

LECTURE #9

SNOW PROCESSES, PARAMETERS, AND CALIBRATION

SNOW ACCUMULATION AND MELT PROCESSES - THE SNOW CYCLE

FLOWCHART OF SNOWMELT PROCESSES IN HSPF

AQUA TERRA

CONSULTANTS

SNOW SIMULATION OPTIONS IN HSPF, VERSION No. 12

ENERGY BALANCE APPROACH		TEMPERATURE INDEX/DEGREE-DAY METHOD		
SN	OPFG = 0	SNOPFG = 1		
Rain/Snow Determination	~	\checkmark		
Snow Pack Depth & Density	~	~		
Snow Pack Liquid Storage	~	~		
Rain Melt	~	v		
Radiation Melt	~			
Condensation/ Convection	v			
Snowpack Heat Exchange	~	~		
Ground Melt	~	~		
Snow Evaporation	~			

4 of 18

TERR

CONSULTANT

METEOROLOGIC DATA REQUIREMENTS FOR SNOW SIMULATION

Meteorologic Data	Energy Balance	Temperature Index
Precipitation	Required	Required
Air Temperature	Required	Required
Solar Radiation	Required	Not Used
Dewpoint	Required	Optional
Wind Velocity	Required	Not Used
Cloud Cover	Optional	Not Used

SNOW STRUCTURE CHART

6 of 18

AOUA TERRA

CONSULTANTS

SNOWMELT - TIME SERIES INPUTS, RAIN/SNOW DETERMINATION, DENSITY EQUATION

Time series inputs

precipitation air temperature dewpoint temperature wind movement solar radiation

RAIN or SNOW

SNOTMP = TSNOW + (AIRTMP - DEWTMP) * (0.12 + 0.008 * AIRTMP)

max adjustment 1 degree F

SNOTMP = air temperature below which is snow **TSNOW** = input parameter AIRTMP = air temperature DEWTMP = dew point temperature

Density of new snow

 $\overline{\text{RDNSN}} = \overline{\text{RDCSN}} + (\overline{\text{AIRTMP}} / 100.0)^2$

RDCSN = input parameter (density at zero degrees F and lower) AIRTMP = air temperature

SNOWPACK HEAT GAIN AND LOSS - RAIN HEAT, CONDENSATION, CONVECTION, RADIATION, AND GROUND HEAT

from rain

RNSHT = (AIRTMP - 32.0) * RAINF/144.0AIRTMP = air temperature RAINF = rain in inches from condensation (Energy Balance Only) CONDHT = 8.59 * (VAP - 6.108) * CCFACT * 0.00026 * WINMOV VAP = vapor pressure at current air temperature **CCFACT** = input parameter to adjust to local conditions WINMOV = wind movement in miles/interval from convection (Energy Balance Only) CONVHT=(AIRTMP-32)*(1-0.3*MELEV/10000)*CCFACT*0.00026 * WINMOV AIRTMP = air temperature **MELEV** = mean elevation above sea level in feet **CCFACT** = input parameter to adjust to local conditions WINMOV = wind movement in miles/interval from radiation (Energy Balance Only) RADHT = (SHORT - LONG)/203.2SHORT = net solar radiation in langleys/interval LONG = net longwave radiation in langleys/interval from ground function of maximum rate (MGMELT) when snow pack

QUA TERRA CONSULTANTS function of maximum rate (MGMELT) when snow pa is 32 degrees F, but reduced for colder snow packs 9 of 18

SHORT AND LONG WAVE RADIATION-CALCULATIONS

SHORT WAVE SHORT = SOLRAD * (1.0 - ALBEDO) * (1.0 - SHADE)SOLRAD = solar radiation in langleys/interval ALBEDO = albedo (reflectivity of snow pack) = $0.85 - 0.007 * (DULL/24)^{0.5}$ DULL = index which is increased with age of snowpack and decreased with new snowfall SHADE = input parameter for effect of shading by vegetation

LONG WAVE

air temperature above freezing LONG = SHADE * 0.26 * RELTMP + (1 - SHADE) * (0.2 * RELTMP - 6.6)

air temperature below freezing LONG = **SHADE** * 0.20 * RELTMP + (1 - **SHADE**) * (0.17 * RELTMP - 6.6)

 $\frac{\text{SHADE} = \text{same as above}}{\text{RELTMP} = \text{air temperature} - 32.0 \text{ degrees F}}$

HSPF Algorithm

Standard Equation

Q= Kmelt * (Tair – Tbase)

where: Q= runoff (in)

Kmelt= degree-day factor (in/day F)

Tair= daily mean temperature (F)

Tbase= reference temperature, often taken to be 32 F

MOSTHT= KMELT*(AIRTEMP-TBASE)*SNOCOV

where:

MOSTHT=net heat exchange (equivalent melt), exclusive of rain sensible heat and ground melt (in)

KMELT= degree-day factor, possibly interpolated from monthly values (in/day/F), PARAMETER

AIRTMP= current air temperature (F)

TBASE= reference temperature for snowmelt (F), PARAMETER

SNOCOV= fraction of land segment covered by snow 11 of 18

WATER LOSSES FROM SNOWPACK

Evaporation

SNOWEP = **SNOEVP** * 0.0002 * WINMOV * (SATVAP - VAP) *SNOCOV

SNOEVP = input parameter WINMOV = wind movement in miles/interval SATVAP = saturated vapor pressure at current air temperature VAP = vapor pressure at current air temperature SNOCOV = fraction of land segment covered by snowpack

Snow cover

100% until frozen content (snow and ice) of snowpack less than input parameter **COVIND**.

Snowmelt losses to land surface

When liquid water in snowpack exceed capacity

if snow density > 0.91PACKWC = 0.0

if 0.6 < snow density < 0.91 PACKWC = MWATER * (3.0 - 3.33 * snow density)

if snow density < 0.6 PACKWC = MWATER

> **MWATER** = input parameter for maximum liquid water content of snowpack (in/in)

FROZEN GROUND, INFILTRATION REDUCTION

Conditions: SNOW is simulated, CSNOFG=1 Icing is simulated, ICEFG=1

TWO OPTIONS (PWAT-PARM1) -

IFFCFG=1:

INFFAC = max (1.0 - FZG*PACKI, FZGL)
INFFAC = Fraction reduction in Infiltration/Percolation
FZG = Impact of icing on infilt/percolation, 1/in (WE)
PACKI = Ice in snowpack, in (WE)
FZGL = Minimum value of INFFAC

(WE = Water Equivalent)

IFFCFG= 2: INFFAC =

INFFAC = $\begin{cases} 1.0, \text{ when LZ soil temp} \geq \text{freezing} \\ \textbf{FZGL}, \text{ when LZ soil temp} < \text{freezing} \\ (\text{Section PSTEMP must be active}) \\ 13 \text{ of } 18 \end{cases}$

SNOW PARAMETERS - SNOW-PARM1

- Latitude of the PLS, positive for the northern hemisphere, negative for the southern hemisphere (used when SNOPFG = 0)
- Mean elevation of the PLS (used when SNOPFG = 0)
- Fraction of the PLS shaded from solar radiation (used when
- **SNOWCF** Correction factor to account for poor catch efficiency of the gage
- Maximum pack (water equivalent) at which the entire PLS will be
 - Degree-day factor (used when SNOPFG = 1); need table (Mon-Melt- Fac) of monthly values if VKMFG = 1
 - Reference temperatures for snowmelt (used when SNOPFG = 1)

RDSCN - Density of cold, new snow relative to water

TSNOW - Air temperature below which precipitation will be snow

SNOEVP - Parameter which adapts the snow evaporation (sublimation) equation to field conditions (used when SNOPFG = 0)

CCFACT - Parameter which adapts the snow condensation/convection melt equation to field conditions (used when SNOPFG = 0)

MWATER - Max water content of the snow pack, in depth water per depth water equivalent

MGMELT - Max rate of snowmelt by ground heat, in depth of water equivalent per day

HSPF SNOW PARAMETERS AND TYPICAL/POSSIBLE VALUE RANGES

		RANGE OF VALUES						
NAME	DEFINITION	UNITS	TYF	PICAL	POSS	SIBLE	FUNCTION OF	COMMENT
			MIN	MAX	MIN	MAX		
SNOW - PARM1								
LAT	Latitude of watershed segment	degrees	30.0	50.0	-90.0	90.0	Location	Positive for northern hemisphere
MELEV	Mean elevation of watershed segment	feet	50.0	3000	0.0	7000	Topography	Used in convective heat flux equation
SHADE	Fraction shaded from solar radiation	none	0.1	0.5	0.0	0.8	Forest cover, topography	Controls radiation to and from the snowpack
SNOWCF	Snow gage catch correction factor	none	1.1	1.5	1.0	2.0	Gage type, characteristics, location	Calibrate to snow depth observations
COVIND	Snowfall required to fully cover surface	inches	1.0	3.0	0.1	10.0	Topography, climate	Higher for mountainous watersheds
SNOW - PARM2								
RDCSN	Density of new snow	none	0.10	0.20	0.05	0.30	Climate, air temperature	Adjust with field snow density data, if available
TSNOW	Temperature at which precip becomes snow	deg. F	31.0	33.0	30.0	40.0	Climate, topography	Precip. is snow when temperature below TSNOW
SNOEVP	Snow evaporation factor	none	0.10	0.15	0.0	0.5	Climate, topography	Only important in windy, low humidity conditions
CCFACT	Condensation/convection melt factor	none	1.0	2.0	0.5	8.0	Climate	Calibrate to change rate/timing of snowmelt
MWATER	Liquid water storage capacity in snowpack	in/in	0.01	0.05	0.005	0.2	Climate	Adjust to change timing of snowmelt
MGMELT	Ground heat daily melt rate	in/day	0.01	0.03	0.0	0.1	Climate, geology	Usually small under frozen ground conditions

SNOW CALIBRATION

- Estimate initial parameters from watershed characteristics, previous applications, and past experiences
- Evaluate transference of meteorological data from observation sites to the model segment:
 - * Precipitation and evaporation
 - * Air temperature
 - * Wind movement
 - * Solar radiation
 - * Dewpoint temperature
- Adjust TSNOW and/or air temperatures to mimic observed rain and/or snow events
- ♦ Adjust **SNOWCF** to calibrate snow depths and melt volumes
- ♦ Adjust **CCFACT/KMELT** to improve timing of snow melt events
- MGMELT can be adjusted if there is evidence of a constant melt component
- MWATER can be adjusted if melt water is being retained in the snow pack until major spring melt events

LITERATURE RANGES FOR DEGREE-DAY FACTOR

Reference

Degree-day Factor (in/day•F)

Notes

Single constant values Zingg (1951) .10 McCallister & .06 Johnson (1962) Pyskylwec (1968) .040 Ouick & .066 Pipes (1975)

Ranges for	<u>constant values</u>	
Horton (1945)	.06	.09
USACE (1956)	.020	.03
Linsley (1958)	.06	.15
Martinec (1960)	.077	.13
Granger & Male (1978)	.033	.15
Kuusisto (1978)	.055	.07

Ranges for seasonal values				
Linsley (1943)	.022 (Mar)			
Clark (1955)	.020 (early)			
USACE (1956)	.089 (Apr)			
	.037 (Apr)			
	.039 (Apr)			
Weiss &	.040 (Apr)			
Wilson (1958)	.081 (Apr)			
WMO (1964)	044 (Apr)			
	.066 (Apr)			
	.087 (Apr)			
Bruce &	.080 (early)			
Clark (1966)				
Bengsston (1980)	.066 (Mar)			
Gray &	.013 (mid)			
Prowse (1993)	.020 (mid)			

OUA TERRA

CONSULTANTS

Lysimeter test at Weissfluhjoch Plains *

Eastern Canada, forested Western Canada mountains

Typical range Forested Typical range * 1.1 * relative snow density (usually .30 - .55) 6-hourly values for prairie

Depending on choices of internal snowpack processes being modeled

San Joaquin River Basin Southern Manitoba - Red River Montana Rockies, partial forest Western Cascades, heavy forest Sierra Nevada, light forest Forested Open *

Moderate forest Partial forest Open * Southern Ontario

Northern Sweden Boreal forest Taiga *

.153 (Jun)

.059 (late)

.100 (May) .072 (May)

.042 (May) .081 (Jun)

.162 (Jun)

.087 (Jun) .131 (Jun)

.153 (Jun)

.125 (late)

.131 (Jun)

.040 (late) .036 (late)