Soil-Based Onsite Wastewater Treatment and the Challenges of Climate Change

Jose Amador, George Loomis, Jennifer Cooper and David Kalen

Laboratory of Soil Ecology and Microbiology New England Onsite Wastewater Training Center University of Rhode Island Kingston, RI

THE UNIVERSITY OF RHODE ISLAND

United States Department of Agriculture

National Institute of Food and Agriculture

Overview

Climate changePotential effects

What do we do?

Climate Change

Sea level rise? Drier, wetter? Warmer?

Kerry-Abbas Visit Health Care Law Meets Goal of 7 Million Canceled as Mideast Talks Enrollees

Illion Ryan Budget Would Cut Food Stamps and Medicaid Deeply Corporate Lobbyists Assail Tax Overhaul They Once Cheered

The New Hork Times

With Jet Still Missing, Legal Moves for Payouts Start Justice Dept.'s Watchdog on Graft Is Finding Its Teeth Again

515 COMMENTS

Ċ.

caimital -

ASIA PACIFIC

Borrowed Time on Disappearing Land

Facing Rising Seas, Bangladesh Confronts the Consequences of Climate Change

By GARDINER HARRIS MARCH 28, 2014

Bangladesh, with its low elevation and severe tropical storms, is among the countries most vulnerable to the effects of climate change, though it has contributed little to the emissions that are driving it. Kadir van Lohuizen for The New York Times

EMAIL FACEBOOK DAKOPE, Bangladesh — When a powerful storm destroyed her riverside home in 2009, Jahanara Khatun lost more than the modest roof over her head. In the aftermath, her husband died and she became so destitute that 2

Sea Level Rise

IPCC (2013)

Sea level is rising

Sea Level Rise

Temperature is going up

IPCC (2013)

Temperature changes

Precipitation changes

IPCC (2013)

Precipitation will change

A Storm Still Felt

A November 2012 photograph shows the block where Aidan White, story below, and his family lived. Kirsten Luce for The New York Times

Extreme Events

Phenomenon & direction of trend	Early 21 st century	Late 21 st century
Warmer and/or fewer cold days and nights over most land areas	Likely (66 - 100%)	Virtually certain (99 - 100%)
Warmer and/or more frequent hot days and nights over most land areas	Likely (66 - 100%)	Virtually certain (99 - 100%)
Warm spells/heat waves. Frequency and/or duration increases over most land areas	Not assessed	Very likely (90 - 100%)
Heavy precipitation events. Increase in the frequency, intensity, and/or amount of heavy precipitation	Likely (66 - 100%) over many land areas	Very likely (90 - 100%) over most of the mid-latitude land masses and over wet tropical regions
Increases in intensity and/or duration of drought	Low confidence	Likely (66-100%) on regional to global scale
Increased incidence and/or magnitude of extreme high sea level	Likely (66 -100%)	Very likely (90 - 100%)

Adapted from IPCC (2013)

Potential Effects

Soil ecosystem services (values and functions) -

- Wastewater dispersal
- Infiltration and deep percolation
- Renovation / treatment

Sea Level Rise

Chronic effects: Long-term sea level rise raises water table

Reduced OWTS function under elevated sea level / groundwater conditions

Acute effects

Storm Surge and High Tides Magnify the Risks of Local Sea Level Rise

© Union of Concerned Scientists 2013; www.ucsusa.org/sealevelrisescience

Acute effects

Whole system losses

Physical effects of rising temperature

Biological effects of rising temperature

Fig. 4 Seasonal temperature dependence of soil respiration. Each square is a mean of six flux and temperature measurements made at one of the study areas at one date. The fitted function is:. Flux = $21.13 \times e^{(0.1371 \times \text{temp})}$. $R^2 = 0.80$, which is significant at $\alpha = 0.01$ (d.f. = 154).

Davidson et al. (1998)

Biological effects of moisture changes

Fig. 7 Correlations of volumetric water content and soil respiration. The plotting symbol represents the month of the year that the measurements were made. Each datum is a mean of 3 or 4 TDR water content measurements and 6 flux measurements for a study area on a given date. The August (8) and September (9) data where water content was < 0.12 cm³ cm⁻³ were fitted to the linear regression: flux $\alpha = -128 + (2852 \times \text{water content}); R^2 = 0.48$, which is significant at $\alpha = 0.05$ (d.f. = 21). The data from the rest of the year where water content was > 0.12 cm³ cm⁻³ were fitted to the linear regression: flux = 201 - (198 × water content); R² = 0.22, which is significant at $\alpha = 0.01$ (d.f. = 131).

Davidson et al. (1998)

Biological effects of moisture changes

Linn and Doran (1984)

Hypothesized Effects of Climate Change

Property/Process		
Volume	^	↓
Strength	¥	^
Oxygen	↓	↓
Respiration	^	^
Nitrification	↓ (ṡ)	↑ (ṡ)
Denitrification	↓ (ṡ)	↓ (ṡ)
Xenobiotic degradation	¥	•
S oxidation	↓	↓
P retention	¥	↓
Pathogen removal	↓	^

Testing the Hypothesized Effects of Climate Change

Research components

- Differences among conventional and advanced technologies
- Mechanisms of N removal
- Removal of estrogenic PPCPs
- Tested under current conditions and a climate change scenario

Testing the Hypotheses: Intact Soil Mesocosms

Testing the Hypotheses: Climate Change

Testing the Hypotheses: Differences Among Technologies

6	
-	Contaminants of concern
	 BOD
	 Fecal coliform bacteria
	 MS2 bacteriophage
	 Total nitrogen
	 Total phosphorus
•	Supporting analytes
	 Mechanistic
	determinations
•	Climate change?
	 Advanced
	technologies more
	resilient
	 Conventional system
	release fecal coliform

and P

Testing the Hypotheses: Mechanisms of N Removal

- Eutrophication from N release
- N loss as N₂O and N₂
- Measure dissolved and gaseous N constituents
- Use ¹⁵N tracer to elucidate mechanisms
- Climate change?
 - Enhance denitrification and loss as N₂.

Testing the Hypotheses: Removal of Estrogenic PPCPs

- Limited studies of OWTS PPCP removal
- Potent at low concentrations
- Climate change?
 - Less available O₂
 - Release of estrogenic PPCPs

Compound	Use	Conc.	Structure
Tris-(2-chloroethyl) phosphate (TCEP)	Fire Retardant	ng- µg/L	
Nonylphenol	Manufacturing additive	ng/L	C ₉ H ₁₉ OH
17α-ethynylestradiol (estrone & estradiol)	Synthetic estrogen and deg. prods.	ng/L	

ABQ365 EVENTS

POWERED BY ALBUQUE ROUE CONVENTION & VISITORS BUREAU

Featured Events Spotlight

Gathering of Nations Pow Wow April 24-26, 2014

-0

16th Annual Santeros ...

Event Details

Through December 31, 2014 Time: 9:00 AM to 5:00 PM Recurrence: Every Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday Admission: \$7 adults, \$6 seniors, \$4 kids, under 3 free

Location: New Mexico Museum of Natural History & Science

1801 Mountain Rd. N.W., Albuquerque, NM 87104 Phone: 505-841-2800

http://www.nmnaturalhistory.org

Exhibition: Degrees of Change-New Mexico's Climate Forecast

+ Trip Planner

🖶 🖂 🗗

With a focus on New Mexico and the Southwest, this exhibit will reveal current and predicted impacts of climate change on humans, landscapes, and ecosystems, as well as take you back in time to discover the past climates of New Mexico and around the world.

Map View What's Nearby

What do we do?

Inactive, reactive and proactive measures

Climate variability and change \rightarrow new set of challenges and opportunities

First mentioned at NOWRA conference, April 2012

Embrace:

- Will position our industry to compete and pace well with other entities and disciplines.
- Many others already have climate change planning and management in their future endeavors.

Climate variability and change \rightarrow new set of challenges and opportunities

Ignore/Deny: Lose hard-earned ground and credibility as an industry.

We miss a significant opportunity -Stressors to effective soil-based wastewater treatment are likely to multiply –

- More importance placed on advance wastewater treatment prior to dispersal
- Affect larger land areas
- If we have answers, we're part of the solution

Decentralized wastewater industry –

- Read the science
- Educate yourself, company, agency, and clientele
- Climate change is real, and here to stay
- Proactively address issue(s)
- Stay ahead or loose ground

WORKING GROUP I CONTRIBUTION TO THE FIFTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Think integrated water management:

- Manage both stormwater and wastewater
- Use low impact development (LID) measures
- Use green vs gray infrastructure practices
- Increase wetland setbacks and buffers

Engineered swales, bioretention basins and porous pavers

Integrated water management:

- Protect areas that collect and infiltrate stormwater
- Minimize limits of disturbance (maintain natural hydrology)
- Decompact soil restore to original soil hydrologic group

Engineering aspects –

- Increase horizontal setbacks:
 ✓ Units w/small footprint
 ✓ Indoor treatment units
 ✓ Waterproof units
- Increase vertical separation and pathogen reduction:
 - ✓ Shallow soil placement
 - ✓ Silver nanoparticles

Engineering aspects –

- Nutrient reduction (P, N):
 - ✓ Shallow soil treatment (P)
 - Improved nutrient reduction systems (>50%)
 - ✓ Urine diversion toilets (source of new industry)

Engineering/regulatory aspects –

- Improved siting criteria:
 - Increase buffer and setbacks from coastal features

Manufacturers -

- Adapt existing technologies
- Improve component-based
 treatment efficiency
- Develop new technologies
- Incorporate moisture management into treatment trains (i.e. flow equalization, timed-dosing)

Regulators –

- Map at-risk areas set priorities
- Develop risk-based policy and regs
- Require accountability for treatment and O&M performance

Facilities and Infrastructure Sea Level Rise Vulnerability Analysis North Kingstown, RI

For areas projected to be wetter –

Manage soil moisture

Promote timed-dosing and flow equalization

Promote shallow wastewater dispersal

- More biochemically reactive soil
- Maximize vertical separation distance
- Maximize retention times

For projected dryer areas -

- Soil treatment area dispersal?
- Landscape irrigation
- Wastewater recycling and reuse

Component-based wastewater treatment will become even more important

E.g. - Mitigating in humid east coast acute storm impact zones

Rhode Island high risk flood and erosion areas

Repair OWT systems - holding tanks, if 50 ft. to eroded feature; denitrification technologies

Greenhill, RI (post Hur. Sandy Oct. 2012) Matunuck, RI

Use risk-based BMPs in designs -

Stone BSF enclosures

Hurricane Sandy Damage - Atlantic Ave. Misquamicut, RI

Anti-floatation and strapping on tanks and components

Photo: Brian Moore, RIDEM

Watertight lids

Elevated control panel boxes

Educators

USDA – NIFA NE-1045 Hatch Multi-state Project

NE1045: Design, Assessment, and Management of Onsite Wastewater Treatment Systems: Addressing the Challenges of Climate Change

- Opportunity for scientists to address unknowns about OWTS function relative to changing climate.
- 16 scientists from 13 institutions currently engaged
- Cornell, Michigan State, North Carolina State, Oklahoma State, Rutgers, U. Arizona, U. Georgia, U. Kentucky, U. Minnesota, U. Missouri, U. Rhode Island, U. Tennessee.
- Enabled the start of several important research efforts
- Begun the task of informing the industry and practitioners of this important issue.
- New educational institution members are welcome!

NE 1045 Objectives summary:

- 1. OWTS and soil hydraulic transport parameters.
- 2. New OWTS design criteria and climate change adaptation and mitigation.
- 3. Soils, geomorphology, topography, and climate conditions.
- 4. Outreach education on OWTS and climate change.

NE 1045 Objectives summary:

- 1. Group meets for 1-day annual meeting.
- 2. Meeting coordinated with SSSA annual meeting.
- 3. Next meeting is on November 2, 2014 in Long Beach, CA.
- 4. SSSA Onsite Wastewater Conference on April 7-8, 2014 a direct product of NE1045.

Acknowledgements:

- USDA NIFA NE-1045 Multi-state Hatch Project
- Rhode Island Agricultural Experiment Station
- Rhode Island Cooperative Extension
- State of Rhode Island and Providence Plantations
- Rhode Island Sea Grant Program