochloromethane 1
Remark	Based on preliminary tests, the following concentrations were chosen for the main study: 10% w/v in arachis oil for id induction, undiluted for topical induction, and 75% and 50% v/v in arachis oil for topical challenge. Sensitization reactions were seen in 4 of 20 animals, but the reactions did not meet the EU labelling requirements for sensitization.
Reference	Allen, D.J., 1997.
3/12/2006	
5.4 REPEATED DOSE	ΤΟΧΙCITY
Type Species Sex Route of admin. Exposure period Frequency of treatm. Doses	 Repeated dose, inhalation Rats Male/female Inhalation 7 hours per day 5 days per week for 4 to 6 months 500 or 1000 ppm (5.3 mg/l) (m, f)
Control group Year	370 ppm (f) : Unexposed : 1960
GLP Test substance	NoBCM, 99% as confirmed by infrared analysis
Remark	: Repeated dose exposures to BCM were given to 20 (except 10 to 12 where indicated) rats per sex per group in 1700 liter capacity water sealed chambers. Male rats exposed to 1000 ppm (79-82 exposures in 114 days) had normal BUNs, appearance, activity and growth. Blood inorganic bromide levels at termination were 122 mg Br-/100 ml. Microscopic liver lesions were very slight proliferation of the bile duct epithelium with very slight portal fibrosis and inflammation. Cloudy swelling of parenchymal cells in midzonal areas spread to central areas of lobules. Numerous parenchymal cells had small vacuoles. Liver and kidney weight averages were increased. Female rats exposed to the same levels had fatty and enlarged livers grossly, with elevated liver and kidney weights. Similar microscopic changes were seen as in the males, and blood bromides were also elevated.
Remark	Male rats exposed to 500 ppm (79-82 exposures in 114 days) were normal based on survival, growth, activity, growth, clinical signs, gross and microscopic pathology. Blood bromide levels were 58 mg Br-/100 ml compared to 8 mg Br-/100 ml. There was a slight difference in liver weights (increased with exposure) that was not accompanied by pathology. Female rats had elevated average liver weights, slight bile duct proliferation and very slight portal fibrosis, with occasional vacuolation of liver parenchymal cells.
Remark	Female rats (10-12 per group) exposed to 370 ppm (135 exposures in 195 days) were normal except for a nonstatistically significant increase in liver weights, and blood bromide levels that were 73 mg/100 ml compared to controls of 0.9 to 5 mg/100 ml.

5. Toxicity	ld 74-97-5
	Date 04.28.06
Reliability Reference	1 Dow Chemical Company, 1960 – published as Torkelson, TR, 1960.
Type Species Sex Route of admin. Exposure period Frequency of treatm. Doses	 Repeated dose, inhalation Guinea pigs Male/female Inhalation 7 hours per day 5 days per week for 4 to 6 months 500 or 1000 ppm (5.3 mg/l) (m, f)
Control group Year GLP Test substance	 Unexposed for each species 1960 No BCM, 99% as confirmed by infrared analysis
Remark	: Repeated dose exposures to BCM were given to 10 guinea pigs per sex per group in 1700 liter capacity water sealed chambers. Male guinea pigs exposed to 1000 ppm (79-82 exposures in 114 days) had normal appearance, and growth. Average body weights were below control. Liver and kidney weights were elevated. Blood inorganic bromide levels at termination were 33-38 mg Br-/100 ml compared to 5.2 mg Br-/100 ml for control. Microscopically, decreased spermatogenesis was seen in testicular tublules with fibrosis in numerous tubules, and only germinal epithelium remaining in others. Female guinea pigs exposed to the same levels had slightly lower body weights but within normal limits. No pathology or organ weight effects were seen, and blood bromides were also elevated compared to controls.
Remark	Male and female guinea pigs exposed to 500 ppm (79-82 exposures in 114 days) were normal based on survival, growth, activity, growth, clinical signs, gross and microscopic pathology. Blood bromide levels were elevated compared to control.
Reliability Reference	1 Dow Chemical Company, 1960 – published as Torkelson, TR, 1960.
Type Species Sex Route of admin. Exposure period Frequency of treatm. Doses Control group Year GLP Test substance	 Repeated dose, inhalation Mice Female Inhalation 7 hours per day 5 days per week for 4 to 6 months 500 or 1000 ppm (f) Unexposed 1960 No BCM, 99% as confirmed by infrared analysis
Remark	: Repeated dose exposures to BCM were given to 10 female mice per group in 1700 liter capacity water sealed chambers. Female mice exposed to 1000 ppm (79-82 exposures in 114 days) were normal in all aspects, except for slight increases in liver and kidney weights.
Remark	Female mice exposed to 500 ppm (79-82 exposures in 114 days) were normal based on survival, growth, activity, clinical signs, gross and microscopic pathology. Body weights were slightly lower.
Reliability Reference	1 Dow Chemical Company, 1960 – published as Torkelson, TR, 1960.
Type Species Sex	 Repeated dose, inhalation Rabbits Male/female 22 / 35

. Toxicity	ld 74-97-5 Date 04.28.06
Route of admin.	: Inhalation
Exposure period	: 7 hours per day
Frequency of treatm.	: 5 days per week for 4 to 6 months
Doses Control group	 500 or 1000 ppm (5.3 mg/l) (m, f) Unexposed for each species
Year	: 1960
GLP	: No
Test substance	: BCM, 99% as confirmed by infrared analysis
Remark	: Repeated dose exposures to BCM were given to 2 rabbits per sex per group in 1700 liter capacity water sealed chambers. Male rabbits exposed to 1000 ppm (79-82 exposures in 114 days) had normal BUNs, appearance, activity and growth. Blood inorganic bromide levels at termination were 67 mg Br-/100 ml compared to 5 mg/100 ml for control rabbits. Microscopic examination revealed testicular changes characterized by decreased spermatogenesis with replacement fibrosis
Remark	occurring in the tubules of one rabbit. The other male rabbit was normal. Female rabbits exposed to the same level were normal except for apparer increased liver weight and elevated blood bromides. Male and female rabbits exposed to 500 ppm (79-82 exposures in 114 days) were normal based on survival, growth, activity, growth, clinical signs, gross and microscopic pathology. Blood bromide levels were 50 to 60 mg Br-/100 ml in treated animals compared to 5 mg Br-/100 ml in
Reliability	controls. 1
Reference	Dow Chemical Company, 1960 – published as Torkelson, T.R., 1960
Туре	: Repeated dose, inhalation
Species	: Dogs
Sex	: Male/female
Route of admin.	: Inhalation
Exposure period Frequency of treatm.	: 7 hours per day
Doses	 5 days per week for 4 to 6 months 370 ppm (m,f)
Control group	: Unexposed for each species
Year	: 1960
GLP	: No
Test substance	: BCM, 99% as confirmed by infrared analysis
Remark	: Repeated dose exposures to BCM were given to 1 dog per sex per group in 1700 liter capacity water sealed chambers. Male and female dogs exposed to 370 ppm (79-82 exposures in 114 days) were normal in all aspects. Blood inorganic bromide levels at various intervals in male dogs were 22-41 compared to 0.9 to 3.9mg Br-/100 ml in control males and 25- 60 compared to 0.7 to 2.7 mg/100 ml for female control dogs.
Reliability Reference	ו Dow Chemical Company, 1960 – published as Torkelson, T.R., 1960.
Туре	: Repeated dose, inhalation
Species	: Rats (Wistar)
Sex	: Male
Route of admin.	: Inhalation
Exposure period	 6 hours per day, 5 days per week 124 exposures in 6 months
Frequency of treatm. Doses	: 500 (515 ppm measured) or 1000 (1010 ppm measured)
Control group	: Unexposed
Year	: 1966
GLP Test substance	: No : BCM, 98.8%

. Toxicity	ld 74-97-5 Date 04.28.06
Remark	Groups of 50 male and 50 female rats were exposed to nominal concentrations of 0, 500 or 1000 ppm BCM for 6 hours per day, 5 days per week for 6 months for a total of 124 exposures. Body weights, serum bromide levels and survival were evaluated throughout the experiment. After 2 and 4 months of exposure, groups of 10 rats in treated groups, and 5 rats from the control group were subjected to white blood cell counts, and clinical chemistry determinations, and sacrificed for organ weight and histopathologic exam. Clinical chemistry tests included SGOT, SGPT, total protein, albumin and albumin/globulin ratio. Tissues weighed and examined included liver, kidney and spleen. The only treatment related effect was a significantly decreased body weight gain in male rats at and greater than 149.51 mg/kg/day (estimated dose from air concentration of 515 ppm). Blood bromide levels were increased in both treatment groups throughout the treatment period.
Reliability	1
Reference	MacEwen, J.D., 1966
Type Species Sex Route of admin.	 Repeated dose, inhalation Dogs (Beagle) Male and female Inhalation
Exposure period Frequency of treatm.	 6 hours per day, 5 days per week 124 exposures in 6 months
Doses	: 500 (515 ppm measured) or 1000 (1010 ppm measured)
Control group Year	: Unexposed : 1966
GLP	: No
Test substance	: BCM, 98.8%
Remark	Groups of 4 male and 4 female dogs were exposed to nominal concentrations of 0, 500 or 1000 ppm BCM for 6 hours per day, 5 days per week for 6 months for a total of 124 exposures. Body weights, serum bromide levels and survival were evaluated throughout the experiment. After 2 and 4 months of exposure, 2 dogs in treated groups, and 1 rats from the control group were subjected to white blood cell counts, and clinical chemistry determinations. Clinical chemistry tests included SGOT, SGPT, total protein, albumin and albumin/globulin ratio. The only treatment related effects were increased blood bromide levels in both treatment groups throughout the treatment period.
Reliability	1
Reference	MacEwen, J.D., 1966
Туре	: Repeated dose, inhalation
Species	: Dogs
Sex Route of admin.	: Female : Inhalation
Exposure period	: 7 hours per day
Frequency of treatm. Doses	 5 days per week for 14 weeks 500 (515 ppm measured) or 1000 (1010 ppm measured)
Control group	: Unexposed
Year GLP	: 1966 . No
GLP Test substance	: No : BCM, > 98% purity
	, · • • · · · · · · · · · · · · · · · ·

5. Toxicity	ld 74-97-5 Date 04.28.06
Remark	Groups of 4 male and 4 female dogs were exposed to nominal concentrations of 0, 500 or 1000 ppm BCM for 6 hours per day, 5 days per week for 6 months for a total of 124 exposures. Body weights, serum bromide levels and survival were evaluated throughout the experiment. After 2 and 4 months of exposure, 2 dogs in treated groups, and 1 rats from the control group were subjected to white blood cell counts, and clinical chemistry determinations. Clinical chemistry tests included SGOT, SGPT, total protein, albumin and albumin/globulin ratio, bromsulfalein excretion, and urinalysis. At termination there was a slight increase in hemosiderin in the spleen and kidneys, and an increase in fat in the kidneys. Inorganic bromide levels increased in the blood of the dogs throughout treatment with terminal concentrations being from 300 to 360 mg/dl.
Reference	Svirbely, J.L. et al, 1947
Type Species Sex Route of admin. Exposure period Frequency of treatm. Doses Control group Year GLP Test substance	 Repeated dose, inhalation Rats Male Inhalation 7 hours per day 5 days per week for 14 weeks 1000 (893 ppm approximately) Unexposed 1966 No BCM, > 98% purity
Remark Reliability Reference	Groups of 20 male rats were exposed to nominal concentrations of 0 or 1000 ppm BCM for 7 hours per day, 5 days per week for 14 weeks. Body weights and survival were evaluated throughout the experiment. After 67 exposures, 19 rats were terminated and evaluated histologically. Bromide levels in the blood and brain were evaluated immediately after the last exposure. At termination there was a slight increase in hemosiderin in the spleen. Inorganic bromide levels were increased in the blood and brains of treated rats . 1 Svirbely, J.L. et al, 1947
Type Species Route of admin. Exposure period Frequency of treatm. Doses Control group Year GLP Test substance	 Repeated dose, inhalation Mice (Strain A and C3H) Inhalation 7 hours per day 5 days per week with interruptions over 4 to 5 months 1000 ppm (893 ppm approximately) Unexposed 1966 No BCM, > 98% purity

5. Toxicity	ld 74-97-5 Date 04.28.06
Remark	Groups of 100 Strain A mice (2 months of age at initiation) and 45 C3H mice (3 to 7 months at initiation) were exposed to nominal concentration of 1000 ppm BCM for 3-7 hours per day, 5 days per week with interruptions due to mortality or adverse effects observed. Strain A mice received a total of 64 exposures of 3-7 hours in a period of about 5 months. Surviving C3H mice received a total of 49 exposures of 3-7 hours in a period of 4 months. Most mice died at various intervals during treatment, and others were sacrificed or died at various intervals after treatment. A total of 21 mice (1 Strain A, remainder C3H) survived until terminal sacrifice at 13 to 16 months of age. Histological examination of mice that died during exposure generally showed fatty changes in the liver or kidneys. Extensive tubular necrosis in the inner zone of the renal cortex was observed in two strain A mice during the 4th daily exposure. Several other mice that died during exposure were reported to have coagulation or karyorrhetic necrosis of a few isolated liver cells. At terminal sacrifice, no treatment related effects were observed.
Reliability	2
Reference	Svirbely, J.L. et al, 1947
5.5 GENETIC TOXICIT	f IN VIRO
Type	: Bacterial reverse mutation and mitotic recombination in Saccharomyces
System of testing	: Salmonella typhimurium TA1535, TA1537, TA1538, TA98, TA100 and Saccharomyces cerevisiae D3
Test concentration	: +/- S9: 10, 20 or 50 ul in dessicators for Salmonella
Metabolic activation	: with and without S-9
Result	: Positive response in TA 100
Method	Negative in Saccharomyces
Year	: other: Based on Ames et. al. (1975) : 1976
GLP	: No data
Test substance	: Bromochloromethane, > 98% purity
Reliability	1
Remark Reference	 TA 100 consistently showed positive responses without activation in reverse mutation assays. The ability of BCM to induce mitotic recombination was evaluated in Saccharomyces cerevisiae D3 at levels of 0, 0.10, 0.20, and 0.3% concentrations in presence or absence of S-9. BCM did not cause a significant increase in mitotic recombinations, with or without S-9 activation. Simmon et al, 1976, 1977, 1978
04.28.06	
Туре	: Bacterial reverse mutation: plate incorporation
System of testing	: Salmonella typhimurium TA97 TA98, TA100, TA 104
Test concentration	: 10 to 1000 ug/plate
Metabolic activation	: with and without S-9
Result Method	 Positive in all strains, S9 enhanced response in TA98 and TA100 other: Based on Ames et. al. (1975)
Year	: 1987
GLP	: No data
Test substance	: Bromochloromethane, > 98% purity
Remark	: BCM showed positive responses in test strains TA97, TA98, TA 100, and TA 104 with and without S9 activation. Responses in TA 98 and TA 100 were enhanced with metabolic activation.
Reliability	
Reference	Strobel, K, and T. Grummt, 1987.
	26 / 35

	Date 04.28.06
-	
Type	: Bacterial reverse mutation and lamda prophage induction in E.Coli
System of testing	: Spot test for TA 1535 and 100, and E. Coli Preincubation for TA 100
Test concentration	: Spot test: 10 ul/disk
	20 to 60 mM in preincubation
Metabolic activation	: with and without S-9
Result	: Positive in all strains
Method Year	: other: based on Ames et. al. (1975) : 1983
GLP	: No data
Test substance	: Bromochloromethane, > 98% purity
Remark	 BCM was reported to give a positive dose related response for reverse mutation with liquid incubation at dose concentrations of 0, 20, 40, 60 mM without activation in Salmonella typhimurium TA 100 and TA 1535. The response was greater in TA 1535. BCM gave a positive dose related response for reverse mutation in vapor phase at a dose concentration of 10 ml/plate without metabolic activation in Escherichia coli Wu361089 and Escherichia coli-SD-4 A positive response for forward mutation (prophage induction) in vapor phase at a dose concentration of 10 ul/plate without metabolic activation in Escherichia coli K394.
Reference	Osterman-Golkar, S., et al., 1983.
Type System of testing	 In vitro: mammalian cells Chinese hamster FAF cells
Test concentration	: 1×10^{-6} to 5×10^{-5} M
Cycotoxic concentr.	: Highest concentration tested
Metabolic activation	 No Positive response, SCE and chromosomal aberrations
Result Year	: 1987
GLP	: No data
Test substance	: Bromochloromethane
Remark	: BCM induced dose related sister chromatid exchanges and chromosome aberrations in Chinese hamster cells in vitro.
Reliability Reference	1 Strobel, K. and T. Grummt, 1987

5.6 GENETIC TOXICITY 'IN VIVO'

5.7 CARCINOGENICITY

5.8.1 TOXICITY TO FERTILITY

5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

5.8.3 TOXICITY TO REPRODUCTION, OTHER STUDIES

5. To	oxicity	ld	74-97-5
		ate	04.28.06
5.9	SPECIFIC INVESTIGATIONS		
5.10	EXPOSURE EXPERIENCE		
5.11	ADDITIONAL REMARKS		

6. Analyt. Meth. for Detection and Identification	ld 74-97-5		
•		04.28.06	

6.1 ANALYTICAL METHODS

6.2 DETECTION AND IDENTIFICATION

7. E1	f. Against Target Org. and Intended Uses	ld	74-97-5
		Date	04.28.06
7.1	FUNCTION		
7.2	EFFECTS ON ORGANISMS TO BE CONTROLLED		
7.3	ORGANISMS TO BE PROTECTED		
7.4	USER		
7.5	RESISTANCE		

- 8.1 METHODS HANDLING AND STORING
- 8.2 FIRE GUIDANCE
- 8.3 EMERGENCY MEASURES
- 8.4 POSSIB. OF RENDERING SUBST. HARMLESS
- 8.5 WASTE MANAGEMENT
- 8.6 SIDE-EFFECTS DETECTION
- 8.7 SUBSTANCE REGISTERED AS DANGEROUS FOR GROUND WATER
- 8.8 REACTIVITY TOWARDS CONTAINER MATERIAL

References: Bromochloromethane

Allen, D.J., SafePharm Laboratories, Limited, "Bromochloromethane (CBM): Magnusson and Kligman Maximisation Study in the Guinea Pig," SPL Project Number: 466/162, for Bromine Chemicals, Limited, sponsor., 1997.

Andersen, M.E., M.L. Gargas, R.A. Jones and L. Jenkins, Jr., "Determination of the Kinetic Constants for Metabolism of Inhaled Toxicants in vivo Using Gas Uptake Measurements," Toxicol Appl Pharmacol 53(1): 100-116, 1980.

Casarett, L.J. and J. Doull, Toxicology: The Basic Science of Poisons, New York, MacMillan Publishing Co., p. 60, 1975.

CITI (Chemical Inspection and Testing Institute), Biodegradation and Bioaccumulation Data of Existing Chemicals based on the CSCL Japan, Japan Chemical Industry Ecology-Toxicology and Information Center, p. 2-13, ISBN 4-89074-101-1, 1992.

Clayton, G.D., and F.E. Clayton, eds, Patty's Industrial Hygiene and Toxicology, Vol. 2A – 2F, Toxicology, 4th edition, New York, NY, John Wiley and Sons, Inc, p. 4046, 1993-1994.

Daubert, T.E., and R.P. Danner, Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C., Taylor and Francis, 1989.

Dean, J.A., Handbook of Organic Chemistry, New York, NY, McGraw-Hill Book, Co., p. 4-47, 1987.

Doull, J., C.D. Klassen, and M.D. Amdur (eds), Casarett and Doull's Toxicology, 3rd edition, New York, MacMillan Co., Inc., p. 647, 1986.

Dow Chemical Company, "The Toxicity of Bromochloromethane (Methylene Chlorobromide) as Determined on Laboratory Animals, 1960" EPA Doc. No. 86-870001207, Fiche No. OTS0516110. (see Torkelson, T.R. et al., 1960)

EPISUITE (v. 4.0), Estimation Programs Interface (EPI) Suite[™], developed by the US Environmental Protection Agency Office of Pollution Prevention and Toxics and Syracuse Research Corporation (SRC), copywrited 2000-2008.

Gargas, M.L. and M.E. Andersen, "Metabolism of Inhaled Brominated Hydrocarbons: Validation of Gas Uptake Results by Determination of a Stable Metabolite," Toxicol. Appl. Pharmacol. 66(1): 55-68, 1982.

Gargas, M.L., H.J. Clewell and M.E. Andersen, "Metabolism of Inhaled Dihalomethanes in vivo: Differentiation of Kinetic Constants for Two Independent Pathways," Appl. Pharmacol. 82(2): 211-223, 1982.

HA: "Bromochloromethane, Health Advisory", Office of Water, U.S. Environmental Protection Agency, October, 1989.

Hansch, C., A., Leo and Hoekman, D., "Exploring QSAR – Hydrophobic, Electronic, and Steric Constants," Washington, D.C., American Chemical Society, p. 3, 1995.

HEED: US EPA, Health and Environmental Effects Document for Bromochloromethane. Prepared by the Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC., 1990.

Highman, B., J.L. Svirbely, W. F. von Oettingen, W.D. Alford, and L.J. Pecora, "Pathological Changes Produced by Mono-chloro-mono-bromomethane," Am Med Assoc Arch Pathol, 45: 299-305, 1948.

Kobayashi, H., and Rittman, B.E., Environ Sci Tech 16, pp 170A-83A, 1982.

Kudchadker, A.P., S.A. Kudchadker, R.P. Shukla, and P.R. Patnaik, "Vapor Pressures and Boiling Points of Selected Halomethanes," J Phys Chem Ref Data, 8(2): pp. 499-517, 1979.

Kuney, JH, Chemcyclopedia 1989, Vol. 7, American Chemical Society, Washington, D.C., p. 179, 1988.

9. References

Lide, DR, (ed), CRC Handbook of Chemistry and Physics, 79th edition, Boca Raton, Florida, CRC Press, Inc, pp 3-205, 1998-1999.

Mabey, W. and T. Mill, "Critical Review of Hydrolysis of Organic Compounds in Water under Environmental Conditions," J Phys Chem Ref Data, 7:383-415, 1978.

MacEwen, J.D., J.M. McNerney, E.H. Vernot, and D.T. Harper, "Chronic Inhalation Toxicity of Bromochloromethane," J Occup Med 8:251-256, 1966.

McDougal, J.N., G.W. Jepson, H.J. Clewell, and M.E. Anderson, "Dermal Absorption of Dihalomethane Vapors," Toxicology and Applied Pharmacology, 79, pp 150-158, 1985.

Mill, T., "Validation of Estimation Techniques for Predicting Environmental Transformation of Chemicals, US EPA 68-01-6269, Washington, D.C., 1982.

Mokrauer, J.E. and Kosson, D.S: Environ Progress 8:1-5, 1989.

Notox Laboratories, "Primary Skin Irritation/Corrosion Study with Bromochloromethane in the Rabbit (4-hour Semi-occlusive Application), Notox Project 233055, for Bromine Chemicals Limited, Sponsor, 1998.

Orkin, V.L., et al., J Phys Chem A 101: 174-178, 1997 as cited in the Hazardous Substance Data Base.

Osterman-Golkar, S., S. Hussain, S. Walles, B. Anderstam, and K. Sigvardsson, "Chemical Reactivity and Mutagenicity of Some Dihalomethanes", Chem Biol Interact 46 (1), pp 121-130, 1983 as cited in USEPA; Health and Environmental Effects Profile for Bromochloromethane, p 38, 1985. As cited in Integrated Risk Information System, "Bromochloromethane (CASRN 74-97-5)", on-line, 2006.

Rampy, L.W. and P.T. Keeler, "DOT Test for Corrosiveness Conducted on Bromochloromethane," Chemical Biology Research, Dow Chemical, USA, 1973.

Riddick, J.A., W.B. Bunger and T.K. Sakano, "Organic Solvents: Physical Properties and Methods of Purification," in Techniques of Chemistry, 4th edition, Wiley-Interscience, New York. 2: 562-563, 1986 as cited in US EPA, 1990.

Roberts, A.L., P.N. Sanborn, and P.M. Gsahwend, Environ Sci Technol 26:(11), pp 2263-2274, 1992.

Rutstein, H.R., "Acute Chlorobromomethane Toxicity," Arch Environ Health, 7(4): pp 440-444, 1963.

SafePharm Laboratories, Limited, "Bromochloromethane (CBM): Acute Inhalation Toxicity (Nose only) Study in the Rat (Limit Test)," SPL Project Number: 466/160, for Bromine Chemicals, Limited, sponsor, 1998.

Simmon, V.F., and D.C. Poole, "In Vitro Microbiological Mutagenicity Studies of Dow Chemical Company Compounds," Stanford Research Institute, SRI Project LSC-4378, Interim Report, April 1, 1976.

Simmon, V.F., and D.C. Poole, "In Vitro Microbiological Mutagenicity Studies of Dow Chemical Company Compounds," Stanford Research Institute, SRI Project LSC-4378, Final Report, August 6, 1976.

Simmon, V.F., K. Kauhanen and R.G. Tardiff, "Mutagenic Activity of Chemicals Identified in Drinking Water,", Dev Toxicol Environ Sci 2 (Prog Genet Toxicol), p 249-258, 1977 as cited in USEPA; Health and Environmental Effects Profile for Bromochloromethane, p 37, 1985. As cited in Integrated Risk Information System, "Bromochloromethane (CASRN 74-97-5)", on-line, 2006.

Simmon, V.F., "Structural Correlations of Carcinogenic and Mutagenic Alkyl Halides," US DHEW Publ. FDA 78-1045. Struct Correl Carcinog Mutagen, p. 163-171, 1978.

Simmon, V.F. and R.G.Tardiff, "Mutagenic Activity of Halogenated Compounds Found in Drinking Water," In Water Chlorination: Environmental Health Effects, Vol. 2; R.L. Jolley, H. Gorchev and D.H. Hamilton, Jr. Ed. Environmental Impact of Water Chlorination: Proceedings of the 2nd Conference, Gatlinburg TN, October 31-Nov. 4, 1977, Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, pp 417-431, 1978.

9. References

SRI International, "In Vitro Microbiological Mutagenicity Studies of Dow Chemical Company Compounds (Interim Report)", EPA Doc. No. 86-870001204, Fiche No. OTS0516107.

Stenger, V.A., Bromine Compounds, in Kirk-Othmer Encyclopedia of Clincal Technology, Vol. 4, 3rd edition, M. Grayson and D. Eckroth, ed. John Wiley and Sons, Inc,. New York, NY, p. 252-253, 1978.

Strobel, K, and T. Grummt, "Aliphatic and Aromatic Hydrocarbons as Potential Mutagens in Drinking Water. Part I. Halogenated Methanes," Toxicology and Environmental Chemistry 13, (3-4), pp 205-221, 1987.

Svirbely, J.L., B. Highman, W.C. Alford, and W.F. von Oettingen, "TheToxicity and Narcotic Action of Monochloro-mono-bromomethane with Special Reference to Inorganic and Volatile Bromide in Blood, Urine, and Brain," J. Ind. Hyg. Toxicol, 29:382-389, 1947.

Swann, R.L., D.A. Laskowski, P.J. McCall, K.Vander Kuy, and H.J. Dishburger, "A Rapid Method for the Estimation of the Environmental Parameters Octanol/water Partition Coefficient, Soil Sorption Constant, Water to Air Ratio and Water Solubility," Res. Rev. 85: 17-28, 1983.

Tabak, H.H., S.A. Quave, C.I. Mashni, and E.F. Barth, "Biodegradability Studies with Organic Priority Compounds," J Water Pollut Control Fed., 53, pp 1503-18, 1981.

Tewari, Y.B., M.M. Miller, S.P. Wasik, and D.E. Martire, "Aqueous Solubility and Octanol/water Partition coefficient of Organic Compounds at 25.0°C," J. Chem. Eng. Data. 27:451-454, 1982.

Torkelson, T.R., F. Oyen, and V.K. Rowe, "The Toxicity of Bromochloromethane (Methylene Chlorobromide) as Determined on Laboratory Animals," American Industrial Hygiene Association Journal, Vol. 21, No. 4, 1960.

US EPA, 1989: see HA

US EPA 1990 = see HEED

US EPA: Federal Register, Vol. 64, No. 81, April 28, 1999, Environmental Protection Agency, Protection of the Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances, Final Rule, 1999.

US EPA: Federal Register, Vol. 68, No. 138, Friday, July 18, 2003, Environmental Protection Agency, 40 CFR Part 82, Protection of Stratospheric Ozone: Phaseout of Chlorobromomethane Production and Consumption; Final Rule, 2003.

Van Stee, E.W., A.M. Harris, M.L. Horton, and K.C. Back, "The Effects of Three Vaporizable Fire Extinguishing Agents on Myocardial and Cardiovascular Dynamics in the Anesthetized Dog," Toxicology and Applied Pharmacology, 34, pp. 62-71, 1975.

Van Stee, E.W., "A Review of the Toxicology of Halogenated Fire Extinguishing Agents, " AMRL-TR-74-143, Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, 1974.

Yalkowsky, S.H. Dannenfelser, R.M., "Aquasol Data Base of Water Solubility, Ver. 5, Tucson, Arizona, University of Arizona College of Pharmacy, 1992.

1	0. S	ummary and Evaluation	ld	74-97-5
			Date	04.28.06
1	0.1	END POINT SUMMARY		
1	0.2	HAZARD SUMMARY		
1	0.3	RISK ASSESSMENT		

IUCLID

Data Set

Memo	: DBM HPV dossier
CAS No.	: 74-95-3
Common name	: Dibromomethane
Molecular Formula	: C H2 Br2
Number of pages	: 37

Id 74-95-3 1. General Information Date 04.28.06 1.0.1 APPLICANT AND COMPANY INFORMATION 1.0.2 LOCATION OF PRODUCTION SITE, IMPORTER OR FORMULATOR **1.0.3 IDENTITY OF RECIPIENTS** 1.0.4 DETAILS ON CATEGORY/TEMPLATE 1.1.0 SUBSTANCE IDENTIFICATION : BrCBr **Smiles Code** Molecular formula:C H2 Br2Molecular weight:173.86 (Lide, DR, ed, 1998-1999) 15.02.2002 1.1.1 GENERAL SUBSTANCE INFORMATION : Typical for marketed substance Purity type : Organic Substance type Physical status Purity : Liquid : = > 98% w/w Colour : Colorless to light yellow Odour : Sweet 04.28.06

1.1.2 SPECTRA

1.2 SYNONYMS AND TRADENAMES

SubstanceMethylene BromideSubstanceMethylene DibromideSubstanceDibromomethaneTrade NameDBM

1.3 IMPURITIES

1.4 ADDITIVES

1.5 TOTAL QUANTITY

1. General Informa	tion	ld 74-95-3 Date 04.28.06
1.6.1 LABELLING		
Labelling Specific limits Symbols Nota R-Phrases S-Phrases 04.28.06	 provisionally by manufacturer/impo No Xn (20) Harmful by inhalation (23) Do not breathe fumes/vapour 	rter
1.6.2 CLASSIFICATION		
Classified Class of danger R-Phrases	 provisionally by manufacturer/impo Harmful (20) Harmful by inhalation 	rter
04.28.06		
1.6.3 PACKAGING		
1.7 USE PATTERN		
Remark	: DBM has limited usage in synthesis (Stenger, VA, 1978). It has potentia mineral and salts gravity separation	al use as a dense, volatile media for
04.28.06		
1.7.1 DETAILED USE P	ATTERN	
1.7.2 METHODS OF MA	NUFACTURE	
Remark	chloride with anhydrous aluminum l	ne) is prepared by reacting methylene bromide (treatment with bromine and ogen bromide in the presence of an by water washing and distillation
04.28.06	(otongoi, v.r., 1070).	
1.8 REGULATORY ME	ASURES	
1.8.1 OCCUPATIONAL	EXPOSURE LIMIT VALUES	
Remark 04.28.06	: No recommended exposure limit va	alues

1. General Information	74-95-3 04.28.06
1.8.2 ACCEPTABLE RESIDUES LEVELS	
1.8.3 WATER POLLUTION	
1.8.4 MAJOR ACCIDENT HAZARDS	
1.8.5 AIR POLLUTION	
1.8.6 LISTINGS E.G. CHEMICAL INVENTORIES	
1.9.1 DEGRADATION/TRANSFORMATION PRODUCTS	
1.9.2 COMPONENTS	
1.10 SOURCE OF EXPOSURE	
1.11 ADDITIONAL REMARKS	
1.12 LAST LITERATURE SEARCH	

1.13 REVIEWS

2. Physico-Chemical Data

2.1 MELTING POINT/FREEZING POINT

Value Method Year GLP Test substance Reliability Remark	 < 253 +/- 0.5 K (< -20.0 +/- 0.5 ° C) BS4633: Method for the Determination of Crystallizing Poing, Method 102 of OECD Guidelines for Testing of Chemicals, 27, July, 1995 2007 Yes Dibromomethane, 99.4% purity 1 An aliquot of test article was placed in a test tube containing a thermometer and a wire loop with which to agitate the sample. The test tube was surrounded by a glass jacket and then placed in a beaker containing a mixture of dry ice and acetone. Temperature and observations of the test article were made approximately every 30 seconds. The test would continue until the temperature of the test material reached approximately -20° C or until the tests, the test material remained a clear, colorless liquid upon cooling. Conclusion was that the freezing point was less that 253 K.
Reference	O'Connor, B.G., 2007
05/15/07	
2.2 BOILING POINT	
Value Method Year GLP Test substance Reliability	 367 +/- 1 K (94 +/- 1 degree C) at 100.00 to 100.62 kPa Siwoloboff method, according to ISO 918, Method 103 OECD Guidelines for Testing of Chemicals, 27 July, 1995 2007 Yes Dibromomethane, 99.4% purity 1
Remark	: An aliquot of test material was placed in a test tube, which was then fastened to a thermometer, and the apparatus placed in a silicone oil bath. A capillary tube, fused 1 cm from one end, was immersed in the test material such that the fused section was below the surface of the test material. The oil bath was then heated steadily with a heating mantle and the temperature raised to the point where the fused capillary tube emitted a steady stream of bubbles. At that point, the heat source was removed and the bath allowed to cool. The temperature at which the fused capillary tube ceased to emit bubbles and the test material rose rapidly up the inside of the capillary tube was recorded as the boiling point. The atmospheric pressure was measured with a Fortin's barometer. The test was conducted in duplicate. The temperature at which the heat source was removed in both tests was 373 K. The boiling point in each case was 367 K. Atmospheric pressure was 100.00 kPa in the first test, and 100.62 in the second.
Reference	O'Connor, B.J., 2007
05.02.07	

2. Physico-Chemical Data

2.3 DENSITY

Type Value Test substance	Density = 2.49 at 25 ° / 2.497 g/cu cm at 20 °C Dibromomethane, Purity > 98%	
Remark 04.28.06	Albemarle Corporation MSDS / Literature (Stenger, V.A., 1978)	

2.3.1 GRANULOMETRY

2.4 VAPOUR PRESSURE

Type Value Method Year GLP Test substance Reliability	 Vapor Pressure = 4.7 x 10³ Pa (35.3 mm Hg) at 25 °C Method 104 of the OECD Guidelines, 27 July 1995, isoteniscope 2007 Yes Dibromomethane, 99.4% purity, 1
Remark	: Vapour pressure was determined using an isoteniscope system with measurements being made at several temperatures and linear regression analysis used to calculate the vapour pressure at 25 °C. The isoteniscope system used mercury in a glass manometer to measure the pressure, and the sample temperature was regulated with a silicone oil bath. Three runs were made. The first sample was degassed for 12 minutes and temperature and pressure readings were taken between 78 and 55 °C. The same sample was degassed for a further 20 minutes and run 2 was made with temperatures ranging from 85 to 63 °C. A fresh sample degassed for 10 minutes was used for the third run, with a temperature range of 87 to 60 °C. A plot of Log10 Vp (Pa) versus reciprocal temperature (1/T(K) was graphed, and statistical analysis using an unweighted least squares treatment was conducted. The resulting equations indicated the vapor pressure relationships. The vapor pressure of the sample was measured over a range of temperature in order to extrapolate to 298.15 K.
Reference 05.06.07	Tremain, S.P., 2007.
Type Value Method 04.28.06	 Vapor Pressure = 31 mmHg at 25 °C other: estimate from PBT Profiler
Туре	: Vapor Pressure

2. Physico-Chemic	cal Data				74-95-3 04.28.06
Value	: = 44.2 to	44.4 mmHg at 25 °	C		
Reference 04.28.06	: Literature	(Kudchadker, A.P.,	1979)		
2.5 PARTITION COEF	FICIENT				
Partition coefficient Log pow pH value Method Year GLP Reliability Remark	 6.2 Shake Fla Chemical 2007 Yes 1 For the de material (were perf volume ra minute perf 	rater 2.5 +/- 0.5°C ask method, Method s, 27 July 1995 efinitive test, a stock 0.8096 g) to 500 ml ormed, with two dup atios. Shaking was p eriod. After separatio by gas chromatograp	solution was with water-s licates each performed by on, aliquots o	s prepared by c aturated n-octa at three differe / inversion of th of both phases	diluting test nol. Six partitions ent octanol/water le flasks over a 5 were taken for
Remark	test, P = 0 Mean Po	vas confirmed to be 0.05, and therefore h w was determined to indard deviation of th Octanol/water	has been exc be 47.5 cor	cluded from furt	her calculatoins.
	1	Volume Ratio	46.7	1.67	44.8
	2	1:1	42.8 60.0	1.63 1.75	49.9
	4	2:1	43.9 48.0	<u>1.64</u> 1.68	35.2
	6	2.1	22.4	1.35	00.2
Reference	: O'Connor	, B.J, 2007.			
05.02.07					
2.6.1 SOLUBILITY IN DI	FFERENT MED	DIA			
Solubility in Value		(worst case)			
pH value concentration	= 8.60 g/l (mean value) : = 6.0 to 6.4 : at 20.0 +/- 0.5 °C				
Method		thod, Method 105 of s, 27 July, 1995.	the OECD C	Guidelines for T	esting of
Year GLP	: 2007	3, 21 July, 1990.			
GLP Test substance	: Yes : Dibromor	nethane, 99.4% puri	ty		
Remark	 In a preliminary test, 6.2302 grams of test material was diluted to 100 ml 				

2. Physico-Chemical Data		ld 74-95-3 Date 04.28.06		
			Date 04.20.00	J
	standing at 20°C for 4 hours, 10 minutes and analyzed. Pr g/l.			
	Based on the preliminary tes of test material was 5.5001 to After the water was added, fl standing at 20 °C for not less centrifuged at 13500 rpm for undissolved test material. Th sample solutions was determ	5 5.5005 g/100 ml gla asks were shaken at than 24 hours, the c 10 minutes and sam he concentration of th	ass double-disti about 30°C, ar contents of the t pled, excluding the test material	illed wate nd after flasks we recess
				θH
	1 24 hours		9.00 g/l	6.4
	2 48 hours		8.60 g/l	6.2
	3 72 hours	24 hours	8.20 g/l	6.0
	No additional short term wate because of the limited extent significant degradation produ analysis and the approximate significant accumulation of H worst case scenario for envir	of hydrolysis observent of peaks in the GC cl aly neutral sample pH Br. The value of 9.00	ed, and the abs hromatograms I values indicat 0 g/l was select	sence of on ing no
Reliability Reference	1 O'Connor, B.J., 2007			
05/02/2007				
Solubility in Value	: Water : 11.5 g/l at 25 °C / 1.9 g/l at	30 °C / 11.7 g/1000	g water at 15 °	°C
Remark	: Literature values: Hine and M The Merck Index, 1996, p. 10		oss and Saylor	⁻ , 1931 /
04.28.06				
2.6.2 SURFACE TENS	ION			
Remark	: 33.32 dynes/cm @ 20 °C Literature value: Dean, JA, 1	987		
2.7 FLASH POINT				
Test substance	: Dibromomethane			
Remark	: No flash point or fire points c Literature: Clayton, GD, 199		d by standard t	ests in a
04.28.06				
2.8 AUTO FLAMMA	BILITY			
2.9 FLAMMABILITY				
2.10 EXPLOSIVE PRO	PERTIES			

2. Physico-Chemi	cal Data	74-95-3 04.28.06
2.11 OXIDIZING PROP	ERTIES	
2.12 DISSOCIATION C	ONSTANT	
2.13 VISCOSITY		
Type Value	: Viscosity : = 1.32 mPa @ 0 °C	
Remark 04.28.06	: Literature: Lide, DR, 1998-1999, p 6-170	

3. Environmental Fate and Pathways

3.1.1 PHOTODEGRADATION

Туре	notodegradation	
Remark	BM does not absorb UV light at >290 nm (US EPA, 19 notolysis is probably not a major factor in degradation	
Туре	stimation of overall hydroxyl rate constant	
Remark	alculation of the rate constant for the atmospheric rea notochemically produced hydroxyl radicals and the tes apor phase gives an overall rate constant value of 0.0 ⁻ n ³ /molecule-sec. This rate constant calculates to an e 46.069 days. (12 hr day, 1.5e ⁶ OH/cm3, AOP Program PISUITE v. 4.0)	st substance in the 7324e ⁻¹² estimated half-life of

3.1.2 STABILITY IN WATER

Type t1/2 pH3 t1/2 pH7 t1/2 pH11 Deg. product Method Year GLP Test substance	 Abiotic 122 day(s) at 25 °C 143 day(s) at 25 °C 50.2 day(s) at 25 °C TSCA Test Standard 796.3500 as described in the US Federal Register, Vol. 50, No. 188, Sept 27, 1985, and amended to conform to Federal Register, Vol. 53 No. 115, June 15, 1988. 1989 Yes Dibromomethane, 99.95% purity
Reliability Remark	: 1 : Three 250 mL stock solutions were prepared in sterilized pH buffers. Approximately 1.1 mg samples of dibromomethane were placed in 250 mL of three buffer solutions (pH 3, 7 and 11) in 250 ml volumetric flasks stoppered with glass stoppers and covered with aluminum foil. Solutions were analyzed at various time intervals to determine rate of hydrolysis and half-life of the material at 25 °C. Temperature was maintained by placing the flasks in a shaking waterbath. Initial concentrations of the test solutions were confirmed by gas chromomatography. At every sampling interval, each of the three pH values was sampled. In triplicate, exactly 1.00 ml samples were taken and analyzed by GC. The method validation yielded a mean (n = 9) percent recovery of 94.0% with a standard deviation of 7.3%. Mean recovery of quality assurance samples taken during the testing was 96.3% with a standard deviation of 4.1% (n = 36). The pH of each flask was monitored weekly over the 28 day study, and never deviated more than 0.05 pH units Hydrolysis rate constants (k) and correlation coefficient were calculated using linear regression least squares fitting techniques. The simplified formula was: $C = C_o e^{(+k)}$ Where k = rate constant (day ⁻¹) C = mean dibromomethane concentration (mg/L) t = time (days) C_o = mean initial dibromomethane concentratin (mg/L) . e = 2.718 The half-life was calculated as: $t_{1/2} = (\ln 2)/k$

3. Environi	mental F	ate and Path	ways		74-95-3 04.28.06
		appearing in degradation p capture detec column such The following the three pH	e evidence for the form the chromatograms ob products formed were ctor or had sufficiently that it did not elute with table shows the rate of values. The second of s k _A , k _B and k _N .	tained by GC analy either not detectab different retention p hin the utilized run constants (first orde	ysis. Any le using the electron properties on the time. er) and half-lives for
-	pH	Rate Constant (days ⁻¹)	Coefficient of Determination (R ²)	Half-life (days)	
-	3.0 7.0	0.00569 0.00484	NA NA	122 143	
	11.0	0.0138	0.7977	50.2	
L		: NA = not app were used in	licable; at this pH and the calculation. The rate P_{N}	temperature, only 2	
Reliability: Remark		1 : Fackler, P.H.,	1989.		
04.28.06					
3.1.3 STABIL	ITY IN SOIL	-			
Remark		tightly bound to adsorbs to sec	an be estimated. The k o soil through adsorption liment, thus not interfe n in disappearance from	on. It is also unlike ring with volatilizat	ly that DBM ion or
Remark			: Literature reference (Hazardous Substance Data Base citing Syracuse Research Corporation)		
Reliability		1	,		
04.28.06					
Remark		Koc value of 2	Koc using KOCWIN v. 1.73 based on molecu ental log Kow of 1.7.		
3.2.1 MONIT	ORING DAT	A			
3.2.2 FIELD \$	STUDIES				
3.3.1 TRANS	PORT BET	WEEN ENVIRONME	ENTAL COMPARTME	NTS	
Type Media Value		: other: adsorpti : water - soil Log Koc = 24	-		
V CILLICE		LOY ROU = 24	coullialeu)		
Method		 other: estimation using PCKOC (v 1.66) Cited in Hazardous Substance Data Base from Syracuse Research 			

3. Environmental Fate and Pathways

3.3.2 DISTRIBUTION

Remark	:	Distribution as per PBT Profiler for DBMWater36%Soil29%Sediment0%Air34%
Remark	·	Literature reference: estimated by Syracuse Research Corporation as cited in Hazardous Substances Database and estimation using PBT Profiler
Remark	:	Level III Fugacity-Based Environmental Partitioning Modelling The following table represents the fugacity modelling calculated using the parameters: Molecular weight 173.84, Henry's Law Constant 0.000822 atm-m ³ /mole (Henry database), Vapor pressure 48.8 mm Hg (MPBWIN program), Log Kow 1.7 (KOWWIN program) and Soil Koc 21.7 (KOCWIN MCI method).
		Persistence Time:207 hoursReaction Time:922 hoursAdvection time:267 hoursPercent advected:77.6%
Reference	:	Modelling using EPISUITE v. 4.0

Environmental	Mass	Half-life	Emissions	Fugacity	Reaction	Advection
Compartment	Amount	(hours)	(kg/hr)	(ATM)	(kg/hr)	(kg/hr)
	(percent)				(percent)	(percent)
Air	33.9	2,272	1000	2.96e ⁻⁰¹⁰	64.2	2.1e ⁺⁰⁰³
					2.14	70.1
Water	35.9	360	1000	5.26e ⁻⁰⁰⁹	429	223
					14.3	7.42
Soil	30.1	720	1000	5.93e ⁻⁰⁰⁸	180	0
					6	0
Sediment	0.0983	3,240	0	4.74e ⁻⁰⁰⁹	0.131	0.0122
					0.00435	0.00407

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 BIODEGRADATION

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

BCF	: ca. 4.06
Method	: Estimated by Syracuse Research Corporation as cited in Hazardous
	Substances Database and estimation using PBT Profiler
Remark	: An estimated BCF of 4.06 would suggest that the potential for
	bioaccumulation in aquatic organisms is low.

3. Environmer	ntal Fate and Pathways	ld 74-95-3 Date 04.28.06
Remark	Estimation of BCF using BCFBAF v. 6.147 L/kg wet weight.	3.00 (EPISUITE 4.0) gives a value of
BCF Method Remark	 ca. 2.791 Cited in US EPA, 1987 An estimated BCF of 2.791 would supplication in aquatic organisms 	
3.8 ADDITIONA	LREMARKS	

4. Ecotoxicity

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type Species Exposure period Unit NOEC LC50 Limit test Analytical monitoring Method Year GLP Test substance Reliability		Semistatic Oncorhynchus mykiss (Fish, fresh water) 96 hour(s) mg/l = 32 mg/l = 45 mg/l No Yes "Fish Acute Toxicity Test" Method 203 of OECD Guidelines forTesting of Chemicals, 1992; US CFR 40 Part 797 section 1400, and ASTM Standard E 729-96 2007 Yes Dibromomethane, 99.4% purity 1
Remark	:	Stock solutions were made by dissolving test article in dechlorinated tap water with ultrasonication for one hour. Aliquots of the stock solution were added to final volumes of 25 liters of dechlorinated tap water and stirred for one minute to give the final concentrations. Each test concentration was prepared in duplicate to give replicates R1 and R2. Test chambers were 25 liter glass exposure vessels. Temperatures were maintained at 13.2 to 14.9°C and the photoperiod of the room was 16 hours light and 8 hours darkness with dawn and dusk transitions of 20 minutes. The test vessels received no auxiliary aeration, and test preparations were renewed daily to ensure concentrations remained near nominal and there was no buildup of nitrogenous waste. Feeding of fish was discontinued 48 hours prior to the start of the definitive test. There was zero mortality in the 7 days prior to the definitive test, and a mean standard length of 4.9 cm at the start of the definitive test, and a mean weight of 1.66 grams at the end of the test giving a loading weight of 0.67 gm body weight/liter.
		Following a range-finding test, fish (10 per group) were exposed to aqueous solutions of test material over the concentrations of 10, 18, 32, 56, and 100 mg/l for a period of 96 hours at a temperature of 13.2°C to 14.9°C. Test vessels were sealed with minimal headspace under semi-static test conditions. Number of mortalities and observations were determined at 3 and 6 hours after start of exposure, then daily through 96 hours.
		No mortalities were noted in the definitive test at concentrations of 32 mg/l and below. At 100 mg/l, all fish in both replicates were dead by 3 hours of exposure. At 56 mg/l, a total of 3 fish in both replicates were dead, and by 96 hours, 9 fish in each replicate were dead (90% mortality). Observations of fish swimming near the top of the vessel were noted in the 56 mg/l group.
		The LC50 values and associated confidence limits at 3, 6, 24, 48, 72, and 96 hours were calculated by the trimmed Spearman-Karber method using the ToxCalc computer software package. The 96 hour LC50 based on nominal test concentrations was 45 mg/l (95% confidence limits 42-48 mg/l). The NOEC was 32 mg/l.
Reference	:	Goodband, T.J., 2007.
05 03 2007		

05.03.2007

4. Ecotoxicity

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type Species Exposure period Unit EC50 NOEC Method Year GLP Test substance Reliability	 static Daphnia magna (Crustacea) 48 hour(s) mg/l 66 mg/l (based on nominal concentrations) 32 mg/l (nominal) US CFR 40 Part 797 Section 1300 and ASTM 729-96 2007 Yes Dibromomethane, 99.4% purity 1
Remark	 Stock solutions were prepared by adding test material (500 mg) to dechlorinated tap water with the aid of ultrasonication for 30 seconds, and volumes adjusted to 5 liters. Aliquots were then further diluted to give the appropriate nominal concentration. Test vessels were 300 ml stoppered conical flasks filled completely to minimize volatile loss. The test was conducted in a temperature controlled room with photoperiod of 16 hours light and 8 hours dark with 20 minute transitions. Daphnids were not fed during the test, and test solutions were not renewed. In the definitive test, twenty daphnids (2 replicates of 10 animals) were exposed to aqueous solutions of test material at concentrations of 10, 18, 32, 56, and 100 mg/l in sealed vessels for 48 hours at a temperature of approximately 20°C under static test conditions. The number of immobilized Daphnia were recorded after 24 and 48 hours. Analysis of the test preparations at 0 and 48 hours showed measured test concentrations to range from 83% to 115% of nominal value, so calculations were based on nominal concentrations. EC50 values and the associated confidence limits and the slope of the dose response curve and its standard error were calculated by the maximum-likelihood probit method using the ToxCalc computer software package. The 48 hour EC50 for the test material based on nonimal test concentrations was 66 mg/l with 95% confidence limits of 58-76 mg/l. The No Observed Effect Concentration was 32 mg/l.
Reference	: Goodband, T.J., 2007.
04.28.06	
4.3 TOXICITY TO AQ	UATIC PLANTS E.G. ALGAE

Species	: Pseudokirchneriella subcapitata (Algae)
Endpoint	: Growth rate, yield, biomass integral
Exposure period	: 72 and 96 hour(s)
Unit	: mg/l
EC50	: ErC ₅₀ : 190 (72 hr) and 210 (96 hr) – growth
	EyC _{50:} 100 (72 hr) and 130 (96 hr) – yield
	$EbC_{50:}$ 96 (72 hr) and 110 (96 hr) – biomass integral
Method	: "Alga, Growth Inhibition Test" Method 201 of OECD Guidelines for the
	Testing of Chemicals, 1984
Year	: 2007
GLP	: Yes

4. Ecotoxicity			ld 74-95-3 Date 04.28.06
Test substance	: Dibromomethane,	99.4% purity	
Test substance Remark	: Stock solutions of the aid of ultrasoni subcapitata strain material at concen replicates per cond lux) and shaking (7 were 250 ml glass solution. Initial cel populations were r concentrations det Coulter Multisizer I determined at initia made hourly. Ana test group replicate each occasion and fourth replicate wa alongside the test analysis of these a concentrations of c and 205 at 96 hou rate of control cultu of the test. A posit EC ₅₀ values using nominal at initiation Analysis at 96 hou 101% of nominal. showed measured decline in measured	the test material were di cation for about 20 minu CCAP 278/4 were exposi- trations of 10, 32, 100, 3 centration) for 96 hours of 150 rpm) at a temperatu conical flasks, each con- l density of 10 ⁴ cells per- emoved daily (0, 24, 48, ermined for each contro- Particle Counter. pH of ation and 96 hours. Tem lytical determinations we as at 0 and 96 hours. D d stored at -20°C for furth s prepared at each test remaining unopened un- diditional relplicates was control cultures increase rs, and coefficient of var ures over the test period tive control chemical (zin the same system. Test n, with the exception of 3 rs showed slight decline Analysis of the unopene concentrations of 81%	ssolved in culture medium with ites. Pseudokirchneriella sed to aqueous solutions of test 320, and 1000 mg/l (three under constant illumination (700 re of 24 +/- 1°C. Test chambers inpletely filled with test or control rml were used. Samples of algo- 72 and 96 hours) and cell I and treatment group, using a each control and test flask were operature measurements were are made on control and pooled uplicate samples were taken on her analysis if necessary. A concentration and incubated til the end of the test. Chemical made at 96 hours. The cell d by a factor of 110 at 72 hours iation for average specific growt was 4%, demonstrating validity in chloride) gave acceptable concentrations were near 32 mg/l being 79% of nominal. in concentrations to 64% to ed replicate flasks at 96 hours ot 106% of nominal. Since a een, EC ₅₀ values were also h concentrations
		ometric mean measured	
	EC ₅₀ Growth, 72 hr	Based on nominal	Based on Geometric means 140 mg/l
	Growth, 96 hr	190 mg/l 210 mg/l	150 mg/l
	Growth NOEC	32 mg/l	23 mg/l
		100 mg/l	76 mg/l
	Yield, 72 hr	100 110/1	
	Yield, 72 hr Yield, 96 hr		95 mg/l
	· · · · · · · · · · · · · · · · · · ·	130 mg/l 32 mg/l	· · · · · · · · · · · · · · · · · · ·
	Yield, 96 hr	130 mg/l	95 mg/l
	Yield, 96 hr Yield, NOEC	130 mg/l 32 mg/l	95 mg/l 23 mg/l
	Yield, 96 hr Yield, NOEC Biomass, 72 hr	130 mg/l 32 mg/l 96 mg/l	95 mg/l 23 mg/l 72 mg/l
Reliability	Yield, 96 hr Yield, NOEC Biomass, 72 hr Biomass, 96 hr Biomass, NOEC	130 mg/l 32 mg/l 96 mg/l 110 mg/l 32 mg/l	95 mg/l 23 mg/l 72 mg/l 87 mg/l
Reliability Reference	Yield, 96 hr Yield, NOEC Biomass, 72 hr Biomass, 96 hr Biomass, NOEC A regrowth experir effect.	130 mg/l32 mg/l96 mg/l110 mg/l32 mg/lnent showed that the test	95 mg/l 23 mg/l 72 mg/l 87 mg/l 23 mg/l

4.4 TOXICITY TO MICROORGANISMS E.G. BACTERIA

4.5.1 CHRONIC TOXICITY TO FISH

4. Ec	otoxicity	 74-95-3 04.28.06
4.5.2	CHRONIC TOXICITY TO AQUATIC INVERTEBRATES	
4.6.1	TOXICITY TO SEDIMENT DWELLING ORGANISMS	
4.6.2	TOXICITY TO TERRESTRIAL PLANTS	
4.6.3	TOXICITY TO SOIL DWELLING ORGANISMS	
4.6.4	TOX. TO OTHER NON MAMM. TERR. SPECIES	
4.7	BIOLOGICAL EFFECTS MONITORING	
4.8	BIOTRANSFORMATION AND KINETICS	
4.9	ADDITIONAL REMARKS	

5. Toxicity

5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION

5.1.1 ACUTE ORAL TOXICITY

Type Value Species Year GLP Test substance Reliability	 LD50 > 1000 mg/kg Rats, rabbits 1957 and later No Dibromomethane, > 98% purity 1
Remark	 Torkelson, T.R., "Results of Range-finding Toxicological Tests on Methylene Bromide," 1957, unpublished Dow studies cited in Keyes, et al, 1982.
Remark	: Various studies were conducted at the Toxicological Research Laboratory, Dow Chemical, USA, to determine acute toxicity of dibromomethane. These studies were also cited by Torkelson, 1981, and in the US EPA Health and Environmental Effects Profile for Methylene Bromide, 1987.
04.28.06	

5.1.2 ACUTE INHALATION TOXICITY

Remark	:	An acute rat inhalation LC50 is cited as 40 g/cu meter for a 2 hour
Reference		exposure. Literature: Izmerov, N.F., et al. "Toxicometric Parameters of Industrial Toxic Chemicals Under Single Exposure, Moscow, Center of International Projects, GKNT 1982, pg. 83, 1982.

04.28.06

5.1.3 ACUTE DERMAL TOXICITY

Type Value Species Reliability	: LD50 : > 4000 mg/kg : Rabbit : 1
Remark	 Torkelson, T.R., "Results of Range-finding Toxicological Tests on Methylene Bromide," 1957, unpublished Dow studies cited in Keyes, et al, 1982. Various studies were conducted at the Toxicological Research Laboratory, Dow Chemical, USA, to determine acute toxicity of dibromomethane. These studies were also cited by Torkelson, 1981, and in the US EPA Health and Environmental Effects Profile for Methylene Bromide, 1987
04.28.06	

5. Toxicity	ld 74-95-3 Date 04.28.06
5.1.4 ACUTE TOXICITY, OTI	HER ROUTES
5.2.1 SKIN IRRITATION/ CO	RROSION
5.2.2 EYE IRRITATION	
5.3 SENSITIZATION	
5.4 REPEATED DOSE TO	KICITY
Type Species Strain Sex Number of animals Vehicle Doses Method Year GLP Test substance Remark	 14 Day Oral Repeated Dose Rats Sprague Dawley CrI:CD(SD)IGS BR strain Male and female 24 (3 males, 3 females per group) Polyethylene glycol 400 0, 75, 150, 500 or 1000 mg/kg/day Oral gavage 2007 Yes Dibromomethane, 99.4% purity This test was a preliminary 14 day range-finder for the oral reproduction/developmental screen test. Fresh formulations using propylene glycol 400 were made daily and the animals were dosed within 3 hours of preparation. Control animals were dosed with the same volume (4 ml/kg) of vehicle only. Control animals and animals receiving 75, 150, or 500 mg/kg/day were dosed on 14 consecutive days. Animals receiving 1000 mg/kg/day were dosed for 3 consecutive days. Male animals weighed 339 to 412 grams, and female rats weighted 198 to 267 grams at the start of the study. Animals were housed 3 per cage with environmental enrichment, and water access throughout the study. Room temperature was 21 +/- 2 degrees C, and relative humidity was 55 +/- 15%. All animals in the 75, 150 and 500 mg/kg groups survived to scheduled termination and at necropsy were not observed to have treatment related effects. Animals dosed at 1000 mg/kg showed adverse effects on body weight and clinical condition (particularly males) and were sacrificed after three days of exposure. Top dose chosen for the reproduction screening test was 500 mg/kg/day.
Reference	Dhinsa, N.K., 2007.
Reliability	: 1

5. Toxicity	ld 74-95-3 Date 04.28.06
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Post exposure period Doses Control group NOAEL LOAEL	 Repeated dose, inhalation Rats Male and female Sprague Dawley Inhalation 6 hours per day, 5 days per week for 62 (male) or 63 (female) exposures in 90 days Recovery male rat group held for 2 years 0, 25, 75, and 150 ppm Exposed to room air in holding area 25 ppm based on carboxyhemoglobin 75 ppm based (> carboxyhemoglobin, > liver weight, < body weight) (US EPA, 1987)
Year GLP Test substance	 1982 Prior to FDA GLP requirements, but Quality Assurance audited Dibromomethane, > 98% purity
Remark	 Inhalation exposures were conducted under dynamic airflow conditions in 4.1 cubic meter stainless steel chambers. Air temperature and humidit were controlled to 22 degrees C and 50% humidity in the exposure chambers and holding rooms. Desired concentrations of methylene bromide in each chamber was generated by metering the liquid at a calculated rate into a warmed (about 210 degrees C) glass vaporization flask. The resultant vapor was then swept into the chamber via the main airflow at a rate of about 825 liters per minute. Nominal concentration of test article was calculated daily as the ratio of the rate at which the liquid compound was dispensed into the vaporization flask to the rate of total chamber airflow. The analytical concentration of methylene bromide was determined by infrared spectrophotometry using 2 Miran I spectrophotometers in series. The first IR monitored concentrations of 2 to 75 ppm, and the second 150 ppm methylene bromide. Chamber concentrations were determined at least twice during each exposure day Four groups of animals consisting of 115 male (15 for 90 day portion a 100 for 2 year recovery portion) and 15 female Sprague Dawley albino ra were exposed to air containing either 0, 25, 75, or 150 ppm methylene chloride for 6 hours per day, 5 days per week for a total of 62 (males) or (females) exposures over a three month period. Control animals were housed in the holding room during the exposure periods. Animals were maintained on a 12 hour light/dark cycle at temperatures of about 75 degrees F and 50% humidity. Rats were housed in groups of 4 per cage Animals were not fed during exposure periods. Animals were observed f clinical signs during each exposure day. Rats in the recovery group were examined monthly for tumors. Rats were weighed twice weekly during th first two months of the test, weekly in the second 2 weeks. For the durati of the test, all were weighed twice monthly. During the two year recovery
	male rats were weighed twice during the first month of recovery, and monthly thereafter. Hematological parameters (RBCs, hemoglobin concentration, packed cell volume, differential and total white blood cell counts) were evaluated on 7 rats per exposure level both before initiation exposures, and at study termination. Blood samples were taken from the tail vein. Urinalysis were also performed on each animal (pH, glucose, protein, ketones, bilirubin, urobilinogen, and occult blood, as well as

5. Toxicity			74-95-3
		Date	04.28.06
5. Toxicity	determinations were made termination. Clinical cheminitrogen, serum glutamic pro- transaminase, and alkaline conducted on 10 male rats, sacrifice. Specific ion elect bromide) in plasma of 3 rate exposure. Total bromine lead activation analysis prior to a exposure (samples taken a exposure). Carboxyhemog rats/sex/exposure on test a After 58 (males) or 59 (fe- were killed, and their bone evaluation. Four hours prior colchicine via i.p. injection. of the femur removed, adm balanced salt solution for p cytogenetic examination. H and were not evaluated. All rats which died sponta gross pathological examinat exposures, complete gross per exposure level. Complimale rats per level at the 1 rats at the 2 year sacrifice. clamping of the trachea una rats were examined in situ technique and fluorescent le externally and internally for weights of brain, heart, live Representative portions of from each animal and press Liver Kidney Pancreas Spleen Heart Lungs/bronchus Esophagus Trachea Mesenteric lymph node Brain Salivary Gland	Date ediment exam). Clinical chem on blood of 10 rats per expose stry determinations included b yruvic transaminase, serum gli phosphatase. Clinical chemis /exposure level at the time of t trode analysis of bromide level s/sex/level prior to exposure a evels in plasma were determine initiation and at days 30, 51, and t 1, 2, 6, and 18 hours following lobin levels were made on tail fiter 90 experimental days. emales) exposure days, 5 rats marrow cells were collected for or to sacrifice, each rat was giv. The rats were killed by decap the bone marrow aspirated into reparation of slides for chromo dowever, the slides were impro- aneously during the study were ation. After 61 (males) or 62 (f enecropsies were performed o ete gross necropsy was also o year interim sacrifice, and on The rats were killed by decap der methoxyflurane anesthesia immediately after decapitation ight illumination. Each rat was gross pathological lesions. A r, kidneys, and testes were red the following organs and tissu erved in formalin. Aorta Urinary bladder Peripheral nerve (sciatic) Pituitary gland Mesenteric adipose tissue Parathyroid glands Skin Testes and epididymides Prostate Uterus, ovary, oviduct, mamn Nasal turbinates	04.28.06 istry ure level at lood urea utamic oxaloacetic stries were also he 1 year interim s (inorganic nd at 41 days of ed by neutron nd 61 days of og termination of vein samples of 3 per sex per group or cytogenetic ven 0.4 mg/kg bitation, the head to Hank's bsomal operly prepared e subjected to full emales) n 10 rats per sex conducted on 10 all surviving male itation following a. The eyes of all by the glass slide s examined t necropsy, corded. es were collected
	Spinal Cord Vertebra Coagulating gland	Sternum All gross lesions Thyroid gland	
	Large and small intestine Skeletal muscle Thoracic lymph node	Stomach Thymus (if present) Eyes (preserved in Zenkers)	
	tissues listed previously fro 150 ppm groups killed after prepared from the list of tis	paraffin sections were prepar m 5 male and 5 female rats in r the 90 day sacrifice. Similarly sues for 5 male rats per expose 1 year interim sacrifice. Section	the control and y, sections were sure level in the 0
	21 / 37		

Id 74-95-3 5. Toxicity Date 04.28.06 prepared of all grossly observed tumors in the remaining control and treated rats of the 1 year sacrifice. No histopathology was conducted in the tissues of rats dying spontaneously, killed moribund, or sacrificed at 2 years. Assessment of tumorigenic potential was based upon evaluation of gross pathology data. Statistical evaluation of body weights, organ weights, organ to body ratios, and clinical laboratory data was conducted by analysis of variance and Dunnett's test with a probability of p < 0.05. For the 2 year portion of the test, mortality, palpable mass, gross pathology, histopathology and tumor incidence were analyzed with Fisher's Exact Probability Test, p < 0.05. Statistical evaluation of the cumulative results compared the data of each of the treatment groups against the data of the control group. Exposure related adverse effects were not observed at any exposure level during the study. In the 90 day study, body weights on male rats were generally comparable to those of controls during the study except for the 5th day of exposure when the mean body weights of the 75 and 150 ppm groups were lower than control. There was also a significantly decreased mean body weight in male rats of the 75 ppm group on the 47th experiment day. This was not considered exposure related. Body weights of female rats were comparable to those of control rats for the entire exposure period except for an isolated decrease in mean body weight in the female 150 ppm group. In the 2 year recovery portion, male rats in the 150 ppm exposure group showed decreased mean body weight during days 121 to 607 of the study. In these intervals, there were 9 occasions on which the body weights were statistically decreased from control values. Rats of the 75 ppm group showed trend to decreased mean body weights from days 121 to 361 of the study, but there were no statistically significant differences from control weights. Rats in the 25 ppm exposure group had 2 instances of statistically significant differences from control values (decrease at 47 days, and increase at 75 days of the study). There was no pattern or trend to these differences. At necropsy, there was a significant decreased mean relative liver weight in male rats of the 25 ppm male rats compared to control rats. This may have been due to the greater body weight of these animals compared to controls. This was not observed among male rats exposed to 75 or 150 ppm methylene bromide. Organ weight data for all other groups were comparable to controls. In female rats at necropsy, there was a trend towards increased mean absolute and relative liver weights in the 150 ppm group. The mean liver weight of female rats exposed to 75 ppm also showed a trend toward an increased absolute weight and also a statistically significant increase in relative liver weight. This trend toward slightly increased liver weight in female rats exposed to 75 or 150 ppm was considered related to exposure. At the 1 year interim sacrifice, fasted body weights of the male rats of the 75 and 150 ppm groups were slightly decreased. However, there were no significant differences in the weights of the brain, heart, liver, kidneys or testes. At 2 year termination, there was a trend toward an increase in relative and absolute weight of both liver and kidneys in the 150 ppm group. However, the differences were not significant and probably not a result of exposure.

Hematological values at the 90 day termination in treated male rats were comparable to those of controls. The total WBC counts for control and exposure animals were greater at the preexposure bleeding than at the

5. Toxicity	ld 74-95-3
J. TOXICITY	Date 04.28.06
	preterminal bleeding. This was not thought to be a result of exposure. The same effect was seen in female rats. There were no significant differences in values of treated animals at the 1 year interim sacrifice compared to control. Urinalysis values for male and female rats showed no exposure related alterations in the 90 day study and at the 1 year interim sacrifice in male rats. Clinical chemistry values for exposed rats were comparable to control values upon determination prior to 90 day termination or at the 1 year interim sacrifice.
	There was some discrepancy in values for bromide ion (by ion "specific" electrode) and for total bromide (by neutron activation analysis. In the preexposure values and 41 day exposure values, it is evident that serum free bromide ion values increased in a dose dependent manner. At 41 days of exposure, the bromide ion levels of all exposed rats were significantly increased over control values. In the neutron activation analyses of total bromine levels in rat serum, the values were increased in all exposed rats over control levels by 30 exposure. A further increase was seen at 51 days of exposure, but no further increase by 61 days of exposure. From the determinations after 61 exposures, apparent excretion of bromine occurred as indicated by the decrease in serum bromine concentrations from 1 to 18 hours after exposure. In rats, the maximum bromine concentrations were 1135 +/- 50 ppm and 1101 +/- 27 ppm as determined by neutron activation analysis (1097 +/- 51 ppm and 1292 +/-61 ppm by ion specific electrode analysis).
	Methylene bromide consistently increased blood % carboxyhemoglobin saturations in rats exposed to 75 or 150 ppm. There was a single statistically increased value in female rats exposued to 25 ppm after 61 exposures.
Daliahiita	Gross pathologic examinations at the end of the 90 day study on all 10 rats per sex in the control and treated groups showed no lesions that could be attributed to exposure. There were no histopathologic observations that could be attributed to exposure. At the 1 year interim sacrifice, no gross lesions could be attributed to exposure, and there were no histopathologic lesions attributable to exposure either. At the 2 year termination, there were certain statistically significant differences in nontumorous observations. The liver observations included an increase in livers with atrophy, accompanied by decreases in incidence of small red and dark red foci. These liver observations were thought to be the result of various spontaneous age-related processes such as chronic renal disease or malocclusion which can cause secondary liver atrophy. All other nontumorous gross pathological lesions were similar to concurrent or historical control rates and were considered spontaneous in nature. There were also certain statistically significant tumorous gross pathologic observations included increases in numbers of rats in the 75 ppm exposure group with (1) enlargement of the mesenteric lymph nodes, (2) enlargement of the pituitary glands, or (3) nodules in the region of the pancreas. These observations were not considered to be related to exposure because of similar incidence rates in historical control groups, and lack of a dose response relationship. Thus, gross pathological examination of male rats exposed to 25, 75, or 150 ppm showed no indications of any increased incidence of nontumorous or tumorous-like lesions at any of the 3 exposure levels.
Reliability Reference	1 Keyes, D.G, 1982

5. Toxicity	ld 74-95-3 Date 04.28.06
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses Control group NOAEL LOAEL Year GLP Test substance Reliability Remark	 Repeated dose, inhalation Dogs Male Beagle Inhalation 6 hours per day, 5 days per week for 70 exposures in 90 days 0, 25, 75, and 150 ppm Exposed to room air in holding area 75 ppm (US EPA, 1987) 150 ppm (US EPA, 1987) 1982 Prior to FDA GLP requirements, but Quality Assurance audited Dibromomethane 1 Inhalation exposures were conducted under dynamic airflow conditions in 4.1 cubic meter stainless steel chambers. Air temperature and humidity were controlled to 22 degrees C and 50% humidity in the exposure chambers and
	holding rooms. Desired concentrations of methylene bromide in each chamber were generated by metering the liquid at a calculated rate into a warmed (about 210 degrees C) glass vaporization flask. The resultant vapor was then swept into the chamber via the main airflow at a rate of about 825 liters per minute. Nominal concentration of test article was calculated daily as the ratio of the rate at which the liquid compound was dispensed into the vaporization flask to the rate of total chamber airflow. The analytical concentration of methylene bromide was determined by infrared spectrophotometry using 2 Miran I spectrophotometers in series. The first IR monitored concentrations of 25 to 75 ppm, and the second 150 ppm methylene bromide. Chamber concentrations were determined at least twice during each exposure day. Four groups of animals consisting of 3 male beagle dogs were exposed to either 0, 25, 75, or 150 ppm methylene chloride for 6 hours per day, 5 days per week for a total of 70 exposures over a three month period. Control animals were housed in the holding room during the exposure periods. Animals were maintained on a 12 hour light/dark cycle at temperatures of about 75 degrees F and 50% humidity. Dogs were housed in groups of 3 during nonexposure periods, and individually during exposures. Animals were not fed during exposures and at termination. Animals were observed for clinical signs during each exposure day. Dogs were weighed weekly during the test. Hematological parameters (RBCs, hemoglobin concentration, packed cell volume, differential and total white blood cell counts) were evaluated on all dogs both before initiation of exposures, at 1 ½ months into the study and at study termination. Blood samples were taken from the jugular vein. Urinalysis were also performed on each animal (pH, glucose, protein, ketones, bilirubin, urobilinogen, and occult blood, as well as specific gravity and urine sediment exam). Clinical chemistry determinations were made on blood of dogs twice before study inititation and

5. Toxicity			74-95-3
		Date	04.28.06
	days of exposure (sample	es taken at 1, 2, 6, and 17.5 hou	urs following
		Carboxyhemoglobin levels we	
		on test after 90 experimental da	
		netic profile, blood was taken aft	
		of methylene bromide were ma	de at 50, 100, 300,
	and 350 minutes after ter		
		f brain, heart, liver, kidneys, and	
		e portions of the following organ	is and tissues were
		al and preserved in formalin.	
	Liver	Aorta	
	Kidney Pancreas	Urinary bladder Peripheral nerve (sciatic)	
	Spleen	Periprieral nerve (scialic) Pituitary gland	
	Heart	Epiglottis	
	Lungs/bronchus	Parathyroid glands	
	Esophagus	Skin	
	Trachea	Testes and epididymides	
	Mesenteric lymph node	Prostate	
	Brain	Gall bladder	
	Salivary Gland	Nasal turbinates	
	Spinal Cord	Tongue	
	Vertebra	All gross lesions	
	Cervical lymph nodes	Thyroid gland	
	Large and small intestine	Stomach	
	Skeletal muscle	Thymus (if present)	
	Thoracic lymph node	Eyes (preserved in Zenkers	5)
		of body weights, organ weights,	
		ta was conducted by analysis o	t variance and
	Dunnett's test with a prob		-1
		erse effects were not observed	
		ody weights on all dogs were co	
		. At necropsy, terminal body we t ratios were comparable to con	
	• • •	ere comparable to those of cont	-
		osed dogs were comparable to (
		mination. There was some disc	
		cific" electrode) and for total bro	
		example, in control dogs, prexp	
		8 ppm, but bromine was only 9	
	activation analysis. The	difference was much less at the	higher levels: for
	example, in dogs expose	d 50 times to 150 ppm, plasma	bromide ion was 79
		as 625 ppm. Serum total brom	
		exposures when compared to c	
		ase with time at 42 and 52 days	•
		the 52 day values at 62 days of	
		concentrations by neutron activ	
		pecific analysis the values were	
		m methylene bromide showed s	
	relative to control animale	s (6% increase at the one same	ling time where the

All gross and histopathologic observations on control and treated dogs were considered spontaneous in nature, and not a result of treatment. Among the spontaneous lesions was a frequent occurrence of chronic inflammatory lestions of the lungs, that varied in severity. In some animals, the lesions were clearly related to aspiration of food material, and in others typical of a parasitic infestation common in dogs.

relative to control animals (6% increase at the one sampling time where the

difference from control mean was statistically significant).

5. Toxicity	ld 74-95-3 Date 04.28.06
Reference	: Keyes, D.G., 1982
5.5 GENETIC TOXICIT	Y 'IN VITRO'
Type System of testing	In vitro bacterial mutagenicitySalmonella typhimurium TA100
Test concentration Metabolic activation Result Method Year GLP Test substance	 0 – 10 ul/desiccator No Positive Plate incorporation, desiccator method 1977 No Dibromomethane
Remark	: Salmonella typhimuriam strains at this laboratory were obtained from Dr. Bruce Ames. Indicator strains are stored at –80 degrees C. At the time of the experiment, an inocculum from frozen stock was grown overnight at 37 degrees C in a nutrient broth. After stationary overnight growth, cultures were shaken for 3 or 4 hours. Each culture was checked for sensitivity to crystal violet. Desiccator tests at this laboratory involved salmonella agar plates with lids removed placed in a desiccator. A known volume of the test chemical or positive control was then added to a glass petri plate in the desiccator. The desicattor was then sealed and placed in an incubator at 37 degrees C. A magnetic stirrer with vanes was placed in the base of each desicator to ensure dispersion of volatiles. All test chemicals were evaporated in the first hour. After incubation for 8 hours, the plates were removed from the desiccator, lids were replaced and the plates incubated for another 40 hours at 37 degrees C.
Reliability Reference	1 : Simmon, V.F et al., 1977.
04.28.06	
Type System of testing Test concentration	 Chromosomal Aberration, in vitro Human lymphocytes +/- S-9: 27.19, 54.38, 108.75, 217.5, 435, 870 ug/ml
Cycotoxic concentr. Metabolic activation Result	 870 ug/ml pulse exposure; 1740 ug/ml 24 hr continuous exposure with and without S-9 from liver homogenate from rats induced with phenobarbitone and B-naphthoflavone Clastogenic
Method	 "Genetic Toxicology: Chromosome Aberration Test", Guideline 473 of OECD Guidelines for Testing of Chemicals (1997).
Year GLP Test substance	: 2007 : Yes : Dibromomethane, 99.4% purity
Remark	: Human lymphocytes from a volunteer donor were used for this test. Cell cycle time for the lymphocytes (as determined using bromodeoxyuridine incorporation to assess the number of first, second and third division metaphase cells) was used by the laboratory to calculate Average Generation Time. Average AGTs for donors for this lab was 17 hours. Cells are grown in Eagles's minimal essential medium with HEPES buffer, supplemented in house with L-glutamine, penicillin/streptomycin,
	26 / 37

5. Toxicity	Id 74-95-3
5. Toxicity	Date 04.28.06
	amphotericin B and 15% foetal calf serum, at 37°C with 5% CO2 in air. The lymphocytes of fresh heparinized whole blood were stimulated to divide by addition of phytohaemagglutinin at 90 ug/ml final concentration. The test material was dissolved in dimethyl sulphoxide and dilutions prepared. Positive control materials were Mitomycin C at 0.4 ug/ml in the absence of S-9, and dissolved in the media. In the presence of S-9, cyclophosphamide at 5 ug/ml was used. S-9 microsomal enzyme fraction was prepared from livers of male Sprague-Dawley rats that had received three daily oral doses of a mixture of phenobarbitone (80 mg/kg) and B-naphthoflavone (100 mg/kg).
	Duplicate culture of human lymphocytes, treated with test material, were evaluated for chromosomal aberrations at up to three dose levels, together with vehicle and positive controls. Sterile plastic flasks were used for the cultures. Two treatment conditions were used: 1) 4 hour exposure in the presence of an induced rat liver homogenate metabolizing system at a 2% final concentration with cell harvest after a 20 hour expression period and 2) a 4 hour exposure in the absence of metabolic activation with a 20 hour expression period. Dose levels ranged from 27.19 to 870 ug/ml for the 4 hour exposures (20 hr expressions) with and without S-9.
	To prepare the metaphase spreads, lymphocytes were resuspended in several milliliters of fresh fixative before centrifugation and resuspension in a small amount of fixative. Several drops of suspension were then dropped onto clean, wet microscope slides and allowed to dry. Dry slides were stained with 5% Gurrs Giemsa for 5 minutes before rinsing, drying and coverslipping. Slides were checked microscopically to determine quality of the metaphase and also toxicity and presence of precipitation. These observations were used to select dose levels for mitotic index evaluation. A total of 2000 lymphocyte cell nuclei were counted and the number of cells in metaphase recorded and expressed as the mitotic index and as a precentage of the vehicle control value. When possible, the first 100 consecutive well-spread metaphases from each culture were counted, except where there were approximately 50% cells with aberrations – then counting terminated with 50 cells. If a cell had 44-48 chromosomes, any gaps, breaks, or rearrangements were noted according to the simplified system of Savage (1976). The frequency of cells with aberrations excluding gaps and the frequency of polyploid cells were compared, where necessary with the concurrent vehicle control value using Fisher's Exact Test.
	Vehicle controls gave frequencies of cells with aberrations in the range expected for normal cells. Positive control materials induced statistically signficant increases in the frequencies of cells with aberrations indicating satisfactory performance of the test and of the activity of the metabolizing system.
	The test material induced a statistically significant increase in the frequency of cells with aberrations, in both exposure groups, using a dose range that included a level that induced greater than 50% mitotic inhibition. The test material did not induce a statistically significant increase in the numbers of polyploid cells at any dose level in either of the exposure groups.
Reliability	 The test material was considered to be clastogenic to human lymphocytes in vitro because of a statistically significant dose-related increase in the frequency of cells with chromosome aberrations both in the presence and absence of a liver enzyme metabolizing system. 1

5. Toxicity					ld 74-99 Date 04.28	
Reference	:	Wright, N.P., 20	07.			
05.02.07						
Туре		In vitro yeast mi	totic recombination	on assa		
System of testin	g :		3 on Tryptone-yea	ast agar plates		
Test concentrati		+/- S9: 0.2, 0.3				
Cycotoxic conce		0.2 % and highe				
Metabolic activa	tion :	with and without	S-9 f			
Result Year		Equivocal 1976				
GLP		No				
Test substance	:	Dibromomethan	e, > 98% purity			
		tryptone and 0.5 PO ₄ buffer (pH 7 of 10 ⁸ cells/ml. suspension cons of 0.067M PO ₄ b fraction of the co was incubated fe was diluted seria plates. Plates of followed by 2 da pigment indicativ colonies or red s Plates of a 10 ⁻⁵ determination of metabolic activa from Arochlor 12	bwn overnight at 3 5% yeast extract. 7.4) and resusper The in vitro yeas sists of 5 x 10 ⁷ w buffer (pH 7.4) an oncentration requ or 4 hours at 30 c ally in sterile salir f a 10 ⁻³ dilution w tys at 4 degrees of ve of adenine-ne sectors, plates ar dilution were incu- t the total number tion was conduct 254 induced adul	The cells were nded in the sam t mitotic recomb ashed, stationa d 50 mg/ml of t ired to give 509 degrees C. Afte ne and plated o vere incubated for C to enhance th gative homozyg e scanned und ibated for 2 day r of colony form ted as above w t male mice.	e washed twice he buffer at a co- pination assay i ary-phase yeast he test chemica % killing). The er incubation, the n tryptone-yeas for 2 days at 30 he development gosity. To detect er a dissecting /s at 30 degree hing units. The ith the addition	in 0.067M oncentration cells in 1 m al (or a suspension he sample of agar degrees C tof the red ct red microscope s C for assay with of liver S9
Remark		Although the nur by increasing the tested were toxic survivors increas increase in numb increase in numb the positive cont mutagenicity of c	e concentration o c. Therefore, the ses. Criteria for a per of mitotic reco per of recombinan rol. The study au	f test article, the number of mito positive test w ombinants per r nts per 10 ⁵ surv ithors could ma	e higher concer otic recombinan ith this assay w nilliliter as well ivors as demor ike no conclusio	ntrations ts per 10 ⁵ vere to be a as an istrated by on about the
Reliability	:	1				
Reference		Simmons, V.F.,		1070		

Compound	Metabolic	Concentration	Surviving cells	% of	Recombinants/	Recombinants
	activation	(w/v or v/v)	per ml	survivors	ml (x 10 ⁻³)	per ml of
			$(x \ 10^{-7})$			survivors
Control, neg	-		6.1	100	5	8.2
	+		5.6	100	5	8.9
Control, pos	-	0.04	6.0	98	845	1408
	+	0.04	6.6	118	745	1129
Dibromomethane	-	0.2	4.5	74	2	4.4
	-	0.3	1.5	25	5	33.3
	-	0.4	0.8	13	6	75.0

					Date 04.28	3.06
Dibromomethane	+ + +	0.2 0.3 0.4	4.3 3.3 0.9	77 59 16	7 3 10	16.3 9.1 111.1
Type System of testing Test concentration		In vitro bacterial Salmonella typhi 10 to 1000 ug/pla	murium TA 98,	100, 104, 97,		
Metabolic activation Result		With and without Positive				
Method	:	Standard plate m	nethod			
Year GLP	:	1987 No				
Test substance	:					
Remark	:	Test material sol 1254 induced rat		 S-9 was der 	ived from livers	of Aroclor
Reliability	:	1				

5.6 GENETIC TOXICITY 'IN VIVO'

5.7 CARCINOGENICITY

5.8.1 TOXICITY TO FERTILITY

Type Species Sex Strain Route of admin. Exposure period Frequency of treatm.	 Reproduction/Developmental Screening Study Rat male/female Sprague-Dawley oral gavage 40 days (14 days premating, throughout mating, gestation, parturition and early lactation) Daily
Premating exposure	. Daily
Male	: 14 days
Female	: 14 days
No. of generation	: 1
studies	
Doses	: 50, 150, 500 mg/kg
Control group	: Polyethylene glycol 400
NOEL parental	: = 150 mg/kg
NOEL offspring	: = 150 mg/kg
Result	: Treatment at 500 mg/kg/day was associated with a clear effect on mating performance and a reduction in litter size at birth, most probably from increased in utero mortality. The NOAEL for reproduction in this study was 150 mg/kg/day.
Method	 "Reproduction/Developmental Toxicity Screening Test," Guideline 421 of OECD Guidelines for Testing of Chemicals, 1996
Year	: 2007
	00 / 07

5. Toxicity GLP : Test substance : Remark :	: Dibromomethane, 99			Date (04.28.06
Test substance :	: Dibromomethane, 99				
	: The test material was (SD) IGS BR strain ra (to include a two wee gestation, and early la vehicle only (Polyethy development, food ar Animals were paired of females being allowe During lactation, clinic daily, along with notar righting reflex. Surviv study, with parental fe All animals were subj examination of reprod One high dose mat control female was fo not the consequence related clinical signs of gestation was lower fir related to smaller little between control anim lower food conversion No effects on mati in low and middose a compared with contro females mating during affected with eight fer females was longer, p No effect on litter st increased post-implar litter in utero. Offsprin growth, and developm Necropsy findings arr any effect of materna Histopathology of related effects at dost had lower absolute ar controls. At 150 mg/k testes weights.	s gavaged to ats (10m, 10f k maturation actation). A c ylene glycol 2 nd water cons one male:one d to litter and cal observation tion of litter s vimg parental emales and c gected to gros ductive tissue ale was termin ound dead on of treatment of toxicity in a for 500 mg/kg er size in that hals and thos n efficiency wing performan of the first four males achiev possibly due size was see ize was lowe ntation loss. ng bodyweig ment to day 4 hong adult ar al treatment a adult reprodu ages of 50, 1 nd relative ep	per group) for phase, pairing control group 400). Clinical sumption were e female on D d raise offspring ons of all surv size, offspring termi as necropsy, a es were perfor inated on Day 1 males were to offspring termi as necropsy, a es were perfor inated on Day 1 Day 41 of the t. There were any dose group g/day females a group. No dir be at 50 or 150 vas apparent i nce, fertility or ar increase in in the high dos ur days of pairiv ing pregnancy to smaller little on in the 50 or er than control One high dos hts on Day 1 a 4 were unaffect nimals and the ti dosages of 5 uctive tissue d 150, or 500 mg pididymal and	r approxima g maximum was similar signs, body e monitored ay 15 of the fig to Day 5 riving offspri weight and terminated on nated on Di- and histopat med. 2 of the study. The no significa- timed. 2 of the study. 3 of the study. 5 of the st	n of 14 days, ly dosed with /weight l during study. e study, with of lactation. ing were made assessment of on Day 43 of the ay 5 postpartum thological idy, and one ese deaths were as considered rere seen f. Similarly, dose females. ength were seen f. Similarly, f. Similarly, f. Similarly, f. Simi

day)			4 or less	5 to 14	22-221/2	23-231/2	
•					days	days	
0	100	100	100%	0%	70%	30%	90
50	100	100	90%	10%	70%	30%	100
150	100	100	100%	0%	50%	50%	100
500	90	89	45%	55%	0%	100%	88

5. Toxicity

ld 74-95-3

Date 04.28.06

Dose level (mg/kg/day)	Number of litters	# Corpora lutea	# implant sites	Total offspring born (mean)	Pre-implant loss (%)	Post implant loss (%)	Live birth Index
0	8	17.8	15.1	14.5	14.1	4.0	99.3
50	10	17.4	15.3	13.6	11.0	11.7	92.6
150	10	16.8	14.0	13.0	17.0	6.3	98.6
500	6	15.7	14.2	6.8	9.7	52.2	100.0

Dose level (mg/kg/day)	Number of litters	Viability Index	% Males at birth	Live offspring Day 4	% Males day 4
0	8	100.0	54.0	14.4	53.6
50	10	99.2	49.4	12.8	50.2
150	10	99.3	45.7	12.7	45.0
500	6	100.0	50.5	6.8	50.5

Reference

Dhinsa, N.K., 2007.

Reliability 1

5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

5.8.3 TOXICITY TO REPRODUCTION, OTHER STUDIES

5.9 SPECIFIC INVESTIGATIONS

5.10 EXPOSURE EXPERIENCE

5.11 ADDITIONAL REMARKS

6. Analyt. Meth. for Detection and Identification	ld	74-95-3
	Date	04.28.06

6.1 ANALYTICAL METHODS

6.2 DETECTION AND IDENTIFICATION

7. Ef	f. Against Target Org. and Intended Uses	ld	74-95-3
		Date	04.28.06
7.1	FUNCTION		
7.2	EFFECTS ON ORGANISMS TO BE CONTROLLED		
_			
7.3	ORGANISMS TO BE PROTECTED		
7.4	USER		
7.5	RESISTANCE		

- 8.1 METHODS HANDLING AND STORING
- 8.2 FIRE GUIDANCE
- 8.3 EMERGENCY MEASURES
- 8.4 POSSIB. OF RENDERING SUBST. HARMLESS
- 8.5 WASTE MANAGEMENT
- 8.6 SIDE-EFFECTS DETECTION
- 8.7 SUBSTANCE REGISTERED AS DANGEROUS FOR GROUND WATER
- 8.8 REACTIVITY TOWARDS CONTAINER MATERIAL

9. References

9.0 References

Clayton, G.D. and F.E. Clayton, eds, Patty's Industrial Hygiene an dToxicology, Vol. 2A – 2F, Toxicology, 4th edition, New York, NY, John Wilen and Sons, Inc, p. 4046, 1993-1994.

Dean, J.A., Handbook of Organic Chemistry, New York, NY, McGraw-Hill Book, Co., p. 4-47, 1987.

Dhinsa, N.K. and S. Fulcher, "Dibromomethane: Oral (Gavage) Reproduction/Developmental Toxicity Screening Test in the Rat," SPL Project Number 0466/0261, SafePharm Laboratories, UK, May, 2007. Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, 2007.

EPISUITE (v. 4.0), Estimation Programs Interface (EPI) Suite[™], developed by the US Environmental Protection Agency Office of Pollution Prevention and Toxics and Syracuse Research Corporation (SRC), copywrited 2000-2008.

Fackler, P.H., ."Determination of the Hydrolysis Potential of Dibromomethane as a Function of pH at 25° C", Springborn Life Sciences, Inc, June 15, 1989.

Izmerov, N.F., et al. "Toxicometric Parameters of Industrial Toxic Chemicals Under Single Exposure", Moscow, Center of International Projects, GKNT 1982, pg. 83, 1982.

Goodband, T.J. and D. Mullee, "Dibromomethane: Acute Toxicity to *Daphnia Magna*" .SPL Project Number 0466/0264, SafePharm Laboratories, June 22, 2007. Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, 2007a.

Goodband, T.J., and D. Mullee, "Dibromomethane: Acute Toxicity to Rainbow Trout (*Oncorhynchus mykiss*)" SPL Project Number 0466/0263, SafePharm Laboratories, June 22, 2007. Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, 2007b.

Gross, P.M. and J.H. Saylor, "The Solubilities of Certain Slightly Soluble Organic Compounds in Water," J. Am. Chem. Soc. 53:1744-1751, 1931.

Hine, J. and P.K. Mookerjee, "The Intrinsic Hydrophilic Character of Organic Compounds. Correlations of Structural Contributions," J. Org. Chem. 40: 292-298, 1975.

Keyes, D.G., J.W. Henck, G.C. Jersey, R.J. Kociba, D.J. Schuetz, and T.D. Landry, "Methylene Bromide: A Ninety-Day Repeated Inhalation Toxicity Study in Rats and Dogs with a Subsequent Two-Year Holding Period for Rats", Toxicology Research Laboratory, Dow Chemical Company Sponsor, March 18, 1982.

Kudchadker, A.P., S.A. Kudchadker, R.P. Shukla, and P.R. Patnaik, "Vapor Pressures and Boiling Points of Selected Halomethanes," J Phys Chem Ref Data, 8(2): pp. 499-517, 1979.

Lide, DR, (ed), CRC Handbook of Chemistry and Physics, 79th edition, Boca Raton, Florida, CRC Press, Inc, pp 3-205, 1998-1999.

The Merck Index – An Encyclopedia of Chemicals, Drugs, and Biologicals. S. Budavari, ed., Whitehouse Station, New Jersey, Merck and Co. p. 1035, 1996.

Mill, T., "Validation of Estimation Techniques for Predicting Environmental Transformation of Chemicals, US EPA 68-01-6269, Washington, D.C., 1982

O'Connor, B.J. and D.M. Mullee, "Dibromomethane: Determination of General Physico-Chemical Properties," SPL Project Number: 0466/0259, Safepharm Laboratories, U.K., May 16, 2007. Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, 2007.

Savage, J.R.K., "Annotation: Classification and Relationships of Induced Chromosomal Structural Changes," J. Med. Genet.13, 103-122, 1976.

9. References

Simmon, V.F., and D.C. Poole, "In vitro Microbiological Mutagenicity Studies of Dow Chemical Compounds", Stanford Research Institute, Dow Chemical Company, sponsor, August 6, 1976.

Simmon, V.F., K. Kauhanen and Tardiff, R.G., "Mutagenic Activity of Chemicals Identified in Drinking Water," Dev. Toxicol. Environ. Sci. 2:249-258, 1977.

Stenger, V.A., Bromine Compounds, in: Kirk-Othmer Encyclopedia of Clincal Technology, Vol. 4, 3rd edition, M. Grayson and D. Eckroth, ed. John Wiley and Sons, Inc,. New York, NY, p. 252-253, 1978.

Strobel, K. and T. Grummt, "Aliphatic and Aromatic Halocarbons as Potential Mutagens in Drinking Water. Part 1. Halogenated Methanes", Toxicol. Environ. Chem. 13 (3-4): 205-221, 1987.

Torkelson, T.R., "Results of Range-finding Toxicological Tests on Methylene Bromide," 1957, unpublished Dow studies cited in Keyes, et al, 1982.

Tremain, S.P., "Dibromomethane: Determination of Vapor Pressure," SPL Project Number: 0466/0260, Safepharm Laboratories, U.K., Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, May 1, 2007.

US EPA "Health and Environmental Effects Profile for Methylene Bromide", Cincinnati, Ohio, Feb. 1987.

Vryenhoef, H., and D.M. Mullee, "Algal Growth Inhibition Test", SPL Project Number: 0466/0265, SafePharm Laboratories, U.K., Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, May 15, 2007.

Wright, N.P., "Chromosome Aberration Test in Human Lymphocytes *In Vitro*," SPL Project Number 0466/0262, SafePharm Laboratories, U.K., Bromine Compounds, Ltd, and Albemarle Corporation, sponsors, May 15, 2007.

10. Summary and Evaluation		ld	74-95-3
-		Date	04.28.06
10.1	END POINT SUMMARY		
10.2	HAZARD SUMMARY		
10.3			