

www.epa.gov

1978

Method 235.2: Iridium (Atomic Absorption, Furnace Technique)

METHOD #: 235.2	Approved for NPDES (Issued 1978)
TITLE:	Iridium (AA, Furnace Technique)
ANALYTE:	CAS # Ir Iridium 7439-88-5
INSTRUMENTATION:	AA
STORET No.	Total not assigned
Optimum Concentration Range:	0.1-1.5 mg/L
Detection Limit:	0.03 mg/L

- 1.0 Preparation of Standard Solution
 - 1. Stock solution: Prepare as described under "direct aspiration method".
 - 2 Prepare dilutions of the stock solution to be used as calibration standards at the time of analysis. These solutions are also to be used for "standard additions".
 - 3 The calculation standard should be diluted to contain 0.5% (v/v) HNO_3 .

2.0 Sample Preservation

2.1 For sample handling and preservation, see part 4.1 of the Atomic Absorption Methods section of this manual.

3.0 Sample Preparation

- 3.1 Prepare as described under "direct aspiration method". Sample solutions for analysis should contain 0.5% (v/v) HNO₃.
- 4.0 Instrument Parameters (General)
 - 4.1 Drying Time and Temp: 30 sec-125°C.
 - 4.2 Ashing Time and Temp: 30 sec-600°C.
 - 4.3 Atomizing Time and Temp: 10 sec-2800°C.
 - 4.4 Purge Gas Atmosphere: Argon
 - 4.5 Wavelength: 264.0 nm
 - 4.6 Other operating parameters should be set as specified by the particular instrument manufacturer.
- 5.0 Analysis Procedure
 - 5.1 For the analysis procedure and the calculation, see "Furnace Procedure" part 9.3 of the Atomic Absorption Methods section of this manual.
- 6.0 Notes

- 6.1 The above concentration values and instrument conditions are for a Perkin-Elmer HGA- 2100, based on the use of a 20 uL injection, continuous flow purge gas and pyrolytic graphite.
- 6.2 The use of background correction is recommended.
- 6.3 Nitrogen may also be used as the purge gas.
- 6.4 The 208.9 nm line is a factor of 3X more sensitive than the 264.0 nm line, but requires a very narrow slit to be discriminated from nearby non-absorbing lines.
- 6.5 For every sample matrix analyzed, verification is necessary to determine that method of standard addition is not required (see part 5.2.1 of the Atomic Absorption Methods section of this manual).
- 6.6 If method of standard addition is required, follow the procedure given earlier in part 8.5 of the Atomic Absorption Methods section of this manual.
- 7.0 Precision and Accuracy
 - 7.1 Precision and accuracy data are not available at this time.