REACCTING

RESEARCH ON EMISSIONS AIR QUALITY, CLIMATE, AND COOKING TECHNOLOGY IN NORTHERN GHANA

Dickinson et al., BMC Public Health (2015) 15:126 DOI 10.1186/s12889-015-1414-1

Investigators

National Center for Atmospheric Research

NCAR

 Christine Wiedinmyer, Katie Dickinson, Mary Hayden, Andrew Monaghan, Dan Steinhoff, Scott Archer-Nicholls, Isaac Rivera

University of Colorado-Boulder

- Mike Hannigan, Ricardo Piedrahita, Nick Masson, Evan Coffey, Didier Muvandimwe, Conner Jacobsen
- Vanja Dukic, Yolanda Cecile-Hagar, Alexia Newgord, Sam Hsu

Navrongo Health Research Centre

 Abraham Oduro, Ernest Kayomanse, Dominic Anaseba, James Adoctor, Rex Alirigia, Achazanga Manies, Awine Rockson, Victor Adoctor

Relief International/Gyapa Enterprises

MacKenzie Dove, Atsu Titiati

REACCTING

Research of Emissions, Air Quality, Climate, and Cooking Technologies in Northern Ghana

Why Ghana?

- Strong ties with Navrongo Health Research Center (NHRC) from prior research
- Poverty affects the Northeast region
- Mostly cook with biomass
- Safe and stable work environment

Study Area

Region: Upper East

District: K-N

Town: Navrongo

Traditional Cooking

• 3-stone stove

Biomass for fuel

REACCTING

Intervention Study

rural households (200)

Sources and Exposure Characterization

urban and rural regions (50 households)

Intervention Study Design

Intervention Groups

 200 households, each with one woman aged 18-55, one child aged 0-5

Group A:

Group B:

Group C:

Group D:

Kassena-Nankana District Snapshot

Variable	K-N District (N, E, S, W Regions)	Intervention Study Sample	P-value
# households	25,458	200	
Ethnicity: Kasem	51.5%	50.0%	0.68
Ethnicity: Nankam	44.5%	45.5%	0.79
Cooking fuel: Biomass	84.3%	100%	0.000***
Location: Rural	90.0%	100%	0.000***
Water source: Borehole	86.4%	100%	0.000***
Sanitation: No facility	95.5%	96.5%	0.32
Has Electricity	13.1%	6.0%	0.003***
Owns Motorcycle	14.9%	10.0%	0.049**
Owns Bike	77.5%	87.0%	0.001***
Owns Mobile phone	69.0%	81.0%	0.000***
# Livestock	7.07	10.9	0.000***

Measurement Approach

- Surveys
 - Cooking behavior
 - Health burden
- Emission
 - Field Portable Emission Monitor for cookstoves
 - Other sources
- Ambient
 - Regional low-cost monitors
 - Reference monitors at NHRC
- Household
 - Air (CO and PM2.5)
 - Stove use
- Personal
 - Air (CO and PM2.5)
 - Location

An open source platform for mobile air quality monitoring

http://mobilesensingtechnology.com/

Behavioral Surveys

STOVE A STOVE B **STOVE A** STOVE B **SMOKE** SMOKE **FUEL USE FUEL USE** TIME TO TIME TO **30 MINUTES 60 MINUTES 60 MINUTES 60 MINUTES** COOK COOK RICE RICE WHERE WHERE WAS WAS **GHANA GHANA GHANA GHANA** THE THE STOVE STOVE MADE? MADE? 15 Cedis 15 Cedis 30 Cedis 30 Cedis COST COST

Total Number of Stoves in Household at Baseline

What dishes were cooked yesterday on each stove?

Health Measures

For Respondent and Children Under Five

- Self-Reported Illness
- Blood Spots
- Anthropometrics:
 - Height
 - Weight
 - Arm circumference

Air Quality Measurement Timeline

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2015 Jan Feb Mar

NHRC Reference Measurements

Ambient Air Quality at NHRC

Regional G-Pods

Household Measurements

- Stove usage monitors (SUMs)
 - 110 SUMs over 35 households
 - CRECER/RESPIRE studies
 - Proposed standard methods and algorithms for SUMs in Ruiz-Mercado et al., 2012
- Microenvironment monitoring
 - CO, PM_{2.5}, CO₂

Household Measurements

Example SUMs Data

Ruiz-Mercado, I. et al., Biomass Bioenergy 2012.

Peak cooking time distribution by study arm

Stove Use Over Time

Assessing cooking event detection algorithm

- Develop a test data set to assess cooking event detection
- 8+ week of thermocouple in fire box + SUMs on 5-7 stoves

SUMs Stacking Results

G = Gyapa T = 3-stone P = Philips

SUMs Stacking Results

Personal Measurements

- 48-hr personal exposure monitoring periods rotating through study households
- 4 families/households monitored from each study arm per deployment period
- 2 deployment periods per week
 - Mon-Wed, Wed-Fri

- Monitoring
 - cooks
 - school children
 - children under 5
 - available males

Personal Measurements

- Battery operated
- Calibrated weekly at NHRC

Carbon monoxide (CO)

- Real-time CO loggers worn by participants
 - Around necks or in "child-proof" pockets
- Lascar EL-USB (electrolytic)
 - 1-minute logging interval
 - Range: 0-300 ppm
 - 0.5 ppm resolution

Personal Measurements and Methods

Particulate Matter (PM_{2.5}) Sampling

- Monitors worn in small backpacks or fanny packs
- SKC pump running at 2 LPM
 - Calibrated biweekly
- 25mm quartz filters with URG impactor upstream
- Battery powered to last over 48 hours
- Filters returned to US for EC/OC analysis

Measurements Stats

	Personal PM	Personal CO
Analyzed Sampling Interval	Nov 2013 – May 2014	Nov 2013 – July 2014
N Individuals	70 total 18 children 16 males	266 adults 112 children from 118 households (over 1.2 million minutes)
Analysis Type	EC/OC Sunset Analyzer	Matlab code
Future	Over 100 more to analyze	Over 500,000 more minutes to analyze

Personal EC/OC of PM2.5

Example CO personal exposure

Personal CO Doses

Personal CO Doses

Why aren't we seeing differences in CO exposure?

Personal CO Doses

Why aren't we seeing differences in CO exposure?

Improve link between CO exposure and stove use

- Additional microenvironmental monitoring
 - UCB PATS
- Personal monitoring with iBeacons

Apportioning CO exposure

Where do we want to end up ...

Estimate ...

CO_{dose}

PM2.5 too

Cooking Emissions Measurements

Evaluation of Stove Performance

- Using Controlled Cooking Test
- Efficiencies
 - Heat Transfer Efficiencies (HTE) and Combustion Efficiency (FCE)
 - Overall Thermal Efficiency (OTE)
- Emission Factors
 - · CO
 - NO and NO₂
 - total VOCs
 - PM2.5 (cumulative)
 - speciation of PM2.5

Sampling Procedures/Techniques

- Be at household before evening cooking starts
- Let cook follow her normal practices
- Set up PEMs and measure emissions during the entire cooking period (2-4 hours)
- PM collection on 90 mm quartz-filters for integrated sample
- Gas phase emissions (CO, CO₂, NO, NO₂, TVOCs)
- Measure the weight of the fuel used and food cooked

Total samples collected

As of 02/22/2015

	Gyapa	Phillips	Three-Stone	Total
North	4	6	5	15
South	4	3	3	10
East	4	4	4	12
West	4	4	4	12
Residential/Total	14	15	14	49

Typical Emission Factor (mass of pollutant per mass of fuel used)

Emissions= Function (stove type, fuel type, fuel moisture content, ambient T, food type)

Secondary analysis

- Task based emission factors (mass of pollutant per mass of food cooked)
- Heat transfer efficiency in the field

January 2014 Data Collected

Initial PM_{2.5} Results

Other source sampling

The Pleasures of Cookstove Assessment....

A Norwegian an American and a Rwandan are sitting at a campfire in the middle of a Boulder, CO parking lot.

The Rwandan has two pairs of pants, one fleece, a winter jacket and a beanie on... while

The Norwegian has shorts and a light sweater on and is asking for sunscreen... while

The American is wondering what fast food restaurant to swing by for dinner!

Research translates to engaging class.

Questions?

