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1. Executive Summary 
 
In order to characterize potential adverse effects of chemicals in the aquatic environment, the 
United States Environmental Protection Agency (USEPA) uses available toxicity data from 
studies involving individual test species, which serve as surrogates for untested species.  These 
data are collected for individual organisms exposed to chemicals (e.g., pesticides) and are then 
frequently extended to represent effects to populations of the same species, populations of 
similar genera/taxa, or to aquatic ecosystems. The goal of this work is to examine how limited 
test results can best be used to characterize adverse effects on aquatic animals.  To that end, this 
paper explores two general types of methods that may be used to extrapolate from toxicity test 
results to taxa-specific and community-based measures of effect relevant to the Office of 
Pesticide Programs (OPP) and to the Office of Water (OW). These methods include sensitivity 
distributions and extrapolation factors (EFs) both of which may be used to account for 
uncertainty, particularly in situations where toxicity data are limited.  A portion of this work will 
address the derivation of an “Aquatic Life Screening Value” that is related to the fifth percentile 
in a Sensitivity Distribution. ALSVs may be used to screen concentrations of pesticides and 
effluents in ambient waters and may be used by States and Tribes in the development of water 
quality standards.  Other portions of this work will address other percentiles in sensitivity 
distributions that can be used to evaluate concentrations of pesticides in ambient water in other 
ways. This paper describes proposed analyses that will be conducted by USEPA in order to 
determine the utility of specific methods for development of a common effects characterization 
methodology for use in ecological assessments of chemicals by USEPA to meet the mandates of 
the Clean Water Act (CWA) and the Federal Insecticide, Fungicide, and Rodenticide Act 
(FIFRA).  
 
 
2. Introduction 

 
The mission of the USEPA is to protect human health and to safeguard the natural environment 
upon which life depends.  Consistent with the USEPA’s mission, OPP and OW are both 
responsible for evaluating the potential effects of chemicals on aquatic life.  The process for 
accomplishing this mission involves three general steps. The first is compiling available toxicity 
data. Currently, both OPP and OW rely on the same aquatic toxicity test results (e.g., scientific 
literature, registrant-submitted studies) to characterize the sensitivity of species in the aquatic 
environment to chemical stressors such as pesticides. The second step, which is the focus of this 
paper, involves characterization of potential effects of a chemical on the environment. OPP and 
OW currently use different methods to accomplish this. The third step, which will not be 
discussed in this paper, involves implementing the results of the effects characterization in order 
to safeguard the environment. This is accomplished by OPP through risk assessment and OW 
through criteria development. 
 
In the effects characterizations of OPP and OW, the process used to translate single species 
toxicity test results to taxa-based and community-based (cross-taxa) adverse effect thresholds has 
not been consistent.  In addition, the tools used in these processes have not been consistently 
applied across both offices.  Toward developing a more transparent and consistent process for 
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characterizing chemical effects at various levels of organization, i.e., single species, taxa 
(population) and cross taxa (community), USEPA has conducted six regionally-based public 
meetings and has drafted three white papers.  These papers describe existing approaches and 
potential tools that may be used by OPP and OW to characterize the distribution of sensitivities 
in fish, invertebrates and plants in aquatic communities exposed to chemicals.  
 
This particular white paper describes methods that may be used to characterize effects of 
chemicals on specific taxa (i.e., aquatic vertebrates and invertebrates) and across taxa (i.e., 
aquatic vertebrates and invertebrates combined). These additional methods may be used to 
augment the ability of the USEPA, as well as states, local and tribal water management agencies 
to derive taxa-based and cross-taxa (community-based) toxicity benchmark values for chemicals, 
such as pesticides, for risk assessment, monitoring and diagnostic purposes. This white paper 
explores analytical approaches that rely on empirical toxicity test results, particularly in cases 
where the available data may be limited and there is uncertainty as to the extent that the full 
distribution of species sensitivities (either at the taxa level or across taxa) is adequately 
characterized.  OW has relied on a process defined in the 1985 Guidelines1 to characterize 
community-level effect thresholds (i.e., Aquatic Life Water Quality Criteria) using a defined 
number of taxa.  The available data for chemicals can vary considerably.  Therefore, regulatory 
agencies must have the flexibility to characterize the potential taxa-based and community-based 
effects of chemicals using the available data even if those data are limited in quantity. Although 
many of the methods discussed in this paper are currently used to varying extents in both offices, 
their consistent and integrated use by both offices has yet to be realized. The utility of the 
specific approaches described in this paper will be evaluated by USEPA and will undergo peer 
review and additional development prior to implementation by OPP and OW. 
 
In order to characterize potential adverse effects of chemicals in the aquatic environment, it is 
necessary to use available toxicity test results from individual test species to extrapolate to 
assessment endpoints that are related to aquatic ecosystems. An assessment endpoint is “an 
explicit expression of the environmental value to be protected.”1F

2 Specific assessment endpoints 
relevant to this effort are based on those currently used by OPP and by OW.  For OPP, 
assessment endpoints are taxa specific and include acute mortality and chronic survival, growth 
and reproduction of aquatic vertebrates (i.e., fish and aquatic-phase amphibians) and 
invertebrates. For OW, assessment endpoints also include acute mortality and chronic survival, 
growth and reproduction but these endpoints are expressed in terms of the aquatic animal 
community (i.e., a combination of vertebrates and invertebrates). Although the assessment 
endpoints of OPP and OW differ (i.e., taxa-based vs. community-based, respectively), they both 
rely upon similar aquatic toxicity test results (See USEPA 1985, USEPA 1994, USEPA 2004). 
Therefore, it is possible to arrive at both sets of assessment endpoints using similar a common 
methodology.  
 
Measures of effect, such as acute and chronic toxicity test results, are used to quantitatively 
represent assessment endpoints (USEPA 1998). For OPP, the measures of effect are the lowest 
available EC50 (or LC50) values to represent effects from acute exposures of fish and 

                                                 
1 “Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and 
their Uses” (USEPA 1985). 
2 http://www.epa.gov/OCEPATERMS/ 
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invertebrate species to stressors, as well as the lowest No Observable Effect Concentration 
(NOEC) values to represent effects to growth and reproduction of fish and invertebrate species 
resulting from chronic exposures. For OW, the measure of effect is the HC5, or the 5th percentile 
of a distribution of acute toxicity test results for genera of aquatic animals (i.e., fish, amphibians 
and invertebrates) as well as the HC5 for chronic toxicity test results.  
 
This paper describes two types of methods that may be used to extrapolate from individual 
species toxicity test results to taxa-based and community-based measures of effect relevant to 
OPP and OW. These methods are sensitivity distributions and extrapolation factors. Examples of 
how sensitivity distributions and extrapolation factors are used by regulatory agencies, 
particularly those in the United States, for characterizing effects of chemicals on aquatic animals 
are also discussed. For instance, OPP’s taxa-specific Aquatic Life Benchmarks (USEPA 2010) 
for pesticides and OW’s community-based Aquatic Life Water Quality Criteria currently use a 
combination of these methods in characterizing effects to aquatic organisms. 
 
This paper also describes proposed analyses that will be conducted by USEPA in order to 
determine the utility of specific sensitivity distribution and extrapolation factor approaches for 
characterizing effects of chemicals on aquatic vertebrates, invertebrates and animal communities. 
These analyses will use large data sets for chemicals with various adverse outcome pathways3 
that are representative of pesticides with differing modes of action (e.g., acetylcholinesterase 
inhibition and non-polar narcosis). These data sets will be used to evaluate intra- and inter-
species variability by considering test results available for species exposed to the same chemical. 
The analysis will also consider the uncertainty that results from extrapolating from limited 
toxicity data to other species within aquatic taxa and across taxa (aquatic communities).  
Ultimately, the utility of a specific approach will be defined by its ability to predict a measure of 
effect with a desired level of certainty. 
 
As indicated in the scoping document for this project4, “One goal of a common effects 
characterization methodology is to improve the tools and approaches available to States and 
stakeholders to derive scientifically defensible water quality criteria that can in turn be used to 
set water quality standards in a manner consistent with aquatic effects assessments conducted by 
OPP and OW in compliance with both the CWA and FIFRA.” This could involve use of 
empirical toxicity test results available for chemicals, predicted or estimated toxicity data using 
methods discussed in the tools white paper5 and extrapolation methods described in this paper. 
To that end, this paper provides a general framework that may be used to conceptualize the 
development of community level benchmarks that may be considered by stakeholders to set 
water quality standards. The term “aquatic life screening value” (ALSV) is introduced here to 
represent community level benchmarks.  Since the ALSV may be considered by USEPA, States 
and Tribes to derive scientifically defensible water quality standards, and because water quality 
criteria established using the 1985 Guidelines are set to one half of the fifth percentile of a 

                                                 
3 An adverse outcome pathway describes the linkage between a molecular-level initiating event for the toxicity of a 
chemical of interest to an adverse outcome at a biological level of organization of interest for a risk assessment 
(Ankley et al. 2010).  More information about this term and its advantages relative to the conceptually similar 
“mode-of-action” and “mechanism-of-action” can be found in the tools white paper. 
4 Available online at: http://www.epa.gov/oppefed1/cwa_fifra_effects_methodology/scope.html 
5 Titled: “Predicting the toxicity of chemicals to aquatic animal species.” 
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sensitivity distribution, the measure of effect for the acute ALSV is also set to one half of the 
HC5 of a sensitivity distribution, and the chronic ALSV is set to the HC5 of the distribution of 
chronic toxicity data. It is expected that as USEPA reviews the specific methods described in this 
paper and in the tools paper, the ALSV framework presented in this paper will evolve to 
represent the most useful approaches and the conditions under which they should be used. 
 
Following this introduction, this paper has three primary sections. The next section of this white 
paper (i.e., section 3) serves to characterize available methods for extrapolating from available 
toxicity test results to taxa-specific and community-based measures of effect relevant to OPP for 
use in ecological risk assessments and OW for use in development of water quality criteria. The 
fourth section of this paper describes a proposed analysis that will be conducted by USEPA in 
order to determine the utility of the available methods for OPP’s and OW’s effects 
characterization. And the fifth section of this paper provides a conceptual approach that may be 
used to integrate chemical-specific toxicity test results, tools and methods for deriving 
community level benchmarks (i.e., ALSVs) that, once sufficiently validated and vetted, the 
methods could then be used by state, local and Tribal water management agencies to interpret 
aquatic ecological risks associated with chemical exposure information (e.g., monitoring data). 

 
 
3. Methods for Deriving Measures of Effect from Results of Toxicity Tests 
 
This section provides descriptions of methods that can be used to extrapolate from available 
toxicity test results to measures of effect. These methods include sensitivity distributions and 
extrapolation factors. Also included are examples of how sensitivity distributions and 
extrapolation factors are used by regulatory agencies for characterizing effects of chemicals on 
aquatic animals. 
 

3.1. Sensitivity Distributions 
 
This section describes various distributions used for describing sensitivities of species as well as 
uncertainty in estimating HC5 values and applications of sensitivity distributions in limited data 
situations. This section also includes brief descriptions of regulatory applications of sensitivity 
distributions. 
 

3.1.1. Method Description 
 
“Sensitivity Distribution” is a generic term used to represent a distribution of sensitivities of 
different biological taxa to the same stressor.  Most commonly the taxa are biological species 
(these distributions are termed: “species sensitivity distributions” and abbreviated SSDs); 
however, sensitivity distributions may also be developed for genera (e.g., USEPA 1985).  For 
acute exposures, the toxicity test results of interest are EC50 and LC50 values of set durations of 
exposure (e.g., 48-hr for cladocerans, 96-hr for non-cladoceran invertebrates and fish). Separate 
sensitivity distributions may also be applied to chronic toxicity data by compiling chronic 
toxicity data for similar test results, such as NOECs, or maximum acceptable toxic 
concentrations (MATCs; defined as the geometric mean of the NOEC and the lowest observable 
effect concentration (LOEC)) .  
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Toxicity data are log-transformed and then used to derive a cumulative distribution where 
sensitivities are ranked from most sensitive to least sensitive. The concentration at the lower 5th 
percentile of the sensitivity distribution is most often the concentration of interest for regulatory 
purposes (e.g., USEPA, OECD).  The 5th percentile value is commonly termed the HC5, where 
HC stands for “hazard concentration.” It should be noted that the HC5 is discussed as a measure 
of effect throughout this document; however, other percentiles of sensitivity distributions could 
also be used.  
 
Many different probability distributions exist and are in use for describing the sensitivities of 
aquatic organisms to chemicals. For instance, Figure 1 depicts normal, logistic, triangular and 
Gompertz probability distributions of log-transformed, acute toxicity data for the pesticide 
carbaryl. Carbaryl is a carbamate insecticide and plant growth regulator. For aquatic animals, 
carbaryl’s mode of action is inhibition of acetylcholinesterase (AChE). Toxicity data for carbaryl 
were obtained from the database of empirical acute toxicity EC50 and LC50 values underlying 
Web-ICE6. These data are provided in Appendix A.  These data are used throughout this white 
paper to illustrate the applications of the methods that are described. It should be noted that 
although these data were reviewed to determine suitability for inclusion in Web ICE, these data 
have not been reviewed for inclusion in OPP ecological risk assessments or OW’s aquatic life 
water quality criteria development.  

 
Figure 1. Probability densities of log-normal, log-logistic, log-triangular, and log-gompertz distributions fit to 
49 log10 GMAVs for carbaryl. 

                                                 
6 Model and documentation available online at: http://www.epa.gov/ceampubl/fchain/webice/ 
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Fitted cumulative distribution functions for the carbaryl data from Figure 1 are depicted in 73HFigure 
2. Equations for the probability density function (pdf), cumulative distribution function (cdf), 
quantile function (F-1), mean, and variance of these four distributions are provided in Appendix 
B.  In general, the quantile function provides an estimate of the concentration (in log10 units) 
associated with a given percentile of the distribution [i.e., HC5 = F-1(0.05)].  Thus, if the 
sensitivity data are drawn from a distribution with known parameters (i.e., mean and standard 
deviation), the HC5 can be easily obtained. HC5 values from the fitted cumulative distribution 
functions for log-normal, log-logistic, log-triangular, and log-gompertz distributions for carbaryl 
(depicted in Figure 2) are provided in Table 1. These values range 7.9 to 10.5 µg/L.  
 

 
Figure 2. Fitted cumulative distribution functions for log-normal, log-logistic, log-triangular, and log-
gompertz distributions plotted against 49 log10GMAVs for carbaryl. 
 
 
Table 1. HC5 values from fitted cumulative distribution functions for log-normal, log-logistic, log-triangular, 
and log-gompertz distributions plotted against 49 log10GMAVs for carbaryl. 

Distribution HC5 (µg/L) Proportion of data < HC5 
Normal 9.6 0.13 
Logistic 10.2 0.15 
Triangular 10.5 0.15 
Gompertz 7.9 0.11 

N = 55 GMAVs 
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Many other distributions have been used for sensitivity distribution approaches, including 
weibull (Zajdlik & Associates 2005) and burr (Shao 2000).  The burr distribution tends to limit 
to either the reciprocal weibull (Tadikamalla 1980) or the pareto distribution 
( 32Hhttp://www.cmis.csiro.au/envir/burrlioz/).  Sensitivity distributions may also be calculated using 
non-parametric, distribution-free methods (Newman et al. 2000).   
 

3.1.2. Distribution Approaches With Limited Toxicity Test Results 
 

3.1.2.1. Uncertainty in the Estimated HC5 When Data are Limited 
 
When a distribution is fit to a sample set with limited data, the precision of the estimated 
parameters of the distribution is uncertain.  Thus the precision with which the HC5 is estimated 
will vary from chemical to chemical and will often be limited depending on the number of data 
points and the amount of variability in the data.  Several approaches for handling this uncertainty 
have been developed for sensitivity distributions, typically with the objective of placing 
confidence limits around the estimated HC5 (examples are provided in Appendix B). The level of 
confidence (cl) in the estimated HC5 can be noted as follows: clHC5 . "cl" denotes the confidence 
with which the estimated HCp is no higher than the true HCp.  A considerable body of literature 
on sensitivity distributions employs a confidence level of 95% (i.e., 95

5HC ), though in practice 
any level of confidence could be specified.  In the 1985 Guidelines, a 50% confidence level 
(corresponding to the median estimate) is used as the best estimate of the HC5 (i.e., 50

5HC ).  
While the methods for developing these confidence limits differ across distributions, most follow 
a similar procedure, often based on a “standard” form of the distribution. A common method for 
expressing the location of this concentration is as a function of the sample mean ( x , Equation 1), 
standard deviation (s, Equation 2) and an extrapolation constant (k, Equation 3).    

Equation 1 
1

1 N

i
i

x x
N −

= ∑  

Equation 2 ( )2

1

1
1

N

i
i

s x x
N =

= −
− ∑

 
 
Equation 3 ksxHC cl −=5  
 

Extrapolation constants (not to be confused with extrapolation factors, which are described in 
section 3.2) have been developed for three distributions commonly used for sensitivity 
distributions, the log-normal distribution (Aldenberg and Jaworska 2000, Aldenberg et al. 2002), 
the log-logistic distribution (Aldenberg and Slob 1993) and the triangular distribution 
(Pennington 2003).  These authors provide tables of k values derived either theoretically or 
through Monte Carlo simulation. These k values are provided in Appendix B.  For distributions 
in the location/scale family, values of the extrapolation constants depend only on the parametric 
distribution, the sample size, and the desired level of confidence.  Extrapolation constants 
increase with the level of confidence required and decrease with sample size (74HFigure 3).   
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Figure 3. Extrapolation constants (k) versus confidence bound on the HC5 for a standard log-logistic 
distribution of species sensitivities (k-values generated following methodology of Aldenberg and Slob 1993). 
 
Extrapolation constants are not the only method for handling uncertainty in an estimated HC5.  
An important limitation to the use of extrapolation constants is that the choice of any given value 
for an extrapolation constant makes an implicit judgment concerning an acceptable level of 
uncertainty (e.g., the use of an extrapolation constant corresponding to 95% confidence presumes 
that the acceptable level of uncertainty is 5%).  Another way to quantify the uncertainty 
surrounding the estimated HC5 is to estimate its standard error using the delta method (Seber 
2002).   This requires an estimate of the covariance matrix for the estimated parameters and the 
quantile function (F-1).  For example, let θ represent a vector of estimated parameters describing 
a distribution, then for a normal distribution, [ ],x sθ =  and: 

Equation 4.  ( ) ( ) ( )
( ) ( )

ˆ ˆvar cov ,ˆCOV
ˆ ˆcov , var

x x s
x s s

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
From the above, the equation for the sampling variance of the HC5 is: 
 

Equation 5. ( ) ( )
1 1 1 1

5var HC , cov ,
T

F F F F
x s x s

θ
− − − −⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂

= ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
 

 



Page 13 of 54 

Where the partial derivatives are evaluated at 0.05.  An advantage to the above method is that the 
resulting variance estimate can be applied to any level of uncertainty deemed acceptable using 
standard methods for generating confidence intervals. 
 

3.1.2.2. Sensitivity Distribution Approaches Using Known Population Variance 
 
The sensitivity distribution approaches described in Section 3.1.2.1 rely upon sample estimates 
of population parameters (i.e., sample mean and standard deviation).  As discussed below, 
Aldenberg and Luttik (2002) and de Zwart (2002) have explored the applications of known 
population variance along with sample means in deriving HC5 values from sensitivity 
distributions.   
 
Aldenberg and Luttik (2002) proposed the use of known standard deviations in combination with 
estimated means (from samples) to derive HC5 values from sensitivity distributions. This 
approach requires knowledge of the standard deviation from the population of interest, 
preferably from “similar substances as the one under study.” This approach is limited in its 
application in that the standard deviation must be obtained from other chemical data sets, which 
does not allow for a simple application of this method for data limited chemicals.    
 
In order to account for population variability that may be represented by standard deviations of 
samples with small sample sizes, de Zwart 2002 proposed use of a logistic sensitivity distribution 
with known variance (β) that are based on a chemical’s mode of action (Table 2). de Zwart 
assumed that the intrinsic toxicity of each chemical within a mode of action would change (i.e., 
x  would vary); however, the variability of organism sensitivities to the same chemical will be 
similar within a mode of action. Using this approach, the HC5 is calculated using Equation 6.  
 
 

Equation 6. 
βα 94.2

5 10 −=HC  
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Table 2. Mean β values for various modes of action reported by de Zwart 2002. 

Mode of Action N Average β 
Standard error of 

the mean β ** 
Nonpolar narcosis 34 0.39 0.03 
AChE* inhibition (carbamates) 27 0.71 0.03 
Photosynthesis inhibition 20 0.60 0.03 
Polar narcosis 13 0.31 0.03 
AChE* inhibition (organophosphates) 11 0.50 0.05 
Uncoupler of oxidative phosphorylation 8 0.38 0.05 
Multisite inhibition 6 0.62 0.07 
Dithiocarbamates 6 0.57 0.05 
Diesters 6 0.42 0.07 
Systemic fungicide 5 0.46 0.04 
Sporulation inhibition 5 0.37 0.05 
Neurotoxicity (pyrethroids) 4 0.65 0.03 
Neurotoxicity (cyclodiene-type) 4 0.61 0.01 
Plant growth inhibition 4 0.52 0.06 
Membrane damage by superoxide formation 3 0.69 0.01 
Cell division inhibition 3 0.63 0.21 
Systemic herbicide 3 0.52 0.12 
Plant growth regulator 3 0.44 0.10 
Neurotoxicant (DDT-type) 2 0.50 0.13 
Amino acid synthesis inhibition 2 0.47 0.03 
Germination inhibition 2 0.40 0.02 
Quinolines 2 0.28 0.02 
Reactions with carbonyl compounds 2 0.28 0.07 

*AChE = acetylcholinesterase                  **
N

ofstdevSEM )( β=  

 
 

3.1.2.3. Methods for Deriving Chronic Distributions Using Acute Toxicity Test 
Results 

 
Two approaches are described in the literature (de Zwart 2002, Douboudin et al. 2004) that use 
available acute toxicity data to create chronic sensitivity distributions. In both approaches it is 
possible to derive chronic HC5 values using no chronic toxicity data.  
 
de Zwart developed a regression for the acute and chronic mean values (termed αacute and αchronic, 
respectively; Equation 7). Using this equation, it can be concluded that the average acute toxicity 
for a chemical is a factor of 13-24x higher than the average chronic toxicity. de Zwart concluded 
that this analysis could be applied to assign surrogate chronic species distribution parameters in 
cases were acute toxicity data are available but chronic data are not available. Using this 
approach, a chronic HC5 could be derived using Equation 6 and the appropriate β from Table 2. 
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Equation 7. 430.1*053.1 −= acutechronic αα  (de Zwart 2002) 
 
In Duboudin et al. (2004)’s approach, acute mean (µA) and standard deviations (σA) based on 
available invertebrate data are used to calculate mean values (µc) representative of chronic 
effects using equations 8 and 9 for vertebrates and invertebrates, respectively. These equations 
were derived from regressions of empirical acute and chronic data available for vertebrates (22 
chemicals; r2 = 0.854) and invertebrates (15 chemicals, r2 = 0.917). The test chemicals included 
metals, inorganic chemicals and organic chemicals, some of which were pesticides (e.g., lindane, 
azinphos-methyl, diazinon, atrazine). 
  
 
Equation 8. 49.0*62.0*82.0 −−= AvAvCv σμμ  (vertebrates) 
 
Equation 9. 60.1*96.1*58.0 −−= AiAiCi σμμ  (invertebrates) 
 

3.1.2.4. Illustration of Distribution Approaches Involving Limited Data 
 
Toxicity text results for carbaryl were used to illustrate the different distributional approaches 
described in Section 3.1.1. Relative to many other pesticides, there are a great deal of aquatic 
toxicity test results available for carbaryl in the scientific literature, as well as from studies 
submitted by carbaryl registrants to fulfill FIFRA data requirements. In order to illustrate the 
uses of the methods described above in determining the HC5 of for a chemical using a small data 
set, a subset of aquatic toxicity test results for carbaryl from Appendix A is used here to simulate 
a chemical with limited toxicity data (Table 3).  Since this effort is focused on applications of 
extrapolation factors that are relevant to OPP and OW, the subset of data is based on the FIFRA 
data requirements for pesticides. Under FIFRA, acute toxicity data are required for two 
freshwater fish (typically the rainbow trout, Oncorhynchus mykiss and the bluegill sunfish, 
Lepomis macrochirus) and one freshwater invertebrate (typically the waterflea, Daphnia magna). 
 
Table 3. Subset of acute toxicity data for carbaryl used to illustrate use of sensitivity 
distribution approaches with limited data. 

Taxa Species Test Result  
(μg/L) 

Geometric mean of test result 
for species (μg/L) 

Aquatic invertebrate Daphnia magna 5.6* 7.5 10.1* 
Fish (warm water) Bluegill sunfish 5230** 5230 

Fish (cold water) Rainbow trout 1090** 1841 3110** 
*48-h EC50 
**96-h LC50 
 
For this small data set, the average ( x ) and standard deviation (s) of the log transformed 
geometric means of the toxicity test results for the species are 2.62 and 1.53, respectively. These 
values are used to generate median and 95th percentile HC5 values (Table 4) using Equation 3 
and the k values from the log-normal distribution (Aldenberg and Jaworska 2000, Aldenberg et 
al. 2002), the log-logistic distribution (Aldenberg and Slob 1993) and the triangular distribution 
(Pennington 2003).  The k values used for N=3 are provided in Appendix B. These values are 
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also used in the approaches where the variance is known (i.e., de Zwart 2002). For the de Zwart 
method, equation 6 was used with a β value of 0.71, which is based on the mode of action 
representative of carbaryl (i.e., AChE inhibition from a carbamate). Median HC5 values 
calculated with these methods range 0.31-3.4 µg/L.  It is notable that the 95th percentile HC5 
values are nine orders of magnitude lower than the median HC5 values. It is also notable that the 
median HC5 values are all below the HC5 values generated for the fitted distributions from the 
full carbaryl data set, which were 9.6, 10.2 and 10.5 µg/L for the log-normal, log-logistic and 
log-triangular distributions, respectively (Table 1).  
 
Table 4. Median and 95th percentile HC5 values (μg/L) derived for subset of carbaryl data.  
Distribution (method source) Median HC5 

95
5HC  

Log-normal (Aldenberg and Jaworska 2000) 0.46 7.3x10-10 
Log-logistic (Aldenberg and Slob 1993) 0.31 1.5x10-10 
Log-logistic (de Zwart 2002) 3.4 Not available 
Log-triangular (Pennington 2003) 0.52 7.2x10-10 

 
If no chronic toxicity data were available for carbaryl, de Zwart’s work could also be used to 
derive a chronic HC5. In this approach, equation 7 could be used to estimate a mean of the 
chronic toxicity data (αchronic = 1.33). Using this with the β value of 0.71 and equation 6, the 
resulting HC5 would be 0.17 µg/L.  
 

3.1.3. Examples of Regulatory Applications of Sensitivity Distributions 
 

3.1.3.1. OPP 
 
OPP has used species sensitivity distributions to characterize risks of pesticides to specific taxa, 
(e.g., fish) of concern. This approach involved generating separate distributions of acute toxicity 
data for fish and aquatic invertebrates. Estimated and measured concentrations of pesticides in 
surface water were compared to the two joint probability distributions to consider the proportions 
of fish and invertebrates that may be impacted by the assessed pesticide (USEPA 2007a, USEPA 
2007b).  
 
Sensitivity distributions are also incorporated into OPP’s aquatic level II risk assessment model 
(v.2.0, 3/16/2004).  Although this model is still in development, it is intended for use in OPP to 
estimate the likelihood and magnitude of effect on aquatic species that are vulnerable to pesticide 
exposure.   This model uses available acute toxicity data to develop separate distributions for fish 
and aquatic invertebrates. The model calculates the 5th, 50th and 95th percentiles of the 
distributions to generate probit-concentration response curves. These are used to determine the 
magnitude of effect to specific taxa resulting from an exposure concentration (USEPA 2004b).  
 

3.1.3.2. OW 
 
OW currently derives Aquatic Life Water Quality Criteria (ALWQC) for communities of aquatic 
animals using a triangular distribution of toxicity test results for genera. This approach combines 
toxicity data for vertebrates (i.e., fish and amphibians) and invertebrates (e.g., cladocerans, 
insects). The acute criterion is set to half of the 5th percentile of the distribution, based on the 
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1985 Guidelines.  The 5th percentile is calculated using the four most sensitive acute toxicity 
genus mean values. The 5th percentile is divided by 2 to derive a final acute criterion (i.e., the 
criterion maximum concentration) in order to adjust the 5th percentile EC50 value to an EC 
“low” value which is intended to estimate a level of toxicity between 0 and 10% such that the 
final value is statistically indistinguishable from mortality allowable in control treatment and 
considered background. The overall intention of the acute and chronic criteria is to establish 
concentrations of chemicals that, if not exceeded, aquatic animals should not be unacceptably 
affected (directly). 
 

3.1.3.3. Europe 
 
The preferred approach of the EU for deriving environmental quality standards for substance 
concentrations in inland surface waters as well as in transitional, coastal and territorial waters is 
statistical extrapolation using a SSD (European Commission 2003).  In this approach, it is also 
preferred that the dataset used in the SSD contain more than 15, but at least 10 NOECs from 
“long-term” toxicity tests, for different species covering at least 8 taxonomic groups. 
 
The Netherlands requires at least four chronic NOECs for different taxonomic groups for a 
refined effects assessment.  The Netherlands (RIVM 2001) “estimated risk levels” are derived 
using the SSD method of Aldenberg and Jaworska (2000). That is, HC5 values are calculated 
based on a log-normal SSD.   
 

3.1.3.4. OECD 
 

The sensitivity distribution methodology for the Organization of Economic Cooperation and 
Development (OECD) method is similar to the European Union (EU) SSD methodology; 
however, no data distribution type is assumed a priori.  The SSD can follow any data 
distribution, although log-normal and log-logistic (e.g., Burr Type III) distributions are most 
likely.  The best model is assessed using the Kolmogorov-Smirnov goodness-of-fit test.  The 
“maximum tolerable concentration” is represented as either the median of the 5th percentile value 
or the lower 95% confidence limit of the 5th percentile depending on the goal of the end user.  If 
sufficient chronic data exist to meet all of the taxonomic requirements, then a final chronic value 
can be calculated.  If species level data are used, then the final chronic value is equal to the 
maximum tolerable concentration.  Unlike the USEPA method, however, the OECD method 
requires NOECs from eight taxonomic groups, and does not allow for use of Actue Chronic 
Ratios (ACRs); however, appropriate QSAR values can be used as surrogates if laboratory data 
are unavailable.   
 

3.1.3.5. Australia and New Zealand 
 
Australia and New Zealand derive guideline trigger values from toxicity data. The Australia/New 
Zealand guidelines use the same SSD method as the Netherlands, but with a curve-fitting 
procedure that overcomes the problem of data that do not fit an assumed distribution. Using the 
program BurrliOZ v. 1.0.13 (CSIRO 2001; Campbell et al. 2000), data are first fitted to one of a 
family of Burr distributions (Burr 1942; the log-logistic distribution is in the Burr family). After 
an appropriate distribution is chosen, then the calculation to estimate the 95th protection level is 
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the same as the Netherlands’ methodology but utilizes extrapolation constants ( k ) derived for 
each of the distributions. 
 

3.1.3.6. University of California, Davis Methodology 
 
This methodology was developed by researchers at the University of California, Davis 
(TenBrook et al. 2010) for the derivation of pesticide water quality criteria for the Sacramento 
and San Joaquin Basins, although the method is applicable to pesticide water quality criteria 
derivation for all freshwater aquatic systems.  This methodology was first finalized as a 2009 
report to the Central Valley Regional Water Quality Control Board and has been used to derive 
aquatic water quality criteria for bifenthrin, chlorpyrifos, cyfluthrin, lambda-cyhalothrin, 
diazinon, diuron and malathion6F

7.  
 
The authors of this methodology evaluated many of the current water quality criteria derivation 
methodologies and incorporated elements from several of them, in addition to providing their 
own specific modifications of these elements, throughout the derivation process.  The SSD 
procedure described in this approach is the result of a synthesis of elements from the SSD 
procedures of the Dutch (RIVM), Australian and New Zealand (ANZEC&ARMCANZ), and 
1985 Guidelines procedures, with additional modifications.   Based on this analysis, the Burr III 
distribution should be used for the SSD method (acute and chronic). Similar to the 1985 
Guidelines approach, this SSD method uses the median value of the 5th percentile of the SSD, 
but species level data are used, rather than aggregating to the genus level.  The acute value is 
determined by dividing the median of the 5th percentile by 2, and the chronic value is the 5th 
percentile value without additional adjustment.   The authors also recommend calculating 95% 
confidence intervals surrounding the 1st and the 5th percentiles using a bootstrapping procedure 
that is described in detail within the methods manual and is also included with the BurrliOZ 
freeware described above.  The use of the SSD method is based on the availability of toxicity test 
results for species in 5 different families. 
 

3.2. Extrapolation factors 
 

3.2.1. Method Description 
 
Extrapolation factors (EFs) are set values that are applied to available toxicity test results to 
account for various sources of uncertainty in extrapolating from individual species toxicity data 
to measures of effect. Several different names have been used to describe these factors, including 
assessment factors, safety factors, application factors and uncertainty factors.  These factors are 
used as follows: available toxicity data are identified for a chemical and the lowest toxicity test 
result is divided by the EF. The advantage of this approach is that it is simple, easy to use and 
requires little expenditure of time or resources in terms of reviewing toxicity data or calculating 
the final measures of effect.  
 
 

                                                 
7 available at: 
http://www.swrcb.ca.gov/rwqcb5/water_issues/tmdl/central_valley_projects/central_valley_pesticides/criteria_meth
od/index.shtml 
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3.2.2. Uncertainty Associated with use of Extrapolation Factors  
 
There is uncertainty associated with this approach in terms of accurately characterizing effects of 
stressors on measures of effect given limited availability of data. Since the EF is applied to the 
most conservative toxicity data available for a chemical, the magnitude of the EF is typically 
dependant on the extent of available data. Important considerations for this include: species that 
are tested and the adverse outcome pathway of the chemical.  
 
Additional sources of uncertainty can be attributed to differences in: sensitivity among 
individuals within a species due to different test conditions (intra-species variability) and 
sensitivity of test species and species of concern (inter-species variability). EFs may be designed 
to account for some of these sources of uncertainty and variability. 
 

3.2.3. Examples of Regulatory Applications of Extrapolation factors 
 
In regulatory applications, EFs generally include default values applied to acute toxicity test 
results to derive water quality criteria. EFs are used by various agencies in the United States 
(e.g., USEPA 1995), Canada (e.g., MENVIQ 1990, Rev. 1992) and Europe (European 
Commission 2003) to establish levels of concern for aquatic species, taxa, communities and 
ecosystems. Described below are two approaches involving EFs that are used by United States 
regulatory agencies. Specifically, these include the OPP Aquatic Benchmarks and the Great 
Lakes Water Quality Initiative for deriving criteria with limited toxicity data. The OPP Aquatic 
Benchmarks and Great Lakes Water Quality Initiative methods differ in their methods and 
intended measures of effect (i.e., the lowest available toxicity data for a taxa and the HC5 for a 
community, respectively). Also described below is an approach presented in the scientific 
literature by Pennington 2003, which is based on various sensitivity distribution assumptions and 
considers chemical mode of action. It should be noted that the approaches described below are 
not necessarily equivalent because they vary in the uncertainty, measures of effect and 
assessment endpoints they are intended to represent.  
 

3.2.3.1. OPP Aquatic Benchmarks 
 
The OPP benchmarks were developed in response to recommendations and input from 
stakeholders, who were concerned about potential effects of pesticides with no existing Aquatic 
Life Water Quality Criteria. OPP developed a webpage of non-regulatory taxa-specific endpoints 
referred to as “OPP Aquatic Benchmarks”7F

8.  These Benchmarks are based on the most sensitive 
acute and chronic toxicity test results for fish and invertebrates (considering registrant-submitted 
studies and the scientific literature) from OPP’s ecological risk assessments of specific 
pesticides. OPP’s acute toxicity test results are lethal concentrations to 50% of the animals tested 
(LC50) and adverse effect concentrations for 50% of the animals tested (EC50) values for 
freshwater vertebrates and invertebrates. Chronic toxicity test results are no observed adverse 
effect concentrations (NOECs) for the same taxa. Benchmarks are calculated by multiplying 
each lowest toxicity result for a taxon by its respective Level of Concern (acute risk LOC = 0.5; 
chronic risk LOC = 1.0), which is based on OPP’s ecological risk assessment process. LOCs are 
                                                 
8 OPP Aquatic Benchmark Table. Available online at: 
http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm  
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the Agency’s interpretative policy and are used to analyze potential risk to non-target organisms 
and the need to consider regulatory action. LOCs are used to indicate when a pesticide use (as 
directed on the label) has the potential to cause adverse effects on non-target organisms (USEPA 
2004). In the context of OPP’s risk assessment, any water concentrations exceeding a benchmark 
for a specific taxon have potential to cause adverse effects to that taxon. OPP’s benchmarks may 
be useful for interpreting the potential effects of pesticides in surface water in cases where there 
is no existing Aquatic Life Water Quality Criteria. If the FIFRA data requirements are fulfilled, 
then benchmarks should be available for freshwater fish and invertebrates.  
 
To put the OPP benchmark approach in terms of EFs, this is equivalent to dividing the lowest 
acute toxicity test result for a taxon by 2 and the lowest chronic toxicity test result by 1. For the 
acute benchmark, this is comparable to OW’s approach for calculating acute criteria value by 
dividing the 5th percentile LC50 value 2 to establish an LC “low” (see section 3.1.3.2). 
 
To illustrate the methods employed in deriving OPP Aquatic Benchmarks the same subset of 
aquatic toxicity data for carbaryl used to illustrate SSD methods is used here to simulate a 
chemical with limited toxicity data (Table 3). For the OPP Aquatic Benchmarks, two acute 
benchmarks are selected: one for aquatic invertebrates and one for fish. In this example, toxicity 
data are available for one species of invertebrate (i.e., D. magna). The lowest single toxicity test 
result available for D. magna is used to derive the freshwater invertebrate acute toxicity 
benchmark by dividing by 2. Therefore, the freshwater invertebrate acute benchmark is 2.8 μg/L. 
Although toxicity data are available for two species of fish, the lowest single result of all the tests 
is selected and then divided by 2 to calculate the fish benchmark. The resulting freshwater 
vertebrate benchmark value for this example is 545 μg/L.  
 

3.2.3.2. Great Lakes Water Quality Guidance (and similar approaches) 
 
The Great Lakes Water Quality Guidance (USEPA 1995) was developed by USEPA with 
participation from the eight Great Lakes states (i.e., Illinois, Indiana, Michigan, Minnesota, New 
York, Ohio, Pennsylvania and Wisconsin) as part of the Great Lakes Water Quality Initiative.  
The purpose of this guidance is to help establish consistent, enforceable, long-term protection 
with respect to all types of pollutants. The guidance includes a two-tiered approach to derive 
criteria, including: 1) Tier I values for which data meet the minimum data requirement as given 
in the 1985 Guidelines8F

9, and 2) Tier II values where there is an absence of the full set of data 
needed to meet Tier I data requirements. Due to limited data used to derive Tier II criteria, these 
values are likely to be more uncertain compared to Tier I criteria. Tier II criteria are intended to 
be more protective, on average, than what Tier I criteria would be for the same chemicals if 

                                                 
9 For acute criteria, the data requirements include toxicity data for:  

- a salmonid fish 
- a nonsalmonid fish 
- a species from a third chordate family 
- a planktonic crustacean 
- a benthic crustacean 
- an insect 
- a species from a family in a phylum other than Chordata or Arthropoda 
- a species from a family in another order of insect or in a fourth phylum 
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sufficient data were available. Of interest here are the Tier II criteria values, which are derived 
using EFs. 
 
For the Tier II method, all acute toxicity data are collected for a chemical. The geometric mean 
of the toxicity data for each genus is calculated. The number of data requirements that are met is 
determined. In order to calculate an acute Tier II criterion, the dataset must contain an acute 
toxicity result for at least one daphnid species (i.e., Ceriodaphnia sp., Daphnia sp., or 
Simocephalus sp.) The number of data requirements that are met is used to determine the 
appropriate EF (Table 5). When the EFs are applied to the lowest genus mean acute value, the 
result is intended to approximate the 5th percentile of a species sensitivity distribution (triangular 
continuous probability distribution) as used in the 1985 Guidelines. With this method, the acute 
Tier II criterion is calculated by dividing the lowest genus mean acute value by the appropriate 
EF (this result is termed the “secondary acute value” abbreviated SAV) and then dividing that 
value by 2.The EFs were calculated using 29 toxicity datasets analyzed to determine the effects 
of removing taxa on calculation of the 5th percentile (Host et al. 1995).   These factors are 
intended to address variability in interspecies sensitivity to chemical stressors.  
 
Table 5. Extrapolation factors used by Great Lakes Water Quality Guidance, Michigan DEQ, Ohio EPA, 
USDOE, and UC Davis in deriving criteria when data requirements defined in 1985 Guidelines are not met. 

Number of 
data 

requirements 
that are met 

Great Lakes 
Water 

Quality 
Guidance* 

Michigan 
DEQ* Ohio EPA* USDOE* 

USDOE 
(no 

daphnid) 

UC-
Davis* 

1 21.9 Not applicable 21.9 20.5 242 570 
2 13.0 13.0 13.0 or 7.9 ** 13.2 64.8 36 
3 8.0 8.0 8.0 8.6 36.2 7.8 
4 7.0 7.0 7.0 6.5 20.1 5.1 
5 6.1 6.1 6.1 5.0 12.9 3.8 
6 5.2 5.2 5.2 4.0 9.2 NA 
7 4.3 4.3 4.3 3.6 7.2 NA 

*Data from at least one daphnid species is available. 
** If the family salmoindae is not represented, this value is 13.0.If the family salmoindae is represented, this value is 
7.9. 
NA = not applicable 
 
A number of similar approaches are in use by state agencies (i.e., Michigan Department of 
Environmental Quality (MDEQ; MNDEQ 2006) and Ohio EPA (Ohio EPA 2008)) and the U.S. 
Department of Energy (USDOE; Suter and Tsao 1996).  These approaches involve EFs that are 
modifications of the Great Lakes Water Quality Guidance (Table 5). The MDEQ) and Ohio EPA 
EFs are identical to the Great Lakes Water Quality Guidance, except that the Michigan approach 
does not provide an EF when only one data requirement is met and the Ohio EPA has two 
different EFs available when two data requirements are met: one for when a salmonid test result 
is available, and one for when a salmonid test result is not available.  The USDOE differs from 
the Great Lakes Water Quality Guidance in that it provides a separate set of EFs for use when no 
daphnid test results are available.  
 
For the Great Lakes Water Quality Guidance and other similar methods described above (i.e., MI 
DEQ, Ohio EPA, USEOE), the example data set for carbaryl (Table 3) fulfills 3 data 
requirements (i.e., a salmonid fish, a non-salmonid fish and a planktonic crustacean). Therefore, 
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the EF of 8.0 is used. For this guidance, the lowest mean value of toxicity test results available 
for a genus is selected. In this example, the most sensitive genus is Daphnia sp., with a mean 
toxicity test results of 7.5 μg/L. The SAV of 0.94  μg/L is calculated by dividing the daphnid 
toxicity value by 8.0. As indicated above, this value is intended to be representative of the 5th 
percentile of a triangular distribution, as calculated according to the 1985 Guidelines. 
 
With the UC-Davis Methodology (TenBrook et al. 2010), acute criteria are derived using EFs 
when toxicity data are not available for the 5 required species defined in this method.  The EFs 
for this method (Table 5) were empirically derived by applying the procedure of Host et al. 
(1995), using a database of ten of the pesticides also used to determine the most appropriate SSD 
data distribution.  EFs based on having 1 through 5 of the required taxa were generated for each 
of the ten pesticides, and then a final EF was calculated for taxonomic samples sizes of 1-5.  This 
approach requires that one of the data values be from a daphnid species. The EFs were cross 
validated by comparing them to criterion values derived using the SSD method.  For 2-5 
taxonomic groups, the EF approach (lowest acute value in the dataset divided by the appropriate 
EF) yielded lower criteria than the SSD approach.  The EF approach for one taxon yielded higher 
criteria estimates for two pesticides in the dataset. For these pesticides, daphnids were not the 
most sensitive species and the EF approach overestimated the HC5 by a factor of 8-10. Thus, an 
additional safety factor of ten was included for cases where data for only one taxon is available.  
 
To illustrate the use of the UC-Davis methodology using the carbaryl dataset used previously 
(Table 3), 3 of the 5 data requirements are met by the example data set for carbaryl, resulting in 
the use of 7.8 as an EF. The lowest species mean acute value (i.e., 7.5 μg/L) is divided by this EF 
to yield a value of 0.96 μg/L. This result is similar to the result produced by the Great Lakes 
Water Quality Guidance (i.e., 0.94 μg/L). 
 

3.2.4. Extrapolation factors Described in the Scientific Literature 
 
Pennington 2003 expanded upon the work of de Zwart (2002) who explored the use of a logistic 
sensitivity distribution with known variability (β) based on chemical mode of action (see section 
3.1.2.2). Pennington’s work is essentially an application of de Zwart’s work on SSDs but is 
expressed in the form of EFs. Pennington considered the application of known β values in 
combination with uncertainty associated with sample mean values based on varying N, where 
N≤8. Pennington determined EFs (note that the author termed them “application factors”) 
relating the lowest sample toxicity test result to HC5 values from log-normal, log-logistic and 
log-triangular distributions in combination with the range of β values recommended by de Zwart 
(0.24-1.4). Using this approach, HC5 values could be estimated with 50% and 97.5% confidence 
by dividing the lowest available toxicity test result by the EF representing the appropriate N for 
the sample of interest. Table 6 provides the EFs for estimating HC5 values with 50% confidence. 
Pennington also determined EFs using β values for Quinolines (i.e., β = 0.28) and AChE 
inhibiton by organophosphates (i.e., β = 0.71). Table 7 provides the EFs for estimating HC5 
values with 50% confidence and assuming a log-logistic distribution.   
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Table 6. Extrapolation factors reported by Pennington (2003) for estimating HC5 values with 50% confidence 
assuming different distributions. Values derived using range of β values recommended by de Zwart (2002). 

N Log-normal Log-logistic Log-triangular 
2 24 27 23 
3 10 12 9.4 
4 6.0 7.1 5.5 
5 4.2 4.9 3.9 
6 3.1 3.5 2.8 
7 2.5 2.8 2.3 
8 2.0 2.3 1.9 

 
Table 7. Extrapolation factors reported by Pennington (2003) for estimating HC5 values with 50% confidence 
for quinolines and organophosphates. 

N quinolines organophosphates 
2 3.8 25 
3 2.8 12 
4 2.3 7.2 
5 2.0 4.9 
6 1.7 3.7 
7 1.5 2.9 
8 1.4 2.2 

 
The carbaryl dataset in Table 3 is used to illustrate the application of Pennington’s EFs. When 
considering Pennington’s EFs for the log-normal, log-logistic and log-triangular distributions 
when considering the availability of 3 toxicity test results, the HC5 values range 0.63-0.80 μg/L 
(Table 8). These are comparable to the results of the Great lakes water quality guidance (0.94 
μg/L) and TenBrook et al. 2010 (0.96 μg/L), which are intended to approximate the HC5 values 
of the triangular and burr distributions, respectively. 
 
Table 8. Example OPP benchmarks and Tier II criterion for sub-set of carbaryl data. 

Description Test result (μg/L) Extrapolation 
factor Value (μg/L) 

Log-normal (Pennington 2003) 7.5 10 0.75 
Log-logistic (Pennington 2003) 7.5 12 0.63 

Log-triangular (Pennington 2003) 7.5 9.4 0.80 
 
 
4. Proposed Analyses of Methods for Deriving Measures of Effect from Results of Toxicity 

Tests 
 
The goal of this work is to examine how limited test results can best be used to characterize 
adverse effects on aquatic animals.  To that end, Section 3 explores two general types of methods 
(i.e., sensitivity distributions and extrapolation factors) that may be used to extrapolate from 
toxicity test results to taxa-specific and community-based measures of effect relevant to OPP and 
to OW.  A portion of this work will address the derivation of an “Aquatic Life Screening Value” 
that is related to the fifth percentile in a Sensitivity Distribution (i.e., the HC5). ALSVs may be 
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used to screen concentrations of pesticides and effluents in ambient waters and may be used by 
States and Tribes in the development of water quality standards.  ALSVs are further discussed 
below in Section 5. Other portions of this work will address other percentiles in sensitivity 
distributions that can be used to evaluate concentrations of pesticides in ambient water in other 
ways (e.g., for ecological risk assessment). This section describes the analyses that USEPA 
proposes to conduct to determine the utility of these methods to estimate HCp based on "data-
limited" sets. These proposed analyses will not simply compare published methods, but rather 
will use these methods as sources of ideas for development of improved methods for estimating 
the HCp to a specified level of confidence. 
 

4.1. Analytical Strategy 
 

4.1.1 Definitions  
 

The measurement of effect of interest to this effort is the pHC , where "p" denotes the proportion 
of species adversely affected by a pesticide under laboratory test conditions, which can be 
confidently estimated for "data-rich" chemicals (i.e., those with large amounts of toxicity test 
data available).  Because there will be uncertainty about the “true” value of the HCp, especially 
for "data-limited" chemicals, the proposed work will develop methods for the statistic cl

pHC  (See 
section 3.1.2.1). These methods will be developed to accommodate a range of values for p and 
cl, specific values for which can be established as appropriate for specific applications. 
 
Because the term extrapolation factor has been used by different authors to mean different things 
(see Section 3), it is important to define its meaning for the analyses proposed here.   Simply put, 
an EF is a factor applied to estimate the cl

pHC based on a value derived from the available data.  
In more specific terms, it is the expected ratio between a location statistic (e.g., mean) within the 
data set of interest and the cl

pHC . An EF might be applied to the lowest value among the available 
data (such as in the Host et al. (1995) approach described in Section 3.2.3.2), or to some other 
characteristic of the data, such as the mean value.  Accordingly, the magnitude of an EF will 
depend upon several factors, including the statistic used to describe the available data (minimum, 
mean), the confidence level to which the HCp is estimated (higher confidence will result in larger 
EFs), as well as the amount and type of available data (fewer data will generally result in larger 
EFs).  The focus of the work outlined below will be to evaluate the ability of different EF 
derivation approaches to estimate cl

pHC , recognizing that this may vary depending on the nature 
of available data. 
 
Analysis of the continuum of available aquatic animal data for pesticides will allow for inference 
on data sufficiency that may be dependent on the taxonomic sensitivity to a given pesticide AOP, 
and provide a scientifically defensible basis for the use of available benchmark methods 
discussed in this white paper. Because USEPA will investigate several techniques for 
specifying cl

pHC , it will be necessary to determine which techniques produce the most accurate 
estimates.  This will be particularly challenging because, even with “data rich” pesticides, the 
“true” pHC  is unknown. The work proposed here will use two strategies for addressing this 
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unknown.  First, data rich sets will be used to specify a "reference" HCp,ref to provide a surrogate 
for the true HCp for use in the evaluations.  Second, the statistical characteristics of data rich sets 
will be used to develop distributions for which the true HCp is known and from which samples 
can be drawn to test methodologies for data-limited sets. All of the proposed analyses described 
below will entail various evaluations of accuracy and precision.  However, in the interests of 
readability and brevity, this is not separately noted for each task. 
 

4.1.2. Anticipated Sources of Variation in the Estimated HCp 
 

Many factors affect the value of an HCp estimate derived from test data, including (but not 
limited to): 1) total number of test results available for analysis; 2) taxonomic diversity of 
available test results; 3) degree of within species (or genus) test replication and associated 
variability; and 4) knowledge of the AOP of the pesticide. The proposed analyses will explore 
each of these potential influences. 
 

4.1.3. Analytical Steps 
 

The general analytical strategy will involve two steps.  In the first step, HCp estimation will be 
evaluated under "data rich" conditions.  This work will support decisions regarding the best 
distributional assumptions and estimation techniques for sensitivity distribution analysis.  It will 
also allow specification of an HCp,ref to use in assessing method performance under "data 
limited" conditions.  In the second step, data-limited samples of the data-rich sets will be 
constructed and their theoretical distributions will be used to test the performance of various 
options for sensitivity distribution analysis relative to the HCp,ref values.  Extrapolation factors for 
data-limited conditions will also be developed by various approaches described in Section 3 
based on both distributional analyses and sampling of data-rich sets and theoretical distributions, 
and their uncertainty described relative to the HCp,ref  values.  Unless specifically noted below, 
the same methods will be applied regardless of whether the toxicity values pertain to acute 
versus chronic endpoints or pertain to aquatic invertebrates, fish, or both.  
 

4.1.4. Data 
 

Proposed analyses will be conducted using acute and chronic toxicity data for chemicals with 
modes of action representative of pesticides (e.g., AChE inhibition). Acute toxicity values will 
be obtained from the Web-ICE database of empirical EC50 and LC50 values that are used to 
generate the ICE models. Chronic toxicity values will be obtained from a database called 
AquaChronTox, which is currently under development by USEPA. AquaChronTox contains 
chronic toxicity test results for aquatic animals from studies identified in the primary literature, 
OPP Data Evaluation Records, and the fathead minnow database managed by scientists at 
USEPA. 
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4.2. Specific Analyses 
 

4.2.1. Analyses of Data-Rich Sets 

 
Regardless of what method is employed, the estimation of an HCp requires the estimation of a 
quantile from a sample of data.  Further, it is desirable that the estimate be an unbiased estimate 
of the “population” quantile of interest (i.e., the quantile of the distribution of sensitivities of all 
aquatic invertebrates, all fish, or both in a given aquatic community).  As noted in Section 3, this 
requires choice of a distribution to fit to the sample and choice of a method for fitting the 
distribution. Specifically, the proposed analyses are: 
 
1) Compare the fit of commonly used (log) distributions (Triangular, Normal, Logistic, 

Gompertz, Weibull, and Burr) to full sets of data for “data rich” chemicals and to composite 
distributions based on these data-rich sets. 

2) Explore multiple methods for fitting the distributions to the data.  In particular, the following 
will be compared: 

a) linear regression techniques on transformed data (e.g., after Erickson and Stephan 
1988) 

b) maximum likelihood (Edwards 1992), and 
c) moment estimators (equating the sample mean and standard deviation with the 

parametric equations for the distribution of interest and solving for the distributional 
parameters). This is a commonly used method in the literature on Species Sensitivity 
Distributions (e.g., Aldenberg and Slob 1993, Aldenberg and Jaworska 2000) 

3) In performing the above comparisons, the proposed analyses will include investigation of 
methods for using information contained in: 

a) replicate tests on a given species (genus) beyond simply taking the geometric mean  
b) adverse outcome pathway of the pesticide (for example using AOP-specific variance 

estimates, de Zwart 2002). 
c) taxonomic diversity of the “data rich” sample. 
d) right-handed censoring of data sets. 

 
4) Overall results will be used to assign an HCp,ref for each data-rich chemical 
 
USEPA will also consider distribution free methods (e.g., Newman et al 2000) and compare the 
results of these methods to commonly used distributions and methods for fitting distributions to 
available data.  
 

4.2.2 Analyses of Data-Limited Sets 
 
   4.2.2.1 Direct Application of Distributional Analysis 
 
Given an estimate of the HCp,ref (i.e., from 4.2.1 above) USEPA will explore the accuracy of HCp 
estimates from distributional analysis of limited subsets of the same data.  The same steps and 
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issues as in section 4.2.1 will be followed for this analysis of smaller sets.  It will not necessarily 
be assumed that the best choices under “data rich” conditions will prove to be best under “data 
limited” conditions.  

 
4.2.2.2 Extrapolation Factors from Distributional Analysis 

 
1) Toxicity values will be subject to analysis of variance to determine the variance of toxicity 

values for a chemical across all species (genera).  For chemicals with the same AOP, an 
AOP-specific variance (including standard error of the variance estimate) will be estimated.  
The result of this task will be distributions of variances applicable to different AOPs, as well 
as a distribution of variances across all chemicals.   

2)  Based on the procedures of de Zwart (2002) and Pennington (2003), analyses of “data 
limited” subsets will be conducted using the AOP-specific variances determined in Task 1 to 
derive extrapolation factors for different “data limited” sample sizes. 

3) The proposed analyses in Tasks 1 and 2 will be extended to consider the influence of 
taxonomic diversity of the subsamples on the accuracy of cl

pHC  estimates. This analysis will 
include consideration of species for which OPP typically receives toxicity test results.  

 
4.2.2.3. Extrapolation Factors from Statistical Re-sampling 

 
1) For each “data rich” pesticide, extrapolation factors will be generated using the approach of 

Host et al. (1995), but expanding this approach to: 
a) consider the impact of using individual toxicity test results rather than geometric mean 

values as the basis of the toxicity data subsets, and 
b) describe how estimated extrapolation factors vary with taxonomic diversity of the 

underlying subsamples. 
2) The relationship between the extrapolation factors for individual chemicals determined under 

Task 1 will be analyzed regarding their similarity within and across different AOPs. 
   

4.2.3. Use of Predicted Values 
 

The availability of toxicity values that comprise the data for these analyses (LC50, EC50, 
NOEC, etc.) differs widely among pesticides and may be very limited in some cases, especially 
for recently developed pesticides. To address this, the analyses proposed above (sections 4.2.1-
4.2.2) will be repeated in a second phase including the use of predictive methods (i.e., QSAR, 
Read-Across/Bridging, ICE, and TCE) to augment empirical data. The use of acute-chronic 
ratios (below) will also be evaluated for augmenting scarce data on chronic toxicity. 
 

2B4.2.4 Considerations for Proposed Analyses of Chronic Toxicity 
 
Two important issues arise in the estimation of an HCp for chronic toxicity.  First, the definition 
of a “chronic effect” is not always consistent, with some researchers classifying any toxicity test 
with a duration longer than an acute exposure period as a chronic test, whereas others apply more 
stringent standards (e.g., only results of full or partial life-cycle tests, as defined in the 1985 
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Guidelines). Second, chronic test results (NOEC, LOEC and MATC) indicate an uncertain (or at 
least variable) degree of effect, though use of exposure-effect analysis and point estimates is 
increasing. To the extent possible, USEPA will re-analyze chronic toxicity data (currently being 
compiled in AquaChronTox) to obtain point estimates of effect (e.g., EC20s) that will be 
subsequently used for HCp estimation. Whatever the chronic test result (ECx, NOEC, etc.), 
distributional analysis of empirical data will proceed largely as described in sections above (4.2.1 
– 4.2.2). Proposed analyses that will be unique to chronic data include estimation of acute-
chronic ratios. 
 
In general, fewer chronic test results are available compared to acute tests.  This naturally leads 
to investigation of methods to supplement chronic data through analysis of the relationship 
between acute and chronic toxicity. With paired acute and chronic data this is a straightforward 
exercise and generates a distribution of ACRs. Historically, researchers have used quantiles 
(often the 80th percentile) of the ACR distribution to specify a default ACR (Host et al. 1995, 
TenBrook et al. 2010). When paired data do not exist, several methods may be applied, making 
use of predictive methods (see Tools paper).  The proposed analyses will include the following 
evaluations of the potential for using ACRs to strengthen estimates of chronic HCp and cl

pHC : 
 

1)   Use “data rich” chemicals to compile a distribution of ratios of HCp,acute to HCp,chronic 
and examine both the variance and quantiles of the resulting distribution. 

2)  Evaluate alternatives for estimating an ACR from chronic toxicity values for which 
paired acute values are not available, including ICE, QSARs, read-across, and using 
acute values from closely-related species (see Tools paper for a description of these 
methods). 

3)  Evaluate and develop guidance for applying read-across methods to estimate chronic 
values and ACRs for species having acute data but no chronic data. 

4) Evaluate time-concentration effect (TCE) models (Mayer et al. 1994) for predicting 
results of chronic toxicity tests, including relationships between mortality and 
sublethal endpoints under chronic exposure. 

5) Use screened chronic EC20s from AquaChronTox to determine the degree to which 
species-specific ACRs are predictable within AOPs, with a particular focus on well-
developed methods for the narcosis AOP (Di Toro et al. 2000; Undine and DiToro 
2009). 

6) Development of AOP-specific default ACRs for all chemicals within a specific AOP by 
using a percentile of the distribution of available empirical ACRs across all taxa for 
the most sensitive taxa for each chemical where valid ACRs are available.  

 
 
5. Potential Approach for Deriving Aquatic Life Screening Values for Chemicals with Limited 

Datasets 
 
One of the objectives of this effort is to provide a conceptual approach that may be used to 
integrate chemical-specific data, tools and methods for deriving community level benchmarks 
(i.e., ALSVs) that may be used by States and Tribes to set scientifically defensible water quality 
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standards for pollutants for which USEPA Aquatic Life Water Quality Criteria are not yet 
available, and to interpret pesticide monitoring data. This is of particular interest for chemicals 
with limited toxicity data. Based on the information described above and in the tools paper, there 
are multiple approaches that may be used to accomplish this objective. Although the USEPA has 
not yet evaluated the specific sensitivity distribution and extrapolation factor methods described 
above, these methods may be considered to characterize the effects of chemicals to aquatic 
organisms. The appropriateness of specific methods may depend upon the amount of available 
data, the type of available data (e.g., specific species for which toxicity data are available) and 
the mode of action of the chemical.  
 
This section presents a potential framework for determining when to use different methods for 
chemicals with limited data. This framework is intended as an illustration of how various 
methods described in this paper and tools described in the tools white paper may be integrated to 
characterize the effects of a chemical on aquatic communities (not specific taxa). It is expected 
that once the methods described above are reviewed that this framework will be revised to 
incorporate the methods determined to have the greatest utility. 
 
The term used to represent the community level benchmark that is derived from this framework 
is the aquatic life screening value (ALSV).  Since different approaches are available for 
characterizing acute and chronic toxicity data, two separate ALSV frameworks are described 
below. Since the ALSV may be considered by USEPA, States and Tribes to derive scientifically 
defensible water quality criteria, and because water quality criteria established using the 1985 
Guidelines are set to one half of the fifth percentile of a sensitivity distribution, the measure of 
effect for the acute ALSV is also set to one half of the HC5 of a sensitivity distribution, and the 
chronic ALSV is set to the HC5 of the distribution of chronic toxicity data. Due to uncertainty 
associated with limited data used to derive HC5 values, ALSV calculations should incorporate 
conservative estimate of the HC5. 
 

5.1. Derivation of Acute ALSV 
 
A conceptual framework for deriving the acute ALSV is provided in Figure 4. The first step in 
deriving an acute ALSV is to compile all available acute toxicity data for aquatic animals. Data 
acceptability is based on standards established by OW (USEPA 1985) and by OPP (USEPA 
1994, USEPA 2004). As noted previously, acute toxicity test results for aquatic invertebrates are 
defined as 48-h or 96-h EC50 or LC50 values. For vertebrates, acute toxicity test results are 
defined as 96-h LC50s.  
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Figure 4. Conceptual framework for deriving acute ALSV. 
 
 
Once the acute toxicity database has been developed for a chemical, it is necessary to determine 
whether the empirical data can be supplemented with predicted or estimated toxicity data. This 
can be determined by considering the chemical’s mode of action in the context of the utility of 
available tools. More information on specific tools and their applicability to chemicals with 
specific adverse outcome pathways is provided in the tools white paper. If toxicity data can be 
predicted or estimated for a chemical, then these data can be combined with available empirical 
data to represent the acute toxicity database for that chemical. If tools are not available to 
reliably predict or estimate the acute toxicity of the chemical, then the empirical data alone will 
represent the acute toxicity database for the chemical. 
 
Once the acute toxicity database is available for a chemical, an ALSV can be derived. As noted 
above, there are two major approaches that may be used to derive an HC5. Extrapolation factors 
based on extrapolation from the most sensitive toxicity data to the HC5 of a sensitivity 
distribution may be used. Also, an HC5 may be derived from sensitivity distribution based on the 
mean and variance of the acute toxicity database. The specific extrapolation factors and 
distribution methods that may be most appropriate for various situations (considering number of 
available toxicity data and adverse outcome pathway of a chemical) will be determined after 
USEPA has evaluated the specific methods described above. 
 

5.2. Derivation of Chronic ALSV 
 

A conceptual framework for deriving the acute ALSV is provided in Figure 5. Like the acute 
ALSV, derivation of the chronic ALSV starts with compiling acceptable chronic toxicity test 
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results for aquatic animals. Chronic toxicity test results, which are based on various sublethal 
effects and exposure durations, differ much more from each other compared to acute toxicity test 
results, which are set durations of exposure most often based on mortality. In order to compare 
the relative sensitivities of species chronically exposed to a chemical, effort should be invested to 
make the test results as consistent as possible in terms of duration of exposure and the measure 
of effects (e.g., NOECs, MATCs). Although limited tools are available for estimating chronic 
toxicity data, it may be possible to supplement the empirical toxicity data using predicted or 
estimated chronic values (e.g., using ACRs or ACE models applied to acute toxicity data).  
 
 

 
 
Figure 5. Conceptual framework for deriving chronic ALSV. 
 
Once the chronic toxicity database is established, several options are available for deriving the 
HC5. One option is to use a sensitivity distribution to derive the HC5. A second option would be 
to apply a regression approach to derive the HC5 (e.g., de Zwart 2002, Duboudin et al. 2004).  
Another option, which is similar to the one used in the 1985 Guidelines, would be to apply an 
ACR to the acute HC5, which is derived for the acute ALSV. The ACR may be based on 
empirical toxicity data, a combination of empirical and predicted or estimated data for specific 
species or a default values. Default values may be generically applied to all chemicals (e.g., 
Great Lakes Water Quality Guidance), or it may be possible to use a default ACR based on the 
mode of action of the chemical (e.g., Raimondo et al. 2007).  
 

5.3. Illustration of one approach for deriving ALSVs 
 
Although there are many different tools and methods available for estimating an ALSV, one 
approach is used here to illustrate a potential way to derive acute and chronic ALSVs when data 
are limited.  The approach for deriving the acute ALSV involves the use of the Web-ICE tool.  
Within Web-ICE there is an option for calculating a SSD with toxicity test results from as few as 
1 species.  This SSD is a log-logistic distribution (de Zwart 2002) of estimated toxicity data. In 
this example, the example data set used previously in this paper (Table 3) were used to derive a 
HC5 of 12 μg/L (95%CI = 1.1-89) for carbaryl.  This value is similar to the HC5 value generated 
for the fitted log-logistic distribution from the full carbaryl data set, which was 10.2 µg/L (Table 
1). Therefore, the acute ALSV for this example would be calculated by dividing the HC5 by 2, 
resulting in a value of 6 μg/L. Note that this HC5 estimate is based on estimated toxicity data for 
42 species of freshwater and saltwater fish and invertebrates. The HC5 estimate does not include 
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estimated toxicity test results from species where the input values were not within model 
maximum and minimum values. 
 
The chronic ALSV could be calculated by applying an ACR to the HC5 from the acute data. 
Raimondo et al. (2007) published ACRs based on mode of action. The median and 90th 
percentile ACRs for AChE inhibition by carbamates are 8.9 and 28, respectively. If the median 
ACR of 8.9 were applied to the acute HC5, the resulting chronic HC5 would be 1.3 μg/L.  If the 
90th percentile ACR were applied to the acute HC5, the chronic HC5 would be 0.43 μg/L. One of 
these chronic HC5 values could be used to represent the chronic ALSV. 
 
 
6. Conclusions 
 
This paper identifies several different methods for extrapolating from available toxicity data to 
measures of effect relevant to the survival, growth and reproduction of aquatic vertebrates, 
invertebrates and animal communities. These methods include: sensitivity distributions and 
extrapolation factors. This paper describes the analyses that USEPA proposes to conduct to 
determine the utility of the specific methods in characterizing effects to aquatic organisms both 
in data-rich and data-limited instances. This paper also provides a conceptual approach that may 
be used to integrate chemical-specific data, tools and methods for deriving community level 
benchmarks (i.e., ALSVs) that may be used by USEPA, States and Tribes to derive scientifically 
defensible water quality criteria or in ecological risk assessments. After the USEPA finishes its 
analysis of available tools and methods, this conceptual approach will be refined to incorporate 
specific methods and considerations for deriving ALSVs for chemicals. 
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0BAppendix A. Acute toxicity data available for Carbaryl in Web-ICE master database. 
 
Common Name Species Taxa Test 

Duration 
Dose 
Type 

Test 
Type 

Acute Toxicity  
Value (ug/L) 

Data Source 
Category 

African clawed frog Xenopus laevis Amphibia 96h LC50 S 1730 ECOTOX 

Amphipod Echinogammarus 
tibaldii Crustacea 96h LC50 NR 6.5 ECOTOX 

Amphipod Gammarus fasciatus Crustacea 96h LC50 S 26 Mayer and Elliersieck 
Amphipod Gammarus italicus Crustacea 96h LC50 NR 28 ECOTOX 
Amphipod Gammarus lacustris Crustacea 96h LC50 S 22 Mayer and Elliersieck 

Amphipod Gammarus 
pseudolimnaeus Crustacea 96h LC50 S 7.2 ECOTOX 

Amphipod Gammarus 
pseudolimnaeus Crustacea 96h LC50 S 7 ECOTOX 

Amphipod Gammarus 
pseudolimnaeus Crustacea 96h LC50 S 13 ECOTOX 

Amphipod Gammarus 
pseudolimnaeus Crustacea 96h LC50 S 16 ECOTOX 

Amphipod Gammarus 
pseudolimnaeus Crustacea 96h LC50 S 16 ECOTOX 

Amphipod Gammarus 
pseudolimnaeus Crustacea 96h LC50 S 7.2 Mayer and Elliersieck 

Amphipod Gammarus 
pseudolimnaeus Crustacea 96h LC50 S 7 Mayer and Elliersieck 

Amphipod Pontoporeia hoyi Crustacea 96h LC50 R 250 ECOTOX 
Apache trout Oncorhynchus gilae Fishes 96h LC50 S 1435 Mayer 2008 
Apache trout Oncorhynchus gilae Fishes 96h LC50 S 1500 ECOTOX 
Apache trout Oncorhynchus gilae Fishes 96h LC50 S 1540 ECOTOX 
Apache trout Oncorhynchus gilae Fishes 96h LC50 S 1650 ECOTOX 
Apache trout Oncorhynchus gilae Fishes 96h LC50 S 1430 ECOTOX 
Appalachian crayfish Cambarus bartonii Crustacea 96h LC50 R 2240 ECOTOX 
Appalachian crayfish Cambarus bartonii Crustacea 96h LC50 R 2900 ECOTOX 
Appalachian crayfish Cambarus bartonii Crustacea 96h LC50 R 2410 ECOTOX 
Appalachian crayfish Cambarus bartonii Crustacea 96h LC50 R 2230 ECOTOX 
Appalachian crayfish Cambarus bartonii Crustacea 96h LC50 R 940 ECOTOX 
Argentine common toad Bufo arenarum Amphibia 96h LC50 S 24640 ECOTOX 
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Atlantic salmon Salmo salar Fishes 96h LC50 S 1150 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 905 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 1430 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 1350 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 1180 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 4500 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 1000 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 900 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 1270 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 500 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 2010 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 1100 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 1000 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 2070 Mayer and Elliersieck 
Atlantic salmon Salmo salar Fishes 96h LC50 S 250 Mayer and Elliersieck 
Backswimmer Notonecta undulata Insecta 96h LC50 S 200 ECOTOX 
Backswimmer Notonecta undulata Insecta 48h LC50 S 360 ECOTOX 
Bayou darter Etheostoma rubrum Fishes 96h LC50 S 2020 ECOTOX 
Black bullhead Ameiurus melas Fishes 96h LC50 S 20000 Mayer and Elliersieck 
Black crappie Pomoxis nigromaculatus Fishes 96h LC50 S 2600 OPP 
Black crappie Pomoxis nigromaculatus Fishes 96h LC50 S 2600 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 14000 OPP 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 5230 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 5200 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 8200 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 6760 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 5600 ECOTOX 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 1000 ECOTOX 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 2200 ECOTOX 
Bluegill Lepomis macrochirus Fishes 96h LC50 F 5047 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 6200 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 7400 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 2600 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 1800 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 5200 Mayer and Elliersieck 
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Bluegill Lepomis macrochirus Fishes 96h LC50 S 7000 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 16000 Mayer and Elliersieck 
Bluegill Lepomis macrochirus Fishes 96h LC50 S 5400 Mayer and Elliersieck 
Bonytail Gila elegans Fishes 96h LC50 S 3490 Literature 
Bonytail Gila elegans Fishes 96h LC50 R 2020 ECOTOX 
Bonytail Gila elegans Fishes 96h LC50 R 650 ECOTOX 
Bonytail Gila elegans Fishes 96h LC50 S 3500 ECOTOX 
Bonytail Gila elegans Fishes 96h LC50 S 3490 ECOTOX 
Bonytail Gila elegans Fishes 96h LC50 S 3580 ECOTOX 
Bonytail Gila elegans Fishes 96h LC50 S 3400 ECOTOX 
Bonytail Gila elegans Fishes 96h LC50 S 3044 Mayer 2008 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 1130 Mayer and Elliersieck 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 2130 Mayer and Elliersieck 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 2100 Mayer and Elliersieck 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 1200 Mayer and Elliersieck 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 4560 Mayer and Elliersieck 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 1290 Mayer and Elliersieck 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 1450 ECOTOX 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 1070 ECOTOX 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 1100 ECOTOX 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 5400 ECOTOX 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 2500 ECOTOX 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 900 ECOTOX 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 3700 ECOTOX 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 680 Mayer and Elliersieck 
Brook trout Salvelinus fontinalis Fishes 96h LC50 S 3000 Mayer and Elliersieck 
Brown trout Salmo trutta Fishes 96h LC50 S 700 ECOTOX 
Brown trout Salmo trutta Fishes 96h LC50 F 2000 Mayer and Elliersieck 
Brown trout Salmo trutta Fishes 96h LC50 S 6300 Mayer and Elliersieck 
Brown trout Salmo trutta Fishes 96h LC50 S 1950 ECOTOX 
Cape Fear shiner Notropis mekistocholas Fishes 96h LC50 S 4510 Literature 
Cape Fear shiner Notropis mekistocholas Fishes 96h LC50 S 4264 Mayer 2008 
Cape Fear shiner Notropis mekistocholas Fishes 96h LC50 S 4510 ECOTOX 
Catla Gibelion catla Fishes 96h LC50 R 6400 ECOTOX 
Channel catfish Ictalurus punctatus Fishes 96h LC50 S 7790 Mayer and Elliersieck 
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Channel catfish Ictalurus punctatus Fishes 96h LC50 S 15800 Mayer and Elliersieck 
Channel catfish Ictalurus punctatus Fishes 96h LC50 NR 140 ECOTOX 
Channel catfish Ictalurus punctatus Fishes 96h LC50 S 1300 ECOTOX 
Channel catfish Ictalurus punctatus Fishes 96h LC50 S 1560 ECOTOX 
Channel catfish Ictalurus punctatus Fishes 96h LC50 F 17300 Mayer and Elliersieck 

Chinook salmon Oncorhynchus 
tshawytscha Fishes 96h LC50 F 2400 Mayer and Elliersieck 

Climbing perch Anabas testudineus Fishes 96h LC50 R 5500 ECOTOX 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 4340 Mayer and Elliersieck 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 2700 Mayer and Elliersieck 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 2400 Mayer and Elliersieck 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 1750 Mayer and Elliersieck 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 1150 Mayer and Elliersieck 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 997 ECOTOX 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 1300 ECOTOX 
Coho salmon Oncorhynchus kisutch Fishes 96h LC50 S 764 ECOTOX 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 SR 1310 Literature 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 S 3070 Literature 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 R 1310 ECOTOX 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 S 3100 ECOTOX 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 S 3070 ECOTOX 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 S 4060 ECOTOX 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 S 2320 ECOTOX 
Colorado squawfish Ptychocheilus lucius Fishes 96h LC50 S 3038 Mayer 2008 
Common carp Cyprinus carpio Fishes 96h LC50 S 4220 ECOTOX 
Common carp Cyprinus carpio Fishes 96h LC50 S 5280 Mayer and Elliersieck 
Common carp Cyprinus carpio Fishes 96h LC50 S 1700 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 5000 Mayer and Elliersieck 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 2221 Mayer 2008 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 1553 Mayer 2008 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 2250 Literature 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 3950 Mayer and Elliersieck 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 6700 Mayer and Elliersieck 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 970 Mayer and Elliersieck 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 7100 Mayer and Elliersieck 
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Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 2169 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 1500 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 NR 3950 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 NR 970 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 NR 3950 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 NR 6000 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 NR 5000 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 2300 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 2250 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 2530 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 2000 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 6000 Mayer and Elliersieck 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 1600 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 1550 ECOTOX 
Cutthroat trout Oncorhynchus clarkii Fishes 96h LC50 S 1550 ECOTOX 
Daphnid Ceriodaphnia dubia Crustacea 48h EC50 R 3.06 ECOTOX 
Daphnid Ceriodaphnia dubia Crustacea 48h LC50 S 11.6 ECOTOX 
Daphnid Daphnia magna Crustacea 48h EC50 R 10.1 ECOTOX 
Daphnid Daphnia magna Crustacea 48h LC50 S 9.5 ECOTOX 
Daphnid Daphnia magna Crustacea 96h LC50 S 3280 ECOTOX 
Daphnid Daphnia magna Crustacea 48h LC50 S 16760 ECOTOX 
Daphnid Daphnia magna Crustacea 48h LC50 S 7.2 ECOTOX 
Daphnid Daphnia magna Crustacea 48h LC50 R 1900 ECOTOX 
Daphnid Daphnia magna Crustacea 48h LC50 R 5400 ECOTOX 
Daphnid Daphnia magna Crustacea 48h LC50 NR 230 ECOTOX 
Daphnid Daphnia magna Crustacea 48h EC50 S 5.6 Mayer and Elliersieck 
Daphnid Daphnia obtusa Crustacea 48h EC50 S 0.0115 ECOTOX 
Daphnid Daphnia pulex Crustacea 48h LC50 S 6.4 Mayer and Elliersieck 
Daphnid Simocephalus serrulatus Crustacea 48h EC50 S 8.1 Mayer and Elliersieck 
Daphnid Simocephalus serrulatus Crustacea 48h EC50 S 7.6 Mayer and Elliersieck 
Daphnid Simocephalus serrulatus Crustacea 48h EC50 S 11 Mayer and Elliersieck 
Desert pupfish Cyprinodon macularius Fishes 96h LC50 S 7710 ECOTOX 
Dragonfly Austrolestes colensonis Insecta 48h LC50 S 3130.9 ECOTOX 

Dragonfly Xanthocnemis 
zealandica Insecta 48h LC50 S 600 ECOTOX 
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Fathead minnow Pimephales promelas Fishes 96h LC50 S 7000 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 13000 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 F 8930 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 F 6670 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 F 10400 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 F 9470 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 5210 Literature 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 5171 Mayer 2008 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 5200 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 5210 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 7430 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 5860 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 5720 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 5240 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 4380 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 3940 ECOTOX 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 7700 Mayer and Elliersieck 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 14000 Mayer and Elliersieck 
Fathead minnow Pimephales promelas Fishes 96h LC50 S 14600 Mayer and Elliersieck 
Flying barb Esomus danricus Fishes 96h LC50 NR 34670 ECOTOX 
Fountain darter Etheostoma fonticola Fishes 96h LC50 S 2020 Literature 
Fountain darter Etheostoma fonticola Fishes 96h LC50 S 2020 ECOTOX 
Fountain darter Etheostoma fonticola Fishes 96h LC50 S 1615 Mayer 2008 
Gangetic mystus Mystus cavasius Fishes 96h LC50 R 4600 ECOTOX 
Goldfish Carassius auratus Fishes 96h LC50 S 12800 Mayer and Elliersieck 
Goldfish Carassius auratus Fishes 96h LC50 S 13200 Mayer and Elliersieck 
Gray treefrog Hyla versicolor Amphibia 96h LC50 S 2470 ECOTOX 
Green frog Rana clamitans Amphibia 96h LC50 S 11320 ECOTOX 
Green frog Rana clamitans Amphibia 96h LC50 S 17360 ECOTOX 
Green frog Rana clamitans Amphibia 96h LC50 S 22020 ECOTOX 
Green sunfish Lepomis cyanellus Fishes 96h LC50 S 9460 Mayer and Elliersieck 
Green sunfish Lepomis cyanellus Fishes 96h LC50 S 11200 Mayer and Elliersieck 
Greenthroat darter Etheostoma lepidum Fishes 96h LC50 S 2140 Literature 
Greenthroat darter Etheostoma lepidum Fishes 96h LC50 S 2143 Mayer 2008 
Greenthroat darter Etheostoma lepidum Fishes 96h LC50 S 2140 ECOTOX 
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Greenthroat darter Etheostoma lepidum Fishes 96h LC50 S 2140 ECOTOX 
Guppy Poecilia reticulata Fishes 96h LC50 S 6500 ECOTOX 
Guppy Poecilia reticulata Fishes 96h LC50 S 9740 ECOTOX 
Guppy Poecilia reticulata Fishes 96h LC50 S 3840 ECOTOX 
Isopod Caecidotea brevicauda Crustacea 96h LC50 S 280 Mayer and Elliersieck 

Kuncho river prawn Macrobrachium 
lamarrei Crustacea 96h LC50 R 19 ECOTOX 

Lake trout Salvelinus namaycush Fishes 96h LC50 F 2300 Mayer and Elliersieck 
Lake trout Salvelinus namaycush Fishes 96h LC50 S 872 Mayer and Elliersieck 
Lake trout Salvelinus namaycush Fishes 96h LC50 S 920 Mayer and Elliersieck 
Lake trout Salvelinus namaycush Fishes 96h LC50 S 690 Mayer and Elliersieck 
Lake trout Salvelinus namaycush Fishes 96h LC50 S 740 Mayer and Elliersieck 
Largemouth bass Micropterus salmoides Fishes 96h LC50 S 6400 OPP 
Largemouth bass Micropterus salmoides Fishes 96h LC50 S 6400 Mayer and Elliersieck 
Leon springs pupfish Cyprinodon bovinus Fishes 96h LC50 S 2017 Mayer 2008 
Leon springs pupfish Cyprinodon bovinus Fishes 96h LC50 S 4540 ECOTOX 
Midge Chironomus plumosus Insecta 48h EC50 S 10 ECOTOX 
Mississippi grass 
shrimp 

Palaemonetes 
kadiakensis Crustacea 96h LC50 S 5.6 Mayer and Elliersieck 

Mysid Mysis relicta Crustacea 96h LC50 R 230 ECOTOX 
Oligochaete Lumbriculus variegatus Annelida 96h LC50 S 8200 ECOTOX 
Oligochaete Lumbriculus variegatus Annelida 48h LC50 S 13000 ECOTOX 
Paper pondshell Anodonta imbecillis Mollusca 48h LC50 R 25600 ECOTOX 
Paper pondshell Anodonta imbecillis Mollusca 48h LC50 R 23700 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1880 Literature 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 F 1330 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 3000 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1950 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1450 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 780 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 3500 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1600 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2300 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2080 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1900 Mayer and Elliersieck 
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Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1360 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1460 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1090 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1200 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1866 Mayer 2008 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1350 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1470 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 R 5400 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 R 4330 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 5400 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2830 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 4340 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 800 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1500 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 800 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2200 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 900 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2200 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2800 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1900 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1880 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 3110 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2260 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2070 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 2000 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1240 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1220 ECOTOX 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1200 Mayer and Elliersieck 
Rainbow trout Oncorhynchus mykiss Fishes 96h LC50 S 1100 Mayer and Elliersieck 
Razorback sucker Xyrauchen texanus Fishes 96h LC50 S 4350 Literature 
Razorback sucker Xyrauchen texanus Fishes 96h LC50 S 4325 Mayer 2008 
Razorback sucker Xyrauchen texanus Fishes 96h LC50 S 4400 ECOTOX 
Razorback sucker Xyrauchen texanus Fishes 96h LC50 S 4350 ECOTOX 
Razorback sucker Xyrauchen texanus Fishes 96h LC50 S 4420 ECOTOX 
Razorback sucker Xyrauchen texanus Fishes 96h LC50 S 4290 ECOTOX 
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Redear sunfish Lepomis microlophus Fishes 96h LC50 S 11200 ECOTOX 
Shortnose sturgeon Acipenser brevirostrum Fishes 96h LC50 S 1810 Literature 
Shortnose sturgeon Acipenser brevirostrum Fishes 96h LC50 S 1949 Mayer 2008 
Shortnose sturgeon Acipenser brevirostrum Fishes 96h LC50 S 1810 ECOTOX 
Snail Bellamya bengalensis Mollusca 96h LC50 S 9020 ECOTOX 
Snail Bellamya bengalensis Mollusca 96h LC50 S 4320 ECOTOX 
Snail Bellamya bengalensis Mollusca 96h LC50 S 13500 ECOTOX 
Snail Bellamya bengalensis Mollusca 96h LC50 S 9600 ECOTOX 
Southern leopard frog Rana sphenocephala Amphibia 96h LC50 S 7964 Mayer 2008 
Southern leopard frog Rana sphenocephala Amphibia 96h LC50 S 8400 ECOTOX 
Spotfin Chub Erimonax monachus Fishes 96h LC50 S 3410 Literature 
Spotfin Chub Erimonax monachus Fishes 96h LC50 S 3416 Mayer 2008 
Spotfin Chub Erimonax monachus Fishes 96h LC50 S 3410 ECOTOX 
Stonefly Claassenia sabulosa Insecta 96h LC50 S 5.6 Mayer and Elliersieck 
Stonefly Pteronarcella badia Insecta 96h LC50 S 29 Mayer and Elliersieck 
Stonefly Pteronarcella badia Insecta 96h LC50 S 13 Mayer and Elliersieck 
Stonefly Pteronarcella badia Insecta 96h LC50 S 11 Mayer and Elliersieck 
Stonefly Pteronarcella badia Insecta 96h LC50 S 29 ECOTOX 
Stonefly Pteronarcella badia Insecta 96h LC50 S 13 ECOTOX 
Stonefly Pteronarcella badia Insecta 96h LC50 S 11 ECOTOX 
Stonefly Pteronarcella badia Insecta 96h LC50 S 1.7 Mayer and Elliersieck 
Stonefly Pteronarcys californica Insecta 96h LC50 S 2 ECOTOX 
Stonefly Pteronarcys californica Insecta 96h LC50 S 4.8 Mayer and Elliersieck 
Striped black fly Simulium vittatum Insecta 48h LC50 S 23.72 ECOTOX 
Striped catfish Mystus vittatus Fishes 96h LC50 R 2400 ECOTOX 
Striped catfish Mystus vittatus Fishes 96h LC50 S 11500 ECOTOX 
Swamp lymnaea Lymnaea stagnalis Mollusca 48h LC50 S 21000 ECOTOX 
Tiger frog Rana tigrina Amphibia 96h LC50 R 5680 ECOTOX 
Two-spot barb Puntius ticto Fishes 96h LC50 S 3700 ECOTOX 
Virile crayfish Orconectes virilis Crustacea 96h LC50 R 1890 ECOTOX 
Western toad Bufo boreas Amphibia 96h LC50 S 12300 Literature 
Western toad Bufo boreas Amphibia 96h LC50 S 12303 Mayer 2008 
Western toad Bufo boreas Amphibia 96h LC50 S 12300 ECOTOX 
Western toad Bufo boreas Amphibia 96h LC50 S 12310 ECOTOX 
Yellow fever mosquito Aedes aegypti Insecta 96h LC50 S 336 ECOTOX 
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Yellow perch Perca flavescens Fishes 96h LC50 F 1420 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 3750 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 5000 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 350 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 480 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 3800 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 3400 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 5400 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 5100 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 4200 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 4000 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 745 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 1200 Mayer and Elliersieck 
Yellow perch Perca flavescens Fishes 96h LC50 S 13900 Mayer and Elliersieck 
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1BAppendix B. Equations for the Parametric sensitivity distribution Distributions 
 
In the equations below, we use standard statistical notation to describe common functions 
associated with probability distributions.  The probability density function (pdf) will be referred 
to as f.  The cumulative distribution function (cdf) will be referred to as F.  The quantile 
function, which is the inverse of the cdf, will be referred to as F-1.  We provide formulae for the 
mean and variance of each distribution as functions of the parameters of the distribution.  While 
these equate to the parameters μ and σ for the normal distribution, this will not generally be the 
case, so we avoid using those symbols for the mean and variance, respectively.   
 
Location/scale family of distributions 
 
The following four distributions (normal, logistic, triangular and gompertz) are from the family 
of distributions often referred to as the location/scale family.  They are characterized by a 
location parameter and a scale parameter.  The standard form is a reference form of the 
distribution with known parameter values, often chosen so that ( ) 0E x =  and ( ) 1E s = .  For 
example, the standard normal distribution has 0μ =  and 1σ = .  For a location/scale distribution, 
any parameterization can be expressed as a linear transformation of the standard form.  Such 
transformations have played a large role in the development of the theory of assessment factors 
for sensitivity distributions, which are typically derived for the standard form and shown to apply 
to all other parameterizations. 
 
Assessment Factors 
 
For standard forms in the location scale family, the distance between the mean and the HC5 is 
proportional to the standard deviation of the distribution.  This fact has allowed the development 
of distribution-specific assessment factors that depend only on sample size and the desired level 
of confidence with which the HC5 is to be bounded.  For example, in a normal distribution, the 
fifth quantile is approximately 1.64 standard deviation units to the left of the mean.  In other 
words, in a standard normal distribution: 
 

( )1 0.05 1.64F μ σ− ≈ − .   
 

More generally, letting Kdist represent the scaled distance between the mean and the fifth 
percentile in the standard form of a specific distribution, then for any parameterization of that 
distribution, ( )1 0.05 distF Kμ σ− ≈ − .  Because µ and σ are unknown, the sample mean x  
(Equation 1) and standard deviation s (Equation 2) are substituted and it is important to 
characterize, the expected sampling distribution of the statistic distx K s− around a “true” fifth 
percentile ( distKμ σ− ).  Assessment factors (k), at a given level of confidence (say 95%), are 
chosen such that 95% of the expected distribution of distx K s−   would lie to the right of x ks− .  
In the case of the standard normal, the sampling distribution of x ks−  follows a t distribution 
with N-1 degrees of freedom (Aldenberg et al. 2002).  However, in practice, the sampling 
distribution of the fifth percentile is most often estimated through computer simulation 
(Aldenberg and Slob 1993, Pennington 2003).  With known assessment factors, the 
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concentration that represents the 5th percentile EC50 value (untransformed) of the distribution 
(HC5) can be estimated with a given level of confidence (corresponding to the value of k) using 
the following equation: 
 

 5 10x ksHC −=  
 
Goodness of Fit 
 
Relatively little work has been done on assessing goodness of fit for fitted sensitivity 
distributions.  Newman et al. (2000) calculated goodness-of-fit tests for 30 sets of effects data 
(NOEC, EC50 and LC50 values) fitted with a normal distribution and found that the assumption 
of (log) normality was often violated. 
 
Normal distribution  
 
A normal probability distribution describes data that are dispersed symmetrically around a mean 
value, forming a characteristic “bell shaped” probability density. The normal distribution has two 
parameters, μ and σ .  Assuming the effects data have been log10 transformed, the equations for 
the pdf, cdf, and quantile function are: 
 

 ( )
( )2

221| , e
2

x

f x
μ
σμ σ

π

−
−

=  

 ( ) ( )| ,
x

F x f z dzμ σ
−∞

= ∫  

( ) ( )1F p p− = Φ  
 
Neither the cdf (F) nor quantile function (F-1) have explicit forms.  However, both can be readily 
approximated to arbitrary precision in most mathematical software. 

 
Mean: 
 μ  
 
Variance: 
 2σ  
 
The standard normal distribution has mean 0 and unit variance when: 

0
1

μ
σ
=
=

 

 
Parameters for the normal distribution (µ and σ) can be estimated using the typical moment 
estimators ( x  and s, as given in equations B1 and B2).    Maximum likelihood estimates are: 
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When sample size is large, x and s approach μ and σ, respectively and 1.64x s− is a precise 
estimator for 1.64μ σ− . When the sample size is small (i.e., N<30), a student’s t-distribution can 
be used to describe the expected variation in 1.64x s−  around 1.64μ σ− .  Thus, for the log 
normal distribution, assessment factors (ks, Aldenberg and Jaworska 2000), dependent on sample 
size and desired confidence level, can be derived from a t distribution with N − 1 degrees of 
freedom.  Table B1 provides assessment factors from Aldenberg and Jaworska (2000) for 
generating 95% and 50% confidence limits on the 5th percentile of the sensitivity distribution.  
Aldenberg et al. (2002) provide a more extensive table with many more sample sizes 
represented. 
 
Table B1. t-value (one-tailed probability) and lower k values (representing 95% confidence in resulting HC5) 
and median k values (representing 50% confidence) for deriving HC5 values from log-normal distributions. k 
values from Aldenberg and Jaworska (2000).  

N t-value 
Aldenberg and Jaworska (2000)  
median lower 

2 6.3138 2.3387 26.2597 
3 2.9200 1.9384 7.6956 
4 2.3534 1.8295 5.1439 
5 2.1318 1.7793 4.2027 
6 2.0150 1.7505 3.7077 
7 1.9432 1.7318 3.3995 
8 1.8946 1.7187 3.1873 
9 1.8595 1.7091 3.0312 
10 1.8331 1.7016 2.9110 
11 1.8125 1.6957 2.8150 
12 1.7959 1.6910 2.7363 
13 1.7823 1.6870 2.6705 
14 1.7709 1.6837 2.6144 
15 1.7613 1.6808 2.5660 
20 1.7291 1.6712 2.3960 
30 1.6991 1.6620 2.2198 
50 1.6766 1.6549 2.0650 
100 1.6604 1.6498 1.9265 
200 1.6525 1.6473 1.8372 
500 1.6479 1.6458 1.7630 
∞ 1.6449 1.6449 1.6449 
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Wagner and Løkke (1991) used a logarithmic normal distribution in estimating percentiles on 
species sensitivity distributions. This approach involves using the mean and standard deviation 
of natural log transformed effects concentrations for available species exposed to the same 
stressor. Later, Aldenberg and Joworska (2000) used the same method, but used a log10 
transformation.  The two methods reached identical conclusions, as expected.  
 
Logistic distribution 
 
The logistic distribution shares the “bell shape” probability density with the normal distribution, 
but differs from the normal distribution in the tails. This difference is particularly relevant for 
this analysis because it is concerned with the 5th percentile of the distribution, which lies in the 
tails. Like the normal distribution, the log-logistic distribution is described by two parameters, α 
and β.  Various log-logistic sensitivity distribution approaches have been suggested in the 
sensitivity distribution literature (Kooijman 1987; Van Straalen and Denneman 1989; Aldenberg 
and Slob 1993; de Zwart 2002). 
 

( ) ( )( )
( )( )( )2

exp /
: ,

1 exp /

x
f x

x

α β
α β

β α β

− −
=

+ − −
 

 

( ) ( )( )
1: ,

1 exp /
F x

x
α β

α β
=

+ − −
 

 

( )1 ln
1

pF p
p

α β− ⎛ ⎞
= + ⎜ ⎟−⎝ ⎠

 

 
Mean: 
 α  
 
Variance: 

 
2

2

3
π β  

The standard logistic distribution has mean 0 and variance 
2

3
π  when: 

0
1

α
β
=
=

 

 
The logistic distribution is typically fit using the following moment estimators: 

ˆ xα =  and 
ˆ 3sβ

π
=  
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Closed-form maximum likelihood estimates do not exist, but are easily obtained numerically.  
However, Kooijman (1987:273) found that maximum likelihood estimates of α and β tended to 
“seriously underestimate” β for small sample sizes.  Aldenberg and Slob (1993) used Monte 
Carlo simulation to derive k values ( 75HFigure 3, 76HTable B2) that can be used along with the sample 
mean and standard deviation to account for uncertainty in the HC5.  
 
Table B2. Lower k values (representing 95% confidence in resulting HC5) and median k values (representing 
50% confidence) for deriving HC5 values from log-logistic distribution (from Aldenberg and Slob 1993). 
N median lower 
2 2.49 27.7 
3 2.05 8.14 
4 1.92 5.49 
5 1.85 4.47 
6 1.81 3.93 
7 1.78 3.59 
8 1.76 3.37 
9 1.75 3.19 
10 1.73 3.06 
11 1.72 2.96 
12 1.72 2.87 
13 1.71 2.80 
14 1.70 2.74 
15 1.07 2.68 
20 1.68 2.49 
30 1.66 2.28 
50 1.65 2.10 
100 1.64 1.95 
200 1.63 1.85 
500 1.63 1.76 
∞ 1.62 1.62 

 
Triangular distribution (general) 
 
The triangular distribution is so named for the triangular shape of its probability density function. 
The general triangular distribution is described by three parameters, a, b, and c (minimum, 
maximum and mode, respectively). Most applications of the triangular distribution to species 
sensitivity data use the two-parameter symmetric form (Fig. B1).  The triangular distribution also 
underlies the calculations of final acute values under the 1985 Guidelines. 
 

If: a x c≤ ≤  

 ( ) ( )
( )( )

2 x a
f x

b a c a
−

=
− −
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( ) ( )
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2x a
F x

b a c a
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− −

 

If: c x b< ≤  

 ( ) ( )
( )( )

2 b x
f x

b a b c
−

=
− −

 

 ( ) ( )
( )( )

2

1
b x

F x
b a b c

−
= −

− −
 

Mean: 

3
a b c+ +  

Variance: 
2 2 2

18
a b c ab ac bc+ + − − −  

A symmetric triangular distribution occurs when 
2

a bc +
= .  Substituting these into the 

above equations yields the equations for the symmetric triangular distribution. 
 

Triangular distribution (symmetric) 
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a ba x +
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 If: p ≤ 0.5 

  ( ) ( )2
1

2
p b a

F p a− −
= +  

 
 If: p > 0.5 
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( ) ( )( )2
1 1

2
p b a

F p b− − −
= +  

Mean: 

 
2

a b+  

Variance 
( )2

24
b a−

 

 
The symmetric triangular distribution has mean zero and variance 1 when: 

 
6

6

a

b

= −

=
 

 
This is the form reported and used by van Straalen (2002).  Erickson and Stephan used percentile 
methods to fit the triangular distribution, which were used to generate Figure 1. Note that the 
following moment estimators could also be used: 
 
 ˆˆ 2a x b= −  and 
 ( )ˆ 6b s x= +  
 
Van Straalen (2002) examined the quantiles of a symmetric triangular distribution for estimating 
percentiles of species at risk. Pennington (2003) used Monte Carlo simulations to develop 
assessment factors (k, described above) applicable to all symmetric triangular distributions.   
Pennington (2003) recommended 50th and 95th percentile k values that varied based on N ( 77HTable 
B3).  
 
Table B3. k values for calculating 50th and 95th percentile HC5 values from a triangular distribution 
(Pennington 2003). 
N 50th percentile 95th percentile 
2 2.3 25.5 
3 1.9 7.7 
4 1.8 5.0 
5 1.7 4.1 
6 1.7 3.6 
7 1.7 3.4 
8 1.7 3.1 

 
Gompertz distribution 
 
The gompertz distribution is the only asymmetric distribution among the four considered here 
(Fig. B1), tending to be slightly right-skewed.  Like the other three distributions it has two 
parameters (μ, β).  Newman et al. (2000) compared the performance of the gompertz distribution 
to normal and logistic distributions for sensitivity distributions and generally found the gompertz 
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to be the best of the three parametric distributions (based on χ2 analysis of fit).  However, 
Newman et al. (2000) further argued for the adoption of non-parametric bootstrapping 
approaches over all parametric methods. 
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( )x

e
F x e

μ

β

−

−
=  

( )
( ) ( )1

xx
ef x e e
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β

μ
β
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( ) ( )( )1 ln lnF p pμ β− = − −  
 
Mean: 

μ βγ+ , where γ=Euler-Mascheroni constant.   
 
Variance 

 
2 2

6
β π  

 
The standard gompertz distribution has: 

0
1

μ
β
=
=

 

Under these conditions, the gompertz distribution has mean γ and variance
2

6
π .  The gompertz 

distribution is typically fit using maximum likelihood.  Note the following moment estimators 
could also be used: 
 

 ˆ 6sβ
π

=  

 ˆˆ xμ βγ= −  
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