# Experimental Interventions to Facilitate Clean Cookstove Adoption, Promote Clean Indoor Air, and Mitigate Climate Change

USEPA Cookstove Research
Meeting

Research Triangle Park, NC

Building C, Classroom C111

Feb 25-26, 2015

Robert Bailis Lead-PI, robert.bailis@yale.edu
Nadine Unger co-PI, nadine.unger@yale.edu
Puneet Dwivedi co-PI, puneetd@uga.edu
Julian Marshall co-PI; julian@umn.edu

Andrew Grieshop co-PI, agrieshop@ncsu.edu

Hisham Zerriffi co-PI, hisham.zerriffi@ubc.ca

Mamta Chandar co-PI, mamta@jagritikullu.org

Pradeep Talashery co-PI, pradeep@samuha.org

### From the RFP...

- How would a feasible set of interventions
  for residential cooking, heating, or lighting in a
  developing part of the world impact air quality and
  climate?
- What is the realistic range and timeframe
   of foreseeable benefits to air quality and climate of
   various interventions in cooking, heating, or lighting
   practices in a developing part of the world...

From: http://www.epa.gov/ncer/rfa/2012/2012\_star\_cook\_heat\_light.html

### Past/current interventions...

Low adoption rates

Lower than expected benefits





# Why?

- Misperception of health risk?
- Low "willingness to pay" (WTP)?
- Risk aversion?
- Inappropriate/poorly designed stoves?
- Norms and preferences?

# Study design

Risk perception

Included in survey instruments Potential independent variables Ethnographic work

Norms

Inappropriate technology

Low WTP

Risk aversion

Participants choose from among a wide range of stove types (including aspirational technologies) Long-term monitoring (sub-sample)

### Liquidity constraints

½ free stoves

½ pay (subsidized)

#### Adoption risk

½ quarterly switch-outs\* ½ single choice

\* Switch-outs occur at stove "bazaars" where participants can share experience and discuss pros and cons of each model

Feb 25-26,2015

Experimental Interventions

# Study design

- RCT in 2 Indian States
  - with local NGO co-Pis
- 4 villages each
- 480 HHs total
  - Factorial design



# Study design

(replicated in two states)



### Data collection



Socioeconomics & social networks (full sample)



KPTs (20% sub-sample)



Emissions/SUMS (10% sub-sample)



Exposures (full sample)

Pre-treatment, after each bazaar, and post-treatment

### **Stoves**

- 1-pot, no chimney (Envirofit, Chulika, Greenway, Samuchit)
- 2-pot, chimney (Prakti, TIDE, Envirofit)
- Forced draft: TERI, Eco-chulha

- TLUD (Serval)
- Improved tandoor (HP only)
- Induction
- LPG



# Preliminary activities



- CCTs and trial sales events
  - 3 villages in HP (84 HHs)
  - Gauge response to unfamiliar stoves
  - Measure WTP





# Tangent: LPG in India

- National subsidy scheme
  - HHs get up to nine 14.2 kg cylinders/yr
- Phasing in Aadhaar-based system linked to bank accounts

"world's largest direct benefit transfer scheme"





(full sample)

social

networks

### Co-led by Bailis, Zerreffi, and Dwivedi

- Demographics
- Wealth
- Gender
- Energy use
- Soc. networks
  - Information sharing between HHs
  - Role in adoption/rejection



### **KPTs**

(~20% sub-sample)

- Fuel consumption
- Species preference
- Extraction patterns





### Emissions/ **SUMS**

(10% sub-sample)

### Led by Grieshop

- STEMS
  - Real time CO<sub>2</sub>, CO, PM and BC
  - Gravimetric PM<sub>2.5</sub>
- SUMS



rimental Interventions to Facilitate Clean Cookstove Adoption



# Emissions/ SUMS

(10% sub-sample)





# Exposures (full sample)

### Led by Julian Marshall

- 24-hour HAP concentrations
- Using μPEM
- Real-time & gravimetric PM<sub>2.5</sub>





# Progress to date

### Summer-Fall 2014

- Community selections
- Equipment trials
- Pilot surveys/sales events

### Winter 2014/15 - HP

- Baseline surveys HAP and emissions
- Bazaars
- Stoves given to HHs

### Spring 2015 - shift to Karnataka



# Insights from equipment trials

- "Improved" stoves not suitable for staple dishes
- In HP, a tandoor is essential
  - 1-pot "rocket" not popular
- In KA, 1-pot models were popular
- Forced-draft stoves got mixed reviews



# Insights from baseline surveys

- 60% of HHs already have LPG
- 23% have an induction stove



# Insights from baseline surveys

### A lot of stacking



# Insights from stove bazaars

- Participants understood:
  - Randomization
  - Treatment vs. control
  - Switch-out vs. 1-time selection





- Few had trouble paying
- "Aspirational" stoves were most popular

### HH choices at initial stove bazaars



### Next steps

### Wrap up phase-1 in HP:

- Baseline emissions and exposure measurements
- SUMS and KPTs
- Stove handouts

Shift to Karnataka and repeat...

Start climate modeling (Unger)



# Acknowledgements

- USEPA grant no. 83542101
- GACC grant supporting stove dissemination
- NGO coPIs: Samuha and Jagriti
- Field managers: Grishma Jain and Karthik S
- PhD Students: Deepti Chatti (Yale); Devyani Singh (UBC), Arundhati Jagadish (UGA); Roshan Wathore (NCSU)
- RAs: Adam Walters and Ryan Repoff (NCSU); Carlos Gould (Yale)



# Insights from equipment trials







This was not posed!! I'm fixing TERI's forced-draft stove. At \$80, the stove is the most expensive model in our trial. It arrived at our test center with no fuse and 3 separate wiring faults.