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I. Introduction 
 

This document was developed by EPA to provide guidance to EPA staff who will 
be reviewing the data submitted in response to Tier 1 Orders issued under the Endocrine 
Disruptor Screening Program (EDSP).  This document provides general guidance and is 
not binding on either EPA or any outside parties.  The use of language such as "will," 
"is," "may," "can" or "should" in this document does not connote any requirement for 
either EPA or any outside parties.  As such, EPA may depart from the guidance where 
circumstances warrant and without prior notice.  The SEPs are intended to be used in 
conjunction with the EDSP Test Guideline Series 890 and the Corrections and 
Clarifications document available on the EDSP web page. 
 

This Standard Evaluation Procedure (SEP) provides guidance on how EPA 
generally intends to review studies conducted using the OCSPP Guideline 890.1100 
Amphibian Metamorphosis (Frog) Assay (AMA) that are submitted to support 
requirements imposed under the U.S. Environmental Protection Agency’s Endocrine 
Disruptor Screening Program (EDSP).  The objective of EDSP Tier 1 assays is to 
characterize the potential of a chemical to interact with the endocrine system. 

 
The product of the review will be a Data Evaluation Record (DER) that reflects 

how well the study conforms to the Guideline, evaluates how well the study and analyses 
were performed, and provides the conclusions supported by the data.  The DER will 
include, for example, a list of any significant deviations from the guideline and their 
potential impacts, a list of significant information missing from the study report, a 
description of how the statistical analyses were performed and whether they were 
performed according to the guideline, and any other information about the performance 
of the study that affects interpretation of the data within the context of the EDSP.  The 
DER should record details on all endpoints required by the guideline.  The DER is 
intended to contain enough information to provide EPA with the ability to determine 
whether the study is scientifically valid and provides the necessary information.   

 
The guideline recommends the critical materials, methods, and analyses that lead 

to successful performance of the assay.  If a particular material, method, or analysis is 
specified in the guideline, it is usually because other materials, methods, or analyses are 
either known to be inappropriate, or at least have not been validated and there is concern 
for their potential influence on results.  The Agency has posted Corrections and 
Clarifications on Technical Aspects of the EDSP Tier 1 Assays (OCSPP Test Guideline 
Series 890) in the docket; the link to this document may be found by way of the EDSP 
web page (http://www.epa.gov/endo/).  It is therefore important to note deviations from 
specific materials, methods, or analyses in the DER, and provide the Agency’s opinion on 
whether the deviation/deficiency has an impact on the performance and results of the 
study or the acceptability of the study.  

 

http://www.epa.gov/endo/�
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II. The Amphibian Metamorphosis Assay 
 

A. Purpose of the Assay 
 

The AMA is a screening assay intended to empirically identify substances which 
may interfere with the normal function of the Hypothalamus-Pituitary-Thyroid (HPT) 
axis (Fort et al., 2007).  The AMA represents a generalized vertebrate model to the extent 
that it is based on the conserved structures and functions of the HPT axis.  It is an 
important assay because amphibian metamorphosis provides a well-studied, thyroid-
dependent process which responds to substances known to be active along the HPT axis, 
and it is the only assay in the EDSP Tier 1 battery that detects thyroid activity in an 
animal undergoing morphological development.  It is intended to be included in a battery 
of in vitro and in vivo tests to identify substances with potential to interact with the 
endocrine system. 
 

B. Study Design 
 
The general experimental design entails exposing Nieuwkoop-Faber (NF) stage 

51 African clawed frog (Xenopus laevis) tadpoles, in separate treatment groups, to a 
minimum of three respective concentrations of a test chemical or a negative (clean water) 
control for 21 days.  There are four replicates of each test treatment.  Larval density at 
test initiation is 20 tadpoles per test tank (replicate) for all treatment groups (80 
larvae/treatment).  The observational endpoints are hind limb length (HLL), snout-to-vent 
length (SVL), developmental stage, body weight, thyroid histopathology, and daily 
observations of mortality and clinical signs.  In addition, whole thyroid tissue and plasma 
samples may be collected for analysis of thyroxine (T4) (OECD 2009), although this is 
not specified in the OCSPP 890.1100 test guideline. 

 
III. Evaluation of Study Conduct   

 
This section provides a summary description of the information that would 

generally be expected to be obtained from a study that had been conducted following the 
recommendations in the Test Guidelines.   As described in this section, the DER reviewer 
is responsible for summarizing how the study was conducted, the extent to which that is 
consistent with the Guidelines, and how, if at all, that affected the validity of the study.  
This information will factor into the Agency’s interpretations of the data contained in the 
study report.  Specific points that are important for the DER to address are highlighted in 
the individual sections below, as appropriate. 

 
The summary in this section is offered as a general outline to aid in preparation of 

the DER.  The purpose of this section is not to serve as substitute for the Test Guidelines, 
nor to provide any guidance on how the study should be conducted.  Rather, the summary 
is intended to provide context and examples illustrating to the individual preparing the 
DER what the DER would be expected to contain.   
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A. Test Species 
 

African clawed frog (Xenopus laevis) is the recommended species.  The assay 
method was validated and OCSPP 890.1100 is explicit for this species.  However, the 
Corrections and Clarifications document (EPA 2011) states that the method may also be 
applicable to Silurana (Xenopus) tropicalis, as demonstrated by Mitsui et al. (2006).  If  
an alternate species is used, the DER should detail the relevant or significant deviations 
in the method in order to accommodate the alternate species (e.g., S. tropicalis).  The 
DER should include a discussion of whatever evidence was used in the study report for 
the performance criteria that were used to support the reliability of the test. 
 

B. Equipment and Supplies 
 
 The list of equipment and supplies from the test guideline is provided only as a 
non-exhaustive recommendation of what is typically needed to conduct a successful test.  
If equipment and supplies are used that differ from those identified in the test guideline, it 
is recommended that the DER identify the differences and state whether and how they 
may have affected the performance or outcome of the study. 
 

C. Chemical Testability 
 
 The DER should summarize the results of any tests conducted to evaluate the 
extent to which concentration and stability of the test chemical in the exposure system 
were verified.  The AMA is based upon an aqueous exposure protocol whereby the test 
chemical is introduced into the test chambers via a flow-through system.  If a successful 
test is not possible for the chemical using a flow-through test system, a static renewal 
system is recommended.  If neither system is capable of accommodating the test chemical 
even using approved co-solvents, then the default is to not test the chemical using this 
guideline. 
 

D. Exposure System 
 

1. System Description 
 

A flow-through diluter system is preferred, when possible, over a static renewal 
system (OECD 2009).  The system components should be described in the DER as well 
as the extent to which they generally comport with the exposure system description in the 
guideline and are capable of maintaining the experimental conditions recommended in 
Appendix 1 of the guideline. 
 

2. Water Quality 
 

It is recommended that a description of the source water and chemical analysis 
results be provided in the DER, in addition to evidence that the water can support normal 
growth and development of X. laevis. 
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3. Iodide Concentration in Test Water 

 
Based on the available data from the validation studies, the assay has been 

demonstrated to work well when test water iodide (I-) concentrations ranged between 0.5 
and 10µg/L.  This is in addition to dietary iodide exposure at levels present in the 
recommended feeding regime using Sera Micron diet.  Ideally, the minimum iodide 
concentration in the test water would be 0.5 μg/L.  Iodide supplementation is 
recommended if the concentration is naturally below 0.5 μg/L in the test water; then, the 
it is recommended that iodide supplementation not exceed 2 μg/L.  For example, if the 
test water is reconstituted from deionized water, it is recommended that iodide be added 
at a minimum concentration of 0.5μg/L.  Any supplementation of the test water with 
iodide or other salts would be relevant information for inclusion in the DER.  In addition, 
any measurements of iodide concentrations in the test water (and diet, if applicable) 
should be reported in the DER. 

 
E. Holding of Animals 

 
1. Adult Care and Breeding 

 
One option for adult care and breeding of X. laevis is to conduct these activities in 

accordance with existing guidance for the frog teratogenesis assay (ASTM 2004).   A full 
description of any alternative animal care and breeding used would also be relevant 
information to be  described in the DER, along with whether deviations from the 
recommended method may have had any significant impact on the study performance or 
interpretation, using performance criteria (Section IV-B of the SEP) as a guide. 
 

2. Embryo Selection 
 

The guideline recommends that 2-3 of the best individual spawns be retained to 
evaluate the quality of the spawns.  From these 2-3 spawns, it is recommended that the 
test organisms originate from the best single spawn, based upon embryo 
viability/appearance and the presence of an adequate number (> 1,500) of embryos.  The 
guideline recommends against co-mixing spawns because this has been demonstrated to 
increase variability and decrease the statistical power of the test (OECD 2007a).  It is 
useful for the DER to report how many spawns were evaluated, along with details of the 
evaluation method (e.g., timing of evaluation and number of eggs evaluated per sample), 
and whether the organisms selected for the definitive test originated from the best single 
spawn. 
 

3. Larval Culture and Feeding  
 
The test guideline provides recommendations for handling the embryos and larvae 

(tadpoles) during the pre-exposure phase.  If no tadpoles develop to NF stage 51 within 
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17 days after fertilization, then inappropriate environmental conditions, disease, or other 
stressors may be potential culprit(s). 
 

The test guideline recommends tadpoles be fed Sera Micron® (Sera GmbH, 
Heinsberg, Germany), or other diet that has demonstrated to allow equal performance of 
the AMA (OECD 2009), throughout the pre-exposure period (after NF stage 45/46) and 
during the entire test period of 21 days.  It is recommended that the feeding regime 
during both the pre-exposure period and the test follow the recommendations in the 
guideline; the recommended regime (and associated nutrient and dietary iodide 
availability) resulted in adequate performance (i.e., growth and development of tadpoles) 
of the AMA during validation (OECD 2007a).  The DER should document the feeding 
regime used. 
 

F. Analytical Chemistry 
 

The guideline recommends test solutions from each replicate tank at each 
concentration be sampled for analytical chemistry analyses at test initiation (day 0), and 
weekly during the test for a minimum of four samples.  It is also recommended that each 
test concentration be analyzed during system preparation, prior to test initiation, to verify 
system performance.  In addition, it is recommended that stock solutions be analyzed 
when they are changed, especially if the volume of the stock solution does not provide 
adequate amounts of chemical to span the duration of routine sampling periods.  The 
sampling schedule and analyses performed should be provided in the DER. 
 

G. Selection of Test Concentrations 
 

1. Establishing the High Test Concentration 
 

The test guideline recommends that the high test concentration be set as the 
lowest of the following values: (1) 100 mg/L, (2) the solubility limit of the test substance, 
or (3) the highest test concentration of the chemical which results in less than 10% acute 
mortality.  The justification for using the highest test concentration that results in less 
than 10% mortality (if this is the lowest value of the three options above) is that this 
demonstrates that the chemical is tested up to a level where overt toxicity is observed, 
and thus adequately challenges the organism, without compromising the validity of the 
test.  The DER should describe any basis for selecting the highest test concentration 
included in the study.   
 

2. Test Concentration Range 
 

The guideline-specified minimum number of test concentrations is three plus a 
negative (clean water) control, plus a solvent/vehicle control if necessary.  The 
recommended minimum differential between the highest and lowest test concentrations  
is approximately one order of magnitude [lowest = 0.1X(highest)].  The minimum 
recommended separation between individual concentrations is a factor 0.33X and the 
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maximum is a factor of 0.1X (OECD, 2008).  The DER should identify the range of test 
concentrations and include any justification provided in the study report, if the test 
employed a range different from the recommended guidance.  
 

H. Test Procedure 
 

1. Day 0 (Test Initiation) 
  

It is recommended that the DER identify the selection method for tadpoles used in 
the definitive test, along with the age (days post-fertilization), Nieuwkoop and Faber 
(1994) stage, and size range (if determined) of the tadpoles selected, as described in this 
section.  The exposure is initiated when a sufficient number of tadpoles in the pre-
exposure stock population, which are less than or equal to 17 days of age post-
fertilization, have reached developmental stage 51 (Appendix 1) according to 
Nieuwkoop and Faber (1994).  The test guideline includes additional guidance on 
optional size selection, based on total length (not snout-vent length), that complements 
the stage selection.  The optional addition of size selection further reduces variability by 
ensuring that the NF stage 51 tadpoles fall within a specified size range. 

 
For selection of test animals, healthy and normal looking tadpoles of the stock 

population are pooled in a single vessel containing an appropriate volume of dilution 
water.  For developmental stage determination, the Guidelines recommend that the 
tadpoles be individually removed from the pooling tank using a small net or strainer and 
transferred to a transparent measurement chamber (e.g., 100 mm Petri dish) containing 
dilution water.  The developmental stage of the animals is determined using a binocular 
dissection microscope.  Total length, in millimeters (mm), may also be determined at this 
time. 

 
To reduce variability associated with measurement (staging) error, it is important 

that staging be conducted as accurately as possible.  It is preferred not to use anesthesia; 
however, it is possible to individually anesthetize the tadpoles using an appropriate 
method [e.g., 100 mg/L tricaine methanesulfonate (MS-222), appropriately buffered with 
sodium bicarbonate (pH 7.0)], prior to initial staging.  Animals are carefully handled 
during transfer in order to minimize handling stress and to avoid any injury.  If 
anaesthesia is used, the DER should document the method. 
 

While the complete Nieuwkoop and Faber (1994) guide may be consulted for 
comprehensive information on staging tadpoles, one can reliably determine NF stage 
using prominent morphological landmarks.  For test initiation, the guidelines recommend 
the tadpoles selected should be at NF stage 51.  The most prominent morphological 
staging landmark at NF stage 51 is hind limb morphology, where the hind limb bud is 
conical in shape and is 1.5X as long as it wide.  Tadpoles that meet the stage criteria are 
held in a tank of clean culture water until the staging process is completed.  Tadpoles 
exhibiting grossly visible malformations or injuries should be excluded from the assay.  
Once the staging is completed, the larvae are randomly distributed to exposure treatment 
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tanks until each tank contains 20 larvae.  Each treatment tank is then inspected for 
animals with abnormal appearance (e.g., injuries, abnormal swimming behavior, etc.).  
Tadpoles that appear unhealthy are typically removed from the treatment tanks and 
replaced with larvae newly selected from the pooling tank.  The DER should report any 
observations of abnormal appearance or behavior and whether tadpoles with the specified 
abnormality/ies were excluded from the assay.   
 

2. Day 7 
 

The guidelines recommend on day 7 of exposure, five randomly chosen tadpoles 
per replicate are removed from each test tank.  The procedure used gives each test 
organism an equal probability of being selected; therefore, each tadpole is netted.  Any 
randomization method is scientifically appropriate.  Tadpoles not selected for day 7 
measurements are returned to the tank of origin.  The five tadpoles selected for 
measurements are humanely euthanized (e.g., in 150 to 200 mg/L MS-222, buffered with 
bicarbonate to pH 7.0).  The euthanized tadpoles are rinsed in water and blotted dry.  
Body weight (also referred to as wet weight or blotted dry weight) is recorded to the 
nearest milligram (mg).  Hind-limb length (HLL) and snout-vent length (SVL) are 
recorded to the nearest millimeter (mm).  NF developmental stage is determined using a 
binocular dissection microscope.  This assay does not track individuals (i.e., tadpoles are 
not marked) and thus it would not be scientifically appropriate to pair individual Day 7 
observations with individual observations (e.g., size) at test initiation.  It is recommended 
that the DER identify which measurements and observations were recorded on Day 7 of 
the assay and briefly describe the method used to subsample tadpoles (i.e., whether the 
selection method was consistent with the randomization procedure recommended in the 
guideline).  
 

3. Day 21 (Test Termination) 
 

The guideline recommends that at test termination (day 21), the remaining 
tadpoles are removed from the test tanks and humanely euthanized, as described above.  
Tadpoles are rinsed in water and blotted dry.  Body weight (mg), HLL and SVL (mm), 
and NF developmental stage are recorded for each individual.  The guideline 
recommends that all larvae be placed in Davidson’s fixative for 48 to 72 hours (OECD 
2007b), either as whole body samples or as trimmed head tissue samples containing the 
lower jaw.  (Whole body samples may be preferable, since this preserves the association 
between individual observations of morphology and thyroid histopathology at test 
termination.)  To maximize the viability of samples for potential future reference, it is 
recommended that all specimens be preserved using this method.  However, the guideline 
recommends that a subset of only five tadpoles from each replicate tank be selected for 
thyroid histopathology in the AMA.  The DER should identify which measurements and 
observations were recorded on Day 21 of the assay, along with the number of tadpoles 
selected for thyroid pathology and the methods of selection and preservation for these 
and any other archived specimens.  More detailed information for the evaluation of study 
conduct with respect to biological endpoints is provided in section (III)(I) of this SEP. 
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Normal divergence in development is expected to result in different stage 

distributions within each replicate tank.  Since follicular cell height is stage-dependent, 
the guideline recommends that individuals selected for histopathology (n=5 per replicate) 
be stage-matched to the median stage (pooled replicates) of the negative (clean water) 
control, when possible.  Therefore, it is recommended that control specimens be 
processed first.  After control specimens are selected for histopathology based on the 
median control developmental stage, all larvae in each remaining replicate (test item 
treatments and any solvent controls) are staged prior to selection of organisms from that 
replicate for histopathology. 

 
If a replicate tank contains more than five larvae at the appropriate stage, then five 

larvae are randomly selected from the stage-matched individuals.  If a replicate tank 
contains less than five larvae at the appropriate stage, then additional individuals are 
typically randomly selected from the next lower or upper developmental stage to reach a 
total sample size of five larvae per replicate.  The decision to sample additional larvae 
from either the next lower or upper developmental stage is based on an overall evaluation 
of the stage distribution in the control and chemical treatments.  That is, if the chemical 
treatment is associated with developmental delay based on NF stage, then it is 
recommended that the additional larvae be sampled from the next lower stage.  In turn, if 
the chemical treatment is associated with accelerated development based on NF stage, the 
recommendation is that the additional larvae be sampled from the next higher stage.  If 
there is no overlap of the stage distribution in the chemical treatment(s) with the median 
control developmental stage, as may occur with severe alterations of tadpole development 
due to treatment with a test chemical, the histopathology selection process may be 
modified by matching to a stage different from the control median stage.  Furthermore, if 
NF stages are indeterminate (i.e., asynchronous development), then five tadpoles from 
each replicate are randomly chosen for histological analysis.  The DER should identify 
the histopathology selection method used and any justification provided in the study 
report for selection of any larvae not stage-matched to the median control developmental 
stage. 
 

I. Determination of Biological Endpoints 
 

Daily observation of test animals is recommended to record any mortality or other 
clinical signs, including behavioral effects.  During the 21 days of exposure, 
determinations of developmental stage and measurements of hind limb length (HLL), 
snout-vent length (SVL), and body weight are performed on days 7 and 21.  Thyroid 
gland histology is evaluated at test termination (Day 21).  A summary of the 
recommended time points for observation is provided in Table 1. 
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Table 1.  Observation Time Points in the Amphibian Metamorphosis Assay. 

 
1. Mortality and Clinical Signs 

 
The DER should indicate whether mortality, abnormal behavior, and any other 

clinical signs were recorded on a daily basis. 
 

2. Developmental Stage 
 

Consistent with the staging method used for specimen selection at test initiation, 
the developmental stage at Day 7 and Day 21 (test termination) is determined, preferably 
using the staging criteria of Nieuwkoop and Faber (1994).  Developmental stage data are 
used to determine if development is accelerated, asynchronous, delayed, or unaffected at 
either or both of these time points.  Acceleration or delay of development is determined 
by making a comparison between the median stage achieved by the control and treated 
groups.  Any asynchronous development should be reported in the DER when the NF 
stage cannot be determined because the tissues examined are not malformed or abnormal, 
but the relative timing of the morphogenesis or development of different tissues is 
disrupted within a single tadpole.  For example, hind limb morphology may indicate a 
particular NF stage, whereas forelimb emergence and morphology of the same specimen 
may indicate a later NF stage.  Therefore, analysis of developmental stage is potentially 
based upon two types of observations at Day 7 and Day 21: the median developmental 
stage of each group (treatments and controls), and the number of tadpoles (if any) in each 
group that cannot be staged due to asynchronous development. 
 

3. Hind Limb Length (HLL) 
 

Differentiation and growth of the hind limbs are under control of the thyroid 
hormones and are major developmental landmarks in the determination of developmental 
stage (through NF stage 57).  In addition, hind limb length (HLL), normalized to snout-
vent length (SVL), is a quantitative endpoint used to detect potential effects on the 
thyroid axis in the AMA (Appendix 2).  For consistency, it is recommended that HLL be 
measured on the left hind limb.  HLL is evaluated both at Day 7 and at Day 21 of the test.  

Observation Daily Day 7 Day 21 

Mortality ●   

Clinical Signs ●   

Developmental Stage   ● ● 

Hind Limb Length (HLL)  ● ● 

Snout-Vent Length (SVL)  ● ● 

Body Weight  ● ● 

Thyroid Gland Histology   ● 
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Changes in the normalized HLL at Day 7, even if not evident at Day 21, are still 
considered indicative of potential thyroid activity in the AMA.  For consistency and 
archival purposes, the Agency recommends that length measurements be acquired from 
digital photographs using image analysis software, as described in the OECD Guidance 
Document on Amphibian Thyroid Histopathology (2007b, 2007c).  The DER should 
briefly describe the method of measurement. 
 

4. Snout-Vent Length (SVL) and Body Weight 
 

Determinations of SVL and body weight are included in the test guideline to 
assess possible effects of test substances on the growth rate of tadpoles in comparison to 
the control group and are useful in detecting generalized toxicity due to the test 
compound.  Because the removal of adherent water for weight determinations can cause 
stressful conditions for tadpoles and may cause skin damage, weight and length 
measurements are performed on the day 7 sub-sampled tadpoles only and on all 
remaining tadpoles at day 21 (test termination).  For consistency, it is recommended that 
the cranial aspect of the vent be used as the caudal limit of the measurement SVL.  
However, measurement based on termination of the abdomen has been identified as an 
acceptable alternative to SVL [see Corrections and Clarifications on Technical Aspects of 
the Test Guidelines for the Endocrine Disruptor Screening Program Tier 1 Assays 
(OCSPP Test Guideline Series 890); March 3, 2011].  The DER should describe which 
method was used.   
 

5. Thyroid Gland Histopathology 
 

Thyroid gland histopathology is recommended (1) when other endpoints in the 
AMA (developmental stage, HLL) show no significant effect of the test chemical, (2) 
when results are equivocal or conflicting, or (3) when there is evidence of developmental 
delay.  Evidence of developmental delay cannot, by itself, be considered a diagnostic 
indicator of anti-thyroidal activity, and some changes related to effects on the HPT axis 
may be observable only by histopathological analysis.  Thyroid gland histopathology may 
not be needed to confirm an HPT-related effect in the AMA when there is clear evidence 
of advanced development or asynchronous development based on other apical endpoints 
(developmental stage, HLL), because these effects in the AMA are only known to occur 
through thyroid-hormone related processes (see Section D). 

 
Diagnostic criteria include thyroid gland hypertrophy/atrophy, follicular cell 

hypertrophy, follicular cell hyperplasia.  Additional qualitative criteria include follicular 
lumen area, colloid quality, and follicular cell height and shape.  Severity grading (4 
grades; e.g., 0=Not remarkable, 1=Mild, 2=Moderate, 3=Severe) should be reported in 
the DER.  Please refer to “Amphibian Metamorphosis Assay: Part 1 – Technical guidance 
for morphologic sampling and histological preparation” (OECD, 2007b) and “Amphibian 
Metamorphosis Assay: Part 2 – Approach to reading studies, diagnostic criteria, severity 
grading and atlas” (OECD, 2007c) for information on obtaining and processing samples 
for histological analysis and for performing histology analyses on tissue samples.  The 
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DER should identify which diagnostic criteria and additional characteristics, if 
applicable, were evaluated by the pathologist and the associated severity grading scale(s). 
 

6. Specimens Archival 
 
 It is recommended that any archival practices, e.g., for histopathology slides, 
digital images, and tissue samples, be documented by the reviewer in the DER.  
 

7. Data Reporting and Completeness 
 

The DER should document whether data were collected using electronic or 
manual systems which conform to good laboratory practices (GLP).  The reviewer should 
confirm whether the study report contains the information identified for reporting in the 
test guideline, Section (g), including but not limited to the endpoints described in the 
foregoing sections of this SEP. 
 

IV. Study Interpretation 
 

This section of the DER is intended to address the interpretation of the study 
results and any conclusions regarding the acceptability of the study.  As part of this 
evaluation, the DER may include a discussion of how well the study conforms to specific 
validity and performance criteria identified in the test guideline; the analysis of validity 
and performance criteria would draw, in part, upon the evaluation of study conduct 
described in the previous section.  This is intended to clarify the reviewer’s conclusions 
regarding whether, to what extent, and how any deviation(s) affect the interpretation or 
acceptability of the study.  Section (IV)(D) provides specific recommendations on 
interpreting the biological data obtained from the AMA and directions on how to report 
this information in the DER. 

 
The following sections are based on a summary of the information generally 

expected to be obtained by a study that was conducted following the Test Guidelines, and 
that would generally be relevant to interpreting the results of the Amphibian 
Metamorphosis Assay.  This summary is provided as a general outline to aid the reviewer 
in preparing a DER, and not as a substitute for the Test Guidelines, nor as guidance on 
how to conduct the assay. 

 
A. Test Validity Criteria 

 
 The DER should note whether the assay met the validity criteria identified in the 
OCSPP 890.1100 test guideline, based on the data and other information provided in the 
study report.  The validity criteria are summarized below in Table 2.  The validity criteria 
are based upon the guideline-recommended experimental design and the associated 
statistical power of the AMA.   
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 When met, the validity criteria are used to support the scientific soundness of 
conclusions drawn from the test results.  These validity criteria provide an indication of 
the general performance of the AMA under test conditions; e.g., control mortality that 
exceeds the reference value may be an indication of underlying problems associated with 
husbandry, environmental conditions, or the particular strain of test organisms used in the 
study.  Therefore, the extent to which the validity criteria are met would be relevant to 
any conclusions drawn from the study. 
 
 The DER should include a discussion of any rationale provided in the study report 
for any validity criteria that were not met.  This includes identification of whether, to 
what extent, and in what way failure to meet the criteria has had an impact on the quality 
or acceptability of the study. 
 
Table 2: Validity Criteria for the Amphibian Metamorphosis Assay. 

Criteria Reference Value(s) 
Mortality (each treatment, including controls) < 10% 

Mortality (each replicate) 
    If positive for thyroid interaction 
    If negative for thyroid interaction 

 
< 2 tadpoles/replicate (<10%) 
< 3 tadpoles/replicate (<15%) 

Uncompromised treatment levels (all 4 replicates 
available for analysis) 

> 2, in addition to controls 

Treatment levels without overt toxicity 
(mortality) 

> 2, in addition to controls 

 
B. Performance Criteria 

 
Performance criteria applicable to the guideline are summarized in Table 3 

below.  Additional performance criteria are provided for tests under static-renewal 
conditions (Table 4).  Finally, tests that utilize a solvent are recommended to include a 
separate solvent control, run concurrently with the negative (clean water) control and test 
item treatments, and to report all control results.  The DER should include enough 
information to determine whether the assay met the relevant criteria.   

 
Where deviations from the guideline are reported the performance criteria may be 

used to demonstrate that such deviations had a minor impact on study outcome.  A study 
that fails to meet one or more performance criteria may still provide useful information 
and is not necessarily rejected.  The DER includes a discussion of any rationale provided 
in the study report for any performance criteria that were not met.  That discussion should 
also identify whether, to what extent, and in what way failure to meet the specified 
performance criteria had an impact on the quality or interpretation of the study.  For 
additional guidance on the interpretation of performance criteria related to analytical 
chemistry and general water quality parameters, the reviewer may consult OCSPP 
Guideline 850.1000, special considerations for conducting aquatic laboratory studies. 
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Table 3: General Performance Criteria for the Amphibian Metamorphosis Assay, when Conducted 
Under Flow-Through or Static-Renewal Conditions 

Criteria Reference Value(s) 
Measured test concentrations CV < 20% over 21 days 
Control mortality < 2 tadpoles/each replicate (<10%) 
Median NF stage in controls at test termination > 57 
Difference between 10th and 90th percentile of NF 
stage distribution in controls at test termination 

< 4 stages 

Dissolved oxygen > 40% air saturation 
pH 6.5-8.5 (< 0.5 difference between replicates, 

treatments) 
Water temperature 22±1°C (<0.5°C difference between replicates, 

treatments) 
 
Table 4: Additional Performance Criteria for the Amphibian Metamorphosis Assay, when 
Conducted Under Static-Renewal Conditions 

Criteria Guideline Recommendation(s) 
Measured test concentrations Analysis immediately prior to and immediately 

following renewal 
General water quality parameters, including 
ammonia 

Analysis immediately prior to renewal 

Renewal period < 72 hours (< 24 hours preferred) 
Feeding schedule Adjusted as necessary (e.g., 50%) based on renewal 

scheme 
 

C. General Analysis 
 

1. Statistical Analyses 
 

Where appropriate, formal statistical analysis is used to identify significant 
differences.  Recommended statistical procedures for analyzing median developmental 
stage, normalized HLL, and continuous growth endpoints (e.g., SVL and body weight) 
are summarized in Appendix 4.  As recommended by the guideline, all statistically 
significant differences would be reported by endpoint and by concentration.  The 
direction (e.g., accelerated or delayed) and magnitude (e.g., percent change as compared 
to control) are stated, as relevant.  The level of significance (e.g., α = 0.05) would also 
typically be reported for each test when there is a statistical significance.  Specific 
guidance for the statistical analysis of histopathology findings is not provided, but 
summary statistics for severity and incidence of observations should be reported in the 
DER.   

 
a. Statistical Tests Employed 

 
The DER should identify the extent to which the statistical methods used were 

consistent with those recommended in the test guideline.  The DER   should include the 
statistical tests (and software, as appropriate) used, along with  any rationale provided for 
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the use of either parametric or nonparametric tests.  Any data transformations would also 
be reported. 

 
The extent and specific nature of statistical verification by the reviewer may vary.  

Typically, the reviewer confirms the accuracy of the statistical analyses by recalculating 
summary statistics and pertinent statistical tests for endpoints.  This verification is 
facilitated if individual data for all results, including negative and solvent controls (if 
applicable), are submitted with the study report in electronic format (e.g., spreadsheet 
files). 
 

b. Test Using Solvents 
 

If a solvent was used, confirmation of comparisons between solvent controls and 
clean water controls is performed to determine potential solvent effects on the organisms.  
All control results that have been provided are included in the DER.  Evidence of a 
solvent effect will be considered in determining the utility of a study.  The reviewer 
should consult existing guidance on this topic (e.g., OCSPP 850.1000, EPA 2008).  In 
addition, one or both of the following analyses is performed: 

 
• Clean water control versus treatment concentrations: Statistical comparison of 

responses in the test concentrations in relation to the dilution water control is 
recommended for all tests, and all control results are included in the DER.  Unless 
stated in other policy or guidance documents this method is the preferred method for 
identifying treatment-related effects in the AMA and also for the reviewer to 
generally  employ in generating the DER. 

 
• Solvent control versus treatment concentrations: Statistical comparison of responses 

in the test concentrations in relation to the solvent control is another method of 
evaluation.  All control results should be included in the data report. 

 
c. Outliers 
 

The DER should also identify the method used to identify any outliers, if 
applicable.  If outliers were excluded from the statistical analysis in the DER, it is 
recommended that the biological and/or statistical justification be described.   

 
2. Trends 

 
Reporting of all trends in the DER whether positive or negative is recommended.  

A discussion of the significance of the trends and implications for the interpretation of the 
test is also suggested. 
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3. Histological Findings 
 
Reporting of histological findings by diagnostic criterion, severity grades, and 

opinion of the pathologist and reviewer is recommended.  The severity grades 
recommended in the guideline are 0=Not remarkable, 1=Mild, 2=Moderate, 3=Severe.  
As indicated above, summary statistics are to be presented and verified by the reviewer. 
 

D. Endpoint Interpretation 
  

Interpretation of the biological endpoints in the AMA is described in the 
following sections.  The order in which possible effects are discussed is consistent with 
the proposed Decision Logic for endpoint interpretation, presented in Appendix 3 
(OCSPP 890.1100, OECD 2009).  
 

1. Advanced Development (Developmental Stage and Normalized 
HLL) 

 
Advanced development in the AMA is only known to occur through effects which 

are thyroid hormone related. These may be peripheral tissue effects such as direct 
interaction with the thyroid hormone receptor (such as with T4) or effects which alter 
circulating thyroid hormone levels.  In either case, this may be considered sufficient 
evidence to indicate that the chemical has thyroid activity.  The guideline recommends 
evaluating advanced development in one of two ways. First, the guidelines recommend 
evaluating the general developmental stage of tadpoles using the standardized approach 
detailed in Nieuwkoop and Faber (1994).  Second, specific morphological features are 
quantified, such as HLL, at both days 7 and 21, which is positively associated with 
agonistic effects on the thyroid hormone receptor.  If statistically significant advances in 
development or HLL occur, then the test indicates that the chemical may be thyroid 
active.  As recommended in the test guideline, the evaluation of test animals for the 
presence of accelerated development relative to the control population will be based on 
results of statistical analyses performed for the following four endpoints: 
 

• HLL (normalized by SVL) on study day 7, 
• HLL (normalized by SVL) on study day 21, 
• developmental stage on study day 7, or 
• developmental stage on study day 21.  

 
The recommended normalization of HLL is performed by calculating the ratio 

between individual HLL and snout-to-vent length (SVL) measurements.  The means of 
the normalized values for each treatment level are then compared.  Acceleration of 
development, for example,  can be  indicated by a significant increase of mean 
normalized HLL in a chemical treatment group, compared to the control group, on study 
day 7 and/or study day 21 (Appendix 3). 
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The recommended statistical analyses of developmental stage are performed 
based on determination of developmental stages according to the morphological criteria 
described by Nieuwkoop and Faber (1994).  Acceleration of development is indicated 
when the multi-quantal analysis detects a significant increase of developmental stage 
values in a chemical treatment group compared to the control group on study day 7 
and/or study day 21. 
 

As recommended in the AMA test guideline, a significant effect on any of the 
four endpoints mentioned above may be regarded sufficient for a positive detection of 
accelerated development (Appendix 3).  That is, significant effects on normalized HLL 
at a specific time point would not typically require corroboration by significant effects on 
normalized HLL at the alternative time point or by significant effects on developmental 
stage.  In turn, significant effects on developmental stage at a specific time point 
generally would not require corroboration by significant effects at developmental stage 
on the alternative time point nor by significant effects on normalized HLL. 
 

2. Asynchronous Development (Unable to Stage) 
 

Asynchronous development is generally characterized by disruption of the 
relative timing of the morphogenesis or development of different tissues within a single 
tadpole.  The inability to clearly establish the NF developmental stage of an organism 
using the suite of morphological endpoints considered typical of any given stage indicates 
that the tissues are developing asynchronously through metamorphosis.  Asynchronous 
development in the AMA is an indicator of thyroid activity.  The only known modes of 
action causing asynchronous development in the AMA are through effects of chemicals 
on peripheral thyroid hormone action and/or thyroid hormone metabolism in developing 
tissues, such as is observed with deiodinase inhibitors. 
 

The recommended evaluation of test animals for the presence of asynchronous 
development relative to the control population is based on gross morphological 
assessment of test animals on study day 7 and study day 21.  The description of normal 
development of Xenopus laevis by Nieuwkoop and Faber (1994) provides the framework 
for identifying a sequential order of normal tissue remodeling.  The term “asynchronous 
development” refers specifically to those deviations in tadpole gross morphological 
development that disallow the definitive determination of a developmental stage 
according to the criteria of Nieuwkoop and Faber (1994) because key morphological 
landmarks show characteristics of different stages.  As implied by the term 
“asynchronous development”, only cases showing deviations in the progress of 
remodeling of specific tissues relative to the progress of remodeling of other tissues 
should be considered.  Some classical phenotypes include delay or absence of fore limb 
emergence despite normal or advanced development of hind limbs and tail tissues, or the 
precocious resorption of gills relative to the stage of hind limb morphogenesis and tail 
resorption.  The test guideline recommends that an animal be evaluated as showing 
asynchronous development if it cannot be assigned to a stage because it fails to meet a 
majority of the landmark developmental criteria for a given NF stage, or if there is 
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extreme delay or acceleration of one or more key features (i.e. tail completely resorbed, 
but forelimbs not emerged).   

 
The recommended assessment is performed qualitatively and should examine the 

full suite of landmark features listed by Nieuwkoop and Faber (1994).  Under this 
analysis, animals recorded as showing asynchronous development are not assigned to a 
Nieuwkoop and Faber (1994) development stage.  Thus, it is recommended that a central 
criterion for designating cases of abnormal morphological development as “asynchronous 
development” be that the relative timing of tissue remodeling and tissue morphogenesis is 
disrupted, whereas the morphology of affected tissues is not overtly abnormal.  One 
example to illustrate this interpretation of gross morphological abnormalities is that 
retarded hind limb morphogenesis relative to development of other tissues  could fulfill 
the criterion of “asynchronous development,” whereas cases showing missing hind limbs, 
abnormal digits (e.g., ectrodactyly, polydactyly), or other overt limb malformations 
should not typically be considered as “asynchronous development.”  Depending on the 
mode of chemical action, different gross morphological phenotypes can occur.  Some 
classical phenotypes include delay or absence of fore limb emergence in spite of normal 
or advanced development of hind limbs and tail tissues, precocious gill resorption relative 
to hind limb, and tail remodeling.  The DER should identify whether asynchronous 
development was observed in tadpoles and the associated treatment concentration(s) 
(e.g., negative control, solvent control, or specific test item concentration), along with the 
number of tadpoles (if any) affected in each treatment. 
 

3. Histopathology 
 

If the chemical does not cause overt toxicity (.e.g., significant mortality at a given 
treatment level) and does not accelerate development or cause asynchronous 
development, an evaluation of the histopathology of the thyroid glands is recommended,  
with consideration of the appropriate guidance document (OECD, 2007b; 2007c).  
Developmental delay, in the absence of toxicity, can be a strong indicator of anti-thyroid 
activity in the AMA, but the developmental stage analysis is less sensitive and less 
diagnostic than the histopathological analysis of the thyroid gland.  In addition, effects on 
thyroid gland histology have been demonstrated in the absence of developmental effects.  
The thyroid gland is under the influence of thyroid-stimulating hormone (TSH); any 
chemical which alters circulating thyroid hormone sufficiently to alter TSH secretion will 
result in histopathological changes in the thyroid gland.  Therefore, conducting 
histopathological analyses of the thyroid gland would typically be appropriate when other 
endpoints indicate developmental delay or no discernible effect. 

 
Changes in thyroid histopathology provide evidence that the chemical is thyroid 

active in the AMA.  If thyroid histopathology is performed and no developmental delays 
or histological lesions are observed in the thyroid gland, then the chemical may be 
considered to be thyroid inactive in the AMA, provided that there are no observations of 
advanced or asynchronous development (based on developmental stage and normalized 
HLL analyses).  The determination of an effect associated with exposure to a chemical 
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may be heavily weighted by the expert opinion of a qualified pathologist, as presented in 
the histopathology description of the study report.  Summary statistics should be 
presented in the DER. 
 

4. Developmental Delay (Developmental Stage and Normalized 
HLL) 

 
Statistically significant developmental delays, in the absence of other signs of 

overt toxicity, indicate that the chemical is thyroid active (antagonistic) in the AMA.  In 
the absence of strong statistical responses, it may be appropriate to augment the outcome 
with results from thyroid histopathology. 

 
Delayed development can also occur through anti-thyroidal mechanisms and 

through indirect toxicity.  Mild developmental delays coupled with overt signs of toxicity 
(e.g., mortality, reduction in body weight) may indicate a non-specific toxic effect.  
Excessive mortality is an obvious indication that other toxic mechanisms are occurring.  
Other clinical signs to be considered in determining overt toxicity include (but are not 
necessarily limited to) edema, hemorrhagic lesions, lethargy, reduced food consumption, 
erratic/altered swimming behavior, etc.  The guideline recommends that > 2 treatment 
levels, in addition to controls, be uncompromised by overt toxicity and be available for 
analysis.     

 
5. Growth (SVL and Body Weight) 

 
Apparent increases in growth (SVL and/or body weight), in conjunction with 

observed effects on developmental endpoints (developmental stage, normalized HLL, 
and/or histopathology) may support the conclusion of a thyroid active substance, as 
apparent increases in growth are commonly observed with compounds that negatively 
affect normal development.  However, growth endpoints alone should not be the basis of 
determining whether or not a substance is thyroid-active.  

 
Reductions in growth (SVL and/or body weight), possibly in conjunction with 

mildly delayed development (i.e., not statistically significant or corroborated by 
histopathology findings), may suggest non-thyroidal toxicity.   
 

E. Special Data Analysis Considerations 
 

1. Use of Compromised Treatment Levels 
 

Several factors are typically considered when determining whether a replicate or 
entire treatment demonstrates overt toxicity and should be removed from the analysis.  
Overt toxicity is generally defined in the AMA test guideline as greater than two 
mortalities in any replicate, which can only be explained by toxicity and not technical 
error.  Other signs of overt toxicity include hemorrhage, abnormal behaviors, abnormal 
swimming patterns, anorexia, and any other clinical signs of disease.  For sub-lethal signs 
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of toxicity, qualitative evaluations may be necessary and would be made in reference to 
the clean water control group. 
 

2. Solvent Controls 
 

The use of a solvent is typically only considered as a last resort, after  all other 
chemical delivery options have been determined to be inappropriate, because it has the 
potential to interfere with the test results.  If a solvent is used, then a clean water control 
is typically run in concert.  At the termination of the test, an evaluation of the potential 
effects of the solvent is performed.  This is typically done through a statistical 
comparison of the solvent control group and the clean water control group.  If significant 
differences are detected between the clean water control and solvent control groups, the 
guideline recommends that best professional judgment be used to determine if the 
validity of the test has been compromised.  If there are no significant differences between 
the clean water control and solvent control for any of the measured response variables, it 
is recommended that the study endpoints be determined based on comparison to the clean 
water control unless other guidance or policy recommends otherwise. 
 

3. Treatment Groups Achieving NF Developmental Stage 60 and 
Above 

 
After NF stage 60, tadpoles show a reduction in size and weight due to tissue 

resorption and reduction of absolute water content.  Thus, measurements of body weight 
and SVL cannot appropriately be used in statistical analyses for differences in growth 
rates.  Therefore, body weight and length data from organisms > NF stage 60 are 
censored and not used in analyses of replicate means or replicate medians.  Further 
discussion is provided in Appendix 4. 
 

4. Histological Analyses and Developmental Stage 
 

Since the test is based on a fixed exposure termination point, organisms in the 
various treatment groups progress to different developmental stages.  This increases 
difficulty of evaluating histological preparation of the thyroid gland.  Analysis of thyroid 
gland histology may be done either in the context of what is normal for the relevant NF 
stage or based upon comparison to histology of the negative control specimens (OECD 
2007c).  These approaches are only substantively different if observations of the negative 
controls are uncharacteristic of what is normal for their NF developmental stage.  The 
method of comparison should be clearly described in the DER.   
 

V. Data Evaluation Record 
 

It is recommended that the submitted study be reviewed according to the 
principles in the previous sections of this SEP.  The review is then documented in the 
Data Evaluation Record (DER).  A template that provides additional guidance to the 
reviewer for preparation of the DER is available.  Generally, the DER will include a 
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cover sheet, executive summary and results synopsis, quality assurance elements, 
description of the material and methods used, summary of the study author’s reported 
results and analysis, and the reviewer’s interpretation of results and discussion.  
Consistent with the recommendations in the test guideline and this SEP, the DER should 
typically identify deviations from the guideline-recommended methods and validity and 
performance criteria, along with a discussion of their significance.  The DER should 
generally identify the effective concentrations associated with each endpoint in the AMA.  
Finally, the DER will include a conclusion as to whether the test item was potentially 
active in the AMA thyroid axis in the submitted study (see Appendix 3), and whether the 
study satisfied the Test Order for an Amphibian Metamorphosis Assay using OCSPP 
Guideline 850.1100. 
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Appendix 1: Staging 
 

The most prominent morphological staging landmark for NF Stage 51 tadpoles of 
X. laevis is hind limb morphology, which is illustrated in the figure below (OECD 2009). 
 
 

 
 
 
Figure 1. Hind limb morphology of a stage 51 X. laevis tadpole. 
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Appendix 2: Length Measurement 
 
Length in X. laevis is measured in accordance with the diagrams provided below (OECD, 2008). 

 
 
 
Figure 2. (A) Types of body length measurements and (B) Hind limb length measurements for X. laevis tadpoles 
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Appendix 3: Decision Logic for the Conduct and Interpretation of the AMA 
 

A recommended decision logic is presented in the AMA guideline (OCSPP 
890.1100, OECD 2009) that provides logical assistance in the conduct of the assay and 
interpretation of the results.  The flow chart below illustrates outcomes in the AMA, such 
as advanced development, asynchronous development, and effects on thyroid 
histopathology, which tend to carry weight in determinations of whether a substance is 
thyroid-active in the AMA.  The flow chart does not include other outcomes considered 
in the decision logic, such as delayed development (based on developmental stage and/or 
HLL), effects on growth (snout-vent length and wet body weight), and effects on other 
parameters that can potentially be affected by general toxicity; these outcomes may be 
weighed less heavily in the determination of whether a substance is thyroid-active in the 
AMA because they are less specific to potential interference with the HPT axis.  
Nonetheless, as indicated in the SEP (Section D), statistically significant developmental 
delays (in the absence of other signs of overt toxicity) can indicate that the chemical is 
thyroid-active (antagonistic) in the AMA.  In the absence of strong responses, the 
interpretation may be augmented with results from thyroid histopathology. 

 
 

 
 
Figure 3.  Suggested decision logic for certain outcomes in the AMA. 
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Appendix 4: Recommendations for Statistical Analyses Based on OECD 2006 
 

The statistical analyses recommended in the AMA test guideline (OCSPP 
890.1100, OECD 2009) are described in more detail in the document, Current 
Approaches in the Statistical Analysis of Ecotoxicity Data: A Guidance to Application 
(OECD 2006).  For all continuous quantitative endpoints (HLL, SVL, body weight) 
consistent with a monotonic dose-response, it is recommended that the Jonckheere-
Terpstra test be applied in step-down manner to establish a significant treatment effect.  
For continuous endpoints that are not consistent with a monotone dose-response, it is 
recommended that the data be assessed for normality (preferably using the Shapiro-Wilk 
or Anderson-Darling test) and variance homogeneity (preferably using the Levene test).  
Both tests are performed on the residuals from an ANOVA.  Expert judgment can be used 
in lieu of these formal tests for normality and variance homogeneity, though formal tests 
are preferred.  Where non-normality or variance heterogeneity is found, it is 
recommended that a normalizing, variance stabilizing transformation be sought.  If the 
data (perhaps after a transformation) are normally distributed with homogeneous 
variance, EPA recommends determining a significant treatment effect using Dunnett’s 
test.  If the data (perhaps after a transformation) are normally distributed with 
heterogeneous variance, it is recommended that a significant treatment effect be 
determined using the Tamhane-Dunnett or T3 test or from the Mann-Whitney-Wilcoxon 
U test.  Where no normalizing transformation can be found, it is recommended that a 
significant treatment effect be determined from the Mann-Whitney-Wilcoxon U test 
using a Bonferroni-Holm adjustment to the p-values.  The Dunnett’s test is applied 
independently of any ANOVA F-test and the Mann-Whitney test is applied 
independently of any overall Kruskal-Wallis test. 
 

Significant mortality is not expected, but if it occurs, EPA recommends assessing 
mortality from the step-down Cochran-Armitage test where the data are consistent with 
dose-response monotonicity, and otherwise from Fisher’s Exact test with a Bonferroni-
Holm adjustment.  The Guideline recommends that a significant treatment effect for 
developmental stage be determined from the step-down application of the Jonckheere-
Terpstra test applied to the replicate medians.  Alternatively, and preferably, the multi-
quantal Jonckheere test from the 20th to the 80th percentile could be used for effect 
determination, as it takes into account changes to the distribution profile.  The 
appropriate unit of analysis is the replicate so the data consist of replicate medians if the 
Jonckheere-Terpstra or Mann-Whitney U test is used, or the replicate means if Dunnett’s 
test is used.  Dose-response monotonicity can be assessed visually from the replicate and 
treatment means or medians or from formal tests.  With fewer than five replicates per 
treatment or control, the exact permutation versions of the Jonckheere-Terpstra and 
Mann-Whitney tests is recommended, if available.  It is typically recommended that the 
statistical significance of the tests described be judged at the 0.05 significance level. 
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The test guideline recommends that body weight and length data from organisms 
> NF stage 60 be censored and generally not be used in analyses of replicate means or 
replicate medians because late stage effects on growth may skew the distribution.  Two 
different approaches could be used to analyze these growth-related parameters.  One 
approach is to consider only tadpoles with developmental stages lower or equal to stage 
60 for the statistical analyses of body weight and/or SVL.  This approach is believed to 
provide sufficiently robust information about the severity of possible growth effects as 
long as only a small proportion of test animals are removed from the analyses (≤  20%).  
If an increased number of tadpoles show development beyond stage 60 (≥  20%) in one or 
more nominal concentration(s), then it is recommended that a two-factor ANOVA with a 
nested variance structure be undertaken on all tadpoles to assess growth effects due to 
chemical treatments while taking into account the effect of late stage development on 
growth.  Guidance on the two-factor ANOVA analysis of weight and length is provided 
in the following paragraph. 
 

An alternative analysis of weight data may be appropriate if an increased number 
of tadpoles show development beyond stage 60 (≥  20%) in one or more nominal 
concentration(s).  A two-factor ANOVA with a nested variance structure is recommended 
on all tadpoles to assess growth effects due to chemical treatments while taking into 
account the effect of late stage development on growth.  The approach is to use all data, 
but take into account the effect of late stage development.  This can be done with a two-
factor ANOVA with a nested variance structure.  Then a two-factor ANOVA with 
concentration and stage, and their interaction can be used.  Replicate concentrations and 
tadpoles per replicate serve as random factors.  This process still considers the replicate 
as the unit of analysis and gives essentially the same results as a weighted analysis, 
weighted by the number of animals per mean.  If the data violate the normality or 
variance homogeneity requirements of ANOVA, a normalized rank-order transform can 
be done to correct the violation.  In addition to the standard ANOVA F-tests for the 
effects of concentration, advanced stage, and their interactions, the interaction F-test can 
be divided into two additional ANOVA F-tests.  One F-test applies to the mean responses 
across concentrations for advanced stage, and another on the mean responses across 
concentrations for advanced stage.  Further comparisons of treatment means against 
control are done within each level of advanced stage.  A trend analysis using appropriate 
contrasts or simple pair-wise comparisons may be performed if there is evidence of non-
monotonic dose-response within a level of the advanced stage variable.  A Bonferroni-
Holm adjustment to the p-values is made only if the corresponding F-slice is not 
significant. 
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