Improving air quality, health and the environment through household energy interventions in the Tibetan Plateau

Jill Baumgartner
U.S. Environmental Protection Agency
Cookstove Research Meeting

Study investigators and institutions

University of Minnesota

Jill Baumgartner (PI)

Ellison Carter (Postdoc)

McGill University

Matthew Secrest (student)

Rosalinda Chen (student)

NCAR

Christine Wiedinmyer (Co-PI)

Scott Archer-Nicholls (Postdoc)

University of Wisconsin - Madison

James J. Schauer (Co-PI)

Alex Lai (student)

Imperial College London

Majid Ezzati (Co-I)

Tsinghua University

Xudong Yang (Co-PI)

Kun Ni and Ming Shan (Postdocs)

Project manager + 5 local field staff

University of the Chinese Academy of Sciences

YuanXun Zhang (Co-I)

Yuqin Wang (student)

U.S. EPA

Kathie Dionisio

Jim Jetter

Population cooking with solid fuels (%), 2010

Climate effects of black carbon from solid fuel stoves in the Tibetan Plateau

Household air pollution and blood pressure, China (n=280 women)

China's health transition: leading causes of death

	1990	_		2010	
Mean rank (95% UI)	Disorder		Disorder	Mean rank (95% UI)	% change (95% UI)
1·6 (1 to 3)	1 Lower respiratory infections		1 Stroke	1·0 (1 to 1)	21 (-13 to 37)
2·2 (1 to 3)	2 Stroke	-	2 Ischaemic heart disease	2·1 (2 to 3)	81 (23 to 103)
2·2 (1 to 3)	3 COPD	 	3 COPD	33 (3 to 5)	-45 (-51 to -40)
5·2 (4 to 8)	4 Congenital anomalies		4 Road injury	4·1 (2 to 6)	64 (-9 to 188)
5·7 (4 to 10)	5 Drowning	$\mathbb{N} \wedge \mathbb{N}$	5 Lung cancer	4·9 (3 to 7)	81 (27 to 112)
7·1 (4 to 12)	6 Neonatal encephalopathy	\times \times //	6 Liver cancer	5·7 (3 to 6)	37 (17 to 76)
7·6 (4 to 10)	7 Ischaemic heart disease	Y // ///	7 Stomach cancer	7·3 (7 to 9)	-11 (-24 to 5)

Mean (SD) PM_{2.5} and CO emissions per MJ of useful energy for different cookstoves

Stove modification, testing, and adaptation to household set up

Testing in the rural energy lab

Village pilots & demonstration sites

testing

Laboratory emissions

Small scale manufacturing of stoves in China

Can high efficiency, low polluting stoves improve climate and health?

Traditional stoves

Processed biomass + semi-gasifier stove for cooking & heating

Stand-

Pilot of village-level production of processed biomass fuel

Biomass pellet factory (completed 2012) and pellet machine

Stove pilot testing in villages

Pilot stove testing: Villagers cooked with stove prototypes for 3 months to assess stove appropriateness for different cooking tasks

Goal: Final stove design is responsive to regional preferences

Study concept

Design, development, and testing of improved energy packages

Baseline / post-stove measurements of air pollution and health indicators

Laboratory analysis of air pollution & biomarker samples

Air pollution emissions and exposures

Climate forcing

Cardiovascular impacts

Aim 1 Aim 2 Aim 3

Study design and intervention timeline

- Multi-year evaluation of an energy intervention
- Enrolled 202 homes in 4 administrative villages using biomass fuels and with an eligible participant for the health study
- ~120 intervention / 80 controls
- Air pollution and health measurements for 2-6 days every 6 months to capture seasonal and day-to-day variability

Study participants

- Enrolment: 202 women in summer 2014 (73% participation rate)
- Inclusion criteria: Female; >25 years old; cook with biomass, live in the study villages
- Exclusion criteria: Pregnant at enrollment; current/previous smoker

	Mean (Std Dev) or %	Range
Age [years]	52.2 ± 11.9	28 – 86
Household size [# occupants]	2.8 (1.1)	1 – 6
Socioeconomic status [land owned: mu]	20.6 ± 27.9	0 – 150
Socioeconomic status [assets] Motorcycle Car Computer	56% 21% 22%	
Secondhand smoking	60% live with ≥ 1 smoker	

Aim 1: Measure reductions in pollution emissions and exposure with an improved energy package

- 48-hr kitchen monitoring: real time and integrated PM mass, EC/OC, gases (CO, CO2, NOx)
- 48-hr personal exposure: PM mass, black carbon, organic components
- Emissions measurements during cooking events
- Outdoor real time and integrated PM mass (~1 month per season)

Typical kitchen & traditional wood-burning cookstoves

Kitchen average 48-hr PM_{2.5} concentration (summer; n=187):

- GM (95% CI): 111 μg/m³ (100, 123)

- Range: $35 - 1250 \,\mu g/m^3$

Women's average 48-hr PM_{2.5} exposure (summer; n=192):

- GM (95% CI): 90 μg/m³ (81, 99)

- Range: $27 - 1129 \,\mu g/m^3$

Personal exposure and kitchen PM_{2.5} concentrations, summer

N		Geometric Mean (μg/m³), 95% CI	Range
Personal PM _{2.5}	190	91 (83,99)	28-1129
Kitchen PM _{2.5}	187	111 (100,123)	14-1249

PM chemical analysis & source apportionment in women cooking with biomass, Yunnan

Chemical Analysis

Nominally 100 Samples analyzed for WSOC, BC, and Molecular Markers by GCMS

Data Analysis

Positive Matrix Factorization (PMF) – US EPA Source Apportionment Model

Aim 2: Model regional emissions, air quality, and climate under baseline & intervention scenarios

- Apply baseline and seasonal / intervention changes in chemicalspecific emissions, fuel use, and cooking frequency to regional emission estimates
- Develop regional chemistry-climate models for emissions scenarios

Exploratory analysis for real-time 48-hr kitchen PM concentrations

	Study home #65		Study home #83	
	Summer	Winter	Summer	Winter
Number of Peaks	49	67	18	18
Hours of combustion	16.7	25	10	17.7

Estimating cooking activity

<u>Preliminary</u> Results from real-time PM (DustTrak) measurements in kitchens

Cooking Activity per day:

	SUMMER	WINTER
# Events	7	15
Stove usage time (hours)	4.2	7.5

Streets et al. (2003) provides recommended hourly cookstove usage for the emissions inventory. For our study region:

- 3 hours per day (summer)
- 6 hours per day (winter)

Initial results suggest that models currently underestimate daily cookstove emissions in this region

Preliminary estimates of **domestic biofuel use emissions** in Sichuan Province

Using fuel loadings collected in Sichuan (summer, 2014), published emission factors, ESA Urban Extent, 2013 Landscan population

350 Gg

Example:

- Modeling
- Observations

SCIIAMACHY Satellite NO₂ column (2008)

Model simulated NO₂ column (2008)

Jiang et al.

All simulations are performed using WRF-Chem at 42kmx42km spatial resolution and are integrated for 6 months.

Aim 3: Measure the impact of an energy package on cardiovascular disease risk

- Central and brachial blood pressure
- Arterial stiffness (pulse wave velocity & augmentation index)
- Collection of biological markers: urine, buccal cells, blood spots
- Measure nutritional, behavioral, and physiological covariates
- Self-reported health, co-morbidities, medication use

Baseline (summer) health characteristics of the study population

	N	Mean (Std Dev);	Range
Age [years]	201	52.2 ± 11.9	28 – 86
BMI [kg/m ²]	201	25.4 ± 3.3	19 – 37
Brachial SBP [mmHg]	162	116.9 (18.9)	93 – 181.3
Central (aortic) SBP [mmHg]	162	111.7 ± 17.9	86.1 – 174.4
Brachial DBP [mmHg]	162	71.4 (9.3)	52.6 - 107
Central (aortic) DBP [mmHg]	162	73.4 ± 9.6	54.6 – 111.2
% Hypertensive % Treated for hypertension	200	20% physician diagnosed; 26% of whom treat	

Preliminary associations between PM_{2.5} exposure & brachial / central blood pressure (n=135)

 Difference in blood pressure associated with 1log(μg/m³) higher 48-hr PM_{2.5} exposure, adjusted for age, body mass index, socioeconomic status, and sodium intake:

- Brachial SBP: 0.6 mmHg (-0.4, 1.6); p=0.18
- Central SBP: 3.1 mmHg (1.2, 5.0); p=0.008
- Brachial DBP: 0.6 mmHg (-0.1, 1.2); p= 0.08
- Central DBP: 1.9 mmHg (1.6, 2.1); p<0.001

Leveraging of the EPA-STAR project

- Feasibility studies of biomarker collection and analysis (CIHR)
- Biomarker discovery for biomass/coal smoke exposure and health (Wellcome Trust)
- Stove acceptability & usage patterns (MITACS, McGill Global Health)
- Collaborations with other STAR projects
- Several proposals under review

Study concept

Design, development, and testing of improved energy packages

seline / post-stove me

Baseline / post-stove measurements of air pollution and health indicators

Laboratory analysis of air pollution & biomarker samples

Climate forcing

Cardiovascular impacts

Aim 1

Air pollution emissions and

exposures

Aim 2

Aim 3

Improving air quality, health and the environment through household energy interventions in the Tibetan Plateau

Jill Baumgartner
U.S. Environmental Protection Agency
Cookstove Research Meeting

Extra slides

Design and development of a high-efficiency semigasifier cookstove for Chinese homes

