Exploration of Methods for Characterizing Effects of Chemical Stressors to Aquatic

Plants

November 1, 2010

Laura Dobbins¹ Michael Lewis² Sujatha Sankula³ Glen Thursby⁴

United States Environmental Protection Agency (USEPA)

¹Office of Water, Office of Science and Technology, Washington, DC

² Office of Research and Development, National Health & Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf Breeze, FL

³ Office of Pesticide Programs, Environmental Fate and Effects Division, Washington, DC

⁴ Office of Research and Development, National Health & Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI

Table of Contents

1. Executive Summary	4
2. Introduction	4
3. Existing methodologies to evaluate plant effects	6
3.1. 1985 Guidelines Method for Deriving ALWQC (OW)	6
3.2. Draft Atrazine Aquatic Life Criteria	8
3.3. Minnesota Standards for Acetochlor and Metolachlor	8
3.4 University of California-Davis Methodology	9
3.5. Ecological Effects Characterization and Benchmark Derivation (OPP)	9
3.6. Current International Methods for Incorporating Aquatic Plant Data into Aquat	ic
Life Guidelines	. 11
4. Uncertainties Associated with Aquatic Plant Toxicity Data	. 12
4.1. Variability Associated with Endpoints	. 12
4.2. Relative Sensitivity of Test Species to other Aquatic Plants	. 14
5. Relative Sensitivity of Standard Suite of Aquatic Plant Test Species	. 16
5.1. Ratios of OPP standard species endpoints to non-standard species endpoints	. 17
5.1.1. Non-vascular species	. 17
5.1.2. Vascular species	. 21
5.2. Species sensitivity distributions	. 25
6. Potential approach for deriving plant ALSV	29
7. Conclusions	. 30
8. References	. 31
Appendix A. Vascular plant (VP) data used in creating ratios comparing Lemna to oth	er
VPs	. 36
Appendix B. Data for Species Sensitivity Distribution plots	. 40

List of Acronyms

ALSV	Aquatic Life Screening Value
ALWQC	Aquatic Life Water Quality Criteria
АРНА	American Public Health Association
ASTM	American Society for Testing and Materials
CWA	Clean Water Act
EC _x	Effective Concentration for x% of response
EF	Extrapolation Factor
EPA	Environmental Protection Agency
EU	European Union
FIFRA	Federal Insecticide, Fungicide and Rodenticide Act
FAV	Final Acute Value
FCV	Final Chronic Value
FPV	Final Plant Value
GMAV	Genus Mean Acute Value
HC _x	Hazardous concentration threshold for x% of
	organisms
IC ₅₀	Inhibition concentration for 50% of organisms
LC_{50}	Lethal Concentration for 50% of organisms
LOC	Level of Concern
MATC	Maximum Allowable Toxicant Concentration
MPCA	Minnesota Pollution Control Agency
NOAEC	No Observed Adverse Effect Concentration
NOEC	No Observed Effect Concentration
NPDES	National Pollutant Discharge Elimination System
OECD	Organization for Economic Cooperation and
	Development
OPP	Office of Pesticide Programs
OW	Office of Water
SETAC	Society of Environmental Toxicology and Chemistry
SMAV	Species Mean Acute Value
SSD	Species Sensitivity Distribution
	1

1. Executive Summary

The Environmental Protection Agency (EPA) assesses the impact of pesticides on aquatic plants based on the requirements of the Clean Water Act (CWA) and the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The goal of this project is to build on the existing approaches used by the Office of Pesticide Programs (OPP) and the Office of Water (OW) and to explore tools which both program offices may use to characterize effects to aquatic plant communities with varying amounts of data.

This paper summarizes several different approaches that are currently being used by the EPA, states and regulatory agencies in other countries which account for the uncertainty associated with limited datasets for aquatic plants and the extent to which available data are representative of the entire plant community. These methods may be used to characterize potential adverse effects of pesticides on aquatic plant communities.

There are two major uncertainties associated with aquatic plant toxicity data that should be considered when characterizing effects of chemicals on aquatic plants. The first involves the variability associated with toxicity study endpoints. While there are standardized testing methodologies from regulatory agencies and standard writing organizations, the endpoints available for aquatic plants exposed to the same chemical can vary (*e.g.*, test duration, effect type, summary statistic may differ in each test). The second uncertainty involves the unknown sensitivity of test species to a chemical stressor relative to other aquatic plant species.

The term "aquatic life screening value" (ALSV) is introduced here to represent community-level benchmarks. This paper describes methods that may be considered to develop ALSVs for aquatic plant communities using available toxicity data. These plant ALSVs are considered separately from animal ALSVs. A plant ALSV may simply be based on the lowest available aquatic plant toxicity data.

In cases where there is evidence to suggest that the available toxicity data are not representative (*i.e.*, based on an understanding of the general sensitivity of plants to particular modes of action and whether sensitive species are represented in the dataset) of the most sensitive plant species that are expected to be impacted, extrapolation factors (EFs) could be applied to available data to derive the plant ALSV. Extrapolation factors are set (default) values that are applied to available toxicity data to account for various sources of uncertainty in extrapolating from individual species toxicity data to assessment endpoints. When a larger dataset is available, this paper also demonstrates that using a specified lower confidence interval for the plant species sensitivity distribution (SSD) can provide a plant ALSV. Although this paper broadly describes approaches for deriving aquatic plant ALSVs similar to those under consideration for aquatic animals, it is expected that these approaches will be further refined as EPA reviews available methods.

2. Introduction

The definition of "plant" varies among taxonomists. Some taxonomists reserve the term "plant" to represent those organisms in the Kingdom Plantae. All vascular plants and some non-vascular aquatic plants are in the Kingdom Plantae. Among the non-vascular

aquatic plants, free living algae include groups from four separate kingdoms¹, including Bacteria (*e.g.*, cyanobacteria); Protozoa (*e.g.*, euglenoids and dinoflagellates), Chromista (*e.g.*, diatoms) and Plantae (*e.g.*, green algae). For the purpose of this white paper, the term "plant" includes all photosynthetic organisms that contain chlorophyll *a*—which has members in each of the above four Kingdoms.

Aquatic plants have members in every conceivable freshwater and saltwater habitat. Aquatic plants have various growth habits, such as attached (rooted or other holdfast), free-floating, submerged or emergent (only partially submerged for part or all of their life history). Aquatic plants also form the base of most aquatic food chains, are important habitat components of aquatic ecosystems and are functionally important in carbon assimilation and oxygen evolution.

The Environmental Protection Agency (EPA) assesses the impact of pesticides on aquatic plants based on the requirements of the Clean Water Act (CWA) and the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The goal of this project is to build on the existing approaches used by the Office of Pesticide Programs (OPP) and the Office of Water (OW) to explore common approaches that both programs may use to characterize effects to aquatic communities using the best available scientific tools and methodologies with varying amounts of data. In 2010, EPA conducted six regionallybased public meetings and drafted three white papers describing additional tools and approaches that may be used to augment the ability of the EPA, and states, local and tribal water management agencies to derive taxa specific and cross-taxa (community) benchmark values for chemicals such as pesticides. One paper, entitled "Predicting the Toxicity of Chemicals to Aquatic Animal Species" (hereafter referred to as the tools white paper), describes potential additional tools that can be used to estimate toxicity data. The tools paper primarily focuses on methods for estimating toxicity of chemicals to aquatic animals, as there are limited tools available to estimate toxicity to aquatic plants. Two other papers describe methodologies to estimate community effects, one on aquatic animals entitled "Exploration of Methods for Characterizing Effects of Chemical Stressors to Aquatic Animals" (hereafter referred to as the "aquatic animal white paper") and this paper on aquatic plants. The term "aquatic life screening value" (ALSV) is introduced here to represent community-level benchmarks. This paper describes methods that may be considered to develop ALSVs for aquatic plant communities using available toxicity data for aquatic plants. These plant ALSVs are considered separately from animal ALSVs, which are described in the aquatic animal white paper.

This white paper describes various methodologies used to evaluate effects of chemicals on aquatic plant communities. It explores uncertainties associated with available toxicity tests and their relationships to aquatic plant assessment endpoints. The paper compares the relative sensitivities of the test species for which acceptable toxicity data are available. Finally, this paper provides a conceptual approach that may be used to integrate chemical-specific data, tools and methods (*i.e.*, extrapolation factors and sensitivity distributions) for deriving plant ALSVs that may be used by EPA, States and

¹ Note the arrangement of "life" into taxonomic categories has been in a state of flux ever since Linnaeus first introduced Animale and Vegetabile. The main point here is not to definitively support one particular scheme or another, but to point out that what we traditionally refer to as plants is an extremely diverse group. Kingdom titles used above are based on Cavalier-Smith (2004).

Tribes to interpret aquatic ecological risks associated with chemical exposure information (*e.g.*, monitoring data). The tools and methods discussed in this paper are intended to compensate for limited data in describing potential effects of specific chemicals on aquatic plant communities and would provide regulators with a means of deriving advisory values that will ensure the protection of the aquatic environment.

3. Existing methodologies to evaluate plant effects

As described below, there are several different approaches currently used by regulatory agencies to derive measures of effect for aquatic plants based on available data. Measures of effect, such as toxicity test results from a laboratory study, are used to quantitatively represent assessment endpoints. An assessment endpoint is "an explicit expression of the environmental value to be protected."²

3.1. 1985 Guidelines Method for Deriving ALWQC (OW)

The USEPA, as stated in the CWA, is tasked with establishing criteria values for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The current OW methodology for deriving criteria is outlined in the *Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses* (termed: "the 1985 Guidelines"; USEPA 1985). These OW guidelines focus on deriving criteria that are based on animal toxicity data, and data for plants have been considered more essential recently than in the past. In these guidelines, an acute criterion is derived using acute toxicity data for animals. A chronic criterion is derived using the most sensitive of the final chronic value (FCV) for animals or the final plant value (FPV).

The 1985 Guidelines provide limited guidance on deriving the FPV. The OW minimum data requirements for the FPV are results of one acceptable test with a freshwater alga (non-vascular plant) or vascular plant (for the freshwater criterion) and one acceptable test with a saltwater alga or vascular plant (for the saltwater criterion). At the time that the original guidance was written for derivation of ALWQC, "*procedures for conducting tests with plants and interpreting the results of such tests [were] not well developed*" (USEPA 1985). Because of this, a definitive set of minimum data requirements (including specific genera or families) is not currently required for aquatic plants in OW. The only additional specification is if plants are expected to be more sensitive than animals. In this case, the "results with a plant in another phylum (division) should also be available"; however, the second test result is not required.

In addition, the types of test procedures are vaguely described in the 1985 Guidelines. "A *plant value is the result of a 96-hr test conducted with an alga or a chronic test conducted with an aquatic vascular plant.*" The guidelines describe the calculation of the FPV as a number that "should be obtained by selecting the lowest result from an

² http://www.epa.gov/OCEPATERMS/

acceptable test with an important aquatic plant species in which the concentrations of test material were measured and the endpoint was biologically important." The definitions, however, of "important aquatic plants" or "biologically important" endpoints are not given.

Plant toxicity data available for use in a criterion derivation are frequently absent, and no criteria to date have been published that use plant data in the calculation. The guidelines state that a criterion that is protective of aquatic animals will "*probably protect aquatic plants*." This assumption, however, clearly has not held true for herbicides (such as atrazine, acetochlor and metolachlor) and cannot be assumed for other pesticides or even chemical pollutants in general (Lewis 1990, 1995; Wang and Freemark 1995). **Table 1** lists a variety of chemical classes for which data have shown plants to be more sensitive than animals.

Trace Metals	Wastewaters
Cadmium	Paper Mill effluent
Copper	Textile effluent
Nickel	Oil Refinery effluent
Zinc	
Alcohols	Organics
Butanol	Acridine
Diethylene glycol	Acrylates
Heptanol	Chloramine
Hexanol	Chloroacetaldehyde
Isooctanol	Chloronapthalene
Octanol	4-Chlorophenol
Proporgyl alcohol	Dibenzofuran
Pesticides (*Herbicides)	1,3- Dichlorpropene
Aldrin	Dinitrotoluene
Atrazine*	Nitrobenzene
Chlordane	4-Nitrophenol
2,4D*	Organotin
Dieldrin	Phenol
Diquat*	Potassium chlorate
Endrin	Potassium dichromate
Glyphosate*	Sodium fluoride
Tebuthiuron*	Sodium tetraborate
Surfactants Ditallow dimethyl ammonium chloride Trimethyl ammonium chloride	2,4,6-Trinitrophenol
Sourum ubuccyr sunaic	

Table 1. Examples of contaminants found more toxic to algaethan animals^a.

^aAdapted from review table in Lewis (1995).

3.2. Draft Atrazine Aquatic Life Criteria

The Office of Water is currently deriving an Aquatic Life Water Quality Criteria (ALWQC) for the herbicide atrazine³. This represents the first time that an ALWQC will be developed where plant data are used to establish chronic protection limits.

In the draft ALWQC, separate freshwater and saltwater FPVs are derived. The saltwater FPV is based on the lowest species mean acute value (SMAV) for sago pondweed (*Potamogeton pectinatus*⁴). For the freshwater FPV, a unique method is being considered that uses a large number of laboratory toxicity studies and experimental ecosystem studies (Erickson 2010). In this method, original data were used to create dose-response curves for each species based on a common endpoint. Rather than using a species sensitivity distribution (SSD) consisting of EC_{50} values alone, the method results in a distribution of dose response curves for individual plant species. The experimental designs of the mesocosm studies varied in concentrations tested, duration of exposures and effect level observed. The data from these experiments provide information on effects to actual plant communities which can be used to determine what magnitude of effect on the species composition of the aquatic plant community. It should be noted that the methods used for the atrazine ALWQC are unique to atrazine because they rely upon a large aquatic plant toxicity database (that includes both single species toxicity testing as well as numerous mesocosm studies) that is available for this chemical.

3.3. Minnesota Standards for Acetochlor and Metolachlor

States have explored how aquatic plant toxicity data could be used to develop water quality standards since herbicides are frequently detected in US surface waters and aquatic plants are an obvious susceptible taxonomic group for these chemical stressors. To derive the state water quality standards for acetochlor and metolachlor, the Minnesota Pollution Control Agency (MPCA) analyzed available aquatic plants were more sensitive than animals to both herbicides. Consistent with the Great Lakes Initiative (GLI) Tier II (USEPA 1995) approach, the acute regulatory endpoints for these compounds were calculated using the available animal data and plant data were considered to represent chronic effects.

The minimum data requirements for the acute criterion (eight animal families) were not available to derive the acute value using the 1985 guidelines, thus the acute values for both herbicides were derived using the GLI Tier II methodology (USEPA 1995). This methodology is described in the aquatic animal white paper.

Chronic standards for acetochlor and metolachlor were developed using only plant data from the OPP database and the open literature. In deriving these criteria, the MPCA had

³ June 23, 2009 draft document prepared by Great Lakes Environmental Center and University of Wisconsin-Superior.

⁴ Now called *Stuckenia pectinatus*. <u>www.plants.usda.gov</u>

goals of protecting the integrity of the plant community, protecting sensitive plant species and achieving a 20th percentile level of protection. The MPCA derived species sensitivity distributions for each chemical using geometric means of EC₅₀ values for the same species (if more than one value was available for a species). The Minnesota chronic standard for metolachlor is 23 μ g/L to protect coon's tail (*Ceratophyllum demersum*), a resident aquatic vascular plant. This value is lower than the 5th percentile of the EC₅₀ distribution for aquatic plants (36 μ g/L). Lowering the standard to protect an important species, such as the coon's tail is similar to the provision set out in the 1985 guidelines that allows for lowering the criterion to protect commercially or recreationally important species. The Minnesota chronic standard for acetochlor is 3.6 μ g/L, which is consistent with the 20th percentile of the distribution of EC₅₀ values for aquatic plants.

After the above standards were proposed, some reviewers commented on some challenges faced by MPCA in deriving the chronic acetochlor criterion. One criticism of the criterion was the separation of EC_{50} and $MATC^5$ values into separate distributions. In a review of MPCA's methodologies, an independent researcher used the dose-response raw data from the individual plant studies to calculate an EC_{20} value for all studies. All EC_{20} values were plotted in one distribution, increasing the number of studies used to derive a criterion from the 20th percentile value⁶. Also included in the review of MPCA's methodology, was a standardization of the measured endpoint and exposure duration. While MPCA used a variety of growth endpoints (e.g., dry weight, frond number, cell density) and exposure durations, the reviewer's method limited data to include only four day algae studies measuring cell density, four or seven day duckweed studies measuring frond number and seven day rooted macrophyte studies measuring dry weight. This is consistent with the recommendation from the Society of Environmental Toxicology and Chemistry (SETAC) Europe Workshop on Aquatic Macrophyte Risk Assessment for Pesticides that, where practical, SSDs should be created using similar protocols and endpoints (Maltby et al. 2010).

3.4 University of California-Davis Methodology

In the UC-Davis Methodology (TenBrook *et al.* 2010), herbicides must be evaluated using data from algae or vascular plants. Only chronic criteria are derived for plants. For herbicides, and for pesticides where plants are the most sensitive taxa, plant-only SSDs should be used, provided there are reliable and relevant studies for five different plant species. If there are fewer than five plant species, the criterion is determined as the lowest plant NOEC with a relevant endpoint, similar to the 1985 Guidelines final plant value.

3.5. Ecological Effects Characterization and Benchmark Derivation (OPP)

OPP, under FIFRA, has the authority to require data in support of the registration of a pesticide product. Accordingly, OPP has developed regulations (40 CFR Part 158⁷)

⁵ MATC =Maximum Allowable Toxic Concentration. It is calculated as the geometric mean of the lowest observable effect concentration and the no observed effect concentration.

⁶ Giddings, JM. 2007. Review of Plant-Based Acetochlor Class 2 Water Quality Standards for Minnesota.

⁷ Code of Federal Regulations. 2010. http://ecfr.gpoaccess.gov/cgi/t/text/text-

 $idx?c=ecfr\&sid=1a3c043b5425ffaa607dd0f14f9bddbb\&tpl=/ecfrbrowse/Title40/40cfr158_main_02.tpl$

which specify the types and amount of information that pesticide companies must routinely submit to EPA to support product registration. Section 158.660⁸ describes the plant protection data requirements and specifies the type and amount of data the Agency needs to characterize the effects of a pesticide on aquatic plants and is based on proposed or existing use(s) (how and where the pesticide is applied). As with animal testing requirements, OPP relies on a tiered approach for examining effects to aquatic plants. The Ecological Effects Test Guidelines (Sub-part G of 40 CFR Part 158) describe three testing tiers for assessing the effects of pesticides on non-target aquatic plants. The first tier assesses the effect on plant growth resulting from a single test concentration equivalent to the estimated environmental concentration resulting from the maximum labeled application rate or a limit concentration. At minimum, Tier I tests are required for all pesticides. If Tier I testing shows growth reduction or visual phytotoxicity of >50% inhibition, or the Tier I test does not provide a definitive no observable adverse effects concentration (NOAEC), Tier II tests are required. Tier II tests involve multiple test concentrations and are intended to generate EC_{50} and NOAEC values for the test species which exhibit detrimental effects in the Tier I testing. While Tier I and II tests are laboratory tests, Tier III tests are field studies which are designed to evaluate adverse effects during critical stages of development on sensitive native plant communities. To date, Tier III aquatic plant tests have been submitted to OPP for only a few compounds (e.g., diquat, irgarol).

OPP uses a screening approach to assess plant sensitivity to pesticides, which relies on a suite of toxicity tests performed on a specified set of surrogate species. For aquatic plants, these categories are based on the presence or absence of a vascular system. For nonvascular aquatic plants, the surrogate species generally are *Pseudokirchneriella* subcapitata (formerly Selenastrum capricornutum; green alga), Anabaena flos-aquae (cyanobacterium), Navicula pelliculosa (pennate freshwater diatom) and Skeletonema costatum (centric marine diatom). Lemna species (usually either L. gibba or L. minor) serve as surrogates for aquatic vascular plant species (USEPA 2004). Specific guidelines are available for the tiered testing of aquatic non-vascular and vascular plants. Guidelines 850.5400⁹ and 850.4400¹⁰ describe the test procedures and conditions for microalgae and aquatic vascular plants, respectively. Test guideline 850.4450¹¹ pertains to the test procedures and conditions for field, microcosm, and mesocosm studies that cover a broader range of plant types and study durations (tests typically continue for the entire life cycle of the test plant). If data are available for other, non-standard, non-vascular or vascular species (e.g., from the scientific literature) that show greater sensitivity than those results from the standard test species, OPP uses data for the more sensitive species in risk assessments provided those studies meet acceptability criteria. Endpoints suitable for quantitative use for all species are used in the risk characterization.

⁸ http://ecfr.gpoaccess.gov/cgi/t/text/text-

idx?c=ecfr&sid=1a3c043b5425ffaa607dd0f14f9bddbb&rgn=div8&view=text&node=40:23.0.1.1.9.7.1.2&idno=40

⁹ http://www.epa.gov/ocspp/pubs/frs/publications/OPPTS_Harmonized/850_Ecological_Effects_Test_Guidelines/Drafts/850-5400.pdf

¹⁰ http://www.epa.gov/ocspp/pubs/frs/publications/OPPTS_Harmonized/850_Ecological_Effects_Test_Guidelines/Drafts/850-4400.pdf

¹¹ http://www.epa.gov/ocspp/pubs/frs/publications/OPPTS_Harmonized/850_Ecological_Effects_Test_Guidelines/Drafts/850-4450.pdf

OPP's measurement endpoints for aquatic non-vascular plants focus primarily on algal growth rates and biomass (vegetative reproduction) measurements based on 4-day (96-hr) tests. The most sensitive EC_{50} value of the four non-vascular plants (no distinction is made between freshwater and marine plants) is typically used to characterize effects to aquatic plants and in risk assessment. Measurements on vascular plants typically include growth (frond number at Day 0, 3, 5, and 7 of exposure), growth rate, mortality, biomass, measurements at the end of the 7-day test. Again, OPP typically selects the most sensitive EC_{50} for the vascular aquatic plant endpoint.

The OPP benchmarks were developed in response to recommendations and input from stakeholders, who were concerned about potential effects of pesticides with no existing ALQWC. OPP developed a webpage of non-regulatory taxa-specific aquatic toxicity endpoints referred to as "OPP Aquatic Benchmarks"¹². These Benchmarks are based on the most sensitive toxicity data (considering registrant-submitted studies and the scientific literature) from OPP's ecological risk assessments of specific pesticides. For non-vascular and vascular plants, benchmarks are calculated by multiplying each lowest EC₅₀ value by the plant Level of Concern (LOC = 1.0), which is based on OPP's ecological risk assessment process. LOCs are the Agency's interpretative policy and are used to analyze potential risk to non-target organisms and the need to consider regulatory action. LOCs are used to indicate when a pesticide use (as directed on the label) has the potential to cause adverse effects on non-target organisms (USEPA 2004).

3.6. Current International Methods for Incorporating Aquatic Plant Data into Aquatic Life Guidelines

Throughout the world, aquatic life guidelines for contaminants are derived using different methodologies and data requirements. The use of plant data is not always required, and in some cases plant data are only required for herbicides or phytotoxic compounds. For instance, the province of Quebec does not require plant data (MENVIQ 1990), while the Canadian Water Quality Guidelines for the Protection of Aquatic Life Protocol (CCME 2007) requires plant data for their two highest tier guidelines, but not the lowest tier guideline. The European Union (EU) requires algal data as part of their "base set" of test values, and the algal data are incorporated when the species sensitivity distribution (SSD) approach is used to derive the guideline, while plant data will reduce the extrapolation factor (EF), when an SSD is not used (European Commission 2003). The EFs are used in the risk assessment process to account for uncertainty in the data.

In other countries, the type of chemical being assessed for guideline derivation may play a role in the amount of plant data required. Canada requires only one plant study for the two highest tier guidelines, unless plants are the most sensitive (*e.g.*, with herbicides), in which case three plant toxicity values are required. For the lowest tier guideline, no plant data are required unless the plants are the most sensitive organisms (CCME 2007). The EU also requires additional plant studies when the stressor of concern is an herbicide or plant growth regulator (European Commission 2003).

¹² OPP Aquatic Benchmark Table. Available online at: <u>http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm</u>

When both plant and animal data are required in deriving a guideline for a contaminant, most countries assess the plant toxicity values alongside the toxicity values for animals. Canada and the EU include plant toxicity values along with animal values in their SSDs when deriving their highest tier guidelines. Canada generally considers most standardized plant tests to be chronic data, while the EU considers algal data to be chronic if the endpoint is a NOEC rather than an EC₅₀ (CCME 2007, European Commission 2003). For most countries using EFs, they are applied to the lowest toxicity value, whether it be plant or animal. EFs vary depending on the amount of toxicity data that are available and depending on whether an acute or chronic guideline is being derived. For chronic toxicity values, Canada and the EU apply an EF of 10 to the lowest toxicity value (plant or animal) to derive their regulatory endpoint. However, the required EF is higher in EU if plant data were not available in the analysis.

4. Uncertainties Associated with Aquatic Plant Toxicity Data

There are two major uncertainties associated with aquatic plant toxicity data that should be considered when characterizing effects of chemicals on aquatic plants. The first involves the variability associated with endpoints resulting from toxicity studies. The second involves the unknown sensitivity of test species to a chemical stressor relative to other untested aquatic plant species. These uncertainties are described below.

4.1. Variability Associated with Endpoints

A variety of aquatic phytotoxicity test methods (laboratory and *in situ*) have been described in the scientific literature during the last 40 years for various single species of freshwater and saltwater algae (mostly microalgae), vascular plants, periphyton and phytoplankton assemblages. These include the laboratory methods described by standard writing organizations and regulatory agencies such as American Public Health Association (APHA Standard Methods for the Examination of Water and Wastewater), Organization for Economic Cooperation and Development (OECD Guidelines for Testing of Chemicals), American Society for Testing and Materials (ATSM Standards on Biological Effects and Environmental Fate) and USEPA (850 series – OCSPP Harmonized Test Guidelines and National Pollution Discharge Elimination System [NPDES] Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters).

Despite the availability of standard methods, the measurement endpoints available for aquatic plants exposed to the same chemical can vary. Plant sublethal effects extend to a variety of attributes which include biomass (*e.g.*, cell count, growth rate, pigment content), activity (*e.g.*, fluorescence, oxygen evolution, ethylene production) and biochemical attributes (*e.g.*, ATP level, enzyme activities). In practice, the receptor attributes most often used by OPP and OW are either some aspect of growth or growth rate. Biochemical effects can be early warning indicators of environmental stressors as toxicity in aquatic plants is first manifested at the biochemical attributes are generally not

routinely considered by the EPA, unless a peer reviewed quantitative relationship can be established between the biochemical measurement endpoint and the Agency's apical assessment endpoints. The sublethal biochemical effects that are commonly reported in aquatic plant studies in response to stressors include changes in carbon fixation, plant pigments, carbohydrate content, cytochrome F, ethylene/ethane, oxidative enzyme activity and protein concentration, enzyme levels, antioxidant levels, formation of stress proteins, chlorophyll fluorescence and lipid peroxidation. These effects often may be more sensitive, but their environmental relevance, relationship with more standard endpoints, and link to whole plant effects is not known and/or poorly characterized. Like the situation with animals, the connection between these three desired assessment endpoints and some of the non-traditional measurement endpoints has not been well established. Reproduction endpoints with aquatic plants have generally been restricted to vegetative reproduction. Sexual reproduction has received much less attention, but may be a more sensitive plant endpoint as compared to vegetative growth. For instance, the EC₅₀ value for reproduction in the marine red alga *Ceramium strictum* when exposed to phenol is 5,000 μ g/L, while the growth EC₅₀ value is 10,000 μ g/L (Eklund 1998, Bruno and Eklund 2003). Therefore, more sensitive endpoints may not always be captured in typical studies that evaluate vegetative growth.

Plant summary statistics are often expressed as either a no observable adverse effect concentration (NOAEC), EC_{50} or some other EC_x level. When an EC endpoint is selected other than EC_{50} it is often chosen in an attempt to provide a substitute for an NOAEC (*e.g.*, EC_{20}). This is usually done to eliminate some of the concerns about using hypothesis testing in establishing no effect concentrations when the study has a regression-based design and inadequate replication to support hypothesis testing. Concerns with the NOAEC include the following: 1) the potential for a biologically significant effect at a test concentration where observed effects were not statistically significant; 2) the NOAEC is heavily influenced by the test concentrations that were chosen for the test; and 3) confidence intervals cannot be derived (Crane and Newman 2000).

The exposure durations of standardized tests often differ, which brings up the consideration of whether plant tests of different exposure durations are appropriate to combine in deriving screening values or ALWQC. Most microalgal tests have exposure durations of either 72 or 96 h; *Lemna* often range between 4 and 7 d; durations for toxicity tests conducted with rooted vascular plants (freshwater) have ranged from 1 hr to 6 wk (Lewis and Wang 1999); test durations with seagrasses have been conducted between 2 hr and 42 d (Lewis and Devereux 2007) and between 1 and 26 wk for mangroves (Lewis *et al.* in review). If growth rate is the receptor attribute of interest then data from tests using different exposure durations could probably be combined (as is being proposed for a portion of the draft atrazine ALWQC). However, if pesticide exposure concentrations are not measured (which is often the case with plant tests), then care should be taken when including data from widely differing exposure durations—the actual exposure concentrations could be vastly different. Rentz and Hanson (2009) merged data from multiple exposure durations from tests with aquatic macrophytes by adjusting them all to the same duration. They used Haber's rule which may not have been

appropriate. While Haber recognized that C x t = k [where C = concentration, t = time, k = constant] was applicable only under certain conditions, many toxicologists have used this rule to analyze experimental data whether or not their chemicals, biological endpoints, and exposure scenarios were suitable candidates for the rule. Haber studied the acute lethality of war gases and his exposure durations were on the order of a few minutes to several hours. There is no indication that he advocated his rule held for all toxins and for exposures ranging from days to weeks (Miller *et al.* 2000).

OPP's guidance suggests using the most sensitive measurement endpoint as long as it can be related to the assessment endpoints of survival, growth or reproduction. This generally includes 96-h EC₅₀ values for non-vascular plants and 7-d EC₅₀ values for vascular plants based on biomass or growth rate. When considering available data for aquatic plants exposed to a chemical stressor, an attempt should be made to make the endpoints as consistent as possible. For instance, endpoints with similar durations and measures of effect (*e.g.*, EC₅₀) should be considered together. This will ensure that the variability in responses to stressors can be attributed to differences in species responses, rather than variability in endpoints.

4.2. Relative Sensitivity of Test Species to other Aquatic Plants

The ECOTOX database¹³, which is maintained by the EPA's Office of Research and Development Mid-Continental Ecology Division (ORD/MED) is a source of open literature ecological effects data on single chemicals for aquatic and terrestrial plants and animals. Based on the results of 2008 query of ECOTOX, approximately 23,000 studies were conducted with aquatic plants and of these, the majority (86%; 19,700 entries) were with freshwater species. The majority of the aquatic plant studies (18,700) were conducted with microalgae. While 2,120 were conducted with duckweeds, 570 with submerged grasses, 4 tests with mangroves and about 1,670 tests with other vascular plants (**Figure 1**). Only a relatively small number of tests (1,072 studies) have been conducted on pesticides – the majority of plant studies were conducted with metals or other toxicants such as high production volume chemicals. It should be noted that the ECOTOX database contains aquatic plant toxicity data submitted to OPP by pesticide registrants.

¹³ Available online at: http://cfpub.epa.gov/ecotox/

Figure 1. Summary of available aquatic plant data from USEPA's ECOTOX database as of 2008. Other VP means Other Vascular Plants

As indicated previously, OPP typically receives aquatic plant toxicity data for macroalgae and *Lemna* sp. The relative sensitivities of these test species to other aquatic plants are generally unknown. This can be attributed to limited data for other species of plants exposed to pesticides (**Figure 1**). Section 5 below explores the relative sensitivities of OPP's typical test species with other test species that may be available for the same chemical.

Differences in sensitivities of test species to chemicals may be attributed to the mode of action of the chemical and a plant's physiology. For instance, since herbicides often target various aspects of the photosynthetic pathway, there could be differences in response between vascular plants that have C3 vs. those with C4 pathways¹⁴. For example, *Lemna* species are C3 plants (Longstreth 1989), many saltmarsh grasses (*e.g.*, species of *Spartina* and *Distichlis*) are C4 plants, other saltmarsh plants (*e.g.*, species of *Salicornia* and *Scirpus*) are C3 (Drake 1989). In some species of amphibious freshwater plants (*e.g.*, the sedges *Elocharis vivipara* and *E. baldwinii*), the emergent phase exhibits C4 photosynthesis while the submerged phase is C3 (Cronk and Fennessy 2001).

In addition, there is a wide variety of photosynthetic pigments among the various algal groups, so type of accessory pigments (and thus different pigment synthesis pathways) also might make a difference in sensitivity. Although the analysis presented below in this paper did not show any obvious pattern in plant sensitivity relative to major taxonomic groups (*e.g.*, diatoms vs. green algae).

Also aquatic plants have highly diverse habits (*i.e.*, floating, submerged and emergent species) which may need to be considered as the route of exposure varies among these

 $^{^{14}}$ C3 and C4 refer to the first stable carbon compound in CO₂ fixation. In C3 plants this compound is 3-phosphoglyceric acid (a 3 carbon compound) and in C4 plants it is oxaloacetic acid (a 4 carbon compound).

species. The typical vascular plant test species, *Lemna*, is a floating plant, with roots suspended in the water column. This route of exposure (*i.e.*, via the suspended roots and undersurface portion of leaves) may not accurately characterize submerged or emergent aquatic plant species, as those that are rooted in the sediment. There currently is a test protocol for the rooted freshwater macrophyte *Myriophyllum* spp. undergoing evaluation for standardization in Europe (Maltby *et al.* 2010).

5. Relative Sensitivity of Standard Suite of Aquatic Plant Test Species

In an ideal situation, the sensitivities of a wide variety of aquatic plant groups would be available, represented using a standard set of study durations and measurement endpoints for any chemical for which a plant community toxicity benchmark is desired. Unfortunately, these data sets do not exist for the majority of pesticides of interest. When only minimal data sets are available they usually represent standardized test results because the tests were usually run for regulatory purposes. In practice, however, data from any "reasonable" test procedure are often included in aquatic plant sensitivity distributions (such as in the acetochlor and metolochlor standards in Minnesota). The need to characterize the range of sensitivities in the aquatic plant community may outweigh the desire for comparable test conditions. For example, recent state standards for aquatic plants derived for acetochlor and metolachlor by the Minnesota Pollution Control Agency included freshwater EC_{50} data for algae that had exposure durations ranging from 3 to 21 days and measurement endpoints that included, among others, chlorophyll, abundance, biomass and growth rate. Aquatic vascular plant data for these compounds included exposure durations from 4 to 70 days for endpoints including growth, abundance and dry weight. In addition, the draft atrazine document currently being developed by EPA's Office of Water includes data for freshwater and saltwater algae with exposure durations ranging from 2 to 10 days, and durations of 7 to 35 days for aquatic vascular plants. Endpoints used in the atrazine analyses include population growth rate (Lemna spp.), photosynthesis, biomass, chlorophyll, etc. Chronic toxicity data for OW's ALWQC can include results derived for different durations since early life stage, partial life cycle, and full life cycle data are equally acceptable. In addition, survival, growth and reproduction endpoints are all acceptable. Combining different exposure durations and endpoints is not unique to hazard analysis for aquatic plants, however, it should be emphasized that it is not ideal either. Future examination of the uncertainty associated with combining durations and endpoints is warranted.

Aquatic phytotoxicity information available to the Agency is primarily that for short-term growth effects for a few single species of easily cultured microalgae and a single floating macrophyte (duckweed). This database may not be sufficiently comprehensive to capture the variability of chemical sensitivities for taxonomically diverse aquatic flora inhabiting different freshwater and saltwater ecosystems. It has been assumed that this predominately freshwater algal-duckweed toxicity data base can serve as an ecologically-relevant surrogate for the sensitivities of the many types of non-vascular and vascular plants, freshwater and marine. Its ability to serve this purpose, however, has not been adequately addressed by the scientific community¹⁵.

¹⁵ Although recently a SETAC advisory group has been formed (Aquatic Macrophyte Ecotoxicology Group) that will address the issue as related to aquatic vascular plants.

The data describing aquatic plant sensitivity to pesticides which is typically submitted by registrants to OPP often includes both EC₅₀ and NOEC values. Submitted data from registrants can include those from standardized tests for the four species of microalgae and duckweed (described above in Section 3.5), as well as other aquatic plant species. For convenience, in this paper the standard tests species are referred to collectively as the "OPP standard species" and all others as "non-standard species". It is important to note that, when available, OPP assessments also include non-standard test species data from the open literature that meet quality standards (which is often the case for most herbicides). The microalgal data are intended to represent non-vascular aquatic plants, and the duckweed data are intended to represent vascular aquatic plants. If these are the only data available, one of the obvious key issues is the extent to which these required data are representative of the sensitivity of communities of aquatic plants. Another way to view the issue is to consider how well a benchmark derived using a minimum data set represents a benchmark based on a data set containing a much larger number of data values representing more species of the aquatic plant community. In this latter respect the focus is not on the actual relative sensitivity of various species; otherwise, the effort would need to be restricted to comparisons of paired values using the same duration of exposure and the same measurement endpoint. Rather, the focus here is the relevance of the conclusion for a benchmark derived based largely on a minimal data set as compared to the conclusion about that benchmark if a more diverse database had been available. In this respect it is necessary to make comparisons between toxicity data points that are derived from any reasonably acceptable endpoint-no matter what the relative exposure durations or actual measured endpoints. The analyses below explore this issue in two ways. First, they consider how likely is it to find phytotoxicity values that are less than those values determined for OPP's minimum required species. This is done separately for microalgae (non-vascular) and aquatic vascular plants. Second, they consider the representativeness of a species sensitivity distribution (SSD) using a minimal data set from a distribution based on a more diverse data set

5.1. Ratios of OPP standard species endpoints to non-standard species endpoints

The OPP standard test species are selected as the likely minimum data set since any pesticide registered or re-registered in the United States should have these data (especially if a phytotoxic compound is involved). Therefore, not much is to be gained by addressing the issue of having less than these data. As described in the evaluation below, data were normalized by dividing by the data point for the most sensitive OPP standard species in order to be able to combine data from all compounds in one analysis.

5.1.1. Non-vascular species

To explore the uncertainty related to the relative sensitivities of algae, studies that tested various algal species were evaluated using OPP's Ecotoxicity Database of available toxicity data submitted as part of the pesticide registration process. This summary database includes test results from both the OPP standard species and non-standard species. Although this may not include all available aquatic plant pesticide toxicity data,

it provides a comparison of the relative sensitivity of the standard OPP microalgal species with other species of non-vascular aquatic plants for which toxicity data are available. A subset of the microalgal data was used to evaluate this relative sensitivity. Only EC_{50} values were used, but exposure durations ranged from 2 to 10 days. The durations for the OPP standard test species were usually 4 or 5 days. The measurement endpoints used were not listed in the database.

For a pesticide to be included in the evaluation, an EC_{50} had to be available for at least one of the OPP standard species and at least one non-standard algal species. For each chemical included, the EC_{50} value for each non-standard species was divided by the lowest EC_{50} from the data available for OPP standard species. **Table 2** lists the 17 chemicals included in the evaluation along with the most sensitive OPP standard species for each chemical. All but two of the chemicals were herbicides. There was no single species that was consistently the most sensitive to the range of compounds tested. The total number of non-standard species ratios also is included for each chemical¹⁶. **Table 3** lists the non-standard species for which data were included and the total number of values included in the evaluation for each species. There were 30 species (20 marine and 10 freshwater) listed from 122 tests. Most of the species represented were either green algae or diatoms (10 species each). Data for four of the algal species (all marine macroalgae) came from Di Landa *et al.* (2009), and are not included in OPP's database.

The cumulative frequency distribution for the EC_{50} ratios represented by the species in **Table 3** is graphed in **Figure 2**. Only one ratio is less than 1.0, the ratio of 0.92 for *Isochrysis galbana* exposed to atrazine for 5 days, indicating that the most sensitive of the OPP standard species results may be a sufficient screening value to represent the expected toxicity of a pesticide to saltwater and freshwater algae. Although this conclusion seems to be based on a large database, it is dominated by four non-standard species, *Chlorococcum* sp. (a freshwater green alga), *Dunaliella tertiolecta* (a saltwater green alga), *Isochrysis galbana* (a saltwater golden brown alga) and *Phaeodactylum tricornutum* (a saltwater pennate diatom). There is no apparent pattern to the sensitivity of these species relative to that for the OPP standard species.

¹⁶ If more than one test was available for a non-standard species, then each was included as a separate ratio.

Chemical	Most sensitive OPP species	Ν
2,4-D acid	Skeletonema costatum	4
2,4-D butoxyethanol ester	Anabaena flos-aquae	4
Ametryn	Pseudokirchneriella subcapitata ^b	18
Atrazine	Skeletonema costatum	25
Captan	Skeletonema costatum	5
Dichlobenil	Navicula pelliculosa	4
Diquat dibromide	Pseudokirchneriella subcapitata	4
Diuron	Pseudokirchneriella subcapitata	15
Endothall dipotassium salt	Anabaena flos-aquae	4
Fluometuron	Anabaena flos-aquae	1
Irgarol	Navicula pelliculosa	12
Paraquat dichloride	Anabaena flos-aquae	4
Pentachlorophenol	Skeletonema costatum	2
Prometon	Pseudokirchneriella subcapitata	8
Simazine	Navicula pelliculosa	4
Triallate	Pseudokirchneriella subcapitata	4
Trifluralin	Navicula pelliculosa	4
	Total	122

Table 2. Chemicals selected from the OPP Ecotoxicity Database from which ratios of EC₅₀ values for non-vascular plants were calculated^a.

^aThe denominator of the ratio was the lowest EC_{50} from the available standard species. The most sensitive of these latter species is also listed along with the total number of available EC_{50} values for non-standard species. All chemicals except captan (fungicide) and irgarol (microbiocide) are herbicides. N is the number test results for non-standard species.

^bFormerly *Selenastrum capricornutum*

Species		Ν	Aquatic Plant Type	Medium
Chaetoceros gracilis		1	Diatom	Saltwater
Chlamydomonas sp.		2	Green	Freshwater
Chlorella sp.		3	Green	Freshwater
Chlorella pyrenoidosa		1	Green	Freshwater
Chlorococcum sp.		16	Green	Freshwater
Closterium ehrenbergii		1	Desmid	Freshwater
Cyclotella nana		1	Diatom	Saltwater
Dunaliella tertiolecta		21	Green	Saltwater
Eisenia bicyclis		1	Macroalga-Kelp*	Saltwater
Entermorpha intestinalis		1	Macroalga-Green*	Saltwater
Gracilaria tenistipitata		1	Macroalga-Red*	Saltwater
Isochrysis galbana		20	Haptophyte	Saltwater
Microcystis aeruginosa		1	Cyanobacteria	Freshwater
Navicula incerta		3	Diatom	Saltwater
Neochloris sp.		3	Green	Freshwater
Nitzschia closterium		3	Diatom	Saltwater
Nitzschia palea		1	Diatom	Saltwater
Pavlova gyrans		2	Chrysophyte	Saltwater
Pavlova lutheri		5	Chrysophyte	Saltwater
Phaeodactylum tricornutum		15	Diatom	Saltwater
Platymonas sp.		3	Green	Freshwater
Porphyra yezoensis		1	Macroalga-Red*	Saltwater
Porphyridium cruentum		4	Red	Saltwater
Scenedesmus costatum		1	Green	Freshwater
Scenedesmus subspicatus		3	Green	Freshwater
Stauroneis amphoroides		2	Diatom	Saltwater
Tetraselmis suecica		1	Green	Saltwater
Thalassiosira fluviatilis		3	Diatom	Saltwater
Thalassiosira guillardii		1	Diatom	Saltwater
Thalassiosira pseudonana		1	Diatom	Saltwater
	Total	122		

Table 3. List of the non-standard algal species used to calculate the EC₅₀ ratios with the most sensitive OPP standard species^a.

^aThe macroalgae with an asterisk were included from Di Landa *et al.* 2009. All other species are from OPP's Ecotoxicity Database of test results submitted during the registration process. Note, if multiple EC_{50} values for a given species were available, then a separate ratio was calculated for each.

Algal EC50 Divided by Lowest "OPP" Microalgal EC50

Figure 2. Cumulative frequency plot of the 122 algal EC₅₀ ratios calculated with the most sensitive OPP standard species.

5.1.2. Vascular species

OPP's Ecotoxicity Database has very little data for aquatic vascular species other than those for the freshwater genus *Lemna*. Therefore, to do a similar sensitivity evaluation as was performed for algae, additional data were selected from the published literature within which data for various aquatic vascular plants and at least one species of *Lemna* also were included. Data were restricted in this manner to minimize differences in test conditions between the two EC_{50} values used for each ratio. This should not be considered either an exhaustive search of the literature, or necessarily the optimal way to select data. It is merely one way to begin the process of evaluating the relative sensitivity of *Lemna*. Data were included from seven different publications (Aida *et al.*, 2006; Cedergreen *et al.* 2004a,b; Fairchild *et al.* 1998; Forney and Davis 1981; Hanson and Solomon 2004, and Lande *et al.* 2009). *Lemna minor* and *L. gibba* were the species usually represented in OPP data registration packages. In one case (Di Lande *et al.* 2009) data were available for both species of *Lemna*, and the geometric mean of the EC₅₀ values were used to establish the EC₅₀ ratios¹⁷. In another case, only data for *L. perpusilla* were

¹⁷ In this instance, by using the *Lemna* geometric mean, a genus-level value is used, while other comparisons are on the species-level. Using the geometric mean is reflective of how OW typically utilizes multiple species in one genus, while OPP would use the lowest species value. This difference will be explored in future analyses.

available (Forney and Davis 1981) and they were used because of the plant's similarity in habitat to the two more commonly used species. However, when data for *L. trisculca* were included in a publication (Cedergreen *et al.* 2004*a*,b), they were treated as a nonstandard species for the purpose of this evaluation because it is a submerged species of *Lemna*. Data were available from 11 chemicals and 19 different non-standard aquatic vascular plants, representing 58 separate toxicity tests (**Tables 4** and **5**). Eight of the species were dicots, nine were monocots, and two were aquatic ferns. Exposure durations were between 4 and 14 days for *Lemna* (one test using *L. perpusilla* lasted 28 days) and endpoints were EC₅₀ values for some measure of population growth rate (*i.e.*, either number of fronds or relative growth rate). Exposure durations for other aquatic vascular plants ranged from 14 to 28 days. Endpoints were EC₅₀ values for different measures of individual plant growth—for example, leaf area, wet or dry weight, stem length, or relative growth rate. See **Appendix A** for a list of all of the data used.

Unlike the data for algae, the EC_{50} values for aquatic vascular plants are not consistently greater than those for Lemna spp. tests. Lemna was the most sensitive species for only one chemical – metribuzin. There was no pattern to the position of the relative sensitivity among the non-standard species whether compared by either species or chemical tested (Figure 3). Of the EC_{50} values that were more sensitive compared to those for *Lemna*, the majority of the EC_{50} values were within a factor of 10 of the Lemna EC_{50} value. In fact, only the EC_{50} for the floating fern *Salvinia natans* tested using bensulfuron methyl was outside this factor of 10. A 10-fold extrapolation factor applied to Lemna data has been suggested by Rentz and Hanson (2009) to be more protective of other macrophytes. A factor of 10 also is used by the European Union and Canada in their lower-tiered assessments; however, this factor is applied to the lowest value whether plant or animal (these methods, along with methods employed by other countries are briefly summarized in Section 3.5). The use of the factor of 10 is not being advocated in this document, but its use will be considered as an option after further data analysis. As with the microalgal data, the *Lemna* analysis should be interpreted with caution given the limited number of plant groups represented. Most notably, data for near coastal marine species are particularly sparse, (e.g., saltmarsh species, seagrasses and mangroves).

The concern about the representativeness of *Lemna* effects data for other groups of aquatic vascular plants was a common issue at a recent European workshop held in the Netherlands in 2008 (Maltby *et al.* 2010). A standardized test procedure using species of *Myriophyllum* and synthetic sediment is being evaluated to fill the above needs for European risk assessments (Maltby *et al.* 2010). *Myriophyllum* was selected because it is a dicot (*Lemna* is a monocot) and is a rooted aquatic vascular plant. A dicot is desirable in part because many herbicides target broadleaf "weeds" (dicots). The data analyses suggest that if resources are limited, then the most significant data to add to a minimal data set would be for additional aquatic vascular plants. There is more uncertainty associated with the sensitivity of this portion of the plant community than for the microalgal portion.

Chemical	Ν
Alachlor	4
Atrazine	4
Bensulfuron methyl	2
Chlorodifluoroacetic acid	2
Dichloroacetic acid	2
Metolachlor	4
Metribuzin	7
Metsulfuron-methyl	11
Monochloroacetic acid	2
Terbuthylazine	13
Trichloroacetic acid	2
Trifluoroacetic acid	2
Irgarol	3
Total	58

Table 4. Chemicals selected from the open scientific literature for which ratios of EC_{50} values for vascular plants were calculated^a.

^aThe denominator of the ratio was the EC_{50} from the available *Lemna* species. N = the total number of available EC_{50} values for non-OPP species for each chemical. Note, if multiple EC_{50} values for a given species were available, then a separate ratio was calculated for each.

Species	Group	Ν
Batrachium trichophyllum	dicot	1
Berula erecta	dicot	1
Caboma caroliniana	dicot	1
Ceratophyllum demersum	dicot	6
Ceratophyllum submersum	dicot	3
Myriophyllum heterophyllum	dicot	4
Myriophyllum sibiricum	dicot	2
Myriophyllum spicatum	dicot	8
Callitriche platycarpa	monocot	2
Elodea canadensis	monocot	9
Lemna trisulca	monocot	2
Najas sp.	monocot	4
Potamogeton crispus	monocot	3
Potamogeton pectinatus	monocot	1
Ruppia maritima ^b	monocot	1
Spirodela polyrhiza	monocot	4
Zostera marina ^b	monocot	1
Azolla japonica	fern	1
Salvinia natans	fern	1
]	Total	58

Table 5. List of the non-standard vascular aquatic plant species used to calculate the EC_{50} ratios with *Lemna*^a.

 ^{a}N = the total number of available EC₅₀ values for each species. Note, if multiple EC₅₀ values for a given species were available, then a separate ratio was calculated for each.

^bMarine macrophytes

Figure 3. Cumulative frequency plot of the 58 aquatic vascular plant EC₅₀ ratios with *Lemna*. Both plots have same data; the top is labeled by species and the bottom is labeled by chemical.

5.2. Species sensitivity distributions

For OPP's risk assessments, data for non-vascular and vascular plants are used separately. This is one reason why the analyses in the last section were done with the data

segregated into these two groups. Another approach is to combine all data for both groups into one assessment. This is what was done for the species sensitivity distribution used for the earlier mentioned acetochlor, metolachlor and atrazine. These SSD approaches separated the data into freshwater and saltwater; acetochlor and metolachlor only used freshwater data and the draft atrazine document created separate distributions for each medium. The analyses described below combines all data from all taxonomic groups and both freshwater and saltwater.

One of the underlying issues related to determining an appropriate toxicity benchmark (or criterion) for aquatic plants is that there is not a consensus (or, unlike aquatic animals, even a historical precedence) for what constitutes a minimum data set which would represent the range of sensitivities for a given plant community. However, a number of existing data sets can be found in which numerous data points exist for a variety of species representing many niches in the aquatic plant community. For example there are 44 species for which diuron EC_{50} values exist, 38 for irgarol, 31 for pentachlorophenol, 25 for atrazine, 21 for metolachlor and 13 for diquat. Each of these data sets contains a variety of both non-vascular and vascular plant data, and it is reasonable to expect that these data sets are equal to or greater than some as yet undetermined "representative minimum data set". Each of these data sets also contains data for all of the OPP "standard species".

Not only is there no consensus on what constitutes a minimum data set of species, there is also no consensus on what the appropriate durations of exposure are or what the most appropriate measurement endpoints are —with the possible exception of microalgae. The few times that a large data set has been used for setting plant values (*e.g.*, acetochlor, metolachlor, atrazine) a variety of durations and measurement endpoints have been used. This is largely because most of the plant data used in these SSDs came from studies whose goals were not regulatory in nature—data collected for a variety of reasons, by its nature would have a variety of durations and endpoints. A variety of endpoints are included in the sample SSD data sets. The data are listed in **Appendix B**.

Both freshwater and saltwater data for aquatic plants were downloaded from the USEPA's ECOTOX database¹⁸ in May 2010 for four of the herbicides and pentachlorophenol (a wood preservative). The data for atrazine came from the June 2009 draft water quality criteria document, supplemented with data from the OPP Ecotoxicity Database. All data were used "as is" (*i.e.*, original references were not checked). These compounds were selected because a reasonably large number of EC_{50} values were available (LC_{50} and IC_{50} values also were included). It also should be noted that many of these plotted values are based on unmeasured (nominal) exposure concentrations. For all compounds, the geometric mean was calculated for species with more than one EC_{50} for a compound. SSDs for all six compounds are plotted in **Figure 4.** To demonstrate how a benchmark derived using only the OPP standard test species compares to a benchmark value derived using a larger, more diverse data set, two separate species sensitivity distributions were plotted for each chemical. One SSD included all of the data and the

¹⁸ <u>http://cfpub.epa.gov/ecotox</u>

other included just the data from the OPP standard species. **Equation 1**¹⁹ was fit to each of the "full" and "partial" data sets using Microsoft Excel's solver routine. HC₅ values were calculated using the resulting fitted equations, as well as the method OW typically uses to develop final acute values for animals (USEPA 1985)²⁰. These data are shown in **Table 6**.

$$Cummulative_{Frequency} = \frac{1}{1 + \left(\frac{C}{X_m}\right)^S}$$
 Equation 1

Where:

 $C = EC_{50}$ value, $X_m =$ median EC_{50} value, and S = shape factor (slope)

Table 6. Comparison of calculated plants values using three different approaches
All values are µg/L.

		Calculat	ed HC ₅ ^b	FAV 5 th percentile ^d			OPP data ^e
Compound	$\mathbf{N}^{\mathbf{a}}$	Full data set	Partial Data ^c	Full data set	Partial Data ^c	Lowest EC ₅₀	Species
Atrazine	25	10.37	9.69	13.79	50.52	50.5	Lemna gibba
Diquat	13	0.647	1.154	0.491	4.07	5.1	Lemna minor
Diuron	44	1.68	4.04	2.84	13.89	8.0	Pseudokirchneriella subcapitata
Irgarol	38	0.097	0.032	0.107	0.415	0.1	Navicula pelliculosa
Metolachlor	21	12.47	6.02	38.88	29.69	34.2	Pseudokirchneriella subcapitata
Pentachlorophenol	31	15.26	8.30	39.69	49.11	35.3	Skeletonema costatum

^a Number of species mean plant values

^b Calculated using the fitted Equation 1to all of the SSD data

^c Only the data for the OPP standard species are included

^d Calculated using the four most sensitive values—the Final Acute Value method from USEPA 1985

^e Using only the data for the OPP standard species. If lower acceptable test values are available to OPP, those species would be used for deriving an OPP benchmark. For instance, the actual benchmark for atrazine is $1\mu g/L$.

¹⁹ There are a variety of possible sigmoid equations that could be used. This one is shown only as one example for the purpose of demonstration.

²⁰ OW's 1985 guidelines' procedure for FAV calculation is essentially a regression using the four most sensitive genus mean values (species means used for FVP). The calculated value represents the cumulative probability of 0.05 of all the test values. Note that in other countries (as well as for the Minnesota calculations for acetochlor and metolachlor) SSDs are used by fitting a sigmoid curve to the data and calculating a percentile effect concentration (*e.g.*, EC₀₅ or EC₂₀).

Figure 4. Species sensitivity distributions for aquatic plants using species mean EC₅₀ values. See Appendix B for data. Closed circles represent all of the available data. Open circles are the subsets of the data containing only the data for the OPP standard species.

The information in **Table 6** demonstrates that a different benchmark value is derived if more data are available and if different approaches are used. It should be noted that for most of the example chemicals, the lowest OPP value falls nearly at the HC_{10} of the distribution. The HC_5 approach with the full data set are the only derived values that use all of the available data, and is often the approach preferred when plant data are evaluated²¹. While the fitting of a curve to the full data set will probably result in the best estimate of the "true" benchmark for a given compound, the method used above (*i.e.*, **Equation 1**) should not be taken as the best. Likewise, the selection of the HC_5 as the point of interest is presented here only as one example. In addition, these data suggest that an factor may be needed in order to extrapolate from the minimal data set (e.g., data from only the OPP standard species).

6. Potential approach for deriving plant ALSV

The amount of aquatic plant toxicity data available varies among pesticides. As indicated above, toxicity data are required for pesticides; however, data are often available in the scientific literature, particularly for herbicides (*e.g.*, atrazine, metolachlor). In cases where plants are expected to be more sensitive than animals (*i.e.*, for herbicides), it may be necessary to derive a plant ALSV with which to compare against the animal ALSV. The plant ALSV is based on phytotoxicity and its calculation excludes animal toxicity data which are used for the animal ALSV calculation alone.

Different approaches for deriving this value may be used, depending upon availability of data. The plant ALSV may be represented by the lowest single toxicity value for aquatic plants. In cases where there is evidence to suggest that the available toxicity data are not representative of the most sensitive plant species which are expected to be impacted, extrapolation factors may be applied to available data to derive the plant ALSV. In deciding whether to use an extrapolation factor, the chemical's mode of action on aquatic plants and whether the available test species are likely to be impacted should be considered. If a chemical has a large data set (e.g., atrazine, metolachlor), it may be possible to use a SSD to derive a plant ALSV. Additionally, as discussed in the animal white paper, predictive tools for estimating toxicity values may be available which could allow further development of plant SSDs when combined with existing data. As discussed in the tools white paper though, there are a limited number of predictive tools at this time for estimating the toxicity of chemicals to aquatic plants. Where such tools are available, they may only predict for a limited number of aquatic plants, e.g., freshwater algae alone. However, efforts are underway to enhance the predictive capabilities of [quantitative] structure activity relationship ([Q]SAR) models through inclusion of plant toxicity data in model training sets. Use of other predictive methods such as analogs and read-across (discussed in the tools white paper) may provide the user with an understanding of the extent existing data for the chemical in question are reflective of plant sensitivity for similarly structured chemicals. This information could provide a rationale for using existing data alone, reliance on an extrapolation factor, or

²¹ By "approach preferred" we mean that fitting a sigmoid curve to the full data set is often the preferred approach. Different equations may be used, as well as different percentiles (*e.g.*, HC_{20}).

possibly using these analog/read-across and/or [Q]SAR estimates as a means of populating SSDs which would in turn be used for developing a plant ALSV.

It is expected that once the methods described here are reviewed, the approach for deriving plant ALSVs will be revised to be more specific and to incorporate the methods determined to have the greatest utility. In order to refine this approach, it will be necessary to define the endpoints used in deriving a plant ALSV. This includes considering the desired duration of exposure, level of effect (*e.g.*, EC₅₀) and measurement endpoint (*e.g.*, growth rate) that are used to define the toxicity data for the ALSV. Also, it will be necessary to define the assessment endpoint, *i.e.*, survival, growth or reproduction, which the ALSV is intended to represent. Finally, it will be necessary to define the community effect level (*e.g.*, HC_x) if an SSD approach is used.

In addition to the above, an approach for determining appropriate EFs for when different amounts of plant data are available can also be undertaken. The minimum amount of data considered will be the data for the OPP "standard species". This is because any new or reregistered pesticide should have a minimum of five data points (four microalgal points and one for Lemna sp.). The approach will consist of finding as many data sets as possible for which a large number of EC₅₀ values already exist. This will include nonpesticide data in order to maximize the number of chemicals represented. The nonpesticide data sets also will need to contain data that would meet the OPP data requirements for aquatic plants. With enough additional data sets like the six presented as SSDs in this document, EFs could be developed that could be used to account for when only the standard set of OPP data are available. When more data than the standard OPP data set are available, one approach would be to return to the data sets and start adding some of the non-OPP standard species data to the OPP standard set and observing how the "partial" SSD equation changes. It will get closer to matching the equation for the "full" plot as more data are added. This can be done for all possible combinations of adding data in groups of 1, 2, 3, etc. Using the "full" SSD to represent the best benchmark, recommendations could be made on how the EF should be altered as the number of data points increases. Based on the plots presented above in Figures 2 and 3, the analysis could concentrate on adding back data for aquatic vascular plants. This may also shed some light on how many and/or what species reduce the difference between the full and partial curves the quickest. In relation to the derivation of SSDs and EFs, future analyses will explore the different sources of uncertainty in plant data, including those described above.

7. Conclusions

This white paper presents several methods used to characterize the effects of stressors on aquatic plant communities. These methods include use of the most sensitive empirical toxicity data, extrapolation factors, and sensitivity distributions. This paper also explores uncertainties associated with aquatic plant toxicity data, including the sensitivities of typical test species relative to other aquatic plants for which test species are surrogates. Based upon methodologies used by other countries and by U.S. regulatory agencies, and the analyses of relative sensitivities of the standard OPP test species, plant community

benchmark values can logically be derived. The amount of data available for plant species should be considered when calculating a plant ALSV. For pesticides, data are routinely available for the standard five OPP test species. It may be possible to use the lowest of the available data to represent the plant ALSV (either alone or with extrapolation factors). When additional data are available in addition to the standard OPP test species, SSDs have proven effective for deriving toxicity values which are considered reflective of the sensitivity of more vulnerable aquatic plant species. Possible approaches for deriving plant ALSVs are broadly described which are similar to those discussed in the aquatic animal white paper. These approaches are intended to account for uncertainties and to make the best use of available data.

8. References

- Aida, M, Ikeda, H, Itoh, K and Usui, K. 2006. Effects of five rice herbicides on the growth of two threatened aquatic ferns. *Ecotoxicology and Environmental Safety*. 63:463-468.
- Anderson, BS and JW Hunt. 1988. Bioassay methods for evaluating the toxicity of heavy metals, biocides and sewage effluent using microscopic stages of giant kelp *Macrocystis pyrifera* (Agardh): A preliminary report. *Marine Environmental Research* 26:113-134.
- Anderson, BS, JW Hunt, SL Turpen, AR Coulan and M Martin. 1990. Copper toxicity to microscopic stages of giant kelp *Macrocystsis pyrifers:* Interpopulation comparisons and temporal variability. *Marine Ecology: Progress Series* 68:147-156.
- Bruno, E and B Eklund. 2003. Two new growth inhibition tests with the filamentous algae *Ceramium strictum* and *C. tenuicorne* (Rhodophyta). *Environmental Pollution* 125:287-293.
- Campbell, TC. 2005. An introduction to clinical significance: An alternative index of intervention effect for group experimental designs. *Journal of Early Intervention* 27:210-227.
- Cavalier-Smith, T. 2004. Only six kingdoms of life. *Proceedings of the Royal Society of London B.* 271:1251-1262.
- CCME (Canadian Council of Ministers of the Environment). 2007. A protocol for the derivation of water quality guidelines for the protection of aquatic life. Published in Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.
- Cedergreen, N, NH Spliid and JC Streibig. 2004a. Species-specific sensitivity of aquatic macrophytes towards two herbicides. *Ecotoxicology and Environmental Safety*. 58:314-323.
- Cedergreen, N, JC Streibig, and NH Spliid. 2004b. Sensitivity of aquatic plants to the herbicide metsulfuron-methyl. *Ecotoxicology and Environmental Safety*. 57:153-161.
- Cohen, J. 1990. Things I have learned (so far). American Psychologist 45(12)1304-1312.

- Crane, M and MC Newman. 2000. What level of effect is a no observed effect? *Environmental Toxicology and Chemistry* 19(2):516-519.
- Cronk, JK and MS Fennessy. 2001. Wetland Plants: Biology and Ecology. CRC Press. 463 pp.
- Davey, M, R Petrie, J Smrchek, T Kuchnicki and D Francois. 2001. Proposal to update non-target plant toxicity testing under NAFTA. Scientific Advisory Panel Briefing.Health Canada: Pest Management Regulatory Agency and US Environmental Protection Agency: Office of Prevention, Pesticides, and Toxic Substances. June 27-29.
- Di Landa, G, L Parrella, S Avagliano, G Ansanelli, E Maiello and C Cremisini. 2009. Assessment of the potential ecological risks posed by antifouling booster biocides to the marine ecosystem of the Gulf of Napoli (Italy). *Water Air Soil Pollut*. 200:305-321.
- Di Stefano, J, F. Fidler, G. Cumming. 2005. Effect size and confidence intervals: An alternative focus for the presentation and interpretation of ecological data. pp. 71-102. (in) AR Burk (ed). *New Trends in Ecological Research*. Nova Science, New York.
- Drake, BG. 1989. Photosynthesis of salt marsh species. Aquatic Botany 34:167-180.
- Eklund, B. 1998. Reproductive performance and growth response of the red alga *Ceramium strictum* under the impact of phenol. *Marine Ecology Progress Series* 167:119-126.
- Eklund, BT and L Kautsky. 2003. Review on toxicity testing with marine macroalgae and the need for method standardization—exemplified with copper and phenol. *Marine Pollution Bulletin* 46:171-181.
- Erickson, R. 2010. Proposed methodology for specifying atrazine levels of concern for protection of plant communities in freshwater ecosystems. Draft Report to Environmental Fate and Effects Division, Office of Pesticide Programs, USEPA. July 30, 2010.
- European Commission. 2003. Technical Guidance Document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and the council concerning the placing of biocidal products on the market. Part II. European Commission Joint Research Centre, EUR 20418 EN/2, European Communities L 327/1.
- Fairchild, JF, Ruessler, DS and Carlson, AR. 1998. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. *Environmental Toxicology and Chemistry* 17(9):1830-1834.
- Forney, DR and Davis, DE. 1981. Effects of low concentrations of herbicides on submersed aquatic plants. *Weed Science*. 29:677-685.
- Haglund, K, M Björklund, S Gunnare, A Sandberg, U Olander and M Pedersén. 1996. New method for toxicity assessment in marine and brackish environments using the

macroalga *Gracilaria tenuistipitata* (Gracilariales, Rhodophyta). *Hydrobiology* 326/327:317-325.

- Hanson, ML and KR Solomon. 2004. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity. *Environmental Pollution* 130:371-383
- Kirk, RE. 1996. Practical significance: A concept whose time has come. *Educational and Psychological Measurement* 56:746-759.
- Lewis. MA. 1986. Comparison of the effects of surfactants on freshwater phytoplankton communities in experimental enclosures and on algal population growth in the laboratory. *Environmental Toxicology and Chemistry* 5:319-332.
- Lewis, MA. 1990. Are laboratory-derived toxicity data for freshwater algae worth the effort? *Environmental Toxicology and Chemistry*. 9: 1279-1284
- Lewis, MA. 1995. Use of freshwater plants for phytotoxicity testing: a review. *Environmental Pollution*. 87:319-336.
- Lewis, MA and R Devereux. 2007. A synoptic review of the fate and effects of anthropogenic chemicals in seagrass ecosystems. *Environmental Toxicology and Chemistry* 28:644-661.
- Lewis, MA, R, Larson, and M Taylor. 1986. Structural and functional response of natural phytoplankton and periphyton communities to a cationic surfactant with considerations of environmental fate (in) J Cairns, ed. *Community Toxicity Testing*, ASTM Special Publication 920. pp 242-268.
- Lewis, MA, R Pryor and L Wilkins. in review. Fate and effects of anthropogenic chemicals in mangrove ecosystems. Submitted to *Aquatic Botany*.
- Lewis, MA and Wang. 1999. Biomonitoring using aquatic vegetation. *Environmental Science Forum* 96:243-274.
- Longstreth, DJ. 1989. Photosynthesis and photorespiration in freshwater emergent and floating plants. *Aquatic Botany* 34:287-299.
- Lytle, J. and T. Lytle. 2001. Annual review- use of plants for toxicity assessment of estuarine systems. *Environ. Toxicol. Chem.* 20: 68-83.
- Maltby, L, D Arnold, G Arts, J Davies, F Heimbach, C Pickl and V Poulsen. 2010. Aquatic Macrophyte Risk Assessment for Pesticides. CRC Press. 135 pp.
- MENVIQ. 1990 (rev. 1992). Méthodologie de calcul des critères de qualité de l'eau pour les substances toxiques. Direction de l'expertise scientifique, Ministère de l'Environnement du Québec, Québec.
- Miller, FJ, PM Schlosser and DB Janszen. 2000. Haber's rule: a special case in a family of curves relating concentration and duration of exposure to a fixed level of response for a given endpoint. *Toxicology* 149:21-34.
- Newman, MC. 2008. "What exactly are you inferring?" A closer look at hypothesis testing. *Environmental Toxicology and Chemistry* 27(5):1013-1019.
- Porsbring, T, Å Arrhenius, T Backhaus, M Kuylenstierna, M Scholze and H Blank. 2007. The SWIFT periphyton test for high-capacity assessments of toxicant effects on

microalgal community development. Journal of Experimental Marine Biology and Ecology 349:299-312.

- Reed, JM and AR Blaustein. 1997. Biological significant population declines and statistical power. *Conservation Biology* 11(1):281-282.
- Rentz, N and M Hanson. 2009. Duckweed toxicity tests are appropriate for ERA. *Inter Environ Assess Manag* 5:350-351.
- Rozman, KK. 2000. The role of time in toxicology or Haber's *c* x *t* product. *Toxicology* 149:35-42.
- Rozman, KK and J Doull. 2000. Dose and time as variables of toxicity. *Toxicology* 149:169-178.
- Schmitt-Jansen, M and R Altenburger. 2008. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. *Aquatic Toxicology* 86:49-58.
- Steele, RL and MD Hanisak. 1978. Sensitivity of some brown algal reproductive stages to oil pollution. In. A Jensen and JR Stein (Eds), *Proceedings for the Ninth International Seaweed Symposium*. Science Press, Prniceton, NJ. pp. 181-190.
- TenBrook, PL, AJ Palumbo, TL Fojut, P Hann, J Karkoski and RS Tjeerdema. 2010. The University of California-Davis methodology for deriving aquatic life pesticide water quality criteria. *Reviews of Environmental Contamination and Toxicology*. 209:1-155.
- Thursby, GB, BS Anderson, GW Walsh and RL Steele. 1993. A review of the current status of marine algal toxicity testing in the United States. In WG Landis, JS Hughes and MA Lewis, Eds. *Environmental Toxicology and Risk Assessment*, ASTM STP 1179. pp. 362-377.
- Thursby, GB, RL Steele and ME Kane. 1985. Effects of organic chemicals on growth and reproduction in the marine red alga *Champia parvula*. *Environmental Toxicology and Chemistry*. 4:797-805.
- USEPA. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and their Uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA.

USEPA. 1995. Part III – 40 CFR 9, 122, 131, and 132. Final Water Quality Guidance for the Great Lakes System; Final Rule. Federal Register 60(56): 15365-15425.

- USEPA. 1996a. Background non-target plant testing. Ecological Effects Test Guidelines. OPPTS No. 850.4000. EPA Report # 712-C-96-151. April 1996.
- USEPA. 1996b. Aquatic plant toxicity test using *Lemna* spp., Tiers I and II. Ecological Effects Test Guidelines. OPPTS No. 850.4400. EPA Report # 712-C-96-156. April 1996.

- USEPA. 1996c. Algal toxicity, Tiers I and II. Ecological Effects Test Guidelines. OPPTS No. 850.5400. EPA Report # 712-C-96-164.
- USEPA. 2004. Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs. U.S. Environmental Protection Agency. Endangered and Threatened Species Effects Determinations. Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, Washington DC. January 23, 2004.
- Wang, W and K Freemark. 1995. The use of plants for environmental monitoring and assessment. *Ecotoxicology and Environmental Safety*. 30:289-301.

Species	Chemical	Duration (d)	Endpoint	EC ₅₀ (µg/L)	Reference
Ceratophyllum demersum	alachlor	14	increase in wet wt	85	Farichild et al. 1998
Elodea canadensis	alachlor	14	increase in wet wt	> 3000	Farichild et al. 1998
Lemna minor	alachlor	4	# fronds	482	Farichild et al. 1998
Myriophyllum heterophyllum	alachlor	14	increase in wet wt	> 3000	Farichild et al. 1998
Najas sp.	alachlor	14	increase in wet wt	584	Farichild et al. 1998
Ceratophyllum demersum	atrazine	14	increase in wet wt	22	Farichild et al. 1998
Elodea canadensis	atrazine	14	increase in wet wt	21	Farichild et al. 1998
Lemna minor	atrazine	4	# fronds	92	Farichild et al. 1998
Myriophyllum heterophyllum	atrazine	14	increase in wet wt	132	Farichild et al. 1998
Najas sp.	atrazine	14	increase in wet wt	24	Farichild et al. 1998
Azolla japonica	bensulfruon methyl	12	relative growth rate	5	Aida et al. 2006
Lemna minor	bensulfruon methyl	12	relative growth rate	10	Aida et al. 2006
Salvinia natans	bensulfruon methyl	12	relative growth rate	0.54	Aida et al. 2006
Lemna gibba	chlorodifluoroacetic acid	7	frond #	176.4	Hanson & Solomon 2004a
Myriophyllum sibiricum	chlorodifluoroacetic acid	14	root length	161.4	Hanson & Solomon 2004a
Myriophyllum spicatum	chlorodifluoroacetic acid	14	root length	105.3	Hanson & Solomon 2004a
Lemna gibba	dichloroacetic acid	7	frond #	199.2	Hanson & Solomon 2004a
Myriophyllum sibiricum	dichloroacetic acid	14	root length	75.3	Hanson & Solomon 2004a
Myriophyllum spicatum	dichloroacetic acid	14	root length	37.1	Hanson & Solomon 2004a
Potamogeton pectinatus	iragrol			6.10	Di Lande et al. 2009
Ruppia maritima	iragrol			1.92	Di Lande et al. 2009

Appendix A. Vascular plant (VP) data used in creating ratios comparing *Lemna* to other VPs

Zostera marina	iragrol			2.50	Di Lande et al. 2009
Ceratophyllum demersum	metolachlor	14	increase in wet wt	70	Farichild et al. 1998
Elodea canadensis	metolachlor	14	increase in wet wt	2355	Farichild et al. 1998
Lemna minor	metolachlor	4	# fronds	360	Farichild et al. 1998
Myriophyllum heterophyllum	metolachlor	14	increase in wet wt	> 3000	Farichild et al. 1998
Najas sp.	metolachlor	14	increase in wet wt	242	Farichild et al. 1998
Caboma caroliniana	metribuzin	21	stem length	22	Forney & Davis 1981
Ceratophyllum demersum	metribuzin	14	increase in wet wt	14	Farichild et al. 1998
Elodea canadensis	metribuzin	14	increase in wet wt	21	Farichild et al. 1998
Elodea canadensis	metribuzin	21	stem length	78	Forney & Davis 1981
Lemna minor	metribuzin	4	# fronds	36	Farichild et al. 1998
Lemna perpusilla	metribuzin	28	new plants	16	Forney & Davis 1981
Myriophyllum heterophyllum	metribuzin	14	increase in wet wt	17	Farichild et al. 1998
Myriophyllum spicatum	metribuzin	28	stem length	64	Forney & Davis 1981
Najas sp.	metribuzin	14	increase in wet wt	19	Farichild et al. 1998
Batrachium trichophyllum	metsulfuron-methyl	14	specific leaf area	0.07	Cedergreen et al. 2004 a
Berula erecta	metsulfuron-methyl	14	specific leaf area	3.92	Cedergreen et al. 2004 a
Ceratophyllum demersum	metsulfuron-methyl	14	specific leaf area	0.2	Cedergreen et al. 2004 a
Ceratophyllum submersum	metsulfuron-methyl	14	specific leaf area	2.21	Cedergreen et al. 2004 a
Elodea canadensis	metsulfuron-methyl	14	specific leaf area	0.57	Cedergreen et al. 2004 a
Elodea canadensis	metsulfuron-methyl	14	specific leaf area	0.79	Cedergreen et al. 2004 a
Lemna minor	metsulfuron-methyl	14	relative growth rate	0.8	Cedergreen et al. 2004 a
Lemna minor	metsulfuron-methyl	14	relative growth rate	1.13	Cedergreen et al. 2004 a
Lemna minor	metsulfuron-methyl	14	specific leaf area	0.18	Cedergreen et al. 2004 a

Lemna minor	metsulfuron-methyl	14	specific leaf area	0.1	Cedergreen et al. 2004 a
Lemna trisulca	metsulfuron-methyl	14	specific leaf area	0.62	Cedergreen et al. 2004 a
Myriophyllum spicatum	metsulfuron-methyl	14	specific leaf area	0.29	Cedergreen et al. 2004 a
Potamogeton crispus	metsulfuron-methyl	14	specific leaf area	0.23	Cedergreen et al. 2004 a
Spriodela polyrhiza	metsulfuron-methyl	14	specific leaf area	0.32	Cedergreen et al. 2004 a
Spriodela polyrhiza	metsulfuron-methyl	14	specific leaf area	0.19	Cedergreen et al. 2004 a
Lemna gibba	monochloroacetic acid	7	frond #	17.2	Hanson & Solomon 2004a
Myriophyllum sibiricum	monochloroacetic acid	14	root length	5.8	Hanson & Solomon 2004a
Myriophyllum spicatum	monochloroacetic acid	14	root length	6.6	Hanson & Solomon 2004a
Callitriche platycarpa	terbutylazine	14	dry weight	158	Cedergreen et al. 2004b
Callitriche platycarpa	terbutylazine	14	dry weight	119	Cedergreen et al. 2004b
Ceratophyllum demersum	terbutylazine	14	dry weight	196	Cedergreen et al. 2004b
Ceratophyllum submersum	terbutylazine	14	dry weight	17	Cedergreen et al. 2004b
Ceratophyllum submersum	terbutylazine	14	dry weight	69	Cedergreen et al. 2004b
Elodea canadensis	terbutylazine	14	dry weight	98	Cedergreen et al. 2004b
Elodea canadensis	terbutylazine	14	dry weight	305	Cedergreen et al. 2004b
Lemna minor	terbutylazine	14	dry weight	40	Cedergreen et al. 2004b
Lemna minor	terbutylazine	14	dry weight	111	Cedergreen et al. 2004b
Lemna trisulca	terbutylazine	14	dry weight	254	Cedergreen et al. 2004b
Myriophyllum spicatum	terbutylazine	14	dry weight	55	Cedergreen et al. 2004b
Potamogeton crispus	terbutylazine	14	dry weight	109	Cedergreen et al. 2004b
Potamogeton crispus	terbutylazine	14	dry weight	199	Cedergreen et al. 2004b
Spirodela polyrhiza	terbutylazine	14	dry weight	228	Cedergreen et al. 2004b
Spirodela polyrhiza	terbutylazine	14	dry weight	146	Cedergreen et al. 2004b

Lemna gibba	trichloroacetic acid	7	frond #	254.1	Hanson & Solomon 2004a
Myriophyllum sibiricum	trichloroacetic acid	14	root length	55.4	Hanson & Solomon 2004a
Myriophyllum spicatum	trichloroacetic acid	14	root length	57.1	Hanson & Solomon 2004a
Lemna gibba	trifluoroacetic acid	7	frond #	884	Hanson & Solomon 2004a
Myriophyllum sibiricum	trifluoroacetic acid	14	root length	340.7	Hanson & Solomon 2004a
Myriophyllum spicatum	trifluoroacetic acid	14	root length	222.1	Hanson & Solomon 2004a

Appendix B. Data for Species Sensitivity Distribution plots

Atrazine

Species	Common name	Medium	Species group	Duration (d)	Endpoint	EC ₅₀ /IC ₅₀ or LC ₅₀ ^{a,b} (µg/L)	SMPV (µg/L)
Anabaena flos-aquae	Cyanobacterium	FW	Non-vascular	5		230 ^a	230
Chlamydomonas reinhardtii	Green alga	FW	Non-vascular	4	cell number	51 ^b	27.32
Chlamydomonas reinhardtii	Green alga	FW	Non-vascular	4	cell number	51 ^b	
Chlamydomonas reinhardtii	Green alga	FW	Non-vascular	7	cell number	21 ^b	
Chlamydomonas reinhardtii	Green alga	FW	Non-vascular	10	cell number	10.2 ^b	
Chlorella saccharophila	Green alga	FW	Non-vascular	4	cell number	1,300 ^b	1,300
Chlorella sp.	Green alga	SW	Non-vascular	3	growth	140 ^b	140
Dunaliella tertiolecta	Green alga	SW	Non-vascular	5		180 ^a	180
Elodea canadensis	Elodea	FW	Vascular	10	biomass	1200 ^b	1,200
Isochrysis galbana	Golden/brown alga	SW	Non-vascular	5		22 ^a	22
Lemna gibba	Duckweed	FW	Vascular	7	frond production	180 ^b	50.54
Lemna gibba	Duckweed	FW	Vascular	14	frond number	37 ^b	
Lemna gibba	Duckweed	FW	Vascular	14	frond biomass	45 ^b	
Lemna gibba	Duckweed	FW	Vascular	14	frond biomass	22 ^b	
Lemna gibba	Duckweed	FW	Vascular	14	frond number	50 ^b	
Lemna minor	Duckweed	FW	Vascular	14	biomass	8700 ^b .*	
Lemna minor	Duckweed	FW	Vascular	10	frond number	56 ^b	59.28
Lemna minor	Duckweed	FW	Vascular	10	fresh weight	60 ^b	

Lemna minor	Duckweed	FW	Vascular	10	chlorophyll	62 ^b	
Microcystis aeruginosa	Cyanobacterium	FW	Non-vascular	5		129 ^a	129
Myriophyllum spicatum	Eurasian water milfoil	SW	Vascular	28	photosynthesis	117 ^b	54.08
Myriophyllum spicatum	Eurasian water milfoil	SW	Vascular	35	biomass	25 ^b	
Navicula incerta	Diatom	SW	Non-vascular	3		460 ^a	460
Navicula pelliculosa	Diatom	FW	Non-vascular	5		60 ^a	60
Neochloris sp.	Green alga	SW	Non-vascular	3	growth	82 ^b	82
Nitzschia closterium	Diatom	SW	Non-vascular	3		290 ^a	290
Pavlova sp.	Golden/brown alga	SW	Non-vascular	4	growth	147 ^b	147
Platymonas sp.	Green alga	SW	Non-vascular	3		100 ^b	100
Porphyridium cruentum	Red alga	SW	Non-vascular	3	growth	79 ^b	79
Potamogeton perfoliatus	Redheadgrass pondweed	SW	Vascular	28	photosynthesis	55 ^b	20.49
Potamogeton perfoliatus	Redheadgrass pondweed	SW	Vascular	35	final biomass	30 ^b	
Pseudanabaena geleata	Cyanobacterium	FW	Non-vascular	4	cell number	14 ^b	14
Pseudokirchneriella subcapitata	Green alga	FW	Non-vascular	4	cell number	4 ^b	51.04
Pseudokirchneriella subcapitata	Green alga	FW	Non-vascular	4	phaeophytin-a	20 ^b	
Pseudokirchneriella subcapitata	Green alga	FW	Non-vascular	4	chlorophyll-a	150 ^b	
Pseudokirchneriella subcapitata	Green alga	FW	Non-vascular	4	cell number	128.2 ^b	
Pseudokirchneriella subcapitata	Green alga	FW	Non-vascular	4	cell number	130 ^b	
Pseudokirchneriella subcapitata	Green alga	FW	Non-vascular	5		55 ^b	
Pseudokirchneriella subcapitata	Green alga	FW	Non-vascular	4	growth	82 ^b	
Scenedesmus acutus	Green alga	FW	Non-vascular	4	cell number	14 ^b	14
Skeletonema costatum	Diatom	SW	Non-vascular	2	growth	265 ^b	265
Thalassiosira fluviatilis	Diatom	SW	Non-vascular	3		110 ^a	110

Zostera marina	Eelgrass	SW	Vascular	21	survival	540 ^b	291.6
Zostera marina	Eelgrass	SW	Vascular	21	survival	100 ^b	
Zostera marina	Eelgrass	SW	Vascular	21	survival	365 ^b	
Zostera marina	Eelgrass	SW	Vascular	21	survival	367 ^b	

*Not used in SMPV ^aEC₅₀/IC₅₀/LC₅₀ data from OPP database ^bEC₅₀/IC₅₀/LC₅₀ data from WQC draft (June 23, 2009)

Diquat

Species	Common name	Medium	Species Group	Duration (d)	Endpoint	$\frac{EC_{50}/IC_{50}{}^{a}}{(\mu g/L)}$	SMPV (µg/L)
Anabaena flos aquae	Cyanobacterium	FW	Non-Vascular	3	growth rate	42	42
Anacystis aeruginosa	Cyanobacterium	FW	Non-Vascular	3	growth rate	65	65
Chlorella vulgaris	Green algae	FW	Non-Vascular	3	growth rate	2940	2940
Cryptomonas ozolini	Cryptomonad	FW	Non-Vascular	3	population change, general	35	35
Euglena gracilis	Flagellate euglenoid	FW	Non-Vascular	3	growth rate	2940	2940
Lemna minor	Duckweed	FW	Vascular	7	growth rate	1.5	5.08
Lemna minor	Duckweed	FW	Vascular	7	growth rate	2.7	
Lemna minor	Duckweed	FW	Vascular	7	growth rate	3.1	
Lemna minor	Duckweed	FW	Vascular	7	relative growth rate	15	
Lemna minor	Duckweed	FW	Vascular	4	population change, general	18	
<i>Lyngbya</i> sp.	Cyanobacterium	FW	Non-Vascular	3	population growth rate	145	145
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	area	56.2	200.43
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	number of root	57	

Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	weight	78.2	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	length	79.7	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	length	105.7	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	area	127.7	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	number of root	155.1	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	weight	184	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	abundance	271.3	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	length	346.2	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	abundance	365.7	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	length	403.8	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	abundance	982.8	
Myriophyllum sibiricum	Water milfoil	FW	Vascular	14	length	1610.9	
Navicula sp.	Diatom	FW	Non-Vascular	3	growth rate	19	19
Ochromonas danica	Diatom	FW	Non-Vascular	3	population change, general	23	23
Pseudokirchneriella subcapitata	Green algae	FW	Non-Vascular	4	abundance	4.9	37.91
Pseudokirchneriella subcapitata	Green algae	FW	Non-Vascular	4	abundance	34.2	
Pseudokirchneriella subcapitata	Green algae	FW	Non-Vascular	3	growth rate	73	
Pseudokirchneriella subcapitata	Green algae	FW	Non-Vascular	3	population growth rate	80	
Pseudokirchneriella subcapitata	Green algae	FW	Non-Vascular	4	population change, general	80	
Skeletonema costatum	Diatom	FW	Non-Vascular	3	growth rate	2940	2940
Spirodela punctata	Large duckweed	FW	Vascular	14	abundance	0.75	0.75

^aData from ECOTOX database

Diuron

Species	Common Name	Species Group	Medium	Duration (d)	Endpoint	EC ₅₀ /IC ₅₀ / LC ₅₀ ^a (μg/L)	SMPV (µg/L)
Anabaena doliolum	Cyanobacterium	Non-vascular	FW	12	population growth rate	1000	632.46
Anabaena doliolum	Cyanobacterium	Non-vascular	FW	12	population growth rate	400	
Anabaena flos aquae	Cyanobacterium	Non-vascular	FW	5	abundance	38.8	38.8
Anabaena variabilis	Cyanobacterium	Non-vascular	FW	14	population growth rate	5.8	5.8
Ankistrodesmus sp.	Green algae	Non-vascular	FW	14	population growth rate	6	6
Apium nodiflorum	European Marshwort	Vascular	FW	14	growth rate	2.808	2.808
Ceramium tenuicorne	Red Algae	Non-vascular	SW	7	population growth rate	3.4	3.4
Chaetoceros gracilis	Diatom	Non-vascular	SW	3	abundance	36	36
Chara vulgaris	Stonewort	Non-vascular	FW	14	chlorophyll	4.033	4.033
Chlorella pyrenoidosa	Green algae	Non-vascular	FW	4	population growth rate	1.3	6.24
Chlorella pyrenoidosa	Green algae	Non-vascular	FW	14	population growth rate	30	
Chlorella sp.	Green algae	Non-vascular	FW	14	population growth rate	40	40
Chlorella vulgaris	Green algae	Non-vascular	FW	4	population growth rate	4.3	4.3
Chlorococcum hypnosporum	Green algae	Non-vascular	FW	4	population growth rate	25	25
Chlorococcum sp.	Green algae	Non-vascular	FW	14	population growth rate	5	5
Chroococcus sp.	Cyanobacterium	Non-vascular	FW	9	abundance	206	270.55
Chroococcus sp.	Cyanobacterium	Non-vascular	FW	9	abundance	218	
Chroococcus sp.	Cyanobacterium	Non-vascular	FW	9	abundance	441	
Coccolithus huxleyi	Coccolithophorid	Non-vascular	SW	3	abundance	2.26	2.26
Dictyosphaerium pulchellum	Green algae	Non-vascular	FW	14	population growth rate	6	6
Dunaliella tertiolecta	Green algae	Non-vascular	FW	4	population growth rate	4.9	44.60

Dunaliella tertiolecta	Green algae	Non-vascular	FW	4	population growth rate	6.9	
Dunaliella tertiolecta	Green algae	Non-vascular	FW	4	population growth rate	300	
Dunaliella tertiolecta	Green algae	Non-vascular	FW	4	population growth rate	390	
Elodea nuttalli	Waterweed, ditchmoss	Vascular	FW	21	biomass	75	13.69
Elodea nuttalli	Waterweed, ditchmoss	Vascular	FW	21	biomass	75	
Elodea nuttalli	Waterweed, ditchmoss	Vascular	FW	21	population change, general	2.5	
Elodea nuttalli	Waterweed, ditchmoss	Vascular	FW	21	population growth rate	2.5	
Entomoneis punctulata	Diatom	Non-vascular	SW	3	population growth rate	24	24
Gracilaria tenuistipitata	Red algae	Non-vascular	SW	4	population growth rate	15	17.32
Gracilaria tenuistipitata	Red algae	Non-vascular	SW	4	population growth rate	20	
Hormidium flaccidum	Green algae	Non-vascular	FW	14	population growth rate	500	500
Lemna gibba	Inflated duckweed	Vascular	FW	14	abundance	27.3	27.3
Lemna minor	Duckweed	Vascular	FW	5	abundance	7	13.23
Lemna minor	Duckweed	Vascular	FW	7	population growth rate	25	
Lemna perpusilla	Duckweed	Vascular	NR	7	population change, general	15	15
Microcystis sp.	Cyanobacterium	Non-vascular	FW	9	abundance	120	197.95
Microcystis sp.	Cyanobacterium	Non-vascular	FW	9	abundance	162	
Microcystis sp.	Cyanobacterium	Non-vascular	FW	9	abundance	399	
Myriophyllum spicatum	Eurasian watermilfoil	Vascular	SW	28	biomass	137	56.98
Myriophyllum spicatum	Eurasian watermilfoil	Vascular	SW	35	biomass	137	
Myriophyllum spicatum	Eurasian watermilfoil	Vascular	FW	14	growth rate	5	
Myriophyllum spicatum	Eurasian watermilfoil	Vascular	SW	28	photosynthesis	80	
Myriophyllum spicatum	Eurasian watermilfoil	Vascular	SW	35	photosynthesis	80	
Navicula forcipata	Diatom	Non-vascular	FW	4	population growth rate	25	26.46

Navicula forcipata	Diatom	Non-vascular	FW	4	population growth rate	28	
Navicula pelliculosa	Diatom	Non-vascular	FW	5	abundance	13.7	13.7
Nitzschia closterium	Diatom	Non-vascular	SW	3	population growth rate	17	17
Oscillatoria sp.	Cyanobacterium	Non-vascular	FW	14	population growth rate	40	40
Phaeodactylum tricornutum	Diatom	Non-vascular	SW	10	abundance	10	10
Potamogeton perfoliatus	Pondweed	Vascular	SW	28	biomass	25	42.52
Potamogeton perfoliatus	Pondweed	Vascular	SW	35	biomass	61	
Potamogeton perfoliatus	Pondweed	Vascular	SW	28	photosynthesis	45	
Potamogeton perfoliatus	Pondweed	Vascular	SW	35	photosynthesis	45	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	SW	3	abundance	45	8.814
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	4	abundance	0.7	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	4	abundance	2.4	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	5	abundance	67	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	3	population growth rate	10.5	
Pyrocystis lunula	Dinoflagellate	Non-vascular	SW	4	abundance	35000	35000
Scenedesmus acutus	Green algae	Non-vascular	FW	14	population growth rate	50	14.30
Scenedesmus acutus acutus	Green Algae	Non-vascular	FW	4	population growth rate	4.09	
Scenedesmus quadricauda	Green algae	Non-vascular	FW	4	population growth rate	2.7	11.62
Scenedesmus quadricauda	Green algae	Non-vascular	FW	14	population growth rate	50	
Scenedesmus subspicatus	Green algae	Non-vascular	FW	3	population change, general	36	36
Skeletonema costatum	Diatom	Non-vascular	SW	5	abundance	35.9	35.9
Spirodela polyrhiza	Large duckweed	Vascular	NR	7	population change, general	41	41
Spirulina platensis	Cyanobacterium	Non-vascular	FW	14	population growth rate	8.5	8.5
Stichococcus sp.	Green algae	Non-vascular	FW	14	population growth rate	1500	1500

Synechococcus sp.	Cyanobacterium	Non-vascular	SW	3	abundance	0.55	14.57
Synechococcus sp.	Cyanobacterium	Non-vascular	FW	9	abundance	2	
Synechococcus sp.	Cyanobacterium	Non-vascular	FW	9	abundance	22	
Synechococcus sp.	Cyanobacterium	Non-vascular	FW	9	abundance	38	
Synechococcus sp.	Cyanobacterium	Non-vascular	FW	9	abundance	714	
Ulothrix fimbriata	Green algae	Non-vascular	FW	4	population growth rate	540	540
Zostera marina	Eelgrass	Vascular	SW	10	photosynthesis	3.2	3.2

^aData from ECOTOX database

Irgarol

Species	Common name	Species Group	Media Type	Duration (d)	Endpoint	EC ₅₀ /IC ₅₀ ^a (µg/L)	SMPV (µg/L)
Anabaena flosaquae	Cyanobacterium	Non-vascular	FW	5	abundance	1.9	1.9
Apium nodiflorum	European Marshwort	Vascular	FW	14	biomass	0.01328	0.13
Apium nodiflorum	European Marshwort	Vascular	FW	14	relative growth rate	1.177	
Asterionella formosa	Diatom	Non-vascular	FW	4	biomass	> 253	> 253
Ceramium tenuicorne	Red Algae	Non-vascular	SW	7	population growth rate	0.96	0.96
Chaetoceros gracilis	Diatom	Non-vascular	SW	3	abundance	1.1	1.1
Chara vulgaris	Stonewort	Non-vascular	FW	14	relative growth rate	0.01175	0.01175
Chlamydomonas intermedia	Green algae	Non-vascular	FW	4	biomass	0.5	0.5
Chlorella vulgaris	Green algae	Non-vascular	FW	4	biomass	1.5	0.8857
Chlorella vulgaris	Green algae	Non-vascular	FW	5.3	chlorophyll a	0.523	
Chlorococcum sp.	Green algae	Non-vascular	SW	5	abundance	0.42	0.42
Chroococcus minor	Cyanobacterium	Non-vascular	SW	4	population growth rate	7.71	7.71

Closterium ehrenbergii	Green algae	Non-vascular	FW	5	population growth rate	2.5	3
Closterium ehrenbergii	Green algae	Non-vascular	FW	5	gamete production	3.6	
Coccolithus huxleyi	Coccolithophorid	Non-vascular	SW	3	abundance	0.25	0.3012
Coccolithus huxleyi	Coccolithophorid	Non-vascular	SW	3	population growth rate	0.363	
Craticula accomoda	Pennate diatom	Non-vascular	FW	3	biomass	0.455	0.4770
Craticula accomoda	Pennate diatom	Non-vascular	FW	4	biomass	0.5	
Dunaliella tertiolecta	Green algae	Non-vascular	FW	4	population growth rate	0.9	0.9793
Dunaliella tertiolecta	Green algae	Non-vascular	FW	4	population growth rate	1.4	
Dunaliella tertiolecta	Green algae	Non-vascular	FW	4	population growth rate	0.73	
Dunaliella tertiolecta	Green algae	Non-vascular	SW	4	population growth rate	1	
Eisenia bicyclis	Brown alga	Non-vascular	SW	7	cell cleavage	2.2	2.717
Eisenia bicyclis	Brown alga	Non-vascular	SW	4	size	5.9	
Eisenia bicyclis	Brown alga	Non-vascular	SW	7	size	2	
Eisenia bicyclis	Brown alga	Non-vascular	SW	7	size	2.1	
Enteromorpha intestinalis	Green algae	Non-vascular	SW	3	photosynthesis	2.5	2.5
Fibrocapsa japonica	Algae	Non-vascular	SW	3	population growth rate	0.479	
Gracilaria tenuistipitata	Red algae	Non-vascular	SW	4	population growth rate	2	2
Lemna gibba	Inflated duckweed	Vascular	FW	7	size	11	4.195
Lemna gibba	Inflated duckweed	Vascular	FW	14	abundance	1.6	
Lemna minor	Duckweed	Vascular	FW	7	size	8.1	8.1
Myriophyllum spicatum	Eurasian watermilfoil	Vascular	FW	14	relative growth rate	2	2
Myriophyllum verticillatum	Whorl-leaf watermilfoil	Vascular	FW	43	length	2.3	1.965
Myriophyllum verticillatum	Whorl-leaf watermilfoil	Vascular	FW	43	weight	1.1	
Myriophyllum verticillatum	Whorl-leaf watermilfoil	Vascular	FW	43	biomass	3	

Navicula forcipata	Diatom	Non-vascular	FW	4	population growth rate	0.5	0.5916
Navicula forcipata	Diatom	Non-vascular	FW	4	population growth rate	0.7	
Navicula pelliculosa	Diatom	Non-vascular	FW	5	abundance	0.1	0.1
Nitzschia sp.	Diatom	Non-vascular	FW	4	biomass	0.8	0.8
Pediastrum duplex	Green algae	Non-vascular	FW	3	biomass	2.4	2.4
Porphyra yezoensis	Red algae	Non-vascular	SW	4	size	0.1	1.206
Porphyra yezoensis	Red algae	Non-vascular	SW	4	size	0.4	
Porphyra yezoensis	Red algae	Non-vascular	SW	4	size	1.3	
Porphyra yezoensis	Red algae	Non-vascular	SW	4	germination	2.7	
Porphyra yezoensis	Red algae	Non-vascular	SW	4	germination	3.6	
Porphyra yezoensis	Red algae	Non-vascular	SW	4	germination	6.1	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	3	abundance	1.47	3.584
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	3	abundance	1.6	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	SW	3	abundance	10	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	3	abundance	10.8	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	5	abundance	1.3	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	3	population growth rate	10	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	3	population growth rate	2.3	
Ruppia maritima	Widgeon-grass	Vascular	SW	28	biomass	1.8872	1.607
Ruppia maritima	Widgeon-grass	Vascular	SW	28	biomass	1.9228	
Ruppia maritima	Widgeon-grass	Vascular	SW	28	growth, general	0.8425	
Ruppia maritima	Widgeon-grass	Vascular	SW	28	morphology, general	2.008	
Ruppia maritima	Widgeon-grass	Vascular	SW	28	vegetative reproduction	1.7484	
Scenedesmus acutus	Green algae	Non-vascular	FW	4	biomass	3.3	4.102

Scenedesmus acutus	Green algae	Non-vascular	FW	4	biomass	5.1	
Scenedesmus subspicatus	Green algae	Non-vascular	FW	3	abundance	2.4	2.4
Skeletonema costatum	Diatom	Non-vascular	SW	5	abundance	0.45	0.3612
Skeletonema costatum	Diatom	Non-vascular	SW	4	population growth rate	0.29	
Staurastrum sebaldi	Desmid	Non-vascular	FW	4	biomass	2.5	2.5
Stuckenia pectinata	Sago Pondweed	Vascular	SW	28	biomass	6.1152	6.757
Stuckenia pectinata	Sago Pondweed	Vascular	SW	28	biomass	7.4664	
Synechococcus sp.	Blue-green algae	Non-vascular	SW	3	abundance	0.16	0.16
Tetraselmis sp.	Green flagellate	Non-vascular	SW	3	population growth rate	0.1	0.1
Thalassiosira pseudonana	Diatom	Non-vascular	SW	4	population growth rate	0.41	0.41
Thalassiosira weissflogii	Diatom	Non-vascular	SW	3	population growth rate	0.28	0.28
Zostera marina	Eelgrass	Vascular	SW	10	biomass	1.1	1.465
Zostera marina	Eelgrass	Vascular	SW	10	distance	2.6	
Zostera marina	Eelgrass	Vascular	SW	10	photosynthesis	1.1	

^aData from ECOTOX database

Metolachlor

Species	Common name	Species group	Medium	Duration (d)	Endpoint	EC ₅₀ /IC ₅₀ ^a (μg/L)	SMPV (µg/L)
Anabaena cylindrica	Cyanobacterium	Non-vascular	FW	3	abundance	5000	> 5000
Anabaena flos aquae	Cyanobacterium	Non-vascular	FW	5	abundance	1200	1200
Ceratophyllum demersum	Coon-tail	Vascular	FW	14	biomass	70	70
Chlamydomonas reinhardtii	Green algae	Non-vascular	FW	4	chlorophyll	1138	1138
Chlorella fusca	Green algae	Non-vascular	FW	12	population growth rate	100.61	105.27

Chlorella fusca	Green algae	Non-vascular	FW	12	population growth rate	105.03	
Chlorella fusca	Green algae	Non-vascular	FW	12	population growth rate	107.3	
Chlorella fusca	Green algae	Non-vascular	FW	12	population growth rate	108.3	
Chlorella pyrenoidosa	Green algae	Non-vascular	FW	4	population growth rate	12717.2	12717
Chlorella vulgaris	Green algae	Non-vascular	FW	4	population growth rate	18926.1	1960.1
Chlorella vulgaris	Green algae	Non-vascular	FW	4	chlorophyll	203	
Elodea canadensis	Waterweed	Vascular	FW	14	biomass	2355	2355
Lemna gibba	Inflated duckweed	Vascular	FW	14	abundance	48	67.42
Lemna gibba	Inflated duckweed	Vascular	FW	7	abundance	304	
Lemna gibba	Inflated duckweed	Vascular	FW	5	abundance	21	
Lemna minor	Duckweed	Vascular	FW	4	abundance	360	351.4
Lemna minor	Duckweed	Vascular	FW	4	population growth, general	343	
Microcystis sp.	Cyanobacterium	Non-vascular	FW	4	chlorophyll	3000	> 3000
Myriophyllum heterophyllum	Two-leaf water-milfoil	Vascular	FW	14	biomass	3000	> 3000
Myriophyllum sibiricum	Water milfoil	Vascular	FW	14	area	579.6	1024.4
Myriophyllum sibiricum	Water milfoil	Vascular	FW	14	growth rate	1535.2	
Myriophyllum sibiricum	Water milfoil	Vascular	FW	14	length	670.1	
Myriophyllum sibiricum	Water milfoil	Vascular	FW	14	length	1896	
Myriophyllum sibiricum	Water milfoil	Vascular	FW	14	number of roots	1684.8	
Myriophyllum sibiricum	Water milfoil	Vascular	FW	14	weight	606.7	
Najas sp.	Water nymph	Vascular	FW	14	biomass	242	242
Navicula pelliculosa	Diatom	Non-vascular	FW	5	abundance	380	380
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	4	abundance	5508.1*	34.16
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	4	abundance	50.9	

Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	4	abundance	55.5	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	5	abundance	10	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	4	chlorophyll	84	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	4	population growth, general	77	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	3	abundance	37.17	
Pseudokirchneriella subcapitata	Green algae	Non-vascular	FW	5	abundance	8	
Salvinia natans	Floating watermoss (fern)	Vascular	FW	28	growth rate	150	86.60
Salvinia natans	Floating watermoss (fern)	Vascular	FW	28	biomass	50	
Scenedesmus quadricauda	Green algae	Non-vascular	FW	4	population growth rate	600	600
Scenedesmus vacuolatus	Green algae	Non-vascular	FW	1	abundance	232	232
Scenedesmus subspicatus	Green algae	Non-vascular	FW	3	abundance	57100	57100
Skeletonema costatum	Diatom	Non-vascular	SW	5	abundance	61	81.91
Skeletonema costatum	Diatom	Non-vascular	SW	5	abundance	110	

*Not used in SMPV ^aData from ECOTOX database

Pentachlorophenol

Species	Common name	Species Group	Media Type	Duration (d)	Endpoint	$EC_{50}^{a} (\mu g/L)$	SMPV (µg/L)
Anabaena flos aquae	Cyanobacterium	Non-vascular	FW	5	abundance	50	50
Anabaena inaequalis	Cyanobacterium	Non-vascular	FW	4	abundance	130	130
Callitriche platycarpa	Water Starwort	Vascular	FW	21	relative growth rate	3300	3300
Callitriche platycarpa	Water Starwort	Vascular	FW	21	dry biomass	3300	
Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	10	population change, general	360	327.92

Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	3	population change, general	168	
Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	4	population change, general	405	
Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	7	population change, general	410	
Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	10	population growth rate	360	
Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	3	population growth rate	220	
Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	4	population growth rate	410	
Chlamydomonas reinhardtii	Green Algae	Non-vascular	FW	7	population growth rate	410	
Chlamydomonas sp.	Green Algae	Non-vascular	SW	4	growth rate	1400	1400
Chlorella emersonii	Green Algae	Non-vascular	FW	20	population growth rate	5000	5000
Chlorella kessleri	Green Algae	Non-vascular	FW	4	abundance	34300	34300
Chlorella pyrenoidosa	Green Algae	Non-vascular	SW	4	growth rate	5500	4134.53
Chlorella pyrenoidosa	Green Algae	Non-vascular	FW	4	growth rate	7000	
Chlorella pyrenoidosa	Green Algae	Non-vascular	FW	2	chlorophyll a	2300	
Chlorella pyrenoidosa	Green Algae	Non-vascular	FW	6	population growth rate	3300	
Chlorella vulgaris	Green Algae	Non-vascular	FW	20	abundance	10030	7737.24
Chlorella vulgaris	Green Algae	Non-vascular	FW	4	growth rate	10300	
Chlorella vulgaris	Green Algae	Non-vascular	FW	4	growth rate	10300	
Chlorella vulgaris	Green Algae	Non-vascular	FW	20	population growth rate	12000	
Chlorella vulgaris	Green Algae	Non-vascular	FW	7	population growth rate	1663	
Chlorella vulgaris var. viridis	Green Algae	Non-vascular	NR	2	population growth rate	10120.92	
Chlorella vulgaris var. viridis	Green Algae	Non-vascular	NR	3	population growth rate	7723.86	
Chlorella zofingiensis	Green Algae	Non-vascular	NR	2	chlorophyll	42.6144	42.61
Dunaliella sp.	Green Algae	Non-vascular	SW	4	growth rate	3600	3600
Dunaliella tertiolecta	Green Algae	Non-vascular	SW	4	abundance	170	170

Elodea canadensis	Waterweed	Vascular	FW	21	length	4	
Elodea canadensis	Waterweed	Vascular	FW	21	dry biomass	3265	3265
Elodea nuttalli	Waterweed, Ditchmoss	Vascular	FW	21	dry weigth	109	333.1096
Elodea nuttalli	Waterweed, Ditchmoss	Vascular	FW	21	dry biomass	1018	
Lemna gibba	Inflated Duckweed	Vascular	FW	14	abundance	250	413.9593
Lemna gibba	Inflated Duckweed	Vascular	FW	7	reproduction, general	532.68	
Lemna gibba	Inflated Duckweed	Vascular	FW	7	vegetative reproduction	532.68	
Lemna minor	Duckweed	Vascular	FW	10	photosynthesis	1670	849.38
Lemna minor	Duckweed	Vascular	FW	4	photosynthesis	1940	
Lemna minor	Duckweed	Vascular	FW	2	abundance	800	
Lemna minor	Duckweed	Vascular	FW	10	population change, general	1250	
Lemna minor	Duckweed	Vascular	FW	4	population change, general	610	
Lemna minor	Duckweed	Vascular	FW	3	survival	190	
Lemna trisulca	Duckweed	Vascular	FW	21	relative growth rate	1282	1457.05
Lemna trisulca	Duckweed	Vascular	FW	21	dry biomass	1656	
Macrocystis pyrifera	Giant Kelp	Non-vascular	SW	4	photosynthesis	300	300
Myriophyllum spicatum	Eurasian Watermilfoil	Vascular	FW	21	dry weigth	236	614.30
Myriophyllum spicatum	Eurasian Watermilfoil	Vascular	FW	21	dry biomass	1599	
Navicula pelliculosa	Diatom	Non-vascular	FW	5	abundance	124	124
Pavlova sp.	Chrysophyte	Non-vascular	SW	4	growth rate	200	200
Phaeodactylum tricornutum	Diatom	Non-vascular	SW	4	growth rate	3000	3000
Potamogeton crispus	Curled Pondweed	Vascular	FW	21	relative growth rate	338	416
Potamogeton crispus	Curled Pondweed	Vascular	FW	21	dry biomass	512	

Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	3	abundance	240	259.42
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	3	population growth rate	100	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	3	population growth rate	250	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	growth rate	110	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	growth rate	150	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	growth rate	760	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	growth rate	420	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	growth rate	420	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	2	abundance	410	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	abundance	70	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	abundance	290	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	abundance	290	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	5	abundance	50	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	3	chlorophyll a	412	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	5	chlorophyll a	335	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	7	chlorophyll a	331	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	population change, general	310	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	5	population change, general	520	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	4	population growth rate	312	
Pseudokirchneriella subcapitata	Green Algae	Non-vascular	FW	5	population growth rate	518	
Ranunculus longirostris	Longbeak Buttercup	Vascular	FW	21	length	341	449.30
Ranunculus longirostris	Longbeak Buttercup	Vascular	FW	21	dry biomass	592	
Ranunculus peltatus	Pond Water Crowfoot	Vascular	FW	21	dry weight	16	121.46
Ranunculus peltatus	Pond Water Crowfoot	Vascular	FW	21	dry biomass	922	

Scenedesmus abundans	Green Algae	Non-vascular	FW	4	growth rate	90	90
Scenedesmus quadricauda	Green Algae	Non-vascular	FW	4	growth rate	80	80
Scenedesmus subspicatus	Green Algae	Non-vascular	FW	3	population growth rate	183	183
Skeletonema costatum	Diatom	Non-vascular	SW	4	abundance	80	35.26
Skeletonema costatum	Diatom	Non-vascular	SW	4	abundance	20.3	
Skeletonema costatum	Diatom	Non-vascular	SW	5	abundance	27	
Thalassiosira pseudonana	Diatom	Non-vascular	SW	4	abundance	179	179

^aData from ECOTOX database